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Abstract—As the number of WiFi devices and their traffic
demands continue to rise, the need for a scalable and high-
performance wireless infrastructure becomes increasingly es-
sential. Central to this infrastructure are WiFi Access Points
(APs), which facilitate packet switching between Ethernet and
WiFi interfaces. Despite APs’ reliance on the Linux kernel’s
data plane for packet switching, the detailed operations and
complexities of switching packets between Ethernet and WiFi
interfaces have not been investigated in existing works. This
paper makes the following contributions towards filling this
research gap. Through macro and micro-analysis of empirical
experiments, our study reveals insights in two distinct categories.
Firstly, while the kernel’s statistics offer valuable insights into
system operations, we identify and discuss potential pitfalls that
can severely affect system analysis. For instance, we reveal
how packet switching rate and the implementation of drivers
influence the meaning and accuracy of statistics related to packet-
switching tasks and processor utilization. Secondly, we analyze
the impact of the packet switching path and core configuration
on performance and power consumption. Specifically, we identify
the differences in Ethernet-to-WiFi and WiFi-to-Ethernet data
paths regarding processing components, multi-core utilization,
and energy efficiency.

Index Terms—802.11, Linux, Monitoring, Measurement, Power
Consumption, Processor Utilization, Function Tracing.

I. INTRODUCTION

The advent of new applications and services, particularly
those involving high-definition streaming, edge and cloud
computing, and increasingly sophisticated Internet of Things
(IoT) devices, necessitate the enhancement of WiFi technology
in terms of rate, reliability, and scalability [1]. Parallel to this
need for speed and efficiency, there is a significant increase in
the number of WiFi Access Points (APs), which are mainly
responsible for the implementation of the data plane for
switching packets between their Ethernet and WiFi Network
Interface Cards (NICs). Statistics show that the gigabit AP
market alone is projected to increase at a compound annual
growth rate of about 32.3% between 2024 and 2034 [2].
This upsurge is a response to the expanding reach of Internet
connectivity and the need for high-speed and reliable coverage
in various spaces.

Compared to enterprise and datacenter switches, which
implement their data plane functions in hardware for high-
speed processing, APs often rely on the Linux kernel for
packet switching tasks [3]–[5]. This architectural difference
is primarily due to the differing packet switching rates: mod-
ern enterprise switches handle immense data traffic, often
exceeding several Tbps, while APs generally manage lower

rates, typically in the range of Mbps or Gbps. This lower
switching rate is due to their focus on providing wireless
network access rather than core data routing. Consequently,
using the Linux kernel for software-based packet switching
in APs offers a cost-effective and flexible solution that meets
their data throughput requirements.

Given the increasing complexity of operations and the
growing number of APs deployed in diverse environments,
understanding and improving packet switching performance
on these devices has become increasingly necessary. This
importance stems from several factors. First, as APs are being
integrated into a broader range of application domains, such as
edge computing, IoT, AR/VR, and real-time systems, the need
to customize the data plane to support flow-level analysis and
advanced traffic management techniques is becoming more
important [6]–[9]. Although some APs incorporate hardware-
accelerated data planes (e.g., [10]), software-based switching
remains essential for enabling programmability and flexibil-
ity in packet processing. Software switching allows for the
implementation of deep packet inspection, per-flow access
control, anomaly detection, and forwarding traffic to containers
running on AP [11]–[13]. These capabilities are critical as APs
evolve into policy enforcement points in home, enterprise and
IoT networks [6], [14]. Furthermore, with the increase in band-
width and latency demands from associated stations, imple-
menting traffic shaping and bandwidth slicing techniques [9],
[15]–[19] becomes more important—tasks that are signifi-
cantly easier to realize in software-based switches. Second,
software-based packet switching is subject to performance
variability due to processor scheduling, interrupt handling, and
contention for shared resources [20]–[23]. Unlike hardware
pipelines with deterministic latency, software switching oper-
ates within the general-purpose processing environment of the
operating system. As a result, factors such as interrupt affinity,
SoftIRQ scheduling, and queuing discipline (qdisc) behavior
can directly impact processor utilization, forwarding jitter, and
throughput. Third, collecting and interpreting statistics from
the data plane is essential for identifying bottlenecks and
improving overall system performance. Such statistics can also
be leveraged by machine learning methods to dynamically
tune system parameters [6], [24]–[27]. However, when the
semantics and validity domains of these statistics are not well
understood, their effectiveness and reliability as input features
for learning algorithms may diminish.

Despite the growing importance of software-based switch-
ing challenges and performance analysis in APs, existing
research has largely focused on high-performance environ-
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ments, including resourceful servers [20], [22], [24], [28].
Furthermore, given the superior performance of kernel bypass
methods like Data Plane Development Kit (DPDK), existing
studies emphasize these technologies [19], [24], [29], [30] for
packet switching between Ethernet NICs and user-space com-
ponents such as Virtual Machines (VMs) and containers. In
contrast, APs have distinct requirements, primarily performing
packet switching between Ethernet and WiFi NICs.

In this paper, we study and analyze the operation and
performance of two data paths, namely the Ethernet to WiFi
(E2W) and WiFi to Ethernet (W2E) packet switching paths,
on WiFi APs, focusing on two main questions: (i) How and to
what extent can the statistics provided by Linux and its user-
space performance monitoring tools be used to understand
packet switching operation and performance? (ii) What are
the differences and their causes in processing resources and
power consumption between E2W and W2E packet switching?
To address these questions, we first provide an overview of
the primary operations and stages of packet switching in the
latest Linux kernel. Next, given that many commercial APs
rely on ARM processors for packet switching [31], we use
two ARM-based platforms—with different types of Ethernet
and WiFi interfaces—to empirically study and analyze packet
switching operations. Integral to this empirical analysis, we
perform both macro- and micro-analysis of packet switching
operations to understand the performance characteristics and
resource consumption patterns unique to WiFi APs. The
scripts, measurement tools, and selected datasets used in this
study are available at our GitHub repository [32].

Our main findings are as follows. (i) Despite the rich
set of statistics provided by Linux regarding the number
of Interrupt Requests (IRQs) and SoftIRQs, interpreting
these metrics requires an understanding of the Linux
kernel’s operation, system configuration, system load, and
the specifics of both hardware and software implemen-
tations. As a generic observation, we show that the number
of RX SoftIRQs is influenced not only by the processing of
incoming packets but also by the number of TX IRQs. As a
device-specific observation, we show that although the Linux
networking subsystem defines a protocol for transitioning
between New API (NAPI) (polling) and IRQ-based operations,
device drivers can override this protocol, thereby altering
the semantics of the provided statistics. (ii) The processor
cycles consumed within the interrupt handling context are
not accurately accounted for and reflected in processor
utilization statistics. For instance, the problem is observed for
SoftIRQ instances handled immediately following Top Half
(TH) interrupt processing and before the execution of the
ksoftirqd thread. In this case, the execution of these SoftIRQ
instances is incorrectly accounted for as part of idle processor
utilization instead of SoftIRQ utilization. (iii) Even when the
two NICs are assigned to separate cores, packet switching
in the E2W path does not utilize multi-core processing. This
limitation can result in a throughput drop if the core assigned
to the Ethernet NIC cannot handle the maximum supported
throughput of the two NICs. In contrast, packet switching in
the W2E path utilizes two cores. (iv) The processing load
and power consumption of the E2W path are higher than

those of the W2E path. However, as the throughput reaches
the maximum supported levels, the differences in efficiency
between the two paths reduce.

To frame the context of our study, we outline two key
considerations. First, although our study focuses on software-
based packet switching, we recognize that some AP platforms
may incorporate hardware-accelerated data planes. Second,
given the widespread adoption of ARM-based processors and
the SoftMAC architecture by APs (cf. Sections III, IV-C,
and VI), our analysis is conducted using two Linux distri-
butions (Ubuntu 6.7 and OpenWrt 6.6) on such platforms.
While our objective is to uncover generalizable trends and
overarching principles, it is important to note that updates to
the Linux kernel or the use of FullMAC (instead of SoftMAC)
WiFi devices may lead to different outcomes.

The rest of this paper is organized as follows. Section II
provides an overview of packet processing stages in the Linux
kernel. Testbed components and the collection of performance
metrics are detailed in Section III. We present a macro-analysis
of packet switching metrics in Section IV-A. In Section V, we
provide an in-depth, micro-analysis of the packet switching
operations. Section VI presents related work and future direc-
tions. We conclude the paper in Section VII.

II. AN OVERVIEW OF LINUX KERNEL PACKET SWITCHING

In this section, we provide an overview of the steps involved
in the Linux kernel’s data path for switching packets received
on an ingress Network Interface Card (NIC) to an egress NIC,
based on our analysis of the latest Linux kernel source code
(version 6.7). Figure 1 illustrates the major steps in the process
of packet switching from NIC 1 (ingress) to NIC 2 (egress).

A. Ingress Side Processing
NIC to RX buffer. When a network packet arrives at a NIC,

it is first stored in the NIC’s internal buffers. The NIC then
uses Direct Memory Access (DMA) to transfer packets to the
system’s main memory, specifically into the buffers managed
by the driver, updating the receive (RX) buffer’s pointers in the
process. The RX buffer is a ring queue, facilitating producer
(NIC) and consumer (driver) operation. This action triggers an
Interrupt Request (IRQ), invoking the corresponding interrupt
handler, often referred to as the TH. The Top Half (TH)
acknowledges the interrupt, performs preliminary handling,
and then schedules further processing in a deferred manner,
referred to as the Bottom Half (BH).

Generating an interrupt for each packet reception results
in a high interrupt processing overhead. New API (NAPI)
addresses this problem by utilizing a polling mode, where
the driver periodically checks if new descriptors have been
used for packet reception. Within this method, processing
a TH involves calling the napi_schedule function of the
kernel to start the NAPI for the RX buffer. To this end, when
processing the TH for an IRQ, the napi_schedule function is
called with a napi_struct parameter that includes a pointer
to the poll function of the driver. Afterwards, the TH calls
the __raise_softirq_irqoff function to raise a SoftIRQ,
specifically an RX SoftIRQ designated for processing received
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Fig. 1. The main steps of packet switching. Here, we assume the ingress interface is NIC 1 and the egress interface is NIC 2.
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Fig. 2. Switching between NAPI and IRQ. NAPI continues as long as the
poll function fully utilizes its packet processing budget.

packets. At this point, BH execution of ingress processing
starts.

SoftIRQ execution. If there is any pending SoftIRQ, the
kernel’s __do_softirq function handles RX SoftIRQs by
calling the net_rx_action function, which processes the
network packets. The net_rx_action function utilizes the
per-core softnet_data structure to access and iterate over
the napi_struct list. Each entry of this list represents a
network device with packets ready to be processed. The
function dequeues each structure in turn and runs their driver’s
poll functions. Note that the SoftIRQ is run on the same
core that ran the TH, i.e., the core that received the IRQ.
After processing the TH, the __do_softirq function can
immediately run within the IRQ context, subject to certain
limits on the number and duration of the SoftIRQs called.
Once the limits are exceeded, if more SoftIRQs must be run,
the __do_softirq function is deferred to a kernel thread
(ksoftirqd) or a tasklet.

To better understand the execution context of the
__do_softirq function, we present Figure 2. When an IRQ’s
BH is triggered, the initial processing is handled by immediate
RX SoftIRQ processing within the __do_softirq function.
This immediate processing, which runs within the interrupt
context, is essential for rapidly and efficiently handling in-
coming network traffic. The __do_softirq function operates
under two main constraints. The first constraint, defined by
the variable MAX_SOFTIRQ_RESTART, is the maximum number
of consecutive times the SoftIRQ handling loop can execute
the driver’s poll function without yielding control back to

the system. The second constraint, defined by the variable
MAX_SOFTIRQ_TIME, specifies the maximum duration the ker-
nel can spend processing SoftIRQs in a single invocation of
__do_softirq. When the packet switching load is high, not
all packets can be processed within the interrupt context while
enforcing the above constraints. Works exceeding these imme-
diate processing constraints are deferred to the kernel thread
or a tasklet, depending on the device driver implementation.
During handling such deferred works, as long as 64 packets
are processed per poll function invocation, the NAPI poll is
rescheduled, and the NIC IRQ remains disabled.

Switching between NAPI and IRQ. The contract between
the NAPI subsystem and device drivers includes an important
aspect related to the deactivation of NAPI. Every time a
driver’s poll function is called, the number of processed
packets is returned in the work_done variable. If a driver’s
poll function consumes its full weight allotment (set as 64
by default), the NAPI state stays unchanged, and control is
returned to the net_rx_action loop, which may call the poll
function again if the processing time limit allows. Conversely,
if the poll function does not use its entire weight, it must
disable NAPI. Subsequently, NAPI will be reactivated upon
receipt of the next IRQ; at this point, the driver’s IRQ handler
is expected to invoke the napi_schedule function.

Delivery to IP stack. The netif_receive_skb function
is responsible for further packet processing and delivery to the
IP stack.

B. IP Stack Processing

For IP packets, the function ip_rcv is called. This function
calls the pre-routing hook of the Netfilter subsystem. If this
hook does not drop the packet, the routing subsystem is
consulted to determine its destination. If the packet is meant
for another system, the ip_forward function is called to
determine the packet’s next hop by consulting the routing
table. Subsequently, the packet may be modified and evaluated
against firewall rules within the forward Netfilter hook. The
kernel performs further routing decisions after passing the
forward hook. This involves consulting the routing table to
determine the next-hop address and the appropriate outgoing
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network interface for the packet. Afterward, various IP-level
checks and updates occur. If the packet is modified (e.g., TTL
is decremented), the IP header checksum is recalculated. As
the packet is almost ready to be sent out, it approaches the
post-routing hook. This hook is the last chance to inspect and
modify the packet before it leaves the system.

C. Egress Side Processing

One of the main components of egress side processing is
qdisc. In Linux, qdisc (short for queuing discipline) is a mech-
anism used to control how packets are queued and transmitted.
The default qdisc in most Linux distributions is pfifo fast,
which implements a simple First-In First-Out (FIFO) queue
with three bands of traffic priorities. Another algorithm is FQ-
CoDel [33], which is a modern qdisc designed to combat
buffer-bloat by managing queue lengths and ensuring fair
bandwidth distribution. Although Ethernet NICs utilize a qdisc
on their egress direction, in Sections IV and V we will discuss
the lack of qdisc on the egress direction of WiFi NIC and its
implications on performance.

IP stack to driver. After IP stack processing, the packet
is passed to the netdev (short for network device) subsystem
using the __dev_queue_xmit function. If there is a qdisc
associated with the interface, this function passes the packet to
the __dev_xmit_skb. Otherwise, the packet is directly added
to the transmit (TX) buffer (a ring queue) of the driver by
using the dev_hard_start_xmit function.

If there is a qdisc associated with the interface, the function
__dev_xmit_skb first acquires a lock on the qdisc, and
then checks if the packet can bypass the qdisc under certain
conditions, such as when the qdisc is empty. If these conditions
are met, the function attempts to transmit the packet directly,
via the sch_direct_xmit, bypassing the usual queuing
mechanisms for efficiency. If __dev_xmit_skb cannot bypass
the qdisc, the packet is enqueued in the qdisc. Then, if the
qdisc is not running, the function __qdisc_run is called to
run it. As long as there are packets in the qdisc and the
quota of running qdisc has not been fully used, __qdisc_run

calls qdisc_restart in a loop to dequeue packets from
the qdisc and send them to the TX buffer. When the quota
is exhausted, the __netif_schedule function is called to
schedule a TX SoftIRQ, which is used for processing outgoing
network packets by running the net_tx_action function.
This function accesses the softnet_data structure of the core
to which the IRQ of the egress NIC is assigned affinity, and
checks if the TX buffer has any SKBs that must be freed (using
the __kfree_skb function). Then, if there are more packets
in the qdisc, the function __netif_schedule runs the qdisc
again.

To pass a packet to the driver, a lock is acquired by the
dev_hard_start_xmit function on the driver’s TX buffer
to prevent concurrent access to the transmit queue by other
cores. After attempting to transmit the packet, the transmission
lock on the TX buffer is released. The function then checks
if the transmission was complete. If the transmission was
not successfully completed (e.g., if the network driver did

not successfully validate SKB), the packet is requeued using
dev_requeue_skb to attempt transmission again later.

Driver to NIC. The driver allocates buffers in the system’s
RAM, from which the DMA engine can read the data and
transfer to the NIC. Once the DMA is set up, the driver
triggers the network device to initiate the transmission. This
usually involves writing to specific device registers, indicating
the readiness of a packet for transmission and providing the
DMA-prepared memory buffers’ locations. Once the NIC com-
pletes the packet transmission, it signals this completion by
generating a TX IRQ to inform the driver that the transmission
has finished. The IRQ results in calling TH and then BH to
perform several critical post-transmission tasks. It starts by un-
mapping any DMA mappings that were previously established,
ensuring proper memory management and preventing resource
leaks. Following this, the driver frees the memory buffers
allocated for the packet, typically involving the deallocation
of the associated SKBs.

III. TESTBED COMPONENTS AND COLLECTION OF
PERFORMANCE METRICS

In this section, we elaborate on the AP platforms used in our
studies, the testbed configuration, and data collection tools.

A. AP Platforms and the Testbed
For the empirical evaluations in this paper, we used two

different Access Point (AP) platforms. The first platform is
based on the Raspberry Pi (RPi) Compute Module 4 (CM4)
SoC, which features a quad-core ARM Cortex-A72 processor
running at 1.5 GHz. It employs the BCM54210PE [34] Eth-
ernet controller, which supports 1 Gbps and is driven by the
bcmgenet driver. This platform also includes a PCIe 2.0 x1
host controller, which we used to connect an Intel AX210 WiFi
6E (802.11ax) NIC. The theoretical maximum throughput of
the WiFi NIC is 2.4 Gbps. Since this platform supports WiFi 6,
we refer to it as the APW6 platform in this paper. The APW6
platform runs Ubuntu 6.7. The second AP platform is based
on MediaTek’s Filogic 880 SoC, which features a quad-core
ARM Cortex-A73 processor running at 1.8 GHz. This platform
uses the MediaTek MT7986A Ethernet controller, managed by
the mtk eth soc driver, and supports 1 Gbps and 10 Gbps
connectivity. In this paper, we use the 1 Gbps connectivity. The
SoC incorporates a PCIe 3.0 x1 host controller to interface
with a MediaTek BE14 WiFi NIC, which supports WiFi 7
and is driven by the mt7996 driver. Given its support for
WiFi 7, we refer to this platform as the APW7 platform in
this paper. The APW7 platform runs OpenWrt 6.6. We selected
these two platforms because many Commercial Off-The-Shelf
(COTS) APs are based on ARM Cortex-A processors [31]. All
experiments were conducted using the 6 GHz WiFi band in
an interference-free environment.

Figure 3 shows the testbed’s components and their connec-
tivity.

The AP (APW6 or APW7) is the device under test, based on
the platforms mentioned above, running Linux kernel version
6.7. The Ethernet NIC of the AP is connected to Machine 1,
while the WiFi NIC of the AP is connected to Machine 2.
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The qdisc used with the Ethernet interface is FQ-CoDel [33].
These connections constitute the data plane of the testbed.
MTU-sized data flows are generated by either Machine 1 or
Machine 2, depending on the packet switching path.

Machine 1 and Machine 2 belong to different subnets;
therefore, the AP performs layer-3 switching. We disabled
Generic Receive Offload (GRO) because its efficiency highly
depends on the number of flows and their traffic patterns
[20]. To build a control plane for automating the experiments
and performing data collection from various components of
the testbed, a Controller is connected to the AP, Machine
1, Machine 2, and the power measurement tool. We added
a USB Ethernet dongle to the AP to provide control plane
connectivity. Using this dongle introduces a negligible (less
than 7%) processing overhead on one core. We developed a
control plane daemon to run on the AP and collect various
types of performance data. The collected data are sent to the
Controller every second. This daemon is statically assigned to
Core 3 of the AP to avoid interfering with packet switching
tasks, which are assigned to other cores.

B. Core Configurations

Since the processors of both APW6 and APW7 consist
of four cores, we investigate the impact of different core
assignment configurations on packet switching performance.
To achieve this, we adjusted the IRQ affinity for the Ethernet
and WiFi NICs. These configurations, referred to as single-
core and dual-core, are illustrated in Figure 4. It is worth
noting that on both AP platforms, the system enforces that
the WiFi NIC’s IRQ must be assigned exclusively to Core
0, while the Ethernet NIC’s IRQ can be assigned to any core.
Therefore, for the single-core configuration, Core 0 is the only
feasible option for these platforms.

C. Monitoring and Data Collection
We collect various types of performance and operational

data from the AP platforms. Linux provides a suite of perfor-
mance evaluation statistics accessible through the proc file
system. The /proc/interrupts file offers comprehensive
details about each IRQ, including the frequency of IRQ
arrivals. The /proc/softirqs file represents the number of
times RX SoftIRQs and TX SoftIRQs have been invoked.
We utilize ethtool to collect statistics such as the number of
frames received and sent. We measure processor utilization
using mpstat. We collect the number of cycles consumed
per core using the perf utility. The power consumption of
AP is measured using a programmable power monitoring tool
capable of sampling voltage and current at 1000 samples per
second [35]. To specifically analyze the power consumption
of the AP’s processor, we subtract the power consumption of
the WiFi NIC from the power measurement results.

IV. PERFORMANCE ANALYSIS AND DEMYSTIFYING
STATISTICS: A MACROALAYSIS APPROACH

In this section, we first examine the operation and perfor-
mance of packet switching in the E2W path, followed by the
W2E path. Subsequently, we compare the differences between
the two paths. Specifically, we focus on statistics collected
from the proc file system, as well as processor utilization,
processor cycles, and power consumption.

A. Ethernet-to-WiFi (E2W) Packet Switching
In this section, we present and discuss the results of Ethernet

to WiFi (E2W) packet switching. Unless mentioned otherwise,
a UDP flow’s packets are received via the Ethernet NIC and
transmitted by the WiFi NIC. For APW6, the results for single-
core and dual-core configurations are presented in Figures
5 and 6, respectively. Sub-figures (a) in Figures 5 and 6
present packet switching statistics. Sub-figures (b), (c), and (d)
demonstrate the utilization of the cores, the number of cycles
per core per second, and power consumption, respectively. In
sub-figures (b), ‘Processor’ refers to the average processor
utilization across all the cores. In all these sub-figures, the
results are presented for three distinct throughput levels. We
selected two preset throughput levels, specifically 100 and 500
Mbps, alongside the maximum throughput achievable by each
configuration. Each maximum throughput level represents the
threshold beyond which the rate of ingress packets to the
platform exceeds the rate of egress packets from the platform.

Observation 1: The number of RX IRQs and RX SoftIRQs is
not directly correlated with the rate of incoming packet pro-
cessing. While the trends in these statistics may be influenced
by the type and configuration of the NIC and its driver, this
is generally a platform-independent observation, rooted in the
behavior of the Linux kernel’s networking subsystem.

In Figures 5(a) and 6(a), as the throughput increases from
100 to 500 Mbps, and further to the peak throughput, we
observe that the number of Ethernet RX IRQs (denoted as
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Fig. 5. Ethernet-to-WiFi (E2W) packet switching on the APW6 platform
using the single-core configuration. The maximum achieved throughput of
this configuration is 750 Mbps.

Fig. 6. Ethernet-to-WiFi (E2W) packet switching on the APW6 platform
using the dual-core configuration. The maximum achieved throughput of this
configuration is 893 Mbps.

square) rises and then begins to decline. Remarkably, this
count drops to a near-zero value only for the dual-core
configuration, as demonstrated in Figure 6(a).

With the dual-core configuration, a maximum throughput
of around 893 Mbps is achieved, as shown in Figure 6(a). In
this case, the number of Ethernet RX IRQs is approximately
two per second, and the number of RX SoftIRQs on Core 1 is
about 1140. Note that the count of RX SoftIRQs (in the proc

file system) does not equate to the total number of packets
processed. This is because each invocation of this SoftIRQ can
process multiple packets as long as packets are present in the
driver’s RX buffer, until the processing quota is exhausted. To
determine the number of packets processed per RX SoftIRQ
invocation, we divide the number of packets processed per
second by the number of RX SoftIRQs per second, resulting
in 72700/1140 → 63.8. This value is very close to the default
NAPI weight of 64 packets (cf. Section II-A), leading us to
conclude that each iteration of the NAPI poll processes the

maximum number of packets and reschedules repolling of the
RX buffer without re-enabling the Ethernet IRQ. Occasionally,
when the number of packets processed falls below 64, the
NAPI poll concludes and the Ethernet’s IRQ is re-enabled,
resulting in approximately two IRQs per second. The near
100% utilization of Core 1, as presented in Figure 6(b),
confirms that this core is almost fully utilized by the NAPI
polling mechanism. In particular, the high utilization of this
core is caused by continuously renewing the NAPI and running
the poll function within the ksoftirqd context, as discussed
in Section II-A.

Observation 2: The number of RX SoftIRQs is influenced not
only by the processing of incoming packets but also by the
number of TX IRQs. This observation is rooted in the behavior
of the Linux kernel’s networking subsystem.

For the dual-core configuration of APW6, we observe in
Figure 6(a) for 100 and 500 Mbps throughput levels that the
number of RX SoftIRQs is the same as the number of RX
IRQs on Core 1, confirming the activation of an RX SoftIRQ
only when an Ethernet RX IRQ is triggered. However, for the
single-core configuration, an interesting observation in Figure
5(a) is that the number of RX SoftIRQs is higher than the
number of Ethernet RX IRQs, which is particularly evident
for the 100 Mbps rate. We observed a similar behavior when
using the APW7 platform. This behavior is surprising because
when the throughput is low, the arrival of each Ethernet IRQ
invokes an RX SoftIRQ, which can completely process the
packets in the driver’s RX buffer and exit without needing to
renew the NAPI poll. Therefore, we expect the number of RX
SoftIRQs to be the same as that of Ethernet RX IRQs.

We rationalize this observation as follows. First, note that
there is one softnet_data structure per core (cf. Section
II-A); therefore, for the single-core configuration, the IRQs
received from both NICs contribute to the increase in the
number of SoftIRQs on that core. Additionally, by reviewing
the netdev subsystem of Linux [36] and using the ftrace
utility [37], we validated that each TX IRQ generated by a
NIC (following the transmission of one or more packets) also
triggers the activation of a RX SoftIRQ on the same core. In
Figure 5(a), when a TX IRQ is generated by the WiFi NIC,
the IRQ handler performs two operations: it adds the driver’s
poll function to the list of NAPI polls for that core (Core 0),
and then raises a RX SoftIRQ to call the driver’s poll function.
The driver’s poll function is then responsible for performing
transmission-completion tasks such as TX buffer reclaiming,
which involves freeing descriptor entries and memory associ-
ated with packets that have been successfully transmitted.

Observation 3: The Linux kernel may not correctly account
for the processor cycles consumed within an IRQ context,
depending on the implementation methodology of the driver.
The severity of the misaccounting problem depends on the
amount of work performed within the IRQ context rather than
being deferred to a kernel thread or a tasklet.

The results presented in sub-figures (b), (c), and (d) of
Figures 5 and 6 for the APW6 platform indicate that the
number of core cycles and power consumption exhibit similar
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increasing trends; however, processor utilization does not
follow the same pattern. For the single-core configuration,
increasing throughput from 100 to 500 Mbps results in a
71% jump in utilization of Core 0, and for the dual-core
configuration, increasing the throughput from 500 Mbps to
the maximum value results in an 8% increase for Core 0 and
88% for Core 1. Another related observation can be made
by comparing the actual values of processor utilization and
the number of cycles between the single-core and dual-core
configurations. Comparing Figures 5(b) and (c) with Figures
6(b) and (c) for the 500 Mbps throughput, we observe that
while the total number of cycles (consumed by Core 0 and
Core 1) for the dual-core configuration is higher than that of
the single-core configuration (Core 0), the processor utilization
of the single-core configuration is higher.

We present the quantitative results of this discrepancy in
Table I for both APW6 and APW7. This table reports the
normalized core utilization and normalized processor cycles
consumed by the cores handling packet switching. Normalized
core utilization is calculated by dividing the sum of the
utilization of the cores involved in packet switching by the
throughput level. For instance, on APW6, for the dual-core
configuration, since the utilization values of Core 0 and Core
1 for the 500 Mbps throughput are 6.38% and 11.63%,
respectively, the table reports (6.38+11.63)/500 = 0.0360 for
this core’s normalized utilization per 1 Mbps packet switching
rate for the 500 Mbps throughput level. Normalized cycles
consumed is calculated by dividing the sum of the percentage
of the cycles consumed by the cores involved in packet
switching by throughput level. Here, the percentage of cycles
per core is calculated by dividing the number of consumed
cycles by the core’s frequency, which is 1.5 GHz per core
for APW6 and 1.8 GHz per core for APW7. For instance,
on APW6, for the dual-core configuration, since the cycles
consumed by Core 0 and Core 1 for the 500 Mbps throughput
are 182747814 and 926181648, respectively, the table reports
((182747814+926181648)/(1.5↑109))↑100/500 = 0.1479
for this core’s normalized cycles.

The highlighted cells in Table I indicate the normalized
utilization values that are considerably lower than the corre-
sponding normalized processor cycles. These values indicate
that the system does not report accurate processor utilization
at these throughput levels. To investigate the underlying cause
of this inaccurate reporting, we found that BH processing
triggered by an incoming IRQ may not be correctly accounted
for in the processor utilization metric. We also observe that the
degree of disparity between the reported processor utilization
and the actual cycles consumed differs between APW6 and
APW7. We elaborate on the causes and severity of this
disparity in the following discussion.

In Section II-A, we explained that after the execution
of a TH, the kernel schedules an RX SoftIRQ to process
pending NAPI poll functions. This SoftIRQ is typically ex-
ecuted inline within the IRQ context as part of the SoftIRQ
handling phase. However, when the restart limit or runtime
limit of __do_softirq is reached, the remaining work is
offloaded to the per-CPU ksoftirqd kernel thread, which
completes the processing in a preemptible process context. For

TABLE I
NORMALIZED CORE UTILIZATION AND NORMALIZED CYCLES OF PACKET

SWITCHING CORES USING APW6 AND APW7 PLATFORMS

E2W on APW6 using the the Single-Core Configuration
100 Mbps 500 Mbps 750 Mbps

Core 0 Utilization (%) 0.0127 0.1488 0.1307
Core 0 Cycles 0.1945 0.1392 0.1206

E2W on APW6 using the the Dual-Core Configuration
100 Mbps 500 Mbps 893 Mbps

Core 0 and 1 Utilization (%) 0.0105 0.0360 0.1280
Core 0 and 1 Cycles 0.2067 0.1479 0.1259

E2W on APW7 using the the Single-Core Configuration
100 Mbps 500 Mbps 925 Mbps

Core 0 Utilization (%) 0.1546 0.1161 0.1081
Core 0 Cycles 0.2466 0.1408 0.1080

E2W on APW7 using the the Dual-Core Configuration
100 Mbps 500 Mbps 950 Mbps

Core 0 and 1 Utilization (%) 0.1232 0.1286 0.1356
Core 0 and 1 Cycles 0.2435 0.1551 0.1351

the Ethernet interface of APW6, however, the RX SoftIRQ
instances executed immediately after the TH and before the
ksoftirqd thread is invoked are incorrectly accounted for
as part of the idle processor utilization, rather than being
attributed to SoftIRQ processing. We utilized two approaches
to verify this misaccounting of SoftIRQ processor cycles on
the APW6 platform. Firstly, using the perf and ftrace tools, we
noticed that the functions of such RX SoftIRQs were recorded
under the idle or swapper threads, and these cycles are
added to the ‘idle’ category in /proc/stat. Therefore, tools
such as mpstat misrepresent the actual processor utilization
consumed by packet processing. Secondly, we modified the
Linux kernel and changed the MAX_SOFTIRQ_RESTART value
in the __do_softirq function from 10 (default) to 1. When
running the modified kernel on APW6, this change decreased
the number of times this function can rerun poll functions
without invoking a ksoftirqd thread. Without this change,
the utilization of Core 1 for the dual-core configuration was
around 11% at 500 Mbps throughput, as Figure 6(b) shows.
After applying the change to the kernel, the reported utilization
on the same core increased to 67% (results are not shown in
this paper). We now explain why the misaccounting problem
is less severe on the APW7 platform. The Ethernet interface
of APW7 uses a different mechanism for handling deferred
work. In particular, in contrast to APW6, which relies on
ksoftirqd to process deferred SoftIRQs, APW7’s Ethernet
interface delegates the work to a tasklet. With this approach,
no packet processing is performed directly in the IRQ context;
only tasklet scheduling occurs within that context. More
specifically, while on the APW6 platform the misaccounted
operations include both packet processing and the SoftIRQ-
to-ksoftirqd transition handler, which wakes up the per-
processor ksoftirqd thread, on APW7, the misaccounted
component is limited to tasklet scheduling. It is also worth
noting that we observed the misaccounting issue on the WiFi
interface of the APW7 platform as well, as it similarly utilizes
the tasklet mechanism for handling SoftIRQs. However, the
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misaccounting problem was negligible on the WiFi interface of
APW6, which uses threaded IRQ handling before delegating
tasks to the ksoftirqd thread. This use of threaded IRQs
results in more accurate accounting of work performed in
the IRQ context. Therefore, the severity of the misaccounting
problem is influenced by the amount of work performed
directly in the IRQ handling context, as opposed to work
deferred to a kernel thread or tasklet. In essence, the mis-
accounting behavior depends on the methodology used for
handling IRQs and deferred work.

By revealing the main cause of the misaccounting problem,
we provide additional details that justify the trends observed
in Table I. Considering the APW6 platform, as throughput
increases, the percentage of instances where Ethernet RX
SoftIRQs run within the ksoftirqd context also increases,
leading to more accurate accounting of processor cycles. Con-
sequently, the misaccounting problem diminishes as through-
put reaches its maximum value. For the dual-core configura-
tion of APW6, as shown in Table I, the misaccounting problem
persists at 100 and 500 Mbps throughput levels. This occurs
because Core 1 processes an RX SoftIRQ per RX IRQ, as
depicted in Figure 6(a). Therefore, RX SoftIRQs primarily run
within the context of the IRQ handler, namely, the idle or
swapper contexts, rather than ksoftirqd. In comparison, the
single-core configuration exhibits the misaccounting problem
only at the 100 Mbps throughput level because the percentage
of RX SoftIRQs that need to run in the ksoftirqd context
grows more rapidly than in the dual-core configuration. Ad-
ditionally, we identify a secondary, more nuanced reason for
this behavior. In the single-core configuration, each core has its
own softnet_data structure (cf. Section II-A), which both
NICs utilize. While the WiFi driver is reclaiming its TX buffer
entries, an Ethernet RX IRQ may be generated, resulting in
the addition of a NAPI instance for the Ethernet interface
to the poll list of the same core’s softnet_data structure.
Within the __do_softirq function, after processing the WiFi
driver’s function, if the poll list of Core 0 is not empty, the
core proceeds with running the poll function of the Ethernet
driver within the context of a thread that has been created by
the driver of the WiFi interface. Therefore, when the BH of
the WiFi driver is running within a threaded interrupt context,
it can execute Ethernet RX SoftIRQs. In this condition, the
processor cycles consumed by the Ethernet RX SoftIRQs are
properly accounted for under the SoftIRQ processing category.
Considering the APW7 platform, increasing the throughput
results in greater packet aggregation and a lower number of
IRQs per second. As a result, the number of misaccounted
tasklet scheduling instances decreases.

The discussions presented for this observation reveal that
Linux’s high-level processor utilization monitoring tools (e.g.,
mpstat) cannot be relied upon for accurate reporting. Instead,
as demonstrated by the methodology presented in this section,
the output of such processor monitoring tools, as well as
more advanced, low-level tools that directly monitor processor
cycles (e.g., perf), must be correlated and analyzed to identify
the range of throughput values over which processor utilization
is inaccurately reported.

B. WiFi-to-Ethernet (W2E) Packet Switching

In this section, we present and discuss the results of WiFi
to Ethernet (W2E) packet switching path, where a UDP flow’s
packets are received via the WiFi NIC and transmitted by
the Ethernet NIC. The results for APW6 are demonstrated
in Figures 7 and 8. The methodologies for collecting and
presenting results are the same as those described in Section
IV-A.

Observation 4: While Linux specifies a protocol for switching
between NAPI and IRQ modes, drivers for certain NICs may
override this protocol. Therefore, one cannot rely solely on
NAPI-related statistics for a network interface without under-
standing the behavior and implementation of the underlying
driver.

In Section II-A, we explained the protocol for the transition
between NAPI and IRQ. Building on this, we present a
platform-specific case to demonstrate how this protocol can
be overridden by device driver implementations. In the discus-
sions of Observation 2 pertaining to the E2W path, we demon-
strated that packet transmissions by an egress NIC trigger the
execution of RX SoftIRQs, which perform tasks such as TX
buffer reclaiming. For instance, for W2E packet switching
on the APW6 platform, when a TX IRQ is generated, an
RX SoftIRQ is scheduled to call the bcmgenet_tx_poll

function of the bcmgenet driver to reclaim the space used
by the transmitted packets. However, in Figure 7(a), the
number of RX SoftIRQs exceeds the sum of Ethernet TX
IRQs and WiFi RX IRQs, which is an unexpected observation
for low throughput levels such as 100 Mbps. Additionally, in
Figure 8(a), the number of RX SoftIRQs on Core 1 exceeds
the number of TX IRQs on this core, which is unexpected
for low throughput levels such as 100 Mbps. For example,
for dual-core configuration at 100 Mbps, the average num-
ber of packets processed per RX SoftIRQ on the Ethernet
(egress) side is 7651/2609 = 2.93, which is much lower
than the default weight value of 64 required to reschedule
the RX SoftIRQ using the NAPI functionality. We analyze
the operations of the bcmgenet driver’s bcmgenet_tx_poll

function to investigate this behavior. Typically, a poll function
is expected to return the actual number of successfully sent
(processed) packets as the work_done value.1 However, the
bcmgenet driver’s bcmgenet_tx_poll function returns the
kernel’s default weight value of 64 as the work_done, as
long as the actual work_done value is greater than 0. Thus, if
at least one packet buffer is reclaimed, the NAPI is renewed
to utilize an RX SoftIRQ to execute the bcmgenet_tx_poll

function again. We speculate that this NAPI renewal method is
employed to perform immediate post-transmission actions in
anticipation of imminent upcoming transmissions. Therefore,
by returning a value that does not reflect the actual number
of processed packets, the driver overrides the NAPI agree-
ment and alters the interpretation of statistics reported in the
/proc/stat file system.

1For incoming packet processing, as explained in Section II-A and in
Observation 1, the poll function returns the number of packets processed
from the driver’s RX buffer.
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Fig. 7. WiFi-to-Ethernet (W2E) packet switching on APW6 using the single-
core configuration. The maximum achieved throughput of this configuration
is 849 Mbps.

Fig. 8. WiFi-to-Ethernet (W2E) packet switching on APW6 using the dual-
core configuration. The maximum achieved throughput of this configuration
is 949 Mbps.

Observation 5: If a network interface exhibits the processor
cycles misaccounting problem when serving as the ingress
interface, it also exhibits the same issue when serving as the
egress interface.

In the discussion of observation 3, we explained the proces-
sor cycle misaccounting problem when the Ethernet interface
of APW6 or APW7 is performing ingress packet processing.
The results presented in Figures 7 and 8 for APW6 reveal
that the problem persists for the W2E path as well. For
instance, comparing Figures 8(b) and (c), when the throughput
is increased from 500 Mbps to the maximum value, the
utilization of Core 1 increases by 4047%, whereas the increase
in the number of cycles consumed by this core is 176%.
Similarly, we observed the same behavior for W2E packet
switching on the APW7 platform (results not shown in this
paper). The reason for this behavior on APW6 is that when a
TX IRQ is generated by Ethernet NIC for Core 1, the TX
SoftIRQ instances executed on Core 1—immediately after

TH processing and before the ksoftirq thread runs—are
accounted as idle processor utilization. On APW7, the reason
is that when a TX IRQ is generated by the Ethernet NIC for
Core 1, the processing associated with tasklet scheduling is
not accounted for in the processor utilization.

C. Comparison of E2W and W2E
Comparing the results for W2E and E2W paths, we observe

significant differences in the performance and operation of
packet switching for these two paths. We identify and justify
these observations as follows.

Observation 6: For W2E packet switching, using the dual-
core configuration enables packet processing—from reception
in the WiFi RX queue to placement into the Ethernet TX
queue—to leverage both cores, thanks to the use of qdisc
for the Ethernet interface. However, the extent to which the
secondary core is utilized depends on the system load and
the configuration of the egress NIC’s TX queue. In contrast,
for E2W packet switching, if the WiFi interface is based on
the SoftMAC architecture, packet switching—from reception in
the Ethernet RX queue to placement into the WiFi TX queue—
is handled entirely by the core assigned to the IRQ of the
Ethernet interface.

By default, each network interface uses a qdisc as its entry
point into the netdev subsystem, as discussed in Section
II-C. The qdisc is essential for scheduling, prioritizing, and
managing traffic flows to ensure efficient bandwidth utilization
and reduce latency. However, to implement airtime fairness
for downlink packet delivery, WiFi interfaces based on the
SoftMAC architecture2 employ the mac80211 kernel module,
which integrates FQ-CoDel queue management with airtime
fairness methods [3], [33], [38]. Consequently, using such
devices, the qdisc module is completely bypassed on the WiFi
interfaces. Note that the WiFi interfaces of both APW6 and
APW7 are based on the SoftMAC architecture.

Referring to Figure 1, we explain the operation of E2W
packet switching. When a packet received at the Ethernet
interface reaches the __dev_queue_xmit function, it calls
dev_hard_start_xmit, which forwards the packet to the
mac80211 module for queuing and further processing before
it is sent to the driver’s TX buffer. After ingress Ethernet
packet processing, the mac80211 packet processing continues
within the interrupt or ksoftirqd context and runs on the
core that is handling IRQs for the Ethernet interface; thereby,
packet processing from the ingress NIC to the egress NIC is
handled by a single core, which is Core 1 in our testbed.
This also explains why the number of TX SoftIRQs for the
WiFi interface is zero in the results presented in Figure 6(a).

2SoftMAC and FullMAC refer to two different WiFi architecture designs
based on where the MAC layer functionality is implemented [38]. In a
SoftMAC design, the MAC layer is handled by the host system, typically
within the Linux kernel using the mac80211 framework. This allows for
greater flexibility, customization, and visibility into WiFi operations. In
contrast, a FullMAC design offloads all MAC layer processing to the WiFi
NIC’s firmware, with the host system communicating through a simpler driver
interface. This approach reduces processor load on the host and simplifies
driver development, but is often less flexible and relies heavily on proprietary
firmware.

9



Conversely, in the W2E path, a certain percentage of packets
are added to the Ethernet interface’s qdisc by the core pro-
cessing incoming packets from the WiFi interface. Then the
core handling the Ethernet IRQs performs qdisc processing
and adds the packets to the TX buffer. More specifically,
when the IRQs of the two NICs are assigned to different
cores, whenever the TX buffer of the Ethernet interface’s
driver lacks space, Core 0 (responsible for handling ingress
packets on the WiFi interface) adds packets to the qdisc of
the Ethernet interface. While processing and executing the
qdisc is initially handled by Core 0, once the qdisc’s quota
is exhausted, the __netif_schedule function (cf. Figure 1)
is invoked to schedule a TX SoftIRQ. This SoftIRQ, which is
then executed by Core 1, is responsible for dequeuing packets
from the qdisc via the net_tx_action function. Therefore,
some of the load of W2E packet processing is offloaded to
Core 1. These discussions also justify why Figures 7(a) and
8(a) show a considerable number of TX SoftIRQs for the W2E
path, especially for the maximum throughput levels.

As mentioned above, the use of qdisc is triggered by
the unavailability of the egress interface’s TX queue. Since
the results presented thus far are based on UDP traffic, we
now turn our attention to TCP, which inherently adjusts its
transmission rate to avoid packet drops caused by queue
overflows. Our goal is to demonstrate that Observation 6 is also
applicable to TCP traffic. For both APW6 and APW7, Table II
shows the normalized number of processor cycles consumed
by various stages of packet switching after the IP stack pro-
cessing step (cf. Figure 1).3 In this table, the ‘Enqueue qdisc’
column refers to the processing cycles consumed for queuing
packets to the qdisc of the Ethernet interface.4 The ‘Direct
Xmit’ column indicates the processing cycles consumed by
operations performed on packets that bypass the qdisc and
are directly added to the egress NIC’s driver.5 The ‘qdisc
Xmit’ column indicates the processor cycles consumed for
operations on packets that are dequeued and transmitted from
the qdisc.6 The two sub-columns, ‘Core 0’ and ‘Core 1’ refer
to the cores handling qdisc Xmit. Note that when using TCP
flow, the measurements presented in Table II pertain to only
data packets, not TCP ACK packets.

As Table II shows, when data packets are transmitted
through the E2W path, no processor cycles are consumed by
the Enqueue qdisc and qdisc Xmit stages. In contrast, these
two processing stages do consume processor cycles when data
packets are transmitted through the W2E path. Additionally,
we observe that even though TCP employs congestion control
to prevent packet loss due to AP’s buffer overload, switching
TCP data packets over the W2E path still benefits from dual-
core processing.

Some of the implications of the discussions presented in

3We used the perf utility to perform these measurements. It is worth noting
that using perf imposes some overhead, thereby, for instance, for the E2W
path, the maximum achievable throughput when using a UDP flow is lower
than the numbers reported before.

4These operations start with function dev_qdisc_enqueue.
5These operations start with function dev_hard_start_xmit when the

function is called right after IP stack processing (i.e., bypassing qdisc).
6These operations begin with the function dev_hard_start_xmit

when it is called by __qdisc_run.

TABLE II
NORMALIZED PROCESSOR CYCLES WITH DUAL-CORE CONFIGURATION

Results collected from APW6

Enqueue qdisc Direct Xmit qdisc Xmit
Core 0 Core 1

E2W-UDP (852 Mbps) 0 1174616 0 0
E2W-TCP (849 Mbps) 0 1156818 0 0

W2E-UDP (949 Mbps) 16027 2704 47633 112503
W2E-TCP (904 Mbps) 10500 7098 46244 118097

Results collected from APW7

Enqueue qdisc Direct Xmit qdisc Xmit
Core 0 Core 1

E2W-UDP (950 Mbps) 0 213041 0 0
E2W-TCP (941 Mbps) 0 185739 0 0

W2E-UDP (950 Mbps) 55899 5358 25202 72743
W2E-TCP (921 Mbps) 49345 6840 23962 64058

this section are as follows. (i) For packets added to qdisc,
both the execution of the qdisc and the addition of packets
to the egress driver’s TX buffer are performed by Core 1.
Therefore, in scenarios where additional packet processing is
required and should be offloaded to Core 1, such processing
must be performed just before the addition to the TX buffer.
To this end, an option is to invoke an eBPF program during the
dequeue process of qdisc. Typical examples of such programs
include dynamically dropping non-priority packets when the
system detects congestion, modifying the packet’s DSCP field
to prioritize latency-sensitive flows at the final stage before
transmission, or selectively redirect sensitive traffic to a mon-
itoring system for inspection. (ii) The lack of a qdisc on
the Wi-Fi interface, combined with the higher overhead of
Wi-Fi egress processing (as demonstrated by our results in
Observations 7, 8 and 9), can prevent the core assigned to the
Ethernet interface from achieving maximum throughput over
the E2W path. We observe this effect as the lower throughput
of the E2W path compared to the W2E path on the APW6
platform. This problem becomes even more pronounced when
additional packet processing is required along the E2W path.
One potential solution to alleviate this bottleneck is the use of
Receive Packet Steering (RPS); however, RPS can degrade
cache efficiency [20], [39]. More critically, RPS increases
contention for locks within the mac80211 module during
packet enqueuing. To mitigate these issues, the number of
RPS cores should be kept as low as possible (while ensuring
that the cores are not overwhelmed), and lightweight packet
batching mechanisms should be employed before packets are
enqueued into the mac80211 module to reduce lock acquisi-
tion frequency.

Observation 7: For both E2W and W2E paths, the dual-
core configuration consumes more power than the single-core
configuration.

Using APW6, in sub-figure (d) of Figures 5, 6, 7, and 8, we
observe the following: (i) For both E2W and W2E paths, the
power consumption of the dual-core configuration is higher
than that of the single-core configuration, and (ii) the power
consumption of the E2W path is higher than that of W2E. To
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better illustrate these differences, Tables III and IV summarize
the normalized power consumption, computed as milliwatts
(mW) per 1 Mbps of throughput, across three throughput levels
for APW6 and APW7, respectively.

TABLE III
NORMALIZED POWER CONSUMPTION VALUES OF APW6

100 Mbps 500 Mbps Max

E2W Single-Core (mW) 3.410 1.426 1.108 (750 Mbps)
E2W Dual-Core (mW) 3.780 1.514 1.144 (893 Mbps)
% Dual-Core vs. Single-Core 10.85% 6.17% 3.21%

W2E Single-Core (mW) 3.140 1.142 0.953 (850 Mbps)
W2E Dual-Core (mW) 3.370 1.244 1.095 (949 Mbps)
% Dual-Core vs. Single-Core 7.32% 8.93% 8.60%
% E2W vs. W2E for Single-Core 8.60% 24.86% 16.26%
% E2W vs. W2E for Dual-Core 12.16% 21.70% 10.53%

TABLE IV
NORMALIZED POWER CONSUMPTION VALUES OF APW7

100 Mbps 500 Mbps Max

E2W Single-Core (mW) 5.017 1.120 0.631 (925 Mbps)
E2W Dual-Core (mW) 5.044 1.135 0.653 (950 Mbps)
% Dual-Core vs. Single-Core 0.52% 1.34% 3.33%

W2E Single-Core (mW) 5.013 1.044 0.564 (950 Mbps)
W2E Dual-Core (mW) 5.037 1.049 0.564 (950 Mbps)
% Dual-Core vs. Single-Core 0.48% 0.48% 0.36%
% E2W vs. W2E for Single-Core 0.08% 7.28% 12.08%
% E2W vs. W2E for Dual-Core 0.14% 8.20% 15.40%

TABLE V
NORMALIZED PROCESSOR CYCLES OF PACKET SWITCHING CORES ON

APW6

100 Mbps 500 Mbps Max

E2W Single-Core 0.195 0.139 0.121 (750 Mbps)
E2W Dual-Core 0.207 0.148 0.126 (893 Mbps)
% Dual-Core vs. Single-Core 6.23% 6.24% 4.40%

W2E Single-Core 0.128 0.109 0.101 (850 Mbps)
W2E Dual-Core 0.144 0.129 0.124 (949 Mbps)
% Dual-Core vs. Single-Core 12.8% 18.1% 22.7%
% E2Wvs.W2E of Single-Core 52.4% 27.90% 19.21%
% E2Wvs.W2E of Dual-Core 43.56% 15.07% 1.39%

TABLE VI
NORMALIZED NUMBER OF CACHE INVALIDATIONS FOR PACKET

SWITCHING CORES ON APW6

100 Mbps 500 Mbps Max
E2W Single-Core 7.16 1.46 1.04 (750 Mbps)
E2W Dual-Core 290.2867 147.55 89.34 (893 Mbps)

W2E Single-Core 6.91 1.39 0.89 (850 Mbps)
W2E Dual-Core 1253.5 694.14 476.65 (949 Mbps)

To justify the increase in power consumption observed in the
dual-core configuration, we present the normalized processor
cycles consumed by the packet-switching cores of APW6 in
Table V. The results for APW7 are omitted due to space
limitations. By comparing Tables III and V, we observe a
clear numerical relationship between processor cycles and
power consumption. For both AP platforms, we identify three

key factors that contribute to the higher normalized processor
cycles and, consequently, the increased normalized power
consumption in the dual-core configuration. First, when a
single core handles all packet processing tasks from ingress
to egress, the RX buffer is checked less frequently compared
to the case where a dedicated core handles ingress processing.
As a result, the likelihood of packet accumulation increases,
leading to more packets being processed per RX SoftIRQ. The
higher packet aggregation, in turn, reduces the frequency of
enabling and processing IRQs. This behavior can be observed
in Figures 5, 6, 7, and 8, where the number of RX IRQs
and RX SoftIRQs is lower in the single-core configura-
tion. For instance, on the E2W path, the number of IRQs
in the dual-core configuration increases by 6% and 28.8%
compared to the single-core configuration at the 100 Mbps
and 500 Mbps throughput levels, respectively. Similarly, the
number of RX SoftIRQs increases by 10.9% and 50.4% at
those same throughput levels. Second, we observe that the
dual-core configuration results in a higher number of Layer-
1 Data Cache (L1-DCache) invalidations. Table VI presents
the normalized number of cache invalidations on APW6,
calculated by dividing the total number of cache invalidations
by the corresponding throughput level. The highlighted rows
in the table reveal a higher cache invalidation rate for the
dual-core configurations. Since each core has a dedicated
L1 cache (this applies to both APW6 and APW7), in the
dual-core configuration, packets stored in Core 1’s L1 cache
must be transferred to Core 0’s L1 cache during the packet
switching process. This inter-core data transfer results in a
higher number of cache invalidations. It is worth noting that
for the E2W path, even though Core 1 handles both ingress
and egress processing, Core 0 handles TX IRQs for packet
buffer claiming; therefore, Core 0 requires access to the buffer
space of transmitted packets. Third, when two cores handle
packet-switching processes, the number of context switches
between kernel tasks increases. Using APW6, for the E2W
path and 500 Mbps throughput, we measured these values
for the single-core and dual-core configurations as 3361 and
5824, respectively. For the W2E path, these numbers are 3351
and 4369, respectively. Overall, our quantitative analyses align
with the factors identified in prior works, such as [20], [40]–
[42]. However, a detailed analysis of the individual impact of
packet aggregation, cache behavior, and context switching on
power consumption is left as future work. Another observation
from Tables III, IV, V, and VI is that power consumption, nor-
malized processor cycles, and normalized cache invalidations
all decrease as throughput increases. In general, as network
throughput increases, the number of processor cycles required
to process each megabit of traffic typically decreases. This
efficiency gain is attributed to the amortization of fixed per-
packet overheads (e.g., interrupt handling, buffer allocation,
and context switching) across a larger data volume. Higher
throughput also improves batching efficiency (e.g., via NAPI),
enhances cache locality, and reduces idle time, enabling more
efficient processor utilization during packet processing.
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TABLE VII
DEFINITION OF THE STAGES IN PACKET SWITCHING

Stage Description (cf. Figure 1 for more information)

Total
Cycles

The number of processor cycles per second consumed
by the cores assigned to packet processing. This includes
packet switching and other kernel operations.

Ingress Packet Processing
Init

RX-IRQ
The operations between the detection of an RX IRQ and
the start of running an RX SoftIRQ.

Init
Def-Work

The operations between scheduling a ksoftirqd thread or
a tasklet and the start of deferred work.

RX
SoftIRQ

The execution of an RX SoftIRQ until the start of running
the driver’s poll function. This includes the functions
__do_softirq and net_rx_action, excluding the actual
execution of driver’s poll function.

Poll
Function

The execution of the driver’s poll function, which includes
fetching packets from the device’s RX buffer, performing
necessary processing and passing the packets to the IP
stack.

IP Stack Processing

IP Stack
The execution of IP stack for processing incoming packets.
This includes the operations starting with ip_rcv and
before __dev_queue_xmit.

Egress Packet Processing

Init Xmit

The execution of the functions responsible for pushing
packets into the qdisc or the driver’s TX buffer. This
includes the operations started by the __dev_queue_xmit
function. This also includes the execution of qdisc_run
on the core handling ingress packet processing.

Init
TX-IRQ

The operations between the detection of a TX IRQ and the
start of running a TX SoftIRQ.

TX
SoftIRQ

The execution of a SoftIRQ until the start of the TX
Reclaim stage or the TX Qdisc stage.

TX Qdisc

The execution of qdisc_run on the core assigned to
Ethernet NIC’s IRQ. This stage includes the transfer of
packets from the qdisc to driver’s TX buffer and packet
transmission from this buffer.

TX
Reclaim

The process of reclaiming transmission resources (SKBs)
after packets have been sent out.

V. ANALYZING THE STAGES OF PACKET SWITCHING: A
MICROANALYSIS APPROACH

The metrics and analyses presented in the previous section
enabled us to describe the overarching operational framework
and discern the differences in packet switching considering
path and core assignment configuration. To deepen our un-
derstanding of these operations and the root causes of the
observed differences, this section adopts a more granular
approach by conducting a micro-analysis of packet switch-
ing stages. Our methodology is structured as follows. We
decompose packet switching operations into distinct stages, as
Table VII illustrates. For APW6 and APW7, Figures 9 and 10
present the normalized total number of core cycles and the
cycles consumed per stage of packet switching. Due to space
limitations, however, Figure 10 only shows the normalized
number of cycles attributed to two important stages, which
are discussed in more detail in this section. We used the same
normalization method explained in Observation 3. To quantify
the processing load associated with each stage, we measured
the number of processor cycles using the perf tool. The details
of the mappings and the corresponding codes are available in
the GitHub repository of this paper [32].

Fig. 9. Microanalysis results from the APW6 platform. (a), (b), and (c):
The normalized cycles consumed by all cores for the E2W (triangle) and
W2E (square) paths. (d), (e), and (f): The x-axis corresponds to the various
stages outlined in Table VII, providing a detailed breakdown of processing
costs. For each packet switching stage, the values represent the normalized
number of cycles consumed by that stage alone. All results are for the dual-
core configuration.

Fig. 10. Microanalysis results from the APW7 platform. The x-axis
corresponds to the various stages outlined in Table VII. All results are for
the dual-core configuration.

Observation 8: The two most process-intensive stages are the
Poll Function stage and the Init Xmit stage. For the WiFi
interface in particular, the processing load of these stages is
higher than that of the Ethernet interface. This is a general
observation for APs based on the SoftMAC class of WiFi
devices.

The Poll Function stage of WiFi ingress processing incurs
higher overhead than that of the Ethernet interface. For APW6,
Figures 9(d), (e), and (f) show that at 100 Mbps, 500 Mbps,
and maximum throughput levels, the number of cycles con-

12



sumed by the Poll Function stage in the W2E path is 2.3↑,
2.5↑, and 3.8↑ higher, respectively, than in the E2W path.
Similarly, for APW7, Figures 10(a), (b), and (c) show that at
100 Mbps, 500 Mbps, and maximum throughput levels, the
number of cycles consumed by the Poll Function stage in the
W2E path is 1.5↑, 1.9↑, and 2.0↑ higher, respectively, than
in the E2W path.

After retrieving the incoming packets from the RX buffer,
the Ethernet driver performs necessary validations (e.g., error
checking, packet size validation) and passes the packets to the
IP stack for further processing. In contrast, the WiFi driver
performs more complex tasks and needs to process 802.11
headers, which are more intricate than Ethernet headers. This
involves extracting and processing additional fields such as
QoS control, sequence control, and security-related fields. Af-
ter parsing the headers of MAC Protocol Data Units (MPDU),
the driver performs validations such as error checking and
packet size validation on each MPDU. If an MPDU is part
of a fragmented frame sequence, the driver handles the frag-
mentation and reassembly of packets. After these parsing and
validation steps, the driver strips off the 802.11 headers and
additional encapsulation headers before handing the packet to
the IP layer.

The Init Xmit stage of the WiFi egress processing incurs
higher overhead than that of the Ethernet interface. For APW6,
Figure 9 shows that for the 100, 500 Mbps and maximum
throughput levels, the processor cycles consumed by the Init
Xmit stage of the E2W path are 3x, 2.7x and 2.6x higher,
respectively, than the Init Xmit stage of the W2E path. For
APW7, Figure 10 shows that for the 100, 500 Mbps and
maximum throughput levels, the processor cycles consumed
by the Init Xmit stage of the E2W path are 4.2x, 3.0x and
2.8x higher, respectively, than the Init Xmit stage of the W2E
path. Recall that the Init Xmit stage starts after the completion
of IP stack processing. At this point, the packet is passed to the
netdev subsystem of the egress NIC. For the E2W path, since
there is no qdisc (cf. Section IV, Observation 6), packets are
passed to the mac80211 module. In addition to tasks such as
frame aggregation (e.g., A-MPDU), this module implements
complex queuing methods to establish airtime and QoS-aware
delivery of egress traffic. More specifically, the mac80211
module strives to allocate a fair share of airtime to each station,
and the priority of the traffic (i.e., voice, video, best-effort,
and background) also affects the order of packet transmis-
sions [3], [5]. These operations introduce queue management
and locking overheads that increase with throughput. Below
the mac80211 module, the WiFi driver (iwlwifi or mt7996)
implements tasks such as retransmissions, rate control, power
management, medium access control, encryption, and QoS.
All of these factors contribute to the higher processing load of
egress processing compared to ingress processing. Our deeper
analysis of the E2W path revealed that mac80211 processing
accounts for, on average, 62.6% of the Init Xmit sub-stage on
APW6 and 57.1% on APW7.

For the W2E path, the tasks for the Init Xmit stage
are fewer and less complex. Specifically, for packets that
are directly transmitted, the processing load of the Ethernet
drivers (bcmgenet or mtk eth soc) is lower than that of the

mac80211 module and the WiFi driver (iwlwifi or mt7996).
This is because the Ethernet drivers do not perform complex
tasks such as QoS-based queuing and airtime-aware channel
access, which are required by WiFi drivers. However, on the
W2E path, as the throughput increases, the number of packets
that cannot bypass the qdisc increases, and the overhead of
the qdisc also rises. We elaborate on the processing load of
the qdisc in Observation 9.

The presented discussions focused on a SoftMAC-based
WiFi NIC utilizing the mac80211 module. In contrast, Full-
MAC WiFi NICs have the potential to significantly reduce
packet processing overhead for ingress and egress on the WiFi
interface. However, this reduction in overhead comes at the
expense of programmability and monitoring capabilities, as
most queuing and MAC functionalities are offloaded to the
NIC. Exploring these trade-offs remains a direction for future
research.

Observation 9: The W2E path is more efficient than the
E2W path. However, as throughput increases, the difference
in processing overhead between these two paths reduces.

For APW6, comparing Figures 9(a), (b), and (c), we observe
that across all throughput levels, the total number of processor
cycles consumed by the W2E path is lower than that of the
E2W path. Similarly, for APW7, Figure 10 shows the same
trend. In terms of power consumption, Tables III and IV show
higher power consumption for the E2W path compared to the
W2E path for both APW6 and APW7. These trends align
with our previous discussions. For instance, in Observation 8,
we explained the higher processing demand of WiFi egress
processing compared to ingress processing for WiFi interfaces
based on the SoftMAC architecture.

For both APW6 and APW7, from Figures 9 and 10 we
also observe that the efficiency of both paths improves as
throughput increases. As discussed in Observation 7, this
improvement occurs because a higher number of packets are
processed per stage, which enhances efficiency in most stages
(e.g., RX SoftIRQ, IP Stack). However, for some stages, such
as TX Reclaim, we observe a different trend: as throughput
increases from 100 Mbps to 500 Mbps and then to the
maximum value, efficiency initially improves but subsequently
declines. At the 100 Mbps throughput level, fixed costs (e.g.,
memory allocation) dominate processing costs, leading to
lower efficiency. As throughput increases, these fixed costs are
amortized over more packets, improving efficiency. However,
at the highest throughput, the working set of data may exceed
the processor’s cache capacity, resulting in frequent cache
evictions and increased memory latency [20]. Additionally,
high traffic volumes can create contention for shared resources,
such as spinlocks in the qdisc or the driver’s TX buffer. These
factors contribute to the observed decline in efficiency, which
we discuss in greater detail in the following paragraphs.

Another important observation from Figures 9 and 10 is
that as throughput increases, the W2E path exhibits a slower
decline in the total number of processor cycles used, compared
to the E2W path. This behavior is related to the processing
overhead associated with scheduling and running the qdisc
for the Ethernet interface. As discussed in Observation 6,
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the dual-core configuration leverages both cores in the W2E
path. By adding packets to the qdisc, egress processing is
offloaded to the core assigned to the Ethernet NIC (Core
1), effectively distributing the packet switching load across
the two cores. However, the processing load of the egress
side in the W2E path increases as more packets are added
to the qdisc instead of being transmitted directly. Adding
a qdisc to the packet switching path introduces additional
overhead due to the extra processing and synchronization
required to manage its operations. When packets pass through
a qdisc, they must undergo enqueue and dequeue operations,
which involve inserting and removing packets from internal
data structures, such as linked lists. These processes require
memory access and often necessitate locking mechanisms to
ensure consistency. Moreover, the dequeueing process involves
applying scheduling logic to determine the transmission order,
further increasing complexity and processing cost. In contrast,
bypassing the qdisc and sending packets directly to the driver
eliminates much of this complexity. However, as throughput
increases, so does the number of packets that cannot bypass
the qdisc. Further analysis (not included in this paper) revealed
that, at the maximum throughput level of the W2E path,
the percentage of packets added to the qdisc (rather than
being directly transmitted) is 76% for APW6 and 92% for
APW7. The increasing processing demand of the qdisc is
reflected in the higher number of processor cycles consumed
by the TX SoftIRQ and TX Qdisc stages. For the W2E path
on APW6, increasing the throughput from 500 Mbps to the
maximum throughput results in a 3↑ and 61↑ increase in the
number of processor cycles consumed by these two sub-stages,
respectively. Similarly, for APW7, increasing the throughput
from 500 Mbps to the maximum throughput results in a
63↑ and 128↑ increase in the number of processor cycles
consumed by the same two sub-stages, respectively.

The discussion presented in this observation, along with
Observation 6, highlights an important implication. Although
Observation 6 shows that packet switching in the W2E path
can benefit from distributing the processing load over two
cores, the use of qdisc incurs a higher packet processing cost
compared to directly adding packets to the driver’s TX buffer
on the egress interface. Therefore, in scenarios with traffic
flows that do not require advanced scheduling, prioritization,
or shaping, the system could bypass the qdisc, for example,
by using the ‘redirect’ functionality of eXpress Data Path
(XDP), to reduce processor cycles, overhead, and energy
consumption. In such cases, a larger TX buffer may be needed
to absorb variations between ingress and egress transmission
rates. Additionally, depending on application demands, simple
queue management mechanisms could be implemented within
the device driver, directly before the TX buffer.

VI. RELATED WORK

To the best of our knowledge, there is no study on under-
standing and enhancing the NIC-to-NIC data plane of WiFi
APs. The existing works related to packet switching on WiFi
APs are primarily focused on packet scheduling, queuing,
and airtime fairness [3], [5], [16], [43]–[47]. For instance,

the increased latency and jitter due to excessive queueing
(bufferbloat) is discussed in [3]. In another category of related
works, tools have been proposed in [4] and [48] to facilitate
event tracing and provide additional real-time insights into the
operation of the WiFi stack. Such tools can be used in addition
to the statistics provided by the kernel to better understand
and enhance the kernel’s data path. It is also worth noting
that this paper, as well as a large body of existing works,
such as [3]–[5], [16], [43]–[50], all use a SoftMAC-based
WiFi driver architecture. Sample commercial platforms based
on this architecture include Qualcomm’s ath9k, ath10k, and
ath11k, Intel’s iwlwifi, and MediaTek’s mt76.

There exist several works on the evaluation and enhance-
ment of software packet switching in high-performance set-
tings utilizing servers with Xeon (x86-64) processors. The
study [41] demonstrated that binding all forwarding operations
of each packet to a single core reduces cache invalidation
rate and spinlock contention compared to multi-core packet
switching. A similar observation has been reported in [23].
Towards achieving predictable packet switching performance,
[42] shows that cache contention is the leading cause of
performance variations. They also examined the potential
benefits of contention-aware task scheduling and found that
it provides minimal performance improvement. Dynamic con-
figurations based on workload demands are emphasized in
[21]. Settings such as disabling Hyper-Threading (specific to
x86-64 processors) and processor core isolation are shown
to be crucial for achieving high and stable performance. The
study [51] shows that switching more than one million flows
results in the considerably higher overhead of IP routing,
which occurs when the routing table cannot fit entirely into the
processor’s cache. The disparity between processor utilization
and the number of cycles consumed has been mentioned in
[22]; however, they did not discuss the underlying causes of
the problem.

Various works have modified the kernel path [52], [53] or
proposed novel algorithms and methods for the dynamic con-
figuration of packet-switching systems [54], [55]. To minimize
delays for high-priority data flows, [54] proposes a method that
involves assigning incoming packets to different RX buffers
based on their priority levels and then employing various
scheduling techniques to efficiently manage the resources
assigned to processing incoming packets. The problem of
finding optimal configuration parameters for a software switch
to achieve maximum throughput and minimum latency has
been addressed in [55]. Kafe [52] enhances kernel packet
switching by introducing a cache-optimized SKB allocator
that recycles pre-allocated buffers efficiently. This method
reduces the overhead associated with frequent allocation and
de-allocation of memory buffers, lowering cache misses. The
authors in [53] proposed ZygOS, a system designed to achieve
low tail latency in microsecond-scale networked tasks. Zy-
gOS incorporates advanced interrupt handling and scheduling
techniques to enhance performance. Given the flexibility of
software switches in managing physical resources such as the
number of processor cores and capacity of RX buffers, [30]
propose a model to instantaneously estimate the minimum
number of processor cores required to meet given QoS criteria.

14



In this paper, we leveraged several best practices, including
IRQ affinity and core isolation, to enhance switching perfor-
mance. Additional optimizations are orthogonal to our work
and can be employed for further performance enhancements.
For instance, dynamic IRQ affinity assignment and multi-
queue NICs can be utilized to allocate resources based on
the system’s load. Furthermore, studying the impact of the
number of flows and complex Network Function Virtualization
(NFV) tasks (e.g., firewall, encryption, monitoring) on cache
performance remains an area for future research.

Given the importance of communications between NIC
and user-space applications and Virtual Machines (VMs) for
cloud computing and NFV environments, understanding and
enhancing this communication has also received attention. The
study presented in [41] demonstrated that, under conditions of
high traffic, a single core dedicated to packet switching and
user-space processing allocates less than 2% of its resources
to user-space tasks. Focused on packet switching between
kernel and user-space, [20] demonstrated that more than 50%
of the overhead is caused by packet copying operations. The
overhead of traffic switching between the user-space and two
NICs supporting 802.11ad and 802.11ac has been studied
in [56]. Their utilized platform has four powerful cores and
four small cores, and when the IRQs are assigned to small
cores, sub-optimal throughput is observed. The authors of [57]
revealed that packet exchanges between NIC and user-space
applications do not accurately account for the application’s
processor demand. They proposed a kernel modification of
the SoftIRQ processing to address this problem. In [50], the
authors provide applications with real-time access to MAC
primitives, enabling direct control over packet transmissions
and retransmissions at the user space level.

As WiFi APs continue to be deployed in a wide range of ap-
plications, it is anticipated that an increasing number of NFV
instances will run on these APs [7]–[9], [14], [58]–[61]. For
example, implementing security functions like firewalls and
intrusion detection directly on APs can provide faster threat
responses, while deploying content caching applications at
the edge can significantly reduce bandwidth consumption and
improve user experience by delivering content more quickly.
Therefore, an area of future work is to study the implications
of packet switching performance for running NFV in the
kernel or user-space and to adopt various optimization methods
[29], [62], [63].

Existing works on user-space packet switching (i.e., kernel
bypass methods) demonstrate superior performance compared
to Linux’s layer-2 and layer-3 switching [21], [22], [30]. In
[22], the authors showed that for packet switching between
two NICs, the performance of the Linux bridge, Linux’s IP
forwarding, OVS-kernel and OVS-DPDK are 1.11, 1.58, 1.88
and 11.31 million packet per second, respectively. Implemen-
tation and analysis of user-space packet switching on WiFi
APs is left as a future work.

VII. CONCLUSION

As WiFi APs continue to evolve toward higher performance
and broader functional integration, understanding the behavior

and bottlenecks of Linux’s software-based packet switching
becomes increasingly important. This paper systematically
examined the packet switching paths in Linux-based APs,
highlighting the validity domains of statistics, how processing
is distributed across cores, and how architectural choices (e.g.,
SoftMAC, qdisc) influence performance. These observations
challenge the reliability of conventional kernel statistics and
reveal nuanced system behaviors that influence both the inter-
pretation of these statistics and overall performance. For in-
stance, our findings show that widely used system monitoring
tools can significantly misrepresent processor load due to hid-
den costs such as interrupt-context SoftIRQ execution. We also
observe that qdisc introduces both benefits (e.g., parallelism)
and costs (e.g., overhead), and that asymmetries in the W2E
and E2W paths result in different core utilization patterns.
Together, these findings offer new insights into monitoring
accuracy, core assignment, and interrupt and deferred network
task handling, which are items that have not been previously
emphasized in the context of WiFi APs.

While this study primarily focuses on statistics provided
by standard Linux monitoring tools (such as the /proc file
system and perf), additional insights into packet switching
operations could be gained through the use of eBPF, which
enables dynamic, real-time instrumentation and observation of
kernel activity. Developing integrated toolchains that correlate
low-level, fine-grained data (e.g., collected by perf or eBPF)
with metrics reported by high-level, system-wide tools (e.g.,
mpstat) could help close the visibility gap, enabling more
accurate analysis and automated system tuning. Enhancing
observability of these internal behaviors brings us closer to
building APs that are not only performant, but also observable
and adaptive to application needs.

It is also important to note that while we focused on packet
switching on APs, the findings apply to any Linux-based
host. For example, our results indicate that relying solely on
the reported processor utilization attributed to SoftIRQs may
not be an effective method for detecting IRQ overload or
work performed within the IRQ context, such as that which
can occur during Denial-of-Service (DoS) attacks on IoT
devices [64]. Because these behaviors stem from the Linux
kernel’s networking and interrupt handling subsystems, the
implications extend beyond APs to other Linux-based systems
such as IoT gateways and devices. Nonetheless, the extent
of these effects may vary depending on the kernel version,
device drivers, and NIC architecture. Future research may
also explore dynamic system configurations, such as IRQ
affinity assignment or selectively bypassing qdisc, based on
real-time load characteristics. In addition, techniques such as
cache-aware NFV, user-space packet switching, multi-queue
drivers with multiple RX and TX buffers, and refined RPS
strategies offer promising directions to further enhance APs
performance.
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Fig. 11. At time instances t2 and t4, the WiFi NIC generates TX IRQs.
In both cases, after adding the poll function of iwlwifi to the poll list of
softnet_data, the RX SoftIRQ is used to call this poll function, which
decides if reception, transmission, or both types of packet handling must be
performed.

APPENDIX
RX SOFTIRQ EXECUTION ON EGRESS SIDE

To visualize and better understand why RX SoftIRQs are
triggered by the egress NIC, we analyze the code section that
determines which SoftIRQ type must be scheduled. We explain
the kernel’s operation by presenting a single-core scenario in
Figure 11, focusing on the APW6 platform. At time t1, an
Ethernet RX IRQ arrives, the TH processing of this IRQ uses
the function __napi_schedule to add the poll function of
the driver to the poll list of the softnet_data structure of
the core. When the __do_softirq activates an RX SoftIRQ
to call the poll function, the in_net_rx_action variable is
set to true. At time t2, while an RX SoftIRQ is running
the poll function of bcmgenet driver, the WiFi NIC (egress)
generates a TX IRQ. Again, the function __napi_schedule

is used to add the poll function of the WiFi NIC to the
softnet_data structure of this core. At this time, since an
RX SoftIRQ is in progress, the in_net_rx_action variable
of the softnet_data structure on this core is true; thereby,
there is no need to schedule a new SoftIRQ instance. In other
words, the RX SoftIRQ instance that is already running will
call the poll function of the iwlwifi driver.

At time t3, there is no ongoing RX SoftIRQ and
the value of in_net_rx_action is false. When the
WiFi NIC generates an IRQ at time t4, within the TH
processing, the __napi_schedule function calls function
__raise_softirq_irqoff (cf. Figure 1) to mark an
RX SoftIRQ as pending, ensuring that it will be pro-
cessed at the next opportunity when the kernel checks
for pending SoftIRQs. Notably, when calling function
__raise_softirq_irqoff by __napi_schedule, the ker-
nel always uses RX SoftIRQ type as the argument of the func-
tion. Therefore, considering the zero number of TX SoftIRQs
in Figures 5(a) and 6(a), this phenomenon occurs because TX
IRQs are handled by RX SoftIRQs.
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L. Z. Granville, and S. Latré, “Airtime-based resource allocation model-
ing for network slicing in IEEE 802.11 RANs,” IEEE Communications
Letters, vol. 24, no. 5, pp. 1077–1080, 2020.

[46] F. Canbal, Y. B. Ozgun, M. S. Kuran, G. Venkatesan, and N. Canpolat,
“Wi-fi qos management program: Bridging the qos gap of multimedia
traffic in wi-fi networks,” IEEE Communications Magazine, 2023.

[47] S. Deng, X. Guan, Z. Sun, S. Zhao, T. Shen, X. Chen, T. Duan, Y. Wang,
J. Pan, Y. Wu et al., “Coorp: Satisfying low-latency and high-throughput
requirements of wireless network for coordinated robotic learning,”
IEEE Internet of Things Journal, vol. 10, no. 3, pp. 1946–1960, 2022.

[48] J. Sheth, V. Ramanna, and B. Dezfouli, “Flip: A framework for lever-
aging ebpf to augment WiFi access points and investigate network
performance,” in Proceedings of the 19th ACM International Symposium
on Mobility Management and Wireless Access, 2021, pp. 117–125.

[49] M. Vanhoef, X. Jiao, W. Liu, and I. Moerman, “Testing and improving
the correctness of Wi-Fi frame injection,” in Proceedings of the 16th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks, 2023, pp. 287–292.

[50] G. Cena, S. Scanzio, and A. Valenzano, “SDMAC: a software-defined
MAC for Wi-Fi to ease implementation of soft real-time applications,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3143–
3154, 2018.

[51] D. Raumer, F. Wohlfart, D. Scholz, P. Emmerich, and G. Carle,
“Performance exploration of software-based packet processing systems,”
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