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Abstract. We explore the possibility of obtaining general-purpose
obfuscation for all circuits by way of making only simple, local, function-
ality preserving random perturbations in the circuit structure. Towards
this goal, we use the additional structure provided by reversible circuits,
but no additional algebraic structure. Our approach is rooted in statisti-
cal mechanics and can be thought of as locally “thermalizing” a circuit
while preserving its functionality.

We analyze the security of this approach in two steps. First, we provide
arguments towards its security for a relatively simple task: obfuscating
random circuits of bounded length. Next we show how to construct indis-
tinguishability obfuscators for all (unbounded length) circuits given an
obfuscator for random reversible circuits of bounded length. Here secu-
rity is proven under a new assumption regarding the pseudorandomness
of sufficiently-long random reversible circuits.

Our specific candidate obfuscators are very simple and relatively effi-
cient: the obfuscated version of an n-wire, m-gate (reversible) circuit with
security parameter k has n wires and O(km) gates. We hope that our
initial exploration will motivate further study of this alternative path to
program obfuscation (and, consequently, to cryptography in general).

1 Introduction

Program obfuscation [Had00, BGI+01, BGI+12], namely the ability to efficiently
purturb a program in a way that preserves its functionality but hides “all other
information” about the program, is an intriguing beast. At first, perturbing - or
randomizing - the internal structure of a program may appear to be rather mun-
dane and inconsequential. However, with the right formalization of “sufficiently
perturbed”, program obfuscation has proven to be immensely powerful.

As shown in [BGI4+01,BGI+12], in general any polysize representation of
a program, even a “perfectly randomized” one, gives significantly more com-
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putational power than black-box access to the function computed by the pro-
gram. However, the more modest goal of perturbing the program just to the
point of making the perturbed versions of any two equal-length, functionally
equivalent programs indistinguishable is potentially obtainable and has proven
to be immensely powerful. Indeed, while the ability to obfuscate general pro-
grams to that level (namely obtaining Indistinguishability Obfuscation (I0)
[BGI+01,BGI+12]) does not imply any computational hardness in and of itself
(Indeed, if P=NP then IO exists), IO for all circuits combined with the mere
assumption that P#NP implies public key encryption, trapdoor permutations,
general secure multiparty computation, non-interactive zero knowledge, succinct
non-interactive arguments, and deniable encryption to name only very few, see
e.g. [SW14,GGHR14,BPW16]. When combined with lossy one way functions, it
gives also fully homomorphic encryption, collision resistant hashing, and more
[CLTV15].

The history of attempts at constructing general purpose program obfuscators,
starting from the breakthrough works of [SW14, GGSW13], is intriguing as well.

In the “first generation” constructions such as [GGSW13,BGK+14,AB15]
[GGH15] the obfuscated program typically follows the instruction structure of
the the plaintext program without modification, while using algebraic struc-
tures to perform the instructions “homomorphically” while hiding them from an
adversary who runs the program and sees the entire execution trace. However,
the analyses of these first generation constructions was invariably incomplete,
often by way of relying on an idealized version of a core primitive, and indeed
explicit attacks have been demonstrated against many proposed instantiations
of these candidates (e.g., [CGH+15,CVW18,CHVW19]).

The “second generation” constructions (starting from [BV15,AJS15,
LPST16]) take a different approach: Rather than directly follow the steps of the
input program, the obfuscated program is treated as a “compressed store” of
“garbled programs”, namely, obfuscated programs that are valid only for a single
input. Given an input, the overall obfuscated program first gradually “uncom-
presses” the garbled program for that input, and then runs this garbled program
to obtain the desired output. A number of more recent IO candidate construc-
tions, including the breakthrough works of Jain, Lin and Sahai [JLS21] that pro-
vide the first IO schemes whose security is proven based on relatively well under-
stood assumptions, as well as [GP21, WW21,DQV+21, KNT22,RVV24] and oth-
ers, use that structure.

This two-stage structure is, however, a bit roundabout and results in pro-
hibitively high space and time overhead relative to the complexity of the plaintext
program, rendering general program obfuscation a purely theoretical primitive.

1.1 This Work

We explore a new approach to constructing general-purpose program obfuscation.
The idea is very simple: Repeatedly perform random local perturbations of the
given program, while guaranteeing that each perturbation preserves the overall
functionality of the program. The overarching hope is that, while individual
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perturbations can be easily undone, the aggregate effect of the perturbation
process will be that of converging to a distribution over programs that hides
(or even completely destroys) the structure of the original program—all while
preserving functionality.

Of course, significantly more detail and structure are needed in order to turn
this very high-level idea ideal into a concrete proposal. Here one must also keep
in mind the long list of failed attempts at using such techniques to provide “white
box security” for programs that are accessible to an adversary (see e.g. [Wik24]).

The structure we employ is that of reversible computation, where the number
of state variables remains fixed throughout the computation, and each individual
computational step can be reversed (namely, undone) in a single step. Specifically,
we concentrate on reversible circuits, where state variables correspond to wires,
and a computational step corresponds to a gate that applies a permutation to
the current state.

It is stressed that, while reversible circuits are often studied because of
their physical properties (say for energy efficiency or quantum computation
[Ben73,Tof80]), here the motivation to consider reversible circuits is purely cryp-
tographic. Specifically, we use the algebraic structure provided by the fact that
reversible circuits consist of sequences of permutations to argue that appropri-
ately chosen local perturbations of the circuit structure are likely to have a
global effect that is hard to reverse and is likely to make the obfuscated versions
of any two same-size, functionally equivalent programs indistinguishable. More
specifically, our construction and analysis proceeds in two main steps:

— The first step describes a candidate scheme (or, rather, a meta-scheme) for
obfuscating bounded-length random circuits. These are m-wire circuits that
consist of m gates (where m is some fixed polynomial in the security parame-
ter) and each gate is chosen independently at random from a fixed set of gates.
While we only provide informal arguments for the security of this scheme, we
do rigorously formulate a notion of security, Random Input and Output (RIO)
obfuscation, that we conjecture to be satisfied by our scheme.

— The second step constructs an IO scheme for all circuits (not necessarily
reversible), given any RIO obfuscator. We prove security of this construc-
tion under a new intractability assumption on the distribution of random
reversible circuits.

We start the exposition of our results with a brief overview of reversible
circuits, followed by an exposition of our intractability assumptions regarding
the same. Next we review our definition of RIO obfuscation and how we use it
to construct an IO scheme for all circuits. Finally, we sketch our candidate RIO
obfuscator and the arguments for its security.

1.2 Reversible Circuits and Their Pseudorandomness Properties

Reversible circuits. Recall that reversible circuits have a fixed number, n, of wires
(or, binary state variables), and each gate v computes a permutation on the n-
bit state. The permutation Po computed by C = 71 ..., is the composition of
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the individual permutations, Pc = P,, o...0 P, or, in other words, C(z) =
Ym (... (z) ...). We restrict our attention to Toffoli gates, namely gates of the
form v; j g f(81...5n) = (8] ...s),) where s1...s, is the old state, s} ...s], is the
new state, i, j, k are distinct indices in [n], f : {0,1}* — {0, 1}, s} = s;+ f(s;, sx),
and s}, = s, for all i’ # i [Tof80].

We first argue that restricting attention to obfuscation of reversible circuits
of the above form does not limit the generality of the treatment. Indeed, the set
B,, of gates of the above form generates the alternating group As» of even permu-
tations over {0,1}" (see e.g. [CG75,Bro04]). Furthermore, any (non-reversible)
circuit can be embedded in a reversible circuit while preserving both the func-
tionality and the complexity of the original circuit (see e.g. [Tof80]).!

On the other hand, reversible circuits have some attractive properties which
are essential for our treatment:

Limited Independence and Pseudorandomness. The model enables for a natural
notion of random circuits of certain dimensions (say, numbers of wires and gates),
which is efficiently samplable. Furthermore, the fact that all gates compute per-
mutations makes it plausible that the permutation computed by a random n-
wire, m-gate circuit has some randomness properties, and that the “level of ran-
domness” increases monotonically with m. (Natural distributions over general
Boolean circuits do not appear to exhibit such properties.) Indeed, the pseudo-
randomness of random reversible circuits has been the focus of much study over
the past decades, with some very new and exciting progress.

Gowers [Gow96] shows that C,, ,,, the family of n-wire, m-gate circuits is
e-close to being strongly t-wise independent whenever m = 2(n®t3log(e~1)).
Hoory et al. [HMMRO5] and later Brodsky and Hoory [HBO05] improve this bound
to m = 2(n3t? + ntlog(e~1)). Very recently, He and O’Donnell [HO24] and
Gretta, He and Pelecanos [GHP24] have further improved the bound to m =
O(ntlog(e~1)). (We note that, while Gowers considered all 8!(%) permutations
on 3 wires as base permutations, all other works mentioned above consider the
same set B,, of base permutations considered here.)

Gowers conjectured that the family of permutations defined by m-gate
reversible circuits on n wires might be pseudorandom (in the cryptographic
sense) for some m = poly(n).? In fact, his construction can be viewed as the
“quintessential block cipher” where each base permutation is an independently

! More specifically, any circuit C' with « input wires, 8 output wires,  NAND gates
and width w can be transformed to a reversible circuit C’ on n = a+ 3+ 6 wires and
m gates, where n = O(w) and m = O(u), and where C'(z,y,0°) = (z, C(z) + y, 0°)
for any = € {0,1}*,y € {0,1}*. While known constructions are only guaranteed to
preserve functionality when some of the input wires are set to 0 and may thus not be
sufficient for the purpose of program obfuscation. To address this issue, we give an
“obfuscation compatible” transform with the additional guarantee that C’(x,y, z) =
(z,y, 2) whenever z # 0° (see [CCMR24]).

2 The conjecture is actually only implicit in [Gow96]. It is made explicit in Barak’s
survey [Barl7].
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chosen “S-Box” and the key essentially specifies the schedule and ordering of S-
boxes to be applied. Indeed, the main conceptual difference between the Gowers
construction and modern block ciphers such as AES is the use of a key schedule
that significantly reduces the overall key size. (AES and other block ciphers con-
tain additional linear operations over the entire state; however as evidenced by
the t-wise independence results mentioned above, the Gowers construction effec-
tively approximates such operations as well.) The t-wise independence of AES
and the pseudorandomness of the Gowers construction have also been studied
in [LTV21,LPTV23,HO24].

Rerandomiability. Reversible circuits appear to be readily amenable to
functionality-preserving rerandomization via local perturbations. We discuss this
property at length later on, and only note at this point that all base permuta-
tions 8 € B,, are inverses of themselves, namely 53 = I,,, where I,, denotes the
identity permutation on {0,1}". This also means that, for any circuit C on n
wires, the circuit C|Ct computes I,,, where C has the gates of C in reverse order
and | denotes circuit concatenation. In fact, the set of n-gate reversible circuits
with set B of base gates can be viewed as the Free Group Fpy over alphabet
B. Furthermore, the operation of evaluating a circuit can be viewed as a group
action of Fy on the Alternating group Ag» of even permutations on {0,1}™. The
kernel of this action is the set of identity circuits and the cosets are the sets of
functionally equivalent circuits. This algebraic structure provides a basis for our
obfuscation scheme based on local perturbations, described in Sects. 1.5 and 6.

White-box Pseudorandomness. while the pseudorandomness properties of the
permutations computed by random reversible circuits may be intriguing, they
do not suffice for our needs. Here instead we are concerned with adversaries that
have full access to the circuit description, and can mount attacks that combine
the circuit’s functionality and structure.

The good news about random reversible circuits is that their “internal struc-
ture” appears to be largely uncorrelated with their functionality, in the sense that
even very large portions of a sufficiently long random circuit remain pseudoran-
dom even given oracle access to the overall circuit. For instance, let m* denote
the number of gates that suffices for Gower’s conjecture to hold with respect
to some number of wires n and security parameter k. (For notational simplicity
we assume n = k). Now, let C & Cp,m for some m > 2m*, and let C; denote
the circuit C' without the m*-gate sub-circuit that starts at gate i. It is easy
to see that the following is implied by Gower’s conjecture, for any ¢: Polytime
adversaries that are given ¢, oracle access to C' and a challenge (m — m*)-gate
circuit C’, cannot tell significantly better than a random guess whether C’ = C;,
or else ' is an independently chosen random circuit, i.e. C’ & Crom—m= 3

3 Indeed, an algorithm A that guesses correctly for some i can be used to break
Gower’s conjecture: Given oracle access to an unknown function F'| choose Py, P, &
Cnir S0, 81 < Crm—m+—i and b < {0,1}, run A on input (i, Py, So), and answer
each oracle query z of A with S,(F(Py(z)). If A guesses b correctly then guess that
F is taken from Gower’s PRF, else guess that F'is a random permutation.
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Furthermore, it is only natural that this same property—pseudorandomness
of large circuit segments—would extend also to sufficiently long random circuits
with some fized functionality. For instance, let £p,, denote the set of all m-gate

circuits that compute permutation P, let C' < &1, 2m~, and let Cfy .+ denote the

m*-gate prefix of C. While C[; ,,- is statistically far from a random n-wire, m*-

gate circuit, it appears plausible that the two distributions are indistinguishable.
By the same token, it seems plausible that

R N R R
C : C «— g[n’Qm* ~ C|C/ . C — Cnym*;cl — (C/‘CT,m*v

namely that a random 2m™*-gate identity circuit is indistinguishable from a ran-
dom m*-gate circuit C followed by the inverse of another random m*-gate circuit
("’ that’s functionally equivalent to C'. (We use ¢, as a shorthand for Epg m,
where P¢ is the permutation computed by circuit C.) Indeed, here we have two
instances of the previous distribution, where the instances are correlated only
via the permutation Pc.*

Taking this logic a step further, let C be an arbitrary, potentially highly
structured m-gate circuit, and let C' & Ec,m' be a random m/-gate circuit that
is functionally equivalent to C, where m’ > 2m*m. Then it is plausible that any
(m’ — m*)-gate portion of C is indistinguishable from a random circuit of the
same length. Furthermore, let C;, Cy be m-gate prefix and ms-gate suffix of C,
mq + mo = m. Then it seems plausible that:

C:C & Ecomem ~ C1|Ca :

R R R
C1 < &cy|R) . 2m*m1; C2 < ERt1Cy) 2memas B Crime,

namely that a random 2m*m-gate circuit that’s functionally equivalent to C
is indistinguishable from a random 2m*m;i-gate circuit C; that computes the
permutation Cy|R for a random m*-gate circuit R, followed by a random 2m*ma-
gate circuit Cy that computes Rf|Cy. We call this assumption the Split-Circuit
Pseudorandomness (SCP) assumption (see also Fig. 1).

Discussion. We stress that the SCP assumption may not be efficiently falsifiable
even if false. This is so since it considers indistinguishability of distributions

4 One consequence of the correlation is that here m* needs to be large enough not
only to make Gower’s conjecture work, but also to make sure that two random
instantiations of the same permutation look sufficiently different from each other.
However, this distinction appears to become moot when m* = 2(|B,|). See more
discussion within.

5 The constant 2 above is clearly arbitrary and was only used to underline the pro-
gression of the logic underlying the assumption. Also, the above formulation actually
corresponds to a strong version of the SCP assumption, whereas a somewhat weaker
version suffices for our treatment. See more details within.
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Fig. 1. The Split Circuit Pseudorandomness (SCP) assumption. Circuit C (top left) is
an arbitrary n-wire, m-gate reversible circuit. Circuits C1 and Cz at the top right are
the mq-gate prefix and ma-gate suffix of C (with mq1 + m2 = m), and R is a random
m¥-gate circuit, where m* depends only on n and the security parameter, while m
is an arbitrarily large polynomial. Circuits C1|R and R'|C: at the bottom right are
random m#ml—gate and m#mg—gate circuits that are functionally equivalent to C1|R
and RT|Cz, respectively. The assumption states that the concatenation of these two
circuits is computationally indistinguishable from a random m#*m-gate circuit that’s
functionally equivalent to C (bottom left), in spite of the fact that each one of C1|R
and RT|02, taken separately, computes a pseudorandom permutation.

which are not known to be efficiently samplable. In fact, many of these distribu-
tions are not even efficiently recognizable - e.g. we don’t have a feasible way to
know for sure that a given circuit computes even the identity permutation.

At the same time, this assumption is a fairly minimal instantiation of a more
general intuition regarding the pseudorandomness of sufficiently long random
circuits with fixed functionality. This intuition essentially states that there exist
n%,m’ € poly(k) such that for any large enough value of the security parameter
K, any m > m}, and any fixed circuit C € Cp: m, a random O(m}m)-gate
circuit C' that is functionally equivalent to C essentially renders “all information
on both the structure and functionality of short and medium range segments
of C” inaccessible to polytime observers, while keeping the overall functionality
intact.

We note that the SCP assumption appears closely related - at least in spirit -
to assumptions regarding the hardness of distinguishing between random strings
with different Kolmogorov (respectively, MCSP) complexities (see e.g. [LP20,
LP21,IRS22,BLMP23,1LW23]). While some initial connections are made within,
further exploration and exploitation of these apparent connections may be of
independent interest.

1.3 New Notions of Security for Circuit Obfuscation

Next, we sketch the definition of RIO obfuscation (which relaxes 1I0). We also
define another variant, called random output (RO) obfuscation, which will be use-
ful for presenting and analyzing our constructions. (As we’ll see, RO obfuscation
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for some circuit classes will provide stronger guarantees than IO for these classes;
still, IO for all circuits and RO for all circuits will end up being equivalent.)

Let C,, denote the set of all n-wire reversible circuits. A transformation
O : C,, — C, is functionality-preserving if O(C') and C' are functionally equivalent
for any C € C,.

A functionality-preserving transformation O : C,, — C,, is arandom output
indistinguishability (RO) obfuscator for a set C C C,, of circuits and inner-
stretch function & if there exists an efficient “post-processing algorithm” 7« such
that for any m-gate circuit C' € C we have:

0(C) = n(C): C & Ecetnm)-

It can be verified that if £(n,m) = m then RO obfuscation coincides with
standard indistinguishability obfuscation (I0). (In particular, in this case we can
set m = O without losing generality.) When &(n,m) > m, RO obfuscation for
some classes of circuits becomes non-trivial to obtain even in situations where
IO for these classes is trivial (e.g. when the input circuit C is the only one
with the same size and functionality in that class). Furthermore, together with
the SCP assumption, RO obfuscation with large inner-stretch (namely, when
&(n,m) = 2(m*m)) guarantees that both the structure and the functionality
of any not-too-large portion of C' are essentially lost. Still, observe that RO
obfuscation for any class of circuits can be constructed from IO for all circuits,
by appropriately padding the input circuit before obfuscating it.

A functionality-preserving transformation O : C,, — C,, is a random input
and output (RIO) obfuscator with respect to C, », if the following two require-
ments hold:®

R

L. (0(0),0(C)) : C & Cpom = (0(C),0(C") : C & Crpo; C' <= Ecim
2. For any “advice” function Z with poly-length output we have

0(C), Z(P(Cy,C2)) = O(C"), Z(P(C1, Cs))

where C & Cnym, C’ & Ec,m, P(C) denotes the permutation computed by
circuit C, and Cy and Cy are the m/2-gate prefix and suffix of C, respectively.

The two requirements from an RIO obfuscator are incomparable and capture
different security aspects: The first requirement makes sure that two obfuscated
versions of the same random circuit C' do not look “too much alike” relative to
the obfuscated versions of two random circuits C, C’ with the same functionality
and length.

The second requirement makes sure that O(C) remains indistinguishable
from O(C’) even when given arbitrary polysize advice that’s computed given
the permutations computed by C7 and Cs, the first and second halves of C.

5 For simplicity we present here the definition only for the special case where there is
no inner-stretch requirement and the input is uniform. A more general formulation
appears within.
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Note that in the left hand side distribution, the permutation computed by C; is
the same as the permutation computed by the first half of the obfuscated circuit
C. In contrast, in the right hand side experiment the permutation computed
by the first half of the obfuscated circuit C’ is different than the permutation
computed by Cj.

It is stressed that neither of the two RIO requirements considers a distin-
guisher that has access to the input circuit C. This stands in sharp contrast to
the case of IO (and RO) where the distinguisher sees both C' and O(C'), making
RIO potentially easier to obtain—mnot only than 10, but also than IO for random
circuits.

1.4 From RIO to RO for All Circuits
We show:

Theorem 1 (Informal). If there exist RIO obfuscators for Cp m=, where n,m*
satisfy the SCP assumption, then there exists an RO obfuscator O with large
inner-stretch for all circuits in C,. Furthermore, if C' has m gates then O(C)
has poly(m*)m gates.

For the construction, we first construct the following building blocks (See
Fig. 2):

— A random identity generator (RIG), which is an RO obfuscator for the identity

permutation with inner-stretch 2m*. This is done by choosing C & Crm~,
R

then sampling C’,C"” < O(C) where O is an RIO obfuscator, and finally
outputting C’|C”. Security is proven using the RIO security of O and the
SCP assumption.

— A gate obfuscator GO, namely an RO obfuscator for (3, per each gate § € B,,.
This can be done simply by sampling random identities using the previous
step, until an identity circuit that starts with 3 is sampled. Then, remove the
leading /3 gate (or alternatively replace it with an identity gate) and output
the result.

— A procedure for “soldering” RO-obfuscated circuits, namely combining an
RO obfuscator O; for a circuit C7 and an RO obfuscator O, for a circuit Cq
into an RO obfuscator for the circuit Ci|Cy. The idea is again simple: Let
él <i 01(01), éz <i 02(02) NOW, let él = 01’1|Cl72 and ég = CQ’1|02’27
where Cy 2 and Cs 1 have m*-gates each. Now, compute G & O(C1,2|C2,1)
where O is an RIO obfuscator, and output the circuit C; 1|G|Cs 2. Security
is proven based on the security properties of the building blocks, using the
SCP assumption. (While the proof is conceptually straightforward, care has
to be taken to the fact that several of the intermediate distributions are not
efficiently samplable.)

Now, to obfuscate a circuit C' = 71 ...V, first sample I < GO(vy;) fori = 1..m,
and then solder the circuit pieces one by one: Let Cy = I, and for i = 2..m let
C; be the result of soldering C;_; and I;. Finally output C,,.
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Fig. 2. The building blocks for constructing RO obfuscation for all reversible circuits
from RIO obfuscation for bounded length random circuits. The first building block is
random identity generators (RIGs), constructed by concatenating two RIO-obfuscated
versions of a random circuit, one in reverse. The second building block is RO obfus-
cators for single gates, constructed by sampling a RIG with the desired first gate and
removing that gate. The third building block is soldering RO-obfuscated versions of
circuits C1 and C5 into an RO-obfuscated version of C1|C> by concatenating the indi-
vidual obfuscations and re-obfuscating the circuit segment around the seam. These
basic building blocks are then iterated to solder obfuscated versions or arbitrarily long
circuits.

The use of RO obfuscation with large inner-stretch for the intermediate steps
in the obfuscation process (rather than, say, plain 10) is critical for this approach
to work. In particular, we critically use the fact that, after each step, the inter-
mediate circuit C; has essentially lost “all polynomially accessible information”
on its structure (i.e. on vy ...7;) other than the overall functionality of y1 ...7;.
This may be viewed as evidence for the power of RO obfuscation.

1.5 Constructing RIO Obfuscators

Reversible circuits admit a wide variety of functionality preserving local pertur-
bations. For instance, given a circuit C' =1 ...7;...%ite ... ¥m One can replace
a circuit segment ~;...7v;4¢ with any circuit C’ = ~{ ..., that is function-
ally equivalent to 7;...7iy¢ (i.e. Por = P, 4,.,), Obtaining a perturbed cir-
cuit C” = v1...%i-1|C’'|Vite41 - - - ym that is functionally equivalent to C' (i.e.
Per = Pc). When £, ¢ are small enough (say, constants), it is possible to sam-
ple uniformly from all - or sufficiently many - ¢'-gate circuits that are functionally
equivalent to any given f-gate circuit so as to make for effective randomization
of that particular segment. It is thus tempting to explore the possibility that the
space of functionally equivalent circuits within a given length is ergodic—namely
that iterative replacements of randomly chosen small circuit segments with ran-
dom functionally equivalent alternative segments may provide more global mix-
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ing (and hence obfuscation) properties. Note that this mixing approach can be
viewed as a recipe for generating random elements in a group presentation where
the underlying alphabet is the set of base gates, and the set of generating words
consist of the initial circuit, plus a sufficiently large set of identity circuits.

One drawback of a literal implementation of this idea is that much of the
randomness in a random circuit can be effectively “factored out”, say via effi-
ciently computable cannonical representations of circuits. For instance, note that
many pairs of gates (, 3" € B,, commute, namely Pgg = Pgg. (In fact, all but
O(1/n) of them do.) Thus applying the above process with segments of size up to
o(y/n) and ¢ = £ will end up only re-ordering commuting gates, almost always.
However, such re-randomization is easily factored out by using a cannonical rep-
resentation that fixes the order for each pair of commuting gates (say, starting
from the left and using some lexicographic ordering of the gates).

A natural approach to get around the above “attack” is to consider circuit
segments that are not consecutive: for instance, pick a random gate 7; in the
circuit and a random direction (left/right), and let ; be the nearest gate in that
direction that “collides” (i.e., does not commutes) with ;. Then remove 7; and
~v;, and replace them by a functionally equivalent sequence of gates (say, as in
Fig. 3), placed anywhere between locations i and j. Such a strategy may appear
harder to reverse, but it is again ultimately reversible (at least in and of itself)
since it leaves behind clusters of “collision debris” gates that are relatively easy
to identify.

A more general issue with naive realizations of local rerandomization of cir-
cuit segments is that, for most f-gate circuits C, the set £c ¢ is relatively small.
(As we demonstrate within, this is in fact a general property that holds for all
values of ¢; but it is perhaps most prominent when ¢ is small.) This means that,
when ¢ = ¢/ the above process may again not provide sufficient randomization.
On the other hand, when ¢ < ¢| the circuit would continually grow in size, which
means that there is little hope to reach any stationary distribution—or to even
to guarantee more basic mixing properties such as having each segment in the
final circuit depend on all gates in the original circuit.

Furthermore, it is unlikely to be the case any two functionally equivalent
circuits of the same size are connected via a “path”, or sequence of polynomially
many local transformations that are quaranteed to be functionality preserving.
Indeed, if this were the case, then we would have a polysize witness for the fact
that two circuits are functionally equivalent, implying NP=coNP. (Note that this
rules out the very existence of such a sequence, not just the feasibility of finding
one. This observation is a slight variant of a more general result by Goldwasser
and Rothblum [GR14], which demonstrates, in a similar way, that perfect IO for
all circuits implies NP = coNP.)

Still, these arguments leave open the possibility that a somewhat more
nuanced or structured local perturbation process could actually provide sufficient
“confusion and diffusion” so as to satisfy the relatively weak requirements of RIO
obfuscation for random circuits that have sufficiently many gates so as to make
the Gowers conjecture hold.
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@ = (b) =
——————
(c) = (d) =
s
——
© = = =
b
Fig. 3. Some possible replacements for the case of £°"" = 2 (namely, colliding pairs of

gates), for the special case where the control function is ¢(a,b) = ab (namely, logical
conjunction). A gate is depicted as a vertical line connecting several wires, where the
control wires are identified by black dots and the active wire is identified via a circle.
Panels (a) and (b) show possible replacements for one-headed collision, i.e. for the case
where the active wire of one gate is also a control wire of the other gate. Panels (c)
and (d) correspond to a two-head collision, when the active wires of both gates are
also control wires of the other gate. Notice that in panels (a) and (c) the circuit on
the right includes a 3-control gate. As shown in panel (e), this 3-control gate can be
decomposed into four base gates, while using an additional wire (to be chosen out of
the n — 4 remaining wires in the circuit). Overall, in case (c) the figure depicts 62 (";4)
replacement circuits.

We heuristically propose such a process. First, we formulate a representation
of circuits that facilitates generalizing the above “colliding gates” method to
identifying sets of nearby (albeit not necessarily consecutive) gates that form
structured sub-circuits that are amenable to rerandomization.

Second, we split the mixing process into two stages. In the first, “inflationary”
stage, the size £°" of the sub-circuits to be replaced is a relatively small constant,
and the size £™ of the replacement circuit is only slightly larger - just enough
for effective re-randomization of the structure of the replaced sub-circuit while
preserving its functionality. In the second, “kneading” stage, the size £ of the
replacement circuit is set to be identical to the size of the circuit to be replaced,
and both are set to be significantly larger than ¢*—say ¢* = @(loglogn), where
n is the number of wires.

In a nutshell, the rationale here is the following. The inflationary stage adds
a significant amount of “random redundancy” to the circuit. (We measure the
“level of redundancy” in a circuit by way of the “complexity gap”, or the differ-
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ence between the number of gates in the circuit and the number of gates in the
smallest functionally equivalent circuit.) As noted above, this stage alone does
not suffice since the complexity gap is concentrated in small sub-circuits of the
overall circuit and may thus still be identifiable and removable with feasible com-
putational overhead. Still, the structure of the replaced sub-circuits enables the
kneading stage to spread the already-existing complexity gap over successively
larger sub-circuits, thus making it computationally hard to localize and remove.

We provide more detailed rationale within. It is stressed however that the
analysis is far from rigorous, and that the proposed process is merely an explo-
ration meant to demonstrate the viability of the approach rather than well-
analyzed candidate circuit obfuscator. We leave further analysis to future work.

1.6 Related Work

The randomizing power of permutation groups is not new to cryptography, with
a prominent examples being the seminal work of Kilian that shows how to use
Barrington’s S5 representation of branching programs to randomize general NC!
computations [Bar86,Kil88]. Kilian’s randomization technique has been widely
used, including in early candidate obfuscation schemes [CV13].

Alagic, Jeffery and Jordan [AJJ14] use the randomizing power of permutation
groups (in the more restricted context of Braid permutations) to show uncon-
ditional “partial inditinguishability obfuscation” mechanisms for programs that
are within the same equivalence class of a certain normal-form representation.

Chamon, Muccciolo and Ruckenstein [CMR22] study pseudorandomness
properties of random reversible circuits, and provide evidence that as little as
m = O(nlogn) gates suffice for the family C,, ,,, to be an SPRP, when n is taken
to be the security parameter.

Chamon et al. [CJMR22] use local perturbation techniques of a different
flavor of the ones proposed here to construct a candidate “homomorphic pseudo-
random permutation family” and use it as a basis for a symmetric homomorphic
encryption scheme. It is stressed though that the security requirements needed
in that application are significantly weaker than the ones needed for general
program obfuscation, or even RIO obfuscation.

Finally, [CRMC23] takes a thermodynamic approach to circuit complexity,
and in particular studies mixing of polynomial-sized reversible circuits of a given
functionality through the iterative equilibration of concatenated short subcir-
cuits described via local equilibrium distributions of reversible gates. In partic-
ular, that work uses the thermodynamics framework to argue that the set of
functionally equivalent reversible circuits of some size is partitioned to sectors
where each sector is ergodic with mixing time that’s polynomial in the circuit
size. In other words, that work suggests that viability of the local mixing app-
roach as an obfuscation method reduces to the indistinguishability of random
circuits from different sectors.
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2 Reversible Boolean Circuits

This section recalls the model of reversible Boolean circuits and its relationship
with standard Boolean circuits.

A reversible Boolean circuit C' on n wires consists of a sequence of permu-
tations C' = 41 ...~ where each 7; is a permutation on {0,1}", taken from a
predetermined set B of base permutations. The permutation Po computed by
C' is the composition of the individual permutations, Pc = vy, © ... 01, or in
other words C'(z) = v (... 11 (z)...).

We concentrate on circuits where the base permutations consist of applying a
Toffoli gate to three chosen wires, where a Toffoli gate is a permutation on {0, 1}3
of the form 7,(a1,as,a3) = (a1 + ¢(as, as), az, az) where ¢ : {0,1}> — {0,1} is
the control function of the gate. (We often refer to the three wires of a Toffoli
gate as pins, where the first pin is active and the second and third pins are
non-active.) That is, we consider the set of base permutations defined by

Br = {Buy wsws. : Wi, wa, w3 € [n]%,we # w1 # ws, wa # w3, ¢ : {0,1}° — {0,1}}

where  Buy wows, (1. Tn) = Y1...yn such that (Yuw,, Yws Yus) =
To (T s Tuwy, Ty ), and y; = x; for each j € [n] \ {w1,ws, ws}. (We note that, as
defined above, B,, is actually a multi-set since Bu, w,,ws,¢ and Bul wh w), ¢ May
well describe the same permutation. In fact, while there are 16 different control
functions ¢, there are roughly 8n? different base permutations overall. For con-

venience we use the convention where only a single representative of each base

. . . def . .
permutation is used, i.e. b, = |B,| ~ 8n3. However this convention does not

appear essential for the treatment.)

The natural evaluation of C' = 71 ...y, where each v; = Bu, ; ws ;,ws.;,¢;5 O
input z = 21, ..., x, € {0,1}" is described iteratively as follows. For j = 1..n we
have xg_o) =z, and for each i = 1..m we have (@2 = @Y Y.
The value of wire j after gate ¢ is defined as argl). It may be useful to envision
reversible circuits as a sequence of n horizontal parallel wires, where each gate
connects three wires, and where the computation proceeds from left to right.

Since all base permutations (or, gates) are even, reversible circuits can only
compute even permutations on {0,1}". Still, considering only circuits of the
above form does not limit the generality of the treatment. Indeed, the set B,, of
gates generates all even permutations over {0, 1}", namely the alternating group
Agn (see e.g. [CGT5,Bro04]).

Furthermore, any circuit C with « input wires, 3 output wires, u NAND gates
and width w can be transformed to a reversible circuit C’ on n = a+ 3+ ¢ wires
and m gates, where n = O(w) and m = O(u), and where C’(x,y,0°) = (z,C(z)+
y,09) for any = € {0,1}*,y € {0,1}” (see e.g. [Ben73, Tof80, Ben89, Bro04]). In
the Appendix we show how to “harden” the standard transformation so as to
guarantee that C'(z,y,z) = (z,y,2) for z # 0°, and how to use the hardened



Towards General-Purpose Program Obfuscation via Local Mixing 51

transform to show that obfuscation of reversible circuits suffices for general-
purpose obfuscation of all circuits”.

Let CT denote the natural inverse (or, “reverse”) of circuit C. That is, if
C = 71,....7m then CT = ~,,,...,71. Indeed, note that Peoict = Peorjc = In,
where I, denotes the identity permutation on {0,1}". This is so since the base
permutations are the inverses of themselves, i.e. Pz = I,, for all base permu-
tations . (Here ‘|’ denotes the natural concatenation, or composition, of gates
or circuits.) Let Cy, p, denote the set of all m-gate circuits on n wires, and let
C = Uy Co-

For a circuit C = 7 ...7m, let |C| = m denote the number of gates in C.
For 4,1 € [m], let Cpi iy = Vi - - - Viti(mod m) denote the I-gate segment of C' that
starts at the ith gate, taken modularily; in particular, ¢ < 0 refers to m — 7. We
also use CJ; 4 as a shorthand for Cfiqq -

A note about asymptotics. Throughout we treat n, the number of wires, m, the
number of gates, and the runtimes of adversaries as functions of (specifically,
polynomials in) the security parameter x. We will also be mostly interested in
the regime where m is polynomial in n. While our treatment is mostly asymptotic
in Kk, a non-asymptotic treatment with concrete values can be naturally derived.

2.1 Reversible Circuits as a Free Group

The set C, of circuits with the set B, of base gates can be viewed as the free
group Fp, of reduced strings (namely, strings where any two consecutive iden-
tical characters are eliminated) over the alphabet B,,, with the group operation
being the standard concatenation followed by reduction. One can then define the
following natural action of Fp_ on the alternating group Ag» (namely the group
of all even permutations on {0,1}"): for a circuit C' € Fp, and permutation
7w € Agn, let Eval(C,7) = 7’ o m where ©' = Pe. That is, Eval(C, ) returns
the permutation that first computes m and then evaluates C' on the result. It
is easy to see that Fwal is a group action whose kernel is the set of all iden-
tity circuits, and where each coset consists of all functionally equivalent circuits.
Viewed in this way, program obfuscation is the problem of efficiently generating
a pseudorandom sample from the coset of a given circuit (restricted to some
given length).

3 Hardness Assumptions

This section presents and motivates the hardness assumptions used in this
work. We start off with a reminder of the standard definition of computational

" Note that not all 16 control functions are needed for completeness to hold. In fact,
the functions ¢(z,y) = zy, ¢(z,y) = z, ¢(x,y) = 1 suffice. However, considering all
16 control functions will be convenient for our treatment. In particular, this way the
value of the active wire of 74 for a random control function is uniformly distributed
regardless of the values of the input wires. Furthermore, having the identity as a base
permutation (with ¢(x,y) = 0) will be convenient as well. This set of permutations
is also the one considered by Brodsky and Hoory [HMMRO5, HB05].
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indistinguishability, and a natural extension thereof. Let A = {A}sen and
B = {B.}xen be distribution ensembles. (More precisely, we think of each A,
(resp., B,) as a sampling algorithm. The distribution is defined via the proba-
bility of obtaining each possible output value when running the algorithm on an
input which is drawn uniformly from {0,1}'.) A and B are said to be computa-
tionally indistinguishable, denoted A ~ B, if there exists a negligible function (k)
such that for any polysize family of distinguishing algorithms D = {D, }.en and
all large enough values of it holds that Prob[D,(A) = 1] — Prob[D,(Bx) =
1] < e(k).

3.1 On the Distribution of Functionally Equivalent Reversible
Circuits

We first take a moment to define a measure of complexity for reversible circuits
and then use it to estimate the sizes and makeup of the clusters of functionally
equivalent reversible circuits of a given length. This detour will be useful both as
a basis for our hardness assumptions, and as a basis for the local perturbation
mechanisms developed in Sect. 6.

For a permutation P € Agn, let Ep,, denote the set of all m-gate circuits that
compute P, namely Ep,,, = {C € Cp »m : Pc = P}. Slightly abusing notation,
for a circuit C' we let Eo,m = Ep(cy,m-

We would like to estimate the size of £¢ . Towards this, we define the Com-
putational Complexity CC(P) of a permutation P as the number of gates in
the smallest circuit that computes P. Similarly, let CC(C) = CC(P¢) denote
the number of gates in the smallest circuit that computes Pe. The complexity
gap of an m-gate circuit C' is defined to be CG(C) = m — CC(C).

While CC(C) is clearly distinct from the Kolmogorov complexities of string
representations of a circuit C, these notions have many similarities. For one, it
is easy to see that b > |Ep | > bz (m=CC(P) for any permutation P, where
b ~ 8n? is the number of base permutations:

Claim. For any circuit C' € C,, and any m we have b™ > |Ec | > b2 (CG(O),

Proof. The upper bound is immediate. For the lower bound, observe that for
any sequence of base permutations f ... where [ = (CG(C))/2, the circuit
CpB151 ... 30 is functionally equivalent to C.

Furthermore, for almost all circuits in C,, we have b > |Ecm| >

bm—%é_cb)—o(l):

Claim. For all but an e-fraction of the circuits C' € C,,,, we have |Ecm| >
_ cc(o)

™ ﬁflog(sm log b)
Proof. Note that any string o = {0,1}* can be interpreted as a description of
a reversible circuit & on n wires and m gates where s = mlogb. (Recall that

b ~ 8n3 is the number of base permutations.) Furthermore, for any such n,m,
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the string o is fully determined via a circuit 6 of size CC(&) that’s function-
ally equivalent to &, plus the ordinal of 6 among all m-gate circuits that are
functionally equivalent to ¢. This means that K (o) < CC(¢) + log(|€s.m|), or
equivalently that

€] > 9K(0)=CC(8) _ progs (K (0)=CC(8)) _ b%(K(o)—leg(‘Z))

where K(o) denotes the Kolmogorov complexity of . The bound follows by
noting that K (o) > s — log(es) for all but es of the strings o € {0,1}°.

Put together, Claims 3.1 and 3.1 says that, while for a random m-gate circuit
C, the size of E¢ , is only moderate, the size of £c ., grows exponentially in m/,
for any given C.

Another conclusion from this state of affairs is that [{C € Cy, ,,, : CC(C) =
m} b~ < negl(m), namely that the fraction of m-gate circuits whose computa-
tional complexity is m, out of all m-gate circuits, tends to zero rather quickly as
m grows (see more discussion in [CRMC23].) This fact becomes handy in Sect. 6.

3.2 Hardness Assumptions Regarding Random Reversible Circuits

We present the hardness assumptions used in this work. The presentation builds
on the motivation given in the Introduction. Further motivation is provided
by presenting a sequence of gradually stronger assumptions culminating in the
assumptions we actually use later on. This presentation will hopefully provide
additional evidence for the viability of the main assumption (Assumption 4).

Limited Independence. We start by recalling the works that serve as the math-
ematical and intuitive basis for our analysis. Intrigued by the potential pseu-
dorandomness of random reversible circuits, Gowers [Gow96] showed that Cy,
the family of m-gate permutations on n wires, is e-close to being strongly t-wise
independent for any ¢ < 2" and m = O(n3t3log(¢~1)). That is, for any sequence
of distinct values x; ...x¢ € {0,1}", and for C & Cr.m, the statistical distance
between C(z1)...C(x:) and a random sequence of distinct values ry ... 7y, is at
most €. Hoory et al. [HMMRO5] and later Brodsky and Hoory [HB05] improve
this bound to m = O(n3t? 4+ n?tlog(e~!)). Very recently, He and O’Donnell
[HO24] and Gretta, He and Pelecanos [GHP24] have further improved the bound
to m = O(ntlog(¢~1)). (We note that, while Gowers considered all 8!(%) per-
mutations on 3 wires as base permutations, all other works mentioned above
consider the same set B,, of base permutations considered here.)

Pseudorandomness. Gowers conjectured that the family of permutations defined
by m-gate reversible circuits on n wires might be pseudorandom (in the cryp-
tographic sense) for some m = poly(n). This construction can be viewed as the
“quintessential block cipher” where each base permutation is an independently
chosen “S-Box” and the key essentially specifies the schedule of which S-boxes
to use. Indeed, the main difference between the Gowers construction and mod-
ern block ciphers such as AES is the key schedule that significantly reduces the
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key size. (AES and other block ciphers contain additional linear operations over
the entire state; however as evidenced by the k-wise independence results men-
tioned above, the Gowers construction effectively approximates such operations
as well.) The k-wise independence of AES and the pseudorandomness of the
Gowers construction have been studied in [LTV21,LPTV23,HO24]. We adopt
this conjecture as a starting point for our investigation:

Definition 1 (Strong Pseudorandom Permutations (SPRPs)). An
ensemble F = {F,}ren of circuit families, where the family F,, C C,,. consists
of circuits on n, wires, is a strong pseudorandom permutation family if
there exists a negligible function v(k) such that for any family of polynomial-size
adversaries A = { Ay }wen, and all large enough value of k we have

Prob[ASC  =1:C & F]—Prob[APP ™ =1: P & Agui] <v(k). (1)

Here Agn denotes the set of even permutations on the set {0, 1}" and poly(x)
denotes the set of polynomials in x. Next we state Gowers’ conjecture from the
Introduction):

Assumption 1 (Polysize random reversible circuits are SPRPs [Gow96]). There
exist nj, mj;, € poly(x) such that the ensemble F' = {F}. },en where Fy, = Cpx nx
is an SPRP.

We note that, while our analysis remains valid for any polynomial values of
n}k, m}, the assumption does not appear to be easy to refute even for relatively
shallow circuits with n* = O(k) and m* = O(k). Additional argumentation
for the viability of this assumption for the case where m}, = é(n,’;) appears in
[CMR22].

Pseudorandomness of correlated SPRPs. As a first step towards presenting our
main assumption regarding pseudorandomness of split random circuits with fixed
functionality, we demonstrate that a milder form of that assumption actually fol-
lows from a mild extension of Assumption 1. Rather than considering only the
family of all circuits of a given lenth, the extension considers circuits that are
sufficiently long prefixes of a sufficiently long random circuit that computes some
fixed permutation. Specifically, let Q = {Qx }ren With Qx € Cpx m, be an ensem-

ble of circuits, and let C' & €g.,m be a random m-gate circuit that computes
@, where m > m,m}, for a “long enough cushion” m}, akin to the number of
gates needed to obtain pseudorandomness in Assumption 1. We assume that, for

any ¢ such that m* < ¢ < (m, — 1)m, the ¢-gate prefix of C is an SPRP:

Assumption 2 (Prefixes of Random Circuits with Fixed Functionality are
SPRPs). There exist nf,m* € poly(k) such that for any ensemble Q =
{Qx}ren of circuits with Q. € Cpz m,,. for mqg, € poly(k), and any my, £,
such that m, > mg.mj and m} < ¢, < m, —m}, the ensemble {G,}.en
where G, = {C10,) : C € £q,.m,. } is an SPRP.
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We note that circuits drawn from G, (for some fixed Q) are in general
statistically far from random ¢,.-gate circuits.® Still, it appears that Assumption
2 is only a mild generalization of Assumption 1.

An immediate consequence from Assumption 2 is that, for any ensemble of
fixed circuits {Qy }xen where Q € Cnx mq, > Polysize adversaries can distinguish
between the following two cases only with negligible advantage.

Oracle Access to a Prefix and Remainder of a Random Circuit for
Q«: The adversary has oracle access to C1,Cs (and their inverses), where
C = (4]Cq is a random my-gate circuit for @, € Agnx (1), where |C1| = £,
and where n}, m}, m,, {, satisfy the length requirements of Assumption 2.

Oracle Access to two SPRPs that Jointly Compute @Q.: Let
{Q1,x,Q2,x tren be an ensemble of pairs of circuits where Q. = Q1,x|Q2,x,
and let F' = {F,;}.en be an SPRP ensemble where F,, C C,+. The adver-
sary has oracle access to Pi, P, (and their inverses), where P, = Q1 ,|C and

Py = Ct|Qa.., and C < F,.
That is:

Claim. Let nf,m} € poly(k) and Q = {Qx}xek be as in Assumption 2 with
Qr = Q1x and let F' = {F,}xen where F; C C,: be an SPRP. Then
for any my, ¥, s.t. mg,m;, < m, and m}, < {, < m, — m;, there exists a
negligible function v(x) such that for any family of polynomial-size adversaries
A = {As}ken, and all large enough value of k we have

Prob[ACl’Cl’CQ’ =1:C€&m;Ci=Chu,Ca=Cual— (2)
Prob[APl’ PPy =1:C&F,; P = Q1.:|C; Po = CT|Qa.] < v(k).

Proof. Since {F}.en is an SPRP ensemble then so is the ensembles {P; »|C :
C & Fy}ren. It follows that:

017 Py, P

Prob[A, =1:C€&q,,m.;C1 = Cp. ]— Prob[As =1:P & F]<v(k)

The claim follows by observing that oracle access to the last two oracles in
(2), namely either 02,02 in the left hand side experiment or Pz,P_ in the

8 As a simple example, compare a random n-wire, 2m-gate circuit R that computes the
identity permutation I, to a circuit C1|C2 where C; is a random m-gate circuit and
C is a random m-gate circuit such that C1|C2 computes I,,. Observe that Ry, the m-
gate prefix of R, is more likely to compute a permutation that’s computed by many
m-gate circuits, or in other words a permutation with smaller circuit complexity
than C1. (Indeed, let o € Cp . Then Pr[Ci = o] = b~™ (where b is the number
of gates on n wires), whereas Pr[R; = a] is the number of m-gate circuits Ra
such that Py g, = In divided by the number of 2m-gate identity circuits, namely

|Ea,m|/|E,,2m|. By Claim 3.1, for most « the latter probability is proportional to
b—CC(a )
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right hand side experiment, can be emulated given oracle access to the first
two oracles in that experiment and advice in the form of a polysize circuit Cg,
that computes Q. (Specifically, let O1, O3, O3, O4 denote the four oracles. Then,
Os(z) = Cq, (y) where y = Oz(x). Similarly, O4(z) = O1(y) where y = CEQN (x).)

Pseudorandomness of Split Random Ciruits with Fized Functionality. We now
turn to considering observers that, rather than only having oracle access to the
permutations in (2), have access to a random circuit (of a certain size) that com-
putes each permutation. Clearly, having access to a polysize circuit that com-
putes a permutation provides significantly more “computational power” than
oracle access to the permutation (for one, the permutation is now easily dis-
tinguishable from a random permutation). Still, intuitively, the added power
provided by sufficiently long random circuits that compute the two permuta-
tions in question (either Pc,, Pc, or alternatively P;, P;) should not be of any
help in distinguishing (2). This intuition is formalized in the next assumption,
which states that for any ensemble of fixed permutations {Q }ren, which are
defined by way of an ensemble of pairs of polysize circuits { P x, P1 « }ven where
P € Copm,,r t = 1,2, and Pp, |p,, = Qx, polysize adversaries can distin-
guish between the following distributions only with negligible advantage.

— A circuit of the form 51|62 where 51 is a random ¢; ,-gate circuit that
computes Pp, ¢, where C & F,. for an SPRP ensemble {F.}xenN, where
0y, is larger than (my . + |C|) by a sufficiently large margin, C, is a random
{2 x-gate circuit that computes Poip,  and £z, is larger than (ma,. +|C])
by a sufficiently large margin. R

— A random ({1 + f2,,)-gate circuit C' that computes Q.

A bit more formally:

Assumption 3 (Split Pseudorandom Circuits are Pseudorandom (SPCP)). For
any SPRP ensemble F = {F, }.en where F,, C Cy, m, there exist m# € poly(x)
such that for any ensemble of pairs of circuits Q = {P1 x,P2x}ren where
P« € Cy, . im, ., and any {1 ., o . where £; ; > mi,ﬁmf, 1 =1,2, we have:

{C1|Co: C & FiiCi & Epy 100,013 Co & E(CtiPy )t 1 Inen &

{C:C & &y ipa) s ntitnn fren- (3)

In the present work we only need a restricted variant of this assumption,
where F' is the family of all m’ gate circuits from Assumption 1. Still, the more
general statement appears to more closely match the intuition for the nature of
the hardness.

Finally, we combine Assumptions 1 and 3 to one:

Assumption 4 (Split Circuit Pseudorandomness (SCP):). There exist n¥, m} €
poly(k) that satisfy Assumption 1, as well as m# € poly(x) that satisfies Assump-
tion 3 with respect to the SPRP in Assumption 1.
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We also consider a somewhat stronger variant of the SCP assumption, where

*

m? = mi. To see why this variant is stronger, consider again the case of com-

paring a random n,-wire, m? gate identity circuit R & ¢ 1. m# 1O the split

version C”|C”1L Nor=2 Cn,.om; c,o” & o m#> and recall that, when m} = mﬁ
the split version tends to be skewed towards circuits C' whose computational
complexity is higher than that of R;, the m},-gate prefix of R, or in other words
|€c.mz| < |ERy,mz- (See the exposition in Footnote 8.) This also means that
C" is likely to be “more similar” to C’ than Ry to R;, making distinguishing
R from C'|C"T potentially easier than distinguishing R; from C’ alone. When
m? grows relative to m¥, this discrepancy tapers off and CC(C) (which is at
most m) eventually drops below CC(R;) (which keep growing with m#). Fur-
thermore, the discrepancy between |E¢, x| and |ER, .z | is prominent only when
mj, < b. When m}, > b, e.g. m} = 2(n*), we have that [Ec,m:| is sufficiently
large so as to make the discrepancy moot.”

On the other hand, we note that this somewhat stronger assumption enables
demonstrating that a weaker variant of RIO obfuscation suffices for obtaining
full-fledged obfuscation for all circuits.

Assumption 5 (Strong Split Circuit Pseudorandomness (SSCP):). Assumption
4 holds with m} = m}.

4 Notions of Obfuscation for Reversible Circuits

A (randomized) transformation O : C,, — C,, on reversible circuits has stretch o
if for any C' € Cy 1 we have O(C) € Cpy it (n,m)- O is said to be functionality
preserving on a set C of circuits if Py (o) = Pc for any C € C. An obfuscator
O = {0 }wen for C = {Cy},en is an ensemble of transformations on reversible
circuits where O, is functionality preserving on C,. We start by recalling the
standard definition of Indistinguishability obfuscation (I10):

Definition 2 (Indistingiushability Obfuscation (I0):). An obfuscator
O = {Oy}sen is an indistingusihability obfuscator (I0) for C = {C, }xen
if for any ensemble of pairs of circuits {Co x, C1,x }ren that are equal size (i.e.,
Cok,Crx € Ci NCpym, for some n,,m.) and functionally equivalent (i.e.
Pcy.,. = Pc,.,. for all k), we have

{OH(CO,N)}NEN ~ {OK (Cl,n)}fceN-

An alternative and equivalent formulation of this definition requires that
0x(C) =, R¢ for any circuit C € C,, where R¢ is a circuit drawn from some
(not necessarily efficiently computable) reference distribution that depends
only on Pc and the size of C":

9 Observe that the computational complexity of a random n=wire, m=gate circuit C
is at most ©(m/n?). Indeed, it is easy to verify that a each gate +; cancels out with
an earlier identical gate v; = 7; for some j < i with probability ©(n~?). By Claim
3.1, this means that if C & C,, 4 then |Ec | > 0"
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Definition 3 (IO - alternative formulation:). An  obfuscator O =
{Ox}ren is an indistingusihability obfuscator (I0) for C = {C,}.en if
there exists a (not necessarily polytime) sampling algorithm D such that for any
ensemble C = {Cy}wen of circuits such that Cy, € C, N Cyy, m, we have:

{ON(CH)}HEN é {R ‘R i ID("@mm,PCK)}nEN-

Claim. An obfuscator satisfies Definition 3 for an ensemble C of circuits iff it
satisfies Definition 2 for C. O

This alternative formulation provides a stepping stone towards presenting
two new notions of obfuscation that will be key to our construction and analysis:
Random Output (RO) and Random Input (RI) obfuscation.

4.1 Random Output Obfuscators

In the rest of this work we will be mostly interested in obfuscators where the out-
put distribution D is of a particular form. Ideally, we would have liked to require
that the distribution D(n,m, P) be the uniform distribution over £p,y,s for some
m’ > m. However, this may be over-restrictive, as it may set an unnecessarily
high bar for obfuscation schemes. (For instance, the local random perturbations
technique of Sect. 6 may well be a secure obfuscation scheme for random circuits
even if it outputs circuits that are distinguishable from random ones.) We thus
settle for the following relaxation: We allow distributions D(k, m, P) where the
output circuit is the result of applying some polytime post-processing algorithm
to a circuit C' drawn uniformly from Ep,, for some m’ > m. Indeed, on the one
hand this relaxation allows obfuscation mechanisms that fall short of generating
circuits that match a specific distribution, and on the other hand it still guaran-
tees that w(C) is independent of the original circuit C, other than having access
to P =P(C).

In some cases we will make the additional requirement that the post-
processing algorithm be applied separately to different segments of C, e.g.
7 = (7, m2) where m(C1|C3) = m1(C1)|m2(C2). This additional requirement will
be used, together with Assumption 4, to argue that that a certain segment of
an obfuscated circuit is “computationally independent” even from the overall
functionality of the circuit.

Definition 4 (Random Owutput Obfuscators). An IO obfuscator O =
{Ok}ren for C = {Cx}lien is ¢« Random Output Indistinguishability
(RO) obfuscator with inner-stretch function & : N3 — N and post-processing
algorithm © : C,, — Cp, if for any ensemble {Cy}en of circuits where
C. € C,NC,, we have:°

{OK(CK)}HGN f’;’ {71'(6) : a & gCN,E(K,,nNJCND}KGN'

10 Note that the overall stretch of O is the composition of the inner-stretch function
§ and the stretch of the post-processing algorithm 7. That is, if 7 : Cp ms —
Cn. v (rm,m,) then the stretch of O is o(k, nw, Mk) = T(K, N, §(K, N, Mic))-
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The inner-stretch function £ captures the “effective stretch” of the obfuscator.
That is, if O has inner stretch ¢ and C' = O,(C), where C' € Cy., then C
provides “effectively the same obfuscation guarantees” as would a random circuit
in £ ¢(k,n,m)- This is so in spite of the fact that O might have longer stretch,
and C might not look random at all. In particular, note that RO obfuscation
where &(k,ny, my) — m,, = £2(k) provides a meaningful security guarantee (and
may be challenging to obtain) even when the input circuit is the only circuit
with the same functionality and length in the class C. (In particular recall that,
by Claim 3.1, for each C\; € C,; NCy, 1m, We have that the size of Co, ¢(xn,,m..)
is exponential in x.) In contrast, plain IO is meaningless in such cases.

Separable RO obfuscators. The following variant of RO obfuscators will be useful
for our soldering-based construction. An RO obfuscator O is called m-left-
separable if:

1. The computational complexity of the m,-gate prefix of obfuscated circuits is
not too high: for any C, CC((Ox(C))[1,m,]) < mx/2.
2. The post-processing algorithm is of the form 7 = (w1, 72) where 7(C) =

1 (Clim, )72 (Cln,, 4)-

Right-separable obfuscators are defined analogously. (Formally, obfuscator O
is m,-right-separable if Of is left-separable, where f1(C) = (f(CT))! for a
function f : C — C.) An m,-separable obfuscator is both m,-left-separable
and m-right-separable.

Observe that if O = {O,;}xen is an m,-left-separable RO obfuscator then
O = {O]}.en is an m/ -right-separable RO obfuscator (and vice versa).

4.2 Random Input and Output Obfuscators

Here we consider obfuscators (namely, functionality preserving transformations
on circuits) where security is required only with respect to circuits drawn from a
specific distribution. Furthermore, in contrast with IO where security must hold
against an observer who sees both the plaintext circuit and the obfuscated circuit,
here the observer sees only one or more obfuscated circuits, plus some limited
auxiliary information on the plaintext circuit. More specifically, we consider two
alternative (and incomparable) security requirements, made with respect to a
circuit C chosen from some base distribution R, over C,,_ 2m,, and an output
distribution D(k, 2m,, Pc):

1. Two obfuscated versions C' should not look “too much alike” compared to two
independent draws from the underlying distribution D(k, 2m, Pc). In other
words, the observer should not be able to distinguish between two obfuscated
versions of C and two draws from D(k, 2m,, Pc).

2. An obfuscated version of C' should hide the “midway functionality” of C,
namely the permutation computed by the first m,-gate block of of C'. More
specifically, the observer should not be able to distinguish between an obfus-
cated version of C and a circuit drawn from D(x, 2m,, Pc), even when given
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circuits 61, 62 computed as follows. Let Z;, Zs be two fixed circuits (which
are tantamount to an “auxiliary input”), let C' = C1|Cy where |C1| = my,

and let 61 & 5(Z1|C[1,m]),>w|21|)a 6’2 & S(C[m,*]\Zz),MIZzl and sufficiently large
“leeway” A. (That is, Ciisa sufficiently long random circuit that’s function-
ally equivalent to Z1|Cfy ). Similarly, Csis a sufficiently long random circuit
that’s functionally equivalent to C’[my*] | Z5.) The rationale here is that 6’1 and
62 essentially give the observer only the ability to evaluate Z|Cyy ) and
Clm,+]|Z2 (and their inverses) on inputs of its choice.

More formally:

Definition 5 (Random Input (RI) Obfuscators). O = {Oy}.en is Ran-
dom Input (RI) obfuscator for n.,2m,, input distribution ensemble R =
{Rsi}ren where Ry, C Cp, 2m,., and output distribution D, if:

L

(C1,C) : C &Ry o, < 1(C,C):CER,;

C1,Cs <~ 0,(0) rEN Cy, Cy & D(k, ny, 2my, P) KEN.
II. There exists a leeway function A, € poly(k) such that for any two circuit
ensembles Zy = {Z1 x}veN, Lo = {Z2 x}ren with Z; € Cyy, .. for some my,

i=1,2, and any A\ > A\, we have:

(Ox(C),C1,C3) (C,C1,Cy)
R R -~ R
C & Ry ¢ ) C —Rg;C — D(k,ng, 2mg, Pc);
~ R vl R
L= gP(Cu,mK]lzm)’ml’“’ G = 573<C[1,m~]‘21,~)’m1"’\’
O, & ¢ O, & ¢
2 (P23, 1Cpmy ) )26 ) g 2 (P23 11O, 0 )2 x<EN.

Definition 6 (Random Input & Output (RIO) Obfuscators). An RI
obfuscator O = {O}xen for ng, m, is Random Input Output (RIO) with
inner-stretch function € : N® — N and post-processing algorithm m : Cy,,, — Cp,.
if its output distribution D is of the form D(k,n., my, P) = 7(C) for C &
gP,f(n,nH,mN)~

Requirements (I) and (II) appear to be incomparable. Furthermore, each use
of RIO obfuscators within our construction needs only one of the two require-
ments, with respect to a specific input distribution. This means that in principle
one could have two different constructions of RIO obfuscation, where each con-
struction is geared towards realizing only one of the two requirements. Still, the
rationale for the validity of the obfuscation algorithm described in Sect. 6 applies
in the same way to both properties (see discussion there).
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5 From RIO Obfuscation to RO for All Circuits

This section presents the construction of RO obfuscators for all circuits from RIO
obfuscators. More specifically, Let n*, m*, m# be length functions that satisfy
Assumption 4. Our starting point is two obfuscators, O; and Os, such that:

— 07 is an RIO obfuscator that satisfies property I with respect to the uniform
input distribution C' & Cns.ms, with inner-stretch &(k,nj, m%) = m¥ and
with post-processing algorithm .

— Os is an an RIO obfuscator that satisfies property II with respect to the input

R

distribution C' = 7(C")[xT(C") : C',C" < Cpx s+ and leeway A, < m¥.
That is, we show:

Theorem 2. Let n¥,m%,m¥ be length functions that satisfy Assumption j. If
there exist algorithms O1, 7w, O2 such that:

— O1 satisfies property I of RIO obfuscation for input distribution ensemble
{c:.:Cc & Cns ms }reN, with inner-stretch &(k,nf,m%) = m, > m¥ and
post-processing algorithm ,

— Os is an an RIO obfuscator that satisfies property II with respect to the input
distribution C = w(C")|xt(C") : C",C" & Cnz.m= and leeway A, < m}.

then there exists an RO obfuscator O for all reversible circuits. Furthermore, the
inner-stretch of O for m-gate circuits is 2(mjFm).

An overview of the obfuscation algorithm appears in the Introduction. We
present the construction and its analysis in four steps. First, we show how to
construct RO obfuscators for the identity function, with some specific parameters.
(We call such obfuscators pseudrandom identity generators.)

Next we use random identity generators to construct RO obfuscators for
single gate circuits.

Nest we show how to use RIO obfuscators with the above parameters to
combine, or “solder” obfuscated circuits to obtain obfuscated versions of the
concatenation of these circuits.

Next we combine the last two steps to construct full-fledged RO obfuscation
for all reversible circuits.

The Appendix of [CCMR24] demonstrates how indistinguishability obfusca-
tor for all Boolean circuits can be obtained using an indistinguishability obfus-
cator for all reversible circuits.

5.1 Random Identity Generators

Random identity generators (RIGs) are separable RO obfuscators for the identity
permutation with specific parameters: Let I,,, denote the identity permutation
on n, wires. An (n,, m)-RIG is an m-separable RO obfuscator for I,,, with
inner-stretch &(k, nyg, 1) > 2m,,.
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In other words, an RIG is a sampling algorithm that, given k, generates
circuits that are indistinguishable from 7(C'), where C is a random circuit with
n, wires and 2m, gates that computes the identity permutation, and 7 is a
post-processing algorithm. Furthermore, 7 is of the form m = (w1, m2) where
w1 is applied to Cjy,y,,] and 7y is applied to Cp,, ., and the computational
complexities of both Cpy ., 1 and Cpyy,, 4] are less than m, /2,

Definition 7 (Random Identity Generators). An algorithm {Gj}ien is
an (ng,my)-RIG if it is an m,-separable RO obfuscator for {I,, }xen, with
inner-stretch £(k,ny, 1) > 2m,,.

Let n%,m%, m# be length functions that satisfy Assumption 4. We construct
an (nk,2m,)-RIG G, given an obfuscator O that satisfies property I of RIO
obfuscation (see Definition 5) for uniformly chosen inputs in Cpx yx, with inner-
stretch ¢ such that &(k,n%, m*) = m, where m, > m?. The construction is
straightforward:

1. Sample C <= Cpz s

2. Sample C’,C" & 0,(C)
3. Output C’|C".

We show:

Claim. Let n*,m*, m¥ be length functions that satisfy Assumption 4, and let
O = {0y }xen satisfy property I of RIO obfuscation for input distribution R,, =
Cnx .mx, and with inner-stretch §(x,n), m)) = m, where m, > m#. Then G =
{G}}ken described above is an (nf, m,)-RIG.

Proof. We show that G; is an m-separable RO obfuscator for the identity func-
tion {I,x }xen, with inner-stretch {(x,n%,1) = 2m,, and with post-processing
algorithm 7/ = (7, 7"). That is, we show:
{C FORE GH}HGN = {Cd|C’H]L 10 & Cn:,m:;cla cr & OH(C)7 }RGN ~ (6)
{m(C[T(C") 1 C & Cps s 3 €', C” & Ecom, Yren (7)
{W(j[l,m,c])|(7T(f[m,c,*]))]L 1 E 5171:,2771”}/%/\/' (8)

Qe

Indistinguishability of experiment (6) and experiment (7) follows directly
from the RIO security of O (property I). Indistinguishability of experiment (7)
and experiment (8) follows from Assumption 4. Indeed, by Assumption 1, {C :
C < Cps e twen is an SPRP. Since |C’| = |C| = m,, > m¥, we can use
Assumption 3 to conclude that:

R

{C'|C" 1 C & Cps s €', C" & Ecim, bren & (9)
{J[17m~]|(J[mN,*])T 2 J & Er. th,}ne,/\ﬂ

ngo

Now, an algorithm A, that distinguishes between experiments (7) and (8)
can be used to distinguish between the two distributions in (9): Given a circuit
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C € Cpam,., output A (7(Cp )7 (Cpn, ). Observe that if C' was drawn
from the L.h.s. distribution in (9) then A,’s input is drawn from (7) and if C was
drawn from the r.h.s. distribution then A,’s input is drawn from (8). The claim
follows by transitivity of computational indistinguishability, along with verifying
that G is indeed both m,-right-separable and m-left-separable.

Directly Generating Random Identities? We note that there may well be other
ways to construct RIGs, other than using an RIO obfuscator that satisfies prop-
erty I. Indeed, functionality-reserving obfuscation may not be needed at all;
instead one might opt to “jointly generate” two circuits that are functionally
equivalent and look sufficiently random otherwise. In fact we are not aware of
any “barrier” to having statistically secure RIGs.

5.2 RO Obfuscation of Single Gates

Next we show how to use a random identity generator G to construct RO obfus-
cators of single gates, namely RO obfuscators GO = {GO,}.cn for the set
C = {B, }xeN, where B, is the set of base permutations on k wires. That is, given
any base permutation § € B, algorithm GO, () samples circuits that are indis-
tinguishable from 7(C) for a random circuit C' <= g, for some m, € poly(k)
and post-processing algorithm 7 with length and separability requirements that
are similar to those of random identity generators (RIGs): GO, should have
inner-stretch £ where (k, k, m,) = 2m, with m, > m¥; furthermore, it should
be m,-separable.

Definition 8 (Gate Obfuscators.). An algorithm GO = {GOy}ien is an
my-gate obfuscator if, for any f € B}, we have that GO (0x) is an my-
separable RO obfuscator for (.., with inner-stretch &(k, Kk, 1) > 2m,,.

The construction is simple: GO, () keeps sampling identity circuits using
G until the first gate in the generated circuit is 5. Once this happens, GO
replaces that first gate with the identity gate 8; and outputs the resulting circuit.
Note that in order for GO.(f) to terminate in polynomial time we need to
further assume that the circuits generated by G, start with § with polynomial
probability. The random identity generators constructed in this work satisfy this
property unconditionally.

Claim. Let {Gx}xen be an (k,m,)-random identity generator such that
Prob[Cj ) = 8 : C & Gi] € poly(k) for all 3 € B,. Then GO is an m,-
gate-obfuscator.

Proof. To see that GO,(03) is an my-separable RO obfuscator for 8, let m =
(m1,m2) be the post-processing algorithm guaranteed by Definition 7, such that

{C & GH}HGN ~ {771(C[l,mn])|7r2(c[m,m*]) :C & SIN,Q’NLN}I{GN' (10)
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Consider the post-processing algorithm = = (77, m2) where 7} (C) = Br|m1(5]C).
We argue that

{B1|Cps : C & Gy 8. Cpigy = Bluen & (11)
{’/T/l (C[l,mn])‘ﬂ?(c[mm*]) :C & gﬁ,2m,{s't~ C1[1,1] = B}KGN'

Indeed, an algorithm A,; that distinguishes between the two distributions in
(11) can be used to distinguish between the two distributions in (10): given a
circuit C, if C}y 1) = B, output A, (87|Cp 4); else, output a random bit. Observe
that if C' was drawn from the Lh.s. distribution in (10) then, whenever C}; 1) = £,
we have that Cfy ,j is drawn from the Lh.s. distribution in (11). If C' was drawn
from the r.h.s. distribution in (10) then, whenever Cy; ; = 3, we have that C;
is drawn from the r.h.s. distribution in (11).

We note that both the efficiency and security of GO can be significantly
improved with little effort: Once the first base permutation 3" = (w], wh, w§, @)
in the sampled circuit has the same control function ¢ as the given 8 =
(w1, we, w3, @), can remove B’ and then’rotate” the remaining circuit so that
the wires w},w}, ws will become w1, ws,ws. That is, if the sampled circuit is
of the form g'|C then output the circuit C” that is the result of renaming the
wires in C' via the permutation o = (w1, w])(we, wh)(ws,ws) on [n]. This way,
the random identity generator needs to be run at most 16 times in expectation
(assuming that the control function of the first gate is distributed uniformly).
The expected number of samples needed can be further reduced (for “nice” post-
processing functions) by noting that any circular shift of an identity circuit is
an identity circuit.

5.3 Soldering Obfuscated Circuits

Next we show how to combine (or, “solder”) obfuscated circuits to obtain obfus-
cated versions of the concatenation of these circuits. Specifically, let n*,m*, m#
satisfy Assumption 4 and let C; = {Cy ,}ren, Co = {Cz x}ren be ensembles
of sets of circuits such that C; x € Cpx m, , for i = 1,2. Consider the following
building blocks, with respect to some m, > max(m?, mi):

— an my-right-separable RO obfuscator RO; for ensemble C;, with post-
processing algorithm 73 = (my1,712) and inner-stretch & such that
&1(k,nk,m) > myem,

— an my-left-separable RO obfuscator ROy for ensemble Cy, with post-
processing algorithm m, = (mo1,7m22) and inner-stretch & such that
52('%; n:am) 2 mgm,

— an RIO obfuscator O that satisfies Property II with leeway function A\, < my,
for auxiliary circuits C/ C’;R, and for input distribution ensemble:

1,k

{(m1,2(C12)m2,1(Ca1)) - (12)

R o R o R
C1,2,C21 « Cpnz m=3;Cr2 = &0y 5mu; C21 < €0yt im,. FreN- (13)
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We use RO1, ROz, O to construct an RO obfuscator ROy, for the ensemble
C = {Cy}ren, where each circuit C € C, is of the form C' = C1|Cy where
C1 € Gy and Oy € Cy . Given a circuit C' = C1|Cy € C,, obfuscator ROz
proceeds as follows (see also Fig. 4):

1. Sample C; & RO1,(C1) and Cy & RO2 . (C2).

2. Let 7;; denote the stretch of the post-processing algorithm m; ;, let ¢; ; =
TiJ(Ii,n:,mm), and let 0171 = (Cl)[l},tlﬂ],CLQ = (Cl)[,tlvz,*],CQ,l =
(C2)1,t2.4]> C2,2 = (C2)[ty., ,4-

Sample G i 05(0172 02,1).

3. Output C4 1|G|Ca 2.

o o
L o [ & |
l
[ G [Ga] Caifus |
lo
(o [ e e

Fig. 4. Soldering RO-obfuscated circuits: The operation of obfuscator RO, given
circuits C; and Cs.

Claim. Let n’,m*, m# satisfy Assumption 4, and let m, > m¥. For i = 1,2,
let C; = {Cin}tren be a circuit ensemble where Cjx € Cpx o, ., and let
RO; = {RO, .}ken be an RO obfuscator for C; with inner-stretch & such
that & (k,nk, m) = mym and with post-processing algorithm m; = (m;1,m;2);
furthermore, RO; is my-right-separable and RO5 is m-left-separable. Let O
be an RIO obfuscator functionfs and with post-processing algorithm s, for
the input distribution ensemble in (12). Then RO;j; defined above is an RO
obfuscator for the circuit ensemble {C1 x|C2 . }ven, With inner-stretch function
E(k,nk,m) = myg(m — 2) 4+ &(k,nk, 2m,) and post-processing algorithm

7(C) = T1(Clie (knz yma ) —ma))|
T3(Cle (m,n5,ma,0) —m 1,83 (m,05,2 m) DI T2(Cl (€0 (k,m7 yma ) —me) ) -

Furthermore, if RO; is my-left-separable then so is ROyj3. If RO2 is m-right-
separable then so is ROy ;.

See proof in [CCMR24].
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5.4 RO for All Circuits

The RO obfuscator for all circuits combines a single gate obfuscator GO with
the soldering process in the natural way. Specifically, consider the append-and-
solder obfuscator AS that, to obfuscate an n-wire, m-gate circuit C =1 ...vm
with security parameter x, proceeds as follows:

1. Let n*,m*, m¥ satisfy Assumption 4. Without loss of generality assume that
n =n}. (If n < n} then embed the circuit in n}, wires. If n > n}, then proceed
with the smallest k' > x such that n < n*(x').)

2. Let GO be a (n}, m,)-gate obfuscator for m, > max(m}, m#). For each gate
Yiyi=1...m, let I & GO(~;) be a 2m,-gate circuit such that Pr, = ;.

3. Solder the circuits I7 ... I}, one by one, using an RIO obfuscator O for the
input distribution ensemble in (12). That is:

(a) Let Cl = Fl.

(b) For
i=2.m, let Ci = (Cim1)i1,—t, IO ((Cim1) =ty oot (T 1,80, (L3) £, 00
be the result of soldering C;_; and I, where ¢; ,, and t5 ,; are the lengths
of the left and right margins for soldering, namely 71 : Cpx m,, — Cnx 1, .
and 73 : Cpxm, — Cnz.t,,., Where T = (my,m2) is the post-processing
algorithm of GO,. '

4. Output C,.

It follows from Claim 5.3 that AS is an m-separable RO obfuscator for all
reversible circuits, with inner-stretch £(k,n,m) > mym. When GO is instan-
tiated via the RIG and RIO described in Sects.5.2 and 5.1 above, Theorem 2
follows from Claims 5.1 and 5.2.

Furthermore, observe that the stretch of AS grows only linearly in m. Specif-
ically, it follows from Claim 5.3 that |C;| = |Ci—1| + o2(k,nk,t1k + tok)s
where o9(k,n%,m%) is the overall stretch of the RIO obfuscator used in
the soldering operation. When instantiating the construction with the single-
gate obfuscator and random identity generator described in Sects.5.2 and 5.1,
based on an RIO obfuscator with stretch oq(k,n*,m}), we obtain |Cp,| <
moa((K, Ny, 201 (K, ng, ms)), where n:,m’ are length functions that satisfy
Assumption 4.

Finally, straightforward hybrids argument demonstrates that the security
level of AS decreases only linearly in the number of gates. That is, to guarantee
distinguishing probability of at most € between an obfuscated m-gate circuit C
and a circuit drawn from Dp_ ¢, it suffices to use building blocks (RIO and
GO obfuscators) with security 2(e/m).
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6 Constructing RIO Obfuscators

This section presents a general approach for constructing RIO obfuscators,
along with a family of candidate RIO obfuscators that may be a viable basis
for RO (and in particular 10) obfuscators for all circuits as in Theorem 2.

This section, as well as the open problems section and the appendix
have removed from this version due to page limits. These sections appear in

[CCMR24).
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