Check for
Updates

SRL: Towards a General-Purpose Framework for Spatial
Representation Learning

Gengchen Mai Xiaobai Yao
University of Texas at University of Georgia
Austin xyao@uga.edu
gengchen.mai@austin.utexas.edu
Hao Li Qing Zhu
Technical University of Lawrence Berkeley
Munich National Lab
hao_bgd.li@tum.de qzhu@lbl.gov

ABSTRACT

Representation learning (RL) techniques are widely adopted in ar-
eas such as natural language processing and computer vision, with
prominent examples such as attention and ConvNet architectures.
In comparison, many GeoAl works still rely on feature engineering
or data conversion to represent spatial data (e.g., points, polylines,
polygons, 3D building models, etc.) as features in formats that are
easier for neural networks to handle. The neural network architec-
tures remain unchanged, and the need for feature engineering has
become a bottleneck for applying deep learning to new tasks in the
age of big data. In this paper, we advocate the idea of developing
learnable spatial representation modules, which not only enable
spatial reasoning but also enable neural nets to directly consume
(i.e., encoding) or generate (i.e., decoding) spatial data. We propose
Spatial Representation Learning (SRL), a new general-purpose
representation learning framework for spatial reasoning. We dis-
cuss the key challenges of spatial representation learning including
multi-scale RL, continuous RL, shape-centric RL, noise-robust RL,
heterogeneity-aware RL, and fairness-aware RL. We also discuss the
critical role and potential of SRL in various geospatial subdomains
and how this technique can lead to a new generation of GeoAL
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1 INTRODUCTION

Representation learning, as a new paradigm of feature extraction,
has become the foundation for dramatic performance improvements
when solving various Al tasks such as natural language processing,
computer vision, and speech recognition. Text, images, and videos
data can be directly fed into dedicated neural network architecture
modules to automatically learn low-level and high-level represen-
tations without the need for the classic feature engineering step. In
contrast, we see a lack of such representation learning techniques
for various types of spatial data (e.g., points, polylines, polygons,
triangulated irregular networks (TINs), 3D LiDAR point clouds, 3D
building models, etc.). To extract meaningful features from spatial
data for downstream tasks, many researchers either perform feature
engineering based on domain knowledge [27], or convert spatial
data from their original formats (e.g., points, polylines, and poly-
gons) into formats that are easier for neural networks to handle (e.g.,
point clouds to voxels [30], or map vector files into raster image
tiles [9] ). The first approach heavily relies on domain knowledge
and can not be easily generalized to new tasks, while the latter
approach suffers from reduced data precision and increased data
storage requirements. Either way, the system’s overall performance
is limited due to the lack of end-to-end learning.

In this vision paper, we propose a new general-purpose rep-
resentation learning framework for spatial data, called Spatial
Representation Learning (SRL), which aims at directly learning
neural spatial representations of various types of spatial data in their
native data format without the need for any feature engineering or
data conversion stage. Compared with other approaches discussed
above, SRL has several key advantages: 1) Less domain knowledge
is required for feature extraction so the SRL network can be easily
utilized on various tasks without modification; 2) It enables end-to-
end training, which has great potential for deep learning models to
significantly improve performances; 3) It eliminates the need for
sophisticated data preprocessing and model output postprocessing.

In fact, various pioneering works have been done to explore the
possibility of directly consuming or generating spatial data in its
native data format such as location encoders [14-16, 24], polyline
encoders [19, 21], polygon encoders [13, 18], etc. However, these
works apply existing neural networks in ad hoc manners. There
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Figure 1: The overall framework of SRL. Here we demonstrate
with a few representative spatial data formats.

is no theoretical framework that discusses the unique challenge
SRL needs to solve, what is a general spatial representation that
supports reasoning and is also learning-friendly, how this powerful
technique means to the whole GeoAl domain, and what should
be done next. In this paper, we formally discuss the advantages of
SRL, the unique challenges of SRL, and how it can benefit research
across various disciplines.

2 DEFINITIONS AND KEY COMPONENTS

First, we discuss definitions of SRL and its key components. Spatial
Representation Learning aims at learning neural network represen-
tations of various spatial data such as points, polylines, polygons,
TINs, 3D building models, raster images, etc. SRL has two key com-
ponents: 1) SRL encoders can directly consume spatial data and
output learning-friendly neural spatial representations for down-
stream tasks; 2) SRL decoders can take neural representations and
directly generate spatial data in the dedicated format.

According to the input spatial data types, SRL encoders can be
classified into location encoders, polyline encoders, polygon en-
coders, graph encoders, 3D mesh encoders, image encoders, etc.
Similarly, SRL decoders can be classified into location decoders,
polyline decoders, polygon decoders, graph decoders, 3D mesh
decoders, image decoders, etc. Figure 1 illustrates the relations be-
tween these models under the SRL framework. While some of these
architectures have been widely studied such as location encoders
[15], image encoders, and image decoders [3] many of these di-
rections have never been explored or significant drawbacks exist
in the current solutions due to the neglect of the uniqueness of
spatial data such as polygon encoders, location decoders, polygon
decoders, 3D mesh generators, etc.

3 THE UNIQUE CHALLENGES IN SRL

Compared with representation learning on other data types, SRL
demonstrates several unique challenges that are usually ignored by
pioneer research. In this section, we briefly discuss those challenges
in the hope that they can guide future SRL model development.

Polyline

Support operations such
as distance, angle,
topology etc.

3.1 Multi-scale Representation Learning

While sharing some similarities, representing a geographic location
into an embedding space is more challenging than representing
a point/location in other spaces (e.g., an indoor robot’s location).
One big challenge of the former is the need for multi-scale represen-
tation learning. Although in theory space is continuous, in many

Mai et al.

situations, we can discretize the space into regular grids so that
location encoding and location decoding in these spaces becomes
a simple finite location/grid embedding matrix learning [4] and
spatial softmax [2] problem. Examples are determining the location
of a robot within an indoor environment [2]. In fact, many pioneer-
ing works in geographic location encoding [22] and geographic
location decoding [23] adopted a similar practice.

One big problem is that the geographic location representation
learning problem usually requires a model to jointly consider mul-
tiple scales ranging from global scale, country scale, city scale,
neighborhood scale, etc. For example, an image geolocalization
model needs to start from the whole globe to precisely determine
where the given image was taken. While many previous works
[23] used hierarchical grid systems to progressively narrow down
the search space, the model performance is still bounded by the
smallest grid size, thus leading to a systematic model bias cannot
be avoided. Currently, many multi-scale location encoders have
been developed [15]. However, we have yet to see any multi-scale
geographic location decoders that can precisely regress the precise
geo-location while avoiding the discretization step. In fact, multi-
scale representation learning is not only a unique challenge for
location representation learning but also a problem for other more
complex spatial data types.

3.2 Continuous Representation Learning

] A G A G

(a) Polygon p  (b) p’s vertices (c) Trivial vertices  (d) Polygon p’
Figure 2: (a) Multipolygon p conceptually indicates a continu-
ous bounded surface. (b) Many works [13, 28] only represent
P as its boundary information, i.e., a list of vertices. (c) When
adding trivial vertices (i.e., red dots) to the shape, conceptu-
ally the shape of p does not change. However, most current
polygon representation learning models will lead to different
polygon embeddings. (d) Multipolygon p’ shares the same set
of vertices with p. However, instead of a hole of p, Triangle
Apg[j now is a part polygon of p’.

Another unique challenge of SRL is that although spatial data
are serialized in a discretized format, they represent continuous
objects conceptually. This requires SRL models to learn continuous
representations of them instead of treating them as a finite list of co-
ordinates. For example, a polyline is represented as a list of vertices
while it indicates a continuous linear-shaped feature. Similarly, a
polygon is usually represented as a ring of vertices or several rings
(polygons with holes or multipolygons). However, it represents a
continuous surface (see Figure 2a).

Most previous work failed to capture the continuous nature of
spatial data but treating them as a finite list of coordinates. For
example, PolyFormer [13] and RoomFormer [28] treat a polygon
as a list of vertices. As shown in Figure 2, instead of interpreting
Multipolygon p as a continuous bounded surface in Figure 2a, all
above models only consider boundary vertices of p. This practice
disables the possibility of neural networks to learn the topological
nature of polygons, i.e., they can not differentiate p and p’ shown
in Figure 2a and 2d. So they cannot perform topological relation
computation among polygons [18].
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3.3 Shape-Centric Representation Learning
Another key challenge of SRL is allowing the learned representa-
tions to focus on the shape-level information while being invariant
of shape-invariant transformations. Here, we list several expected
properties for SRL: 1) Vertex loop transformation invariance:
the learned spatial representations should be invariant under vertex
loop transformation. For example, the exterior of a part of Multi-
polygon p in Figure 2a can be represented as an ordered vertex
list My = [A,B,C,D,E, F,G]. After vertex loop transformations,
M; becomes My = [D,E, F,G,A,B,C] or M3 = [B,C,D,E,F,G,A].
While they are different, they all indicate the same polygon shape,
so the SRL model should output identical embeddings. This is not
limited to polygonal features but also TIN data, 3D meshes, etc.
2) Trival vertex invariance: adding or deleting trivial vertices
to/from the spatial data will not change the learned spatial rep-
resentations by SRL models. The red dots in Figure 2c are trivial
vertices since adding or deleting them will not affect the shape of
p. thus this shape-invariant operation should not change the poly-
gon embeddings. The same property is also expected for polyline
encoders/decoders, 3D mesh encoders/decoders, etc.

3.4 Noise-Robust Representation Learning
Another challenge is to learn a noise-robust representation for
spatial data. In practice, spatial data is prone to errors and noise
during data collection and map editing such as sliver polygons
[18]. When we compute the strict spatial relations between map
features (i.e., topological relations), these errors might lead to wrong
answers. Learning noise-robust spatial representations will simplify
the data preprocessing and improve the representations’ quality.

3.5 Heterogeneity-Aware RL

While it is ideal to learn a single general representation that works
well across space, technically this may not be feasible due to spa-
tial heterogeneity. In the context of ML, this means the functional
relationships between inputs and outputs tend to vary across ge-
ographic regions [5, 25]. For example, the observable inputs in
real-world problems often only cover a subset of variables that
influence the target outputs. Thus, a spatially stationary function
cannot reflect the variability of unobserved variables, constraining
the prediction quality. Currently, most SRL methods do not con-
sider spatial heterogeneity [16], making the results sub-optimal and
harder to adapt to large-scale applications. It is important to de-
velop heterogeneity-aware frameworks to embed location-induced
heterogeneity into the learned representations. Potential directions
include a separate representation of heterogeneity or a partitioning-
based separation of representation learning [26].

3.6 Fairness-Aware Representation Learning

The increasing deployment of ML in applications has drawn signif-
icant attention to model fairness. This is no stranger to spatial data
as geographic bias induced by ML models can easily occur without
explicit fairness-aware formulations [26], and such biases might be
propagated to high-stake decision-making. The need for spatial fair-
ness also presents unique challenges for SRL. For instance, existing
fairness metrics often rely on discrete groups such as racial/gen-
der groups while space is continuous. Although we can do space
partitions, the quantification of bias is affected by the modifiable
areal unit problem, making the results sensitive to both the parti-
tioning scheme and the scale of the analysis [7] While recent works
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have started exploring fairness issues for spatial applications [6],
it remains largely unexplored for SRL. In addition, when building
fairness-aware spatial representations, it is important to address
challenges including the generalizability of the embedded fairness
in unseen geographic regions and future time periods.

4 THE POTENTIAL OF SRL IN GEOAI
4.1 Human Mobility

Human mobility research has been leveraging a vast array of data,
e.g., GPS trajectories, mobile phone records, smart card data, and
social media location data, to gain insights into human dynam-
ics. Human mobility analysis, encompassing tasks like trajectory
classification, clustering, prediction, and generation, has enormous
application potential in urban planning, marketing and retail, smart
cities, epidemiology, and public health research and practices. SRL
plays a critical role by enabling the effective encoding and decoding
of complex spatiotemporal patterns inherent in movement data.
Other than those challenges discussed in Section 3, we identify
three key challenges when developing SRL for human mobility
tasks: 1) Intent/Behavior Preservation: The representation of
movement data should capture not only the geometries of trajecto-
ries but also the underlying intent or behavior of individuals. Rep-
resentations that incorporate semantic information about points
of interest, transportation modes, or social interactions can benefit
downstream tasks like activity recognition or trip purpose infer-
ence. 2) Geo-Privacy Preservation: Given the sensitive nature
of location data, privacy preservation is paramount. SRL should
incorporate mechanisms that anonymize or obfuscate individual
trajectories while still retaining the essential patterns for analysis
[19], This could involve differential privacy [1], decentralized learn-
ing [20], trajectory generalization, or learning privacy-preserved
representations for trajectories [21]. 3) Data Bias: A considerable
portion of popular human mobility datasets comprises passive data,
indicating that data collectors have little control over their avail-
ability and frequency. Integrating such data presents significant
challenges in addressing data biases and data fusion.

4.2 Remote Sensing

While general computer vision and representation learning fields
have made major breakthroughs, the unique characteristics of re-
mote sensing (RS) data limit their abilities on RS tasks. In this
context, we envision a critical role of SRL in the next generation
of RS-based GeoAl models. Specifically, we identify three pressing
challenges: 1) Consistent Level-of-Details (LoD) representa-
tion: similar to vector geometries, it is key to encode RS data of var-
ious spatial and temporal resolutions into a uniform and resolution-
agnostic latent representation so that downstream tasks can easily
handle consistent LoD without additional upsampling and down-
sampling. 2) Spatial-spectral data representation: spectral imag-
ing enables accurate analysis of objects and scenes beyond what is
possible with regular RGB aerial images but hinders the adoption
of state-of-the-art pre-training weights (e.g., from ImageNet) to
many RS data, such as multispectral and hyperspectral imagery,
thus deserves a dedicated spatial-spectral encoding strategy (e.g.,
3D tensor mask in [3]). 3) Location-aware representation: it
is simply disappointing when an established GeoAI model fails
entirely in a slightly different geographical setup, e.g., different
countries or landscapes, which is known as replication across space
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[5], geographical generalizability [12], or spatial heterogeneity [25].
A location-aware representation is extremely helpful in leveraging
the location encoding and RS data representation to gain generaliz-
ability across space [17, 25]. Furthermore, it is intuitive to foresee
the great potential of SRL of RS data in quantum computing and
edge Al applications [31].

4.3 Cartography
As a critical field of geography, cartography presents unique chal-

lenges for SRL: 1) Multi-Scale representation for map gener-
alization: To ensure map quality and readability, the selection of
spatial objects and their symbolization may vary depending on the
map scale. Developing SRL models that generalize well across dif-
ferent map types and scales is a key challenge. 2) SRL for historic
map digitization: Developing SRL models for map data extraction
and digitization from historic maps requires the learned represen-
tations capable of complex spatial reasoning among map symbols,
text, and textures, and grounding them to a geo-knowledge base
[10]. 3) 3D maps and high-dimensional visualization: With the
trend of digital twins and metaverse, the vertical dimension of maps
has been explored with techniques like 3D, leading to a pressing
need for robust and effective SRL in 3D space and beyond. A key
challenge here is how to adapt to sparse and entangled geometry
and spatial relationships in a 3D world.

4.4 Earth System Science

SRL holds substantial promise for advancing coupled Earth system
modeling and enhancing our understanding of Earth system science
(ESS) which can help to address grand challenges in predictive mod-
eling, process-level interpretation, parameterization, uncertainty
reduction, and long-term projections, thus leading to a more ac-
curate, efficient, and comprehensive understanding of the coupled
earth system. We identify unique challenges of SRL for ESS: 1) SRL
for parameterizations derivation of sub-grid scale processes:
SRL should be able to derive these parameterizations that are not
captured at typical earth grid cell scales ( 10 km) by learning from
patterns identified from high-resolution data. This can enhance the
representation of these processes in larger-scale models, leading
to better predictions of local patterns and climate change impacts
[8, 29]. 2) SRL for dynamic ESM simulations: SRL should be
learning efficiently to transform real-time data assimilation for dy-
namic ESM simulations. ML surrogate models trained on spatial
data can quickly incorporate new datasets at different scales which
are particularly beneficial in e.g., weather forecasting and climate
disaster prediction/response, where timely and accurate forecasts
are crucial [11]. 3) SRL for long-term scenario analysis: SRL
should be adapted for scenario analysis over long-term time peri-
ods (annual, decadal, and centurial scales) enabling more effective
decision-making in climate policy.

5 CONCLUSION

In this vision paper, we introduce a general-purpose representa-
tion learning framework for spatial data called Spatial Representa-
tion Learning which aims at learning a general spatial representa-
tion that supports reasoning and is learning-friendly. A theoretical
framework of SRL is provided which discusses the unique chal-
lenges of SRL and how SRL can benefit research across various
disciplines. We believe SRL is a unique and key question in the
GeoAl domain that requires community efforts.
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