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stochastic pulse time scales
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Abstract—1In this paper, we expand the stability theory of
dynamical systems on stochastic time scales to the case of
stochastic pulse time scales. The class of systems considered
here evolve on nonuniform time-domains that consist of a union
of disjoint closed intervals with stochastic lengths, followed
by random step sizes. Necessary and sufficient conditions for
exponential stability almost surely are derived. The approach
is based on determining the region of exponential stability
almost surely. An illustrative numerical example is presented
to validate the results. The class of systems considered in this
paper has important applications for example, control networks
subject to communications failures, population dynamics, sig-
nal processing with variable sampling, consensus multi-agents
systems and wide-area power system controls.

Keywords: Time scales; Stability analysis; Exponential
stability almost surely, Mean square stability.

I. INTRODUCTION

Most of the existing methods for analyzing the stability
of dynamical systems are applied to systems operating on
a continuous-time domain or a uniform discrete-time do-
main. However, in engineering and several areas of industry,
there are many dynamical systems which operate on a
non-uniform time domain that can be either discrete non-
uniform or a combination of discrete points and variable
continuous intervals. For example, impulsive systems in
which the state jumps are not instantaneous, a set of discrete-
time controllers, signal processing with variable sampling,
population model, dynamic programming, and failure of
communication in control networks. Time scales theory was
developed to study such complex systems because it captures
the interplay between continuous and discrete analysis. It
leads to understanding and analyzing dynamical systems
evolving on any non-uniform time domain, and to extends
these theories to more general classes of dynamical systems
on a non-uniform time domain, denoted T. Time scales
theory advanced quickly, culminating in the advanced mono-
graph [1]. Recently, the application of time scales theory in
systems and control has gained attention in the literature.
The stability analysis was studied for linear and nonlinear
systems evolving on an arbitrary time scale in several works
[2], [3], [4], [5]. This analysis was extended to systems
evolving on a stochastic non-uniform discrete time scale in
[6], [71, [8]. In [9], [10], [11], the authors extended the study
to a switched systems. In [12], the authors considered a
special class of switched systems evolving on the time scale
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T = U ylo(tk), tkt1), o(tk) > ti, formed by a union of
disjoint closed intervals with variable length, followed by a
variable step size. The exponential stability of this class of
switched systems has been studied in [13], [14] by consid-
ering that unstable modes may exist. In [15], the authors
derived a necessary and sufficient condition for exponential
stability by introducing a region of exponential stability
S(T). The problem of intermittent information transmission
in communication networks due to temporary sensor failures
or the presence of communication obstacles was converted to
this special class of switched systems (continuous/discrete)
and studied in [16], [14] (for the consensus of multi-agent
systems problem), and in [17] (for the problem of wide-area
power system controls).

In this paper, the stability of linear systems on a stochastic
time scale T = U [0(t), tx+1] is analyzed. The underly-
ing assumption is that the system runs in continuous-time
for a random amount of time 7, followed by a disruption of
stochastic length p. The length of each continuous interval
and the length of each disruption period is drawn from one
of two separate stationary statistical distributions. Moreover,
we assume that the length of each continuous interval is
independent of the length of each disruption. Such a situation
could arise, for example, in the leader-follower consensus
problem with variable uptime and downtime [16], [18],
since communication uptime and downtime are stochastic
in nature. This situation could also arise in network control
systems with variable sampling times [19]. To approach
this subject, we utilize the theory of dynamic equations on
stochastic time scales. In particular, necessary ad sufficient
conditions of exponential stability almost surely are derived
by introducing region of exponential stability almost surely.

II. PRELIMINARIES

A time scale T is any nonempty closed subset of the real
numbers R, as the usual integer subsets (hZ or N), any
discrete set with variable steps sizes, or any combination of
discrete points unioned with closed intervals [1]. V¢ € T, the
forward jump operator is given by o(t) := infser{s > t},
the backward jump operator by p(t) := sup,er{s < t}, and
the graininess function by p(t) := o(t) — t which measure
the distance between any two consecutive times. If T has a
left-scattered, then the set T = T—{m}; otherwise T = T.
The time scale A-derivative of x : T® — R is defined as

2 (t) == lim M.
s\t o(t)—s
One can notice that if T = R, we have o(t) = ¢, and
22 (t) = @(t), which is the usual derivative of z. If T = hZ,
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we have o(t) = t + h, then a®(t) = “UF=2) " yhich
is the usual difference equation. A function A : T — R
is regressive (resp. positively regressive) if 1+ u(t)A(t) #
0 (resp. 1 + p(t)A(t) > 0),¥t € T* and it is said to be
uniformly regressive, if 3y > 0 such that y~! < |1 +
w(®)A(t)], vt € T* [4]. We denote the set of regressive (resp.
positively regressive) functions by R (resp. R1). A matrix
function A : T — R™*™ is called regressive if and only if all
its eigenvalues are regressive (see [1]). Consider the linear
dynamical system on an arbitrary time scale T

2 = Az, AeR. (D

.%‘(to) = Xy,

The unique solution of (1) is z(t) = ea(t,to)xzo, where the
generalized exponential function e4(t,tg) is given by

¢ log(1 + p(7)A(7)) .
ealts) = P (f A ar)s w20
exp( [, A(7)dr); u(t) =0,
()

3)

Let us present some algebraic results on matrices on time
scales theory that are needed for this paper. Let A € R™*™ be
a regressive matrix, there always exists an invertible matrix
Q@ € C™*™ such that e4(t, s) is given, for ¢,s € T", by

ey, (t,s)
ealt,s) =Q QT &
e (t,s)
Ji
with J = , such that J, € C¥>dx (5)
Ji

A 1 0 0

Me 1 ... 0
and Jp, = M\l + N = . . , (6)

Ak

where kK = 1,2,...,1 and dj, is the algebraic order of A,
such that d; + ds + ... + d; = n. The matrix N € C% xdx
denotes a square matrix which satisfies N% = 0. We have
spec(Ji) = { Ak}, whence spec(A) = {A1, Az, ..., \i}, the
set of the eigenvalues of A. Each Jordan block Ji has only
one independent eigenvector. If A has distinct eigenvalues,
then d =1 and N = 0 with J = diag(A1, Aa, ..., \,). We
have the following property:

1 mik (t,s) miz_l (t,s)
e m‘i’;_Q(t, s)
CJy (t,s) = W (t,s) . 5

such that, the mappings mYy : T* x T® — C are monomials
of degree n, and recursively defined, for a regressive function
A:T* — C, by

t n
n+1 m3(7, s)
m t,s) = — = A7, VneN.
e = [ e
®
~For T=Rand A€ C, mj(t,s) = L3 for t,5€R.
- For T = hZ and a regressive constant A € C, m}(¢t,s) =

t—s)"
W’ for t,s € hZ.

mS(t,s) =1,

Lemma IL1. [4] Let \ be uniformly regressive, then the
bound |m3(t,s)| < A" (t — s)" holds for t > s and n €

N*(= N/{0}).

The dynamical system (1) is exponentially stable, if there
exists a constant 3 > 1 and a constant o < 0, with o« € R,
such that the corresponding solutions satisfies

(@) < Bllzollea(t,to), Vto,t €T, to <t.

Specifically, the condition that o € R™ reduce to a: < 0 for
T =R, and to _Tl < «a <0, for T = hZ. In [4], the authors
classified the exponential stability of (1) by determining a
region of exponential stability S¢ as follows:

Sc(T):={ eC:
log 1+ 3\ \y _ gy,
S

€))
and the dynamical system (1) is exponentially stable if and
only if the eigenvalues of A are uniformly regressive and are
all inside Sc. In [20], the authors simplified the computation
of the set Sc(T) for purely discrete time scales where the
graininess function has a finite range by introducing the
concept of asymptotic graininess. In [21], the computation
of this set was generalized to a discrete stochastic time scale.
Note that, the computation of this set for an arbitrary T can
be difficult. Therefore, the Hilger circle is defined as [1]

Huwy = {2 € CH{=1/pn®)} - [1 + p(t)z| <1}, Ho=C~

(10)
The authors in [22] showed that for any time scale, the
system (1) is exponentially stable if the eigenvalues of A
are inside the Hilger’s discs H iy corresponding to u(t) =
Hmax = Sup,er p(t) < oo, which is a subset of Sc. The
sudy of stability of dynamical systems on an arbitrary time
scale with variable p(t) (deterministic or stochastic) is a
very interesting question that has garnered much attention
[20], [4], [6], [21], [15]. Consider now the discrete stochastic
time scale T generated by a graininess function u, which
is considered as a random variable and determined by the

sequence p = {uk }ren, such that (see Fig. 1)

TZ_{to}U{tQ+ZMiI ’I”LEN()}, (11D

=0

. 1 T,
lim supy_, o T i oy W)

where u; are independent and identically distributed for all

© € N. We define the concepts of exponential stability almost
(7)  surely of the dynamical system (1) on T. We say that the
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Fig. 1. Generating a sequence of representative values from
a discrete stochastic pulse time scale T
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Fig. 2: Generating a sequence of representative values from
a stochastic pulse time scale, T ,

dynamical system (1) is exponentially stable almost surely
on T, if and only if

P[F3a > 0, st Vg, tp € T, 3K = K(to) > 1:
lea(ty, to)| < Ke—@(tk—to)] =1,

where P denotes the probability. On T, a region of expo-
nential stability almost surely is determined in [21] for a
scalar dynamical system, which is analogous to the set (9),
as follows.

Theorem IL.2 ([21]). Let A € C. Assume X\ # —1/u almost
surely. Then the scalar dynamic equation z® = Az, is
exponentially stable almost surely on T if

E[ln|1 + Mul] <0, (E denotes the expectation),

and the region of exponential stability almost surely is given
by the set S = {\ € C: E[ln|1 + Ay|] < 0}.

III. PROBLEM STATEMENT

The objective of this work is to extends the results of the
exponential stability almost surely, presented in [21], for the
discrete stochastic time scales T defined in (11) to a new
class of stochastically generated time scale. Let A € R™*"™
be a regressive matrix and consider the dynamical system

22(t) = Ax(t), (to) = wo, (12)
on the time scale T = U2 ;[0 (tx), tk+1] formed by a union
of disjoints closed intervals, with tg = o(tg) = 0. Denote the
length of the continuous intervals by 7, := tx11—0(tx), k €
N and the discrete gap sizes by pg := o(tg) — tg, k € N,
which are considered as random variables. This structure is
visualized in Figure 2. We call the time scale generated
by these random variables, a stochastic pulse time scale.
The system (12) can be converted to a discrete switched
system evolving on the discrete stochastic time scale TAI‘n w=
U o ({te} U{o(tk)}), such that its forward jump operator
o "]AI‘T}H — R, is determined by 6(t;) = o(tx) and
G(o(tg)) = tgy1. For o(ty) <t <tgy1, k €N, we have

For t = tg41, w(tk+1) = eA(tk+1_a(tk))$(U(tk)), Vk € N.
From the above equation, we get

x(trr1) — x(o(ty)) eAltn=e )z (o (ty)) — x(o(tr))

tk+1 — O'(tk) Tk

(&”‘”)mdm»

Tk

A (13)
Note that, for t = o(tx) € T;,, k € N, the discrete A-
derivative of z(t) is given by

)
J?A(O'(tk)) — x(é'(o-(tk))) — $(U(tk))

_ (k) — (o (te))

T tpar —oft
k+1 0(161)4)

Finally, according to (13) and (14) we can convert (12) to
the following discrete switched linear system on T, ,

AT I

e
(m) z(t) 5 teUilo{o(te)}
Az(t) ;o te U o{tes1}-

o(a(tr)) —o(tr)

2 (t) =

Let us define the graininess function of TAI‘T’M

N . ) te Uzo:o{a(tk)}

)=o) —e={ 7 3 L Elot)
We will consider that the sequences of continuous intervals
length 7 = {7 }ren and the discrete gaps p = {pg tren
form a sequence of independent and identically distributed
(i.i.d) random variables. Note that, the region of exponential
stability S¢ of (12) has been derived in [4] for a particular
p(t) of T = U2 [o(tr), tes1]. This result was extended in
[15] for a class of switched systems between a continuous-
time dynamic on U2 [0 (tx), t,x+1] and a discrete-time dy-
namic at times U° j{tx+1}. The aims of this paper is to
determine a region of exponential stability almost surely of
the system (12) using a stochastic approach by considering
the converted switched system (15), evolving on the purely
discrete time scale T and then generalize the results to
any switched system.

Ty

IV. MAIN RESULTS

First, we shall study the scalar case of the class of switched
systems (15) by determining the region of exponential sta-
bility and deriving the conditions for exponential stability
almost surely. Next we will generalize the results to the
matricial case.

A. Scalar switched system

1) Region of exponential stability on random time scales:

Consider the scalar dynamical system
IEA(t) = )\(E(t)7 (E(t(]) = Zo, reC (16)

on T = U ([o(tk), tr41], with A € R. As previously, the
system (16) can be converted to the scalar switched system

on the discrete time scale 'fFT, - as follows:

(em_l> x(t) 5 teu ot}

Tk
A x(t) ;T € U;?;O{tk+1}

22 (t) =
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In the deterministic case, T , is considered as a discrete time
scale generated by the gaps {74 }ren and {py}reny which
are variable in time. We determine the region of exponential
stability of (17) in the following Proposition.

Proposition IV.1. Let the switched system (17) on TATT’ u- The
region of exponential stability of (17) is given by the set

S .(T={recC:

. t log |1+/(s)A
lim sup,_, o (t_lto) b g‘;(g)( M As <0},

(18)

for tg,t € ’]AI‘T#, and ty < t, with

log |1+ fi(s) A RN 7; s € UpZofo(t)}
—————— = log|l+ pupA[ -
fi(s) — s € Uplolth+1}

(19)
where R(.) is the real part and |.| is the modulus. The system
(17) is exponentially stable if and only if X\ € S: ,(T).

Proof. The proof follows by a modification of the proof of
Proposition 1 in [15] (see Appendix). O

2) Exponential stability almost surely:
Consider the switched system (17) on ']AI‘T,# which is con-
sidered as an i.i.d stochastic time scale generated by the
random variables {7 }ren and {pg tren. We determine a
necessary and sufficient condition for exponential stability
almost surely in the following Theorem.

Theorem IV.2. The scalar switched system (17) is expo-
nentially stable almost surely on T, ,, if and only if

ERN)7, + log(|1 + prA|)] < 0. (20)
Proof. From the system (17) on 'TI‘T_#, we have
z(thy1) = ™ (1 + ueN)z(ty), VEEN.  (21)

By applying the Theorem of Bitmead [23] which state that
the stochastic difference equation x,, 1 = ay,x,, where {a,}
is a sequence of ergodic scalar random variables, is expo-
nentially stable almost surely if and only if Eflog(|a,|)] <
0. Since {pk}ren and {7k }ren are sequence of mutually
independent random variables, so {e*™ (1 + upA) ren is a
sequence of ergodic scalar random variables and we have

Ellog(|e*™ (1 + puA)])] = ER(A) 7 +log(|1 + uxAl)] < 0.
(22)
O

From Proposition IV.1 and Theorem IV.2, we can derive
the following relationship between the exponential stability
almost surely and the region of exponential stability S ,(T').

Corollary IV.2.1. The switched system (17) is exponentially
stable almost surely if and only if A € S; ,(T).

Proof. Let 7 = {7 }ren and p = {pg tren. By the strong
law of large numbers [24], we have

SR T + log [1 4 pi)]]

ERAN)7+log(|1+uA|)] = leII;O
(23)

According to (3), we have the two relationships

tit1
RN)7; = / T RO)As (24)

(ts)
o) Jog |1 A
gl + = [ BILE N
t; ()
From (24), (25) and (19), we get

tit1 1 1 ~ A
RO + log |1 + pi)| :/ log|1 + fi(s)Al
t; i(s)

As (25

As (26)

From (23) and (26), we have
E[RA)7T + log(|1 4+ pA])]
k—1 ptiz1 10g |1 + ﬂ(s))‘|

) 1
= limp_ 00 % 2z Jy, TAS

(th—1 —to) ptr_y log |1+ ()|
k(ti—1 —to) "' fi(s)

Zi—:ol (75 + pq)
k(tk,1 — ﬁo)

As

= limg o0

th—1 log ‘1 + ﬂ(s)/\‘

~ As
fo fi(s)

= hmk—>oo

1 th—1 10g|1+ﬂ(8))‘|

= (Elr]|+ E limy o0 -
(Elr] + Elp) i s fi ™ 5
Since (E[r] + E[u]) > 0, so E[R(A)7 + log(|1 + pA[)] <0,
if and only if A € S, ,,(T). Suppose now that E[R(\)7 +
log(|1 + pA;])] > 0, so from the above analysis, we have

(E[u] + E[7]) lim ! /t *log |1 + s)|

As >0
k—oo (tr, — to) s

0

which implies that A ¢ S, -(T) and from Theorem IV.2, the
switched system is not exponentially stable almost surely.
O

B. Generalization to linear matrix switched systems

Consider now the switched dynamical system (15). Based
on a result of Theorem 2 in [15], we will characterize the
exponential stability of this class of switched systems.

Theorem IV.3. (Characterization of exponential stability)

Let the discrete time scale 'JAI‘T, u and a regressive matrix A €

R™ ™, The following properties are satisfied:

(1) If the switched system (15) is exponentially stable, then
for any eigenvalue \; of A, we have \; € ST#('TI‘).

(ii) If the eigenvalues \j of A are uniformly regressive, and
if for any eigenvalue \; of A we have \; € SMJ(?AI‘),
then the system (15) is exponentially stable.

Proof.
(i) The general solution of (15) is given by (see [12]):

$(t0) = eA(t7t0) x(to).

27)
Note that, z(t) = []0_,_,[€7 (1 + A\ju)] Vi, V1 <
J < n is a solution of the system (15) where V} is the

0
z(t) = l I "+ ma

i=k—1
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(i)

eigenvector associated to \; (see [1] Chapter 5 and [12]
for further details). Let ey, (t,t0) = H?:k_l eNiTi(1 4
Ajpi). If (15) is exponentially stable, there exist con-
stants K = K (tp) and 0 > o € R such that

lex, (t,to)| < Keq(t,to), fort>tg

for all eigenpairs (A}, V;) of A. On the evidence of the
proposition IV.1, we conclude that A; € ST’#(?AI‘).
From (4) and (5), there exist an invertible matrix @) such
that A = QJQ~!, where J is the associated Jordan
matrix of A and defined as in (6), such that

z(t) =@ [H?=k—1 /T (I + uiJ)] Q" x(to)
= Qey(t,t0)Q 7! z(ty), and

0 (28)
[Tick s elim (L + pidj) =

1 mi (tto) my (¢, to)
0 1 my "2 (t, to)
1
which implies that
ex, (t,to) My
es(t,to) = ;
ex, (¢ to) M,

29)
where M;, 1 < j < [ < n are matrices which
depend on the monomiales m(A]) Note that, if A is
diagonalizable, so M; are the identity matrices.

For j € {1,...,l}, we have
log [14+4(5)A; |

J
HONEESS

t
lex, (£, to)| = elto t > to.

If we consider that all the eigenvalue A; of A, satisfy

Aj € S;,,(T), then

1 / log |1 + ji(s)),|
t—to Ji, fi(s)
with «; is a negative positively regressive constant.

Therefore, we have the following estimate

lim sup
t—o0

As=a; <0

lex; (t,to)] < Ky e®!7t0) < |y e*U=to) ¢ > ¢

with K = Kl(to) >1and a = minlgjgn{aj} (see
Appendix). From (27), (28) and (29), we have

lea(t, to)ll < 1QI Q| lles(t,to)]l, with
nj
les (£, to)ll < Ko max fex; (£,t0) my (£ to)],
for 0 < n; < dj. Since the eigenvalues of A are

assumed to be uniformly regressive, and from Lemma
II.1 we get

MY (t,t0) e, (t —t0))| < Kz 7;” (t — to) e®~"0).

From the above inequalities, we conclude that there are
K = K(K,,K»,K3,a,tg,n;) > 1, such that

lealt,to)]] < K et for all t > t,,

0 .
[Ticp_y €M7 (1 + piXy) x

which shows the exponential stability of system (15).
O

Theorem 1V.4. (Exponential stability almost surely)
Consider ']ATT),L the i.i.d stochastic time scale generated by
= {pk}ren and T = {7 }ken, and let the switched system
(15) such that all the eigenvalues \j of A are uniformly
regressive with respect to T and pu. The system (15) is
exponentially stable almost surely on ']AI‘T,H, if and only if

E[R(A;)7 +log(]1 + pA;|)] <0, (30)

Proof.

It is a direct result from Corollary IV.2.1 and Theorem
IV.3. The condition (30) is satisfied if and only if \; €
SM,T(T), V1l < 5 < n according to Corollary IV.2.1, and
from Theorem IV.3 we conclude that the switched system
(15) is exponentially stable almost surely on ’TI‘HW O

V1<j<n.

V. NUMERICAL EXAMPLE

Let the switched system (15) on ']AI‘T,M, with A =

( __412 23 ) The eigenvalues of A are Ay » = 52 +i4.7.
Suppose that g = {ux} and 7 = {7} follow the uniform
distribution. Consider these different cases:

) uw—U(0.3,1) T — U(0.3,1).

2) 1 — U(0.5,3) T — U(0.5,3).

3) u—U(0.5,3) T — U(0.3,1).

4) p—U0.3,1) T — U(0.5,3).
The region of exponential stability almost surely is given by
the set S, , = {A € C: E[R(N)7, + log(|1 + prA|)] < 0}.
These regions are plotted for the above different cases in
Figures 3 and 4. We can see that the eigenvalues of A are
not in the region of exponential stability for p, 7 — U(0.3,1)
and for 4 — U(0.5,3), 7 — U(0.3,1), and the system
is unstable. When pu,7 — U(0.5,3) and p — U(0.3,1),
7 — U(0.5,3), the region of exponential stability contains
the eigenvalues of A and the system is exponentially stable
almost surely.

and
and
and
and

Fig. 3: Region of exponential stability almost surely on ’]AI‘T, -
Left: u and 7 — U(0.3,1). Right: ¢ and 7 — U(0.5, 3)

VI. CONCLUSION

In this work, exponential stability almost surely was
studied for a linear dynamical system on random time
scales. The system evolves on a particular non-uniform time
scale formed by a union of disjoint closed intervals with
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(-15.47) (-1547)

Fig. 4: Region of exponential stability almost surely on ’JAI‘T7 L
Left: u — U(0.5,3), 7 — U(0.3,1). Right: © — U(0.3,1),
T —=U(0.5,3).

stochastic length and separated by stochastic gaps. Condition
are derived by determining a region of exponential stability
almost surely. This work provides preliminary results for
future works where determining regions of mean square
stability and generalizations to switched systems with non-
commutative state matrices are of interest.
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VII. APPENDIX

Proof. (Proposition IV.1) It is assumed that system (17) is
exponentially stable, such that

lex(tr, to)| < K eq(tr, to) fort>to, ty,to € Ty,

with K > 1 and 0 > o € R™. The explicit modulus of the
generalized exponential function of (17) is given by

U, log [1+A()AL A 5

lex(ty, to)| = elte — i) for ty, > to, ty,to € Tr .

It implies that

log |1 + fi(s)A| +
BTN <1 g
ho TGy A Sttty

=log(K) + 3o i

+Zz 0 Tix
<log(K)+ > —o Mi+ Zf;ol Tic
= log(K) + a(tr — to)

. t i
One gets: limsup,, . 7= [, bgll;(g)(s))“ As < a<0.

In the other hand, suppose that A € S, ,(T) such that
1 B log |1 + fi(s)\
/ og | A+u(8) |As:7]<0.
£ —to fi(s)
Then, for all 0 < ¢ < —n there exists a constant K =
K (tg) > 1 such that, for t; > ty, we have

= Ke

€29

lim sup
tr—00

lex(tr, to)] < Kete)(te—to) a(te—to)

which implies the exponential stability of (17). O
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