2 follicle rupture during *Drosophila* ovulation 3 Stella E. Cho¹, Wei Li^{1#}, Andrew M. Beard¹, Jonathan A. Jackson^{3, 4!}, Risa Kiernan¹, Kazunori 4 Hoshino⁵, Adam C. Martin³, and Jianjun Sun^{1,2*} 5 6 7 1 Department of Physiology & Neurobiology, University of Connecticut, Storrs, CT 06269, USA 2 Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA 8 9 3 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 4 Graduate Program in Biophysics, Harvard University, Boston, MA 02115, USA 10 5 Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA 11 12 # Current address: Foundation Medicine Inc., Cambridge, MA 02141, USA 13 14 ! Current address: Max Planck Institute of Molecular Cell Biology and Genetics, 15 Pfotenhauerstraße 108, Dresden 01307, Germany 16 * Corresponding Author 17 18 Dr. Jianjun Sun 19 Tel. 860-486-4666 Fax. 860-486-3303 20 21 Email: jianjun.sun@uconn.edu 22 23 Running title: actomyosin in follicle rupture 24 Keywords: Ovulation, follicle rupture, actomyosin contraction, mechanical force, Rho1, 25 **ROK**

Actomyosin contraction in follicular epithelium provides the major mechanical force for

1

26

Abstract

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Ovulation is critical for sexual reproduction and consists of the process of liberating fertilizable oocytes from their somatic follicle capsules, also known as follicle rupture. The mechanical force for oocyte expulsion is largely unknown in many species. Our previous work demonstrated that *Drosophila* ovulation, as in mammals, requires the proteolytic degradation of the posterior follicle wall and follicle rupture to release the mature oocyte from a layer of somatic follicle cells. Here, we identified actomyosin contraction in somatic follicle cells as the major mechanical force for follicle rupture. F-actin and non-muscle myosin II (NMII) are highly enriched in the cortex of follicle cells upon stimulation with octopamine (OA), a monoamine critical for *Drosophila* ovulation. Pharmacological disruption of F-actin polymerization prevented follicle rupture without interfering with the follicle wall breakdown. In addition, we demonstrated that OA induces Rho1 GTPase activation in the follicle cell cortex, which activates Rho kinase (ROK) to promote actomyosin contraction and follicle rupture. All these results led us to conclude that octopamine signaling induces actomyosin cortex enrichment and contractility, which generates the mechanical force for follicle rupture during Drosophila ovulation. Due to the conserved nature of actomyosin contraction, this work could shed light on the mechanical force required for follicle rupture in other species including humans.

2

Significance Statement

Ovulation is the process of the expulsion of mature oocytes out of the follicle capsule. It is largely unknown what mechanical force is required for pushing the oocyte out. In this study, we investigated the force required for *Drosophila* ovulation and identified that the actomyosin network generates the major mechanical force for the expulsion of *Drosophila* oocytes from mature follicles. The actomyosin network, which is highly conserved and known to produce mechanical force for many biological processes at both cellular and tissue scales, is greatly enriched in the cortex of follicular epithelium and is activated by Rho1 GTPase to generate mechanical force during ovulation. Due to its conserved nature, this mechanism may be applied to ovulation in other species.

Introduction

Ovulation is a complex reproductive process that ends with the rupture of the mature follicle and the expulsion of the fertilizable oocyte. In mammals, ovulation is induced by a surge of luteinizing hormone (LH) secreted by the pituitary gland, which mediates a complex signaling network involving progesterone and prostaglandin signaling in mature follicles and ultimately activates proteolytic enzymes at the apex of mature follicles for follicle rupture to occur (1–3). In addition, LH activates endothelin signaling to increase the contractile activity of smooth muscle cells in the theca layer of the mature follicles, which is also critical for follicle rupture and potentially provides the mechanical force for the expulsion of the oocyte via increasing intrafollicular pressure (4–11). Recent work also showed that LH induces cytoskeletal shape changes and inward migration of granulosa cells, but the role of such changes for follicle rupture

is still unclear (12–16). Despite these studies, the mechanical force for follicle rupture and expulsion of oocytes has never been fully elucidated and remains as an underexplored area in the ovulation field (17, 18).

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Recent advancements in *Drosophila* ovulation make *Drosophila* as an attractive model for the study of ovulation mechanisms (19). A *Drosophila* follicle develops through 14 morphologically distinct stages to become a mature (stage-14) follicle, which consists of an oocyte wrapped by a thin layer of somatic follicle cells (20), that is ready for ovulation. Drosophila ovulation is induced by octopamine (OA) signaling, equivalent to adrenergic signaling in mammals (21), from the nerves innervated with the ovaries (22–25). OA activates the Octopamine receptor in mushroom body (OAMB) in mature follicle cells, leading to the activation of matrix metalloproteinase 2 (MMP2) for the breakdown of the follicle wall at the posterior region, and NADPH oxidase (NOX) in all follicle cells for reactive oxygen species (ROS) production, ultimately causing follicle rupture (26–28). In addition, OA signaling regulates ovarian and oviduct muscle contraction, which is also important for the success of Drosophila ovulation (29–33). However, it is questionable whether the muscle contraction provides the major mechanical force for follicle rupture, since the entire follicle rupture can be recapitulated ex vivo using isolated mature follicles without any muscle sheaths (26). During follicle rupture, the entire layer of follicle cells is compressed towards the anterior dorsal appendage after the breakdown of the posterior follicle wall by MMP2 (26, 27). Therefore, the mechanical force for the compression of follicle cells and expulsion of the oocyte during follicle rupture is obscure.

The actomyosin cytoskeleton is highly conserved among various species and crucial for generating the mechanical force for biological processes ranging from the subcellular to the

tissue level, including endocytosis, cytokinesis, cell migration, tissue morphogenesis (34–37). The structural composition of the actomyosin networks primarily consists of the scaffold of filamentous actin (F-actin) and the motor protein, myosin II, which binds and slides F-actin within a cortical network to generate contractility (35, 38). Non-muscle myosin II (NMII) in epithelial tissues typically forms mini filaments, which is composed of two heavy chains, two essential light chains, and two regulatory light chains (encoded by spaghetti squash, sqh in Drosophila; 34, 39). The phosphorylation of the regulatory light chain at highly conserved residues (Thr18 and Ser19 in mammals, Thr20 and Ser21 in *Drosophila*) is critical for NMII activation and regulated by various kinases including Rho kinase [ROK in Drosophila and ROCK in mammals; (40–43)]. ROK is activated by small GTPase Rho1, which also activates the formin-family protein Diaphanous (Dia) to promote actin polymerization (44). Therefore, Rho1 plays important roles for the generation of actomyosin contractile force during tissue morphogenesis (34, 45). In *Drosophila*, the Rho1-ROK-actomyosin contraction has been comprehensively studied in wound healing to understand epithelial morphogenesis, and in many developmental processes such as gastrulation during embryogenesis, specifically mesoderm or endoderm invagination and germ-band extension (42, 46, 47). In addition, actomyosin contraction is crucial for several processes in *Drosophila* oogenesis, such as border cell migration(48–51), nurse cell dumping (41, 52, 53) and egg elongation (45, 54–56). However, its role in ovulation has never been elucidated. In this study we discovered that pharmacological inhibition of actomyosin, but not the

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

In this study we discovered that pharmacological inhibition of actomyosin, but not the microtubule network, prevented the OA-induced follicle rupture. We also showed that F-actin, NMII, and active Rho1 were highly enriched in the cortex of follicle cells when mature follicles were stimulated with OA. Further genetic and pharmacological experiments demonstrated that

OA/OAMB activates Rho1-ROK-actomyosin contraction to generate the mechanical force, which leads to the compression of the follicle cell layer and the expulsion of the oocyte during follicle rupture. Therefore, our work shed light on the mechanical force required for follicle rupture during *Drosophila* ovulation, and similar mechanisms could be involved in ovulation in other organisms.

Results

OA-induced oocyte rehydration is not required for follicle rupture

During ovulation, octopamine (OA) signaling triggers the breakdown of posterior follicle cells and the release of the encapsulated oocyte, while the remaining follicle cells collapse to form a corpus luteum that potentially produces steroid hormones (27). This entire follicle rupture process can be recapitulated *in vitro* by culturing intact mature follicles deprived of muscle sheath in OA medium (26). At the end of the rupture process, all follicle cells are highly compacted at the dorsal appendage region (Fig. 1A). To quantify this tissue morphogenesis, we measured the anterior-posterior axis length of the follicle cell layer before and after rupture and calculated the ratio of this compression. It showed that the follicle cell layer had a 3.6-fold compression in the anterior-posterior axis after follicle rupture (Fig. 1B-C). This suggests the existence of a mechanical force for inducing follicle cell layer compression; yet the nature of this mechanical force for follicle rupture remains unknown.

Previous works have demonstrated oocyte dehydration in mature follicles and subsequent rehydration after ovulation for egg activation (57). We also observed that oocytes rehydrate after the exposure to OA in our *ex vivo* culture system. Mature follicles without OA exposure showed

a dehydrated morphology with a dented surface (Fig. 1D and Movie S1). In contrast, within 15 minutes of OA exposure even before follicle rupture, mature follicles showed no obvious dented surface (Fig. 1E and Movie S2). Therefore, we hypothesized that oocyte rehydration could potentially create tension against the follicle cell layer, which may lead to the follicle cell layer retraction anteriorly once the posterior follicle cells are broken after OA stimulation. To test this hypothesis, we precisely measured the volume of mature follicles before and after OA exposure. A steady increase in volume was observed in mature follicles after OA exposure, while those without OA exposure showed less volume increase if any (Fig. 1G-H). In addition, mature follicles in a hypertonic medium with 400 mM sucrose did not increase in volume even with OA exposure, indicating that the hypertonic medium prevented follicle rehydration (Fig. 1F-H and Movie S3). Next, we examined follicle rupture in both control and hypertonic media. To our surprise, mature follicles in the hypertonic medium ruptured at a similar rate to those in the control medium after OA treatment (Fig. 1I-K). This indicates that oocyte rehydration is unlikely to provide the major mechanical force for follicle rupture in *Drosophila*.

150

151

152

153

154

155

156

157

136

137

138

139

140

141

142

143

144

145

146

147

148

149

The mechanical force driving follicle rupture is actin-mediated

To elucidate the nature of the mechanical force required for follicle rupture, we investigated the cytoskeleton system, known to generate force in many biological processes. We pharmacologically inhibited actin- or microtubule-mediated mechanical force in mature follicles and examined their impact on OA-induced follicle rupture. Colchicine and nocodazole were employed to inhibit microtubule elongation, and cytochalasin D and latrunculin A were used to disrupt actin dynamics. Intriguingly, both colchicine- and nocodazole-treated follicles ruptured

normally after OA stimulation; however, both cytochalasin D and latrunculin A at 1 µg/ml severely inhibited OA-induced follicle rupture (Fig. 2A-G and SI Appendix, Fig. S1A-C).

Considering the essential roles of MMP2 and superoxide production in OA-induced follicle rupture (27, 28), we tested whether cytochalasin D and latrunculin A inhibit OA-induced MMP2 activity or superoxide production. Using an *in situ* zymography assay previously developed for examining MMP2 activity (26), we found that 85% of mature follicles in the control medium showed MMP2 activity at the posterior end of mature follicles after OA stimulation, while cytochalasin D and latrunculin A treatment showed no significant difference of OA-induced MMP2 activity (Fig. 2H-L). This result demonstrates that both drugs did not inhibit OA-induced MMP2 activation. Additionally, we measured the OA-induced superoxide production in mature follicles treated with control, cytochalasin D, or latrunculin A using a luminescent assay we developed previously (28). Cytochalasin D-treated follicles did not show any effect on superoxide production, while latrunculin A-treated ones had a slightly reduced production about 30 minutes after OA stimulation (Fig. 2M and SI Appendix, Fig. S1D). This delayed reduction of superoxide production by latrunculin A treatment could be due to the indirect effect from the disrupted actin dynamics such as Oamb receptor recycling. Nonetheless, these findings collectively suggest that cytochalasin D and latrunculin A treatment does not cause acute toxicity or impact OA-induced MMP2 activation and superoxide production. This work also leads us to hypothesize that actin-mediated mechanical force may play important roles in follicle rupture, independent of MMP2 activity and superoxide production.

178

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

OA/OAMB signaling induces actomyosin cortex enrichment in main-body follicle cells before follicle rupture

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

The actomyosin contractile force serves various roles in numerous biological processes (34, 35, 54). To demonstrate whether actomyosin plays a role in follicle rupture, we initially examined the distribution of filamentous actin (F-actin) and non-muscle myosin II (NMII) in follicle cells with or without OA stimulation. In the absence of OA, a low level of F-actin was localized both in the cytoplasm and along the cortex of follicle cells in mature follicles (Fig. 3A). The incubation period of up to 45 min did not cause any drastic changes in the distribution of Factin (Fig. 3A-B, 3D and SI Appendix, Fig. S2A-B). However, when mature follicles were treated with OA, a notable enrichment of F-actin occurred in the cortex of the main-body follicle cells, existing along most of the lateral cell membrane (Fig. 3C-D and SI Appendix, Fig. S2C-D). Detailed mapping of subregions along the lateral membrane was challenging due to the squamous nature of these follicle cells at stage 14. Subsequently, we tested whether NMII, the working partner of F-actin, is also enriched at the follicle cell cortex after OA stimulation. Using a reporter for the regulatory light chain of NMII, sqh::GFP, we observed a significant enrichment of NMII in the cortex of the main-body follicle cells after OA treatment (Fig. 3E-H and SI Appendix, Fig. S2F-I), mirroring the F-actin distribution. Notably, the intensity levels of both F-actin and NMII reached a plateau around 30 minutes after OA treatment (Fig. 3D and 3H).

During the analysis, we noticed weaker intensity of F-actin and NMII in posterior follicle cells compared to main-body follicle cells after OA stimulation (Fig. 3C and 3G). To characterize this further, we quantified the intensity of F-actin and NMII in posterior follicle

cells and compared to those in main-body follicle cells after a 30-minute culture with or without OA. Without OA treatment, F-actin was lower in the cortex of main-body follicle cells than posterior follicle cells; in contrast, with OA, F-actin was slightly higher in the cortex of main-body follicle cells than posterior follicle cells (SI Appendix, Fig. S2E). Moreover, the cortex NMII was more than two-fold higher in main-body follicle cells than in the posterior follicle cells after OA stimulation (SI Appendix, Fig. S2J). These findings suggest that OA induces actomyosin enrichment primarily in the cortex of main-body follicle cells, prompting our subsequent analyses focusing on main-body follicle cells.

Next, we tested whether the OA-induced actomyosin cortex enrichment is mediated by OAMB, the receptor required for OA-induced follicle rupture (26). We isolated mature follicles from *oamb* mutant female ovaries and measured F-actin and NMII signal after a 30-minute culture with or without OA stimulation. Compared to the control, *oamb* mutant follicle cells showed a significant reduction in cortex enrichment of both F-actin and NMII after OA stimulation (Fig. 3I-N). Altogether, these results indicate that OA/OAMB signaling induces actomyosin cortex enrichment in main-body follicle cells before follicle rupture.

This redistribution of actomyosin after OA stimulation supports our hypothesis that actomyosin contraction provides the mechanical force for follicle rupture. To further confirm this, we also examined the distribution of F-actin and NMII in follicles treated with cytochalasin D and latrunculin A, both of which efficiently inhibited follicle rupture. As expected, both cytochalasin D and latrunculin A disrupted the proper cortex enrichment of actomyosin (SI Appendix, Fig. S3). These results validate the efficiency of the drugs and simultaneously support the hypothesis that actomyosin enrichment in follicle cell cortex is required for follicle rupture.

ROK regulates actomyosin contraction and is required for follicle rupture.

In order to test whether cortex-enriched actomyosin generates contractile force in follicle cells for follicle rupture, we aimed to disrupt ROK activity, a crucial factor for Sqh phosphorylation and NMII contractility (41, 58). Using an antibody against monophosphorylated Sqh at Ser-21 [Sqh-1P; (59)], we observed significant cortex enrichment of Sqh-1P after OA stimulation (Fig. 4A-B). In contrast, mature follicles treated with the well-known ROK inhibitor Y-27632 (60) resulted in the complete elimination of Sqh-1P in mature follicle cells after OA stimulation (Fig. 4C-D). In addition, Y-27632-treated follicles showed a reduced level of overall Sqh cortex enrichment as anticipated (Fig. 4E-H and SI Appendix, Fig. S4A). However, F-actin remained enriched in the cortex of follicle cells even after Y-27632 treatment (Fig. 4I-L and SI Appendix, Fig. S4B). We noticed that F-actin accumulates more at tri- and bi-cellular junctions in Y-27632 treated follicles, consistent with the idea that ROK regulates the stability of actin through α-catenin at the cell-cell junctions (61). Therefore, Y-27632 treatment yielded a less uniform cortex enrichment of F-actin, as expected.

To determine whether Y-27632 indeed disrupts the actomyosin contractility in mature follicle cells after OA stimulation, we performed the laser ablation experiment (62) to observe the tension of the follicle cells with or without Y-27632 treatment. In control follicles after a 30-minute OA stimulation, a small laser cut on the cortex of the main-body follicle cells led to a quick expansion of the lesion site (Fig. 4M-O and Movie S4). In contrast, in Y-27632-treated follicles after a 30-minutes OA stimulation, laser cut did not result in an expansion of the lesion site (Fig. 4P-R and Movie S5). We measured the initial recoil velocity of Sqh::GFP around the

ablation site after the cut, which is proportional to actomyosin tension. The Y-27632-treated follicle cells exhibited a negative recoil velocity close to 0 μ m/sec, compared to 0.12 μ m/sec in control follicle cells (SI Appendix, Fig. 4S). This data supports that OA-induced actomyosin contraction can be inhibited by the ROK inhibitor Y-27632.

Finally, we investigated whether ROK inhibition by Y-27632 is sufficient to block OA-induced follicle rupture. Consistent with our hypothesis, Y-27632 was sufficient to inhibit OA-induced follicle rupture in a dose-dependent manner (Fig. 4T-V). We also observed the breakdown of posterior follicle cells in Y-27632-treated follicles, indicating that Y-27632 does not inhibit OA-induced MMP2 activity (Fig. 4U). Lastly, we also attempted to knock down *rok* in follicle cells using RNA interference (RNAi). Unfortunately, both RNAi lines failed to prevent Sqh-1P cortex enrichment (SI Appendix, Fig. S5A-F), indicating an ineffective knockdown of *rok* in mature follicle cells. Consistent with this, mature follicles from *rok* RNAi females showed normal OA-induced follicle rupture (Fig. S5G). Although *rok* RNAi females laid fewer eggs than control females, they showed no statistical difference in terms of ovulation time (Fig. S5H-I), indicating no ovulation defect *in vivo*. Nevertheless, our pharmacological data suggest that ROK is required for OA-induced actomyosin contraction and follicle rupture.

OA/OAMB signaling induces Rho1 activation at the follicle cell cortex

The involvement of ROK in follicle rupture prompted us to hypothesize that its upstream regulator, Rho1 GTPase, is also involved in the actomyosin contraction and follicle rupture. To test this hypothesis, we first examined whether OA induces Rho1 activation at the cortex of the follicle cells, where F-actin and NMII are enriched. For this purpose, we utilized an active Rho1

sensor, Ani-RBD::GFP, in which Rho1-binding domain (RBD) from Anillin is fused with GFP (63). The active Rho1 (Rho1-GTP) can bind to Ani-RBD::GFP, which is reflected by the GFP pattern inside the cells. Consistent with our hypothesis, we found that Ani-RBD::GFP was distributed in the cytoplasm without OA stimulation but quickly redistributed to the cortex of the main-body follicle cells after OA stimulation, which indicates an increased activation of Rho1 at the cortex of main-body follicle cells induced by OA (Fig. 5A-B and SI Appendix, Fig. S6A-H). Following a 30-minute OA stimulation, 86% of mature follicles exhibited active Rho1 at the follicle cell cortex (Fig. 5C). It is worth to note that posterior follicle cells did not display prominent Rho1 activation at the follicle cell cortex after OA stimulation (Fig. 5B).

Next, to determine whether OA-induced Rho1 activation at the follicle cell cortex also depends on OAMB, we examined the Rho1 sensor in *oamb* mutant mature follicles after a 30-minute OA stimulation. We measured the intensity of Ani-RBD::GFP (Rho1-GTP) in the mainbody follicle cells after a 30-min culture with or without OA stimulation. The *oamb* mutant follicles showed significant reduction in cortex Rho1 activity after OA stimulation in comparison to control follicles (Fig. 5D-H). Consistent with this, *oamb* mutant follicles also showed significant reduction in cortex Sqh-1P after OA stimulation (SI Appendix, Fig. S5J-N).

Altogether, these data suggest that OA/OAMB signaling induces Rho1, and subsequent ROK, activation at the follicle cell cortex before follicle rupture.

Rho1 is required and sufficient for follicle rupture/ovulation

To determine the role of active Rho1 in mature follicles, we first overexpressed a dominant-negative (DN) form of Rho1 ($Rho1^{DN}$) in mature follicle cells using 47A04-Gal4 driver

and examined its effect on the cortex enrichment of actomyosin. As anticipated, overexpression of $Rho1^{DN}$ in mature follicle cells impeded the OA-induced F-actin enrichment (Fig. 6A-D) and NMII enrichment (Fig. 6E-H). Furthermore, we noticed that $Rho1^{DN}$ -overexpressing follicle cells shows a floppy and irregular shape, likely due to the disruption of actomyosin contractility and cytoskeleton (Fig. 6C-D and 6G-H). Next, we investigated whether these follicles could still respond to OA-induced follicle rupture. Mature follicles with $Rho1^{DN}$ overexpression showed a significant reduction in rupture rate after OA stimulation (Fig. 6I-K). Consistent with this result, females with $Rho1^{DN}$ overexpression laid significantly fewer eggs, accumulated more mature follicles in their ovaries after egg laying, and took longer time to ovulate an egg (Fig. 6L-N and SI Appendix, Table S1), indicating that $Rho1^{DN}$ -overexpressing females have an ovulation defect. Thus, our data suggest that Rho1 is required for OA-induced follicle rupture $ex\ vivo$ and ovulation $in\ vivo$.

Next, we explored whether Rho1 alone is sufficient to induce follicle rupture and ovulation by overexpressing a constitutively active form of Rho1 ($Rho1^{CA}$) in mature follicle cells with 47A04-Gal4. Females with $Rho1^{CA}$ overexpression had a severe defect in egg laying, mature follicle retention, and a dramatic increase in ovulation time (Fig. 6L-N and SI Appendix, Table S1), indicating an ovulation defect. To determine the cause of ovulation defect, we examined the ovaries with $Rho1^{CA}$ overexpression and discovered that the majority of mature follicles were prematurely ruptured inside the ovaries, while control flies had no mature follicles ruptured inside the ovaries (Fig. 6O-P). This premature follicle rupture could lead to a traffic jam when ovulating oocytes attempted to enter the lateral oviduct that connects to the base of the ovary, since there is only enough space for one oocyte to enter the lateral oviduct at a time. On

the other hand, this premature rupture caused by overactivation of Rho1 suggests that Rho1-mediated mechanical force is sufficient to induce follicle rupture. In conclusion, our study demonstrates that OA/OAMB signaling activates Rho1-ROK-actomyosin contraction in the cortex of main-body follicle cells to provide the major mechanical force for follicle rupture during *Drosophila* ovulation (Fig. 7).

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

311

312

313

314

315

Discussion

In this study, we investigated the mechanical force required for follicle rupture, a longlasting question in the ovulation field. Using the powerful genetic tools available in *Drosophila* with pharmacological tools, we clearly demonstrated that OA, the signal for *Drosophila* follicle rupture, induces the cortex accumulation of F-actin and NMII in follicle cells, which contracts and generates mechanical force for follicle rupture during *Drosophila* ovulation (Fig. 7). It is important to note that the contraction mostly occurs at the lateral membrane (potentially in cellcell junctions) of main-body follicle cells, which likely generate the tension to potentiate the follicle cells to transit from squamous to cuboidal appearance in order to reduce the apical area covering the oocyte (Fig. 7). The activation of MMP2 induced by OA and subsequent breakdown of posterior follicle cells disrupt the balance of this tension, which drives follicle cell morphogenesis and compression toward the anterior dorsal appendage. This model predicts that cell-cell junctions in main-body follicle cells are critical to exert such mechanical force for follicle rupture and will be subjected to future investigation. Together with our previous findings about that OA activates MMP2 in posterior follicle cells for follicle breakdown and NOX in main-body follicle cells for ROS production, our study here introduces a new perspective on

Drosophila ovulation, emphasizing the mechanical force generated in main-body follicle cells by OA signal.

The receptor for mediating OA's effect is likely OAMB, the only α-adrenergic receptor in *Drosophila*. Our previous work has demonstrated that OAMB is critical for OA-induced MMP2 activation, ROS production, and thus follicle rupture (26, 28). Therefore, we focused on OAMB in this study. As expected, *Oamb* mutation significantly reduced OA-induced F-actin, NMII, and Sqh-1P enrichment as well as Rho1 cortex activation (Fig. 3I-N, 5D-H, and SI Appendix, Fig. S5J-N). Our work revealed for the first time the connection between OA signaling and Rho1-actomyosin contraction in non-muscle cells. Since OA has been involved in many biological processes, including lipid and carbohydrate metabolism, arousal level, and learning and memory (64–67), OA-induced Rho1 activation and actomyosin contraction may potentially be involved in these processes, which awaits future investigation.

We did notice that *oamb* mutation did not completely block the OA-induced F-actin, NMII, and Sqh-1P enrichment, consistent with the previous result that *oamb* mutation did not completely block the OA-induced superoxide production and follicle rupture (26, 28). Our previous work showed that *oamb* mRNA is not detectable in *oamb* mutant follicles (26). The recent work from Rohrbach et al. showed that OAMB is the only adrenergic receptor expressed in mature follicle cells (68). This implies that OA may activate another unknown receptor to induce actomyosin contraction in the absence of *oamb*.

We still do not know how OA/OAMB signaling mediates Rho1 activation in the follicle cell cortex. Previous work in *Drosophila* embryo nicely demonstrated that G protein-coupled receptor Mist activates $G_{\alpha_{12/13}}$ protein Cta (Concertina) to induce RhoGEF2 (Rho guanine

nucleotide exchange factor 2) and subsequent Rho1 activation in apical surface of the embryonic cells with the help of transmembrane protein T48 (69–72). Future investigation will determine whether T48 is expressed in mature follicle cells and thus facilitates Rho1 cortex activation in follicle cells. Further understanding of which G protein downstream of OAMB or any RhoGEF is responsible for transducing OAMB signal to Rho1 activation is of great interest for future research. It is also interesting to find out what causes the differential activation of Rho1 and actomyosin cortex enrichment between main-body and posterior follicle cells, since both receive the OA/OAMB signaling.

In addition to Rho1 and NMII, regulation of actin dynamics in late oogenesis is also poorly understood. Previous studies have shown that F-actin forms basal bundles in follicle cells from stage 10 to 13, which is critical for the final stage of egg elongation (45, 73). Our findings showed that F-actin becomes more dispersed in all follicle cells at stage 14. It is unclear what developmental signal leads to the reorganization of actin cytoskeleton during follicle maturation. Importantly, upon stimulation by OA, F-actin is re-localized to the cortex, primarily in the lateral region of main-body follicle cells. In addition to Rho1, there are two other GTPases (Rac and Cdc42), which are critical for actin polymerization and cell movement. Their role in OA-induced actin polymerization is still unknown and are subject to future investigation.

Actin cytoskeleton is one of the most fundamental and conserved structural components that are known to be involved in countless biological processes across species. In epithelial tissues, it works with non-muscle myosin II to form actomyosin network to controls cell shape, cell migration, tissue morphogenesis (34, 35, 74). This conserved mechanism suggests that the finding of this study may be involved in mammalian ovulation. Several lines of evidence support this prediction. First of all, granulosa cells have a drastic cytoskeleton remodeling and shape

change after LH surge, the signal for mammalian ovulation (14, 15). This cytoskeleton remodeling was shown to be dependent on RhoA, homologous to *Drosophila* Rho1 (14). Second, granulosa cells become highly migratory and exhibit inward migration after LH surge (12, 13, 16). Reducing Fyn, the kinase important for focal adhesion formation and cell migration, in granulosa cells leads to reduced migratory capacity of granulosa cells and ovulation rate (13). Third, while the contraction of smooth muscle cells in the theca layer, triggered by granulosa cell-produced endothelin-2, mediates the constrictions in the basolateral region of the preovulatory follicles, believed to aid in expelling the oocyte during follicle rupture, the granulosa-specific deletion of endothelin-2 in mice only partially inhibits ovulation (5). This is consistent with the previous observation that smooth muscle cells in the theca layer only accounts for minor fraction of the somatic cells in the preovulatory follicles (9). Therefore, additional mechanical force, likely from granulosa cells, is required for efficient ovulation. Future work will be required to decisively determine whether Rho-mediated actomyosin contraction in granulosa cells plays any role in mammalian ovulation like its counterpart in Drosophila ovulation.

393

394

395

396

397

398

399

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Materials and Methods

Drosophila genetics and husbandry follow standard procedures. For ectopic expression of RNAi or transgenes with Gal4/UAS system, the progeny were kept in 29 °C to enhance the expression. Except 44E10-Gal4, 47A04-Gal4 (gifts from Gerald Rubin), ubi-AniRBD::GFP (gift from Thomas Lecuit), all the other fly stocks were made in house or acquired from Bloomington Drosophila Stock Center and Vienna Drosophila Resource Center.

All the physiological assays including egg laying, ovulation time, *ex vivo* follicle rupture, *in situ* zymography, and superoxide detection follow standard protocols published previously (26, 75). Immunostaining and microscopy also follow standard procedure (75) except for phalloidin staining, in which case, a master mix of 4% EM-grade paraformaldehyde, Alexa FluorTM 488 Phalloidin at 1:500 dilution, and 0.1 ug/mL DAPI in 1X PBT was used to fix and stain mature follicles. Laser ablation was carried out using a Zeiss LSM 710. Cortex and cytoplasm intensity measurement is carried out using FIJI. Quantification of follicle volume uses in-house MATLAB scripts.

Detailed materials, protocols and statistical analysis are described in SI Appendix, Supplemental Materials and Methods.

Acknowledgement

We thank Drs Thomas Lecuit, Robert Ward, Gerald Rubin, Allan Spradling, and David Knecht for generously sharing fly lines and reagents; Bloomington Drosophila Stock Center and Vienna Drosophila Resource Center for fly stocks; and Developmental Studies Hybridoma Bank for antibodies. We appreciate UConn Imaging Core facility, the W.M. Keck Facility at the Whitehead Institute, Dr. Yukiko Yamashita lab and Dr. Ruth Lehmann lab for supporting the uses of microscope. The Leica SP8 confocal microscope is supported by an NIH Award (S100D016435) to Akiko Nishiyama. We appreciate constructive comments from anonymous reviewers. We also thank members of the Sun lab for comments and supports for the manuscript. This project was supported by National Institutes of Health/National Institute of Child Health and Human Development grants (R01-HD086175 and R01-HD097206) to J.S., National Science

- 422 Foundation award (2223957) to J.S. and K.H. and National Institutes of Health/National Institute
- of General Medical Sciences grant (R35-GM144115) to A.C.M.

424

425

Competing interests statement

The authors declare no competing financial interests.

427

428 References

- 1. L. L. Espey, J. S. Richards, "Ovulation" in *Physiology of Reproduction*, 3rd Ed., J. D. Neill, Ed. (Academic Press, 2006), pp. 425–474.
- 431 2. R. L. Robker, J. D. Hennebold, D. L. Russell, Coordination of Ovulation and Oocyte Maturation: A Good Egg at the Right Time. *Endocrinology* **159**, 3209–3218 (2018).
- 433 3. D. M. Duffy, C. Ko, M. Jo, M. Brannstrom, T. E. Curry, Ovulation: Parallels With Inflammatory Processes. *Endocr. Rev.* **40**, 369–416 (2019).
- 435 4. C. J. Ko, Y. M. Cho, E. Ham, J. A. Cacioppo, C. J. Park, Endothelin 2: a key player in ovulation and fertility. *Reproduction* **163**, R71–R80 (2022).
- 437 5. J. A. Cacioppo, *et al.*, Granulosa cell endothelin-2 expression is fundamental for ovulatory follicle rupture. *Sci. Rep.* **7**, 817 (2017).
- 439 6. C. Ko, *et al.*, Endothelin-2 in Ovarian Follicle Rupture. *Endocrinology* **147**, 1770–1779 440 (2006).
- 441 7. G. S. Palanisamy, *et al.*, A Novel Pathway Involving Progesterone Receptor, Endothelin-2,
 442 and Endothelin Receptor B Controls Ovulation in Mice. *Mol. Endocrinol.* 20, 2784–2795
 443 (2006).
- 444 8. G. G. Martin, P. Talbot, Drugs that block smooth muscle contraction inhibit in vivo ovulation in hamsters. *J. Exp. Zool.* **216**, 483–491 (1981).
- 9. G. G. Martin, P. Talbot, The role of follicular smooth muscle cells in hamster ovulation. *J. Exp. Zool.* 216, 469–482 (1981).
- 10. P. Talbot, R. S. Chacon, In vitro ovulation of hamster oocytes depends on contraction of follicular smooth muscle cells. *J. Exp. Zool.* **224**, 409–415 (1982).
- 450 11. M. Matousek, C. Carati, B. Gannon, M. Brannstrom, Novel method for intrafollicular pressure measurements in the rat ovary: increased intrafollicular pressure after hCG stimulation. *Reproduction* **121**, 307–314 (2001).

- 453 12. S. Bianco, *et al.*, The Ovulatory Signal Precipitates LRH-1 Transcriptional Switching Mediated by Differential Chromatin Accessibility. *Cell Rep.* **28**, 2443-2454.e4 (2019).
- H. Grossman, *et al.*, A novel regulatory pathway in granulosa cells, the LH/human chorionic gonadotropin-microRNA-125a-3p-Fyn pathway, is required for ovulation. *FASEB J.* 29, 3206–3216 (2015).
- 458 14. A. B. Karlsson, *et al.*, Luteinizing Hormone Receptor-Stimulated Progesterone Production
 459 by Preovulatory Granulosa Cells Requires Protein Kinase A-Dependent
 460 Activation/Dephosphorylation of the Actin Dynamizing Protein Cofilin. *Mol. Endocrinol.* 24,
 461 1765–1781 (2010).
- 462 15. A. BEN-ZE'EV, A. AMSTERDAM, Regulation of Cytoskeletal Protein Organization and Expression in Human Granulosa Cells in Response to Gonadotropin Treatment*.

 464 Endocrinology 124, 1033–1041 (1989).
- 465 16. C. M. Owen, L. A. Jaffe, Luteinizing hormone stimulates ingression of mural granulosa
 466 cells within the mouse preovulatory follicle†. *Biol. Reprod.* ioad142 (2023).
 467 https://doi.org/10.1093/biolre/ioad142.
- 468 17. S. Matsuzaki, Mechanobiology of the female reproductive system. *Reprod. Med. Biol.* **20**, 371–401 (2021).
- 470 18. E. J. Zaniker, E. Babayev, F. E. Duncan, Common mechanisms of physiological and pathological rupture events in biology: novel insights into mammalian ovulation and beyond. *Biol. Rev.* **98**, 1648–1667 (2023).
- 473 19. C. Berg, M. Sieber, J. Sun, Finishing the egg. *Genetics* iyad183 (2023). https://doi.org/10.1093/genetics/iyad183.
- 475 20. A. C. Spradling, "Developmental genetics of oogenesis" in *The Development of Drosophila Melanogaster*, M. Bate, A. Martinez-Arias, Eds. (Cold Spring Harbor Laboratory Press, 1993), pp. 1–70.
- T. Roeder, TYRAMINE AND OCTOPAMINE: Ruling Behavior and Metabolism. *Annu. Rev.* Entomol. 50, 447–477 (2005).
- 480 22. S. H. Cole, *et al.*, Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. *J Biol Chem* 482 **280**, 14948–55 (2005).
- 483 23. H.-G. Lee, C.-S. Seong, Y.-C. Kim, R. L. Davis, K.-A. Han, Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. *Dev. Biol.* **264**, 179–190 (2003).
- 485 24. M. Monastirioti, Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. *Dev. Biol.* **264**, 38–49 (2003).
- 487
 488
 488
 489
 M. Monastirioti, C. E. Linn Jr, K. White, Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. *J. Neurosci.* 16, 3900–3911 (1996).

- 490 26. L. D. Deady, J. Sun, A Follicle Rupture Assay Reveals an Essential Role for Follicular Adrenergic Signaling in Drosophila Ovulation. *PLoS Genet* **11**, e1005604 (2015).
- 492 27. L. D. Deady, W. Shen, S. A. Mosure, A. C. Spradling, J. Sun, Matrix Metalloproteinase 2 Is 493 Required for Ovulation and Corpus Luteum Formation in Drosophila. *PLoS Genet.* **11**, 494 e1004989 (2015).
- 495 28. W. Li, J. F. Young, J. Sun, NADPH oxidase-generated reactive oxygen species in mature 496 follicles are essential for Drosophila ovulation. *Proc. Natl. Acad. Sci.* **115**, 7765–7770 497 (2018).
- 498 29. S. A. Deshpande, *et al.*, Regulation of *Drosophila* oviduct muscle contractility by octopamine. *iScience* **25**, 104697 (2022).
- 500 30. W. Luo, *et al.*, Juvenile hormone signaling promotes ovulation and maintains egg shape by inducing expression of extracellular matrix genes. *Proc. Natl. Acad. Sci. U. S. A.* **118**, 502 e2104461118 (2021).
- 503 31. C. D. Rubinstein, M. F. Wolfner, Drosophila seminal protein ovulin mediates ovulation 504 through female octopamine neuronal signaling. *Proc. Natl. Acad. Sci.* **110**, 17420–17425 505 (2013).
- 32. H.-G. Lee, S. Rohila, K.-A. Han, The Octopamine Receptor OAMB Mediates Ovulation via
 507 Ca2+/Calmodulin-Dependent Protein Kinase II in the Drosophila Oviduct Epithelium. *PLOS* 508 ONE 4, e4716 (2009).
- 509 33. E. Rodriguez-Mesa, M. T. Abreu-Blanco, A. E. Rosales-Nieves, S. M. Parkhurst,
 510 Developmental expression of Drosophila Wiskott-Aldrich Syndrome family proteins. *Dev. Dyn.* 241, 608–626 (2012).
- 512 34. P. Agarwal, R. Zaidel-Bar, Principles of Actomyosin Regulation *In Vivo. Trends Cell Biol.* 513 **29**, 150–163 (2019).
- 514 35. D. N. Clarke, A. C. Martin, Actin-based force generation and cell adhesion in tissue morphogenesis. *Curr. Biol.* **31**, R667–R680 (2021).
- 36. J. Gates, Drosophila egg chamber elongation. Fly (Austin) 6, 213–227 (2012).
- 517 37. N. Xu, G. Bagumian, M. Galiano, M. M. Myat, Rho GTPase controls Drosophila salivary 518 gland lumen size through regulation of the actin cytoskeleton and Moesin. *Development* 519 **138**, 5415–5427 (2011).
- 520 38. A. G. Szent-Györgyi, The Early History of the Biochemistry of Muscle Contraction. *J. Gen. Physiol.* **123**, 631–641 (2004).
- 522 39. M. Vicente-Manzanares, X. Ma, R. S. Adelstein, A. R. Horwitz, Non-muscle myosin II takes centre stage in cell adhesion and migration. *Nat. Rev. Mol. Cell Biol.* **10**, 778–790 (2009).
- 524 40. M. Ikebe, D. J. Hartshorne, Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. *J. Biol. Chem.* **260**, 10027–10031 (1985).

- 526 41. P. Jordan, R. Karess, Myosin Light Chain–activating Phosphorylation Sites Are Required for Oogenesis in Drosophila. *J. Cell Biol.* **139**, 1805–1819 (1997).
- 42. A. Munjal, T. Lecuit, Actomyosin networks and tissue morphogenesis. *Dev. Camb. Engl.* **141**, 1789–1793 (2014).
- 530 43. C. G. Vasquez, S. M. Heissler, N. Billington, J. R. Sellers, A. C. Martin, Drosophila non-531 muscle myosin II motor activity determines the rate of tissue folding. *eLife* **5**, e20828 532 (2016).
- 44. A. Schmidt, L. Li, Z. Lv, S. Yan, J. Großhans, Dia- and Rok-dependent enrichment of capping proteins in a cortical region. *J. Cell Sci.* **134**, jcs258973 (2021).
- 535 45. L. He, X. Wang, H. L. Tang, D. J. Montell, Tissue elongation requires oscillating contractions of a basal actomyosin network. *Nat. Cell Biol.* **12**, 1133–1142 (2010).
- 46. A. C. Martin, B. Goldstein, Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. *Development* **141**, 1987–1998 (2014).
- 539 47. J. M. Verboon, S. M. Parkhurst, Rho family GTPase functions in Drosophila epithelial wound repair. *Small GTPases* **6**, 28–35 (2015).
- 541 48. G. Aranjuez, A. Burtscher, K. Sawant, P. Majumder, J. A. McDonald, Dynamic myosin activation promotes collective morphology and migration by locally balancing oppositional forces from surrounding tissue. *Mol. Biol. Cell* **27**, 1898–1910 (2016).
- 49. A. M. Gabbert, *et al.*, Septins regulate border cell surface geometry, shape, and motility downstream of Rho in Drosophila. *Dev. Cell* **58**, 1399-1413.e5 (2023).
- 546 50. M. C. Lamb, *et al.*, Fascin limits Myosin activity within Drosophila border cells to control substrate stiffness and promote migration. *eLife* **10**, e69836 (2021).
- 51. P. Majumder, G. Aranjuez, J. Amick, J. A. McDonald, Par-1 Controls Myosin-II Activity through Myosin Phosphatase to Regulate Border Cell Migration. *Curr. Biol.* **22**, 363–372 (2012).
- 55. J. Imran Alsous, *et al.*, Dynamics of hydraulic and contractile wave-mediated fluid transport during Drosophila oogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **118**, e2019749118 (2021).
- 53. W. E. Theurkauf, T. I. Hazelrigg, In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. *Development* **125**, 3655–3666 (1998).
- 556 54. A. Popkova, M. Rauzi, X. Wang, Cellular and Supracellular Planar Polarity: A Multiscale Cue to Elongate the Drosophila Egg Chamber. *Front. Cell Dev. Biol.* **9**, 645235 (2021).
- 55. X. Qin, *et al.*, Cell-matrix adhesion and cell-cell adhesion differentially control basal myosin oscillation and Drosophila egg chamber elongation. *Nat. Commun.* **8**, 14708 (2017).

- 56. S. Vlachos, N. Harden, Genetic Evidence for Antagonism Between Pak Protein Kinase and
 561 Rho1 Small GTPase Signaling in Regulation of the Actin Cytoskeleton During Drosophila
 562 Oogenesis. *Genetics* 187, 501–512 (2011).
- 57. D. Drummond-Barbosa, A. C. Spradling, Alpha-endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. *Dev. Biol.* **266**, 310–321 (2004).
- 566 58. C. G. Winter, *et al.*, Drosophila Rho-associated kinase (Drok) links Frizzled-mediated planar cell polarity signaling to the actin cytoskeleton. *Cell* **105**, 81–91 (2001).
- 59. L. Zhang, R. E. Ward, Distinct tissue distributions and subcellular localizations of differently phosphorylated forms of the myosin regulatory light chain in Drosophila. *Gene Expr.*70. Patterns 11, 93–104 (2011).
- 571 60. M. Uehata, *et al.*, Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. *Nature* **389**, 990–994 (1997).
- 573 61. E. Sahai, C. J. Marshall, ROCK and Dia have opposing effects on adherens junctions downstream of Rho. *Nat. Cell Biol.* **4**, 408–415 (2002).
- 575 62. M. S. Hutson, *et al.*, Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. *Science* **300**, 145–149 (2003).
- 577 63. A. Munjal, J.-M. Philippe, E. Munro, T. Lecuit, A self-organized biomechanical network drives shape changes during tissue morphogenesis. *Nature* **524**, 351–355 (2015).
- 579 64. C. J. Burke, *et al.*, Layered reward signalling through octopamine and dopamine in Drosophila. *Nature* **492**, 433–437 (2012).
- 581 65. R. Erion, J. R. DiAngelo, A. Crocker, A. Sehgal, Interaction between sleep and metabolism in Drosophila with altered octopamine signaling. *J. Biol. Chem.* **287**, 32406–32414 (2012).
- 583 66. P. D. Evans, B. Maqueira, Insect octopamine receptors: a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. *Invertebr. Neurosci. IN* 585 5, 111–118 (2005).
- 586 67. J. Luo, O. V. Lushchak, P. Goergen, M. J. Williams, D. R. Nässel, Drosophila insulin-587 producing cells are differentially modulated by serotonin and octopamine receptors and 588 affect social behavior. *PloS One* **9**, e99732 (2014).
- 589 68. E. W. Rohrbach, E. M. Knapp, S. A. Deshpande, D. E. Krantz, Expression and potential regulatory functions of Drosophila octopamine receptors in the female reproductive tract. *G3 GenesGenomesGenetics* **14**, jkae012 (2024).
- 592 69. V. Kölsch, T. Seher, G. J. Fernandez-Ballester, L. Serrano, M. Leptin, Control of
 593 Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. *Science* 594 315, 384–386 (2007).

- 595 70. A. J. Manning, K. A. Peters, M. Peifer, S. L. Rogers, Regulation of epithelial 596 morphogenesis by the G protein-coupled receptor mist and its ligand fog. *Sci. Signal.* **6**, 597 ra98 (2013).
- 598 71. K. K. Nikolaidou, K. Barrett, A Rho GTPase signaling pathway is used reiteratively in 599 epithelial folding and potentially selects the outcome of Rho activation. *Curr. Biol. CB* **14**, 600 1822–1826 (2004).
- 72. S. Parks, E. Wieschaus, The Drosophila gastrulation gene concertina encodes a G alphalike protein. *Cell* **64**, 447–458 (1991).
- G. Wahlström, H.-L. Norokorpi, T. I. Heino, Drosophila alpha-actinin in ovarian follicle cells is regulated by EGFR and Dpp signalling and required for cytoskeletal remodelling. *Mech. Dev.* 123, 801–818 (2006).
- 74. T. Lecuit, P.-F. Lenne, Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. *Nat. Rev. Mol. Cell Biol.* **8**, 633–644 (2007).
- R. Oramas, E. M. Knapp, B. Zeng, J. Sun, The bHLH-PAS transcriptional complex
 Sim:Tgo plays active roles in late oogenesis to promote follicle maturation and ovulation.
 Dev. Camb. Engl. 150, dev201566 (2023).

612 Figure legends

611

613

614

615

616

617

618

619

620

621

622

623

624

Figure 1. OA-induced follicle swelling is not required for follicle rupture. (A) Representative images show a mature follicle before and after follicle rupture. Follicle cells are marked by 44E10-Gal4 driving UAS-RG6 expression (44E10>RG6, shown in red). Yellow arrows indicate the length of the follicle-cell layer along the anterior-posterior (A-P) axis. (B-C) Quantification of the length (B) and the compression ratio (C) of the follicle-cell layer along the A-P axis before and after rupture. (D-F) Time-lapse images show mature follicles in control medium without OA (D) or with OA (E), or in hypertonic medium with OA (F). Follicle cells are marked with 47A04-Gal4 driving UAS-RG6 (47A04>RG6) expression in white. Yellow arrows indicate dented/wrinkled surface on follicles. Scale bars: 100 μm. (G-H) Quantification of the change of mature follicle volume with or without OA treatment in control or hypertonic medium. The volume is normalized to the beginning time point. The final volume change after a 30-minute treatment is summarized in (H), and the number of mature follicles analyzed is indicated in

brackets. Error bars are standard deviation (SD) (**I-J**) Representative images show mature follicles after a three-hour treatment with OA in control (I) and hypertonic (J) medium. Follicle cells are marked by 47A04 > RG6 in red, and the bright-field image is pseudo-colored in cyan. Yellow arrowheads indicate ruptured follicles. (**K**) Quantification of OA-induced follicle rupture. The number of mature follicles is in brackets. ***P < 0.001, *P < 0.05, ns = not significant.

Figure 2. Pharmacological disruption of actin polymerization prevents OA-induced follicle rupture without affecting MMP2 activation and superoxide production. (A-F)

Representative images show mature follicles treated with ethanol (A and C), colchicine (20 μg/ml, B), latrunculin A (1 μg/ml, D), DMSO (E), or cytochalasin D (1 μg/ml, F) for 30 minutes followed by OA stimulation for three hours. Follicle cells are marked by 47A04>RG6 in red, and bright-field images are pseudo-colored in cyan. Yellow arrowheads marked the ruptured follicles. (G) Quantification of OA-induced follicle rupture after treatment with a variety of compounds as in (A-F). The number of mature follicles is in brackets. (H-K) Representative images show mature follicles with gelatinase activity (indicated by gelatin-fluorescein in green) without (H) or with OA (I-K) treatment for three hours. Mature follicles were either treated with DMSO (H-I), cytochalasin D (1 μg/ml, J), or latrunculin A (1 μg/ml, K). Follicle cells are marked by 47A04>RG6 (red). Follicles with posterior fluorescein signal are clustered toward the upper panel. (L) Quantification of OA-induced posterior MMP activity after treatment with chemicals as in H-K. The number of mature follicles is in brackets. (M) Quantification of OA-induced posterior MMP activity after treatment with

induced superoxide production indicated by L-012-emitted relative luminescence unit (RLU).

647 Mature follicles were treated with DMSO, cytochalasin D (1 μg/mL) or latrunculin A (1μg/mL) 648 for 30 min before OA stimulation. Also see Figure S1D. ****P<0.0001, ns = not significant. 649 650 Figure 3. OA/OAMB induces the cortex enrichment of actomyosin in main-body follicle 651 cells. (A-C) Representative images show F-actin (marked by phalloidin staining in white) in mature follicles immediately after isolation (A), or cultured for 30 minutes without (B) and with 652 653 (C) OA. Yellow arrows demarcate the border between main-body and posterior follicle cells. (D) 654 Quantification of the ratio of F-actin intensity between the cortex and the cytoplasm of main-655 body follicle cells with or without OA treatment. Each OA+ group was compared to its 656 corresponding OA- group for statistical analysis. (E-G) Representative images show Sqh::GFP 657 expression (white) in mature follicles immediately after isolation (E), or cultured for 30 minutes 658 without (F) or with (G) OA. Yellow arrows demarcate the border between main-body and 659 posterior follicle cells. (H) Quantification of the ratio of Sqh::GFP intensity between the cortex 660 and the cytoplasm of main-body follicle cells with or without OA treatment. Each OA+ group 661 was compared to its corresponding OA- group for statistical analysis. (I-K) Representative 662 images show F-actin (white in I-J) in mature follicles treated with OA for 30 minutes. Mature 663 follicles are from control (I) or Oamb mutant (J) females. Quantification of the ratio of F-actin 664 intensity between the cortex and the cytoplasm in main-body follicle cells is shown in K. (L-N) 665 Representative images show Sqh::GFP expression (white in L-M) in mature follicles isolated 666 from control (L) and *Oamb* mutant (M) females and treated with OA for 30 minutes. 667 Ouantification of the ratio of Sqh::GFP intensity between the cortex and the cytoplasm of main-668 body follicle cells is shown in N. Data are mean \pm s.e.m. (D, H, K, N). ****P<0.0001, ns = not 669 significant.

671 Figure 4. Rok regulates actomyosin contraction and is required for follicle rupture. (A-L) 672 Representative images show Sqh-1P antibody staining (white in A-D), Sqh::GFP (white in E-H), 673 and F-actin (phalloidin staining, white in I-L) in mature follicles after a 30-minute culture 674 without (A, C, E, G, I, and K) or with (B, D, F, H, J, and L) OA stimulation. Mature follicles 675 were pretreated with either control (A-B, E-F, I-J) or 100 µM Y-27632 (C-D, G-H, K-L). Also 676 see Figure S4. (M-R') Time-lapse images show Sqh::GFP (white in M-R) and cell membrane 677 (white in M'-R') dynamics before and after laser ablation. The laser ablation sites are indicated 678 by green arrowheads, and the adjacent tri-cellular junctions are marked with yellow asterisks. 679 Mature follicles were pretreated with control (M-O) or 100 µM Y-27632 (P-R) for 15 minutes 680 followed by OA stimulation for 30 minutes before laser ablation. (S) Quantification of initial 681 recoil velocity of the adjacent tricellular junctions within 12 seconds after laser ablation in 682 control and Y-27632-treated follicles. (T-U) Representative images show mature follicles treated 683 with control (T) or Y-27632 (100 μM, U) for 30 minutes followed by OA stimulation for three 684 hours. Follicle cells are marked by 47A04>RG6 in red, and bright-field images are pseudo-685 colored in cyan. Yellow arrowheads mark the ruptured follicles, and the dotted circles indicate 686 the breakdown of posterior follicle wall. (V) Dose-dependent inhibition of OA-induced follicle 687 rupture by Y-27632. The number of mature follicles is in brackets. ***P<0.001. 688 689 Figure 5. OA/OAMB induces Rho1 activation at the follicle cell cortex. (A-B)

670

690

691

692

Representative images show Ani-RBD::GFP (white in A-B) in mature follicles after a 30-minute culture without (A) or with (B) OA. Yellow arrowheads demarcate the border between main-body and posterior follicle cells. (C) Quantification of mature follicles with cortex-enriched Ani-

RBD::GFP (as in B) with or without OA stimulation. We quantified the number of follicles exhibiting the clear cortex enrichment pattern in over 50% of all follicle cells, instead of assessing the GFP intensity. The number of follicles counted is shown in brackets above each bar. Each OA+ group was compared to its corresponding OA- group for statistical analysis. (**D**-G) Representative images show Ani-RBD::GFP expression (white in D-G) in mature follicles from control (D-E) and *Oamb* mutant (F-G) females and treated without (D, F) or with (E, G) OA for 30 minutes. (H) Quantification of the ratio of Ani-RBD::GFP intensity between the cortex and the cytoplasm of main-body follicle cells with or without OA treatment. Each OA+group was compared to its corresponding OA- group for statistical analysis. Data are mean ± s.e.m. (H). ****P<0.0001, ***P<0.001.

Figure 6. Rho1 is required and sufficient for follicle rupture/ovulation. (A-H) Representative images show F-actin (white in A-D) and Sqh::GFP (white in E-H) in mature follicles cultured for 30 minutes without (A, C, E, G) or with (B, D, F, H) OA. Mature follicles were isolated from control females (A-B, E-F) or females with 47A04-Gal4 driving UAS-Rho1^{DN} expression (C-D, G-H). (I-K) Representative images show mature follicles from control (I) or Rho1DN females and cultured for three hours with OA. Follicle cells are marked by 47A04>RFP in red, and the bright-field image is pseudo-colored in cyan. Yellow arrowheads indicate ruptured follicles. Quantification of ruptured follicles is shown in (K). The number of mature follicles is in brackets. (L-N) Quantification of egg laying capacity (L), mature follicles remained in the ovary after egg laying (M), and the egg laying time (N) in females of control or overexpression of Rho1^{DN} or Rho1^{CA} driven by 47A04-Gal4. Also see table S1. (O-P) Representative images show

ovarioles from control (O) and $Rho1^{CA}$ -overexpressing (P) females. White asterisks indicate preruptured follicles inside the ovary. Mature follicle cells are marked by 47A04 > RFP in red, green autofluorescence from eggshell is in green, and DAPI is used to mark cell nuclei in blue. ***P < 0.001.

Figure 7. Schematics of a novel OA-induced contraction pathway in *Drosophila* follicle rupture. Before a mature follicle is exposed to OA, it is dehydrated and actomyosin is located sporadically in follicle cells whose shapes are squamous. Once it is stimulated with OA (rupture has not yet been initiated), the follicle is rehydrated; Rho1 activity, F-actin and NMII are enriched around the cortex along the lateral membrane in order to prepare contraction leading to the follicle rupture. Then, with the breakdown of posterior tip of the mature follicle by MMP2 (Deady et al., 2015), we expect to see that mechanical force that is generated by Rho1-actomyosin contraction will cause the shape of the follicle cells to be more cuboidal and ultimately compress the whole follicle cell layer at the dorsal appendage site. This phenomenon will display the completion of follicle rupture. The signaling mechanism explains that when OA (pink) binds to OAMB (purple), active Rho1 (yellow) is enriched in the cortex, as well as NMII (blue) and F-actin (orange), which will lead to the follicle rupture. (CE = cortex enrichment)

Fig. 2 В D Colc 20µg/mL Lat A 1µg/mL Ethanol Ethanol **** 100-**** Ruptured follicles (%) П 80-20µM OA 60**-**(282) 40-20-(452)(299)Cyto D 1µg/mL Control Cyto D Control Control Colc Lat A Gelatin-fluor

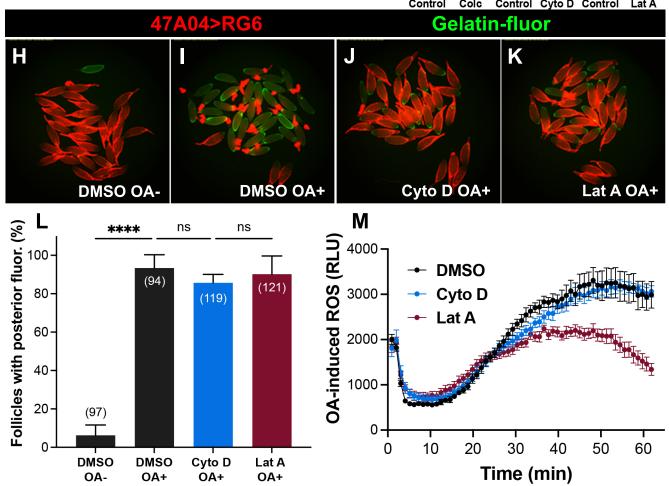
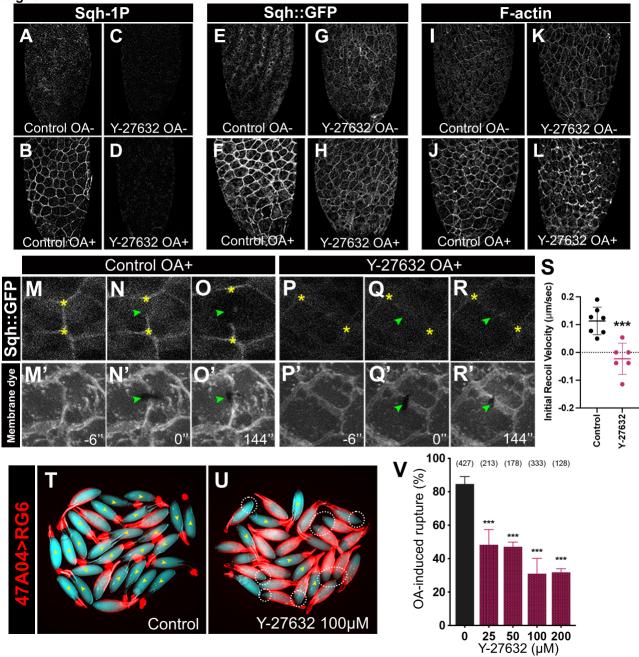



Fig. 3 *** 0 min 30 min OA-D ∭OA+ F-actin Ratio В F-actin 0 30 45 15 Time (min) 15 30 45 OA-OA-OA+ OA-Н 5 **∭**OA+ П G Sqh Ratio Sqh::GFP *** 30 45 15 Time (min) 15 30 45 OA-OA-0 OA+ **** **** K N ns Sqh::GFP F-actin 5 **** **** **** **** 2.02 1.30 1.83 2.48___ fold fold F-actin Ratio fold fold Sqh Ratio 2 Oamb+/-Oamb^{-/-} Oamb+/-Oamb^{-/-} **0** OA OA Oamb^{+/-} Oamb^{-/-} Oamb+/-Oamb^{-/-}

Fi<u>g</u>. 4

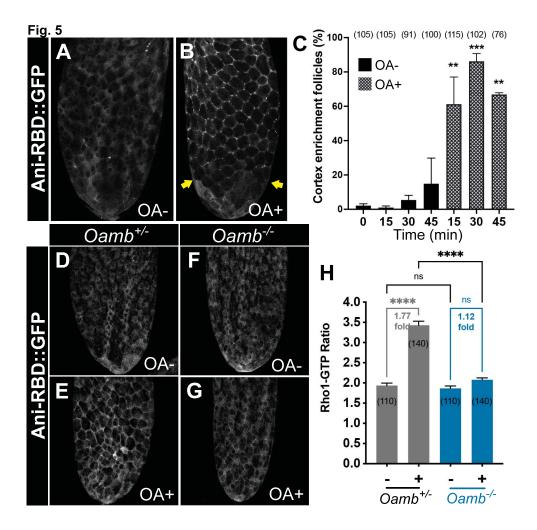
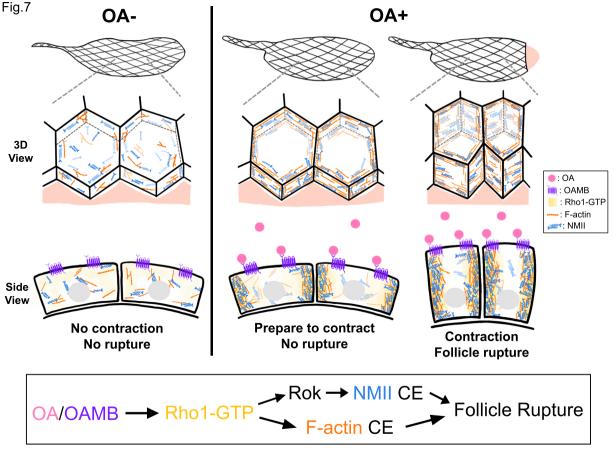



Fig. 6 Rho1^{DN} Control Rho1^{DN} Control C. G Sqh::GFP F-actin OA-OA-OA-OA-В D 7 OA+ OA+ OA+ OA+ (50) (50) (50) (361)(425)K 80 1 80 47A04>RFP 20uM OA Rupture rate (%) eggs/female/day 60 60 40 40 20 20 0 Rho1^{DN} Rho1^{DN} Control Rho1cA. Rho1^{DN} **Control** Control 47A04> Mature follicles/ovary pair N (44) (48) (47) Ovulation 800 100 Oviduct 700 Uterus Auto-fluorescence 80 Egg lyaing time (min) 600 0 500 60 400 40 300 200 20 100 0 0 Rho1^{DN} Rho1cA-Rho1^{DN} Rho1CA+ Control . Control Rho1^{CA} Control

