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1. Introduction

In this article we continue the study of the convergence of the Yamabe flow

{
∂g
∂t = −Rg,

g(0) = g0,
(1.1)

starting from an asymptotically flat (AF) manifold (Mn, g0). Above, R denotes the scalar 
curvature of the Riemannian metric g = g(t). This flow preserves the conformal class 
of g0 in the sense that g(t) ∈ [g0] for all times t, and is the natural analogue of the 
volume-normalized Yamabe flow on compact manifolds introduced by Hamilton [16]. It 
is well known that on a compact manifold, the normalized Yamabe flow is the gradient 
flow of the Einstein–Hilbert functional within a fixed conformal class. It can be viewed as 
a natural evolution equation which could potentially evolve a given metric to a constant 
scalar curvature metric within the same conformal class. For long-time existence and 
convergence of the Yamabe flow on compact manifolds, we refer interested readers to 
the work of Hamilton, Chow, Ye, Schwetlick–Struwe, and Brendle [16,8,29,27,3,4]. The 
study on noncompact manifolds is less developed. On noncompact manifolds, long-time 
existence has been proved under some assumptions of suitable pointwise bounds on 
curvature and conformal factors. See for instance [20], [25]. Other works give long-time 
existence results in the settings of conformally hyperbolic and singular spaces [26,5,19]. 
Similar to the compact case, convergence results for the Yamabe flow on noncompact 
manifolds have been slower to develop—we are aware of [20,21] in which C∞

loc convergence 
to a scalar flat limit metric is shown, using crucially an assumption that the initial metric 
has non-negative scalar curvature, as well as [9], which studies convergence of Yamabe 
flow on singular spaces with positive Yamabe constant.

The study of Yamabe flow on asymptotically flat manifolds was initiated by [11]. 
They proved short-time existence and that asymptotic flatness is preserved under the 
flow. They also discussed the ADM mass under the flow.

In a previous article [10] by the second and third authors, we proved the long-time ex-
istence of Yamabe flow (1.1) on asymptotically flat manifolds. Moreover, we showed that 
the flow converges in a global weighted sense (defined by [2]) if and only if the Yamabe 
constant Y (Mn, [g0]) is positive. Long-time existence was also studied independently by 
[21], who also considered local convergence assuming nonnegative scalar curvature. The 
convergence/divergence behavior of the Yamabe flow on asymptotically flat metrics is 
quite different from that of the Ricci flow; see for example [18] regarding the Ricci flow 
in this setting in dimension n = 3. We also refer readers to related results on the Ricci 
flow in [12,7].

For convenience, we recall the main theorems in [10] here, referring to Section 2.1 for 
definitions and notation related to asymptotically flat manifolds. When Y (Mn, [g0]) > 0, 
the flow converges in a weighted global sense.
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Theorem 1.1 ([10, Theorem 1.3]). Let (Mn, g0), n ≥ 3 be a Ck+α
−τ AF manifold with 

Y (M, [g0]) > 0, k ≥ 3, and τ > 1. Then there exists a Yamabe flow (Mn, g(t)) starting 
from (Mn, g0) defined for all positive times and a metric g∞ on Mn which is Ck+α

−τ ′ AF 
for all τ ′ < min{τ, n − 2} so that for any such τ ′ we have

‖g(t) − g∞‖Ck+α
−τ′

= O(t−δ0), as t → ∞, (1.2)

for some δ0 > 0. In particular, this Yamabe flow converges in Ck+α
−τ ′ to the asymptotically 

flat, scalar flat metric g∞.

This theorem holds for n ≥ 3, but in order to make sense the ADM mass of an 
asymptotically flat manifold when n = 3, we have a different version in the n = 3 case 
by adding the natural conditions Rg0 ≥ 0 and Rg0 ∈ L1 (if we are concerned with the 
mass).

Theorem 1.2 ([10, Theorem 1.4]). Let (M3, g0) be a Ck+α
−τ AF manifold with Y (M, [g0]) >

0, k ≥ 3, τ > 1
2 , Rg0 ≥ 0, and Rg0 ∈ L1. Then there exists a Yamabe flow (Mn, g(t))

starting from (Mn, g0) defined for all positive times and a metric g∞ on Mn which is 
Ck+α

−τ ′ AF for all τ ′ < min{τ, 1} so that for any such τ ′ we have

‖g(t) − g∞‖Ck+α
−τ′

= O(t−δ0), as t → ∞, (1.3)

for some δ0 > 0. In particular, this Yamabe flow converges in Ck+α
−τ ′ to the asymptotically 

flat, scalar flat metric g∞.

In contrast to the positive Yamabe case, when Y (M, [g0]) ≤ 0, while the flow still 
exists for all positive times, it must diverge.

Theorem 1.3 ([10, Theorem 1.2 (2)]). Let (Mn, g0) be a Ck+α
−τ AF manifold with k ≥ 3. 

If Y (Mn, [g0]) ≤ 0, then the Yamabe flow (Mn, g(t)) starting from (Mn, g0) does not 
converge. In particular, g(t) = u(t)

4
n−2 g0 will fail to remain uniformly equivalent to g0

as t → ∞, and both ‖u(t)‖L∞ and the L2 Euclidean-type Sobolev constant of g(t) will 
tend to positive infinity.

Here Y (M, [g0]) is a conformally invariant quantity. Motivated by the definition of the 
Yamabe constant in the compact case, Y (M, [g0]) is defined as follows:

Y (M, [g0]) := inf
v∈C∞

0 (M),
v �=0

∫
M

an|∇v|2g0
+ Rg0v2 dVg0(∫

|v| 2n
n−2 dVg0

) n−2
n

, (1.4)

with an = 4(n−1)
n−2 . This Yamabe constant plays an important role in the prescribed scalar 

curvature problem on conformal classes of asymptotically flat metrics [6,22,13].
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The main goal of this article is to study the behavior of the flow in this latter case 
Y (Mn, [g0]) ≤ 0. More precisely, we prove that even though the Yamabe flow diverges 
(which in our case is equivalent to saying the solution u blows up as t → ∞, by the proof 
of [10, Lemma 3.4]), the rescaled flow t− n−2

4 u(x, t) is convergent when Y (Mn, [g0]) ≤ 0. 
Working from here, we obtain precise profiles of the blow up behavior of the flow.

Recall that if we write a Yamabe flow as g(x, t) = u(x, t)
4

n−2 g0, then u satisfies the 
parabolic equation

∂

∂t
u

n+2
n−2 = n + 2

4 (anΔg0u − Rg0u). (1.5)

Sometimes we will also write N = n+2
n−2 for the exponent on the left. To simplify writing 

the right-hand side, we denote by Lg0 the conformal Laplacian

Lg0 := −anΔg0 + Rg0 .

Throughout what follows, u will always denote a solution of this equation with 
lim|x|→∞ u(x, t) = 1. By [11, Theorem 1.3], g(t) remains asymptotically flat along the 
Yamabe flow if g0 is asymptotically flat.

There are two main results of this paper—one when Y (Mn, [g0]) < 0, and the other 
when Y (Mn, [g0]) = 0. In both these cases, the u(x, t) associated with the Yamabe 
flow (Mn, g(t)) blows up at a rate no faster than O(t n−2

4 ). But the limiting profiles of 
ũ(x, t) := t− n−2

4 u(x, t) behave differently.

Theorem A. If (Mn, g0) is a Ck+α
−τ AF manifold with k ≥ 3 and Y (Mn, [g0]) < 0, then the 

Yamabe flow (Mn, g(t)) starting from (Mn, g0) blows up at the rate u(x, t) = O(t n−2
4 ). 

Moreover, ũ(x, t) := t− n−2
4 u(x, t) converges in Ck,α′

loc for any α′ < α to a limiting function 
ũ∞ > 0, where ũ∞ is the unique solution to the equation of prescribed constant scalar 
curvature −1:

{
−anΔg0 ũ∞ + Rg0 ũ∞ = −ũN

∞,

ũ∞ → 0.
(1.6)

Moreover, ũ∞(x) satisfies the sharp spatial decay ũ∞(x) = O(|x|2−n), and ũ
4

n−2
∞ g0 ex-

tends to the unique −1 constant scalar curvature metric on the compactified space M .

When Y (Mn, [g0]) = 0, the rescaled function ũ(x, t) once again has a limit. But in 
this case the limiting function vanishes on Mn.

Theorem B. If (Mn, g0) is a Ck+α
−τ AF manifold with k ≥ 3 and Y (Mn, [g0]) = 0, then 

the Yamabe flow (Mn, g(t)) starting from (Mn, g0) satisfies u(x, t) = o(t n−2
4 ).
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Thus in order to describe the blow-up profile of the limit, we need a more delicate 
estimate. We prove in the following that the limit of the flow u(x, t), after being renor-
malized by its maximum value on a compact set K at t is convergent. Moreover, such a 
limit is the positive canonical solution (up to a multiplicative constant) of a prescribed 
zero scalar curvature equation.

Theorem C. If (Mn, g0) is a Ck+α
−τ AF manifold with k ≥ 3 and Y (Mn, [g0]) = 0, then for 

the Yamabe flow (Mn, g(t)) starting from (Mn, g0) and any fixed compact set K ⊂ Mn

we have that u(x,t)
maxx∈K u(x,t) converges in Ck,α′

loc for any α′ < α to the unique positive 
solution w(x) on (Mn, g0) which satisfies

−anΔg0w + Rg0w = 0, max
x∈K

w(x) = 1. (1.7)

Moreover, w(x) satisfies the sharp spatial decay w(x) = O(|x|2−n), and w
4

n−2 g0 extends 
to the constant zero scalar curvature metric on the compactified space M , which is unique 
up to scaling.

Remark. It is worth noting that it is unclear whether maxx∈M u(x, t) may always be 
attained on some fixed compact set. However, given any compact set K, we can construct 
auxiliary functions vb(x, t) and vB(x, t) to bound u(x, t) from above and below. Moreover 
vb and vB both take their maximum values in M on K. These maximum values are 
suitable for use in the renormalization, and maxx∈M u(x, t) will be no larger than a fixed 
constant multiple of maxx∈K u(x, t).

1.1. Organization of the article

The organization of the article is as follows: In Section 2 we start by recalling some 
preliminaries for the Yamabe flow on AF manifolds as well as properties of certain com-
pactifications of manifolds with Y (Mn, [g0]) ≤ 0. In Section 3 we discuss the rescaled 
convergence of Yamabe flows starting from AF manifolds with Y (Mn, [g0]) < 0 and 
prove Theorem A. In Section 4 we discuss why the same rescaling does not give a non-
trivial convergence result when Y (Mn, [g0]) = 0, proving Theorem B, and then describe 
another rescaling which does yield convergence to a smooth positive function, and prove 
Theorem C.

2. Preliminaries

After recalling some relevant definitions and notation, we describe in this section 
some properties which hold for any Yamabe flow starting from an asymptotically flat 
manifolds. In the last part we discuss the existence of Yamabe metrics on certain com-
pactifications of asymptotically flat manifolds with Y (Mn, [g0]) ≤ 0.
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2.1. Asymptotically flat manifolds

Here we recall as in [10] some standard function spaces and related definitions used in 
the analysis and definition of asymptotically flat (AF) manifolds. See for instance [2,13].

Definition 2.1. Let Mn be a complete differentiable manifold such that there exists a 
compact K ⊂ Mn and a diffeomorphism Φ : Mn\K → Rn\BR0(0), for some R0 > 0. 
Let r ≥ 1 be a smooth function on Mn that agrees under the identification Φ with 
the Euclidean radial coordinate |x| in a neighborhood of infinity, and let ĝ be a smooth 
metric on Mn which is equal to the Euclidean metric in a neighborhood of infinity under 
the identification Φ. Then with all quantities below computed with respect to the metric 
ĝ, we have the following function spaces:

The weighted Lebesgue spaces Lq
β(M), for q ≥ 1 and weight β ∈ R, consist of those 

locally integrable functions on M such that the following respective norms are finite:

‖v‖Lq
β(M) =

{ (∫
M

|v|qr−βq−ndx
) 1

q , q < ∞,

ess supM

(
r−β |v|

)
, q = ∞.

The weighted Sobolev spaces W k,q
β (M) are then defined in the usual way with the 

norms

‖v‖W k,q
β (M) =

k∑
j=0

∥∥Dj
xv

∥∥
Lq

β−j(M) .

The weighted Ck spaces Ck
β(M) consist of the Ck functions for which the following 

respective norms are finite:

‖v‖Ck
β (M) =

k∑
j=0

sup
M

r−β+j
∣∣Dj

xv
∣∣ .

The weighted Hölder spaces Ck+α
β (M), α ∈ (0, 1), consist of those v ∈ Ck

β(M) for 
which the following respective norms are finite:

‖v‖Ck+α
β (M) = ‖v‖Ck

β (M) + sup
x�=y∈M

min(r(x), r(y))−β+k+α

∣∣Dk
xv(x) − Dk

xv(y)
∣∣

d(x, y)α
.

An asymptotically flat manifold is then a smooth manifold with an asymptotically 
flat metric.

Definition 2.2 (Asymptotically flat metrics). Given Mn as in Definition 2.1, a metric g
is said to be a W k,q

−τ (respectively Ck
−τ , Ck+α

−τ ) asymptotically flat (AF) metric if τ > 0
and
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g − ĝ ∈ W k,q
−τ (M) (respectively Ck

−τ (M), Ck+α
−τ (M)). (2.1)

The number τ > 0 is called the order of the asymptotically flat metric.

2.2. Comparison principle

We wish to be able to compare solutions of the parabolic equation (1.5). The proof 
of the result below follows some of the arguments in [25, Lemma 1.4].

Lemma 2.3. Let u1, u2 be two positive solutions of (1.5) for all t ≥ 0. Suppose moreover 
that

(1) For all T > 0, there exists CT > 0 such that

0 < C−1
T ≤ u1, u2 ≤ CT on M × [0, T ].

(2) For all t ≥ 0,

lim
|x|→∞

u1(x, t) < lim
|x|→∞

u2(x, t),

and these limits are achieved uniformly in space on [0, T ].
(3) We have u1(x, 0) ≤ u2(x, 0).

Then for all t ≥ 0 we have u1(x, t) ≤ u2(x, t).

Proof. Now by conditions (2) and (3), for any (x, T ) there exists a set Ω ⊂ M such that 
x ∈ Ω and u1 ≤ u2 on (Ω ×{0}) ∪(∂Ω ×[0, T ]). Indeed, those conditions imply that �i(t) =
limx→∞ ui(x, t) for i = 1, 2 are continuous functions, so that inft∈[0,T ] limx→∞ u2(x, t) −
u1(x, t) > 0. Since these limits are achieved uniformly in space, this last inequality allows 
us to find Ω sufficiently large with the desired properties.

Then by the linear parabolic maximum principle [23, §3.3] we must have u1 ≤ u2 in 
Ω × [0, T ]. Since (x, T ) was arbitrary the result follows. �
2.3. Growth control and rescaled solutions

As mentioned in the Introduction, from [10] we know that the solutions u(x, t) of (1.5)
corresponding to Yamabe flows starting from AF manifolds with Y ≤ 0 must blow up. 
Below we first observe that a standard estimate on the evolution of the scalar curvature 
allows us to control the growth of u in general.

Lemma 2.4. Let (Mn, g0) be a C2+α
−τ AF manifold. Along the Yamabe flow (Mn, g(t)), 

we have
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R(g(t)) ≥ −1
t
.

Proof. Recall that under the Yamabe flow we have ∂
∂tR = (n − 1)Δgt

R + R2, and let 
α < 0 be such that Rgρ

≥ α when t = 0. Choose an ε > 0, and set

φ(t) = α

ε − αt
,

which satisfies

∂

∂t
φ = φ2 = (n − 1)Δgt

φ + φ2.

Then

∂

∂t
(φ − R) = (n − 1)Δgt

(φ − R) + (φ + R)(φ − R),

and we may apply the Ecker–Huisken maximum principle [14, Theorem 4.3] on M ×[0, T ]
for any T > 0 to conclude that φ − R ≤ 0 on M × [0, ∞). Taking ε → 0 yields R(x, t) ≥
−1

t . �
Proposition 2.5. Let u(x, t) be a solution of (1.5) corresponding to the Yamabe flow start-
ing from a C2+α

−τ AF manifold. Then t− n−2
4 u(x, t) is nonincreasing, and thus has a 

nonnegative limit, so that

max
x∈M

u(x, t) = O(t
n−2

4 ).

Proof. Integrate the equation

∂

∂t
u = −n − 2

4 Ru

and apply the estimate of Lemma 2.4. �
In light of Proposition 2.5, we define

ũ(x, t) = t− n−2
4 u(x, t). (2.2)

Since ũ(x, t) ≥ 0 and is monotonically decreasing, it has a pointwise limit as t → ∞, and 
we set

ũ∞(x) = lim
t→∞

ũ(x, t). (2.3)

When Y (Mn, [g0]) < 0 we will see that ũ∞ > 0 is a smooth function solving a naturally 
associated elliptic equation, while when Y (Mn, [g0]) = 0 we will find that ũ∞ ≡ 0
converges to zero. In this latter case, a different normalization of u yields a (smooth) 
positive limit.
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2.4. Conformally compactifying M

In order to carry out our study of the cases Y (Mn, [g0]) ≤ 0, we check below in 
this setting that there exists a conformal compactification of M which topologically is 
given by adding a point at infinity to M , and which solves the Yamabe problem on this 
compactified manifold, so that it has constant scalar curvature Y (Mn, [g0]).

First we have the following result on compactifying M by adding a single point at 
infinity, without yet adding a requirement on its scalar curvature. See also [17] for related 
compactification results.

Lemma 2.6 ([13, Lemmas 5.2, 5.3]). Suppose (M, g) is a W 2,p
−τ AE manifold, with p > n/2

and τ ≥ n
p −2. Then there exists a smooth conformal factor φ decaying to zero at the rate 

r2−n such that g = φ
4

n−2 g extends to a W 2,p metric on the one-point compactification 
M = M ∪ {q}. Moreover, Y (M, g) = Y (M, [g]).

Remark. Note that g is smooth away from q; the metric g is W 2,p in the sense that in a 
coordinate ball B about q, the components of g along with its first and second derivatives 
are Lp integrable with respect to dVg. Hence the metric g is Hölder continuous and 
bilipschitz equivalent to a smooth metric on the manifold M—that is to say there is a 
smooth Riemannian metric g on M such that for some positive constant γ:

γ−2g ≤ g ≤ γ2g.

Hence

γ−ndVg ≤ dVg ≤ γndVg and γ−1dg ≤ dg ≤ γdg.

Moreover for any smooth function ϕ:

γ−1|dϕ|g ≤ |dϕ|g ≤ γ|dϕ|g.

So the spaces Lp(M, g) and Lp(M, g) are the same with equivalent norms, and the same 
is true for the W 1,2-spaces.

Next, we need to solve the Yamabe problem on (M, [g]). We apply a result of [1] to 
do so.

Lemma 2.7. Suppose (M, g) is a W 2,p
−τ AE manifold for some p > n/2 and τ ≥ n

p − 2, 
with Y (M, [g]) < 0. Then in the notation of Lemma 2.6, on (M, g) there exists a function 
u ∈ W 1,2 ∩ L∞(M) with infM u > 0 such that on M \ {q},

−anΔu + Ru = Y (M, [g])u
n+2
n−2 . (2.4)

Here Δ and R denote the Laplacian operator and the scalar curvature of g respectively.
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Proof. The result follows from [1, Theorem 1.12, Proposition 1.15] once we verify its 
assumptions are satisfied in our case. In the notation of that work we check:

i) Let f : M → R be a Lipschitz function with respect to the distance induced on M
metric g. We need to check that f can be approximated in W 1,2(M, g) by functions 
in C1

0 (M \ {q}).
Let φ : [0, ∞) → R be a smooth, nonnegative function with φ(x) = 0 for x ≤ 1

and φ(x) = 1 for x ≥ 2. With the notation rp = dg(p, q), we define

fε(p) = f(p)φ
(rp

ε

)
.

This is true because g is a continuous metric, hence bilipschitz to a smooth metric 
on M . The desired property certainly holds on smooth metrics, and both function 
spaces are invariant under bilipschitz equivalence.

ii) Since (M, g) is compact with finite volume, it suffices to check for μ the measure 
induced by g that

C−1rn ≤ μ(B(p, r)) ≤ Crn (2.5)

for r > 0 small. Since g is bilipschitz to a smooth metric on M as noted above, this 
follows immediately.

iii) We check that the Sobolev inequality holds on W 1,2(M, g). Once again this holds 
because g is bilipschitz to a smooth metric on M .

iv) a) Since g is a W 2,p metric, we indeed have R ∈ Lp(M, dvolg), where p > n/2.

Finally, since Y (M, [g]) = Y (M, g) < 0, then by [1, Section 1.2] the condition Y (M, [g]) <
Y�(M, [g]) from [1, Theorem 1.12] trivially holds, so we can apply that result to obtain 
the existence of the desired u, with [1, Proposition 1.15] giving its positivity. �
Remark. Note that the function u given by Lemma 2.7 above is smooth away from q. 
Indeed, R and the coefficients of Δ are smooth away from q, so this follows by the elliptic 
regularity and boundedness of u.

When Y (M, [g]) = 0, the analogue of Lemma 2.7 also holds.

Lemma 2.8. Suppose (M, g) is a W 2,p
−τ AE manifold for some p > n/2 and τ ≥ n

p − 2, 
with Y (M, [g]) = 0. Then in the notation of Lemma 2.6, on (M, g) there exists a function 
u ∈ W 1,2 ∩ L∞(M) with infM u > 0 such that on M \ {q},

−anΔu + Ru = Y (M, [g])u
n+2
n−2 = 0. (2.6)
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Proof. For any open set U ⊂ M , we define as in [1] Sobolev constant

S(U) = inf{
∫

|dφ|2dμ : φ ∈ W 1,2
0 (U ∩ Ω), ‖φ‖ 2n

n−2
= 1}

and local Sobolev constant

S�(M, g) = inf
p∈M

lim
r→0

S(B(p, r)).

We claim that in the notation of Lemmas 2.6 and 2.7 and [1], we have S�(M, g) > 0. In a 
similar way as in the proof of Lemma 2.7, this is true because g is bilipschitz equivalent 
to a smooth metric on M and because the desired property holds for smooth metrics.

Consequently, we can follow the arguments of Lemmas 2.6 and 2.7 to obtain a function 

u0 such that the metric ĝ = u
4

n−2
0 g0 has constant scalar curvature 0, replacing in the 

arguments of Lemma 2.7 condition iv) a) by condition iv) c) of [1, Theorem 1.12], the 
negative part R

− ∈ Lp(M, dvolg), and using our claim which gives Y (M, [g]) = 0 <

S�(M, [g]). �
We also have uniqueness of the functions given in Lemmas 2.7 and 2.8.

Proposition 2.9. The function u given by Lemma 2.7 is unique among functions in 
W 1,2 ∩ L∞(M), while the function u given by Lemma 2.8 is unique up to a constant 
multiplicative factor among functions in W 1,2 ∩ L∞(M).

Proof. Let u1, u2 ∈ W 1,2 ∩ L∞(M) be two weak solutions of (2.4) or (2.6), respectively. 
Then v := u1

u2
satisfies

−anΔg2v = Y (v
n+2
n−2 − v), (2.7)

where Δg2 is the Laplacian for the conformal metric g2 = u
4

n−2
2 g; note that g2 is also 

a W 2,p metric. The usual arguments in the smooth case to establish uniqueness can be 
adapted in the non-smooth setting. In fact the equation (2.7) holds weakly, meaning that

∫
M

an〈dϕ, dv〉g2dVg2 = Y

∫
M

ϕ(v
n+2
n−2 − v)dVg2 (2.8)

for any ϕ ∈ W 1,2(M). We can then test against ϕ = max{v, 1} and obtain that

∫
an|dv|2g2

dVg2 = Y

∫
v (v

n+2
n−2 − v)dVg2 + Y

∫
(v

n+2
n−2 − v)dVg2 . (2.9)
{v≥1} {v≥1} {v≤1}
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This identity (2.9) follows from the truncation properties that holds in a fairly general 
setting (see for instance [28, Subsection 4.1]). In our case it can be justified as follows: 
let

ϕε = 1
2

(
v − 1 +

√
(v − 1)2 + ε2

)
.

The chain rule implies that ϕε is also in W 1,2 and

dϕε = 1
2

(
1 + v − 1√

(v − 1)2 + ε2

)
dv = ϕε√

(v − 1)2 + ε2
dv.

Then testing (2.8) using ϕε and letting ε → 0+ implies formula (2.9). Next if Y < 0, 
testing (2.8) with ϕ = 1 implies that∫

M

(
v

n+2
n−2 − v

)
dVg2 = 0. (2.10)

Hence 
∫

{v≥1} (v
n+2
n−2 − v)dVg2 = − 

∫
{v≤1} (v

n+2
n−2 − v)dVg2 and the equality (2.9) gives that

∫
{v≥1}

an|dv|2g2
dVg2 = Y

∫
{v≥1}

(v − 1) (v
n+2
n−2 − v)dVg2 .

Thus one gets that dϕ = 0 and v ≤ 1, and so when Y < 0, formula (2.10) implies 
then that v = 1. When Y = 0, we can directly test (2.8) with v to see that v must be 
constant. �

By Lemma 2.6 along with either Lemma 2.7 or Lemma 2.8, we may now take u0 to 
be the smooth function on M = M \ {q} given by

u0 = φu. (2.11)

Here, φ is defined as in Lemma 2.6, and u is given by either Lemma 2.7 or 2.8, and 
satisfies

−anΔgu0 + Rgu0 = Y (Mn, [g])u
n+2
n−2
0 .

Note that in the asymptotically Euclidean zi coordinates on M we have the sharp spatial 
decay estimate

0 < C−1 <
u0
1

|z|n−2

< C

for some C > 0, as |z| → ∞.
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We denote by ĝ the metric on M given by ĝ = u
4

n−2
0 g. Later, when we compare u0

and ũ∞, we will need the existence of the Green’s function associated with the Dirichlet 
problem for the Laplacian of (M, ̂g) on an open neighborhood about q. This follows from 
a standard result which we quote below.

Proposition 2.10 ([24, Chapter 10, Sections 9–10]). Let g be a Riemannian metric which 
is C1,α for some α ∈ (0, 1) on the closure of a coordinate neighborhood Ω with smooth 
boundary. Then for all p ∈ Ω there exists a function

Gp : Ω → R

such that Gp ∈ W 1,p
0 (Ω) ∩C2+α(Ω \{p}) for p ∈ [1, n

n−1 ) satisfying the growth conditions

0 < Gp(x) ≤ c2dĝ(p, x)2−n, x ∈ Ω, x �= p

and

Gp(x) ≥ c1dĝ(p, x)2−n, x ∈ Ω, dĝ(p, x) ≤ 1
2dĝ(p, ∂Ω).

Moreover, in the sense of distributions Gp satisfies

−ΔGp = δp.

3. The case Y < 0

In the case Y (Mn, [g0]) < 0, we compare the conformal factor u0 as defined in (2.11) to 
the rescaled Yamabe flow solution ũ as defined in (2.2), and find that ũ in fact converges 
to a scalar multiple of u0, which will prove Theorem A. For convenience we will often 
write Y instead of Y (Mn, [g0]). We first show that |Y | n−2

4 u0 always bounds ũ from below.

Lemma 3.1. If Y < 0, then |Y | n−2
4 u0(x) ≤ ũ(x, t) for all times t.

Proof. Let u1(x, t) = (t|Y |) n−2
4 u0(x), and define gu1 = u

4
n−2
1 g0. Then we have Rgu1

=
(t|Y |)−1Rgu0

= −t−1, and

∂

∂t
u1 = n − 2

4 t−1(t|Y |) n−2
4 u0(x) = −n − 2

4 Rgu1
(t|Y |) n−2

4 u0 = −n − 2
4 Rgu1

u1.

Equivalently, u1 is a solution of the Yamabe flow. Therefore by the asymptotics of u0, u1, 
we can apply the comparison principle of Lemma 2.3 to conclude that u1(x, t) ≤ u(x, t)
on M × [0, ∞) (we know u1 ≤ u for small times, and u1 ≤ u as |x| → ∞ for each fixed 
t > 0, so we can apply the comparison starting at a sufficiently small positive time). 
Rewriting, we see that |Y | n−2

4 u0(x) ≤ t− n−2
4 u(x, t) = ũ(x, t). �
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By Proposition 2.5 and Lemma 3.1 together, we see that the pointwise limit ũ∞(x)
of ũ(x, t) as t → ∞ satisfies ũ∞(x) ≥ |Y | n−2

4 u0(x). We now continue our study of the 
convergence of ũ(x, t) and properties of ũ∞(x).

Proposition 3.2. We have that ũ(x, t) converges to ũ∞(x) in Ck,α
loc as t → ∞, and ũ∞(x)

satisfies

−anΔg0 ũ∞ + Rg0 ũ∞ = −ũN
∞. (3.1)

Proof. Transform the time parameter t to s via the relation t = es, for s ∈ (−∞, ∞). 
Then

∂

∂s
ũN = es ∂

∂t

(
t− n+2

4 uN
)

= t

(
−n + 2

4 t− n+2
4 −1uN + t− n+2

4
n + 2

4 (anΔg0u − Rg0u)
)

= n + 2
4

(
anΔg0 ũ − Rg0 ũ − ũN

)
.

Since ũ is monotonically decreasing and bounded from below by |Y | n−2
4 u0, we have 

that ũ is bounded from above and below uniformly in time for t > 0 on any compact 
region Ω ⊂ M . Therefore from the above computation we see that ũ(x, es) satisfies a 
uniformly parabolic equation on any such Ω, s ∈ (s0, +∞) for s0 ∈ R, and therefore by 
the Krylov–Safonov and (higher order) Schauder estimates for parabolic equations

‖ũ(x, es)‖Ck,α(Ω×[s,s+1]) ≤ C(Ω).

Consequently by Arzela-Ascoli we obtain for some sequence {tj} with tj → ∞ that

ũ(x, tj) → ũ∞(x)

in Ck,α′

loc , for any α′ < α. We can deduce more generally since ũ is monotonically decreas-
ing that ũ(x, t) converges to ũ∞ in Ck,α′

loc as t → ∞. As a result, we see that ũ∞ satisfies 
the steady state equation (3.1), which is also satisfied by u0. �

We now check that ũ∞ also decays at spatial infinity.

Lemma 3.3. We have ũ∞(x) → 0 as |x| → ∞.

Proof. Suppose the property does not hold. Then there exists a sequence of points {xi}
with |xi| → ∞ and some ε > 0 such that ũ∞(xi) ≥ ε > 0. Since ũ decreases monotonically 
to ũ∞, this implies

ε ≤ ũ∞(xi) ≤ t− n−2
4 u(xi, t), for all xi and t > 0.
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For t sufficiently large, we therefore have

2 ≤ t
n−2

4 ε ≤ u(xi, t),

which contradicts the fact that u(x, t) |x|→∞−−−−→ 1 for all t > 0. �
Because ũ∞

|z|→∞−−−−→ 0, we will have on (M, ̂g) that(
ũ∞

|Y | n−2
4 u0

)
(p) = o(d(p, q)2−n) as p → q. (3.2)

Using this and our previous estimates, we can now prove Theorem A.

Proof of Theorem A. In light of the above results, and using the same notation as before, 
it suffices to show that ũ∞ = |Y | n−2

4 u0. Recall that (M, ̂g) has constant scalar curvature 

R̂ = Y < 0. Since R(ũ
4

n−2
∞ g0) = −1 by Proposition 3.2, we have that v := ũ∞

|Y |
n−2

4 u0

satisfies

−anΔ̂v + Y v = Y v
n+2
n−2 (3.3)

on M \ {q}. We will show that v ≡ 1. Recall from Lemma 3.1 that we already know 
v ≥ 1.

Fix a small neighborhood U about q, and let Gq be the Green’s function of Δ̂ with 
pole at q associated with the Dirichlet problem on U , as provided by Proposition 2.10
(recall that ĝ is C1,α on M and smooth away from q). We will use the following properties 
of Gq:

−Δ̂Gq = δq and Gq ≥ 0 on U, Gq(p) ∼ d(p, q)2−n near q.

Now we have for any c ≥ 0 and any ε > 0 that

−anΔ̂(v − 1 − c − εGq) = −Y v + Y v
n+2
n−2 ≤ 0, on U \ {q},

and since v is smooth away from q we can choose c = sup∂U v − 1 ≥ 0 so that

v − 1 − c − εGq ≤ v − 1 − c ≤ 0 on ∂U.

Moreover, by our estimates on the growth of v and Gq near q, for any ε > 0 we can find 
a small neighborhood V with q ∈ V ⊂ U such that

v − 1 − c − εGq ≤ v − εGq ≤ 0 on ∂V.

Using the maximum principle, we have
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v − 1 − c ≤ 0 on U \ V.

Now taking ε → 0, as V can be chosen as a small ball tending to the point q, we conclude 
that

v − 1 − c ≤ 0 on U \ {q}.

Therefore

sup
U\{q}

v − 1 = sup
∂U

v − 1.

As a result we deduce that v − 1 achieves its maximum on M \ {q}.
From this information we can now conclude that v ≡ 1. Indeed, if not then by the 

above we can take p ∈ M \ {q} where v achieves its maximum, v(p) > 1. But then (3.3)
tells us that

(−anΔ̂v)(p) = −Y v(p) + Y v(p)
n+2
n−2 < 0,

which is impossible.
Finally, the uniqueness of u0 is provided by Proposition 2.9. As a result, we have the 

convergence of ũ as t → ∞, and not just convergence up to subsequences. �
4. The case Y = 0

We now consider the remaining case in which Y (Mn, [g0]) = 0, an assumption which 
will be implicit throughout this section, and prove Theorems B and C. Let u(x, t) be the 
solution to the Yamabe flow equation (1.5) as before.

4.1. Strictly slower blowup

We have seen in the case Y (Mn, [g0]) < 0 that u(x, t) blows up at exactly the rate 
t

n−2
4 . We will now see that in the case Y (Mn, [g0]) = 0, the function u(x, t) blows up 

less quickly, so that normalizing by t− n−2
4 as we did now gives a limit which is uniformly 

zero, proving Theorem B.
Once again let ũ∞ be the pointwise limit of ũ(x, t) = t− n−2

4 u(x, t) as discussed at the 
end of Section 2.3. We first check that ũ∞ again satisfies an elliptic equation.

Lemma 4.1. The function ũ∞ satisfies

−anΔg0 ũ∞ + Rg0 ũ∞ = −ũ
n+2
n−2
∞ , (4.1)

in the weak sense.
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Proof. Starting from the evolution equation (1.5) satisfied by u, by integrating against 
any ϕ ∈ C∞

0 (M) and dividing by t
n+2

4 , we have

t− n+2
4

⎛
⎝∫

M

u(x, t)
n+2
n−2 ϕ(x) dVg0 −

∫
M

u(x, 0)
n+2
n−2 ϕ(x) dVg0

⎞
⎠

︸ ︷︷ ︸
A(t)

= −n + 2
4 t− n+2

4

t∫
0

∫
M

u(x, s)Lg0ϕ(x) dVg0 ds

︸ ︷︷ ︸
B(t)

.

Clearly we have ∣∣∣∣∣∣
∫
M

ũ∞(x)
n+2
n−2 ϕ(x) dVg0 − A(t)

∣∣∣∣∣∣ t→∞−−−→ 0.

We next claim that ∣∣∣∣∣∣−
∫
M

ũ∞(x)Lg0ϕ(x) dVg0 − B(t)

∣∣∣∣∣∣ t→∞−−−→ 0. (4.2)

To see this, we compute

− n + 2
4 t− n+2

4

t∫
0

∫
M

u(x, s)Lg0ϕ(x) dVg0 ds

= −n + 2
4 t−1

t∫
0

∫
M

ũ(x, s)s
n−2

4

t
n−2

4
Lg0ϕ(x) dVg0 ds

= −n + 2
4

∫
M

⎛
⎝ 1∫

0

ũ(x, wt)w
n−2

4 dw

⎞
⎠ Lg0ϕ(x) dVg0

t→∞−−−→ −n + 2
4

∫
M

4
n + 2 ũ∞(x)Lg0ϕ(x) dVg0

= −
∫
M

ũ∞(x)Lg0ϕ(x) dVg0 ,

where above in the third line we substituted w = s/t, and in the fourth line we used that 
ũ(x, wt)w n−2

4 is integrable (for any t > 0) and monotonically decreases to ũ∞(x)w n−2
4

as t → ∞ to apply the dominated convergence theorem. �
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We can now prove Theorem B.

Proof of Theorem B. Proceeding with an argument similar to that used in the proof of 
Theorem A, we fix a small neighborhood U about q and let Gq be the Green’s function 
of Δ̂ with pole at q associated with the Dirichlet problem on U . Then for any c ≥ 0 we 
have that

−anΔ̂(v − c − εGq) = −v
n+2
n−2 ≤ 0, on U \ {q}, (4.3)

and we can choose c = sup∂U v ≥ 0 so that

v − c − εGq ≤ 0 on ∂U.

Moreover, by the estimates on the asymptotics of the growth of v and Gq near q, for any 
ε > 0 we can find a small neighborhood V with q ∈ V ⊂ U such that

v − c − εGq ≤ 0 on ∂V.

So again using the maximum principle, we have

v − c ≤ 0 on U \ V.

Now taking ε → 0, as V can be chosen as a small ball tending to the point q, we conclude 
that

v − c ≤ 0 on U \ {q}.

This implies that v achieves its maximum at some p ∈ M \ {q}. But then by (4.3) we 
have

0 ≤ (−anΔ̂v)(p) = −v(p)
n+2
n−2 ≤ 0.

Hence maxM v = v(p) = 0 so that v = 0 and ũ∞ = 0. �
4.2. Convergence after a different rescaling

Above, we have seen that unlike in the Y < 0 case, when Y (Mn, [g0]) = 0 rescaling 
u(x, t) by t− n−2

4 only gives the trivial limit ũ∞ ≡ 0. We now describe how to normalize 
u(x, t) in a different way so as to identify a nontrivial limiting behavior as t → ∞, proving 
Theorem C. For this we need the following existence result for a certain conformal change 
of g0 to another asymptotically flat metric with compactly supported non-positive scalar 
curvature as described below, which follows from a result of [13].
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Lemma 4.2 ([13, Theorem 5.1]). For any K ⊂ M compact and when τ ∈ (0, n −2), there 
exists a metric gρ,0 = ρ

4
n−2 g0 with ρ − 1 ∈ Ck+α

−τ such that Rgρ,0 is compactly supported 
within K, and Rgρ,0

∣∣
K

≤ 0.

Proof. By [13, Theorem 5.1] and the embedding Ck+α
−τ ⊂ W k,p

−τ ′ for any τ ′ ∈ (0, τ), we 
have that the above result holds with Ck+α

−τ replaced by W k,p
−τ ′ . Then by applying [10, 

Lemma B.3], we see that moreover ρ − 1 ∈ Ck+α
−τ . �

We can then rewrite the evolution equation satisfied by u in terms of the metric gρ,0
as

∂

∂t
u

n+2
n−2
ρ = n + 2

4 (anΔgρ,0uρ − Rgρ,0uρ), (4.4)

with uρ(x, 0) = ρ(x)−1. We will then have that

uρ(x, t) = ρ(x)−1u(x, t). (4.5)

Let v = v(x, t) be the solution of (4.4) satisfying the initial condition v(x, 0) ≡ 1 with 
v − 1 ∈ Ck+α

−τ , and for c > 0, set

vc(x, t) = cv
(

x, c− 4
n−2 t

)
.

Then vc also solves (4.4).
We then have the following inequalities which follow directly from the comparison 

principle of Lemma 2.3.

Lemma 4.3. Let u and v be as above, and set

b = min
x∈M

uρ(x, 0) = min
x∈M

ρ−1(x) ≤ 1,

B = max
x∈M

uρ(x, 0) = max
x∈M

ρ−1(x) ≥ 1.

Then for all t ≥ 0 and x ∈ M we have

vb(x, t) ≤ u(x, t) ≤ vB(x, t).

In order to study the convergence of v (and subsequently u) under appropriate rescal-
ings, we first need control of the scalar curvatures of the associated metrics. Let

gρ(x, t) = v(x, t)
4

n−2 gρ,0

be the family of metrics which make up the Yamabe flow starting from gρ,0.
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Lemma 4.4. The scalar curvature of the metric gρ satisfies

−1
t

≤ Rgρ
≤ 0.

Proof. Proposition 2.4 gives us the lower bound. For the upper bound, we again apply 
the Ecker–Huisken maximum principle [14, Theorem 4.3], this time directly to ∂

∂t R =
(n −1)ΔR+R2 on M × [0, T ], where T > 0 is arbitrary. Since Rgρ

(0) ≤ 0 by assumption, 
we conclude that Rgρ

≤ 0 for all times. �
Although v is not bounded in time, since it corresponds to a Yamabe flow starting 

from an asymptotically flat manifold with Y (Mn, [g0]) = 0, we have that its maximum 
values remain in the compact set K, which contains the support of Rρ0 .

Lemma 4.5. Let B(t) = maxx∈M v(x, t), and let K ⊂ M be a compact set. Then

B(t) = max
x∈K

v(x, t).

Proof. Since Rρ,0 is supported within K for all t ≥ 0 and Rgρ
≤ 0 by Lemma 4.4, the 

function v(x, t) − 1 is subharmonic on M \ K and tends to zero at spatial infinity. So the 
maximum principle yields that

sup
x∈M\K

v(x, t) − 1 ≤ max
x∈∂K

v(x, t) − 1,

which leads to the desired conclusion. �
Next, with the help of the functions vb and vB, we establish a Harnack inequality for 

uρ.

Proposition 4.6. For p ∈ M and R > 0, there exists C such that

sup
x∈B(p,R)

uρ(x, t) ≤ C inf
x∈B(p,R)

uρ(x, t),

for any t ≥ 0.

Proof. It suffices to prove a Harnack inequality for v. Indeed, a Harnack inequality for 
v implies a Harnack inequality for both vb and vB. Moreover, since

∂

∂t
v = −n − 2

4 Rgρ
v,

with −1
t ≤ Rgρ

≤ 0 by Lemma 4.4, we have vB ≤ B
b vb. Putting things together, we then 

see that (omitting the x ∈ B(p, R) subscript) we would have
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sup uρ ≤ sup vB ≤ B

b
sup vb ≤ C

B

b
inf vb ≤ C

B

b
inf uρ,

as desired. So we will now prove that v satisfies a Harnack inequality.
Recall that v satisfies

−anΔgρ,0v + Rgρ,0v = Rgρ
v

4
n−2 v. (4.6)

By Lemma 4.4 and Proposition 2.5, we have that 
∣∣∣Rgρ

v
4

n−2

∣∣∣ is bounded by a uniform 

constant, while (4.6) is an elliptic equation, with the operator Δgρ,0 defined using the 
fixed metric gρ,0. Therefore the Harnack inequality for v follows (for instance, by [15, 
Theorem 8.20]). �
Corollary 4.7. We have that maxx∈K v(x, t) = o(t n−2

4 ), which in turn implies
maxx∈K u(x, t) = o(t n−2

4 ). More generally, we have that maxx∈M v(x, t) = o(t n−2
4 ) and 

maxx∈M u(x, t) = o(t n−2
4 ).

Proof. By Proposition 4.6, there exists some fixed C > 0 such that for all times t > 0
there holds

sup
x∈K

v(x, t) ≤ C inf
x∈K

v(x, t). (4.7)

Then for any ε > 0, by Theorem A we can pick x0 ∈ K and find T > 0 large enough so 
that whenever t ≥ T we have

v(x0, t) ≤ ε

C
t

n−2
4 .

So by (4.7) we conclude that when t ≥ T we also have supx∈K v(x, t) ≤ εt
n−2

4 . Lem-
mas 4.5 and 4.3 imply the decay of supx∈M v(x, t) and supx∈M u(x, t). �

Using the above facts, we can now show that we have a strictly positive subsequential 
limit of u(x,t)

maxx∈K u(x,t) .

Proposition 4.8. The functions u(x,t)
maxx∈K u(x,t) subconverge in Ck,α′

loc for any α′ < α to a 
positive function w(x) > 0 satisfying

−anΔg0w + Rg0w ≥ 0. (4.8)

Proof. For τ > 0, we define

L(τ) = max
x∈K

u(x, τ),

and
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Uτ (x, t) = L(τ)−1u
(

(x, L(τ)
4

n−2 t + τ
)

.

Then Uτ also solves (1.5). Moreover for τ > 0 sufficiently large, Uτ is uniformly bounded 
for t ∈

[
−1

2 , 1
]

from above on M , and uniformly bounded from below away from zero on 
compact subsets of M . To see the upper bound, first observe that by Corollary 4.7,

L(τ)
4

n−2 ≤ τ

whenever τ is sufficiently large. Therefore

sup
t∈

[
− 1

2 ,1
] Uτ (x, t) ≤ L(τ)−1 sup

s∈
[

τ
2 ,2τ

] u(x, s).

Next, we have that

sup
s∈

[
τ
2 ,2τ

] u(x, s) ≤ B sup
s∈

[
τ
2 ,2τ

] vB(x, s) ≤ B22
n−2

4 B(τ),

using for the second inequality that ∂
∂tv = −n−2

4 Rρv. Since we also have that

b2B(τ) ≤ b sup
x∈K

vb(x, τ) ≤ L(τ),

putting all these estimates together yields the upper bound

Uτ (x, t) ≤ B2

b2 2
n−2

4 , (4.9)

which hold for all t ∈
[ 1

2 , 1
]
.

For the lower bound, we first note that positive constant multiples of u(x, t) also 
satisfy a Harnack inequality as in Proposition 4.6 because uρ(x, t) does, since

sup
x∈B(p,R)

u(x, t) ≤ B sup
x∈B(p,R)

uρ(x, t)

≤ BC inf
x∈B(p,R)

uρ(x, t) ≤ B

b
C inf

x∈B(p,R)
u(x, t).

We also have that

b2
(

1
2

) n−2
4

B(τ) ≤ b sup vb(x, τ/2) ≤ b sup
x∈K

s∈
[

τ
2 ,2τ

] uρ(x, s) ≤ sup
x∈K

s∈
[

τ
2 ,2τ

] u(x, s),

and that

L(τ) ≤ B sup uρ(x, τ) ≤ B2B(τ).

x∈K
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Hence

b2

B2

(
1
2

) n−2
4

≤ L(τ)−1 sup
x∈K

s∈
[

τ
2 ,2τ

] u(x, s).

Applying the Harnack inequality and translating back, this shows that Uτ is indeed 
bounded from below away from zero uniformly on compact sets for t ∈

[
−1

2 , 1
]
.

Because Uτ is uniformly bounded above and below away from zero on compact sets, 
we can now apply local parabolic Krylov-Safonov and Schauder estimates to (1.5) to 
obtain uniform local Hölder estimates on Ω ×

[ 1
2 , 1

]
. In particular we have uniform Ck,α

loc

control of Uτ (x, 0) = u(x,τ)
maxx∈K u(x,τ) and therefore subconvergence in Ck,α′

loc for any α′ < α

to some w(x) > 0 as τ → ∞. The positivity of w(x) is a consequence of our uniform 
lower bound on u(x,τ)

maxx∈K u(x,τ) on compact sets.
To verify the equation satisfied by w, recall that

− anΔg0

u(x, t)
maxx∈K u(x, t) + Rg0

u(x, t)
maxx∈K u(x, t)

= Rg(t)u(x, t)
4

n−2
u(x, t)

maxx∈K u(x, t) .

On the right-hand side we have Rg(t) ≥ −1
t by Lemma 2.4 and uρ(x, t) = o(t n−2

4 ) by 
Theorem B. So it follows that in the limit we have (4.8) in the classical sense. �

From the discussion leading up to (2.11), we know there exists a function u0 which 
makes (4.8) an equality. The following uniqueness result will allow us to identify the 
limit of the rescaling uρ(x,t)

maxx∈K u(x,t) .

Proposition 4.9. Suppose (M, g) is a W 2,p
−τ AF manifold for some p > n/2 and τ ≥ n

2 −2, 
with Y (M, [g]) = 0. Recall that there is a positive function u0 solving the equation

−anΔgu0 + Rgu0 = 0,

such that u0 = O(|z|2−n) as |z| → ∞. Then if w is a positive function on (M, g) in W 1,2
loc

such that

−anΔgw + Rgw ≥ 0,

then there is a positive constant c such that

w = cu0.
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Proof. We write w = ψu0 and a classical calculation yields the equality:

−anΔw + Rgw = (−anΔu0 + Rgu0) ψ − 2an〈du0, dψ〉 − anu0Δψ

= −2an〈du0, dψ〉 − anu0Δψ

= −anu−1
0 div

(
u2

0dψ
)

.

Integration this identity against ϕ2ψ−1u0 where ϕ is a non negative compactly supported 
function and taking in account our hypothesis, one gets

∫
M

ϕ2 |dψ|2g
ψ2 u2

0dVg ≤ 2
∫
M

ϕ〈dϕ, dψ〉u2
0

ψ
dVg.

And with the Cauchy-Schwarz inequality, one obtains the inequality

∫
M

ϕ2 |dψ|2g
ψ2 u2

0dVg ≤ 4
∫
M

|dϕ|2gu2
0dVg.

Using a sequence of functions ϕ� satisfying
⎧⎪⎪⎨
⎪⎪⎩

ϕ� = 1 on |z| ≤ �

ϕ� = 0 on |z| ≥ 2�

|dϕ�| ≤ 2/� on � ≤ |z| ≤ 2�,

together with the decay estimate of u0 and the fact that

Vg ({� ≤ |z| ≤ 2�}) = O (�n)

one obtains that
∫

{|z|≤�}

|dψ|2g
ψ2 u2

0dVg ≤ O(�2−n)

Hence letting � → +∞, one deduces that dψ = 0. �
Putting everything together, we can now prove Theorem C.

Proof of Theorem C. This follows immediately from Propositions 4.8 and 4.9; note that 
supx∈K

u(x,t)
maxx∈K u(x,t) = 1 for all t implies supx∈K w(x) = 1. The uniqueness of u0 up to 

scaling is provided by either Proposition 4.9 or Proposition 2.9. Because any convergent 
subsequence of u(x,t)

maxx∈K u(x,t) must converge to the same limit, we in fact have convergence 

of u(x,t) as t → ∞ to w(x). �
maxx∈K u(x,t)
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