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Dedicated to David Jerison on the occasion of his 70th birthday

ABSTRACT. We discuss the solution of the Neumann problem associated with the CR Yamabe operator
on a subset Q of the CR manifold S® bounded by the Clifford torus . We also discuss the Yamabe-type
problem of finding a contact form on £ which has zero Tanaka—Webster scalar curvature and for which X
has constant p-mean curvature.

1. INTRODUCTION

We view S? = {(¢*,¢?) € C*: |[¢'? +]|¢?|> = 1} as the boundary of the unit ball in C?, and equip it with
a pseudohermitian structure associated to the contact form

01= D¢ ~1) = (T + T~ T ¢!~ Todc?),
Let Q C S3 be the domain
Q={(¢" ¢ eS’: [¢M < I}, (1.1)

whose boundary is given by

1
=00 ={( ) est ¢t =3 = ==},
{(¢",¢7) ¢ =1¢7] ﬁ}
the Clifford torus.
On €, we give an explicit solution to the Neumann problem,

{Lu_O in Q,

(1.2)
Vou=nh on 0N.

Here L denotes the CR Yamabe operator (2.3) on (S3,0) and V, denotes the one-sided horizontal normal
derivative for a function u € C*°(Q), i.e.

V.ou(€) := lim w, ¢ €09,

t—0+
where v,(t) is a curve so that v.(0) = ¢ and 7/(0) is the inward horizontal normal v to 902 at ¢ € 0.
Initially we assume that our boundary data h is smooth on X, i.e. h € C(91), and solve (1.2). Our
solution is given in terms of a suitable single layer potential S, defined for f € C1(X) by

Sf(¢) = G(¢,n)f(ndo(n), ¢€Q,

nex

where G((,n) is the Green’s function of the CR Yamabe operator L, and do is the surface measure on ¥
corresponding to the volume form ¢,6 A df.

Theorem 1.1. If h € C*(X), then there exists a unique u € C*(Q) that solves the Neumann problem
(1.2). Furthermore, u is given by Sf on Q for some f € C®(X), where f is determined by h from

f= (—%IJrN)_lh, (1.3)
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and N is the singular integral operator given by
NFQ =po§ (GG fdot). €.
ne

Some of the arguments follow those in [OV20], where (1.2) is solved on flag domains of H'. In contrast
to the Euclidean case [FJR78], the operator A is not a compact operator on L?(¥); it is only bounded on
L?(%), but not smoothing of any positive order. As a result, a more careful analysis is necessary to show
that —4/ + A is invertible on L?(X) (and all higher order L?-based Sobolev spaces).

A general result of Nhieu [Nhi01] implies the existence of a solution u to (1.2) in the Folland-Stein [FS74]
space S12() of functions u € L?(Q) whose horizontal gradient is also in L?(£2). We recover this result using
the single layer potential.

Theorem 1.2. If h € L*(X), then there exists a unique u € S12(Q) such that (1.2) is satisfied in the weak
sense, i.e.

R
/ ((Vbu,vb¢> + —u(b) 9/\d6‘+7{ h¢do =0
Q 4 b
for all ¢ € C>(Q). Furthermore, u is given by Sf on Q where f € L?(X) is determined from h by (1.3).

The key observation in the proof of Theorem 1.2 is that the single layer potential extends to a bounded
linear map S: L*(X) — SH2(Q).

Our work is motivated in part by the desire to formulate and study the CR boundary Yamabe problem
(cf. [Esc92]): Given a closed CR three-manifold with boundary (M3, T1?), construct a Webster-flat contact
form with respect to which the boundary has constant p-mean curvature H [CHMYO05]. Given a contact

form 6, the contact form 0 := u20 satisfies these properties if and only if w is a positive critical point of the
functional F:V — R,

R 1
Flu) = / |Vyul? + =u? ) O AdO + = Hu? do,
M 4 3 oM

V= {u € C>®(M) : ng|u|3da = 1}.

One way to construct such a contact form is to show that there is a smooth, positive function which realizes
the CR boundary Yamabe constant

Y(M,T*°) ;= inf {F(u) : u € V}.

If OM has no characteristic points, then the Sobolev trace embedding theorem [Nhi01] implies that the
restriction map C®(M) 3> u + ulopnr € C®(OM) extends to a continuous linear map Tr: SV2(M) —
L?(OM); in particular, F is well-defined on S%?(M). As in the Riemannian case [Esc94], it holds that
Y (M, T'?) > —cc if and only if the Dirichlet eigenvalues of L are positive; i.e.

)\1)D(L) = mf{]:(u) : ’u|a]\4 = O,/ |u|29/\d6‘ = 1} > 0.
M

The positivity of A\; p(L) also implies that the first Steklov eigenvalue

jn(L) = inf {f(u) : 7iM|u|2da _ 1} (1.4)

of L is finite.

In Section 7 we discuss the equivalence of the signs of y;(L) and Y (M, TY), under the assumption that
minimizers of p; (L) are smooth up to the boundary. Such regularity assumption can be verified in the case
where M = Q, where Q is the domain in S? defined by (1.1). Note that H = 0 for the Clifford torus ¥ = 99Q.

Proposition 1.3. Let (2,6) be the interior of the Clifford torus with the standard spherical contact form.
If u € SY2(Q) minimizes i (L), then u € C(1).
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Proposition 1.3 will be proved by observing that a minimizer u € S1:2(2) of u1(L) is a weak solution of
Lu=0, on {2
Vou = pTr(u), in 09,
where p = —F(u) is constant, and then using tools developed for the proof of Theorem 1.2.
Since the standard contact form on S? has positive Tanaka—Webster scalar curvature and is such that

the Clifford torus is p-minimal, the Sobolev trace embedding theorem [NhiO1] implies that the boundary
Yamabe constant Y (9, T10) is positive. We identify an explicit critical point of the functional F: V — R.

Theorem 1.4. Let (2, TH0 0) be the interior of the Clifford torus. Set
_ 2F1(272’ ; 127 )

2F1(2=27 %) 7
where
oF1(a,b; c; x) 1;)(0””, )
(a)()::l
(a)p i=ala+1)---(a+n—1), ifn>1,

is the standard Gaussian hypergeometric function. Then u20 is a scalar flat contact form on Q with respect
to which ¥ has constant p-mean curvature.

The solution of Theorem 1.4 is normalized so that 6 and 126 coincide on X.

The article is organized as follows. In Section 2, we give some background in pseudohermitian geometry
and Fourier analysis, in the specific setting of the Clifford torus. In Section 3, we compute the single
layer potential in local coordinates. Theorems 1.1, 1.2, Proposition 1.3 and Theorem 1.4 will be proved in
Sections 4, 5, 6 and 7, respectively.

Acknowledgements. Case is partially supported by the Simons Foundation (Grant #524601). Chen is
partially supported by NSF Award DMS-3103392. Wang is partially supported by NSF Career award DMS-
1845033. Yang is partially supported by the Simons Foundation (Grant #1006518). Yung is partially
supported by a Future Fellowship FT200100399 from the Australian Research Council.

2. SETUP AND NOTATIONS

2.1. Pseudohermitian geometry. A CR three-manifold is a pair (M3, T1?) consisting of a real three-
manifold M and a complex rank 1 distribution T%° € TcM. Let H := Re(Tl’O &) W) denote the space of
horizontal vectors. Then
J(Z+27):=iZ —iZ,

Z € T defines an integrable almost complex structure on H. We say that (M3, T*Y) is nondegenerate
if locally there is a real one-form 6 such that ker = H and 6 A df is nowhere-vanishing. Nondegenerate
CR three-manifolds are orientable [Jac90, Lemma 19], and hence there is a global real one-form 6 such that
ker 8 = H; in this case we call  a contact form.

A (strictly pseudoconvex) pseudohermitian manifold is a triple (M3, T10, 0) consisting of a nondegenerate
CR three-manifold (M?,T1%) and a contact form 6 such that df(Z,Z) > 0 for all nonzero Z € T*°. The
Reeb vector field is the unique vector field T such that 8(T) = 1a and dO(T,-) = 0.

An admissible coframe for (M3, T1°, 0) is a nowhere-vanishing local complex-valued one-form 6* such
that 0'(T) = 0 and §'(Z) = 0 for all Z € T*. Set ' := A1. Then {0, 6",0'} is a local coframe for T5M. Tt
follows that )

df = ihi1 01 NG
Note that hy3 > 0. Let {T,Z1, Z;} be the dual frame to {#,6%,6'}. This (globally) determines a positive
definite inner product on H by

1 _
(Rea'Zi,Reb* Z;) := 5 Re hiia'bl.
3



Let ' be an admissible coframe for (M3, T1° 0). Then there is a unique complex-valued one-form wy?

such that B
dot =0 Awit + A1 O A 6Y,
dhy1 = wi'hyg +wi' g,

where w11 = w_11 The Tanaka—Webster connection V is uniquely determined from VZ; := wi' ® Z; and

VT := 0 by complex linearity. The pseudohermitian torsion is the globally-defined tensor A; 6* ® 6*. The
Tanaka—Webster scalar curvature is the globally-defined function R determined by

dwit = Rhy1 ' A6Y mod 6.
We say that 0 is scalar flat if R = 0.
Given a function f € C°°(M), we denote by V; f the subgradient of f; i.e. the restriction of df to H. The
sublaplacian Ay: C°(M) — C*(M) is
Ab = VZV;,,
where V; is the formal L2-adjoint of V,, with respect to 6 A df. Locally,

Ayu = —h1 ((lei + 21700 — i N (Z1) Zyu — wii(Zl)Ziu) .
It is readily computed (cf. [Lee86, Equation (2.4)]) that

/ (Vou, Vow) O A df = / ulyw 6 A df + 2 Rej{ iu(Zyw) 0 A6 (2.1)
M M oM

Suppose that (M3, T10 0) is a pseudohermitian three-manifold with boundary 3 := M. A point p € &
is singular if T,5 = H,. We say that ¥ is nonsingular if it contains no singular points.

Suppose now that (M3, T4 0) is a pseudohermitian three-manifold with nonsingular boundary ¥ := 9M.
Assume additionally that ¥ is oriented. Then there is a unique H N TY-valued unit vector field e; such
that v := Je; is inward-pointing. Let Z; be the unique section of T7° along ¥ such that e; = ReZ;. A
straightforward computation using (2.1) gives

/ (Viu, Vyw) 0 A do = / uApw O A do — uV,wdo, (2.2)
M M oM

where do :=1_, (0 A df).
Since the Tanaka—Webster connection preserves the contact form and the Levi form, V., e; is in the span
of ea. The p-mean curvature is the function H defined by

Ve, €1 :=Hv.
The CR Yamabe operator LY: C=(M) — C>®(M) is

R
Lo = Ayu + Zu

The CR Yamabe operator is conformally covariant [JL87, Equation (3.1)]: If § = w20, then

w3y = L? (wu).
When the contact form is clear from context, we shall write L for L?. The CR Robin operator B?: C>=(M) —
C™(X%) is

H
By = —Vou+ gu

The conformal transformation law [JL89, Lemma 3.4] for the Tanaka—Webster connection implies that if
6 = w20, then

w?B%u = B (wu).
It follows that the CR Yamabe functional F: C®°(M) — R,

FO(u) ::/ uLu@/\d@—l—jl{uBuda
M by

is CR invariant; indeed,
Fo 0 u) = FO(wu)
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for all positive w € C°(M) and all uw € C*°(M). Equation (2.2) implies that

F(u) :/ (|Vbu|2 + Eu2> 0N do+ E]f Hu?do.
M 4 3 /s
2.2. The standard sphere S3. Let
= ) —1 —2 1 -2
0 =id(|¢]” —1) = §(<1d< +¢%d¢ - ¢ d¢t - ¢ d¢?)
be the contact form on S®. Denote

0! = ¢Zdc¢t — ¢tacd.

Then )
df =i0' A 6!
so hq7 = 1. Since
dot = —2i0' A6,
we have
wll = —210.

It follows that )
dwit = 20 A 61,

so the Tanaka—Webster scalar curvature is R = 2. The CR Yamabe operator is then

1
Lu:=—(Z1Z7 + Z1Z1)u + U (2.3)
where 5 5
=2 =1

The fundamental solution to L on S? is [Gel80, Theorem 2.1]
1 -
G(Cn) = 8—|1 —¢-mh
™
2.3. The Clifford torus. Recall the domain  C S? is given by
Q={(¢",¢*) es*: [¢"] < |}

Its boundary is the Clifford torus ¥ = {(¢*,¢?): [} = |¢?] = %} Note that 3 is contained in the open set
{(¢4,¢%) € S3: ¢ #0,|¢?| # 0}. On this open set, define a frame of horizontal vectors

i, T
=% <|<1<2|Zl |<1<2|Zl>
0
= V21 2
v2 m<'< '|<1|6<1 < '|<2|a<2)
N s .
S <|<1<2|Z1 - |<1<2|Zl>

0
=~V2Re ('CQ'WTG -1¢ ||<2| 6c2> |

and

The Reeb vector field on S® is
0 -1 0 —2 0
1 2 0 10 20
<< ac e ¢ ac' ‘ af)

0
= —2Im (Clacl +<2<9<2>'
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For t € [0, ;%5), set

I°)

Q_{CGSB, [T s }
t . . )

and
t s t
Y =00 = €S 1:cos(z+—), 2—sin(—+—)},
so that Qg = Q and ¥y = X. Then v is the inward normal to 90, and e; and T are tangent to ¥;. In fact,
a defining function for ; is
¢ %)

cos?(F+5)  sin?(5+ %)

Pt =

and the above expressions for e; and T show that
Ve, pt =Vrps =0 on X;.

Furthermore,

V2 2v2
vupt = - e t . P t = - < 0
COS(Z —+ ﬁ) SIH(Z —+ 75) COS(\/ﬁt)
so v = Jey is the inward-pointing normal to 0€2;. Moreover, we readily compute that V., e; = 0, and hence
the Clifford torus is p-minimal.

2.4. Fourier analysis. To parametrize ¥, it will be convenient to consider the lattice
A:=27{(m/2,n/2) € Z*: m=n (mod 2)},

and the associated abelian group R?/A. A fundamental domain for R?/A is given by [—m, ) x [-7/2,7/2);
the identity element of R?/A will be written as (0,0) using this identification. Any function defined on
[—7,m) X [-7/2,7/2) can be lifted to R?/A. For instance, we define, for (u,v) € [, ) x [-7/2,7/2), the
natural norm for this problem, namely

ICu, v)[| := max{Jul, [v]"/},

and it gives rise to a corresponding norm function on R?/A.
The Lebesgue measure dudv on [—m, w) X [—m/2,7/2) induces a Haar measure on R?/A, with volume 272,
and the dual lattice (3=A)* of 5=A is given by
1

(EA)* ={(m,n)€Z*: m=n (mod 2)}.

An orthonormal basis of L?(R?/A, dudv) is given by

1 .
i(mu+nv) . -
{ ol .(m,n)€(27r

and hence Parseval’s formula reads

1 ~
//‘u|§7T |F(u,v)|*dudv = 33 Z |F'(m,n)?,

[v|<m/2 (m,n)€z?
m=n_(mod 2)

where

F(m,n) :z/ < F(u,v)e”mutn) gy dy,

lv|<m/2

The convolution of two functions F' and K on R?/A is given by any of the two equivalent expressions:
A A o o
Fx K@, )= /\u|§w Fu' —u,v" —v)K(u,v)dudv
lv|<m/2

- //\u|<7r F(u’ U)K(u/ - u, v — v)dudv,

lv|<m/2
6
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FIGURE 1. The dotted square is [—m,7]?. The tilted rectangle is the image of (u,v) €

[-7, 7] x [-7/2,7/2] = (v + u,v —u) € R%. By translating the colored pieces in the
tilted rectangle either vertically or horizontally by 27, we see that the tilted rectangle also
parametrizes a copy of (R/27Z)2.

° T °
27 —m ¥ 27
e —T °

FIGURE 2. The dots represent the lattice A. Each blue rectangle is a fundamental domain
for R?/A. Tt can be identified with ¥; via the map ®(¢, -, ).

for every (u/,v") € R?/A. We have

ﬁ((m, n) = ﬁ(m, n)l?(m, n),
thus

/ < |F K (u,v)|?dudv < sup |K (m,n)[? /‘ i< |F (u,v)|*dudv.
“IsT (m,n)€Z? ‘ H=T

lvl<m/2 m=n (mod 2) vl<r/2
2.5. Parametrizing ;. For 0 <t < 1%, we will parametrize ¥y using
t .. t )
(u,v) € RQ/A — O(t, u,v) = <cos(g + ﬁ)el(vﬁ-w,sin(% + ﬁ)el(v—w) ey,

One can see that the above map is a well-defined bijection by noting that e?(*t%) = ¢(*=%) = 1 if and only
if (u,v) € A; alternatively, one observes that the map

(u,v) € [-m,7) x [-7/2,7/2) = (v +u,v —u) € (R/27Z)?

is a bijection (see Figure 1). We have Q)*(%) =v and <I>*(%) =T.
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Under this parametrization of X, the volume element do; on 3; is
doy = 1_,0 Ndb
=0 A, (0' A O

1, ¢¢? i CC
= ——3(=>=—>-0N0 2> _gapt
75 Gergf e A
L, ¢t g CC 1
S S S S W S
A Claa K )
e CC
= ——(=2"-d dc d d
Zaa® na +|<1<2| ¢ nde?)

T t ., . m . .
= —\/ﬁcos(z + E) s1n(z + E) Re ((—z(du + dv)) A (—i(dv — du)))
2 cos(V2t)du A dv.

In particular, setting ¢ = 0, the surface measure do on ¥ is given by v/2dudv. If f is an integrable function
on X, we often write F'(u,v) := f(®(0,u,v)) so that

7{ fdo = \/_//‘ <n F(u,v)dudv. (2.4)
[v|<m/2
3. THE SINGLE LAYER POTENTIAL

For f € C1(X), the single layer potential is defined by

SHO) = / @G o). T

Given ¢ = (¢%,¢?) € X, the curve

Ye(t) = (ﬁcos(% + %)Cl, \/ﬁsin(g 7)@) t>0, (3.1)

satisfies 7¢(0) = ¢ and v;(0) = v at (.

Proposition 3.1. For f € CY(X), the one-sided normal derivative

Sf(ve@) = Sf(c(0)

t—>04r t

V.SF(C) =

exists at every ¢ € X, and is given by

VuSF(0) = (~51 +A)F(Q)
where

NF(Q) = po. / e, (Vo)cG(Cm) f(n)do(n), ¢ €%

nex

To prove this, first we understand the kernel G(¢,n) of S in the (u,v) coordinates. For ¢ > 0 and
(', v"), (u,v) € R?/A, if = ®(t,u/,v’) and n = ®(0,u,v), then

1=¢-7
™ ™ t t (v ’
=1 —cos(=) cos(— + —= )V VT =W _gin(—)sin(= 4+ —= eV v H)
_ i(v' —v) —i(v'—v) _ z t i(u' —u) E : z t —i(u —u)
e [e cos( )003(4 + _\/5)6 sm(4)s1n(4 + _\/5)6

=¢iv'—v) [(COS(U’ —v) — cos( d ) cos(u’ — u)) - i(sin(v’ —v) — sin(%) sin(u’ — u))]
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so from G(¢,n) = &= |1 — ¢~ 71" we obtain

1 t
G(Can) = gk(ﬁau/_uvv/_v) (32)
where for ¢t > 0 and (u,v) € R?/A we write
—1/2
E(t,u,v) := |(cosv — costcosu)® + (sinv — sintsinu)ﬂ .

We collect a few facts we will need of k(t, u,v):

Lemma 3.2. (a) If t € (0,7/2), then k(t,u,v) is a continuous function of (u,v) € R?/A, and so is
%k(t,u,v).

(b) Ift =0, then k(t,u,v) is continuous at every (u,v) € R?/A except at (0,0), and is locally integrable near
(0,0).

(c) In fact,

[k, u,0)] < (1t + (1w, 0)]) 7>

for all t € [0,7/4], (u,v) € R?/A, where the implicit constant is independent of (t,u,v).

(d) For all (t,u,v) € [0,m/4] x (R?/A)\ {(0,0,0)}, we have

_ (cosv —costcosu)sintcosu — (sinv —sintsinu) costsinu

0
—k(t,u,v) = 373 ,

ot

{(cos v — costcosu)? + (sinv — sint sin u)Q}

and hence 5
_- < -3
E < (4l )72,

where the implicit constant is independent of (t,u,v).

(e) We have
. 1 ok 1
S, e // s, it w v)dudy = =3 (3:3)

We postpone the proof of this lemma to the end of this section.

Proof of Proposition 3.1. Using (2.4) and (3.2), if we write F(u,v) := f(®(0,u,v)), we have

t
//Iu\<7r u, v (75,1/ —u,v" — v)dudv

[v|<m/2

k(t,u,v)

whenever ¢ = ®(t,u’,v'), t > 0. When f € L(X), the above integral converges absolutely at every point ¢
by the estimate for k(t,u,v) in Lemma 3.2. This integral is a convolution on the group R?/A, and thus we

can also write
t
//\u|<7r (v —u,v —v)k(\/5 u, v)dudv. (3.4)

v|<m/2
Similarly, when f € C*(X) and ¢ = ®(0,u/,v’), we have
ok
Nf(¢) = lim //\UI<M |<7T/2 F(u,v)— 5 (0,4 —u,v' —v)dudv

e—0*t 87T
—u,v’ —v |>5

is the convolution of F with g=p.v. m (O -) on R?/A; the principal value exists when f € C!(X) since
E(Ov u,v) is odd in both u and v, which implies

ok
// ul<mlol<n/2 By —(0,u,v)dudv =0
||<U'—u v'-v)|[2e
for every e > 0, and | 3 (0, u U)| < || (u,v)[| >, In fact, one can write ' f as an absolutely convergent integral:
k
3 //\u|<,r (v —u,v" —v) — F(u',v) %(O,U,v)dudv. (3.5)

[v|<m/2
9



Now let ¢ € ¥, and recall the curve 7 (¢) introduced in (3.1). Using (3.4), the bound for k£ in Lemma 3.2
and the Dominated Convergence Theorem, we see that

Jm SF(v(t) = 5f(7¢(0)).

Furthermore, from (3.4) and our bounds for %k, we see that for ¢ > 0,

d 1 ) . Okt
G810c0) = o= [ o, POl —uw’ =00 wv)dude.

vl <m/2

Hence to prove Proposition 3.1, by L’Hépital’s rule and (3.5), it suffices to show, under the assumption that
f e CH(®), that if F(u,v) = f( (0,u,v)) and (uv',v) € [, 7T) [-7/2,7/2), then

e //|u\<7r — - )815 (\/_ u, v)dudv (3.6)

[v|<m/2

exists and equals
F(u',v") // —u, v’ —v) — F(u',v )] Ok (0, u,v)dudv. (3.7)
e | I1‘ﬂ<7/r2 ’ ’ ot

To do so, we rewrite the expression inside the limit in (3.6) as

ok
// —u, v —v) = F(u',v") | = (t, u, v)dudv
8 \rf% } ot
(3.8)
871' Fu',v) //\u|<7r 815 (t, u,v)dudv.
[v|<m/2

By (3.3) in Lemma 3.2, as t — 0, the second term in (3.8) converges to —3F(u/,v’), which appears as
the first term of (3.7). Furthermore, since f € C1(X), our earlier bound for %k in Lemma 3.2 and the
Dominated Convergence Theorem shows that as ¢ — 0%, the first term in (3.8) converges to the second term
n (3.7). This completes the proof of Proposition 3.1. O

Proof of Lemma 8.2. First, for fixed ¢, the function k(¢,u,v) is doubly 27 periodic and invariant under
(u,v) = (u+ m,v+ 7). Thus k(t,u,v) is a well-defined function on R?/A.
To proceed further, we prove that

cost =0 sint =0
(cosv — costcosu)? 4 (sinv — sintsinu)? = 0 <= { cosu =0 or sinu =0
sinv = sintsinu COSV = cost cosu

In fact, the former is equivalent to
COSvV = costcosu
sinv = sint sinu,
which implies, since cos? v + sin® v = 1, that
1 = cos®tcos® u + sin? tsin® u
= (cos? t + sin? t)(cos? u + sin? u) — cos? t sin? u — sin® t cos? u
=1 — cos®tsin® u — sin® t cos® u.

As a result, costsinu = sintcosu = 0. Either cost = 0, in which case sint = &1 and cosu = 0, or sint = 0,
in which case cost = +1 and sinu = 0. From this the claimed equivalence follows.
If t € (0,7/2), then both cost and sint are non-zero, so the above implies

(cosv — costcosu)? + (sinv — sintsinu)? > 0.

This proves (a). If t = 0, then cost = 1, so the only zeroes of (cosv — costcosu)? + (sinv — sintsinu)? are

{(u,v) € R?: sinu = 0,cosv = cosu} = 27Z* U ((m, ) + 21Z?).
10



This proves (b).
To prove (c), note that k(t,u,v) is continuous on [0, 7/4] X [—m, 7] X [-7/2,7/2]\ {(0,0,0)}. So we only
need to prove that

(cosv — costcosu)? + (sinv — sintsinu)? > (|t] + |u| + |v|*/?)*
near (t,u,v) = (0,0,0). But if we denote by
g(t,u,v) := (cosv — costcosu)? + (sinv — sint sinu)?, (3.9)

then by a Taylor expansion

2 2
gt 0) = (1= (1= S)(1 = 5) + 0P + (0. tu+ O%/2)2
2 2
_ (t —12—u )2 i (v—tu)2—|—09/2 (3.10)

2+ u?

= ((7)2 + (v —tu)®)(1+0'?)
where O7 is an error bounded by C; (|t| + |u| + |v|*/2)7 for some absolute constant C;j. Our claim now follows
from the fact that

s, 2 1/2y4

( 5 )7+ (v —tu)® ~ (|t + |u| + |[v|7?) (3.11)
uniformly in ¢, u,v (which can be verified by noting that the left hand side is a positive continuous function
on the set where [t| + |u| + |v|'/? = 1, and appealing to homogeneity).

(d) follows from

0
— <
2kt u,v)] <

and the lower bound g(¢,u,v) 2 |t| + |u| + [v]Y/2 on [0,7/4] x [-7, 7] x [-7/2,7/2] that we proved above.
Finally, we prove (3.3) in (e). Since 2% (t u, v) converges uniformly to 0 on [—7, 7] X [-7/2,7/2]\ [—¢€, €] X
[—&2, 2] for any € > 0, it suffices to show that there exists € > 0 such that

tao+ /ﬁu|<5 g (t, u,v)dudv = —

|<€

| sint cosu| + | cost sin u| [t] + |u]

(cosv — costcosu)? 4 (sinv —sintsinu)? ~ g(t,u,v)

From

0 (cosv — costcosu)sint cosu — (sinv — sint sinu) cost sinu

—k(t,u,v) = — ,
ot g(t,u,v)3/2

where g(t,u,v) was defined in (3.9), it suffices to show that

. sin ¢ cos u(cosv — cost cosu)
t£%1+ //IU\<<5 g(t,u,v)3/2 dudv = 4,

lv<e?

sin u sin v
————dudv =14
t~>0+ /‘/|u\<s g t u, 3/2 uav m

sintsin® u
t—>0+ /AUIQ PR 3/Qdudv = 4.

We do so by Taylor expanding the numerators and denominators of the integrands. By choosing € > 0
sufficiently small, we have, whenever ¢ € [0,¢], |u| < ¢ and |v] < €2, that (1 +O0'Y2)™%/2 = 1 + O'/2, and
hence from (3.10)

and

-3/2 _ t2 +’LL2

1=

Similarly, for ¢ € [0,¢], |u| < e and |v| < &2, we have

g(t,u,v) 2+ (v —tu)2] 7321 + OY/?).

(£ +u?)

—+ 05/2}

sint cosu(cosv — cost cosu) = t[

11



and

sintsinu = t[u2 + 05/2]

Thus
tlir(% /ﬁu:Z sin t cos Z((i?ij)v;igstcos u) dudo
(¢ +u 05/2}
") /w" =10 “*“2 T

The error term involving O°%/2 can be bounded using (3.11). Thus

05/2
//\u|<a t2+u2 + (v — tu)2]3/2 dudv

v|<e?

< //|u\<a (] + [u] + [o]Y2)7 2 dudy

vl <e® (3.12)
=Ct //Wg/t (t 4 [tu| + [t20]*?) 723 dudv

o] <e? /12
= Ct/?

aizeye (Lo [ul + [0[Y2) 7" 2dudv

v|<e?/t?
where we performed a change of variables (u,v) ~ (ut,vt?) in the second-to-last line, and the last line is
O(t'/?) ast — 0" since the double integral converges to a finite limit (we have [ [, (1+|u|+|v|'/?)*dudv < oo

if and only if @ < —3). Furthermore, the main term in our earlier computation can be identified, via the
same change of variable, as

tt2 (ut)?
2 t3dudv
t%O* //|u\<a/t t24( ut)2)2 + (th . t(ut))2]3/2

|v\<82/t2 2
w2

dudv = 4m.
//RQ # v—u) 13/2 uav T

sintsin? u
————dud
t—>0+ //WKE g(t,u,v) 3/2 uav

u +O5/2}
t‘)O‘F /ﬁ“|<5 t2+u2 2 + (’U _tu)2]3/2dUdv

|<€

dudv = 4
//RQ # U_u)]3/2UU T

Finally, use [, . f(v)dv =3 f|v\552 (v) + f(—v)]dv and write

sin u sin v
//|u\<s g t u, 1) 3/2d udy

Similarly,

sin u sinwv _ sin u sinwv dud
|u\<s g(t,u,v)32  g(t,u, —v)3/2 uav (3.13)
// Slnusulv[g(t ) g(t U, ’U)] [g(ta u, —1})2 + g(tv u, —’U)g(t, u, ’U) + g(ta u, ’U)Q] dudv
lul<e g(t u,v)3/2g(t, u, —v)3/2[g(t, u, —v)3/2 4 g(t,u,v)3/?] '

v|<e?
12



We Taylor expand the numerator by noting
sinusinv = uv + 07/2,
and
g(t,u, —v)? + g(t,u, —v)g(t,u,v) + g(t,u,v)?
= h(t,u, —v)? + h(t,u, —0)h(t, u,v) + h(t,u,v)? + O7/?
where we abbreviated
2+ u?

h(t,u,v) == ( )

)2+ (v — tu)?,

and
g(t,u,—v) — g(t,u,v) = 4sintsinusinv
= dtuv 4 tO7/?
= h(t,u, —v) — h(t,u,v) + tO7/2.
We also Taylor expand the denominator, yielding
gt 0) gt u, —0) g (t,u, —0)*'2 + g(t, u, v)?]
= h(t,u, v)* 2h(t, u, —v)> 2 [h(t, u, —v)*/% + h(t,u,v)*/?](1 + OV?).
Thus

sinusinv
—————dud
tﬁO* /ﬁ“|<5 g(t,u,v)3/? Y

// u, —v) — h(t,u,v)|[h(t, u, —v)? + h(t,u, —v)h(t,u,v) + h(t,u,v)?]
\u|<€

Lo h(t,u,v)3/2h(t, u, —v)3/2[h(t,u, —v)3/2 + h(t,u,v)3/2]

t—0+ 2

dudv

v|<e?

+029/2
li dudv.
) /|'< O e R I R IO e R
v|<e

The second limit is zero by the same argument of the proof of (3.12). In the first limit, we are considering the
limit as ¢ — 0% of a double integral reminiscient of the last expression of (3.13). By reversing the derivation
of (3.13), except that we write h in place of g, we see that the first limit is equal to

t—>0+ //u|<€ h(t,u,v) 3/2dUdU

. (v+tu)u

= lim Py dudv

oot \v-l—ﬂféaz [(%)2 + ’1}2]3/2

li b dudv + i tu? dud
et Juse o Q(EREy e T A0 ] e [EREye e

—tu—e? <v<—tute? 2 |v+tu|<e?
—T+1I
We have
I = lim Y Y du

10+ |y <c [(%)2 T (—tu — £2)2]1/2 - [(%)2 T (—tu + £2)2]1/2

:/ %du_/ Y w=0-0=0
lui<e (4 +e1)1/? lui<e (g +e1)1/?

and using a change of variable (u,v) — (tu,t?v),

U2 ’LL2
I = lim //u dudv:// s — 4
oo |v‘+1|”< (22 + v2]3/2 re [(LH2)2 4 42]3/2

13



Thus

sinu sinv
dudv = 4
ta0+//\“|<5gtuv3/2uv m

as desired. O

4. THE CLASSICAL SOLUTION TO THE NEUMANN BOUNDARY VALUE PROBLEM

In this section we prove Theorem 1.1.

4.1. Existence. We are now going to invert —%I +N on L?, which will give us the solution to the Neumann
boundary value problem for the CR Yamabe operator when the boundary data h is in C*°(X).

Proposition 4.1. We have |N||f2- 12 < 3. As a result, for any h € L*(X), there exists a unique f € L*(X)
such that

1
(—§I+N)f =
Furthermore, if h € C°(X), then f € C* ().

The main thrust is in showing that [A]|z2_r2 < 3. Once that is proved, then —21 + A is invertible on
L2, and is given by a multiplier operator whose coefficients are bounded below. Hence (—%I + AN)~! maps
Wk2(%) to Wk2(%) for any k > 0, and hence maps C*°(%) to C*°(X). As a result, we obtain the existence
assertion in Theorem 1.1.

Below we prove that |22 < 3

Indeed, since N f (®(0,u’, v")) is the convolution of f(®(0,u, v)) with g= K (u, v) where K (u, v) := p.v. m k0, u,v)
on R%/A, we have

[ wrkao

\/—//\u|<w INF(@(0,u,v))|*dudv

[v|<m/2

< sup |— (m,n 2\/_//|u\< (0, u,v))|*dudv

72
mz(zlﬁn()riod 2) vl<m/2

= sw IRl [ |7
(m,n)€z? 8m 3
m=n (mod 2)

where
~ ok
— 1 —i(mu+nv)
K(m,n) Eglél+ //u\<7r wl<r/2 BF —(0,u,v)e dudv.
[l (u,v)Ize
Thus we need to show that

=~ 8
sup | K (m,n)| < ST = 47 ~ 12.56. (4.1)
(m,n)€z? 2
m=n (mod 2)

Since %(O, u,v) is odd in both u and v, we have the following expression for I?(m, n):

K(m,n) //‘u|<7T K (u,v) sin(mu) sin(nv)dudv. (4.2)

[v|<m/2

To bound this integral and establish (4.1), it will be convenient to approximate K (u,v) by a Taylor
expanding its numerator and denominator. Let’s write

K(u,v) =

where
n(u,v) ;= sinusinv, d(u,v) := [(cosu — cos v)? + sin? v] /4.
14



We approximate n(u,v) and d(u,v) by

1/4
no(u, v) 1= uv and do(u,v) == {U_ +v2}

respectively, so that the homogeneous function

Ko(u,v) == %

will be a good approximation of K (u,v) near (u,v) = (0,0), along with its derivatives; this homogeneous
function can be integrated easily near the origin, so in (4.2) we can approximate K (u,v) by Ko(u,v), and
eventually obtain (4.1). In fact, it will be convenient to note that

u®  w?? 208 21}4)

+

dlw,0)" 2 dolow,0)' = (G + 55+ 5+

(4.3)
for all (u,v) € R?, which follows since

1
d(u,v)* = cos® u — 2cosucosv + 1 = 5(1 + cos2u) — 2cosu + 1 4 2cosu(l — cosv)

whereas
1 1 (2u)?  (2u)*  (2u)° w2 ut o uS W
5(1+cos2u)—2cosu+125(1—1—1— 51 + TR -2 1—54_1_54_5 +1
_ut w2
448!

and

u“v 2t

2 4

To carry out the strategy mentioned above, we differentiate K (u,v) and write

0K ny(u,v) 0K ny(u,v) K nyu(u,v)

ou  d(u, )10’ v d(u, )10 ouz  d(u,v)t’

where we have, via the half-angle formulae, the following expressions for the numerators:
Ny (u,v) := sin(v) (—20 sin4(g) + 4sin2(%))

+ sin(v) (165in®(5) + 2sin’(u) sin’(5) ) .

o (u,0) = sin(u) (4sin’(5) - 8sin’(3))

) )

[8 sinz(g)(l + cos%%)) + 4 .cos(u) sin2(§)



N (U, v) = 120 sin(u) sin? (= )sm( )(sin4(g) — sin2(%))

)
— 64 sin(u) sin ( ) sin(v)

- 8(cos(2) + cos(?’;)) 31n5(g)s1n( )51112(;)
+ 4(14 + sin2(u)) sin(u) sin(v) sin (;)
Similarly we write
0K,  nou(u,v) 0K,  noy(u,v) 0K, ~ Nowu (U, v)
ou  do(u,v)10’ ov  do(u,v)10’ ou?  do(u,v)4’
where
5, ut 9 15 5 ut
now (1, v) := v(—=u* 4+ v?), Nop (U, v) := u(— — 20v7), Nowu (U, v) = —uv(— — v*°).
4 4 2 4
Later we will use
1451 |u® 203
e, )] < o ()] + 2R TV 2 (4.4
o) < a0} + S ey T (45)
1195[u%|  |uPv3|  Bludvt]  15[ud|
uu ) S uu bl 4.6
In fact, we have
ds 2049
‘w sin4(%) = cos(u) _ 8 cos(2u)| < 256 for all u € R
and
d3 i 1
P 31112(;) = ‘_511211; < 3 for all v € R.
Thus Taylor expansion (up to order 5 and 3 respectively) gives
4 6
4, U ) 2049 u
Y22
SIn(3) = 16| = 256 @
and
2 3
PN 1o
S5 =TS 3
As a result, we can estimate the main terms for the expressions for n,, n, and n,,:
ut 02 3
. .4, U . 2,V 2049U 1|’U|
’sm(v) (—205111 (5) + 4sin (5))‘ < |v| (’ 20 - 1_6 +4- Z +20- 256 6 +4- 3730
_ ub
4 2 3
, 4 U 9,V u v 2049 u° 1|v]
‘sm(u) (4s1n (5) — 8sin (5))’ < |ul (‘4 T 8- ”y +4- 256 o 3ar
_ 683 W7 3
and

2

‘120 sin(u) sinz(%)sin(v) (sin4(%) - Sinz(g))‘ < 30[ul*[v| ( 16 UZ

20190 1o
256 6! 2 3!

= |noyu (u, v)| + ——= | |+ = |u3v4|.

2048
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Furthermore, the error terms can be bounded using
. . g, U -2 .2,V | | 2| |
sin(v) ( 16 sin (5) + 2sin®(u) sin (5) < vl + 2|ul
:Zw%4+—m%ﬂ,
sin(u)sinz(g) [8SH1 (2)(1—|—cos (2)) + 4 cos(u) sin? ” < |—| [8—(1 +1)+4-1-1- |2|}
= |udv?| + §|u03|,

. .8, U . u® _ 1 9
’—64sm(u) sin (§)sm(v) < 64|u|¥|v| = —|u v,

3 5
’—S(COS(g) + cos(;u)) sin5(g)sin(v) sin (2)‘ <8(1+ 1) ful =|v | i | | 3],
and
1
\4(144-mn2@0)snmu)mn()su1(2)\<zq144-1nuv| _-éﬁuvﬂ.
The above nine inequalities together imply (4.4), (4.5) and (4.6).
Now let )
b:=—.
)
For 0 < a <5, let
ub  u?e? 2uS(ab)? 2|v|3b2
eo(a) = sup{z + 5 + 9 1 s do(u,v) = 1}
and
e1(a) :=1 —eg(a)dy(ab,b*)?.
By homogeneity, we then have
6 202 9u6(ab)2  2lul3b2
L L u*(ab) id < ep(a)dy(u,v)® for all (u,v) € R? (4.7)

4 2 8! 41
Furthermore, e1(a) is a decreasing function of a € [0, 00), with e1(5) > 0. Thus e;(a) > 0 for 0 < a < 5. We
claim that if 0 < ¢ <5 and ||(u/a,v)|| < b, then

K (u, v)| < |Ko(u,v)| + erro(a, u, v), (4.8)
where
erro(a, u, v) := ¢(6, a)%
with
claya) = &(1
deq(a) 2

Indeed, when ||(u/a,v)| < b, we have

6 2,2 4
4 4 U u“v 0¥ 2v
d(u,v)* > do(u,v)* — (E—l— 5 +?+T)
6 2,2 2 32
4 u®  uv uS(ab) 2|v]%b (4.9)
> do(u, 0)' — (5 + 5 +2 o)

> do(u,v)" (1 = eo(a)do(u, v)?),

where we first used (4.3), then used |u| < ab and |v| < b? when |(u/a,v)|| < b, and finally used (4.7).
Furthermore, the mean value theorem gives

t
1+— Y  fa>0and0<t<l

- <
-0 = T gy F
17



Applying this with ¢t = eg(a)do(u,v)? < eg(a)do(ab,b*)? =1 — e1(a) < 1, and noting that
1 1 1
<

(1—8)"F = (1—eo(a)do(ab,b2)2)*T  ei(a)*t’
we get
1 < 1 n c(a, a)
d(u,v)* = do(u,v)*  do(u,v)>2

Inequality (4.8) now follows since |n(u,v)| < |ng(u,v)|, which gives

for > 0,0 <a <5 and ||(u/a,v)| <b. (4.10)

[no(u, v)|
K < 1Mo, v)l
Koyl < ol
and since we can use (4.10) with @ = 6 to bound (u 7
We note also that
1 1
if 0 <a<5and |(u/a,v)| <0, (4.11)

d(u,v) = e1(a)t/4dy(u,v)

because then we can apply (4.9) and use 1 — eg(a)do(u,v)? > 1 — eg(a)do(ab,b?)? = e1(a).
Using similar techniques, we can prove, for 0 < a <5 and ||(u/a,v)|| < b,

O )| < 15522, 0)] + erra(a ) (4.12)
and
K K,
12 () < 3vww+mm%m (4.13)
where
|uSv] |U v’ v?
[rou(u V)] | SHprrt + M+
u s Wy = 10’ ’
erry(a, u, v) := (10, a) do(u,v)® " ei(a )10/4d0(u v)t°
and
|7 3 9 7]uv®|
[n0v(u, v)| 61853360 +[uo’| + 75
v s Wy = 10’
ety (a, u,v) := ¢(10, a) do(u,v)® e1(a)!%/4do(u, v)1°
This is because when 0 < a <5 and [|(u/a,v)| < b,
wbo u21)3
8_K( o)l < o (u,v)| | 5t + el 4
Iu ~ d(u,v)t0 d(uvv)lo
Pou(, 0 g g Inoutu)] | 2+ b 4
< do(u7’u)10 do(u,U)S 61( )10/4d0(u,1))10 )

where in the first inequality we applied (4.4), and in second inequality we used (4.10) with o = 10 to estimate
the first term, and used (4.11) to estimate the second term. This proves (4.12). Similarly we have (4.13).
We also have, for 0 < a <5 and ||(u/a,v)|| < b, that

0?K
15w W o)l < | (u )| + erryu(a, u, v) (4.14)
where
u”v u” " udv? 15\u'u5|
B 0w (u,v)]  HBLel | Jtel] | St 15fu
erryy (a, u,v) := ¢(14, a) do (1, 0) 12 ola )14/4d0(u,v)14

The numerical values of eg(a), e1(a) and ¢(«, a) can all be estimated using Mathematica once o and a are
given. Thus errg, err,, err, and err,, are completely concrete functions.

In the next two lemmas, we will prove two bounds for K (m,n). The first one is good when m is large;
the second one is good when 7 is large. Recall b = 2.

5
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Lemma 4.2. Suppose ¢1 > 0, m, n are positive integers with the same parity and m > c1/b. Then for any
0<a<h,

= n Il .[2 +I3
K <lh— + —
Romml <ctlo g + 30+ =
1 5 N I3 bm
tog\aseotaenten— g ten log o + €14
where Iy, ..., I3, €10,...,€14 are constants depending on a, given by
1
Iy := // |uv Ko (u, v)|dudv, L= 2/ |Ko(a,v)|dv,
(w/a,v)<1 -1
1 2
0K, 0°K,
Iy :=2 d I3 = dud
2 /71| M (a,v)ldv, 3 //|(u/a7v)|>1| 52 (u,v)|dudv,

and

€10 := // |uv| errg(a, u, v)dudv,
[[(w/a,v)[I<1

1 1
€11 := 2/ erro(a, a,v)dv, €12 = 2/ erry (a, a,v)dv,

—1 -1

1 a
€13 := Za/ erryy (a, a,v)dv + 4/ erryy (a, u, 1)du,

—1 —a

0’K
€14 = //u\Smlv\Sfrm |—8u2 (u,v)|dudwv.

[l (uw/a,v)[>b
Proof. Define R = ¢;/m. Our hypothesis guarantees that R < b. We split

—I/(\'(m,n):/ < K (u,v) sin(mu) sin(nv)dudv

lv|<m/2
= // +//u\§7r,|v\§7r/2 K (u,v) sin(mu) sin(nv)dudv.
(e IS g 0) >R
We estimate the first term by putting absolute value inside, and integrate by parts in the second term using
sin(mu) = =L - cos(mu). Note that the set {(u,v): |[(u/a,v)| = R} is the boundary of a rectangle. Thus

< ol < /2 K (u,v) sin(mu) sin(nv)dudv

(w/av)|>R
2 " K(aR,v)cos(maR)sin(nv)dv + 1/ 8K( ) cos(mu) sin(nv)dud
= —— a v ma In(nv)av — -—\u,v mu)sim{nv)auadv.
m J_pe ’ m J Jlul<m|v|<7/2 gy

[(w/av)I>R

We integrate by parts once more for the last double integral, using cos(mu) = £ - sin(mu), and obtain
1 0K
] Juin toi<n sz g (V) costmu) sin(nv)dudy

(u/a,v)[|>R
) 1 O’ K
-5 /_R2 %(aR, v) sin(maR) sin(nv)dv — m2 W(‘S/Tr"v)‘f;/f W(U, v) sin(mu) sin(nv)dudv.

Taking absolute values, and using | sin(mu) sin(nv)| < mnl|uv|, we get

2 [T 2 7 oK
|K(m,n)| < mn // |wv K (u, v)|dudv + —/ |K(aR,v)|dv + —2/ | — (aR,v)|dv
(u/a,v)I<R m J_ge m? J_pe Ou

1 // 0?’K 1 ?K
+— | (u,v)|dudv + — // | = (u, v)|dudv.
m? J Jr<iu/ami<s U m? JJlupen vl du?




The first four integrals are all contained in {(u,v): ||(u/a,v)| < b}, so our earlier estimates (4.8), (4.12)
and (4.14) apply. They allow us to bound K and its derivatives by those of K, up to some errors that we
control. Then we obtain

- 2 [ 2 [ oK
|K (m,n)| < mn// luv Ko (u, v)|dudv + —/ |Ko(aR,v)|dv + —/ |
l(u/a,v)|<R m J_R2? m? —R2 9
82
—(u,v)|dudv
Tz //R<| (u/aw)|<b OU?

2 [ 2 [T
+mn // |uv| erro(a, u, v)dudv + —/ errg(a, aR,v)dv + —/ erry(a, aR,v)dv
u/a,v)||<R m J_R2

m2 _R2
1
+— // erryy (a, u, v)dudv + %
m= JJR<|(u/a,w)|<b m

All the integrals on the right hand side above are now integrals of homogeneous functions of (u,v). Since
|uv K, (u,v)| is homogeneous of degree 0, a change of variables (u,v) — (Ru, R*v) give

mn // luv K, (u, v)|dudv = mnR> // luv Ko (u, v)|dudv = mnR3I,.
(w/av)|<R (w/a,v)<1

Similarly, the integrals involving Ko, %, errg and err,, are homogeneous functions of R. Next, we rewrite

the integral involving 662 f{’

R, v)|dv

by a change of variables:

1 K,
—2// | (u,v)|dudv
m R<||(u/a,v)||<b ou

82
= (u,v)|dudv — // | — (u,v)|dudv>
m? <//(u/a v)[|[>R auz [ (u/a,v)]|>b du?

=1 (m2R2 - m2b2) :

Finally, by the Fundamental Theorem of Calculus and the chain rule,

at

d t
—// erryy, (a, u, v)dudv = 2a/ erruu(a,at,v)dv+4t/ erryy (a,u, t?)du,
dt JJi<jusami<t e Cat

which, by homogeneity, is equal to

1 1 a
_(2a/ erry, (a, a, v)dv + 4/ erryy(a, u, 1)du) = 6173

t -1 —a
Thus

// erryy (a, u, v)dudv = // erryy (a, u, v)dudv
R<||(u/a,v)]|<b 1<]|(u/a,v)||<b/R

b/R
:/ —// erryy (a, u, v)dudvdt
1 At icya<t

b/R € b
13
= —dt = €3 IOg( )
/1 R

and putting all these together, one sees that

7> I I + 1.
3 1 2 3
|K(m,n)| <mnR’Iy + —5 4 R
I log(b/R
+mTLR56]O+€£R+€£_ 232 €13 Og(2/ )+El_§
m b m m
Remembering R = ¢1/m gives the estimate in Lemma 4.2. 0
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Lemma 4.3. Suppose ca > 0, m, n are positive integers with the same parity and n > (ca/b)?. Then for
any 0 < a <5,

-~ m J1+ Jo
|K (m,n)| <c3Jo— +
RV

1 m J: by/n
+ " <Cg€JO— + €51 — 24 €2 log c—\/_ + €J3>
2

Vn b?

where Jo,...,Jo and €j9,...,€53 are constants depending on a, given by

Jo := // |uv Ko (u, v)|dudv,
[(w/a,v)|<1

a KO
=2 [l n [ 12K (4 ) dud,
e lu/aw)|>1 OV

and

€0 i= // |uv| errg(a, u, v)dudv,
I(u/a,v)lI<1

€1 = 2/ erro(a, u, 1)du

—a

1 a
€y9 i= 2a/ errv(a,a,v)dv—i—él/ erry (a, u, 1)du,

—1 —a

0K
€3 = //ulgw,\vlgwm |%(u,v)|dudv.

[[(w/a,v)[|>b

Proof. The proof is similar to the previous lemma (and slightly easier); one only needs to split the integral
into two parts, one where |(u/a,v)| < R, and another where ||(u/a,v)|| > R, with R := ca//n < b; one then
integrates by parts once in v for the second integral, using sin(nv) = —%d% cos(nv).

More precisely, define R = ¢3/+/n. Our hypothesis guarantees that R < b. We split
—K(m,n) = / ul<n K (u,v) sin(mu) sin(nv)dudv

lv|<m/2

= + K(u,v)sin(mu) sin(nv)dudv.
//I(u/aw)lsR //“‘5“"”‘5“/2 (st sinGre)

(w/a,0)|>R

We estimate the first term by putting absolute value inside, and integrate by parts in the second term using
sin(nv) = —+ L cos(nv). Note that the set {(u,v): ||(u/a,v)|| = R} is the boundary of a rectangle. Thus

n dv

< [ol <2 K (u, v) sin(mu) sin(nv)dudv

[(w/a;v)I>R

2 (" k(. B sin(mu) cos(nB?)du + 1// OK 11, v) sin(mu) cos(nv)dud
= — — u 1mn(mu n U — — U,V mimu nv)auauv.
nJ_ur ’ n I’W(‘S/ﬂ-’lv)‘f;}/%Q ov "’

Thus
=N ) aR
|K (m,n)| < mn// |uv K (u, v)|dudv + —/ |K (u, R?)|du
I(w/av)|<R n

—aR
1 oK

1 0K
+ - // — (u,v)|dudv + — // | —=— (u, v)|dudv.
n R<||(u/a,v)||<b ov n ‘T(%’/Tlﬂj)ﬁ;éz ov
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The first three integrals are all contained in {(u,v): ||(u/a,v)| < b}, so our earlier estimates (4.8) and
(4.13) apply. Thus

~ 2 [of ) 1 0K,
|K(m,n)| < mn |uv Ko (u, v)|dudv + = |Ko(u, R)|du + — |—(
[(w/av)|I<R " J—aR nJJR<|(w/am)<| OV

) aR
+mn // |uv| erro(a, u, v)dudv + —/ erro(a, u, R?)dv
(u/a,v)|<R " .J_aR

1
+ - // erry (a, u, v)dudv + ELZ’
" JJR<||(u/a,v)||<b m

All the integrals on the right hand side above are now integrals of homogeneous functions of (u,v). Thus
the integrals are homogeneous functions of R, with the exception of the one involving err, because err, is
homogeneous of degree —3. But then, by the Fundamental Theorem of Calculus and the chain rule,

d t* at
— // erry(a, u, v)dudv = 2a/ erry (a, at, v)dv —|—4t/ err, (a,u, t*)du,
dt J Jr<)u/a )<t e Cat

which, by homogeneity, is equal to

u, v)|dudv

1 ! @
- (2@/ err,(a, a,v)dv + 4/ erry(a, u, l)du) = 6%

t -1 —a
Thus

// err, (a, u, v)dudv = // err,(a, u, v)dudv
R<||(u/aw)] <b 1<|(u/a,v)||<b/R

b/R g
:/ —// err, (a, u, v)dudvdt
1 At ic/a<t
bR ¢ b
= ——dt = log(—=
/1 7 €J2 Og(R)’

and by scaling all other integrals similarly one sees that

EN J1+ Jo

K <mnR3J

(K m,m)| < mnR®Jo + 2
€ J. ejolog(b/R €

+mnRe o+ — ——22+7J2 8(b/R) + 25
n nb n n
Remembering R = co/+/n gives the estimate in Lemma 4.3. O
We apply the above two lemmas with a = 2, ¢; := % and a =1, ¢ := 47\/5 respectively:

Corollary 4.4. Suppose m,n are positive integers with the same parity. If m > 4, then

PN 7168 n 1 /783 98304 n m
R(m,n)| < =21 —(— PN 1921 —).
K (m.n)l < o5 2 w210 T 3125 mr 1921080
Proof. We apply Lemma 4.2 with a = 2, so that Mathematica returns expressions for exact values for
Io, I, Is, I3, €10, €11, €12, €73 and a numerical estimate for €74 (see Appendix A). We then have

32 1+56 1\/? 1, 113 1 137
IO_—(log( ) -5 ;F(——) + 2F1(—+, 5 —7—1)— 2Fl(§’1’1’_4))

(4.15)

3 2 32 4 4’2’4
8 12 12
L=4-—, ILh=2——, Iy =6+4vV2 - —,
' NG g 5v5 ° 5v5
SO
14
IO<€, Il<§, I, <1, <I3<11



Next, recall b = 2/5, so

co(2) 1\/68935125533+1312025\/1102101
ol2) = -¢
75

55105058 ’
4
@) = 1= ()
3 2 1

€10 = g%(m + 7 + 4arctan(3) — 32 arctan(§) —2log 5),

¢ - 660(2) o §

11_81(2)5/2 g47

4. eo(2) 1 2219 307 4. 1++/5
= (6+5log = (%= - glog —5).

e =(0+5log ) o m + 5\ 388 20vE 3% 3

eo(2) 9473
e1(2)9/2  240e,(2)7/2°
Together with the numerical value of €74 we get

13 = 105

€10 <3, €n1<2, €2<T, €r3<192, € <75.
Finally we set ¢; = % so that ¢1/b=4 <m. O
Corollary 4.5. Suppose m,n are positive integers with the same parity. If n > 8, then
4832v/2 m 245 1 ( 53 16384v2 m
3125 \/_ n\8 ' 15625 \/_

Proof. We apply Lemma 4.3 with a = 1, so that Mathematica returns expressions for exact values for
Jo, J1, J2, €50, €71, €72 and a numerical estimate for €3 (see Appendix A). Thus we have:

|K (m,n)| < +191og(~ )) (4.16)

1 2 1.4 113 137 1
J0—§(410g(2+\/g)—\/;r(—1) +162F1(—17§71,—4) 42Fl(2 1 Z))v
4 32 4
h=— =2
RV 738 Vb
5 151 9 79
J0<m, J1<g, E<J2<8.

Next, recall b= 2/5, so

eo(1) = \/137909641801 + 26255501/1102731
0
75

110273101
er(l)=1- 5_\2/560(1)
€J0 = g 616531()15)/2 (2 + 3arctan(2) — 2log 5)
€51 =06 abrctam(%)61‘2017()15)/2

B 1\ eo(l) 4843
€j2 = 5(4\/§+7T 4arctan(\/§)) e (1)7/2 + 360e: (1772

Together with the numerical value of €3, we get

4
6J0<5, €51 <2, €j9 <38, €53 < b4.

Finally we set cg = M so that (co/b)? =8 < n. O

Remark 4.6. The Mathematica codes used in Corollaries 4.4 and 4.5 are enclosed in Appendiz A for
interested readers.
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FIGURE 3. The points for which |K (m,n)| can be bounded by Corollaries 4.4 and 4.5 are
coloured in red and blue respectively.

From Corollary 4.4, if m > 4 and g\/ﬁ < m, then

|K (m,n)| < 22157 + %(% + 19210g(%))
The right hand side is an increasing function of m on [4,5] and a decreasing function of m on [6,00), and
is < 47 at both m = 5 and m = 6. Thus we have |K(m,n)| < 47 if m > 4 and m > 8/n. This shows
|K(m,n)| < 4w for (m,n) coloured in red in Figure 3.
From Corollary 4.5, if n > 8 and m < %\/ﬁ, then

386562 245 1(131072\/5 53 ﬁ))

(4.17)

K < i 22 1191
[K(m.n)l < =+ 35 T (g T g T Plee(g

The right hand side is an increasing function of n on [8,13] and decreasing on [14,c0). Since this function
of n is < 47 at both n = 13 and n = 14, we have |K(m,n)| < 47 if n > 8 and m < 8/n. Such pairs (m, n)
are pictured in blue in Figure 3.

It remains to verify that |K(m,n)| < 47 for the 11 points in Figure 3 that are not coloured, i.e. when
1<m <3,1<n<7and (m,n) are of the same parity. We achieved this numerically using Mathematica
(in fact, | K (m,n)| < 5.8 for all (m,n) that is not coloured). For interested readers, see Appendix B for the
Mathematica codes.

(4.18)

5. THE WEAK SOLUTION TO THE NEUMANN PROBLEM
In this section we prove Theorem 1.2.
5.1. Functional Analysis. Recall that the Folland-Stein space S1:2(f2) is the space of all functions u €

L?(Q) whose weak derivatives Vyu are in L?(€2). It is known [Nhi01, Theorem 1.3] that C*°(Q) c S12(Q)
is a dense subspace and that the restriction map

C™®(Q) > ur ulg € C®(%)
is continuous. Therefore the trace operator Tr: S12(Q2) — L?(X) is defined. It is known [Nhi01, Theorem 1.4]
that Tr(S12(Q)) C L3 (D).
Since ¥ is p-minimal, we see that
2 R o
F(u) ::/ (|Vbu| + Z|u| ) AN
Q
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is the continuous extension of F: C*(Q) — R to S1:2(£2). Moreover, there is a minimizer ug € S12(2) of

Hy = {f(u) tu € Sl’Q(Q),f|Tr(u)|2 do = 1} .
b
Necessarily ug is a weak solution of
Lu=0, in Q,
Vou=—ps Tru, on X;
ie.

) 0= /Q (<Vbu07 Vo) + %Uodﬁ) 9ﬁd9 + f; pi1 Tr(ug)¢ do

for all ¢ € C*°(9). In this section we show that ug € C°° ().
5.2. Potential theory. Let f € L?(X, do). Recall the single layer potential

Sf(¢) = FmG(¢,m)do(n), (e

nex
We have Sf € C*(Q2). By (3.4), we also have

V2 ’ / t
Sf(¢) = o /‘/||u<<72 Fu' —u,v — v)k(ﬁ,u,v)dudv

if { = ®(¢t,v,v") and F(u,v) := f(P(0,u,v)).
Proposition 5.1. If f € L*(3,do) then Sf € S12(Q).
Proof. Note that

t
sup / |k(—, u,v)|dudv <1
te[0,7/100] |v|7‘*5r’/’2 V2

by the bound for k in Lemma 3.2. Using Young’s convolution inequality on R?/A, we see that

sup ] ||Sf||L2(Et) S HfHL2(Z)-

t€[0,7/100
Thus Sf € L*(Q). Furthermore, for ¢ € Q, we have
Zi8f(¢) = f(m)Z1G(C,n)do(n).
nex
o L (¢~ ) - ¢

If = ®(¢, v/, v") and n = ®(0,u,v), then

2,1 _ 1,2 _ TN ain( T b i —u o) (T ™ t i tv—u)
¢‘nt = (' cos(4)sm(4 + _\/5)6 sm(4)cos(4 + _\/5)6
- t t
_ i 4v) | o / . . /
=e sin(—=) cos(u’ — u) — i cos(—=) sin(u’ — )|,
[ (\/5) ( ) (\/5) ( )}
SO
Z:G(¢,m) e {s' ( t ) cos(u’ — u) — i cos( t ) sin(u’ )}
1G((C,n) = in(— u —u)—i —)sin(u’ —u
! " 16m \/§ \/§

Kcos(v’ —v) — cos(\%) cos(u’ — u)) - i(sin(v’ —v) — sin(\%) sin(u — u))}

8 glt,u' —u,v" — v)3/2
o2’ ¢ sin(u’ —u) [( cos(v' —v) — cos(\%) cos(u’ — u)) —isin(v’ — v)}
~ 167 ZCOS(E) g(t,u —u, v —v)3/2

+O(g(t,u’ —l;,v’ —U))
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The numerator of the first term is even in ¢, but the denominator is not. Thus we symmetrize the first term

t

by making it even in ¢, which gives an error that is also in O(ﬁ
g(t,u' —u,v’' —v)

). In fact, the error term & is

given by
& = Csin(u — u)[(cos(v' —v) — costcos(u' —u)) —isin(v" — v)]
o ( 1 _ 1 )
glt,u' —u, v — )32 g(—t,u —u,v —v)3/2
< Clu' — u|[(cos(v' — v) — costcos(u’ —u))? + sin?(v' — v)]*/?
1 99 v ’
99 — v —v) -t
X G — a0 — o) (f%( yu' —u, v —v)
Plugging
9]
8_§f](t*’UI —u, v —v) = g2t 0 — w0 —v) - O(Ju — |+ |t]),

where t* € [—t,t], into the error term, we obtain

€= O(g(t,u’—tu,v’ —v))'

To summarize, if { = ®(¢,u',v") and n = (0, u,v), we get

.
2iv

-~ _ e . i r o t
ZiG(¢,n) = 327Tzcos(\/§)Kt/\/§(u U, v v)+0(g(t,u’—u,v’—v))

where

1 1
K (u,v) := sinu[(cosv — cost cosu) — i sinv] (g(t,u, 2 + T u,v)3/2)'

It follows that

2iv’
- ;o € . t / ’
ZiSf(®(t,u',0v") = — o cos(ﬁ) //|u§72 F(u —u,v" = v)K, ) 5(u,v)dudv

t
0] F(u' — " — )| ——dud
+ < |F(u —u,v v>|g(t,u,v) udv
lv|<m/2

is essentially the sum of the convolutions of F(u,v) := f(®(0,u,v)) with two kernels on R?/A. The second
term can be handled using

t
RN S .
lo|<m/2 e U)g(tau,v) uav S IE e,
v|<m L2(du’dv’)

lu|<m

where we applied Young’s convolution inequality on R?/A and the bound

t t
———dudv < dud
//Iu\ﬁff g(tuv) ““//\ulﬁ el + Tl + o723

lv|<m/2 lv|<m/2

> uav (0.¢]

uniformly in ¢ € (0,7/100]. We claim that

< Fu' —u,v" —v)Ki(u,v)dudv SFl L2
lo|<m/2 L2(du’dv’)
uniformly in ¢ € (0,7/100]. Once this is shown, we see that Z;Sf € L?(X;) uniformly in ¢ € (0,7/100], so

Z1Sf € L?(Q). Since S is real, we also have Z1Sf € L*(Q). Thus Sf € S12(Q), as desired.
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To prove the claim, by Parseval on L?(R?/A), we need only show that

sup //\u|<ﬂ (u, v)e ™) dudy| < 1 (5.1)
(m,n)€Z? | <m/2

uniformly in ¢ € (0,7/100]. But we have Re K;(—u, —v) = — Re K (u,v) and Im K (—u,v) = —Im K;(u, v).
One thus concludes the cancellation condition

// Ki(u,v)dudv =0
l[(w,0)l|<r

for all r. Next, for |u| < 7 and |v| < 7/2, a straightforward computation shows

|5, 0)| S ()| 72,

0K 4
|—ut(u )| S ll(w, o),
K _

2t fw,0)] S w,w)°,
all uniformly in ¢ € (0,7/100]. Combining these with the cancellation condition, one can obtain (5.1) in a
standard manner. |

To proceed further, define
d
M= s [Lspeem), cew
t€(0,7/100]

Proposition 5.2. M is bounded on L*(3,do).

To prove this, write M for the Hardy—Littlewood maximal operator adapted to the non-isotropic geometry
on X:

Mf@) = sup IQt( I Qt(c)lf(n)lda(n)

where Q+(¢) is the non-isotropic ball given by
Q:(Q) :=={®(0,u,v) € T: ||[(u' —u,v" —v)|| <t} if ¢ =(0,u,0").

(Recall ||(u, )| := max{|ul,|v|'/?}.) Tt is known that M is bounded on L?(¥). Since we proved N is also
bounded on L?(X), Proposition 5.2 is a consequence of the following

Proposition 5.3. For f € L*(X), we have
Mf(C) < C(MNf(C) + MF(C))

for do-almost every ¢ € X.

Proof of Proposition 5.3. In fact, if ¢ = ®(0,u’,v"), then v¢(t) = ®(t,w',v’), so for t > 0 we can differentiate
(3.4) under the integral and get

- . % L
f 871- //Iu\<7r u,v 'U) 8t(\/§,u,v)dudv,

[v|<m/2
where F(u,v) := f(®(0,u,v)). We also have, from (3.5), that

ok
— o ’
NF©) = Jim oo //u|<w,\ a0 =10 =) 50 (0w, v)dudv

[(u,v)||>e

Mf(¢) ~ // Fu' —u,v" —v)|dudv.
0<t<100 3 J o \|<t

ok
ot

and

Using the bound

(8w, 0) S (It + [l + o] /%)~
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it is easy to see that

1 // li / 8k t
il Fu —u, v —v)—(—,u,v)dudv| < CM : 59
87 J i< t0t ( )at(ﬁ ) f©) (5.2)

in fact,

1

ok, t 1
— Fiu —u,v —v)—(—, u,v)dudv
8 //|<u,v>|s10t ( )fﬁ(\/§ )

< CMf(C) // dudv
luoy<toe (JE]+ Jul + [v]t/2)3

and

1
dudv < // —dudv =C.
/~/|(u,v)|§10t (1t] + [u| + [v]1/2)3 I(uww)<i0t t>

Furthermore, using the bound

ok ok t
<
St ) = 520, ,0)

| < W when |[[(u,v)|| > t,

one can show that

/ okt ok
_ _ ok, T Ok < .
Py // |v|1\ifr7/rz (v —u,v v)<at(\/§,u,v) BN (0,u,v) ) dudv| < CM f({) (5.3)
|| (w,v)||>10t

This is because

oy (PR B
SW//TE% @ = wf =) (Gl g = G0

| (u,v)||>10t
t
off L dudv S MA(Q).
luwoy>10e ([u] + [v]t/2)4

Finally, we claim that for almost every ¢ € X,

& // u|<r —u, v — U)%(O,u,v)dudv <C(MNf+ M[)(Q). (5.4)
7T [v|<m/2 t
I(w, U)H>10t

In fact, the operators on both sides of the inequality are bounded on L?(¥), and C*°(X) is dense in L*(3),
we may assume, without loss of generality, that f € C°°(X). Suppose now ¢ € C°(X) is supported

in Q1(®(0,0,0)), with [y vdo = 1. Let W,(u,0) = V2 t3(®(0,t " u, t~2v)) for t € (0,7/100] and

(u,v) € R?, so that
// Uy (u, v)dudv = 1.
[u|<m,[v[<m/2

Recall K (u,v) = p.v.%} (O u,v) and let
Ki(u,v) = K % ¥, (u,v)
be the convolution of K with ¥; on R?/A. We will prove that

t
[t + [ul + [o]1/2)*

ok
|8t (0, %, 0) 1} (u,0) > 10t — Kt(uuv)l S ( (5.5)

In fact, if ||(u, v)|| > 10t, then the mean value theorem gives

ok
|—(0,u,v) — Ktuv|<//
ot I(u, 'U)H<t

(IUI + |v|1/2)

k
%(O,u’ —u,v" — ) ||V (u, v)|dudv

Ou ') —
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On the other hand, if ||(u/,v")|| < 10¢, then

(u',v") // Uy (u' —u,v" —v) — Uy (u, v)}%((),u,v)dudv
(u,v H<100t ot

Ok (0, u, v)dudv,

U, (u — o
+ (' =’ =)

|ul<m,|v|<m/2
I (w,v)||>100¢

with the last integral being both zero because ®;(u’ — u,v’ —v) = 0 there. As a result, if ||(v/, )| < 10t,

then
. 1 /lul v 1 1
|Kt(u’,vl)|§// _(_+_)7dudv§—.
lwoyl<ioor BNt 2 (w0 2

This proves (5.5), and hence

ok
/
u|<m —u,v" —v)—(0,u,v)dudv
8 // ‘|Lﬂ-/2 ot
||(u v)||>10t
1 S
= g//wgw Fu' —u,v" —v)Ki(u,v)dudv| + M f(C).
[v|<m/2
But
= 1
r _ L
87 //|u\<7r —u,v = 0)Ki(u,v)dudv = F x — K Uy(u, v)
[v|<m/2
= NF % U(u,v),
where NF(u/,v") = N f(®(0,u,v")). Thus
' —0) Ky (u, v)dudv| < MNF(Q).
87 \UI<7T

[v|<m/2

This proves (5.4).
O

We are now ready to complete the proof of Theorem 1.2. We need to show that if f € L?(¥) and u = Sf,
then

Lu=0 on{
Viu=(—3I+N)f onX

in the weak sense, i.e.

R 1
0= [ (Vo Vig) + Fuo) + [ (51 + M) 80

for all ¢ € C>(Q). To do so, note that
R . R
/(<Vbu, Vi) + Zu@ = lim (Vyu, Vi) + Zu(b)
Q

t—0t Q

and u € C*®(Q) for t > 0. Thus for ¢ € C*(2) we can now integrate by parts, and using Lu = 0 inside €,
see that the above is equal to

d dO't
— 1 Juddoy = — 1i — t t))—do.
Jim [ Vouodo = lim | Suc(0)60 (1) Frdo
Our earlier estimate for 9 allows one to show that
d 1
Zuc0) = (5T + M) (56)
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for almost every ( € X as t — 0%: if f € L*(X), then choose g € C*°(X) so that ||f — g||r2(s) < €0- Then
for any o > 0,

(¢ € % timsup| Sulre(t) — (~51+ A)FO)] > a)
t—0+

C (¢ & B limsup| £S(7 — 9)0c(0) ~ (~51 + M)(f ~ 9)(Q)] > a}

t—0+
C{CeX:M(f —9)(¢) > a/2}U{CeX: I(—%I+N)(f—g)(é)l > a/2}.

The measure of the last set with respect to do is at most

_ 1 _ _
Ca2(IM(f = 9)lFacx) + (=51 + M = DllEacy) S a0 = gllfaee) S a2,

Letting €9 — 0%, we see that (5.6) holds do a.e. on X.
Our earlier estimate for 9t also allows us to further apply the dominated convergence theorem and show

that
. d dO’t 1
- Jim [ Sute)oe) Grdo = - [ (—51+) s

t—0+

This shows that u solves the desired equation in the weak sense.
For uniqueness, we need to show that if u € S12(Q) and

0= /Q<Vbu, Vi) + §u¢ for all ¢ € C™(9Q),
then u = 0 a.e. in €. By density, the above condition actually implies

0= /Q(Vbu, Vo) + %w for all ¢ € SH2(Q).
Setting ¢ = v and using R > 0, we obtain u = 0 a.e. on 2.

6. PROOF OF PROPOSITION 1.3

Let Q be the domain in S? defined by (1.1). Let u € S»?(2) be a minimizer of F(u) under the condition
that ¢, [u|*do = 1. We want to show that v € C*°(Q). In fact this will be the case as long as u is a critical
point.

First, since

Oi

1 d Fu+tp) _ u Eu — Flu r(u)pdo
5 T = [, (9 0+ Fue) = £ f Teyen
)

for all ¢ € C°(Q2), we have
Lu =0, in Q,
{Vl,u = pTr(u), on 09,
where p1 := —F(u). By Theorem 1.2, we have u = Sf where f := pu(—31 + N) 7! Tr(u).
Lemma 6.1. For any s > 0, we have
ITrSHllyory o < Csllfllwez)  forall f & We2(x),

Here we identify a function on ¥ with a function on the Lie group R?/A, and W*2(3) is the corresponding
(isotropic) Sobolev space on R?/A, so that

1 N
Iflwees) = (55 2 A+ ImP+ ) Femn)?)
(m,n)€Z?
m=n_(mod 2)

1/2

it F(u,v) = f(®(0,u,v)).
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Proof of Lemma 6.1. To prove the Lemma, note that if f € L?(X) and we write F(u/,v') = f(®(0,u',v"))
with SF(u/,v") := (Tr Sf)(®(0,u',v")), then

SF =F % @KO a.e. on %
8T
where Ko(u',v") = k(0,u/,v"). The reason that this works for f € L2(X) is because the identity holds for

f € C>(X), and that both sides are bounded linear maps on L?*(X). Thus

E’F(m, n) = F(m, n)gl/(\o(m, n)

for all (m,n) € (=A)*. It is easy to see that

[Ko(m, n)| 5 (1+[m| +[n]!/%) 7"
In fact, since Ky € L'(X), we have |I/(\0(m,n)| < 1. Also, since

0?K,
ou?

0Ky

| Ko (u,0)| S 1(w, o) 72, | 5y | S I (s 0) 7,

|+

by writing

Ko(m,n) = // + // Ko(u, v)e ™ mutno) gy dy,
. Jul < Jv|<m/2
u,v m n /
Il <(ml+infrzy=r S e

3 3 3 : : : —imu _ 1 9% —imu —inv _ 4 0 ,—inv
and integrating by parts in the second integral using either e =~ C or e = La.€ ,

we obtain |l/(\o(m,n)| < (Jm| + |n|*/?)~1. This proves our bound for I/(\o(m,n); in fact, we will only use the
weaker bound

[Ko(m,n)| < (1+|m| + [n])~"/%.
Now if f € W#2(X), then this weaker estimate for IA((m, n) allows us to bound

g 1/2
ITeS o = (> (A Iml + 0 SFm,n)P)

(m,n)€z?
m=n (mod 2)

Lo~ — 1/2
S W lmP o pP) P, ) Ra(m, )

(m,n)€z?
=n (mod 2)

~ 1/2

s asmPe P EmnP)
(m,n)€Z?

m=n (mod 2)

= llwecs. -

Recall now our critical point ©u = Sf where f := u(—%] +N)7!Tr(u). By Lemma 6.1, for all s > 0, we
have

el g n gy S 1 s
Using the bound from Section 4, we have
[fllw=z2cs) S pll Tr(u)[[we2(s).-
Putting these together, we see that
[ Te(u)lwrzmy S 0 Tr()| 2gm) S 12 lulls120)

for all k € N. Thus Tr(u) € C*°(2), and hence V,u € C*°(X). As aresult, f = u(—3I1+N) "'V, u € C=(%).
Thus u = Sf € C*(Q), as desired.
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7. THE BOUNDARY YAMABE CONTACT FORM ON X

We conclude this article by proving our results about the boundary Yamabe constant.
First we prove that the boundary Yamabe constant Y (M, T%?) is finite if and only if the first Dirichlet
eigenvalue of the CR Yamabe operator is positive.

Proposition 7.1. Let (M3, T1°,0) be a closed pseudohermitian manifold with boundary having no charac-
teristic points. Then Y (M, T*%) > —oo if and only if \1 p(L) > 0.

Proof. Set A := A1, p(L) and let u be the first Dirichlet eigenvalue; i.e. u is the unique nonnegative function
in S12(M) such that [, u*6 Adf =1 and

Lu=Mu, in M,
u =0, on OM.

Jerison proved [Jer81, Theorem 7.1] that uw € C°°(M). Bony’s maximum principle [Bon69, Corollaire 3.1]
then implies that v > 0. Note that F(u) = A. Additionally, for any fixed v € C°°(M), it holds that

F(v+tu) = X2 + )\t/
M

7{ |v+tu|3da=7§ (o] do.
oM oM

Suppose first that A < 0. For any fixed v € C*°(M), we deduce from (7.1) that F(v + tu) — —oo as
t — oo. Therefore Y (M, T"%) = —oo.

Suppose next that A = 0. Fix a v € C*°(M) such that v|ppr = —Bu. We deduce from (7.1) that
F(v+tu) = —oo as t — oo. Therefore Y (M, T10) = —oc.

Suppose finally that A > 0. Fix a constant ¢ € (0,)). A standard variational argument implies the
existence of a weak solution u € S»2(M) of

uv@/\d@—i—t]{ v Budo + F(v),
oM (7.1)

Lu=-cu, in M,
u=1, on OM.

Combining Jerison’s regularity results [Jer81, Theorem 7.1] with Bony’s maximum principle [Bon69, Corol-
laire 3.1] implies that u € C°°(M) is positive. Set § := u?@. By the conformal covariance of the CR Yamabe
operator,

RY =4L*°(1) = dcu 2 > 0.

In particular, there are constants Cy,Cs > 0 such that
Flv) > / (IVs0)? + Ci|v]?) G A df — c]{ v|? dog
M oM

for all v € C°°(M). On the one hand, Hélder’s inequality implies that §|v|* < (§|v|3)2/3. On the other
hand, the Sobolev trace inequality [Nhi01, Theorem 1.4] and a standard partition of unity argument implies
that

2

/(|va|2+Cl|v|2) OAdo> (7{ |v|3d8>
M oM

Therefore Y (M, T*%) > —cc. O

Second we prove that u1(L) and Y (M, T%0), if finite, have the same sign provided that minimizers of the
former are smooth.

Proposition 7.2. Let (M?,T*Y 0) be a closed pseudohermitian manifold with boundary having no char-
acteristic points. Suppose additionally that the minimizer of (1.4) is smooth. Then pi(L) and Y (M, T0)
have the same sign.
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Proof. Denote Y := Y (M, T*%) and puy := pui(L).
Suppose first that Y > 0 (resp. Y > 0). Holder’s inequality implies that if u € C°°(M), then

Fu)>Y (7{ |u|3da>‘ > Yvol(aM)—%yf |uf? do.
oM oM

Therefore pq > 0 (resp. g1 > 0).

Suppose next that p; > 0 (resp. p; > 0). By restricting to nonnegative functions and applying the
Sobolev trace embedding theorem [Nhi01, Theorem 1.4], we deduce that there is a nonnegative minimizer
u € SY2(M) of py. By assumption, u is smooth. A straightforward computation implies that u is a weak
solution of

{Lu: 0, in M, (7.2)

Bu = pju, on OM.

The strong maximum principle [Bon69, Corollaire 3.1] implies that w is positive in the interior of Q. The
Hopf Lemma [Mon10, Corollary 2.1] implies that u is also positive on the boundary. Therefore u > 0. Set

0 = u20. Equation (7.2) implies that " >0 (resp. jid > 0). By conformal covariance,
. ~ o~ 1 S~
Fllu) = Flv) = 2/ |Vyv|20 A db + = 7{ H|w|? do.
M 3 Jm
We conclude from the Sobolev trace embedding theorem that Y > 0 (resp. Y > 0). O

Finally, we construct a scalar flat contact form on 2 with respect to which ¥ has constant p-mean
curvature.

Proof of Theorem 1.4. Introduce new coordinates (r,u,v) € [0, 7] x [0,27] x [0,27] on Q by
¢t = ) sin(r2),
¢ = et cos(r/2),

making the obvious identifications. A straightforward computation yields
—2iu 1 1
Zi=e Or + — 5 cos(r)0y + — 5 cse(r)0y | -
It readily follows that
1 1 1
L=-207— B cot?(r)92 — B esc? ()02 — cot(r) esc(r)d?2, — 2 cot(r)d, + 7

We conclude that a smooth function v = u(r) on £ solves Lu = 0 if and only if

{Gfu + cot(r)dru — u = 0,

lim u(r) < oo.
T—T

By the change of variables z = cosr, we see that (7.3) is equivalent to

{(1 — 2%)02u — 220,u — Ju =0,

lim wu(z) < oo.
rz——1

(7.4)

It is well-known [DLMF, §14.2 and §14.8] that the space of solutions of (7.4) is spanned by the Legendre
function
11 14+
P_%(x) = o[ <2 2,1,7) .
Rewriting this in terms of |22|? = cos? 5 and normalizing so that u = 1 along 3 yields the claimed solution
of Lu = 0. In particular, u2 is Webster-ﬂat Since u depends only on r, we see that both v and Bu = 0,u
are constant on ¥. Therefore ¥ has constant p-mean curvature with respect to u26. g
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8. APPENDIX

8.1. Appendix A. The Mathematica codes used in Corollaries 4.4 and 4.5 are reproduced below for refer-
ence. In order to simplify expressions and outputs in Mathematica, some definitions in the codes are different
from the definitions taken in the rest of the paper. We first point out the relations between these two sets
of definitions and then list the codes:

erro(a, u,v) = %errorO[u,vL erry (a,u,v) = %errorul[u,v] + WerroruQ[u, vl
1
erry(a, u,v) = ;Egﬁ%gerrorvlhwv]+-giayﬁgerrorVthvL
ermuxa,u,v)—-gﬁ%;%gerroruulhwv]+-giayﬁgerroruuQWWVL
eo(2) : . €o(2) : .
€10 61(2)5/2eps1 oni[o0], €n 61(2)5/2ep31 oni[1],
2 1
€12 = —Egﬁ%Liepsiloni[2,1]+-————E—Eepsiloni[2,2L
e1(2)"/ e1(2)%/
2 1
€13 = c(2) epsiloni[3, 1]+ ———~epsiloni|3, 2],
e1(2)972 e (2)7/2
eo(1 o eo(1) oy
— 00 hsilonio], = "0 _epsilonj[i],
€Jo 61(1)5/291)51 onj|[0] €71 er(1)7/2 epsilonjli]
eo(1)

epsilonj[2, 1]+ epsilonj[2,2].

1

€2 = er(1)772 ;Iz13375
dl[u_, v_] = ((Cos[u] - Cos[v])~"2 + Sinl[v]~2)"(1/4);
nlu_, v_] = Sin[u]l*Sin[v];
Klu_, v_] = n[u, vl/d[u, v]~6;
nulu_, v_] = D[K[u, v], ul*d[u, v]~(10);
nvlu_, v_] D[K[u, v], v]*d[u, v]~(10);
nuulu_, v_] = D[K[u, v], u, ul*d[u, v]l~(14);

dO[u_, v_] = (u4/4 + v=2)"(1/4);
n0fu_, v_] = uxv;
KO[u_, v_] = nO[u, v1/(d0[u, v])"6;

nOulu_, v_.] = v (-5/4 u™4 + v°2);

KOul[u_, v_] = nOulu, v]/d0[u, v]~(10);
noviu_, v_.] = u (u™4/4 - 2 v°2);
KOv[u_, v_] = nOv[u, v]/d0[u, v]~(10);

nOuulu_, v_] = u"3 (-15/2%v"3 + 15/8%u"4x*v);
KOuulu_, v_] = nOuulu, v]/d0[u, v]~(14);
errorO[u_, v_] := (6/4)*Abs[nO0[u, v]]1/d0[u, v]~4;
errorul[u_, v_] (10/4)*Abs [nOulu, v11/d0[u, v]~8;
erroru2[u_, v_] (1451/3072xAbs[u~6*v] + Abs[u~2 v~3]1/2 + Abs[v~4]1/3)/d0[u, v]~(10);
(10/4) *Abs [nOv[u, v1]1/d0[u, v]~8;
errorv2[u_, v_] (683/15360 Abs[u~7] + Abs[u~3 v~2] + 7/6 Abs[u v~3])/d0[u, v]~(10);
erroruul [u_, v_] := (14/4)*Abs[nOuulu, v]]1/d0[u, v]~(12);
erroruu2fu_, v_] := (1195/2048 Abs[u~9 v] + Abs[u”5 v~3]/8 + 5 Abs[u~3 v~4]/2 +
15 Abs[u v~5]1/4)/d0[u, v]~(14);
normla_, u_, v_] := Max[Abs[ul/a, Sqrt[Abs[v]]];
regionO[a_] := ImplicitRegion[norm[a, u, v] < 1, {u, v}];
regioni[a_] := ImplicitRegion[norm[a, u, v] > 1, {u, v}]l;
b =2/5; al = 2;
i[0] = FullSimplify[Integrate[Abs[u*v*KO[u, v]l], {u, v} \[Element] regionO[al]lll]
i[1] = FullSimplify[2*Integrate[Abs[KO[al, v]], {v, -1, 1}1]
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i[2] = FullSimplify[2*Integrate[Abs[KOulal, v]], {v, -1, 1}]]
i[3] = FullSimplify[Integrate[Abs[KOuulu, v]], {u, v} \[Element] regionl[al]l]
regionOb[al] = ImplicitRegion[norm[al, u, v] < b, {u, v}];
e0[al] = ToRadicals[MaxValue[(u~6/24 + u™2 v~2/2 + 2 u~6*(al*b)"2/Factoriall[8] +
Abs[v]~3%b~2/12)/d0[u, v1~(6), {u, v} \[Element] regionObl[al]]l]
dO[al*b, b~2] "2
epsiloni[0] = FullSimplify[Integrate[Abs[u*v]*errorO[u, v], {u, v} \[Element] regionO[al]lll]
epsiloni[1] = FullSimplify[2*Integrate[errorO[al, v], {v, -1, 1}]]
epsiloni[2, 1] = FullSimplify[2*Integrate[errorullal, v], {v, -1, 1}]]
epsiloni[2, 2] FullSimplify[2*Integrate[erroru2(al, v], {v, -1, 1}]]
epsiloni[3, 1] = FullSimplify[2*al*Integratelerroruullal, v], {v, -1, 1}] +
4xIntegrate[erroruul[u, 1], {u, -al, ail}]]
epsiloni[3, 2] = FullSimplify[2*al*Integratelerroruu2[al, v], {v, -1, 1}] +
4xIntegrate[erroruu2fu, 1], {u, -al, a1ll}]]
epsiloni[4] = SetAccuracyl[
2xNIntegrate [Abs[nuulu, v]1/d[u, v]l~(14), {u, -alxb, alxb}, {v, b~2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errorsl = Through[#1@"Error"]) &)]
+2xNIntegrate [Abs [nuulu, v]11/d[u, v]~(14), {u, al*b, Pi}, {v, -Pi/2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errors2 = Through[#10@"Error"]) &)1, 10]
SetAccuracy[Total@errorsl + Total@errors2, 10]
a2 = 1;
j[0] = FullSimplify[Integrate[Abs[u*xv*KO[u, v]], {u, v} \[Element] regionO[a2]]]
j[1] 2xIntegrate [Abs [KO[u, 111, {u, -a2, a2}]
j[2] = Integrate[Abs[KOv[u, v]], {u, v} \[Element] regionil[a2]]
regionOb[a2] = ImplicitRegion[norm[a2, u, v] < b, {u, v}];
e0[a2] = ToRadicals[MaxValue[(u"6/24 + u~2 v~2/2 + 2 u"6*(a2*b) "2/Factorial[8] +
Abs [v]~3%b~2/12)/d0[u, v]1~(6), {u, v} \[Element] regionOb[a2]]]
dO[a2%b, b~2] "2
epsilonj[0] = FullSimplify[Integrate[Abs[u*v]*errorO[u, v], {u, v} \[Element] regionO[a2]]]
epsilonj[1] = FullSimplify[2*IntegratelerrorO[u, 1], {u, -a2, a2}]]
epsilonj[2, 1] = FullSimplify[2*a2+Integratelerrorvi[a2, v], {v, -1, 1}] +
4xIntegrate[errorvi[u, 1], {u, -a2, a2}]]
epsilonj[2, 2] = FullSimplify[2*a2+Integrate[errorv2[a2, v], {v, -1, 1}] +
4xIntegrate[errorv2[u, 1], {u, -a2, a2}]]
SetAccuracy[
2xNIntegrate[Abs[nv[u, v]l]/d[u, v]1~(10), {u, -a2#b, a2*b}, {v, b2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errorsl = Through[#1@"Error"]) &)]
+2xNIntegrate [Abs [nv[u, v]]1/d[u, v]~(10), {u, a2+b, Pi}, {v, -Pi/2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errors2 = Through[#1@"Error"]) &)1, 10]
SetAccuracy[Total@errorsl + Total@errors2, 10]

8.2. Appendix B. We use the following codes in the Mathematica to verify the inequality |I/€ (m,n)| < 4r
when1<m<3,1<n<7 m,né€Z:
m:=1; Forln =1, n <=7, n += 2,
Print [NIntegrate[K[u, v] Sin[m*u] Sin[n*v], {u, -Pi, Pi}, {v, -Pi/2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errors = Through[#1@"Error"]) &)1];
Print[Total@errors]]
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m :=2; For[n =2, n<=6, n += 2,
Print [NIntegrate[K[u, v] Sin[m#u] Sin[n*v], {u, -Pi, Pi}, {v, -Pi/2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errors = Through[#1@"Error"]) &)1]1;
Print [Total@errors]]
m:=3; For[n =1, n<=7, n += 2,
Print [NIntegrate[K[u, v] Sin[m#u] Sin[n*v], {u, -Pi, Pi}, {v, -Pi/2, Pi/2},
Method -> "LocalAdaptive", AccuracyGoal -> 8,
IntegrationMonitor :> ((errors = Through[#1@"Error"]) &)1];
Print [Total@errors]]
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