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Abstract—In this article, we approach the problem of stability
in nonlinear systems through a new perspective that views them
as a combination of individual artificial systems carefully cho-
sen to simplify the complex structure of nonlinear systems. This
is achieved by recasting nonlinear vector fields as an algebraic
sum of individual vector fields for which artificial systems with
known invariant sets or at least in forms that allow for tractable
approximation of their invariant sets. This attempt to restructure
nonlinear systems stands out in comparison to other previous
attempts like Lure’ systems or network based models as a purely
mathematical structuring technique that transcends the physical
constraints and dependencies within dynamical models and allows
the user to creatively construct artificial systems with the sole focus
on the overall stability. The theoretical foundation is provided
for a theorem about individual invariance to relate the invariant
sets of individual artificial systems to the invariant set of their
original system in a way that significantly simplifies the task of
approximating regions of attraction. Several examples are used to
demonstrate this theorem and we also evaluate the use this theorem
for the challenging power system stability problems in both AC and
DC grids. The proposed method is successfully applied to the IEEE
39-bus New England system, and a DC converter with constant
power load giving accurate and realistic estimations of the critical
clearing time and stability regions in comparison to state of the art
approaches.

Index Terms—Critical clearing time, DC microgrid, multi-
machine system, stability regions.

I. INTRODUCTION

S
TABILITY in nonlinear systems has been a central topic

of interest for researchers and scientists in almost every

field of science and engineering due to the prevailing role of

nonlinearities in both nature and industries. Ever since Lyapunov

theory was developed, it played a key role in most of the

developments in stability theory afterwards. The importance of
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Lyapunov theory is not limited to its ability to directly certify

stability of an equilibrium point but extends also to determining

stability regions or regions of attraction [1]. One of the first

challenges in Lyapunov stability was and still is to characterize

a general form of Lyapunov functions for specific vector fields.

Hence, many efforts led to the development of somehow general

functions for certain types of vector fields [2], [3].

A Lure’ system is a control system described as a linear

system with a sector bounded nonlinearity which allows the use

of pre-defined nonlinear Lyapunov functions [2], [4]. The im-

portance of Lure’s systems became more apparent recently with

the developments in Semi Definite Programming (SDP) solvers

that allow for efficient solutions of linear matrix inequalities

(LMI) appearing naturally in Lure’-type systems [4], [5], [6].

Thus, Lure’-systems remain a topic of interest for researcher

in stability analysis and have seen some applications in power

systems despite its conservative nature [2], [7]. The literature of

stability has also seen attempts to re-define Lyapunov functions.

In [8], it was shown that Lyapunov conditions can be relaxed and

a Lyapunov function may increase in some subsets as long as it

eventually decreases to zero. This relaxation although very help-

ful and essentially needed, requires extra conditions on higher

order derivatives which can limit its applicability to special

cases. Other variations of Lyapunov functions were proposed

as well. In [9], the notion of vector Lyapunov functions was

introduced where instead of searching for a single function, the

search is extended to a set of functions giving it more flexibility,

however, such results are of practical interest for control design

frameworks rather than stability regions’ estimation [10], [11],

[12]. There are also other methods to Lyapunov functions such

as the Zubov’s method which can determine the exact region

of attraction. Zubov’s method is unfortunately theoretical as it

requires the solution of a partial differential equation which does

not in general has a closed form solution [13].

In power systems which represent one of the most advanced

and active application fields of nonlinear systems’ stability anal-

ysis [14], energy function based approaches dominated stability

assessment [15]. These approaches rely on the ability to find

an appropriate candidate function and on the computation of

the critical energy value at the so-called Controlling Unstable

Equilibrium Point (CUEP) with respect to the pre-defined energy

function. This task is involving and difficult and can lead to

inaccurate stability assessments if the algorithm deviates slightly

from the target point. It is true however that among energy func-

tion methods, Controlling UEP-based methods can provide less
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conservative estimates. The current accepted method for finding

the controlling UEP is called the Boundary of stability region

based Controlling UEP method (BCU method) and was proven

to have a high success rate [14], [16]. Nevertheless, the BCU

method in power systems is not designed to estimate regions of

attraction, instead it is designed to estimate the relative boundary

of stability region with respect to a fault-on system [16]. Recent

results in power system stability focused on Lyapunov functions

instead but with no significant computational advantages [7],

[17], [18]. In [7], the Popov criterion was used and an optimiza-

tion problem was formulated to enlarge the region of attraction,

however, the results indicate some conservativeness and the

dependence on sector bounds further limits its applicability.

In [17], [18], Sum Of Squares (SOS) programming techniques

were used to estimate the domain of attraction for a simple

power system case study but the results did not show a sizable

computational advantage.

The move toward renewable generation and the integration

of more converter-based devices in the power grids around

the world has driven the research on power system stability

in recent years away from the classical power system models.

In [19], synchronization stability is studied for a Voltage Source

Converter (VSC) connected to a grid where a Lyapunov function

is constructed through SOS programming and consequently a

region of attraction can be approximated with some degree

of conservatism. Similarly, Lyapunov based approaches were

applied in [20] to characterize the stability boundary of a VSC-

grid system using an analytically derived Lyapunov function,

whereas, [21] used an SOS program to find a numerical Lya-

punov function. Another interesting subject in power system

stability is the stability regions of DC systems with Constant

Power Loads. In [22], the impact of Constant Power Loads (CPL)

in multiconverter automotive power systems was studied and

the region of attraction was approximated for a DC converter

with CPL by examining the system trajectories near predefined

boundary curves. Whereas, in [23], a DC converter with CPL is

modeled as a Power-Controlled Hamiltonian and the region of

attraction was derived by a quadratic Hamiltonian.

As can be noticed from the literature, stability assessment

methods in power systems remain limited to Lyapunov Theo-

rems and the Energy function approach with no notable excep-

tion in recent years. This article proposes a novel method to

estimate regions of attraction of autonomous nonlinear systems

by overlooking the ordinary representation of vector fields and

instead reproduce a nonlinear vector field as the algebraic sum

of vector fields for which we can develop individual artificial

systems with known or at least tractable regions of attraction.

In [24], we proposed a similar representation of vector fields

and introduced the idea of artificial systems to prove that a

Lyapunov function can be constructed from artificial systems

independently without the need of considering conditions on

the original vector field. In this work, with the help of a newly

developed theory we are able to reconstruct the region of attrac-

tion of a given system from the individual regions of attraction of

the artificial systems without the need of constructing individual

functions as in [24]. The results of this article are considered an

improvement over our previous results [24] in terms of generality

and applicability. Such an approach allows for fast estimation

of stability regions and provides an insight on the mathematical

interaction of individual vector fields. The proposed concept sets

itself apart from the traditional Lyapunov-based methods in its

ability to identify each element of a given vector field as an object

to enlarge, shrink or deform the stability region in the system

under study regardless of the type of the dynamic interaction

or dimensionality and proves to be generic enough to address

challenging problems like power system transient stability and

stability regions in DC circuits.

II. THEORETICAL BACKGROUND

Consider an autonomous dynamical system represented by

the following differential equation:

ẋ = f(x), x ∈ �n (1)

The solution starting from x at t = 0 is called the trajectory

and is denoted by ϕ(t, x). f(x) : D → �n is a vector valued

function from a domain D ⊂ �n to �n that is referred to as the

vector field associated with the state vector x. It is natural to

assume that f(.) satisfies sufficient conditions for the existence

and uniqueness of solutions. Thus, all required derivatives exist

and are continuous. xe is an equilibrium point if f(xe) = 0.

An equilibrium point can be either isolated with no other equi-

librium point in its vicinity or can be part of a continuum of

equilibrium points (e.g., equilibrium subspace). For the system

in (1), assuming without loss of generality thatxe = 0, the region

of attraction A of the origin is defined as follows:

A =
{

x ∈ D : lim
t→∞

ϕ(t, x) = 0
}

(2)

The goal is to achieve the largest possible estimate of A.

From its definition, A is an invariant set, hence, any trajectory

starting in A will remain in it at all time. Generally, the region

of attraction is an open, connected and invariant set [1]. These

properties are generic and do not serve the development of region

of attraction estimation algorithms. A very common approach

to satisfying these properties is by finding sub-level sets of

Lyapunov functions. For a system defined by (1), the region

of attraction of the origin can be estimated by sub-level sets of

Lyapunov functions [1]:

Ac = {x ∈ D : V (x) f c}

where V (x) is a Lyapunov function, c > 0 and xe ∈ Ac. En-

larging such approximation have been the target of extensive

research in nonlinear systems. It can be seen however, that

the problem of estimating the region of attraction by means

of Lyapunov functions is twofold. First, finding the appropriate

Lyapunov function, and secondly enlarging the estimated region

Ac. Lyapunov theory only requires the knowledge of the vector

field f(x) and proceeds without any explicit knowledge of

solutions, hence, current methods of finding such functions rely

on searching forV (x)once the vector field is fixed. In this article,

the vector field f(x) is manipulated to re-write it as a sum of

vector fields such that each individual vector field is used to

construct an artificial system.
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III. INDIVIDUAL INVARIANCE

In practice, once a dynamical system is modelled, its model

remains intact as long as it passes a certain validation process.

This physics inspired practice seems prudent and it definitely is

since the vector field in (1) is designed as a mathematical inter-

pretation of physical interactions and only careful breakdown of

(1) will result in a physically meaningful vector elements.

In this work, we will try to temporarily untie this physical-

mathematical bond and deal with f(x) as a vector field arising

from simple algebraic relations between different vectors and

elements regardless of their underlying physical interpretation.

To be more precise, we will convert the nonlinear dynamical

system from the form in (1) to the following form:

ẋ =

m
∑

i=1

f i(x) = f(x), x ∈ �n (3)

In (3), clearly if m = 1 then we will arrive at the same

definition in (1). However, the proposed representation proved

to simplify estimating the region of attraction among other

advantages as will be discussed hereafter. In the rest of the paper,
∑m

i=1 f
i(x) and f(x) will be used interchangeably.

Note that every f i(x) in (3) is an n-dimensional vector that

results from any combination of row elements of f(x) and it is

fairly simple to reconstruct vectors f i(x) from any given vector

f(x), but the choice of f i(x)’s is crucial in estimating stability

regions. We can use each vector field in
∑m

i=1 f
i(x) to construct

artificial dynamical systems each defined as ẋi = f i(xi), where

xi ∈ �n. This anatomy of f(x) evokes an immediate question;

what is the relation between the stability region of an artificial

system and the stability region of the original system (1)?

Apparently, classical linearization approach can tell us that if

each linearized artificial system has an asymptotically stable

equilibrium point at the origin, then the linearized original

system will definitely maintain that property of the origin by

superposition. Nevertheless, we can deduce more than that by

carefully constructing and examining individual artificial sys-

tems and provide a broader answer to the former question.

By dealing with the standard representation of dynamical

systems in (1), our focus when studying stability is the vectors

orientation of f(x) and their directions in the proximity of equi-

librium points (for hyperbolic equilibrium points), whereas, the

proposed representation in (3) allows us to choose each f i(x) as

long as the sum of all individual vector fields yields f(x) which

to some extent converts the problem from analyzing a given

dynamical system to finding proper individual vector fields,

hence, a system’s stability will be the result of the interaction

between its individual vector fields. As seen later, this change in

perspective, though straightforward, can tremendously improve

our understanding of stability regions. In [24], we illustrated the

effectiveness of this representation by developing a new theory

that gives rise to a computationally efficient algorithm to esti-

mate stability regions. In this article we provide a generalization

to our previous work that overcomes convexity requirement and

solves the problem of stability in a novel and distinctive way.

Theorem 1 lays the foundation for estimating stability regions

of systems in (3) by defining a positively invariant set for a given

dynamical system (3) as a region in space where each artificial

dynamical system, ẋi = f i(xi), is positively invariant.

Definition 1: For a system defined by (1), we call A ⊂ D

invariant with respect to the flow of (1) if ϕ(t, x) ∈ A for all x ∈
A and all t ∈ �. We also callApositively invariant ifϕ(t, x) ∈ A

for all x ∈ A and all t g 0.

Theorem 1: For a system defined by (3), define ẋi =
f i(xi), with f i(xi) : D → �n, ∀i ∈ [1,m] and let D ⊂ �n

be a neighborhood of ωi, ∀i ∈ [1,m]. If there exists a

set Ae ⊂ D with Ae = {x ∈ D : limt→∞ ϕi(t, x) = ωi, ∀i ∈
[1,m]}, where ϕi(t, x) is a solution of each system ẋi = f i(xi)
starting at x, then Ae is positively invariant under the flow of the

original system (3).

Proof: To prove that Ae is positively invariant with respect

to (3), it is necessary to show that
∑m

i=1 f
i(x) is an “inward”

pointing vector along the boundary of Ae denoted as ∂Ae. From

the theorem statement, it is given that Ae is positively invariant

under the flow of each artificial system given by:

ẋi = f i(xi) (4)

Hence a trajectory ϕi(t, x) initiated at any x ∈ Ae lies entirely

in Ae for t g 0 so we can say that f i(x) points “inward” along

∂Ae for all i ∈ [1,m] due to individual invariance [25]. This is

equivalent to:
〈

f i(x), x− y
〉

g 0

For any point x ∈ Ae and y ∈ �n with ‖x− y‖ = dist(y,Ae)
and for all i ∈ [1,m]. dist(y,Ae) denotes the (shortest) distance

from y to Ae, which is always attained since Ae is a closed set,

and < ·, · > denotes the Euclidean inner product. By summing

over i we get:

m
∑

i=1

〈

f i(x), x− y
〉

= 〈f(x), x− y〉 g 0

This confirms the orientation of f(x) toward the interior of Ae

for any point x belongs to the boundary of Ae so no trajectory of

(3) can escapeAe for t g 0 and this proves its positive invariance

under the flow of (3). �

Note that if Ae has a smooth boundary, we could follow an

argument similar to Bony-Brezis theorem [26], [27], with v(x)
as an exterior normal vector at a point x in ∂Ae, then we will

have
〈

f i(x), v(x)
〉

f 0which is true for all i ∈ [1,m] due to the

individual invariance condition in the theorem and eventually by

summing over i we can arrive at the inequality 〈f(x), v(x)〉 f 0
which holds true for any point at ∂Ae. The geometrical in-

terpretation of non-smooth and smooth boundaries of ∂Ae are

provided in Figs. 1 and 2 respectively.

Corollary 1: For a system defined by (3), if there exists ẋi =
f i(xi), ∀i ∈ [1,m] with Ai = {x ∈ D : limt→∞ ϕi(t, x) =
ωi, f

i(ωi) = 0}, ∀i ∈ [1,m], then Ae =
⋂

i∈[1,m] Ai is

positively invariant with respect to the original system (3)

if ωi ⊂ Ae, ∀i ∈ [1,m].
The proof of this corollary follows immediately from The-

orem 1 but the importance of this corollary is that it provides

a practical guideline to defining Ae with respect to individual

systems. Theorem 1 identifies invariant sets of an autonomous
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Fig. 1. Geometrical interpretation of Theorem 1 proof.

Fig. 2. Geometrical interpretation of Theorem 1 proof for smooth ∂Ae.

dynamical system by examining the individual vector fields

f i(x) that constitute f(x). Generally, finding an invariant set

for a given vector field is not an easy task, however, Theorem 1

does not constraint the choice of individual vectors to a certain

form which allows in many cases the construction of simplified

individual vector fields with analytically defined invariant sets

as will be illustrated in the next section. But before proceeding,

there are several important remarks about Theorem 1:

Remark 1: Each artificial system can have a different attrac-

tion set ωi which could be an equilibrium point, a continuum of

equilibrium points, a limit cycle, or even multiple limit sets.

Remark 2: The existence of Ae does not rule out the possi-

bility of having strange attractors or periodic solutions within

Ae.

Remark 3: If Ae is a compact set, then the ω-limit set is not

empty. This remark is of practical importance since it qualifies

Ae as a region of attraction when the only ω-limit is an attractor.

The remarks are critical for understanding individual invari-

ance as they set it apart from standard Lyapunov theory or Energy

function concepts and give an insight into the level of generality

of this concept. For instance, Remarks 1 and 2 indicate that a

set Ae in Theorem 1 is not necessarily defined for equilibrium

points but also can contain limit cycles or multiple limit sets

and can in theory contain a strange attractor. In contrast, the

existence of Lyapunov function rules out the possibility of limit

cycles within its domain. In terms of applying Theorem 1 and

its corollary, the conditions of Remark 3 are sufficient for sets

obtained by Theorem 1 to qualify as stability regions and this

remark will be used throughout this article. The following test

systems will clarify how Thoerem 1 and its corollary can be used

to provide an estimate of region of attraction for autonomous

dynamical systems.

IV. NUMERICAL RESULTS

In this section, we will illustrate the application of the theo-

rem of individual invariance and the flexibility produced from

transforming system (1) to (3).

I) Consider the second order system that represents a reduced

order two machines system given by [14], [16]:

ẋ1 = −a1 sinx1 − b sin (x1 − x2)

ẋ2 = −a2 sinx2 − b sin (x2 − x1) (5)

where a1, a2 and b are positive real numbers. Let us define three

individual artificial systems as follows:

ẋ1 = −a1 sinx1

ẋ2 = 0
,
ẋ1 = 0
ẋ2 = −a2 sinx2

,
ẋ1 = −b sin (x1−x2)
ẋ2 = −b sin (x2−x1)

Corollary 1 can be applied now by identifying individual

invariance sets ωi for each artificial system ẋi = f i(xi) as

follows:

A1 = {x ∈ �2 : |x1| f π},

A2 = {x ∈ �2 : |x2| f π},

A3 = {x ∈ �2 : |x1 − x2| f π} (6)

The artificial systems 1 and 2 refer to machines 1 and 2 respec-

tively while f3(x) represents a coupled nonlinear interaction

with a stable equilibrium subspace {x ∈ �2 : x1 − x2 = 0} and

unstable equilibrium subspaces at {x ∈ �2 : x1 − x2 = −π}
and {x ∈ �2 : x1 − x2 = π}. Thus, the polyhedron defined by

A3 is an invariant set and the intersection of sets in (6) yields

the following invariant set:

Ae = {x ∈ �n : ‖x‖∞ f π, |x1 − x2| f π}

From remark 2, Ae is a region of attraction for the origin.

Fig. 3 illustrates the estimated region of attraction and compares

it to the largest compact set AV of an energy function of (5)

as given in [28]. Not only that individual invariance approach

compares favorably in terms of estimated size but also in the

ability to arrive at an analytically defined set unlike AV which

requires finding the closest unstable equilibrium point, defining

an energy function, and using the level set of the energy function

at the closest unstable equilibrium point as the stability region

boundary which is only valid if the level set is compact.

II) Consider the following second order system that shares

similar nonlinearities as the reduced order flux decay model

given by [15]:

ẋ1 = −ax2 sinx1

ẋ2 = −bx2 + c cosx1 (7)

where a, b and c are positive real numbers. Let us define two

individual artificial systems as follows:

ẋ1 = −ax2 sinx1

ẋ2 = 0
,

ẋ1 = 0
ẋ2 = −bx2 + c cosx1
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Fig. 3. Vector field of (5) with a1 = 1, a2 = 0.5, b = 0.5.

Similar to example I, Corollary 1 can be applied now by identi-

fying invariant sets Ai for each artificial system ẋi = f i(xi) as

follows:

A1 =
{

x ∈ �2 : |x1| f π, x2 g 0
}

,

A2 =
{

x ∈ �2 : |x1| f
π

2

}

, (8)

By inspection, the artificial system 1 requires the non-

negativity ofx2 in order to maintain the negativity of the quantity

−ax2 sinx1 and it also requires x1 to be in the set {x1 : |x1| f
π} which guarantees that trajectories of the artificial system will

converge to the continuum of stable equilibrium points defined

as {x ∈ �2 : x1 = 0, x2 g 0}. f2(x) represents a more com-

plicated behavior, with continuum of stable equilibrium points

defined as {x ∈ �2 : x2 = c
b
cosx1}. However, since artificial

system 1 restricts x2 to be nonnegative, then, it is easy to see

that x1 lies in the set A2 as defined above. By applying Theorem

1, the intersection of sets in (8) yields the following invariant

set:

Ae =
{

x ∈ �n : |x1| f
π

2
, x2 g 0

}

The equilibrium point in Ae is xe = {0, c
b
} and is unique and

asymptotically stable. Fig. 4 illustrates the estimated region of

attraction as well as the polytope Ae.

III) The previous examples dealt with convex estimations of

stability regions. In this example we demonstrate the possibility

of defining non-convex sets as regions of attraction by applying

individual invariance. Consider the second order system given

by [29]:

ẋ1 = −x1 + 2x2
1x2

ẋ2 = −x2 (9)

Let us define the individual artificial systems as follows:

ẋ1 = −x1 + 2x1
2x2

ẋ2 = 0
,

ẋ1 = 0
ẋ2 = −x2

Fig. 4. Vector field of (7) with a = 2, b = 2.7, c = 1.7.

Fig. 5. Phase portrait of Example 3 (9).

Corollary 1 can be applied now by identifying invariant sets

Ai for each artificial system ẋi = f i(xi) as follows:

A1 =

{

x ∈ �2 : |x2| f
1

2x1

}

,

A2 = {x ∈ �2}, (10)

Analytically, artificial system 1 has an equilibrium set at

(0, x2) and at (x1,
1

2x1

) with former being the stable set and

the latter is an unstable set. Since the second artificial system is

globally stable at (x1, 0), we can use the intersection of A1 and

A2 as our estimate for Ae.

By applying Corollary 1, the intersection of sets in (10) yields

the following invariant set:

Ae = A1 =

{

x ∈ �n : |x2| f
1

2x1

}

The equilibrium point inside Ae is at the origin, unique and

asymptotically stable. Fig. 5 illustrates the estimated region of

attractionAe and compares it to an optimal estimation from Lya-

punov function in [29]. This result is of significant importance
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considering that most estimation approaches rely on solving

convex problems and end up with convex estimates that are

naturally very conservative [7], [17].

Individual invariance theorem requires restructuring the sys-

tem under study by defining artificial systems but it does not

define or constrain the choice of artificial systems since no gen-

eral way can possibly exist to choose individual vector fields for

any nonlinear system and that will always be system dependent.

This seemingly intuitive limitation is reminiscent of a Lyaponuv

theory shortcoming where finding a Lyapunov function remains

a system dependent attribute. However, as seen in the previous

examples and as will be seen in the next sections, choosing

individual vector fields can be done analytically with no com-

putational cost and can be straightforward in many applications.

It is worth mentioning that, choosing an artificial system that

contains the stable equilibrium point of the original system at

its limit can provide significant ease in many cases. Also, in

other cases, it is useful to isolate the linear and nonlinear parts

of a system into different artificial systems. One useful approach

that is possible with artificial systems is to introduce an auxiliary

vector field to help in moving the limit set of artificial systems

as described in Section VI.

In the next sections, two different stability problems will be

studied to illustrate the superiority of individual invariance in

power systems and power electronics applications. The first

application is for AC power systems, the well-known transient

stability problem where the largest fault clearing time is defined

as the longest fault duration a system could withstand while

maintaining synchronism and is called the Critical Clearing

Time (CCT) [30]. Larger estimates of stability regions means

that fault-on trajectory could stay longer on that region before the

system is considered unstable. The other application is stability

region estimation for a DC converter with a Constant Power

Load (CPL) where its stability is usually studied using linear

analysis [22]. The two applications have different objectives, in

the former the goal is to make sure that fault clearing times are

within CCT values, whereas in the latter, the goal is to design

the proper parameters of the converter. In both cases, individual

invariance is proven to provide accurate and reliable estimates

in comparison to standard and state of the art methods in the

literature.

V. TRANSIENT STABILITY

For the purpose of this article we will consider a classical

power system of n synchronous generators with each generator’s

dynamics represented by the swing equation and all generators

are modeled as constant voltage behind reactance. By assuming

fixed impedance loads, the power system model is governed by

the following set of nonlinear differential equations [16]:

δ̇i = ωi

Miω̇i = Pi −
n
∑

j=1

(ViVjBij sin(δij))−Diωi (11)

Where the subscript i represents the machine number, Mi, Di

are the inertia constant and damping coefficient for the ith

Fig. 6. The 39-bus system.

machine, respectively, Pi is the mechanical power input, Vi is

the ith generator’s bus voltage magnitude and Bij represents

the line admittance. The model describes the dynamics of two

states: δi, the generator’s angle and ωi the generator’s angular

speed. This model is known as the classical power system model

and have been used extensively in the power system stability

literature. Although this model is considered as a simplified

model, assessing stability for such model was proven to be a

difficult task [31].

A. New England 39-Bus System (Associated Gradient System)

The New England 10-machines 39-bus system is a network

reduced model representing a reduced model of the transmission

network in New England [15]. As depicted in Fig. 6, the system

can be further reduced by reconstructing the Admittance matrix

retaining only machines’ buses in a common procedure as given

in [15], [28].

By taking machine 1 as reference and introducing new vari-

ables δi,1 = δi − δ1, ∀i = [2, n], the electric power in (11) can

be expressed in terms of the new variables as follows:

Pe,i(δ2,1, . . ., δn,1) =
n
∑

j=1,j 
=i

ViVjBij sin(δi,1 − δj,1)

That leads to the following modification to model (11):

δ̇j,1 = ωj − ω1 ∀j = [2, n]

Miω̇i = Pi − Pe,i(δ2,1, . . ., δn,1)−Diωi ∀i = [1, n]
(12)
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Algorithm 1: Algorithm for Finding the Critical Clearing

Time Given A Candidate P and {xf (t)}.

Which gives the following reduced order model [16]:

δ̇j,1 = Pj − Pe,j(δj,1, . . ., δn,1) ∀j = [2, n] (13)

The reduced order model (13) represents the associated gradi-

ent model of (12) and will be used to estimate the critical clearing

time using the individual invariance theorem in multi-machine

power systems. Note that a multi-machine power system in this

form has an energy function defined as [28]:

E(x)=−
n
∑

i=2

Pi(δi,1 − δ∗i,1)

−
n
∑

i=2

n
∑

j=1,j 
=i

ViVjBij{cos(δi,1−δj,1)−cos(δ
∗
i,1−δ

∗
j,1)}

(14)

For the required simulations, bus 1 is considered as a slack

bus (see Appendix A) which puts the system in the form given in

(13). Each δi,j in (13) will be invariant in the set Ai = {δi,j ∈
�n : |δi,j − δ∗i,j | f π, ∀i, j ∈ [1, n]} with δ∗i,j being the fixed

point of (13).

With every Ai representing a polyhedron, the region of at-

traction for (13) is estimated as the intersection of polyhedrons

that can be described as:

P = {x ∈ �n : Ax f b} (15)

where A is a constant matrix of dimension m× n and b is a

vector in �m. As described in the previous section, suppose that

a fault-on trajectory is given and denoted as xf (t). Individual

invariance theorem can be applied algorithmically in a power

system transient stability by solving a feasibility problem to

make sure that P is nonempty and then by substituting xf (t) in

P to find the first instance at which {xf (t)}
⋂

P = ∅ as defined

more explicitly in the following algorithm:

In the reduced model (13), each machine j can be used to

construct an artificial system with a region of attraction Ai.

With each artificial system i being invariant in its relevant set

Ai, we can directly apply Corollary 1 on the original system

(13) to prove that it remains invariant inside the intersection

defined by Ae =
⋂

i∈[1,m] Ai as stated in the Corollary. Since

TABLE I
CCT ASSESSMENT RESULTS FOR THE 39-BUS SYSTEM (ASSOCIATED

GRADIENT SYSTEM)

Algorithm 1 is used in this case for a polytopic estimation, let us

denote Ae = P as the candidate region of attraction (polytope)

and xf (t) as the fault-on trajectory which together with ∆t, the

simulation time step for the fault-on trajectory and, tmax, the

maximum simulation time are inputs to the algorithm. In step

2, the algorithm starts by insuring that P is non-empty in order

to proceed which can be checked easily by using interior point

methods or linear solvers. Afterwards, the algorithm follows the

fault-on trajectory inside P until either the fault-on trajectory

escapes the estimated region of attraction P or reaches the

maximum simulation time which would indicate the the fault-on

trajectory lies entirely inside the estimated region. The algorithm

terminates and reports the critical clearing time as tc = 0 if

P was found to be empty, otherwise, a sequence of function

evaluations is executed to maximize the critical clearing time tc
as in steps 8-10.

Generally, the shape and size of the estimated region of

attraction will effect the estimated critical clearing time. We

believe that a similar algorithm can be used with other types of

estimations like ellipsoids, or convex hulls where the fault-on

trajectory can be traced until it exits the estimated region in a

similar fashion to what is described in Algorithm 1.

To test the proposed algorithm, A three phase fault is initiated

at t = 0 in the locations given in Table I and is cleared by tripping

the associated line. The fault-on trajectory is calculated by time

domain simulation and fed to Algorithm 1 together with the

region of attraction estimateAe in order to find the time at which

the fault-on trajectory exits the polytope Ae.

In this test, a controlling UEP approach was used to estimate

CCT’s in comparison to simulation-based assessment and the

proposed method. By using the associated gradient system in

(13), the Controlling UEP approach can be implemented as

follows:

1) The first local maximum of the energy function (14) along

the fault-on trajectory was determined at the point (δ∗)
which denotes the exit point.

2) Using the exit point, δ∗, as an initial condition, the associ-

ated gradient system was integrated to find the controlling

UEP, δCO.

3) The constant energy surface of (14) at δCO was used as a

local approximation of the relative stability boundary.

4) The critical clearing time was determined as the time it

takes the fault-on trajectory to meet the relative stability

boundary found in step 3.

It can be seen from Table I that the algorithm succeeded in

providing a very practical estimates of CCT. The maximum

deviation occurred for a fault at bus 2 with 121 ms whereas
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the minimum deviation was 69 ms for the contingency at bus

25. Similar to the previous case, we notice that the proposed

approach provides less conservative CCT estimates in compar-

ison to energy function approaches. It can be concluded from

the results that the proposed method provided better estimates

in all cases and that the CUEP method seemed to always provide

more conservative estimate comparatively [16], [28].

B. New England 39-Bus System (Full-Order System)

The goal of this case study is to test the applicability of

individual invariance in the full-order model (11) where methods

like the BCU and PEBS can perform quiet well [16]. The model

in (11) can be re-written as follows:

δ̇i = ωi

Miω̇i = Pi −
n
∑

j=2

ViVjBi,j sin(δi,j)

−ViV1Bi,1 sin(δi,1)−Diωi (16)

Here we only separated the term−ViV1Bi,1 sin(δi,1) together

with the damping term to create an artificial system of the

following form:

δ̇i = ωi

Miω̇i = −ViV1Bi,1 sin(δi,1)−Diωi (17)

By removing the artificial system (17) from (16), we will be

left with the coupling terms as in (13) which can be written as:

Miδ̈i = Pi −
n
∑

j=2

ViVjBi,j sin(δi,j) (18)

Similar to the previous section, (18) will be analyzed as an

equivalent associated gradient system and we can find a poly-

hedron P defined by the inequality |δi,j − δ∗i,j | f π,∀j ∈ [1, n]
that is positively invariant for each machine i. In other words, A

trajectory of (18) initiated insideP will remain in it for all future

time. The analysis of artificial system (18) gives conditions on

|δi,j | only and cannot produce conditions onωi but we can arrive

at that from artificial system (17).

An auxiliary parameter αi will be added to both vector fields

while maintaining the original vector field (16) intact. The idea

behind adding the auxiliary parameter is to tune the estimated

region of attraction to be as large as possible.

Miδ̈i = Pi −
n
∑

j=2

ViVjBij sin(δi,j)

− (1− αi)ViV1Bi,1 sin(δi,1) (19)

δ̇i = ωi

Miω̇i = − αiViV1Bi1 sin(δi,1)−Diωi (20)

The right hand sides of (19) and (20) sum up to the same vector

field of (16). With machine 1 as the slack bus, the reconstruction

of (20) creates a classical system with a known energy function

Algorithm 2

1. A polyhedron P is defined for (19) as the intersection of

all the inequalities |δi,j − δ∗i,j | f π, ∀j ∈ [1, n] and

|δi,1| f π, ∀i ∈ [1, n].
2. Vi(δi,1, ωi) is defined for each machine i in (20).

3. For each artificial system in (20), The constant energy

surface of its respective energy function Vi(δi,1, ωi) is

evaluated at (δ̃i,1, 0) with δ̃i,1 ∈ P to obtain the set Ai

as an invariant set for the ith artificial system.

4. The critical clearing time is determined as the maximum

time at which no relative fault-on trajectory

(δi(t)Fault−on, ωi(t)Fault−on) exits the relative

stability boundary found in step 3.

defined by:

Vi(δi,1, ωi) =
1

2
Miωi

2 − αiViV1Bi,1 cos(δi,1) (21)

Vi(δi,1, ωi) is an energy function for every system i in (20)

and its derivative is
dVi(δi,1,ωi)

dt
f −Diωi

2.

For each artificial system i in (20), a region of attraction can

be defined as a sub-level set of the relevant energy function in

(21), that is: Ai = {(δi,1, ωi) ∈ P : Vi(δi,1, ωi) f Ci}, where

Ci is defined as Ci = Vi(δ̃i,1, 0) and δ̃i,1 ∈ P . In the 39-bus test

system, 9 artificial systems of each form (19) and (20) will be

used to assess its transient stability in Algorithm 2 as follows:

The construction of the artificial systems in this example

ensures that the union of all the invariant sets Ai’s will also

be an invariant set for the original system since every set Ai is

a subset of the polyhedron P . The parameter α in (19) and (20)

will affect the estimated region and needs to be carefully chosen,

in our tests we set αi = 1 and αi =
1
Mi

.

Theorem I allowed us to reconstruct the vector field of the

original system in a way that separates artificial machine states

(δi,1, ωi) as given in (20) leading to an independent assessment

of each machine’s response to a disturbance. It also allowed us

to separate the coupling parameters into an individual artificial

system as in (19). In this section, the proposed approach was

compared to a Controlling UEP method which is similar to the

approach used previously except that a kinetic energy term in

the form 1
2ω

TMω is added to (14), the implementation closely

follows the BCU methodology described in [16].

Table II demonstrates the results of three phase bus faults

cleared by line tripping. For every fault, the Critical Clearing

Time was estimated through exhaustive simulations, BCU, and

the proposed method for two different artificial systems con-

structions one with αi = 1 and the other with αi =
1
Mi

. Clearly

from the results the choice of αi = 1 provides poor estimation

in comparison to the other methods, whereas, the choice of the

largerαi =
1
Mi

provided better estimates, this is associated with

the fact that αi increases the overall level-sets of its relevant

energy function inside P . In general, it compared favorably to

the BCU approach in 5 out of 11 test cases for the full order model

with an improved CCT estimates varying from a maximum of

0.0629 s to a minimum of 0.0096 s for faults at buses 25 and 22
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TABLE II
CCT ASSESSMENT RESULTS FOR THE 39-BUS SYSTEM (FULL-ORDER SYSTEM)

respectively. On the other hand, the proposed method provided

more conservative estimates in comparison to the BCU in 6 out

of 11 test cases with CCT reduction varying from a maximum

of 0.1127 s to a minimum of 0.0034 s for faults at buses 21

and 26 respectively. It should be noted that simulations in all

cases considered the exact same model in (16), whereas in the

previous section the simulations where on the reduced model

(13) to maintain consistency in our comparisons. In addition to

providing an adequate and fast assessment of CCT, Individual

Invariance allows us to visualize the stability regions of each ma-

chine independently since the artificial systems are constructed

to separate the internal angle and frequency of each machine

in a 2-d system. This gives an insight into how the region of

attraction is evolving with the change in system parameters and

also indicates which machine is more stable or in the contrary

more vulnerable to disturbances.

Figs. 7 and 8 depict the level sets of the energy functions

associated with artificial systems 3 and 9 which reflects the

speed-angle characteristics of machines 3 and 9 in the context

of individual invariance after tripping the line 10-11 for αi = 1
and αi =

1
Mi

respectively. For a fault at bus 10, the projected

fault-on trajectory is depicted in each figure and it can be seen

that the fault-on trajectory hits the boundary of V3 = C before

reaching the boundary of V9 = C. Hence, the CCT estimate of

artificial system 3 will dictate the overall CCT assessment in this

case given that all other boundaries for the remaining artificial

systems are not breached. It is also clear that increasingαi from 1

to 1
Mi

has increased the energy levels and consequently enlarged

the estimate allowing the fault-on trajectory to remain inside

the region of attraction for a longer duration. Similarly, Figs. 9

and 10 depict the level sets of the energy functions associated

with artificial systems 2 and 9 which reflect the speed-angle

characteristics of machines 2 and 9 after tripping the line 5-8 for

αi = 1 and αi =
1
Mi

respectively. The same conclusion can be

seen in this case except that machine 2 is more vulnerable in this

test case instead of machine 3 which is valid since machine 2

(G31 in 6) is relatively closer to the faulted bus 5 whereas in the

previous test, machine 3 (G32 in 6) is connected directly to the

faulted bus 10 through a step-up transformer. In Figs. 11 and 12,

we can see that our results are also proven by simulation with

the system remaining transiently stable at the estimated CCT’s.

It is worth noting that in general, different energy functions may

yield different results with respect to the BCU estimates. Also,

Fig. 7. Fault at bus 10, cleared at the estimated time of 0.335 s withαi =
1

Mi
.

Fig. 8. Fault at bus 10, cleared at the estimated time of 0.335 s with αi = 1.
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Fig. 9. Fault at bus 5, cleared at the estimated time of 0.379 s with αi =
1

Mi
.

Fig. 10. Fault at bus 5, cleared at the estimated time of 0.379 s with αi = 1.

Fig. 11. Fault at bus 10, cleared at the estimated time of 0.335 s.

Fig. 12. Fault at bus 5, cleared at the estimated time of 0.379 s.

different artificial systems constructions and different auxiliary

parameters can positively or negatively impact the estimates of

an individual invariance-based approach. In this test, our main

objective was to utilize the concept of individual invariance

to separate the contribution of each machine’s states toward

maintaining or losing synchronism. This process gives more

insight into what drives a power system into instability and what

parameters need to be tuned or controlled to retain synchronism

by individually assessing each artificial system.

VI. DC MICROGRID WITH CPL

In this section, the stability of DC converter with Constant

Power Loads will be studied. A DC converter connected to one
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Fig. 13. DC converter with CPL.

CPL can be represented as follows:

ẋ1 = −
rl

L
x1 −

1

C
x2 + vg

ẋ2 =
1

L
x1 −

1

rpC
x2 − CP

1

x2
(22)

The model is depicted in Fig. 13 and consists of a linear

system, DC input (vg), and a nonlinear term from the reciprocal

of x2 which arises from the constant power load. The individual

invariance principle in Theorem 1 does not constrain our choice

of individual vector fields, in this case we can choose the first

artificial system as the linear part of (22) while the second

artificial system will contain the rest of (22) as follows:

ẋ = f1(x) =

[

− rl
L
x1 −

1
C
x2 + vg

− 1
2rpC

x2

]

ẋ = f2(x) =

[

0
1
L
x1 −

1
2rpC

x2 − CP 1
x2

]

Note that the first system has an asymptotic stable equilibrium

point since its state matrix A has real negative eigenvalues, so

the whole state space is a region of attraction of that equilibrium

point. One may conclude that the boundary of the stability region

in (22) is then defined solely by the second artificial system but

such conclusion is not necessarily true and great attention has to

be paid in applying Theorem 1. The rational behind the structure

of the second artificial system is to have all spatial variables of

(22) present in one function only (in this case dx2

dt
) to force f2(x)

to flow in x2 direction and consequently defining an invariant

set for that system will be easier.

This choice of f2(x) lead to a continuum of equilibrium points

from the solution of the quadratic function:

f2
2 (x) = −

1

2rpC
x2
2 +

1

L
x1x2 − CP = 0

By solving the equation above, we will have two solutions at:

(a) x2 =
rpC

L
x1 + rpC

√

1
L2x

2
1 −

2P
rp

, ∀x1 g L
√

2P
rp

(b) x2 =
rpC

L
x1 − rpC

√

1
L2x

2
1 −

2P
rp

, ∀x1 g L
√

2P
rp

Analytically, we can determine that (a) is a stable continuum

of equilibrium points and (b) is unstable by perturbing the system

around the curve by some ε or by substitution in f2(x). We could

also take advantage of the unidirectional flow of f2(x) and simu-

late one instance to evaluate the stability around both curves. The

zero solution of f2
2 (x) defines a smooth curve whose interior at

f2
2 (x) g 0 is a convex set that is also positively invariant since all

solutions within this set approach (a) as time goes to infinity. To

Fig. 14. Invariant sets of both artificial systems without auxiliary vector.

better illustrate these results, we simulated both artificial systems

as shown in Fig. 14. So far we developed a great understanding

of the attractors in both artificial systems by mere algebraic anal-

ysis without the need of physics inspired methods like Energy

or Lyapunov functions or exhaustive computer simulations. In

fact, this approach is physically agnostic since neither artificial

system represents a sound physical process independently rather

each was constructed for the sole purpose of having an attainable

invariant set. Those sets are defined as A1 =
{

x ∈ �2
}

and

A2 =
{

x ∈ �2 : x2 g
rpC

L
x1 − rpC

√

1
L2x

2
1 −

2P
rp

}

.

A1 is basically the whole state space, while A2 contains all

solutions depicted in Fig. 14. With slight manipulation of those

sets we will be able to satisfy Theorem 1 conditions. Theorem

1 requires all individual artificial systems to be stable in the

same set Ae. In Fig. 14, we notice that the ω-limit of the first

system (ω1) lies outside the invariant set A2. This can be fixed

by introducing an auxiliary vector field g(.) that shifts ω1 to the

interior of A2. An auxiliary vector is a vector that appears in

some or all artificial systems (f i(x)) while remaining invisible

to the original system f(x). In this case, g(.) is a constant vector

of [0, vg]
T that is added to f1(x) and subtracted from f2(x).

ẋ = f1(x) =

[

− rl
L
x1 −

1
C
x2 + vg

− 1
2rpC

x2 + vg

]

(23)

ẋ = f2(x) =

[

0
1
L
x1 −

1
2rpC

x2 − CP 1
x2

− vg

]

(24)

With this alteration, we bring ω1 ∈ A2 as shown in Fig. 15.

Now we can take advantage of individual invariance by relying

only on linear analysis to estimate the region of attraction of

(23). In other words, studying the behavior of the linear system

defined by f1(x) with respect to the previously defined regions.

From the definition of A1 and A2, there intersection is A2 thus it

can serve as a candidate Ae in Theorem 1. To meet the criterion

of Theorem 1,Ae needs to be positively invariant with respect to

all individual systems and it is indeed for f2(x) which leaves us

with the linear system f1(x) that has its equilibrium point inside

A2. By just a handful number of simulations of the individual
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Fig. 15. Invariant sets of both artificial systems with auxiliary vector.

Fig. 16. Phase portrait of (22), Ae and AH from [23].

linear system at the boundaries of A2 we found that there exits

a set Âe ⊂ A2 for which both systems are invariant, and we

could quantify the following subset to be our estimated region

of attraction:

Ae =

{

x ∈ �2 : x1 f 0.075,

−
1

2rpC
x2
2 +

1

L
x1x2 − CP + vgx2 g 0

}

Ae ⊂ Âe ⊂ A2

This example proves that individual invariance can bring sim-

plicity to problems deemed difficult and analytically intractable.

In Fig. 16, it is clear that individual invariance provides signif-

icantly larger estimates of stability regions, the figure depicts

the stability region estimate of the same system as given in [23]

which is the ellipse AH inside Ae (Shown also in close-up in

Fig. 17). AH estimation fades in comparison to our individual

invariance based estimate as clearly seen in the figure where AH

only covers a very small region around the equilibrium point and

the method in [23] lacks the generality of individual invariance

and can only be applied to a type of port-Hamiltonian systems.

Fig. 17. Phase portrait of 22, Ae and AH from [23].

VII. FUTURE PERSPECTIVES

The Individual Invariance Theorem brings simplicity to the

overly complex problem of stability in nonlinear systems by

transforming the complicated nonlinear interactions into simpler

lower dimensional artificial systems. This seemingly intuitive

approach allows revisiting the question of regions of attraction

from different angles, where the region of attraction approxi-

mation results from a decomposition of a given system into a

set of artificial systems which allows altering and deforming

the approximate by different choices of artificial systems. This

two-step approach, identifying artificial systems then approxi-

mating the region of attraction, provides an insight into what

elements of a given vector field are participating in the shape

and size of the region of attraction. Although in this article, we

presented several successful implementations of the Theorem,

there are key areas to be explored. For instance, an artificial

system can be used to characterize an uncertain parameter (or

disturbance) to independently evaluate its impact on the overall

system stability without the need to simulate the whole model.

Similarly, control parameters can be designed and tuned as

artificial systems interacting with the model. These are some

general implications that are currently under development. In

power systems, individual invariance can provide an insightful

look into what drives the system toward instability by indepen-

dently assessing each artificial system which can be a power

plant or a single generator. The next step to applying individual

invariance for stability assessment in power systems will be to

evaluate different artificial system constructions and evaluate

the evolution of regions of attraction with each artificial system.

Similar to energy functions, defining artificial systems will

depend on the system physics, however, the flexibility margin

is significantly higher and we believe that this concept provides

a new perspective to the problem of stability that is capable of

overcoming some limitations of classical methods.

VIII. CONCLUSION

This article presents a novel approach for estimating the

region of attraction in nonlinear autonomous systems based on
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new theoretical findings. A nonlinear vector field is represented

as a sum of individual vector fields of the same dimension.

Each individual vector field creates an artificial system where

its region of attraction is defined independently of the original

system. The individual invariance Theorem states that if all

individual vector fields are invariant in the same set then that

set is invariant for the original system. This article provides the

theoretical foundation of this novel result and extends it to an

algorithmic construction of regions of attraction. The presented

theory is introduced through several second order examples

followed by more practical and high order test cases in power

systems including reduced-order and full-order models and a

DC application with nonlinear loads. A major advantage of

individual invariance theorem is that it allows the use of linear

programs to approximate subsets of the region of attraction as

an intersection of polyhedrons which provide a computation-

ally efficient approach for transient stability studies in power

system. It also allows for analytical description of subsets of

the region of attraction as used in the estimates of the 39-bus

full-order model which can be of significant value in real-world

applications. However, we expect the current implementation

to provide slightly conservative assessment of stability in larger

power systems in comparison to direct methods for two reasons:

1- Direct methods provide stability assessment relevant to each

fault-on trajectory, whereas, individual invariance provide a

system based assessment, 2- The bounds on the coupling terms

eliminate some stable cases where a power system can experi-

ence large deviations while retaining stability. This is only true

in the context of CCT assessment, otherwise, we consider the

individual invariance as a qualitative analysis tool that is capable

of providing critical insight into nonlinear systems behavior.

APPENDIX A

TEST SYSTEMS’ PARAMETERS
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