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Domain of Stability Characterization for Power
Systems: A Novel Individual Invariance Method

Surour Alaraifi

Abstract—In this article, we approach the problem of stability
in nonlinear systems through a new perspective that views them
as a combination of individual artificial systems carefully cho-
sen to simplify the complex structure of nonlinear systems. This
is achieved by recasting nonlinear vector fields as an algebraic
sum of individual vector fields for which artificial systems with
known invariant sets or at least in forms that allow for tractable
approximation of their invariant sets. This attempt to restructure
nonlinear systems stands out in comparison to other previous
attempts like Lure’ systems or network based models as a purely
mathematical structuring technique that transcends the physical
constraints and dependencies within dynamical models and allows
the user to creatively construct artificial systems with the sole focus
on the overall stability. The theoretical foundation is provided
for a theorem about individual invariance to relate the invariant
sets of individual artificial systems to the invariant set of their
original system in a way that significantly simplifies the task of
approximating regions of attraction. Several examples are used to
demonstrate this theorem and we also evaluate the use this theorem
for the challenging power system stability problems in both AC and
DC grids. The proposed method is successfully applied to the IEEE
39-bus New England system, and a DC converter with constant
power load giving accurate and realistic estimations of the critical
clearing time and stability regions in comparison to state of the art
approaches.

Index Terms—Ceritical clearing time, DC microgrid, multi-
machine system, stability regions.

I. INTRODUCTION

TABILITY in nonlinear systems has been a central topic
S of interest for researchers and scientists in almost every
field of science and engineering due to the prevailing role of
nonlinearities in both nature and industries. Ever since Lyapunov
theory was developed, it played a key role in most of the
developments in stability theory afterwards. The importance of
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Lyapunov theory is not limited to its ability to directly certify
stability of an equilibrium point but extends also to determining
stability regions or regions of attraction [1]. One of the first
challenges in Lyapunov stability was and still is to characterize
a general form of Lyapunov functions for specific vector fields.
Hence, many efforts led to the development of somehow general
functions for certain types of vector fields [2], [3].

A Lure’ system is a control system described as a linear
system with a sector bounded nonlinearity which allows the use
of pre-defined nonlinear Lyapunov functions [2], [4]. The im-
portance of Lure’s systems became more apparent recently with
the developments in Semi Definite Programming (SDP) solvers
that allow for efficient solutions of linear matrix inequalities
(LMI) appearing naturally in Lure’-type systems [4], [5], [6].
Thus, Lure’-systems remain a topic of interest for researcher
in stability analysis and have seen some applications in power
systems despite its conservative nature [2], [7]. The literature of
stability has also seen attempts to re-define Lyapunov functions.
In [8], it was shown that Lyapunov conditions can be relaxed and
a Lyapunov function may increase in some subsets as long as it
eventually decreases to zero. This relaxation although very help-
ful and essentially needed, requires extra conditions on higher
order derivatives which can limit its applicability to special
cases. Other variations of Lyapunov functions were proposed
as well. In [9], the notion of vector Lyapunov functions was
introduced where instead of searching for a single function, the
search is extended to a set of functions giving it more flexibility,
however, such results are of practical interest for control design
frameworks rather than stability regions’ estimation [10], [11],
[12]. There are also other methods to Lyapunov functions such
as the Zubov’s method which can determine the exact region
of attraction. Zubov’s method is unfortunately theoretical as it
requires the solution of a partial differential equation which does
not in general has a closed form solution [13].

In power systems which represent one of the most advanced
and active application fields of nonlinear systems’ stability anal-
ysis [14], energy function based approaches dominated stability
assessment [15]. These approaches rely on the ability to find
an appropriate candidate function and on the computation of
the critical energy value at the so-called Controlling Unstable
Equilibrium Point (CUEP) with respect to the pre-defined energy
function. This task is involving and difficult and can lead to
inaccurate stability assessments if the algorithm deviates slightly
from the target point. It is true however that among energy func-
tion methods, Controlling UEP-based methods can provide less
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conservative estimates. The current accepted method for finding
the controlling UEP is called the Boundary of stability region
based Controlling UEP method (BCU method) and was proven
to have a high success rate [14], [16]. Nevertheless, the BCU
method in power systems is not designed to estimate regions of
attraction, instead it is designed to estimate the relative boundary
of stability region with respect to a fault-on system [16]. Recent
results in power system stability focused on Lyapunov functions
instead but with no significant computational advantages [7],
[17], [18]. In [7], the Popov criterion was used and an optimiza-
tion problem was formulated to enlarge the region of attraction,
however, the results indicate some conservativeness and the
dependence on sector bounds further limits its applicability.
In [17], [18], Sum Of Squares (SOS) programming techniques
were used to estimate the domain of attraction for a simple
power system case study but the results did not show a sizable
computational advantage.

The move toward renewable generation and the integration
of more converter-based devices in the power grids around
the world has driven the research on power system stability
in recent years away from the classical power system models.
In [19], synchronization stability is studied for a Voltage Source
Converter (VSC) connected to a grid where a Lyapunov function
is constructed through SOS programming and consequently a
region of attraction can be approximated with some degree
of conservatism. Similarly, Lyapunov based approaches were
applied in [20] to characterize the stability boundary of a VSC-
grid system using an analytically derived Lyapunov function,
whereas, [21] used an SOS program to find a numerical Lya-
punov function. Another interesting subject in power system
stability is the stability regions of DC systems with Constant
Power Loads. In [22], the impact of Constant Power Loads (CPL)
in multiconverter automotive power systems was studied and
the region of attraction was approximated for a DC converter
with CPL by examining the system trajectories near predefined
boundary curves. Whereas, in [23], a DC converter with CPL is
modeled as a Power-Controlled Hamiltonian and the region of
attraction was derived by a quadratic Hamiltonian.

As can be noticed from the literature, stability assessment
methods in power systems remain limited to Lyapunov Theo-
rems and the Energy function approach with no notable excep-
tion in recent years. This article proposes a novel method to
estimate regions of attraction of autonomous nonlinear systems
by overlooking the ordinary representation of vector fields and
instead reproduce a nonlinear vector field as the algebraic sum
of vector fields for which we can develop individual artificial
systems with known or at least tractable regions of attraction.
In [24], we proposed a similar representation of vector fields
and introduced the idea of artificial systems to prove that a
Lyapunov function can be constructed from artificial systems
independently without the need of considering conditions on
the original vector field. In this work, with the help of a newly
developed theory we are able to reconstruct the region of attrac-
tion of a given system from the individual regions of attraction of
the artificial systems without the need of constructing individual
functions as in [24]. The results of this article are considered an
improvement over our previous results [24] in terms of generality

and applicability. Such an approach allows for fast estimation
of stability regions and provides an insight on the mathematical
interaction of individual vector fields. The proposed concept sets
itself apart from the traditional Lyapunov-based methods in its
ability to identify each element of a given vector field as an object
to enlarge, shrink or deform the stability region in the system
under study regardless of the type of the dynamic interaction
or dimensionality and proves to be generic enough to address
challenging problems like power system transient stability and
stability regions in DC circuits.

II. THEORETICAL BACKGROUND

Consider an autonomous dynamical system represented by
the following differential equation:

The solution starting from z at ¢t = 0 is called the trajectory
and is denoted by ¢(t,x). f(xz) : D — R™ is a vector valued
function from a domain D C R” to R that is referred to as the
vector field associated with the state vector x. It is natural to
assume that f(.) satisfies sufficient conditions for the existence
and uniqueness of solutions. Thus, all required derivatives exist
and are continuous. z. is an equilibrium point if f(z.) = 0.
An equilibrium point can be either isolated with no other equi-
librium point in its vicinity or can be part of a continuum of
equilibrium points (e.g., equilibrium subspace). For the system
in (1), assuming without loss of generality thatz. = 0, theregion
of attraction A of the origin is defined as follows:

xe R (1)

A= {x € D: lim ot z) = 0} )

The goal is to achieve the largest possible estimate of A.
From its definition, A is an invariant set, hence, any trajectory
starting in A will remain in it at all time. Generally, the region
of attraction is an open, connected and invariant set [1]. These
properties are generic and do not serve the development of region
of attraction estimation algorithms. A very common approach
to satisfying these properties is by finding sub-level sets of
Lyapunov functions. For a system defined by (1), the region
of attraction of the origin can be estimated by sub-level sets of
Lyapunov functions [1]:

Ac={zxeD:V(zx) <c}

where V' (z) is a Lyapunov function, ¢ > 0 and z. € A.. En-
larging such approximation have been the target of extensive
research in nonlinear systems. It can be seen however, that
the problem of estimating the region of attraction by means
of Lyapunov functions is twofold. First, finding the appropriate
Lyapunov function, and secondly enlarging the estimated region
A.. Lyapunov theory only requires the knowledge of the vector
field f(z) and proceeds without any explicit knowledge of
solutions, hence, current methods of finding such functions rely
onsearching for V' (x) once the vector field is fixed. In this article,
the vector field f(x) is manipulated to re-write it as a sum of
vector fields such that each individual vector field is used to
construct an artificial system.
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III. INDIVIDUAL INVARIANCE

In practice, once a dynamical system is modelled, its model
remains intact as long as it passes a certain validation process.
This physics inspired practice seems prudent and it definitely is
since the vector field in (1) is designed as a mathematical inter-
pretation of physical interactions and only careful breakdown of
(1) will result in a physically meaningful vector elements.

In this work, we will try to temporarily untie this physical-
mathematical bond and deal with f(x) as a vector field arising
from simple algebraic relations between different vectors and
elements regardless of their underlying physical interpretation.
To be more precise, we will convert the nonlinear dynamical
system from the form in (1) to the following form:

=Y fi(x)=f(z), z€R" 3)

i=1

In (3), clearly if m =1 then we will arrive at the same
definition in (1). However, the proposed representation proved
to simplify estimating the region of attraction among other
advantages as will be discussed hereafter. In the rest of the paper,
it fi(z) and f(z) will be used interchangeably.

Note that every f%(x) in (3) is an n-dimensional vector that
results from any combination of row elements of f(z) and it is
fairly simple to reconstruct vectors f%(x) from any given vector
f(x), but the choice of f(z)’s is crucial in estimating stability
regions. We can use each vector fieldin y_/" | f*(z) to construct
artificial dynamical systems each defined as #* = f%(x"), where
x® € R™. This anatomy of f(z) evokes an immediate question;
what is the relation between the stability region of an artificial
system and the stability region of the original system (1)?
Apparently, classical linearization approach can tell us that if
each linearized artificial system has an asymptotically stable
equilibrium point at the origin, then the linearized original
system will definitely maintain that property of the origin by
superposition. Nevertheless, we can deduce more than that by
carefully constructing and examining individual artificial sys-
tems and provide a broader answer to the former question.

By dealing with the standard representation of dynamical
systems in (1), our focus when studying stability is the vectors
orientation of f(z) and their directions in the proximity of equi-
librium points (for hyperbolic equilibrium points), whereas, the
proposed representation in (3) allows us to choose each f%(z) as
long as the sum of all individual vector fields yields f(x) which
to some extent converts the problem from analyzing a given
dynamical system to finding proper individual vector fields,
hence, a system’s stability will be the result of the interaction
between its individual vector fields. As seen later, this change in
perspective, though straightforward, can tremendously improve
our understanding of stability regions. In [24], we illustrated the
effectiveness of this representation by developing a new theory
that gives rise to a computationally efficient algorithm to esti-
mate stability regions. In this article we provide a generalization
to our previous work that overcomes convexity requirement and
solves the problem of stability in a novel and distinctive way.
Theorem 1 lays the foundation for estimating stability regions
of systems in (3) by defining a positively invariant set for a given
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dynamical system (3) as a region in space where each artificial
dynamical system, 2* = f¢(z?), is positively invariant.

Definition 1: For a system defined by (1), we call A C D
invariant with respect to the flow of (1) if ¢(¢, z) € Aforall x €
Aandallt € R. Wealso call Apositively invariantif p(¢,z) € A
forall z € Aandall ¢t > 0.

Theorem 1: For a system defined by (3), define i' =
fi(z%), with fi(z): D — R",Vi € [1,m] and let D C R"
be a neighborhood of w;,Vi € [1,m]. If there exists a
set A, C D with A, = {x € D : limy ., ' (t,2) = w;, Vi €
[1,m]}, where ¢’ (¢, ) is a solution of each system @ = f%(x?)
starting at z, then A, is positively invariant under the flow of the
original system (3).

Proof: To prove that A, is positively invariant with respect
to (3), it is necessary to show that Y ;= f*(z) is an “inward”
pointing vector along the boundary of A, denoted as 0 A.. From
the theorem statement, it is given that A, is positively invariant
under the flow of each artificial system given by:

&' = f'(z) )

Hence a trajectory ¢' (¢, ) initiated at any 2 € A, lies entirely
in A, fort > 0 so we can say that f*(z) points “inward” along
0A, for all i € [1,m] due to individual invariance [25]. This is
equivalent to:

<fi(:c),xfy> >0

For any point € A, and y € R" with ||z — y|| = dist(y, Ae)
andforalli € [1,m]. dist(y, A.) denotes the (shortest) distance
from y to A., which is always attained since A, is a closed set,
and < -, - > denotes the Euclidean inner product. By summing
over ¢ we get:

m

S (fia) e —y) = (f@),x —y) >0

i=1

This confirms the orientation of f(z) toward the interior of A,
for any point x belongs to the boundary of A, so no trajectory of
(3) canescape A, fort > 0 and this proves its positive invariance
under the flow of (3). |

Note that if A, has a smooth boundary, we could follow an
argument similar to Bony-Brezis theorem [26], [27], with v(z)
as an exterior normal vector at a point = in JA., then we will
have (f*(z),v(z)) < 0whichis trueforalli € [1,m] due to the
individual invariance condition in the theorem and eventually by
summing over ¢ we can arrive at the inequality (f(x), v(x)) <0
which holds true for any point at A.. The geometrical in-
terpretation of non-smooth and smooth boundaries of A, are
provided in Figs. 1 and 2 respectively.

Corollary 1: For a system defined by (3), if there exists ¢ =
fi(z%),Vie [1,m] with A;={z € D :limy . p'(t,z) =
Wi, f’(wl) = 0},VZ S [1,m], then A, = ﬂie[l,m] A; is
positively invariant with respect to the original system (3)
ifw, C 4., Vi € [1,m].

The proof of this corollary follows immediately from The-
orem 1 but the importance of this corollary is that it provides
a practical guideline to defining A, with respect to individual
systems. Theorem 1 identifies invariant sets of an autonomous
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Fig. 1. Geometrical interpretation of Theorem 1 proof.

24,

AE
f1)
A +£2(x)
oy
Xl+2(t)

Fig. 2. Geometrical interpretation of Theorem 1 proof for smooth 9 A..

dynamical system by examining the individual vector fields
fi(x) that constitute f(x). Generally, finding an invariant set
for a given vector field is not an easy task, however, Theorem 1
does not constraint the choice of individual vectors to a certain
form which allows in many cases the construction of simplified
individual vector fields with analytically defined invariant sets
as will be illustrated in the next section. But before proceeding,
there are several important remarks about Theorem 1:

Remark 1: Each artificial system can have a different attrac-
tion set w; which could be an equilibrium point, a continuum of
equilibrium points, a limit cycle, or even multiple limit sets.

Remark 2: The existence of A, does not rule out the possi-
bility of having strange attractors or periodic solutions within
Ae.

Remark 3: If A, is a compact set, then the w-limit set is not
empty. This remark is of practical importance since it qualifies
A, as aregion of attraction when the only w-limit is an attractor.

The remarks are critical for understanding individual invari-
ance as they set it apart from standard Lyapunov theory or Energy
function concepts and give an insight into the level of generality
of this concept. For instance, Remarks 1 and 2 indicate that a
set A, in Theorem 1 is not necessarily defined for equilibrium
points but also can contain limit cycles or multiple limit sets
and can in theory contain a strange attractor. In contrast, the
existence of Lyapunov function rules out the possibility of limit
cycles within its domain. In terms of applying Theorem 1 and
its corollary, the conditions of Remark 3 are sufficient for sets
obtained by Theorem 1 to qualify as stability regions and this
remark will be used throughout this article. The following test
systems will clarify how Thoerem 1 and its corollary can be used

to provide an estimate of region of attraction for autonomous
dynamical systems.

IV. NUMERICAL RESULTS

In this section, we will illustrate the application of the theo-
rem of individual invariance and the flexibility produced from
transforming system (1) to (3).

I) Consider the second order system that represents a reduced
order two machines system given by [14], [16]:

&1 = —aysinz — bsin (21 — x9)
o = —agsinwe — bsin (ze — 1) 5)

where a1, as and b are positive real numbers. Let us define three
individual artificial systems as follows:

1 = —aysinz; 1 =0 &1 = —bsin (x1 —x2)
T =0 " ko = —agsinwy ' 9 = —bsin (vg—x1)

Corollary 1 can be applied now by identifying individual
invariance sets w; for each artificial system @' = fi(2%) as
follows:

A1:{$€§R2Z‘.’L’1‘Sﬂ'}7
Ay ={z € R?: |zy| < 7w},
Ay ={z e R®:|z; — x| <} (6)

The artificial systems 1 and 2 refer to machines 1 and 2 respec-
tively while f2(z) represents a coupled nonlinear interaction
with a stable equilibrium subspace {z € R? : x1 — 2o = 0} and
unstable equilibrium subspaces at {z € R? : 1 — 29 = —7}
and {x € R : 21 — 25 = 7}. Thus, the polyhedron defined by
As is an invariant set and the intersection of sets in (6) yields
the following invariant set:

A ={z e R" i ||z]|oo < 7|21 — 22| < 7}

From remark 2, A, is a region of attraction for the origin.
Fig. 3 illustrates the estimated region of attraction and compares
it to the largest compact set Ay of an energy function of (5)
as given in [28]. Not only that individual invariance approach
compares favorably in terms of estimated size but also in the
ability to arrive at an analytically defined set unlike Ay which
requires finding the closest unstable equilibrium point, defining
an energy function, and using the level set of the energy function
at the closest unstable equilibrium point as the stability region
boundary which is only valid if the level set is compact.

1I) Consider the following second order system that shares
similar nonlinearities as the reduced order flux decay model
given by [15]:

T1 = —axgsin T
To = —bxo + ccosxy 7

where a,b and ¢ are positive real numbers. Let us define two
individual artificial systems as follows:

T1 = —axysin 1 =0
)

To =20 To9 = —bxo + ccosxy
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Fig. 3. Vector field of (5) witha; = 1,a2 = 0.5,b = 0.5.

Similar to example I, Corollary 1 can be applied now by identi-
fying invariant sets A; for each artificial system #* = f¢(x%) as
follows:

A1:{$€§R22|l’1|§ﬂ,1’220},
_ 2, m
Ag—{$€%.\$1|§2}, (8)

By inspection, the artificial system 1 requires the non-
negativity of x5 in order to maintain the negativity of the quantity
—axg sin 1 and it also requires x; to be in the set {x7 : |z1| <
7} which guarantees that trajectories of the artificial system will
converge to the continuum of stable equilibrium points defined
as {z € N2 : 21 = 0,29 > 0}. f?(x) represents a more com-
plicated behavior, with continuum of stable equilibrium points
defined as {z € R? : x5 = § cos z1}. However, since artificial
system 1 restricts zo to be nonnegative, then, it is easy to see
that 21 lies in the set A, as defined above. By applying Theorem
1, the intersection of sets in (8) yields the following invariant
set:

Ae:{$€%":|x1|§g,m220}

The equilibrium point in A, is z. = {0, { } and is unique and
asymptotically stable. Fig. 4 illustrates the estimated region of
attraction as well as the polytope A..

IIT) The previous examples dealt with convex estimations of
stability regions. In this example we demonstrate the possibility
of defining non-convex sets as regions of attraction by applying
individual invariance. Consider the second order system given
by [29]:

.’tl = -2 + 2.%%%2
Ty = —1 ©))
Let us define the individual artificial systems as follows:

1 =0
igz—.ﬁg

iy = —x1 + 23122
To =0

)
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Fig. 4. Vector field of (7) witha = 2,b =2.7,c = 1.7.

Fig. 5. Phase portrait of Example 3 (9).

Corollary 1 can be applied now by identifying invariant sets
A, for each artificial system i* = f(z*) as follows:

1
Alz{x€%2:x2|<}7
2I1

Ay = {z e R?},

Analytically, artificial system 1 has an equilibrium set at
(0,z2) and at (21, i) with former being the stable set and
the latter is an unstable set. Since the second artificial system is
globally stable at (x1, 0), we can use the intersection of A; and
As as our estimate for A..

By applying Corollary 1, the intersection of sets in (10) yields
the following invariant set:

(10)

1
Ae:A1:{$€%7LI|$2|§}
21‘1

The equilibrium point inside A, is at the origin, unique and
asymptotically stable. Fig. 5 illustrates the estimated region of
attraction A, and compares it to an optimal estimation from Lya-
punov function in [29]. This result is of significant importance
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considering that most estimation approaches rely on solving
convex problems and end up with convex estimates that are
naturally very conservative [7], [17].

Individual invariance theorem requires restructuring the sys-
tem under study by defining artificial systems but it does not
define or constrain the choice of artificial systems since no gen-
eral way can possibly exist to choose individual vector fields for
any nonlinear system and that will always be system dependent.
This seemingly intuitive limitation is reminiscent of a Lyaponuv
theory shortcoming where finding a Lyapunov function remains
a system dependent attribute. However, as seen in the previous
examples and as will be seen in the next sections, choosing
individual vector fields can be done analytically with no com-
putational cost and can be straightforward in many applications.

It is worth mentioning that, choosing an artificial system that
contains the stable equilibrium point of the original system at
its limit can provide significant ease in many cases. Also, in
other cases, it is useful to isolate the linear and nonlinear parts
of a system into different artificial systems. One useful approach
that is possible with artificial systems is to introduce an auxiliary
vector field to help in moving the limit set of artificial systems
as described in Section VI.

In the next sections, two different stability problems will be
studied to illustrate the superiority of individual invariance in
power systems and power electronics applications. The first
application is for AC power systems, the well-known transient
stability problem where the largest fault clearing time is defined
as the longest fault duration a system could withstand while
maintaining synchronism and is called the Critical Clearing
Time (CCT) [30]. Larger estimates of stability regions means
that fault-on trajectory could stay longer on that region before the
system is considered unstable. The other application is stability
region estimation for a DC converter with a Constant Power
Load (CPL) where its stability is usually studied using linear
analysis [22]. The two applications have different objectives, in
the former the goal is to make sure that fault clearing times are
within CCT values, whereas in the latter, the goal is to design
the proper parameters of the converter. In both cases, individual
invariance is proven to provide accurate and reliable estimates
in comparison to standard and state of the art methods in the
literature.

V. TRANSIENT STABILITY

For the purpose of this article we will consider a classical
power system of n synchronous generators with each generator’s
dynamics represented by the swing equation and all generators
are modeled as constant voltage behind reactance. By assuming
fixed impedance loads, the power system model is governed by
the following set of nonlinear differential equations [16]:

(52' = Wj
n

Mt = P =Y (ViV;Byjsin(d;5)) — Dyw;

j=1

(1)

Where the subscript ¢ represents the machine number, M;, D;
are the inertia constant and damping coefficient for the iy,

a4l
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Fig. 6. The 39-bus system.

machine, respectively, P; is the mechanical power input, V; is
the 4;;, generator’s bus voltage magnitude and B;; represents
the line admittance. The model describes the dynamics of two
states: d;, the generator’s angle and w; the generator’s angular
speed. This model is known as the classical power system model
and have been used extensively in the power system stability
literature. Although this model is considered as a simplified
model, assessing stability for such model was proven to be a
difficult task [31].

A. New England 39-Bus System (Associated Gradient System)

The New England 10-machines 39-bus system is a network
reduced model representing a reduced model of the transmission
network in New England [15]. As depicted in Fig. 6, the system
can be further reduced by reconstructing the Admittance matrix
retaining only machines’ buses in a common procedure as given
in [15], [28].

By taking machine 1 as reference and introducing new vari-
ables d; 1 = J; — 01, Vi = [2, n], the electric power in (11) can
be expressed in terms of the new variables as follows:

n
Pei(021,-0n1) = Y ViViBijsin(d;1 — 6;1)
J=1,j#i

That leads to the following modification to model (11):

Jj1 = wj —wi Vj = [2,n]
MZUJZ :Pi_Pe,i(52,1;~~~35n,l) —Diwi VZ: [1,77,]
(12)
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Algorithm 1: Algorithm for Finding the Critical Clearing
Time Given A Candidate P and {27 (¢)}.

1 Start
Input : P, 2/ (t), At, and 4z
Output: ¢,
if 3z : P(x) # 0 then
‘ go to 7
else
| gotoll
end
t=0;
while {z/ ()} P # 0 or t < tna
t=t+ At
te=1
end

E-RE- - B Y N 7 I ]

—
-

Which gives the following reduced order model [16]:
O0n1) Y5 =1[2,n] (13)

The reduced order model (13) represents the associated gradi-
ent model of (12) and will be used to estimate the critical clearing
time using the individual invariance theorem in multi-machine
power systems. Note that a multi-machine power system in this
form has an energy function defined as [28]:

5‘771 — P] *Peﬁj((sj?l,..

E(x)==Y_ Pi(0i1—6;,)
1=2

> D ViViBij{cos(8i1-85,1)~cos(5] 107 1)}
i=2 j=1,j#i
(14)

For the required simulations, bus 1 is considered as a slack
bus (see Appendix A) which puts the system in the form given in
(13). Each §; ; in (13) will be invariant in the set A; = {J; ; €
R 2 [6;5 — 07 ;| < 7, Vi, j € [1,n]} with &7 ; being the fixed
point of (13).

With every A; representing a polyhedron, the region of at-
traction for (13) is estimated as the intersection of polyhedrons
that can be described as:

P={zeR": Az < b} (15)

where A is a constant matrix of dimension m x n and b is a
vector in R, As described in the previous section, suppose that
a fault-on trajectory is given and denoted as x/(t). Individual
invariance theorem can be applied algorithmically in a power
system transient stability by solving a feasibility problem to
make sure that P is nonempty and then by substituting =/ (¢) in
P to find the first instance at which {z/ (#)} (P = () as defined
more explicitly in the following algorithm:

In the reduced model (13), each machine j can be used to
construct an artificial system with a region of attraction A;.
With each artificial system 7 being invariant in its relevant set
A;, we can directly apply Corollary 1 on the original system
(13) to prove that it remains invariant inside the intersection
defined by A, = ﬂie[l’m] A; as stated in the Corollary. Since
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TABLE I
CCT ASSESSMENT RESULTS FOR THE 39-BUS SYSTEM (ASSOCIATED
GRADIENT SYSTEM)

Critical Clearing Time (CCT), s

Faulted bus ~ Tripped line  Simulation CUEP method Proposed method
10 10-11 0.560 0.419 0.482
25 25-26 0.470 0.333 0.401
22 22-23 0.530 0.393 0.450
2 2-3 0.560 0.345 0.439
6 6-11 0.630 0.424 0.514

Algorithm 1 is used in this case for a polytopic estimation, let us
denote A, = P as the candidate region of attraction (polytope)
and 27 () as the fault-on trajectory which together with At, the
simulation time step for the fault-on trajectory and, t,,4,, the
maximum simulation time are inputs to the algorithm. In step
2, the algorithm starts by insuring that P is non-empty in order
to proceed which can be checked easily by using interior point
methods or linear solvers. Afterwards, the algorithm follows the
fault-on trajectory inside P until either the fault-on trajectory
escapes the estimated region of attraction P or reaches the
maximum simulation time which would indicate the the fault-on
trajectory lies entirely inside the estimated region. The algorithm
terminates and reports the critical clearing time as tc =0 if
‘P was found to be empty, otherwise, a sequence of function
evaluations is executed to maximize the critical clearing time ¢,
as in steps 8-10.

Generally, the shape and size of the estimated region of
attraction will effect the estimated critical clearing time. We
believe that a similar algorithm can be used with other types of
estimations like ellipsoids, or convex hulls where the fault-on
trajectory can be traced until it exits the estimated region in a
similar fashion to what is described in Algorithm 1.

To test the proposed algorithm, A three phase fault is initiated
att = Ointhe locations given in Table I and is cleared by tripping
the associated line. The fault-on trajectory is calculated by time
domain simulation and fed to Algorithm 1 together with the
region of attraction estimate A, in order to find the time at which
the fault-on trajectory exits the polytope A..

In this test, a controlling UEP approach was used to estimate
CCT’s in comparison to simulation-based assessment and the
proposed method. By using the associated gradient system in
(13), the Controlling UEP approach can be implemented as
follows:

1) The first local maximum of the energy function (14) along
the fault-on trajectory was determined at the point (&%)
which denotes the exit point.

2) Using the exit point, %, as an initial condition, the associ-
ated gradient system was integrated to find the controlling
UEP, 0¢0.

3) The constant energy surface of (14) at 6o was used as a
local approximation of the relative stability boundary.

4) The critical clearing time was determined as the time it
takes the fault-on trajectory to meet the relative stability
boundary found in step 3.

It can be seen from Table I that the algorithm succeeded in

providing a very practical estimates of CCT. The maximum
deviation occurred for a fault at bus 2 with 121 ms whereas
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the minimum deviation was 69 ms for the contingency at bus
25. Similar to the previous case, we notice that the proposed
approach provides less conservative CCT estimates in compar-
ison to energy function approaches. It can be concluded from
the results that the proposed method provided better estimates
in all cases and that the CUEP method seemed to always provide
more conservative estimate comparatively [16], [28].

B. New England 39-Bus System (Full-Order System)

The goal of this case study is to test the applicability of
individual invariance in the full-order model (11) where methods
like the BCU and PEBS can perform quiet well [16]. The model
in (11) can be re-written as follows:

6i:wi

M = P =Y V;V; B jsin(d; ;)
=2

—ViViB;1sin(d;1) — Diw; (16)

Here we only separated the term —V; V3 B; 1 sin(d; 1) together
with the damping term to create an artificial system of the
following form:

5.2' = Wj

M;w; = =V;ViB; 1 sin(0;,1) — Diw; (17)

By removing the artificial system (17) from (16), we will be
left with the coupling terms as in (13) which can be written as:

M261 = Pz - Z V;VBBLJ SiH(éiJ)
=2

(18)

Similar to the previous section, (18) will be analyzed as an
equivalent associated gradient system and we can find a poly-
hedron P defined by the inequality [d; ; — 67 ;| < m,Vj € [1, 7]
that is positively invariant for each machine . In other words, A
trajectory of (18) initiated inside P will remain in it for all future
time. The analysis of artificial system (18) gives conditions on
| ;| only and cannot produce conditions on w; but we can arrive
at that from artificial system (17).

An auxiliary parameter «; will be added to both vector fields
while maintaining the original vector field (16) intact. The idea
behind adding the auxiliary parameter is to tune the estimated
region of attraction to be as large as possible.

Jj=2

— (]. — Cki)V;'ViBiJ sin(éi,l) (19)

61‘ = W;

Miw; = — a;ViViBii sin(d4,1) — Djw; (20)

The right hand sides of (19) and (20) sum up to the same vector
field of (16). With machine 1 as the slack bus, the reconstruction
of (20) creates a classical system with a known energy function

Algorithm 2

1. A polyhedron P is defined for (19) as the intersection of
all the inequalities |0; ; — d; ;| < 7, Vj € [1,n] and
‘5i,1| <mVie [l,n].

2. Vi(6;,1,w;) is defined for each machine i in (20).

3. For each artificial system in (20), The constant energy
surface of its respective energy function V;(0; 1,w;) is
evaluated at (51-’17 0) with Si,l € P to obtain the set A;
as an invariant set for the 7*" artificial system.

4. The critical clearing time is determined as the maximum
time at which no relative fault-on trajectory
(0;(t) Fauit—on, Wi (t) Fauit—on ) €Xits the relative
stability boundary found in step 3.

defined by:

1
Vi(0i1, wi) = iMiwiz —o;ViViB; 1 cos(6;,1) (21)

Vi(d;1,w;) is an energy function for every system 4 in (20)
and its derivative is W < —D,w;>.

For each artificial system ¢ in (20), a region of attraction can
be defined as a sub-level set of the relevant energy function in
(21), that is: A, = {((5@1,0&) epP: V;'((Si,hwi) < CZ}, where
C; is defined as C; = V}(Sm, 0) and Si,l € P. In the 39-bus test
system, 9 artificial systems of each form (19) and (20) will be
used to assess its transient stability in Algorithm 2 as follows:

The construction of the artificial systems in this example
ensures that the union of all the invariant sets A;’s will also
be an invariant set for the original system since every set A; is
a subset of the polyhedron P. The parameter « in (19) and (20)
will affect the estimated region and needs to be carefully chosen,
in our tests we set ; = 1 and o; = ﬁ,

Theorem I allowed us to reconstruct the vector field of the
original system in a way that separates artificial machine states
(0i,1,w;) as given in (20) leading to an independent assessment
of each machine’s response to a disturbance. It also allowed us
to separate the coupling parameters into an individual artificial
system as in (19). In this section, the proposed approach was
compared to a Controlling UEP method which is similar to the
approach used previously except that a kinetic energy term in
the form %wTM w is added to (14), the implementation closely
follows the BCU methodology described in [16].

Table II demonstrates the results of three phase bus faults
cleared by line tripping. For every fault, the Critical Clearing
Time was estimated through exhaustive simulations, BCU, and
the proposed method for two different artificial systems con-
structions one with o; = 1 and the other with a;; = ﬁl Clearly
from the results the choice of «; = 1 provides poor estimation
in comparison to the other methods, whereas, the choice of the
larger o; = ﬁ provided better estimates, this is associated with
the fact that «; increases the overall level-sets of its relevant
energy function inside P. In general, it compared favorably to
the BCU approachin 5 outof 11 test cases for the full order model
with an improved CCT estimates varying from a maximum of
0.0629 s to a minimum of 0.0096 s for faults at buses 25 and 22
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TABLE II Artificial system 3
CCT ASSESSMENT RESULTS FOR THE 39-BUS SYSTEM (FULL-ORDER SYSTEM) oV,
_ VI:C
Critical Clearing Time (CCT), s “© ——
Faulted bus ~ Tripped line ~ Simulation =~ BCU  o; =1 «; = ﬁ =0
2 2-3 0.44 0.2831 0.240 0.317 20
5 5-8 0.52 0.3649 0.188 0.379 >7 0.
6 6-11 0.50 0.3510  0.187 0.367
10 10-11 0.46 0.3442 0.180 0.335 0
13 13-14 0.52 0.3970  0.186 0.357 o
16 16-24 0.50 0.3686  0.149 0.329
21 21-22 0.52 0.4377 0.154 0.325
22 22-23 0.42 0.3034  0.169 0.313
23 23-24 0.39 03172 0.141 0.290
25 25-26 0.36 0.2661 0.185 0.329 wy = 3y
26 26-27 0.30 0.2844  0.169 0.281 '

Artificial system 9
respectively. On the other hand, the proposed method provided =1
more conservative estimates in comparison to the BCU in 6 out Ve
of 11 test cases with CCT reduction varying from a maximum
of 0.1127 s to a minimum of 0.0034 s for faults at buses 21
and 26 respectively. It should be noted that simulations in all -~
cases considered the exact same model in (16), whereas in the
previous section the simulations where on the reduced model
(13) to maintain consistency in our comparisons. In addition to
providing an adequate and fast assessment of CCT, Individual
Invariance allows us to visualize the stability regions of each ma-
chine independently since the artificial systems are constructed
to separate the internal angle and frequency of each machine
in a 2-d system. This gives an insight into how the region of Fig.7. Faultatbus 10, cleared at the estimated time of 0.335 s with a;; = 1\/%
attraction is evolving with the change in system parameters and
also indicates which machine is more stable or in the contrary Artificial system 3
more vulnerable to disturbances. OV

Figs. 7 and 8 depict the level sets of the energy functions e
associated with artificial systems 3 and 9 which reflects the
speed-angle characteristics of machines 3 and 9 in the context
of individual invariance after tripping the line 10-11 for o;; = 1 &
and o; = ﬁ, respectively. For a fault at bus 10, the projected
fault-on trajectory is depicted in each figure and it can be seen
that the fault-on trajectory hits the boundary of V3 = C before
reaching the boundary of V5 = C. Hence, the CCT estimate of
artificial system 3 will dictate the overall CCT assessment in this
case given that all other boundaries for the remaining artificial
systems are not breached. Itis also clear that increasing «; from 1
to ﬁ has increased the energy levels and consequently enlarged
the estimate allowing the fault-on trajectory to remain inside Artificial system 9
the region of attraction for a longer duration. Similarly, Figs. 9 (v ]
and 10 depict the level sets of the energy functions associated Ve
with artificial systems 2 and 9 which reflect the speed-angle 10
characteristics of machines 2 and 9 after tripping the line 5-8 for
a; =1and o; = ﬁ respectively. The same conclusion can be
seen in this case except that machine 2 is more vulnerable in this
test case instead of machine 3 which is valid since machine 2
(G311n 6) is relatively closer to the faulted bus 5 whereas in the
previous test, machine 3 (G32 in 6) is connected directly to the
faulted bus 10 through a step-up transformer. In Figs. 11 and 12,
we can see that our results are also proven by simulation with
the system remaining transiently stable at the estimated CCT'’s.
It is worth noting that in general, different energy functions may
yield different results with respect to the BCU estimates. Also, Fig. 8. Fault at bus 10, cleared at the estimated time of 0.335 s with o; = 1.
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Artificial system 2

Artificial system 9

Fig.9. Faultatbus 5, cleared at the estimated time of 0.379 s with o; = MLZ

Artificial system 2

Artificial system 9

Fig. 10.  Fault at bus 5, cleared at the estimated time of 0.379 s with o; = 1.
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Fig. 11.  Fault at bus 10, cleared at the estimated time of 0.335 s.
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Fig. 12.  Fault at bus 5, cleared at the estimated time of 0.379 s.

different artificial systems constructions and different auxiliary
parameters can positively or negatively impact the estimates of
an individual invariance-based approach. In this test, our main
objective was to utilize the concept of individual invariance
to separate the contribution of each machine’s states toward
maintaining or losing synchronism. This process gives more
insight into what drives a power system into instability and what
parameters need to be tuned or controlled to retain synchronism
by individually assessing each artificial system.

VI. DC MICROGRID WITH CPL

In this section, the stability of DC converter with Constant
Power Loads will be studied. A DC converter connected to one
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Fig. 13.  DC converter with CPL.
CPL can be represented as follows:
. T 1 n
1 = ——X1 — =T v
L C 7
. 1 1 1
Go = —21 — ——19 — CP— (22)
L rpC To

The model is depicted in Fig. 13 and consists of a linear
system, DC input (v,), and a nonlinear term from the reciprocal
of o which arises from the constant power load. The individual
invariance principle in Theorem 1 does not constrain our choice
of individual vector fields, in this case we can choose the first
artificial system as the linear part of (22) while the second
artificial system will contain the rest of (22) as follows:

_n

1
T — T2+ v
i‘:fl(x): Ll C2 g

1
- ZTPC:EQ

0

: 2
PP - A —opd
Note that the first system has an asymptotic stable equilibrium
point since its state matrix A has real negative eigenvalues, so
the whole state space is a region of attraction of that equilibrium
point. One may conclude that the boundary of the stability region
in (22) is then defined solely by the second artificial system but
such conclusion is not necessarily true and great attention has to
be paid in applying Theorem 1. The rational behind the structure
of the second artificial system is to have all spatial variables of
(22) present in one function only (in this case %) to force f?(x)
to flow in x5 direction and consequently defining an invariant
set for that system will be easier.

This choice of f2(z) lead to a continuum of equilibrium points
from the solution of the quadratic function:

1 1
f22(x) = _27"p01‘§ + lel‘Q —CP=0

By solving the equation above, we will have two solutions at:
¢ 1 2P 2P

@ 2 = 2=, 4+ 1,0 /7523 — =, YV, > L -
rpC

(b) o = & Vay > Ly /30

Analytically, we can determine that (a) is a stable continuum
of equilibrium points and (b) is unstable by perturbing the system
around the curve by some € or by substitution in f2 (). We could
also take advantage of the unidirectional flow of f2(z') and simu-
late one instance to evaluate the stability around both curves. The
zero solution of f2(z) defines a smooth curve whose interior at
f3(x) > 0isaconvex set thatis also positively invariant since all
solutions within this set approach (a) as time goes to infinity. To

1 ,..2 2P
a1 = 1pCy [ Lz81 — 75
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Fig. 14.  Invariant sets of both artificial systems without auxiliary vector.

better illustrate these results, we simulated both artificial systems
as shown in Fig. 14. So far we developed a great understanding
of the attractors in both artificial systems by mere algebraic anal-
ysis without the need of physics inspired methods like Energy
or Lyapunov functions or exhaustive computer simulations. In
fact, this approach is physically agnostic since neither artificial
system represents a sound physical process independently rather
each was constructed for the sole purpose of having an attainable
invariant set. Those sets are defined as A; = {z € R?} and

_ 2 . < 1.2 _ 2P
AQ—{IE?RJZQE T ﬁxl_ﬁ

Ay is basically the whole state space, while A5 contains all
solutions depicted in Fig. 14. With slight manipulation of those
sets we will be able to satisfy Theorem 1 conditions. Theorem
1 requires all individual artificial systems to be stable in the
same set A.. In Fig. 14, we notice that the w-limit of the first
system (w1 ) lies outside the invariant set A,. This can be fixed
by introducing an auxiliary vector field ¢(.) that shifts w; to the
interior of As. An auxiliary vector is a vector that appears in
some or all artificial systems (f?(z)) while remaining invisible
to the original system f(z). In this case, g(.) is a constant vector
of [0,vy]” that is added to f!(x) and subtracted from f?(z).

z1 —1pC

_n

p=fia)=| "

1
—5,0%2 1 Vg

1
xr1 — 522 + v
1 c'2 g (23)

0

(24)
Ty — ﬁxg - CP% - Vg

= f*(x) =
With this alteration, we bring wy, € As as shown in Fig. 15.
Now we can take advantage of individual invariance by relying
only on linear analysis to estimate the region of attraction of
(23). In other words, studying the behavior of the linear system
defined by f!(z) with respect to the previously defined regions.
From the definition of A; and A, there intersection is A, thus it
can serve as a candidate A, in Theorem 1. To meet the criterion
of Theorem 1, A, needs to be positively invariant with respect to
all individual systems and it is indeed for f2(z) which leaves us
with the linear system f! () that has its equilibrium point inside
As. By just a handful number of simulations of the individual
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Fig. 15. Invariant sets of both artificial systems with auxiliary vector.
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Fig. 16.  Phase portrait of (22), A, and Ay from [23].

linear system at the boundaries of As we found that there exits
a set Ae C Ay for which both systems are invariant, and we
could quantify the following subset to be our estimated region
of attraction:

A, = {x e N2z <0.075,

1
2r,C

A, C A, C Ay

1
wg + lexg —CP +vgxy > O}

This example proves that individual invariance can bring sim-
plicity to problems deemed difficult and analytically intractable.
In Fig. 16, it is clear that individual invariance provides signif-
icantly larger estimates of stability regions, the figure depicts
the stability region estimate of the same system as given in [23]
which is the ellipse Ay inside A, (Shown also in close-up in
Fig. 17). Ay estimation fades in comparison to our individual
invariance based estimate as clearly seen in the figure where Ay
only covers a very small region around the equilibrium point and
the method in [23] lacks the generality of individual invariance
and can only be applied to a type of port-Hamiltonian systems.
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VII. FUTURE PERSPECTIVES

The Individual Invariance Theorem brings simplicity to the
overly complex problem of stability in nonlinear systems by
transforming the complicated nonlinear interactions into simpler
lower dimensional artificial systems. This seemingly intuitive
approach allows revisiting the question of regions of attraction
from different angles, where the region of attraction approxi-
mation results from a decomposition of a given system into a
set of artificial systems which allows altering and deforming
the approximate by different choices of artificial systems. This
two-step approach, identifying artificial systems then approxi-
mating the region of attraction, provides an insight into what
elements of a given vector field are participating in the shape
and size of the region of attraction. Although in this article, we
presented several successful implementations of the Theorem,
there are key areas to be explored. For instance, an artificial
system can be used to characterize an uncertain parameter (or
disturbance) to independently evaluate its impact on the overall
system stability without the need to simulate the whole model.
Similarly, control parameters can be designed and tuned as
artificial systems interacting with the model. These are some
general implications that are currently under development. In
power systems, individual invariance can provide an insightful
look into what drives the system toward instability by indepen-
dently assessing each artificial system which can be a power
plant or a single generator. The next step to applying individual
invariance for stability assessment in power systems will be to
evaluate different artificial system constructions and evaluate
the evolution of regions of attraction with each artificial system.
Similar to energy functions, defining artificial systems will
depend on the system physics, however, the flexibility margin
is significantly higher and we believe that this concept provides
a new perspective to the problem of stability that is capable of
overcoming some limitations of classical methods.

VIII. CONCLUSION

This article presents a novel approach for estimating the
region of attraction in nonlinear autonomous systems based on
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new theoretical findings. A nonlinear vector field is represented
as a sum of individual vector fields of the same dimension.
Each individual vector field creates an artificial system where
its region of attraction is defined independently of the original
system. The individual invariance Theorem states that if all
individual vector fields are invariant in the same set then that
set is invariant for the original system. This article provides the
theoretical foundation of this novel result and extends it to an
algorithmic construction of regions of attraction. The presented
theory is introduced through several second order examples
followed by more practical and high order test cases in power
systems including reduced-order and full-order models and a
DC application with nonlinear loads. A major advantage of
individual invariance theorem is that it allows the use of linear
programs to approximate subsets of the region of attraction as
an intersection of polyhedrons which provide a computation-
ally efficient approach for transient stability studies in power
system. It also allows for analytical description of subsets of
the region of attraction as used in the estimates of the 39-bus
full-order model which can be of significant value in real-world
applications. However, we expect the current implementation
to provide slightly conservative assessment of stability in larger
power systems in comparison to direct methods for two reasons:
1- Direct methods provide stability assessment relevant to each
fault-on trajectory, whereas, individual invariance provide a
system based assessment, 2- The bounds on the coupling terms
eliminate some stable cases where a power system can experi-
ence large deviations while retaining stability. This is only true
in the context of CCT assessment, otherwise, we consider the
individual invariance as a qualitative analysis tool that is capable
of providing critical insight into nonlinear systems behavior.

APPENDIX A
TEST SYSTEMS’ PARAMETERS

New England 39-bus system [15]

Parameter ~ Value  Parameter Value
Hy 420 s z g, 0.0310 pu
H, 30.2 s z;m 0.0697 pu
Hs 35.8s Tgg 0.0531 pu
Hy 28.6 s xd . 0.0436 pu
Hs 26.0 s T4 0.0660 pu
Hg 34.8 s :p;iﬁ 0.0500 pu
Hy 26.4 s zf” 0.0490 pu
Hg 243 s Tgg 0.0570 pu
Hy 34.5 s x/’ig 0.0570 pu
Hio 31.0 s Z 410 0.0457 pu
Parameters of DC converter with CPL [23]

C P L Vg ] Tp
2mF 1kW 78uH 24V 00402 0.1Q
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