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Abstract— In this paper, we expand the stability theory of
dynamical systems on stochastic time scales to the case of
stochastic pulse time scales. The class of systems considered
here evolve on nonuniform time-domains that consist of a union
of disjoint closed intervals with stochastic lengths, followed
by random step sizes. Necessary and sufficient conditions for
exponential stability almost surely are derived. The approach
is based on determining the region of exponential stability
almost surely. An illustrative numerical example is presented
to validate the results. The class of systems considered in this
paper has important applications for example, control networks
subject to communications failures, population dynamics, sig-
nal processing with variable sampling, consensus multi-agents
systems and wide-area power system controls.
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I. INTRODUCTION

Most of the existing methods for analyzing the stability

of dynamical systems are applied to systems operating on

a continuous-time domain or a uniform discrete-time do-

main. However, in engineering and several areas of industry,

there are many dynamical systems which operate on a

non-uniform time domain that can be either discrete non-

uniform or a combination of discrete points and variable

continuous intervals. For example, impulsive systems in

which the state jumps are not instantaneous, a set of discrete-

time controllers, signal processing with variable sampling,

population model, dynamic programming, and failure of

communication in control networks. Time scales theory was

developed to study such complex systems because it captures

the interplay between continuous and discrete analysis. It

leads to understanding and analyzing dynamical systems

evolving on any non-uniform time domain, and to extends

these theories to more general classes of dynamical systems

on a non-uniform time domain, denoted T. Time scales

theory advanced quickly, culminating in the advanced mono-

graph [1]. Recently, the application of time scales theory in

systems and control has gained attention in the literature.

The stability analysis was studied for linear and nonlinear

systems evolving on an arbitrary time scale in several works

[2], [3], [4], [5]. This analysis was extended to systems

evolving on a stochastic non-uniform discrete time scale in

[6], [7], [8]. In [9], [10], [11], the authors extended the study

to a switched systems. In [12], the authors considered a

special class of switched systems evolving on the time scale
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T = ∪∞
k=0[σ(tk), tk+1], σ(tk) > tk, formed by a union of

disjoint closed intervals with variable length, followed by a

variable step size. The exponential stability of this class of

switched systems has been studied in [13], [14] by consid-

ering that unstable modes may exist. In [15], the authors

derived a necessary and sufficient condition for exponential

stability by introducing a region of exponential stability

S(T). The problem of intermittent information transmission

in communication networks due to temporary sensor failures

or the presence of communication obstacles was converted to

this special class of switched systems (continuous/discrete)

and studied in [16], [14] (for the consensus of multi-agent

systems problem), and in [17] (for the problem of wide-area

power system controls).

In this paper, the stability of linear systems on a stochastic

time scale T = ∪∞
k=0[σ(tk), tk+1] is analyzed. The underly-

ing assumption is that the system runs in continuous-time

for a random amount of time τ , followed by a disruption of

stochastic length µ. The length of each continuous interval

and the length of each disruption period is drawn from one

of two separate stationary statistical distributions. Moreover,

we assume that the length of each continuous interval is

independent of the length of each disruption. Such a situation

could arise, for example, in the leader-follower consensus

problem with variable uptime and downtime [16], [18],

since communication uptime and downtime are stochastic

in nature. This situation could also arise in network control

systems with variable sampling times [19]. To approach

this subject, we utilize the theory of dynamic equations on

stochastic time scales. In particular, necessary ad sufficient

conditions of exponential stability almost surely are derived

by introducing region of exponential stability almost surely.

II. PRELIMINARIES

A time scale T is any nonempty closed subset of the real

numbers R, as the usual integer subsets (hZ or N), any

discrete set with variable steps sizes, or any combination of

discrete points unioned with closed intervals [1]. ∀t ∈ T, the

forward jump operator is given by σ(t) := infs∈T{s > t},

the backward jump operator by ρ(t) := sups∈T{s < t}, and

the graininess function by µ(t) := σ(t) − t which measure

the distance between any two consecutive times. If T has a

left-scattered, then the set Tκ = T−{m}; otherwise T
κ = T.

The time scale ∆-derivative of x : Tκ → R is defined as

x∆(t) := lim
s↘t

x(σ(t))− x(s)

σ(t)− s
.

One can notice that if T = R, we have σ(t) = t, and

x∆(t) = ẋ(t), which is the usual derivative of x. If T = hZ,
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we have σ(t) = t + h, then x∆(t) = x(t+h)−x(t)
h

, which

is the usual difference equation. A function λ : T → R

is regressive (resp. positively regressive) if 1 + µ(t)λ(t) 6=
0 (resp. 1 + µ(t)λ(t) > 0), ∀t ∈ T

κ and it is said to be

uniformly regressive, if ∃γ > 0 such that γ−1 ≤ |1 +
µ(t)λ(t)|, ∀t ∈ T

κ [4]. We denote the set of regressive (resp.

positively regressive) functions by R (resp. R+). A matrix

function A : T → R
n×n is called regressive if and only if all

its eigenvalues are regressive (see [1]). Consider the linear

dynamical system on an arbitrary time scale T

x∆ = Ax, x(t0) = x0, A ∈ R. (1)

The unique solution of (1) is x(t) = eA(t, t0)x0, where the

generalized exponential function eA(t, t0) is given by

eA(t, s) =







exp

(

∫ t

s

log(1 + µ(τ)A(τ))

µ(τ)
∆τ

)

; µ(τ) 6= 0

exp(
∫ t

s
A(τ)dτ); µ(τ) = 0,

(2)

where the ∆-integral is used [1]. For f : T → R, we have

∫ σ(t)

t

f(s)∆s = µ(t)f(t). (3)

Let us present some algebraic results on matrices on time

scales theory that are needed for this paper. Let A ∈ R
n×n be

a regressive matrix, there always exists an invertible matrix

Q ∈ C
n×n such that eA(t, s) is given, for t, s ∈ T

κ, by

eA(t, s) = Q







eJ1
(t, s)

. . .

eJl
(t, s)






Q−1, (4)

with J =







J1
. . .

Jl






, such that Jk ∈ C

dk×dk (5)

and Jk = λkI +N =











λk 1 0 . . . 0
λk 1 . . . 0

. . .
...

λk











, (6)

where k = 1, 2, . . . , l and dk is the algebraic order of λk,

such that d1 + d2 + . . . + dl = n. The matrix N ∈ C
dk×dk

denotes a square matrix which satisfies Ndk = 0. We have

spec(Jk) = {λk}, whence spec(A) = {λ1, λ2, . . . , λl}, the

set of the eigenvalues of A. Each Jordan block Jk has only

one independent eigenvector. If A has distinct eigenvalues,

then dk = 1 and N = 0 with J = diag(λ1, λ2, . . . , λn). We

have the following property:

eJk
(t, s) = eλk

(t, s)











1 m1
λk
(t, s) . . . mdk−1

λk
(t, s)

1 . . . mdk−2
λk

(t, s)
. . .

...

1











,

(7)

such that, the mappings mn
λ : Tκ × T

κ → C are monomials

of degree n, and recursively defined, for a regressive function

λ : Tκ → C, by

m0
λ(t, s) = 1, mn+1

λ (t, s) =

∫ t

s

mn
λ(τ, s)

1 + µ(τ)λ(τ)
∆τ, ∀n ∈ N.

(8)

- For T = R and λ ∈ C, mn
λ(t, s) =

(t−s)n

n! , for t, s ∈ R.

- For T = hZ and a regressive constant λ ∈ C, mn
λ(t, s) =

(t−s)n

n!(1+hλ)n , for t, s ∈ hZ.

Lemma II.1. [4] Let λ be uniformly regressive, then the

bound |mn
λ(t, s)| ≤ γn(t − s)n holds for t ≥ s and n ∈

N
∗(= N/{0}).

The dynamical system (1) is exponentially stable, if there

exists a constant β ≥ 1 and a constant α < 0, with α ∈ R+,

such that the corresponding solutions satisfies

‖x(t)‖ ≤ β‖x0‖eα(t, t0), ∀t0, t ∈ T, t0 ≤ t.

Specifically, the condition that α ∈ R+ reduce to α < 0 for

T = R, and to −1
h

< α < 0, for T = hZ. In [4], the authors

classified the exponential stability of (1) by determining a

region of exponential stability SC as follows:

SC(T) := {λ ∈ C :

lim supT→∞

1

T − t0

∫ T

t0
lims→µ(t)

log |1 + sλ|

s
∆t < 0},

(9)

and the dynamical system (1) is exponentially stable if and

only if the eigenvalues of A are uniformly regressive and are

all inside SC. In [20], the authors simplified the computation

of the set SC(T) for purely discrete time scales where the

graininess function has a finite range by introducing the

concept of asymptotic graininess. In [21], the computation

of this set was generalized to a discrete stochastic time scale.

Note that, the computation of this set for an arbitrary T can

be difficult. Therefore, the Hilger circle is defined as [1]

Hµ(t) := {z ∈ C/{−1/µ(t)} : |1 + µ(t)z| < 1} , H0 = C
−

(10)

The authors in [22] showed that for any time scale, the

system (1) is exponentially stable if the eigenvalues of A
are inside the Hilger’s discs Hmin corresponding to µ(t) =
µmax = supt∈T µ(t) < ∞, which is a subset of SC. The

sudy of stability of dynamical systems on an arbitrary time

scale with variable µ(t) (deterministic or stochastic) is a

very interesting question that has garnered much attention

[20], [4], [6], [21], [15]. Consider now the discrete stochastic

time scale T̃ generated by a graininess function µ, which

is considered as a random variable and determined by the

sequence µ = {µk}k∈N, such that (see Fig. 1)

T̃ := {t0} ∪

{

t0 +

n
∑

i=0

µi : n ∈ N0

}

, (11)

where µi are independent and identically distributed for all

i ∈ N. We define the concepts of exponential stability almost

surely of the dynamical system (1) on T̃. We say that the
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Fig. 1: Generating a sequence of representative values from

a discrete stochastic pulse time scale T̃

Fig. 2: Generating a sequence of representative values from

a stochastic pulse time scale, T̂τ,µ

dynamical system (1) is exponentially stable almost surely

on T̃, if and only if

P[∃α > 0, s.t ∀t0, tk ∈ T̃, ∃K = K(t0) ≥ 1 :
|eA(tk, t0)| ≤ Ke−α(tk−t0)] = 1.

where P denotes the probability. On T̃, a region of expo-

nential stability almost surely is determined in [21] for a

scalar dynamical system, which is analogous to the set (9),

as follows.

Theorem II.2 ([21]). Let λ ∈ C. Assume λ 6= −1/µ almost

surely. Then the scalar dynamic equation x∆ = λx, is

exponentially stable almost surely on T̃ if

E[ln |1 + λµ|] < 0, (E denotes the expectation),

and the region of exponential stability almost surely is given

by the set Ŝ = {λ ∈ C : E[ln |1 + λµ|] < 0}.

III. PROBLEM STATEMENT

The objective of this work is to extends the results of the

exponential stability almost surely, presented in [21], for the

discrete stochastic time scales T̃ defined in (11) to a new

class of stochastically generated time scale. Let A ∈ R
n×n

be a regressive matrix and consider the dynamical system

x∆(t) = Ax(t), x(t0) = x0, (12)

on the time scale T = ∪∞
k=0[σ(tk), tk+1] formed by a union

of disjoints closed intervals, with t0 = σ(t0) = 0. Denote the

length of the continuous intervals by τk := tk+1−σ(tk), k ∈
N and the discrete gap sizes by µk := σ(tk) − tk, k ∈ N,

which are considered as random variables. This structure is

visualized in Figure 2. We call the time scale generated

by these random variables, a stochastic pulse time scale.

The system (12) can be converted to a discrete switched

system evolving on the discrete stochastic time scale T̂τ,µ =
∪∞
k=0 ({tk} ∪ {σ(tk)}), such that its forward jump operator

σ̂ : T̂τ,µ → R, is determined by σ̂(tk) = σ(tk) and

σ̂(σ(tk)) = tk+1. For σ(tk) ≤ t ≤ tk+1, k ∈ N, we have

x(t) = eA(t−σ(tk))x(σ(tk)).

For t = tk+1, x(tk+1) = eA(tk+1−σ(tk))x(σ(tk)), ∀k ∈ N.
From the above equation, we get

x(tk+1)− x(σ(tk))

tk+1 − σ(tk)
=

eA(tk+1−σ(tk))x(σ(tk))− x(σ(tk))

τk

=

(

eAτk − In
τk

)

x(σ(tk)).

(13)

Note that, for t = σ(tk) ∈ T̂τ,µ, k ∈ N, the discrete ∆-

derivative of x(t) is given by

x∆(σ(tk)) =
x(σ̂(σ(tk)))− x(σ(tk))

σ̂(σ(tk))− σ(tk)
=

x(tk+1)− x(σ(tk))

tk+1 − σ(tk)
.

(14)

Finally, according to (13) and (14) we can convert (12) to

the following discrete switched linear system on T̂τ,µ

x∆(t) =







(

eAτk − I

τk

)

x(t) ; t ∈ ∪∞
k=0{σ(tk)}

Ax(t) ; t ∈ ∪∞
k=0{tk+1}.

(15)

Let us define the graininess function of T̂τ,µ

µ̂(t) = σ̂(t)− t =

{

τk ; t ∈ ∪∞
k=0{σ(tk)}

µk ; t ∈ ∪∞
k=0{tk+1}.

We will consider that the sequences of continuous intervals

length τ = {τk}k∈N and the discrete gaps µ = {µk}k∈N

form a sequence of independent and identically distributed

(i.i.d) random variables. Note that, the region of exponential

stability SC of (12) has been derived in [4] for a particular

µ(t) of T = ∪∞
k=0[σ(tk), tk+1]. This result was extended in

[15] for a class of switched systems between a continuous-

time dynamic on ∪∞
k=0[σ(tk), tk+1] and a discrete-time dy-

namic at times ∪∞
k=0{tk+1}. The aims of this paper is to

determine a region of exponential stability almost surely of

the system (12) using a stochastic approach by considering

the converted switched system (15), evolving on the purely

discrete time scale T̂τ,µ, and then generalize the results to

any switched system.

IV. MAIN RESULTS

First, we shall study the scalar case of the class of switched

systems (15) by determining the region of exponential sta-

bility and deriving the conditions for exponential stability

almost surely. Next we will generalize the results to the

matricial case.

A. Scalar switched system

1) Region of exponential stability on random time scales:

Consider the scalar dynamical system

x∆(t) = λx(t), x(t0) = x0, λ ∈ C (16)

on T = ∪∞
k=0[σ(tk), tk+1], with λ ∈ R. As previously, the

system (16) can be converted to the scalar switched system

on the discrete time scale T̂τ,µ, as follows:

x∆(t) =







(

eλτk − 1

τk

)

x(t) ; t ∈ ∪∞
k=0{σ(tk)}

λ x(t) ; t ∈ ∪∞
k=0{tk+1}

(17)
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In the deterministic case, T̂τ,µ is considered as a discrete time

scale generated by the gaps {τk}k∈N and {µk}k∈N which

are variable in time. We determine the region of exponential

stability of (17) in the following Proposition.

Proposition IV.1. Let the switched system (17) on T̂τ,µ. The

region of exponential stability of (17) is given by the set

Sτ,µ(T̂) = {λ ∈ C :

lim supt→∞
1

(t−t0)

∫ t

t0

log |1+µ̂(s)λ|
µ̂(s) ∆s < 0},

(18)

for t0, t ∈ T̂τ,µ, and t0 < t, with

log |1 + µ̂(s)λ|

µ̂(s)
=







<(λ)τk; s ∈ ∪∞
k=0{σ(tk)}

log |1 + µkλ|

µk

; s ∈ ∪∞
k=0{tk+1}

(19)

where <(.) is the real part and |.| is the modulus. The system

(17) is exponentially stable if and only if λ ∈ Sτ,µ(T̂).

Proof. The proof follows by a modification of the proof of

Proposition 1 in [15] (see Appendix).

2) Exponential stability almost surely:

Consider the switched system (17) on T̂τ,µ which is con-

sidered as an i.i.d stochastic time scale generated by the

random variables {τk}k∈N and {µk}k∈N. We determine a

necessary and sufficient condition for exponential stability

almost surely in the following Theorem.

Theorem IV.2. The scalar switched system (17) is expo-

nentially stable almost surely on T̂τ,µ if and only if

E[<(λ)τk + log(|1 + µkλ|)] < 0. (20)

Proof. From the system (17) on T̂τ,µ, we have

x(tk+1) = eλτk(1 + µkλ)x(tk), ∀k ∈ N. (21)

By applying the Theorem of Bitmead [23] which state that

the stochastic difference equation xn+1 = anxn, where {an}
is a sequence of ergodic scalar random variables, is expo-

nentially stable almost surely if and only if E[log(|an|)] <
0. Since {µk}k∈N and {τk}k∈N are sequence of mutually

independent random variables, so {eλτk(1 + µkλ)}k∈N is a

sequence of ergodic scalar random variables and we have

E[log(|eλτk(1 + µkλ)|)] = E[<(λ)τk + log(|1 + µkλ|)] < 0.
(22)

From Proposition IV.1 and Theorem IV.2, we can derive

the following relationship between the exponential stability

almost surely and the region of exponential stability Sτ,µ(T̂).

Corollary IV.2.1. The switched system (17) is exponentially

stable almost surely if and only if λ ∈ Sτ,µ(T̂).

Proof. Let τ = {τk}k∈N and µ = {µk}k∈N. By the strong

law of large numbers [24], we have

E[<(λ)τ+log(|1+µλ|)] = lim
k→∞

∑k−1
i=0 [<(λ)τi + log |1 + µiλ|]

k
(23)

According to (3), we have the two relationships

<(λ)τi =

∫ ti+1

σ(ti)

<(λ)∆s (24)

log |1 + µiλ| =

∫ σ(ti)

ti

log |1 + µ(s)λ|

µ(s)
∆s (25)

From (24), (25) and (19), we get

<(λ)τi + log |1 + µiλ| =

∫ ti+1

ti

log |1 + µ̂(s)λ|

µ̂(s)
∆s (26)

From (23) and (26), we have

E[<(λ)τ + log(|1 + µλ|)]

= limk→∞
1

k

∑k−1
i=0

∫ ti+1

ti

log |1 + µ̂(s)λ|

µ̂(s)
∆s

= limk→∞
(tk−1 − t0)

k(tk−1 − t0)

∫ tk−1

t0

log |1 + µ̂(s)λ|

µ̂(s)
∆s

= limk→∞

∑k−1
i=0 (τi + µi)

k(tk−1 − t0)

∫ tk−1

t0

log |1 + µ̂(s)λ|

µ̂(s)
∆s

= (E[τ ] + E[µ]) limk→∞
1

(tk−1 − t0)

∫ tk−1

t0

log |1 + µ̂(s)λ|

µ̂(s)
.

Since (E[τ ] + E[µ]) > 0, so E[<(λ)τ + log(|1 + µλ|)] < 0,

if and only if λ ∈ Sτ,µ(T̂). Suppose now that E[<(λ)τ +
log(|1 + µλj |)] > 0, so from the above analysis, we have

(E[µ] + E[τ ]) lim
k→∞

1

(tk − t0)

∫ tk

t0

log |1 + sλ|

s
∆s > 0

which implies that λ /∈ Sµ,τ (T̂) and from Theorem IV.2, the

switched system is not exponentially stable almost surely.

B. Generalization to linear matrix switched systems

Consider now the switched dynamical system (15). Based

on a result of Theorem 2 in [15], we will characterize the

exponential stability of this class of switched systems.

Theorem IV.3. (Characterization of exponential stability)

Let the discrete time scale T̂τ,µ and a regressive matrix A ∈
R

n×n. The following properties are satisfied:

(i) If the switched system (15) is exponentially stable, then

for any eigenvalue λj of A, we have λj ∈ Sτ,µ(T̂).
(ii) If the eigenvalues λj of A are uniformly regressive, and

if for any eigenvalue λj of A we have λj ∈ Sµ,τ (T̂),
then the system (15) is exponentially stable.

Proof.

(i) The general solution of (15) is given by (see [12]):

x(t) =

[

0
∏

i=k−1

eAτi(I + µiA)

]

x(t0) = eA(t, t0) x(t0).

(27)

Note that, x(t) =
∏0

i=k−1[e
λjτi(1 + λjµi)] Vj , ∀1 ≤

j ≤ n is a solution of the system (15) where Vj is the
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eigenvector associated to λj (see [1] Chapter 5 and [12]

for further details). Let eλj
(t, t0) =

∏0
i=k−1 e

λjτi(1 +
λjµi). If (15) is exponentially stable, there exist con-

stants K = K(t0) and 0 > α ∈ R+ such that

|eλj
(t, t0)| ≤ Keα(t, t0), for t ≥ t0

for all eigenpairs (λj , Vj) of A. On the evidence of the

proposition IV.1, we conclude that λj ∈ Sτ,µ(T̂).
(ii) From (4) and (5), there exist an invertible matrix Q such

that A = QJQ−1, where J is the associated Jordan

matrix of A and defined as in (6), such that

x(t) = Q
[

∏0
i=k−1 e

Jτi(I + µiJ)
]

Q−1 x(t0)

= QeJ(t, t0)Q
−1 x(t0), and

(28)
∏0

i=k−1 e
Jjτi(Ij + µiJj) =

∏0
i=k−1 e

λjτi(1 + µiλj) ×












1 m1
λj
(t, t0) . . . m

dj−1
λj

(t, t0)

0 1 . . . m
dj−2
λj

(t, t0)

. . .
...

1













,

which implies that

eJ(t, t0) =







eλ1(t, t0)M1

. . .

eλl
(t, t0)Ml,






,

(29)

where Mj , 1 ≤ j ≤ l ≤ n are matrices which

depend on the monomiales m
(.)
λj

. Note that, if A is

diagonalizable, so Mj are the identity matrices.

For j ∈ {1, . . . , l}, we have

|eλj
(t, t0)| = e

∫
t

t0

log |1+µ̂(s)λj |

µ̂(s)
∆s

, t ≥ t0.

If we consider that all the eigenvalue λj of A, satisfy

λj ∈ Sτ,µ(T̂), then

lim sup
t→∞

1

t− t0

∫ t

t0

log |1 + µ̂(s)λj |

µ̂(s)
∆s = αj < 0

with αj is a negative positively regressive constant.

Therefore, we have the following estimate

|eλj
(t, t0)| ≤ K1 eαj(t−t0) ≤ K1 eα(t−t0), t ≥ t0

with K1 = K1(t0) ≥ 1 and α = min1≤j≤n{αj} (see

Appendix). From (27), (28) and (29), we have

‖eA(t, t0)‖ ≤ ‖Q‖ ‖Q−1‖ ‖eJ(t, t0)‖, with

‖eJ(t, t0)‖ ≤ K2 max
1≤j≤n

|eλj
(t, t0) m

ηj

λj
(t, t0)|,

for 0 ≤ ηj ≤ dj . Since the eigenvalues of A are

assumed to be uniformly regressive, and from Lemma

II.1 we get

|m
ηj

λj
(t, t0) eλj

(t− t0))| ≤ K3 γ
ηj

j (t− t0) e
αj(t−t0).

From the above inequalities, we conclude that there are

K = K(K1,K2,K3, α, t0, ηj) ≥ 1, such that

‖eA(t, t0)‖ ≤ K eα(t−t0) for all t ≥ t0,

which shows the exponential stability of system (15).

Theorem IV.4. (Exponential stability almost surely)

Consider T̂τ,µ the i.i.d stochastic time scale generated by

µ = {µk}k∈N and τ = {τk}k∈N, and let the switched system

(15) such that all the eigenvalues λj of A are uniformly

regressive with respect to τ and µ. The system (15) is

exponentially stable almost surely on T̂τ,µ, if and only if

E[<(λj)τ + log(|1 + µλj |)] < 0, ∀1 ≤ j ≤ n. (30)

Proof.

It is a direct result from Corollary IV.2.1 and Theorem

IV.3. The condition (30) is satisfied if and only if λj ∈
Sµ,τ (T̂), ∀1 ≤ j ≤ n according to Corollary IV.2.1, and

from Theorem IV.3 we conclude that the switched system

(15) is exponentially stable almost surely on T̂µ,τ .

V. NUMERICAL EXAMPLE

Let the switched system (15) on T̂τ,µ, with A =
(

−1 5.3
−4.2 −2

)

. The eigenvalues of A are λ1,2 = −3
2 ±i4.7.

Suppose that µ = {µk} and τ = {τk} follow the uniform

distribution. Consider these different cases:

1) µ → U(0.3, 1) and τ → U(0.3, 1).
2) µ → U(0.5, 3) and τ → U(0.5, 3).
3) µ → U(0.5, 3) and τ → U(0.3, 1).
4) µ → U(0.3, 1) and τ → U(0.5, 3).

The region of exponential stability almost surely is given by

the set Sτ,µ = {λ ∈ C : E[<(λ)τk + log(|1 + µkλ|)] < 0}.

These regions are plotted for the above different cases in

Figures 3 and 4. We can see that the eigenvalues of A are

not in the region of exponential stability for µ, τ → U(0.3, 1)
and for µ → U(0.5, 3), τ → U(0.3, 1), and the system

is unstable. When µ, τ → U(0.5, 3) and µ → U(0.3, 1),
τ → U(0.5, 3), the region of exponential stability contains

the eigenvalues of A and the system is exponentially stable

almost surely.
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Fig. 3: Region of exponential stability almost surely on T̂τ,µ.

Left: µ and τ → U(0.3, 1). Right: µ and τ → U(0.5, 3)

VI. CONCLUSION

In this work, exponential stability almost surely was

studied for a linear dynamical system on random time

scales. The system evolves on a particular non-uniform time

scale formed by a union of disjoint closed intervals with
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Fig. 4: Region of exponential stability almost surely on T̂τ,µ.

Left: µ → U(0.5, 3), τ → U(0.3, 1). Right: µ → U(0.3, 1),
τ → U(0.5, 3).

stochastic length and separated by stochastic gaps. Condition

are derived by determining a region of exponential stability

almost surely. This work provides preliminary results for

future works where determining regions of mean square

stability and generalizations to switched systems with non-

commutative state matrices are of interest.
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VII. APPENDIX

Proof. (Proposition IV.1) It is assumed that system (17) is

exponentially stable, such that

|eλ(tk, t0)| ≤ K eα(tk, t0) for t ≥ t0, tk, t0 ∈ T̂τ,µ,

with K ≥ 1 and 0 > α ∈ R+. The explicit modulus of the

generalized exponential function of (17) is given by

|eλ(tk, t0)| = e
∫ tk
t0

log |1+µ̂(s)λ|
µ̂(s)

∆s, for tk ≥ t0, tk, t0 ∈ T̂τ,µ.

It implies that

∫

tk

t0

log |1 + µ̂(s)λ|

µ̂(s)
∆s ≤ log(K) +

∫

tk

t0

log(1 + µ̂(s)α)

µ̂(s)
∆s

= log(K) +
∑

k−1

i=0
µi

(

log(1 + µiα)

µi

)

+
∑

k−1

i=0
τiα

≤ log(K) +
∑

k−1

i=0
µiα+

∑

k−1

i=0
τiα

= log(K) + α(tk − t0)

One gets: lim suptk→∞
1

tk−t0

∫ tk
t0

log |1+µ̂(s)λ|
µ̂(s) ∆s ≤ α < 0.

In the other hand, suppose that λ ∈ Sτ,µ(T̂) such that

lim sup
tk→∞

1

tk − t0

∫ tk

t0

log |1 + µ̂(s)λ|

µ̂(s)
∆s = η < 0. (31)

Then, for all 0 < ε < −η there exists a constant K =
K(t0) ≥ 1 such that, for tk ≥ t0, we have

|eλ(tk, t0)| ≤ Ke(η+ε)(tk−t0) = Keα(tk−t0),

which implies the exponential stability of (17).
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2001.

[2] J. DaCuhna, “Stability for time varying linear dynamic systems on
time scales,” J. Comput. Appl. Math., vol. 176, pp. 381–410, 2005.

[3] A. Peterson and Y. Raffoul, “Exponential stability of dynamic equa-
tions on time scales,” Adv. Differ. Equ-Ny, vol. 2, pp. 133–144, 2005.
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