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ABSTRACT: The variability of the phase speed of the Madden Julian oscillation (MJO) is poorly
understood. The authors assess how the phase speed of the convective signal of the MJO associates

with the background states over Eastern Africa and the Indian Ocean. Relaxatton-of-the-eouphng

1o MIO Laatracaacarmal-iaaa c a ottt ot atianlbaclhbaain aea e alzad
4 al a al . a trd a vV . Y

e~ Relaxation of the coupling
between tropical modes and their circulation has been previously linked to faster propagation;
for example, MJO speeds up over Eastern Pacific where its convective signal decouples from the
circulation. In contrast, our results show that fast MJO events happen to exist during periods of
wetter background states (> 90 days) from East Africa across the Indian Ocean, whereas slow MJO
is associated with dry background states. We found that fast MJO exhibits strong active and inactive
phases with structure suggesting more hierarchical convection. Results indicate that the association
of the phase speed of the MJO as seen in the integrated filtered moist static energy with the its
tendency is stronger than the association of the phase speed as observed in the dry static energy
with its tendency which is consistent with the acceleration of the MJO during wet background
states. Also, our results indicate the MJO may be faster during periods of enhanced low-level
moisture because these periods have anomalously weak upper tropospheric easterly background
wind, which reduces the westward advection of the MJO by the background easterly wind, resulting
in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal

wind overwhelms the deceleration associated with the moist wave dynamics.
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SIGNIFICANCE STATEMENT: This study shows that the Madden Julian oscillation (MJO),
which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly
across Eastern Africa and the Indian Ocean when the region is abnormally moist. The faster
propagation does not appear to result from the higher moisture, but instead from encountering

weaker than normal upper air winds from the east that tend to occur during moist periods.

1. Introduction

The Madden Julian oscillation (MJO; Zhang 2005) is the dominant intraseasonal mode in the
tropics. Although there is no consensus on its dynamics or how to best trace its signal (Straub
2013), the MJO could be described as a cluster of convection coupled with large-scale atmospheric

circulation moving eastward with an average speed of 5 m s~

over the warm pool. Its associated
large-scale circulation accelerates eastward over the Eastern Pacific, where coupling to convection
is much weaker (Salby and Hendon 1994; Bantzer and Wallace 1996).

The unsettled dynamics of the MJO and the variety of indices used to trace it (e.g., Straub 2013)
complicate studying the variability of MJO phase speeds. One of the earliest simple models of
the MJO was a slow Kelvin wave (e.g. Chang and Lim 1988, and many others) as both MJO and
Kelvin waves move eastward and couple with convection. This avenue retains some esteem, as it

is supported by recent observations; for example, straetures-simiar-to-kelvin-waves-emerge-in-the-

- the upper tropospheric

circulation signal associated with the MJO over the Indian Ocean appears as a Kelvin ridge to the
east of the convection and a Kelvin wave trough to the west (Roundy 2020). The Kelvin wave
trough to the west cannot be forced by convection to its east, as that convection would drive a ridge.
Nevertheless, the horizontal structure of the MJO, in general, includes substantial non-Kelvin
features leading some to describe it as a Rossby-Kelvin wave couplet (e.g., Rui and Wang 1990)
or quadrupole vortex (e.g., Monteiro et al. 2014) which has been considered in recent theorizing
of the MJO (e.g., Skeleton model of the MJO Majda and Stechmann 2009). Such structures raise
debate on the role of the forced Rossby wave component in modulating the phase speed of the

MIJO (Wang et al. 2018).
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Aside from the gravity wave perspective of the MJO as simplified by Kelvin and tropical Rossby

waves, the theory of the moisture mode (e.g., Sobel et al. 2014) arose as a different pathway to
understand the propagation and evolution of the MJO. Under the gravity wave perspective, gravity
is the restoring force for barotropic waves, and buoyancy (reduced gravity) is the restoring force
for baroclinic flow waves—travehng-in—stratifred—How. Under the moisture mode hypothesis, the
evolution and the propagation of the MJO could be traced by moisture or moist static energy
field. For instance, fluctuations of moist static energy in phase with precipitation, not only on the
intraseasonal scale but also on the background and synoptic scales (Inoue and Back 2015). The
convective initiation of the MJO is preceded by the advection of lower tropospheric background
moisture by the easterly wind associated with the previous MJO event (Zhao et al. 2013; Li
et al. 2015; Zhu and Hendon 2015). The research also suggests that the horizontal advection of
background moisture by the MJO flow is essential for the northward propagation of the MJO during
northern summer (Jiang et al. 2020). Moreover, the termination of MJO convection is preceded by
negative anomalies of moisture over the equatorial Indian Ocean (Stachnik et al. 2015).

Analysis of the moist static energy budget has suggested several potential mechanisms that might
explain the dynamics of MJO propagation. Benedict and Randall (2007) analyzed the structure
of moisture associated with maximum rainfall and found that shallow convection precedes the
maximum rainfall associated with the MJO, and dryness driven by horizontal advection follows
the peak precipitation by few days, and in roughly 1 ~ 2 weeks succeeded by vertical advection of
dry air. Maloney (2009) found that charging of MSE occurs during MJO easterlies and meridional
advection of the MSE is the dominant contributor to change in the MSE via suppression of the
synoptic eddies. In an aqua-planet model, Andersen and Kuang (2012) found that the tendency of
moist static energy is in phase with horizontal advection of the background moisture by the MJO
flow, suggesting that horizontal advection may contribute to the eastward propagation. The same
results have been replicated by Hsu and Li (2012) using ECWMEF Reanalysis ERA-40, and by Sobel
et al. (2014) using data from the Dynamics of the MJO (DYNAMO) field program. Kim et al.
(2014) found that MJO events that actively propagate over the western Pacific were associated with

a poleward advection of the MSE by the synoptic eddies (including tropical Rossby waves), which
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eventually distribute the MSE over a wide meridional area. Moreover, Wang et al. (2017) compared
the MSE structure in models associated with propagating versus non-propagating MJO signals.
They found that the MSE is in quadrature with the MSE tendency in the models with propagating
MJO, while the MSE is in phase with the MSE tendency in the models with non-propagating
MIJO. Their distinction between propagating and non-propagating MJO depends on inclusion of
westward Fourier components, so it is possible that MJO-events deemed non-propagating emerge
from the interference pattern generated by superposition between MJO and equatorial Rossby wave
signals and thus still include propagating MJO signals.

Using aqua-planet simulations, Jiang et al. (2020) found that the simulated intraseasonal oscil-
lation propagates westward if a prescribed uniform SST (which produces an oft-equatorial peak in
moisture) is used instead of SST gradients (which yield a moisture maximum at the equator). It
is unclear the extent to which the mechanisms in subseasonal variability in these models conform
to the mechanisms in observations, including the different factors in models and observations that
determine the time mean balance between eastward and westward-moving intraseasonal modes.
Indeed, the extent to which the upper tropospheric circulation signal associated with the MJO
resembles Kelvin wave both east and west of the convection (Roundy 2020), eastward propagation
may be assured without any of these mechanisms. Besides, low frequency of the occurrence of
the MJO events in models might ultimately wash out their bulk signal in the power spectrum and
regression analysis, and mislead our understanding of representation of the MJO in global models
(Ling et al. 2017).

Aside from the exact nature of the MJO, MJO convective events evolve in a region from East
Africa across Indian Ocean with known upper tropospheric easterlies. Roundy (2022) estimated
the 200 hPa background zonal wind associated with the MJO at various phase speeds. He found
that the slowest MJO events are most affected by the background upper easterlies, and that in
resting atmosphere without steering wind, the phase speed of the MJO exceeds 10 m s~!. Hence,
Variability of the MJO phase speed could be explained in terms of the variability of the background
zonal wind.

The proposed essential role of advection of background moisture by the MJO wind for the
initiation and termination of MJO convection, the propagation versus the stalling of the MJO,

and the eastward versus the westward propagation of proposed simple model disturbances suggest
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the idea that the background moisture or MSE could modulate MJO phase speed. Previous work
on moisture mode theory has suggested relationships between the phase speed of the MJO and
moisture gradients. Other works have suggested that increased convective activity, increased
moisture, and increased precipitation rates are associated with slower MJO signals. Hence, we
analyze the variability of the MJO phase speed with different states of the background moisture at
different locations over the Indian Ocean and Eastern Africa. Although the moisture mode theory
applies the gradient of the background moisture to predict the characteristics of the moist wave,
this study does not, in essence, test a particular theory. Since this area has not been studied enough,
this study analyzes the characteristics (speed and structure) of the MJO in different background
setups. We think there is merit to analyzing raw variables (e.g., background moisture or wind)
before analyzing more derived quantities (e.g., gradient of background moisture or wind).

Section 3 discusses the technique used to filter the data for the MJO band and the regression
technique used to isolate the structure of the MJO at different background moisture levels. The
variability of the MJO phase speed with background moisture is presented in section 4a. The
vertical structure of the MJO associated with different phase speeds is discussed in section 4b.
Analysis of the moisture budget at different background moisture conditions is explained in section
4c. Finally, in section 4d, we show the background zonal wind states associated with the fast and
slow MJO. Results investigate to what extent moisture and the background flow are associated
with varying phase speed of the MJO. A subsequent paper will discuss a similar analysis of the

relationship between zonal and meridional gradients of moisture and MJO phase speed.

2. Data

Horizontal wind, vertical wind, temperature, specific humidity and geopotential height data were
obtained from the ECMWF Interim Reanalysis (ERA-I, Dee et al. 2011) on 2.5°x2.5° grid and 32
vertical pressure levels, from 1980 to 2016, extending from 180°E to 180°W and from 20°S to
20°N at 00, 06, 12, and 18 UTC. Daily resolution was produced by averaging the 6-hourly dataset.
The ERA-I moisture dataset incorporates SSM/I satellite data (Trenberth et al. 2011), making it

suitable for analyzing the moisture field over the Indian Ocean.
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The daily grided NOAA outgoing longwave radiation (OLR) dataset was obtained from 1979 to
2017 on a 2.5° x 2.5° grid (Liebmann and Smith 1996).
In order to budget the latent heat (moisture, see section 4c), we downloaded the following

variables from the ERA-I dataset:

* Precipitation and evaporation (in meters) are accumulated forecasted variables, so their anal-

ysis time and accumulated period must be specified. To get the daily precipitation, we
downloaded the data at 00 and 12 UTC with a 12-hour forecast accumulation, so are summed
over 00 and 12 UTC accumulation data. To put the precipitation and evaporation (both in me-

ters of water) in energy units (W m~2), we multiplied the daily sum amount of precipitation or
pXxLy,

24X 60X 60’

heat of evaporation (2.45 x 10° J kg=!). Hence, the Evaporation of one meter of precipitation

evaporation by where p is the density of water (1000 kg m™3) and L, is the latent
per day requires 28 x 10> W m~2. Conversion of the units of precipitation and evaporation
into energy units is necessary for consistency with the vertically averaged budget variables,
as discussed in section 4c. Precipitation is a model-dependent variable in ERA-interim and
ERA-5 since station precipitation inputs are not used. ERA-I is known for its wet biases over
equatorial central Africa. Yet, it has a better precipitation representation than its predecessor

data (ERA-40) and represents the interannual variability and annual cycles well.

Sensible heat and latent heat, defined as positive for downward fluxes. To get their daily total
values, we downloaded them at 00 and 12 UTC with a 12-hour forecast step, as we did with

the precipitation and evaporation.

Net radiation in the atmospheric column. To calculate it, we downloaded surface net solar
flux, surface net thermal, top net solar radiation, and top net thermal radiation at 00 and
12 UTC with 12-hour accumulation, as we did before. Those parameters are positive for
downward fluxes. The unit of the fluxes is J m~! and to convert it into Watt m~2, we divided
by the time of the accumulation period 12 hours, 12 X 60 X 60 seconds. Other flux datasets
could outperform ERA-I, but at the same time, using different data from the rest of the project
raises more problems with the closure of the budget, making it rather difficult to understand

the dynamics under investigation.
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3. Methods

a. Spatial-temporal data filtering.

We used the discrete Fourier transformation (DFT) to extract the intraseasonal component of
the ERA-I zonal wind, geopotential height, and specific humidity. This Fourier filtering technique
uses a boxcar approach which can cause Gibbs ringing lobes, especially near the ends of the filtered
dataset, so we only use data between 1980 and 2016. To distinguish the MJO from westward-
moving signals (Wang and Rui 1990), we filter to retain only eastward-propagating components
by selecting wavenumbers 1 - 10 and the Fourier harmonics for the 20 - 90 day range using two
dimensional DFT following Kiladis et al. (2005); Straub (2013) and many others. The Broader
wavenumber range is essential to account from the small scale convective activity associated with
the MJO, including harmonics to its dominant wavenumber, and makes the results less sensitive
to the domain size and the filter design (Straub 2013; Roundy and Schreck III 2009). Besides the
intraseasonal components, we estimate the background states by lowpass filtering data for periods
longer than 90 days, retaining the long-term mean and seasonal cycle as well as interannual and
longer term variability.

Several indices have been used to trace MJO convective signal or large-scale circulation or
both (Straub 2013). It is convenient to use an MJO index that traces the MJO convective signal
when analyzing the relationship between the background moisture and convective-MJO. Following
Zhao et al. (2013), we constructed an MJO index using only OLR data to analyze the convective
initiation of the MJO. The covariance matrix of the 20 - 90 day filtered OLR anomalies confined
between 40°E to 180°E and 30°S to 30°N was constructed by taking X7 X, where X is a array
whose columns are the time series at each grid point. The principal component time series were
found by projecting the filtered OLR anomalies onto the eigenvectors of this matrix. We used the
first principle component (PC1) as a predictor in the regression models to analyze the structure of
the MJO. All analysis is based on the northern winter MJO from November to April, when MJO
activity peaks (Zhang and Dong 2004). Narrower merdional domain from 20°S to 20°N, used by
other authors, yields the same EOF components as the larger domain (not shown), with correlation
of -0.99 between the larger and smaller domains first PCs. The domain extends from 40°E to 180°E

to account for the active and inactive phases of the MJO.
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PC1 is used as base index for the regression and composite analysis. Lag regression against PC2
ultimately leads to similar conclusions at time lags. This is the case because the two EOFs and
PCs are in quadrature in space and time, so they have a maximum lag correlation at 90-degree
phase shifts, otherwise, they could not represent a propagating pattern from an EOF analysis. Both
indices combined, at time lag zero, could describe any phase state of the MJO. We typically use
a pair of indices in real time because they combine to tell us the present state, effectively at a
zero-time lag. On the other hand, for composite or regression analysis as conducted in this paper,
a time lag from one index alone can be used to represent the MJO signal generated from any
combination of the two original PCs, based on the extent of the association between the two PCs at
90-degree shift. Regression analysis senses only the time scales associated with the PC1. Variables
other than the OLR data may be associated with horizontal scales that extend outside the filtered
wavenumbers when regressed against PC1. Those scales would appear in the regression maps and
might result in different estimates of the speed of the MJO in the non-OLR filtered variables.

The real-time multivariate MJO index (Wheeler and Hendon 2004, RMM index) has been used

to reproduce some results in section a.

b. The varying-coefficients regression technique.

Roundy (2017) developed a regression technique for providing regression coeflicients that vary
continuously across the seasonal cycle. Standard linear regression can be applied to find a single
set of coefficients corresponding the predictors. When calculated based on data from different
times of the year, linear regression yields different coefficients. This new algorithm predicts what
the coeflicients would be in particular baekgrennd conditions such as particular days of year. The
algorithm uses regression of the variance of the predictor against the leading harmonic of the
seasonal cycle, and regression of the covariance between the predictor and predictand against the
same leading harmonic of the seasonal cycle. The ratio of covariance and variance coefficients on a
given day of the year+te-esttmate is the regression slope coefficient most likely to apply on that day.
A revision of the technique is used here to find regression coefficients that fluctuate with any slowly
varying signal instead of the seasonal cycle. The varying regression technique (Roundy 2017) is
superior to the partial regression technique (Yule 1907) used to find the correlation between two

variables while excluding their linear fluctuation with an other (third) variable that might impact
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the correlation value, in the sense that the algorithm reveals the impact of a third variable on the
regression coefficient.

In this study, we use the varying regression coeflicients technique to analyze the structure and the
speed of the MJO in different background moisture states, which may be of essence to the initiation
and the propagation of the MJO (see sec. 1). A time lag regression model of the evolving MJO
structure is achieved by regressing fields of data against a predictor MJO index x. Let y represent
a particular dependent variable at some grid point and time lag. Our objective is to find the
regression slope coeflicient relating x and y as the relationship varies with background moisture.
The technique is as follows: (1) regress the time series of the squared values of MJO index, x2,
on the slowly varying background moisture. The regressed values represent the regressed variance
of the predictor; (2) regress the product of the MJO index with the times series of the dynamical
field that we are interested to analyze against the background moisture. Similarly as in step 1, the
output represents the regressed covariance. This dynamical field serves as the regressed variable;
(3) substituting the value of the background moisture in (2) and (1) to find the predicted covariance
and the predicted variance, and then their ratio is the regression coefficient associated with the
prescribed value of the background moisture.

In theory, we can use the traditional linear regression technique for a subset of the data that
occurs within a range of background values we are interested in. Yet, the varying regression
technique introduced by Roundy (2017) leverages the whole data set since the actual selection
of the background is performed after calculating the slopes. Utilizing the whole dataset in the
varying regression technique makes the resultant signal clearer and more statistically robust than

the traditional regression technique that looks at general background states in isolation.

c. Statistical test.

We used the students t-test to test the statistical significance of the traditional regressions and
composites. Yet implementing a parametric statistical test is challenging when considering the
varying-coefficients regression that includes multiple regressions (Roundy 2017). Hence, we
used a bootstrap test following Roundy (2017) to study the statistical significance of the varying-
coefficients regression. To implement the test, the regression coefficients are calculated 10,000

times based on random samples from the original data, with samples taken with replacement (see
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ch. 5 Wilks 2011, for details on the bootstrap technique). Those coefficients constitute the
population distribution with similar autocorrelation characteristics. To test the significance of the
regression coefficient against, for example, the 90% level, we check if the calculated regression
coeflicient is confined between the population confidence interval, which is between 500 and 9,500

quantiles.

4. Results

a. MJO phase speed among varying background moisture states.

To get a better idea of the structure of the MJO that is associated with the PC1 index (defined
in Section 3), we present lead-lag regression Hovmoller diagram of the filtered zonal wind at 850
and 200 hPa (Figs. la and b), and specific humidity at 850 hPa (Fig. 1c). At 850 hPa, over the
Indian Ocean, westerly anomalies are located west of the negative OLR anomalies, with easterly
anomalies to the east. The reverse occurs at 200 hPa, consistent with the traditional vertical
structure of the MJO that maps roughly onto the first barocinic mode or htgher-bareelnte-mede the
superposition of the first few baroclinic modes (Rui and Wang 1990, and others) that ultimately
resembles an overturning circulation. The quadrature relationship between the wind and convection
resembles MJO model I of Zhang and Anderson (2003, Fig. 1). At day zero, specific humidity
at 850 hPa peaks over the Indian Ocean, while negative values cover central and eastern Pacific
Ocean (Fig. 1c). Those structures (Figs. la-c) are similar to the MJO structure between phases
2 and 3 of the RMM index (Wheeler and Hendon 2004), where the impact of the active phase
of the MJO convection lies over the Central Indian Ocean. Over the Indian Ocean, the specific
humidity is in quadrature with the 850 hPa zonal wind (Figs. la and c) and in phase with the
MJO convection center. This intraseasonal moisture anomaly might be important for maintaining
the MJO convective activity, yet the initiation and the propagation of the MJO itself have been
hypothesized to be supported by the advection of background moisture, rather than intraseasonal
moisture, by the lower tropospheric easterly zonal wind associated with the previous MJO event

(Zhao et al. 2013; Straub 2013).
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The phase speed of the MJO as represented by the regressed zonal wind anomaly at 850 hPa is
roughly 5.6 m s~! (see reference line on Fig. 1a). The reference lines that mark the phase speed of
the contours, subjectively fit the peak contours between -10 and 9 days in all Hovmollor except in
section ¢, where we choose to fit field between -15 to 5 days as some fields decays rapidly. For some
figures, we draw another reference line for the phase speed that fits maximum contours only over
the Indian Ocean between 60°E and 110°E. For clarity, we refer to the phase speed of the reference
line that fit the maximum contours between -10 and 9 day as the phase speed and phase speed
represented by the reference line over the Indian Ocean as the Indian Ocean (IO) phase speed. The
phase speed of zonal wind at 200 hPa (Fig. 1b) is faster than the 850 hPa zonal wind. The regression
technique captures those signals that correlate with the index rather than the signal propagating
at a particular phase speed. This indicates that the maximum power of the 200 hPa filtered zonal
wind at a particular wavenumber does not align with the maximum power of the 850 hPa filtered
zonal wind at the same wavenumber. The vertical tilted or stacked baroclinic structure of the
MJO circulation changes over its lifetime, which must imply that associated circulation anomalies
move at moderately different speeds as the vertical structure evolves to lead to the different vertical
alignments between them. The abrupt acceleration of the MJO signal, represented by the upper and
lower layer zonal wind and specific humidity (Figs. 1a-c), near the dateline has been understood
as a result of the separation between the circulation and convection that were coupled over the
Indian Ocean (Salby and Hendon 1994, and many others), but also incursion of the extratropical
Rossby wave response to west Pacific convection back into the tropics via the westerly wind duct
of the Western Hemisphere (e.g., Sakaeda and Roundy 2015). The 1O phase speed of the 200
hPa zonal wind signal matches the 10 phase speed of the 850 hPa moisture signal, yet the 200
hPa zonal wind over the Indian Ocean happen to be centered near day -10, whereas the 850 hPa
moisture signal over the Indian Ocean lies around day 0. This indicate the upper wind signal leads
the lower moisture signal over the IO. Upper level easterlies have been found to be favorable for
the development of MJO (Roundy 2014)

To study the variability of the MJO phase speed with the background moisture, we reproduce
the previous lagged regression Hovmoller diagrams, but at specific values of background moisture
using the varying regression coefficient discussed in Section 3. In order to implement varying

coeflicient regression, we construct background moisture indices. Figure 2 shows box-plots of
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Fic. 1. Shaded contours are lagged regression of 20 - 90 days eastward filtered: (a) zonal wind at 850 hPa,
shaded at an interval of 0.2 m s~!, (b) zonal wind at 200 hPa, shaded at an interval of 0.5 m s~!, and (c) specific
humidity at 850 hPa, shaded at an interval of 0.05 g kg~!. Contours are lagged regression of the 20 - 90 days
eastward filtered OLR, contoured at an interval of 2 W m~2 from -12 W m~2. All those variables were regressed
against PC1 (see text for more information about the PC1). Hatched shaded areas are statistically significantly
different from zero above the 90% level based on resampling 10,000 samples utilizing a bootstrap statistical test.
The solid black reference lines approximate the phase speed of the contour lines peak between -10 and 9 days.
The white dashed reference lines approximate the phase speed over the Indian Ocean between 60°E and 110°E.
The phase speeds of the black reference line ¢ and white reference line (over the Indian Ocean) c;,, are listed

respectively in the first and second rows in the upper right corner.

the background moisture over different regions proximate to the Indian Ocean. For the most part,
the minimum, median, and maximum values of the background moisture increase from Eastern
Africa to the Maritime continent while the total variance decreases eastward. This paper focuses
on the MJO phase speed association with the background moisture over Eastern Africa proximate
to the Indian Ocean -and-thetndtan-Oeean: We also analyze the variability of the MJO phase speed
with background moisture over the western Indian Ocean, Eastern Indian Ocean, and the Maritime
Continent regions as half of MJO convective events were reported to initiate over the Eastern Indian
Ocean and Western Pacific (Matthews 2008; Straub 2013).

Figure 3 presents varying coefficient lag-regressions of the filtered zonal wind at 850 hPa when
the background moisture over Eastern Africais 7 gkg™!, 9 g kg™!, and 11 g kg='. Those values
are close to the minimum, median, and maximum values of the background moisture (see Fig.

2), thus reflecting the phase speed of the MJO across the range of background moisture. The

13



332

333

334

335

336

337

338

339

340

345

346

347

348

349

350

351

352

353

354

355

356

Background specific humidity

12

Specific humidity
o
=

=
o

10 East Africa Western 10 Eastern 10 Martitime Continent

Fic. 2. Box-plots of the background (> 90 days) specific humidity over different locations, superimposed on
scatter plots of the same variable that is spread horizontally using a random function to get an idea on the density
of the background specific humidity at each value. The background specific humidity is averaged over the Indian
Ocean basin (10°S - 10°N, 50°E - 90°E), East Africa (10°S - 10°N, 35°E - 55°E), Western Indian Ocean (10°S -
10°N, 55°E - 72.5°E), Eastern Indian Ocean (10°S - 10°N, 72.5°E - 90°E), and Maritime-continent (10°S - 10°N,
90°E - 107.5°E). The lower, middle and upper sides of the box-plot represent the first (Q1), second (median),
and third (Q3) quarterlies, where the lower and upper fences represent the minimum and maximum values, and
circles represent outliers. The outliers are values smaller than Q1-1.5*IQR or larger than Q3+1.5*IQR, where

IQR is inter-quartile range=Q3-Q]1.

phase speeds of the MJO, as represented by the filtered 850 hPa zonal wind, when the 850 hPa
background moisture is 7,9, and 11 gkg™! are 4.3, 5, and 6 m s~! (Fig. 3 a and c), suggesting that
the phase speed of the MJO increases with the background moisture content at 850 hPa. The phase
speed of the MJO using traditional linear regression (Fig. 1a), which is 5.6 m s~!, lies between the
upper and lower limit of the MJO phase speed found at 7 and 11 g kg~! (Fig. 3a and c), indicating
that the traditional regression expresses the weighted mean phase speed across the population of
background moisture states. We reproduced Fig. 3 using background moisture over the Western
Indian Ocean, Eastern Indian Ocean, and Maritime Continent, and found that the phase speed of
the MJO also increases with the background moisture (not shown), consistent with the results using
background moisture over Eastern Africa. The IO phase speed of the 850 hPa zonal wind signal
increases when the background moisture increases from 9 to 11 g kg™, but decreases with further

increases of the background moisture.
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Fic. 3. Lagged regression of 20 - 90 days eastward filtered zonal wind at 850 hPa on PC1 when the background
moisture over Eastern Africa is (a) 7 g kg™!, (b) 9 g kg™!, (¢) 11 g kg~'. Shading is in an interval of 0.2 m
s~!. Hatching indicates that the field is statistically significant from zero above the 90% level using a bootstrap

statistical test.

Figure 4 presents the lagged zonal wind over 200 hPa associated with the background moisture
over Eastern Africa. The inclusion of the wind data is important because the upper tropospheric
wind might influence the MJO phase speed by advection. Strong upper tropospheric westerly
anomalies over the equatorial Indian Ocean tend to occur with lower tropospheric easterly anoma-
lies, which may increase the low-level moisture over the western Indian Ocean. The speed of the
zonal wind at 200 hPa increases with the background moisture but at a slower rate than that of
the zonal wind at 850 hPa. We produced the same figure using background moisture over the
Western Indian Ocean, Eastern Indian Ocean, and Maritime Continent. We found that the increase
of the phase speed with background moisture is largest when using background moisture over the
Maritime Continent. Besides the observed increases in the phase speed of the filtered zonal wind
with the background moisture, the amplitude of the filtered zonal wind intensifies, reflecting a
stronger MJO signal in the variable (Fig. 4). The previous analyses were reproduced again using
RMM index, and the increases of the phase speed of the dynamical fields associated with the MJO
at different background moisture were observed. Contrary to the slight increases of the phase speed
of the 200 hPa signal centered around day O (black reference line), the 10 phase speed of the 200
hPa zonal wind signal increased by 43% when the background moisture raised from 7 to 9 g kg~!,

and amplified by 53% when the background moisture jumped from 9 to 11 kg~!.
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Fic. 4. The same Lagged regression in Fig. 3, except for the zonal wind at 200 hPa instead of zonal wind at

850 hPa.

To verify the results produced by the method of varying regression slope coefficients, we present
Hovmoller diagrams that show composites of the 850 hPa filtered zonal wind at low and high 850
hPa background moisture as shown in Fig. 5. We composite around the days when time in PC1
exceeds one standard deviation simultaneous with background moisture values in its lowest quartile
(Q1), including the outliers. We repeat the process for background moisture values in their highest
quartile (Q2), Figure 5b. Our choice of selecting days associated with 1STD of PC1 and Q1 or
Q2 is arbitrary but is the most common in the literature. A drawback of the composite analysis
compared to the varying regression method is that we cannot find a clear structure representing the
signal at a specific value of the background moisture because a composite requires a population of
events over which to average. Figure 5 shows that the phase speeds of the filtered 850 hPa zonal

1

wind at low and high moisture are 4.8 and 6.6 m s~ consistent with the regression results.

b. The vertical structure of the MJO associated with different background moisture states.

Figure 6 presents the zonal-vertical structure of the zonal wind associated with PC1 when the
background moisture is 7 g kg~ and 12 g kg~!, following the method of varying regression slope
coeflicients. The vertical structure of the zonal wind is stacked, where a positive anomaly field lies
above a negative anomaly field or vice versa. The stacked structure is usually observed over the
Indian Ocean, in contrast to the tilted structure, where tilted positive or negative signed anomalies

extend across the vertical column, which is usually observed over the Maritime continent and the
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FiG. 5. Composites of the filtered zonal wind at 850 hPa for days with (a) PC1 larger than 1STD of PC1 and
lower than Q1 of the 850 hPa background moisture, (b) PC1 larger than 1STD of PC1 and larger than Q2 of the
850 hPa background moisture. Shading is in an interval of 0.2 m s~!. Hatching indicates that the underlying

shading is statistically significantly different from zero at the 90% level using t-test analysis.

Pacific Ocean (Sperber 2003; Kiladis et al. 2005). At first glance, the two signed stacked structure
of the zonal wind (Fig. 6) is consistent with the first baroclinic mode. Yet, the intensification of the
zonal wind with height suggests that either barotropic mode or more baroclinic modes would be
needed to account for either the intensified zonal wind above 500 hPa or the lessening of the zonal
wind below 500 hPa structure (Rui and Wang 1990). On the other hand, the Kelvin wave part of
the MJO could be understood as radiative wave, instead of a superposition between the baroclinic
modes. Hence, the vertical structure of the MJO could be described in terms of radiative waves
to the extent that Kelvin wave dynamics explain its structure (Roundy 2020). At 7 g kg~! (Fig.
6a), the westward tilt of the zonal wind in the troposphere and the eastward tilt in the stratosphere
suggest structure similar to the radiative structure of the Kelvin wave, with upward-energy transfer
in the stratosphere and downward-energy in the troposphere (Shaaban and Roundy 2021). The
vertical structure of the filtered zonal wind when the background moisture is 7 g kg~! (Fig. 6a) is
less stacked than that at 12 g kg~! (Fig. 6b). Moreover, the upper level westerlies at 12 g kg~! (Fig.
6b) are stronger than at 7 g kg~! (Fig. 6a) over Eastern Africa and also over Maritime Continent
(not shown), expressing stronger upper air outflow that might result from intensification of the
convection.

Figure 7 shows regressed eastward 20 - 90 day filtered specific humidity associated with the

7 g kg=! (Fig. 7a) and 12 g kg~! (Fig. 7b) background moisture over Eastern Africa. The
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Fic. 6. Longitude-level maps of regressed eastward 20 - 90 days filtered zonal wind against PC1 when the 850
hPa background moisture is (a) 7 g kg ™!, (b) 12 gkg~!. Shading is contoured every 0.4 m s~!. Hatched contours

are statistically significant different from zero above the 90% level using the bootstrap test.

maximum amplitude of the regressed intraseasonal filtered specific humidity (Fig. 7a) is less than
the background specific humidity 7 g kg~!; the same applied to Fig. 7b. The filtered specific
humidity field shows a moist column over the Indian from surface to 300 hPa, consistent with
the active convective phase of the MJO, and dry column over Western Pacific, consistent with
the suppressed phase (Fig. 7). The intraseasonal specific humidity field associated with a high
background moisture (12 g kg™!) resembles wavenumber two, while it resembles wavenumber two
or three at low background moisture (7 g kg™!). The active phase over the Indian Ocean at 12 g
kg~! is wetter than that at 7 g kg~!, also the suppressed phase over Western Pacific at 12 g kg™!
is drier than that at 7 g kg~!. The active phase at 12 g kg~! in the lower layer shows an eastward
bulging structure that might be associated with shallow convection that precedes the MJO deep
convection signal (Benedict and Randall 2007, and others), but since linear regression implies
symmetry across opposite signs in the predictor, this result also applies to the dry phase at the same

location.
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Fic. 7. Longitude-level maps of regressed eastward 20 - 90 days filtered specific humidity against PC1 when
the 850 hPa background moisture over Eastern Africa is (a) 7 gkg™', (b) 12 gkg~!. Shading is contoured every
0.4 m s~!. Hatched contours are statistically significant from zero above the 90% level using bootstrap statistical

test.

c. The relationship between the phase speed of the MJO and the intensity of the tendency of the

moisture, dry, static energy, moist static energy.

Several authors have classified the MJO events produced by community global climate models
(GCMs) into either propagating or non-propagating patterns based on the phase difference between
the scalar field (e.g., moisture) used to represent MJO and the time tendency of that field. From
a kinematics perspective, a scalar field is considered non-propagating (stationary) if it is in-phase
with its tendency; for example, a low-pressure system tends to move to the region of the negative
pressure tendency. On the other hand, the low-pressure system stalls if it is in phase with the
pressure tendency field since the center of the low collocates with the region with the smallest
negative pressure tendency (see section 2.1.4, Bluestein 1992). A quadrature phasing could be
associated with either an eastward or westward propagation of the field under study. Although
phasing status between the field and its tendency could be used to differentiate between the
stationary and propagating MJOs, tenderey phasing alone cannot determine phase speed because
, for example, simple sinusoidal wave in quadrature with its tendency could have a continuum of
phase speed, also, amplitude of the wave can vary, and amplitude also depends on tendency.

Alternatively, the speed of a trough or ridge pattern has been theorized, from a kinematic

perspective, to be associated with the intensity of the tendency of the field under consideration ,

19



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

rather than the phasing between the field and tendency of the field, and the Laplacian of the field

(see Petterssen formula for the speed of the scalar field patterns, section 2.1.4, Bluestein 1992).

caveat of this approach is that the intensity of the tendency could vary with the field’s amplitude

at the same phase speed. We calculate the tendency of the moisture, dry static energy, and moist
static energy fields, and if the amplitude approaches zero, the result blows up. Then, we investigate
whether the acceleration of the MJO phase speed, as observed from the Hovmoller diagram of the
moisture, is associated with the intensification of the tendency of the moisture field. We repeat the
same analysis with dry and moist static energy.

The vertical average of the latent heat ( an expression of the specific humidity in energy units, J
kg™h) < Lg >" expressed in J m~2 and its tendency < d,Lg > in W m~2 are computed, where ¢ is
the specific humidity in kg (of dry air) kg~! (of water vapor) and L = 2.5x 10% m? s~ is the latent
energy of condensation or evaporation at 0°C. The bracket refers to the mass-weighted vertical
average, defined as (()) = 1 / ()dp in kg m=2. We choose layers between 1000 and 150 hPa (25
vertical levels) to calculategthe vertical average of the moisture and the tendency, as this could be
used later to calculate the moisture and energy budget terms. The prime refers to the intraseasonal
scale defined in section 3. The vertical average of the dry static energy (S ) and its tendency (0,5 )
are also calculated. The dry static energy S is defined as § = ¢, T + gz, where ¢, = 1004 K m? s~2 is
the heat capacity at constant pressure and g = 9.8 m s~ is gravity. We used the moist static energy
besides the moisture and dry static energy. The moist static energy h = Lg + S is the sum of the
latent heat and dry static energy.

Figure 8 depicts the vertical average of the MJO moisture (contoured) and MJO moisture tendency
(shaded) when the background moisture is low (8 gkg™!) and relatively high (12 gkg™") over Eastern
Africa. At day 0, for both slow and fast MJO, the positive tendency is to the east of the moisture
field, indicating eastward propagation. At low background moisture (Fig. 8a), the regressed fields
of the vertical average of the intraseasonal moisture tendency and moisture are slower and longer-
lived than that at high background moisture (Fig. 8b), as expected. The intraseasonal moisture field
retains the same phase shift with its tendency irrespective of the background moisture. This result

has been confirmed by investigating the phase shift at other background moisture values between
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the 8 and 12 g kg~'. The magnitude of the tendency increases with the background speed, which is
is consistent with Hu and Li (2022) who found that the tendency intensifies with fast MJO signals.
The moisture tendency, at high background moisture (Fig. 8b), is prone to field discontinuity or
reduction in the magnitude when passing over the Maritime Continent, which is not the case during
the low background moisture. The discontinuity of the MJO depicted at (Fig. 8b) might represents
a short hiatus over the Maritime Continent.

As depicted in Fig. 9, the magnitude of the DSE tendency is much smaller than moisture
tendency; that is why it is sometimes neglected when compared to moisture tendency in the moist
static energy analysis (Inoue 2016). The DSE tendency is small in the tropics since the temperature
tendency is small and potential energy is smaller than sensible heat. The small of the horizontal
gradient and the tendency of temperature leads to weak temperature gradient approximation (Sobel
etal. 2001). In agreement with the analysis of the moisture field, the DSE and its tendency preserve
the same phase shift irrespective of the background condition, as depicted in Fig. 9. The intensity
of the DSE tendency among the slow and fast MJO events are comparable (Fig. 9), in contrast
with the MSE (Fig. 8). Analysis of the phase shift between MSE and its tendency (not shown)
also agrees with the previous results of the DSE and moisture.

Using the moisture budget equation, we investigate the terms (e.g., advection, forcing) that
contribute to the charging or discharging of the intraseasonal moisture (i.e., increases or decreases
of the tendency of ¢) at moist and dry background conditions, which could give us more insight on
the characteristics of the tendency of the intraseasonal moisture at different phase speeds. Charging
or discharging of moisture depends on the horizontal and vertical advection (first and second terms
on the RHS of the equation), evaporation (third term on the RHS), and precipitation (last term on
the RHS), as shown below.

’ ’

> :—(V.V(Lg))’—<wM> +LE —LP (1)

dLq
ap

ot

V and w are the horizontal and vertical velocities. E and P are the evaporation and precipitation
amounts. All terms are in W m~2, which could be easily verified after noting that the mass-weighted
vertical average has a unit of kg m~2.

The horizontal advection of the moisture field, depicted in Fig. 10, is in phase with the moisture

tendency; in other words, the horizontal advection charges the intraseasonal moisture field through
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the whole atmosphere. The readers may check that by either comparing the phasing between
the tendency field with the advection field, which is in-phase, or by investigating the quadrature
relationship between the moisture field and the advection as in Fig. 10. The phase speed of the
horizontal advection of moisture increases with the background moisture (Fig. 10), which agrees
with the behavior of the tendency field of the moisture. The phase speed of the advection of
both moisture and DSE increases with the background moisture, which is in agreement with the
tendency field. A clear discontinuity in the magnitude of the MJO horizontal (Fig. 10) and vertical
advection (Fig. 11) fields presents over the Maritime Continent, during low and high background
moisture states, which may indicate that MJOs crossing the Maritime Continent may have different
dynamics from those over the Indian Ocean.

The horizontal advection of the intraseasonal DSE (not shown) is as small as the tendency field.
In contrast to the moisture, the phase shift between the horizontal advection of the DSE field and
its tendency is not even throughout the whole Hovmollar diagram, making it difficult to understand
the overall role of the advection in charging or discharging the DSE field.

Figures 11 and 12 depict the vertical average of the vertical advection of the moisture and

the vertical average of the forcing. Vertical advection and forcing dominate the moisture budget
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equation. The in-phase relationship between the vertical advection of the MJO moisture field
and the MJO moisture field, depicted in Fig. 11, indicates that the vertical advection of moisture
destabilizes moisture (i.e., increases moisture amplitude by vertically advecting moist air) instead
of charging it (increasing moisture tendency). On the other hand, the forcing is out of-phase
with the MJO moisture field, as depicted in Fig. 12, suggesting that the forcing stabilizes the
moisture (decreases moisture amplitude by the excessive precipitation) instead of discharging it
(i.e., decreasing moisture tendency). The vertical average of the vertical advection of the DSE
charges the DSE, yet the forcing term discharges the DSE (not shown). The vertical advection and
forcing cancel each other, though they have the largest amplitude in the DSE budget equation, as
in the moisture budget. The structure of the MSE vertical advection (sum of DSE and moisture
vertical advection) or MSE forcing (sum of the DSE and moisture forcing) differs from their
counterpart in DSE and moisture. For example, while the vertical advection of DSE charges
DSE, vertical advection of the moisture destabilizes the atmosphere, and the vertical advection of
the MSE stabilizes the atmosphere, consistent with Inoue and Back (2015). The phase speed of
the vertical integral of the vertical advection and forcing fields (Fig. 11 and 12) increases with
background moisture. The field at dry background conditions is more continuous than that at 12 g

kg~!, which shows a rapid discontinuity at the Maritime Continent.

d. Advection by the Background Zonal Wind as an Alternative Explanation of Phase Speed Asso-

ciation with Humidity

To find a pathway that might connect the background moisture and the variability of the phase
speed of the MJO over the Indian Ocean, we present the relationship between the background
moisture over Eastern Africa and the upper level background zonal wind, which could alter the
phase speed of the MJO by advection. Figure 13 shows the regressed slope (contours) background
zonal wind against the background-specific humidity over Eastern Africa. The regressed slope
background zonal wind shows weak lower-level easterlies and upper-level westerlies over the
Indian ocean. This pattern agrees with the upper-level circulation during El Nifo and positive
Indian Ocean dipole, reflecting the weakening of the Walker circulation during Fall and spring

associated with wet years over the western Indian Ocean and Eastern Africa (Shaaban and Roundy
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2017). Nevertheless, the appearance of background upper-level westerlies over the Indian ocean is
not common. To understand how such upper-level background zonal westerlies could appear in the
regression slope term, we present the estimated background zonal wind (shaded, Figure 13), which
is the sum of the intercept and the regressed slope coeflicients values. The estimated background
zonal wind depicts upper-level easterlies, consistent with the observed climatological background
wind. The estimated background wind is easterlies since the intercept (not shown) depicts strong
easterlies, which is way larger in magnitude than the regression slope coefficients.

Composite analysis could also be used to understand the previous association between the
background moisture and zonal wind. Figure 14 depicts composites for the background zonal
wind when 850 hPa background specific humidity is larger than its first quartile (Q1, hereafter
wet events) as in (Fig.14a), and smaller than its second quartile (Q2, hereafter dry events) as in
(Fig. 14b). Wet conditions over East Africa (Fig. 14a) are associated with weaker upper easterlies
when compared with those associated with dry events (Fig. 14b). Weaker background easterlies
during wet events over East Africa are a proxy for the build-up of upper-level background westerlies
over the Indian Ocean associated with the convection near East Africa, which could be shown by
subtracting background zonal wind of wet events from those of dry events (Fig. 14c¢).

Figure 13 was reproduced again but using background moisture over the western Indian Ocean,
Eastern Indian Ocean, and Maritime Continent (not shown). We anticipated that the circulation
pattern associated with the background moisture over the Maritime Continent would resemble a
pattern opposite to that shown in Fig. 13, yet, surprisingly, we got circulations that also match EIl
Nifo and positive Indian Ocean dipole. This result suggests that the anomalous subsidence over

the Maritime Continent raises the background moisture in the lower levels.

5. Discussion and conclusion

Although the region of the strongest rainfall variance of the MJO collocates with the region of
maximum tropical precipitation and moisture, the relationship between the background moisture
and propagation characteristics of the MJO has not been thoroughly investigated. This study uses a
modulation regression technique to address the association of the MJO phase speed with low-level

background moisture over Eastern Africa and the Indian Ocean. The lagged regressions of the
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MJO, as represented by the upper and lower level zonal wind and moisture, show an increase of
the MJO phase speed with increases of the low-level background moisture over Eastern Africa and
the Indian Ocean (Fig. 3 and 4). There remains substantial debate about mechanisms that might
influence the propagation and propagation speed of the MJO. Some authors have suggested that
convection likely reduces the phase speeds of tropical modes. For example, shallower convection

has been theorized to be associated with higher baroclinic modes that decrease the phase speed of
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the tropical mode. Also, a reduction in the effective static stability felt by waves in the convective
environment could decelerate the wave speed (Zhang 2005; Kiladis et al. 2009). Our results
suggest that, westward advection ef-the-apper-tropospherie-etrettatton—stegnat of the MJO by the
upper tropospheric easterly background wind would slow the MJO, and abnormally strong tropical
easterlies would cause abnormally slow propagation (Roundy 2022). Figure 13 shows that when
lower tropospheric moisture is high over the tropical Indian Ocean, upper tropospheric background
wind tends to be less easterly than average, which would yield faster eastward movement by this
argument. Our results do not necessarily suggest that convection does not slow the MJO, but if it
does, that outcome must be overwhelmed by other mechanisms acting in the opposite direction.

The intraseasonal moisture anomaly associated with fast MJOs resembles wavenumber one (Fig.
7a), while slower MJOs project onto higher wavenumbers (Fig. 7b). The moist phases of the fast
MJO events include a bulging structure to the east, which is absent in the slow MJO. The bulging
structure might be associated with a progressive pattern of shallow and congestus convection,
which is theorized to moisten the atmosphere before the initiation of the deep convection (Benedict
and Randall 2007). Hence, the relative absence of the shallow convection might reflect rather
weaker and slower MJOs. In comparison with the composite vertical structure of the MJO, the
bulging structure of the fast MJO suggests that baroclinic modes beyond the first baroclinic mode
would be required to account for the bulging structure, consistent with Haertel et al. (2008), who
suggested the baroclinic structure of the MJO could be represented mainly using the first two
baroclinic modes. Yet, at the same time, adding more higher baroclinic modes as in the normal
mode theory or adding more plane waves as in the radiative wave structure (Shaaban and Roundy
2021), would suggest a slower propagation of the MJO. Yet, the observed fast MJO indicates that
the effect of the background wind must overcome the deceleration associated with the dynamics
of the moist waves. Under the moisture mode umbrella, the strong active and inactive phase of the
fast MJO during moist background state could be attributed to the intensified moisture tendency
associated with the strong advection of the background moisture by the MJO flow.

The background moisture fluctuates with the fluctuation of the Walker circulation as in Fig 13.
Weakening of the Walker circulation is associted with wet conditions over Eastern Africa. On
the other hand, reversal of the Walker circulation is associated with reseveral in SST total field

or anomalies. The SST is a key variable in parameterizing the lower moisture field. This might
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indicate that the association between bacground zonal wind and moisture are due to impact of the
SST variability on background wind and moisture.

Sobel et al. (2014) found a moisture mode moving eastward under an equatorward moisture
gradient and a weak horizontal temperature gradient. This moisture mode has been suggested as a
foundation for MJO dynamics (e.g. Adames and Kim 2016; Chen and Wang 2019). Regressions
set with high background moisture show higher amplitude intraseasonal moisture anomalies than
regressions set with lower background moisture (Fig. 7), consistent with predictions of a moisture
mode theory. We found that the acceleration of the MJO as observed in the moisture field is
associated with intensification of the tendency of the moisture (Fig. 8), nevertheless intensification
of the tendency could be associated with intensification of the amplitude of the signal at the
same phase speed. On the other hand, the accelerated DSE field is not associated with clear
intensification of the DSE tendency (Fig. 9). It is yet unclear whether the phase speed signal we
observe in association with background moisture is consistent with leading moisture mode theories,
which are focused on horizontal gradients of moisture more than the total background moisture. A
subsequent paper will apply the above techniques to assess the associations of MJO phase speed
with zonal and meridional moisture gradient configurations.

Aside from the moisture mode perspective of the MJO, Roundy (2020) found that the upper
structure of the MJO resembles Kelvin ridge to the east and Kelvin trough to the west. Moreover,
Roundy (2022) found that the phase speed are subject to advection by upper zonal flow. The
background upper-level zonal wind, associated with high background moisture over Eastern Africa
is less easterly than the seasonal average background wind when the lower tropospheric of the
region is also anomalously moist, which would result in less westward advection, thereby yielding
higher than average eastward phase speed, which is consistent with Roundy (2022). The magnitude
of upper-level background zonal wind anomaly is comparable to the average phase speed of the
MJO, strongly suggesting a role for the advection of the MJO by the background upper tropospheric
flow. That is, the MJO may be faster in these moist environments because moist environments
tend to be associated with upper tropospheric westerly wind anomaly, which would result in faster
eastward propagation. After subtracting out the effect of advection by the upper tropospheric
background wind, Roundy (2022) showed that the slowest MJO events are those near the center of

its spectral peak, where average intensity of OLR anomalies is strongest. Yet the slowing effects of
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moist processes are evidently substantially weaker than these advection effects, especially for the
slowest events that experience the greatest westward advection.

Advection by the background wind would impact the movement of MJO circulation signals
at every pressure level. However, variability in background wind is a factor of 10 larger in the
upper troposphere than the lower troposphere, so the advection of the MJO-associated fewer-upper
tropospheric circulation in the upper troposphere must yield a far greater impact on the variability
of the phase speed of MJO wind anomalies assessed at the same level. The effect of 1 ms~! wind
amplitude in the lower troposphere on MJO phase speed must be of the same order, while 5-10

m s_1

variations in the upper troposphere must be that much larger. What we do not demonstrate
clearly is how the upper tropospheric wind signals lead to changes in the phase speed of the
convection. One possible mechanism for future analysis is that the advancing upper tropospheric
divergence signal associated with the MJO reduces total subsidence, thereby reducing convective
inhibition, thereby increasing convection, which then drives the lower tropospheric circulation in
line with the upper tropospheric wind (Powell and Houze Jr. 2015).

We found that the phase speed of the 850 hPa zonal wind and moisture signals increases gradually
with the background moisture wind, which might be consistent with the moisture mode. The 10
phase speed of the 200 hPa zonal wind (identified by the white reference line)shows association
with the background moisture stronger than the 200 hPa zonal wind signal (black reference line).
This is because weakening or strengthening of the IO Walker circulation cooccur with weakening
or strengthening of the Pacific ocean Walker arm. The 200 hPa zonal wind signal signal has a
wider zonal extension and happens to be influenced by the opposite circulation of Walker in the
Indian Ocean and the Pacific. So while strong upper easterlies over the Indian Ocean advects MJO
westward, strong upper westerlies over the Pacific Ocean advects the MJO eastward.

This study demonstrates that the role of the background zonal wind is not confined to the
initiation of the MJO in the lower troposphere but it confirms that the upper tropospheric zonal
wind modulates MJO phase speed by advection whether the MJO is goverened by moist wave
dynamics or moisture mode. This study supports other studies that emphasize the role of the
background state of the model in correctly simulating MJO events (e.g. Ling et al. 2017).
Although background moisture and upper background zonal wind are related, they have separate

role in developing comprehensive moist-wave theory of MJO. Under the umbrella of the moist-

30



703

704

705

706

707

708

709

710

71

712

wave dynamics, background moisture may strengthen the convective MJO by advecting moist air,
hence decelerating the MJO, while the weakening of the upper background zonal wind associated
with the strengthened background moisture accelerates the MJO. On the other hand, under the
perspective of the moisture mode, a stronger tendency of the intraseasonal moisture field observed
during the periods of high moist background might accelerate MJO, acting to further increase the
MIJO speed accelerated by the background zonal wind. That is, a dispersion equation at resting
atmosphere consistent with observations should explain part of the variability of the MJO phase
speed via simple dynamics of the moisture mode or moist waves. Then, by incorporating the role
of the advection by the upper zonal wind, which may overwhelm the intrinsic phase speed of the
MIJO at resting atmosphere, a comprehensive diagnostic of the variability of the phase speed of the

MJO is achived. This is similar to the overwhelming role of the background wind in modulating

the phase speed of the midlatitude Rossby wave.
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