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1. Introduction

In this article we continue the study of the convergence of the Yamabe flow

99 _ —Rg
o ’ 1.1
{9(0) = 9o, (1)

starting from an asymptotically flat (AF) manifold (M™, go). Above, R denotes the scalar
curvature of the Riemannian metric g = ¢(¢). This flow preserves the conformal class
of go in the sense that g(t) € [go] for all times ¢, and is the natural analogue of the
volume-normalized Yamabe flow on compact manifolds introduced by Hamilton [16]. It
is well known that on a compact manifold, the normalized Yamabe flow is the gradient
flow of the Einstein—Hilbert functional within a fixed conformal class. It can be viewed as
a natural evolution equation which could potentially evolve a given metric to a constant
scalar curvature metric within the same conformal class. For long-time existence and
convergence of the Yamabe flow on compact manifolds, we refer interested readers to
the work of Hamilton, Chow, Ye, Schwetlick—Struwe, and Brendle [16,8,29,27,3,4]. The
study on noncompact manifolds is less developed. On noncompact manifolds, long-time
existence has been proved under some assumptions of suitable pointwise bounds on
curvature and conformal factors. See for instance [20], [25]. Other works give long-time
existence results in the settings of conformally hyperbolic and singular spaces [26,5,19].

Similar to the compact case, convergence results for the Yamabe flow on noncompact

o0

manifolds have been slower to develop—we are aware of [20,21] in which C72,

convergence
to a scalar flat limit metric is shown, using crucially an assumption that the initial metric
has non-negative scalar curvature, as well as [9], which studies convergence of Yamabe
flow on singular spaces with positive Yamabe constant.

The study of Yamabe flow on asymptotically flat manifolds was initiated by [11].
They proved short-time existence and that asymptotic flatness is preserved under the
flow. They also discussed the ADM mass under the flow.

In a previous article [10] by the second and third authors, we proved the long-time ex-
istence of Yamabe flow (1.1) on asymptotically flat manifolds. Moreover, we showed that
the flow converges in a global weighted sense (defined by [2]) if and only if the Yamabe
constant Y (M™, [go]) is positive. Long-time existence was also studied independently by
[21], who also considered local convergence assuming nonnegative scalar curvature. The
convergence/divergence behavior of the Yamabe flow on asymptotically flat metrics is
quite different from that of the Ricci flow; see for example [18] regarding the Ricci flow
in this setting in dimension n = 3. We also refer readers to related results on the Ricci
flow in [12,7].

For convenience, we recall the main theorems in [10] here, referring to Section 2.1 for
definitions and notation related to asymptotically flat manifolds. When Y (M™, [go]) > 0,
the flow converges in a weighted global sense.
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Theorem 1.1 ([10, Theorem 1.3]). Let (M™, go), n > 3 be a C*** AF manifold with
Y (M,[go]) > 0, k > 3, and 7 > 1. Then there exists a Yamabe flow (M", g(t)) starting
from (M™, go) defined for all positive times and a metric goo on M™ which is CE:O‘ AF
for all 7' < min{7,n — 2} so that for any such 7" we have

Hg(t) — goo”cﬁ*;’ = O(t‘%), as t — oo, (1.2)

for some dg > 0. In particular, this Yamabe flow converges in Cfi,o‘ to the asymptotically
flat, scalar flat metric goo.

This theorem holds for n > 3, but in order to make sense the ADM mass of an
asymptotically flat manifold when n = 3, we have a different version in the n = 3 case
by adding the natural conditions Ry, > 0 and Ry, € L' (if we are concerned with the
mass).

Theorem 1.2 (/10, Theorem 1.4]). Let (M3, go) be a C*T* AF manifold with Y (M, [go]) >
0, k>3, 7>3 Ry >0, and Ry, € L*. Then there exists a Yamabe flow (M™, g(t))
starting from (M™, go) defined for all positive times and a metric goo on M™ which is
Cﬁt,a AF for all 7/ < min{r, 1} so that for any such 7" we have

llg(t) — go@”cf*'f’ = O(t*%), as t — oo, (1.3)

for some §g > 0. In particular, this Yamabe flow converges in C’Effx to the asymptotically
flat, scalar flat metric goo.

In contrast to the positive Yamabe case, when Y (M, [go]) < 0, while the flow still
exists for all positive times, it must diverge.

Theorem 1.3 ([10, Theorem 1.2 (2)]). Let (M™, go) be a C*T* AF manifold with k > 3.
If Y(M™,[go]) < 0, then the Yamabe flow (M™,g(t)) starting from (M™,go) does not
converge. In particular, g(t) = u(t)ﬁgo will fail to remain uniformly equivalent to go
as t — 00, and both ||u(t)||L~ and the L* Euclidean-type Sobolev constant of g(t) will
tend to positive infinity.

Here Y (M, [go]) is a conformally invariant quantity. Motivated by the definition of the
Yamabe constant in the compact case, Y (M, [go]) is defined as follows:

fM an|Vv|§0 + R90U2 dVgO

Y (M = inf 1.4
( ) [90]) veClg%(M), o n=z ) ( )
v#£0 (f|U|"*2 dVgo>
with a,, = %. This Yamabe constant plays an important role in the prescribed scalar

curvature problem on conformal classes of asymptotically flat metrics [6,22,13].
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The main goal of this article is to study the behavior of the flow in this latter case
Y (M™,[go]) < 0. More precisely, we prove that even though the Yamabe flow diverges
(which in our case is equivalent to saying the solution u blows up as t — oo, by the proof
of [10, Lemma 3.4]), the rescaled flow t*%u(x, t) is convergent when Y (M™, [go]) < 0.
Working from here, we obtain precise profiles of the blow up behavior of the flow.

Recall that if we write a Yamabe flow as g(z,t) = u(x,t)ﬁgo, then wu satisfies the
parabolic equation

0 n+z n+2
&un*‘b’ = T(a"Agou — Rg,u). (1.5)

n+2
n—2

the right-hand side, we denote by L, the conformal Laplacian

Sometimes we will also write N = for the exponent on the left. To simplify writing

Ly, := _anAgo + Ry, .

Throughout what follows, u will always denote a solution of this equation with
lim|g) o0 u(z,t) = 1. By [11, Theorem 1.3], g(t) remains asymptotically flat along the
Yamabe flow if g¢ is asymptotically flat.

There are two main results of this paper—one when Y (M™,[go]) < 0, and the other
when Y(M™,[go]) = 0. In both these cases, the u(x,t) associated with the Yamabe
flow (M™, g(t)) blows up at a rate no faster than O(t"%" ). But the limiting profiles of
u(x, t) = t*"T_zu(:r,t) behave differently.

Theorem A. If (M", go) is a C*+*® AF manifold with k > 3 and Y (M™, [go]) < 0, then the
Yamabe flow (M™,g(t)) starting from (M™,go) blows up at the rate u(x,t) = O(t"4_2).

Moreover, (z,t) := t_Tzu(ac7 t) converges in C’lkoca for any o < « to a limiting function
oo > 0, where Uy is the unique solution to the equation of prescribed constant scalar
curvature —1:

(1.6)

_ . _N
—an A gy lioo + Rgylice = —ling,
Uso — 0.

_a_
Moreover, iis(z) satisfies the sharp spatial decay iioo(x) = O(|z|*>™™), and % > go ex-
tends to the unique —1 constant scalar curvature metric on the compactified space M.

When Y (M7, [go]) = 0, the rescaled function @(z,t) once again has a limit. But in
this case the limiting function vanishes on M™.

Theorem B. If (M", go) is a C*T™ AF manifold with k > 3 and Y (M™,[go]) = 0, then
the Yamabe flow (M™,g(t)) starting from (M™,go) satisfies u(x,t) = 0(25"472 ).
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Thus in order to describe the blow-up profile of the limit, we need a more delicate
estimate. We prove in the following that the limit of the flow w(z,t), after being renor-
malized by its maximum value on a compact set K at ¢ is convergent. Moreover, such a
limit is the positive canonical solution (up to a multiplicative constant) of a prescribed
zero scalar curvature equation.

Theorem C. If (M™, go) is a C*** AF manifold with k > 3 and Y (M™,[go]) = 0, then for

the Yamabe flow (M™, g(t)) starting from (M™, go) and any fized compact set K C M™

u(x,t) !
maxyec i u(x,t)
solution w(zx) on (M™, go) which satisfies

we have that converges in C’ﬁ)? for any o/ < « to the unique positive

—anAg,w + Rgyw = 0, max w(x) = 1. (1.7)
zTE

4
|2="), and wn-2gy extends

Moreover, w(zx) satisfies the sharp spatial decay w(z) = O(|z
to the constant zero scalar curvature metric on the compactified space M, which is unique

up to scaling.

Remark. It is worth noting that it is unclear whether max,ecas u(x,t) may always be
attained on some fixed compact set. However, given any compact set K, we can construct
auxiliary functions v,(x,t) and vg(z,t) to bound u(zx, t) from above and below. Moreover
v, and vg both take their maximum values in M on K. These maximum values are
suitable for use in the renormalization, and max,eps u(x,t) will be no larger than a fixed
constant multiple of max,e g u(z,t).

1.1. Organization of the article

The organization of the article is as follows: In Section 2 we start by recalling some
preliminaries for the Yamabe flow on AF manifolds as well as properties of certain com-
pactifications of manifolds with Y (M™,[go]) < 0. In Section 3 we discuss the rescaled
convergence of Yamabe flows starting from AF manifolds with Y (M™,[go]) < 0 and
prove Theorem A. In Section 4 we discuss why the same rescaling does not give a non-
trivial convergence result when Y (M™, [go]) = 0, proving Theorem B, and then describe
another rescaling which does yield convergence to a smooth positive function, and prove
Theorem C.

2. Preliminaries

After recalling some relevant definitions and notation, we describe in this section
some properties which hold for any Yamabe flow starting from an asymptotically flat
manifolds. In the last part we discuss the existence of Yamabe metrics on certain com-
pactifications of asymptotically flat manifolds with Y (M™, [go]) < 0.
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2.1. Asymptotically flat manifolds

Here we recall as in [10] some standard function spaces and related definitions used in
the analysis and definition of asymptotically flat (AF) manifolds. See for instance [2,13].

Definition 2.1. Let M™ be a complete differentiable manifold such that there exists a
compact K C M"™ and a diffeomorphism ® : M"\K — R™\Bg,(0), for some Ry > 0.
Let » > 1 be a smooth function on M" that agrees under the identification ® with
the Euclidean radial coordinate |x| in a neighborhood of infinity, and let § be a smooth
metric on M™ which is equal to the Euclidean metric in a neighborhood of infinity under
the identification ®. Then with all quantities below computed with respect to the metric
g, we have the following function spaces:

The weighted Lebesgue spaces L%(M), for ¢ > 1 and weight 5 € R, consist of those
locally integrable functions on M such that the following respective norms are finite:

1
Jollgian = 4 o P P2 g < oo
p esssupy; (r=?v]), q = o0.

The weighted Sobolev spaces W; /(M) are then defined in the usual way with the
norms

k

||UHW§"1(M) = Z HDi”HL;ﬂ.(M) :
§=0

The weighted C* spaces C’g (M) consist of the C* functions for which the following
respective norms are finite:

k

||UHC§(M) = ;prr_ﬁ""j ’D;’U’ .

The weighted Holder spaces C”gJ’a(M), a € (0,1), consist of those v € C’E(M) for
which the following respective norms are finite:

DEy(x) — Dkv(y)‘
B . 7B+k+a} z z
v . = lvll + sup min(r(x),r .
lolegreqan = Iolegan +_sup, min(r(e). (o) o

An asymptotically flat manifold is then a smooth manifold with an asymptotically
flat metric.

Definition 2.2 (Asymptotically flat metrics). Given M™ as in Definition 2.1, a metric g
is said to be a W*4 (respectively C*_, C**+*) asymptotically flat (AF) metric if 7 > 0
and
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g—9€WrIM) (respectively C*_(M), C*+(M)). (2.1)
The number 7 > 0 is called the order of the asymptotically flat metric.
2.2. Comparison principle

We wish to be able to compare solutions of the parabolic equation (1.5). The proof
of the result below follows some of the arguments in [25, Lemma 1.4].

Lemma 2.3. Let uy,us be two positive solutions of (1.5) for all t > 0. Suppose moreover
that

(1) For all T > 0, there exists Cp > 0 such that
0< C’;l <wg,ug < Cp on M x[0,T].
(2) For allt >0,

lim wi(z,t) < lim we(x,t),

and these limits are achieved uniformly in space on [0,T).
(8) We have uq(z,0) < uz(x,0).

Then for all t > 0 we have uy(z,t) < ug(x,t).

Proof. Now by conditions (2) and (3), for any (z,T') there exists a set  C M such that
x € Qand u; < ugon (2x{0})U(INx[0,T]). Indeed, those conditions imply that ¢;(t) =
limg 00 ui(2,t) for i = 1,2 are continuous functions, so that inf,c(o 7} lim, 00 u2(7,t) —
up (z,t) > 0. Since these limits are achieved uniformly in space, this last inequality allows
us to find ) sufficiently large with the desired properties.

Then by the linear parabolic maximum principle [23, §3.3] we must have u; < ug in
Q x [0,T). Since (z,T) was arbitrary the result follows. O

2.8. Growth control and rescaled solutions

As mentioned in the Introduction, from [10] we know that the solutions u(x,t) of (1.5)
corresponding to Yamabe flows starting from AF manifolds with Y < 0 must blow up.
Below we first observe that a standard estimate on the evolution of the scalar curvature
allows us to control the growth of u in general.

Lemma 2.4. Let (M™, go) be a C*T* AF manifold. Along the Yamabe flow (M™, g(t)),
we have
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R(g() = 7.

Proof. Recall that under the Yamabe flow we have 2R = (n — 1)Ay, R + R?, and let
« < 0 be such that Ry, > « when t = 0. Choose an € > 0, and set

which satisfies
0
50 == (=10 +¢.

Then

0

5@~ B)=(n=1Ag(¢-R)+ (¢ + R)(&— R),

and we may apply the Ecker—Huisken maximum principle [14, Theorem 4.3] on M x [0, T

for any T' > 0 to conclude that ¢ — R < 0 on M X [0, 00). Taking € — 0 yields R(z,t) >
1

-1

Proposition 2.5. Let u(x,t) be a solution of (1.5) corresponding to the Yamabe flow start-
24«

ing from a CZT% AF manifold. Then t_%u(ar,t) is nmonincreasing, and thus has a

nonnegative limit, so that

;ré&}a[{u(axt) = O(t%).
Proof. Integrate the equation
%u == ; 2Ru
and apply the estimate of Lemma 2.4. O
In light of Proposition 2.5, we define
i(z,t) =t~ "7 u(z,1). (2.2)

Since (x,t) > 0 and is monotonically decreasing, it has a pointwise limit as t — oo, and
we set

Too(x) = tlggo a(z,t). (2.3)
When Y (M"™,[go]) < 0 we will see that @ie, > 0 is a smooth function solving a naturally
associated elliptic equation, while when Y (M", [go]) = 0 we will find that G = 0

converges to zero. In this latter case, a different normalization of u yields a (smooth)
positive limit.
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2.4. Conformally compactifying M

In order to carry out our study of the cases Y (M", [go]) < 0, we check below in
this setting that there exists a conformal compactification of M which topologically is
given by adding a point at infinity to M, and which solves the Yamabe problem on this
compactified manifold, so that it has constant scalar curvature Y (M™, [go]).

First we have the following result on compactifying M by adding a single point at
infinity, without yet adding a requirement on its scalar curvature. See also [17] for related
compactification results.

Lemma 2.6 (/13, Lemmas 5.2, 5.3]). Suppose (M, g) is a WP AE manifold, withp > n/2
and T > %—2. Then there exists a smooth conformal factor ¢ decaying to zero at the rate

r2=" such that g = gbﬁg extends to a W2P metric on the one-point compactification
M = M U {q}. Moreover, Y(M,g) =Y (M,|g)).

Remark. Note that § is smooth away from ¢; the metric g is W?2? in the sense that in a
coordinate ball B about ¢, the components of g along with its first and second derivatives
are LP integrable with respect to dVz. Hence the metric g is Holder continuous and
bilipschitz equivalent to a smooth metric on the manifold M—that is to say there is a
smooth Riemannian metric g on M such that for some positive constant v:

19 <7<’y
Hence
7_"dV2 <dVg < 'y"dVg and fy_ldg <dg < 'ydg.
Moreover for any smooth function (:
v Hdely < ldplg < yldely.

So the spaces LP(M, g) and LP(M,g) are the same with equivalent norms, and the same
is true for the W'2-spaces.

Next, we need to solve the Yamabe problem on (M, [g]). We apply a result of [1] to
do so.

Lemma 2.7. Suppose (M, g) is a W2P AE manifold for some p > n/2 and T > % -2,

with Y (M, [g]) < 0. Then in the notation of Lemma 2.6, on (M,q) there exists a function
u € WH2N L*°(M) with infgru > 0 such that on M \ {q},

—anAu+ Ru =Y (M, [g))ur—2. (2.4)

Here A and R denote the Laplacian operator and the scalar curvature of § respectively.
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Proof. The result follows from [1, Theorem 1.12, Proposition 1.15] once we verify its
assumptions are satisfied in our case. In the notation of that work we check:

i) Let f: M — R be a Lipschitz function with respect to the distance induced on M
metric . We need to check that f can be approximated in W'2(M,g) by functions
in LM\ {q))-

Let ¢ : [0,00) — R be a smooth, nonnegative function with ¢(z) =0 for x < 1
and ¢(x) =1 for > 2. With the notation 7, = dgz(p, ¢), we define

fp) = Fp)o (2).
This is true because g is a continuous metric, hence bilipschitz to a smooth metric
on M. The desired property certainly holds on smooth metrics, and both function
spaces are invariant under bilipschitz equivalence.
ii) Since (M,g) is compact with finite volume, it suffices to check for y the measure
induced by g that

Cirm < w(B(p,r)) < Cr" (2.5)

for 7 > 0 small. Since g is bilipschitz to a smooth metric on M as noted above, this
follows immediately.

iii) We check that the Sobolev inequality holds on W'2(M,g). Once again this holds
because g is bilipschitz to a smooth metric on M.

iv) a) Since g is a W?? metric, we indeed have R € LP(M, dvoly), where p > n/2.

Finally, since Y (M, [g]) = Y(M, g) < 0, then by [1, Section 1.2] the condition Y (M, [g]) <

Yy(M,[q]) from [1, Theorem 1.12] trivially holds, so we can apply that result to obtain
the existence of the desired w, with [1, Proposition 1.15] giving its positivity. O

Remark. Note that the function w given by Lemma 2.7 above is smooth away from q.
Indeed, R and the coefficients of A are smooth away from ¢, so this follows by the elliptic
regularity and boundedness of u.

When Y (M, [g]) = 0, the analogue of Lemma 2.7 also holds.

Lemma 2.8. Suppose (M, g) is a WP AE manifold for some p > n/2 and T > -2,
with Y (M, [g]) = 0. Then in the notation of Lemma 2.6, on (M,q) there exists a function
u € Wh2 N L*°(M) with infgru > 0 such that on M \ {q},

n+2

—anAu+ Ru =Y (M, [g])u=—2 = 0. (2.6)
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Proof. For any open set U C M, we define as in [1] Sobolev constant

() = int{ [ [doPdu: 6 € W20 ), o] 2, = 1)
and local Sobolev constant

Se(M, 9)—plgﬂf4}g%5( (p,7))-

We claim that in the notation of Lemmas 2.6 and 2.7 and [1], we have Sy(M,g) > 0.In a
similar way as in the proof of Lemma 2.7, this is true because g is bilipschitz equivalent
to a smooth metric on M and because the desired property holds for smooth metrics.

Consequently, we can follow the arguments of Lemmas 2.6 and 2.7 to obtain a function
up such that the metric § = uj 2 go has constant scalar curvature 0, replacing in the
arguments of Lemma 2.7 condition iv) a) by condition iv) ¢) of [1, Theorem 1.12], the
negative part R € LP(M,dvoly), and using our claim which gives Y(M,[g]) = 0 <
SZ(Ha [y]) O

We also have uniqueness of the functions given in Lemmas 2.7 and 2.8.

Proposition 2.9. The function u given by Lemma 2.7 is unique among functions in
W2 N L (M), while the function u given by Lemma 2.8 is unique up to a constant
multiplicative factor among functions in W20 L (M).

Proof. Let uy,us € WH2 N L*°(M) be two weak solutions of (2.4) or (2.6), respectively.
Then v := L satisfies

n+2

—anAg,v =Y (vr—2 —v), (2.7)

n— 2—

where Ay, is the Laplacian for the conformal metric go = u5 ™" g; note that g» is also
a W?2P metric. The usual arguments in the smooth case to establish uniqueness can be
adapted in the non-smooth setting. In fact the equation (2.7) holds weakly, meaning that

/an<d<p,dv 9o = Y/

M

ng (28)

for any ¢ € W12(M). We can then test against ¢ = max{v, 1} and obtain that

/ an|dv\§2dvgz =Y / v(v:;—rg —v)dVy, +Y / (v%g —v)dVy,. (2.9)

{v=1} {v=1} {v<1}
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This identity (2.9) follows from the truncation properties that holds in a fairly general
setting (see for instance [28, Subsection 4.1]). In our case it can be justified as follows:
let

%:%(WHW).

The chain rule implies that ¢, is also in W12 and

1 -1
dspez— 1—’—”— dU:Ld’U
2 (v—1)2+¢2 (v—1)2+¢2

Then testing (2.8) using ¢, and letting ¢ — 0+ implies formula (2.9). Next if ¥ < 0,
testing (2.8) with ¢ = 1 implies that

/ (u% - v) dv,, = 0. (2.10)

M

n+2 n+2

Hence [(, -,y ("2 —0)dVy, = — [(, 1y (=2 —v)dV, and the equality (2.9) gives that

/ a|dv|?,dVy, =Y / (v—1) (072 —)dV,,.
{v>1) {v>1)

Thus one gets that dp = 0 and v < 1, and so when Y < 0, formula (2.10) implies
then that v = 1. When Y = 0, we can directly test (2.8) with v to see that v must be
constant. O

By Lemma 2.6 along with either Lemma 2.7 or Lemma 2.8, we may now take ug to
be the smooth function on M = M \ {q} given by

Uy = Pu. (2.11)

Here, ¢ is defined as in Lemma 2.6, and u is given by either Lemma 2.7 or 2.8, and
satisfies

—a,Agug + Ryug = Y (M™, [g])ug .
Note that in the asymptotically Euclidean z* coordinates on M we have the sharp spatial

decay estimate

0<c <L <c

‘Z‘n72

for some C > 0, as |z| — oc.
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_ a4

We denote by § the metric on M given by § = uj g. Later, when we compare ug
and 1., we will need the existence of the Green’s function associated with the Dirichlet
problem for the Laplacian of (M, §) on an open neighborhood about ¢. This follows from

a standard result which we quote below.

Proposition 2.10 (/2/, Chapter 10, Sections 9-10]). Let g be a Riemannian metric which
is C1% for some o € (0,1) on the closure of a coordinate neighborhood Q with smooth
boundary. Then for all p € Q there exists a function

G,:Q—R
such that G, € Wy P(Q)NC*(Q\ {p}) forp € [1, ) satisfying the growth conditions
0 < Gp(7) < cody(p,2)*™, 2€Q, xT#p
and

Gp(x) > e1dy(p,x)*™", 2 €Q, dy(p,x) < =dy(p,09).

N | =

Moreover, in the sense of distributions G, satisfies
—AG), = 6.
3. Thecase Y < 0

In the case Y (M™, [go]) < 0, we compare the conformal factor ug as defined in (2.11) to
the rescaled Yamabe flow solution @ as defined in (2.2), and find that @ in fact converges
to a scalar multiple of ug, which will prove Theorem A. For convenience we will often
write Y instead of Y'(M™, [go]). We first show that [Y'|"7" ug always bounds @ from below.

Lemma 3.1. If Y <0, then |Y|"5 ug(z) < @(x,t) for all times t.

4

Proof. Let uy(z,t) = (t|Y|)" ug(z), and define g,, = u] > go. Then we have Ry, =
(tY])"'Rg,, = —t', and

gu n—2
ot 4

—2 n—2
4 Uy = — Rgulul.

n—2 n
) 4

Ry, (Y

n

LY )T uolz) = —

)

Equivalently, u; is a solution of the Yamabe flow. Therefore by the asymptotics of ug, u1,
we can apply the comparison principle of Lemma 2.3 to conclude that uq(x,t) < u(z,t)
on M x [0,00) (we know uy < u for small times, and u; < u as |z| — oo for each fixed
t > 0, so we can apply the comparison starting at a sufficiently small positive time).
Rewriting, we see that |Y|anzu0(x) <t "Tu(z,t) = alz, t). O
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By Proposition 2.5 and Lemma 3.1 together, we see that the pointwise limit o ()
of @(x,t) as t — oo satisfies o (2) > |Y|"T uo(z). We now continue our study of the
convergence of @(z,t) and properties of G ().

Proposition 3.2. We have that @(x,t) converges to oo () in C{Zf‘ ast — 00, and fieo ()

satisfies
~ qoo— gV
— A gy lico + Ry lioe = — Uy (3.1)

Proof. Transform the time parameter ¢ to s via the relation t = e®, for s € (—o0, 00).

Then
(1)

s 0
8
< _“_Jr?_l N _n_+27’l+2
E3 u S+t 4
n -+

as“

(anDgou — Rgo“))

2
4

(anDgy@ — Ryt — @) .

Since 4 is monotonically decreasing and bounded from below by |Y|n772UO, we have
that @ is bounded from above and below uniformly in time for ¢ > 0 on any compact
region Q@ C M. Therefore from the above computation we see that @(z,e®) satisfies a
uniformly parabolic equation on any such €, s € (s, +00) for s9 € R, and therefore by
the Krylov—Safonov and (higher order) Schauder estimates for parabolic equations

[a(z, €[l cra(xs s+ < C(Q).
Consequently by Arzela-Ascoli we obtain for some sequence {t;} with ¢t; — co that
w(z,t;) = Uoo(2)

in Cl

ing that @(z,t) converges to s in Clko’cal as t — o0o. As a result, we see that @i, satisfies

e 3 ", for any o < a. We can deduce more generally since @ is monotonically decreas-

the steady state equation (3.1), which is also satisfied by ug. O
We now check that 7, also decays at spatial infinity.
Lemma 3.3. We have tioo(x) — 0 as |z| = oo.

Proof. Suppose the property does not hold. Then there exists a sequence of points {z;}
with |z;| — oo and some e > 0 such that @ (z;) > € > 0. Since @ decreases monotonically
t0 U, this implies

€ < loo(z;) < t_%u(xi, t), for all x; and ¢t > 0.
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For t sufficiently large, we therefore have

2 < T < u(x;,t),

|z|— 00

which contradicts the fact that u(z,t) —— 1 forall ¢ > 0. O

|z| =00

Because o, —— 0, we will have on (M, §) that

(#) (p) = o(d(p,q)*™™) asp—q. (3.2)

2
4u0

Using this and our previous estimates, we can now prove Theorem A.

Proof of Theorem A. In light of the above results, and using the same notation as before,
it suffices to show that @ise = |Y|"7" ug. Recall that (M, §) has constant scalar curvature
4

R =Y < 0. Since R(ﬂg?go) = —1 by Proposition 3.2, we have that v := \I%
Y TU/O
satisfies
~ nt2
—apAv+Yv=Yvn-—2 (3.3)

on M \ {q}. We will show that v = 1. Recall from Lemma 3.1 that we already know
v > 1.

Fix a small neighborhood U about ¢, and let G4 be the Green’s function of A with
pole at g associated with the Dirichlet problem on U, as provided by Proposition 2.10
(recall that ¢ is C*® on M and smooth away from ¢). We will use the following properties

of Gy:
fAGq =0, and G,>0 onU, G4(p) ~ d(p, ¢)*>™" near q.
Now we have for any ¢ > 0 and any € > 0 that
—apnA(v—1—c—eGy) = —Yuv+ Yviz <0, onU \ {q},
and since v is smooth away from g we can choose ¢ = supg;; v —1 > 0 so that

v—1—-c—eGg<v—1-¢c<0 ondl.

Moreover, by our estimates on the growth of v and G, near ¢, for any € > 0 we can find
a small neighborhood V' with ¢ € V' C U such that

v—1l—-c—eGy<v—eGy, <0 ondV.

Using the maximum principle, we have
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v—=1—¢<0 onU\V.

Now taking € — 0, as V' can be chosen as a small ball tending to the point ¢, we conclude
that

v—=1—¢<0 onU\{q}.
Therefore

sup v — 1 =supwv — 1.
U\{a} 8u

As a result we deduce that v — 1 achieves its maximum on M \ {q}.

From this information we can now conclude that v = 1. Indeed, if not then by the
above we can take p € M \ {¢} where v achieves its maximum, v(p) > 1. But then (3.3)
tells us that

(—anAv)(p) = —Yu(p) + Yo(p)==2 <0,

which is impossible.
Finally, the uniqueness of ug is provided by Proposition 2.9. As a result, we have the
convergence of 4 as t — oo, and not just convergence up to subsequences. O

4. The case Y =0

We now consider the remaining case in which Y/(M", [go]) = 0, an assumption which
will be implicit throughout this section, and prove Theorems B and C. Let u(x,t) be the
solution to the Yamabe flow equation (1.5) as before.

4.1. Strictly slower blowup

We have seen in the case Y(M",[go]) < 0 that u(z,t) blows up at exactly the rate
t"7°. We will now see that in the case Y/(M™, [go]) = 0, the function u(z,t) blows up
less quickly, so that normalizing by +="7" as we did now gives a limit which is uniformly
zero, proving Theorem B.

Once again let @i be the pointwise limit of 4(z,t) = t_anzu(x, t) as discussed at the
end of Section 2.3. We first check that 7, again satisfies an elliptic equation.

Lemma 4.1. The function ., satisfies

n42
— A gy oo + Ryy il = —iids 2, (4.1)

in the weak sense.
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Proof. Starting from the evolution equation (1.5) satisfied by u, by integrating against

any ¢ € C§°(M) and dividing by i , we have
s <M/ u(z, t)n- 2<p x) dVy, —/u(x,O)ZJ—r?(p(x) AV,
M
A(t)

t

Tl—|-2 n+2
//u Ly p(x) dVy, ds.
0 M

Clearly we have

We next claim that

where above in the third line we substituted w = s/t, and in the fourth line we used that
@i(z, wt)w"T is integrable (for any ¢ > 0) and monotonically decreases to oo (z)w T
as t — oo to apply the dominated convergence theorem. O
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We can now prove Theorem B.

Proof of Theorem B. Proceeding with an argument similar to that used in the proof of
Theorem A, we fix a small neighborhood U about ¢ and let Gy be the Green’s function
of A with pole at ¢ associated with the Dirichlet problem on U. Then for any ¢ > 0 we
have that

~ n+2

—an, A(v—c—eGy) = —v»2 <0, onU\{q}, (4.3)

and we can choose ¢ = supgy; v > 0 so that
v—c—eGy; <0 on dU.

Moreover, by the estimates on the asymptotics of the growth of v and G near ¢, for any
€ > 0 we can find a small neighborhood V with ¢ € V C U such that

v—c—€eGy; <0 ondV.
So again using the maximum principle, we have
v—c<0 onU\V.

Now taking e — 0, as V' can be chosen as a small ball tending to the point ¢, we conclude
that

v—c<0 onU\/{q}.

This implies that v achieves its maximum at some p € M \ {¢}. But then by (4.3) we
have

n42

0 < (—anAv)(p) = —v(p) ™

[N

<0.
Hence maxz;v = v(p) =0 so that v =0 and @, = 0. O
4.2. Convergence after a different rescaling

Above, we have seen that unlike in the Y < 0 case, when Y (M™, [go]) = 0 rescaling
u(z,t) by t="3° only gives the trivial limit .o = 0. We now describe how to normalize
u(z,t) in a different way so as to identify a nontrivial limiting behavior as ¢ — oo, proving
Theorem C. For this we need the following existence result for a certain conformal change
of go to another asymptotically flat metric with compactly supported non-positive scalar
curvature as described below, which follows from a result of [13].
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Lemma 4.2 ([13, Theorem 5.1]). For any K C M compact and when T € (0,n—2), there
exists a metric gpo0 = pﬁgo with p—1 € Cfia such that Ry, , is compactly supported
within K, and Ry, , |K <0.
Proof. By [13, Theorem 5.1] and the embedding C*F* ¢ Wfﬁ for any 7" € (0,7), we
have that the above result holds with Cfia replaced by W]ff, Then by applying [10,
Lemma B.3], we see that moreover p — 1 € C*T*. o

We can then rewrite the evolution equation satisfied by u in terms of the metric g,

as
0 nt2 42
aup * = T(anAgp,ouP - Rgp,oup>7 (4'4)

with u,(z,0) = p(z)~'. We will then have that

uy(z,t) = p(z) tu(z,t). (4.5)

Let v = v(x, t) be the solution of (4.4) satisfying the initial condition v(z,0) = 1 with
v—1¢e CF and for ¢ > 0, set

R
4
ve(z,t) = cv (x,c_mt> .

Then v, also solves (4.4).
We then have the following inequalities which follow directly from the comparison
principle of Lemma 2.3.

Lemma 4.3. Let u and v be as above, and set
_ . _ . -1 <
b min up(z,0) min (x) <1,
= = -1 > 1.
B max up(z,0) max (x) >1
Then for allt > 0 and x € M we have

vp(x,t) < u(z,t) <wvp(zx,t).

In order to study the convergence of v (and subsequently «) under appropriate rescal-
ings, we first need control of the scalar curvatures of the associated metrics. Let

_4
gp(xa t) = 'U(xa t) "~239p,0

be the family of metrics which make up the Yamabe flow starting from g, .
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Lemma 4.4. The scalar curvature of the metric g, satisfies

<R, <0.

S

Proof. Proposition 2.4 gives us the lower bound. For the upper bound, we again apply
the Ecker—Huisken maximum principle [14, Theorem 4.3], this time directly to %R =
(n—1)AR+R? on M x [0,T], where T' > 0 is arbitrary. Since R, (0) < 0 by assumption,
we conclude that Rgp <0 for all times. 0O

Although v is not bounded in time, since it corresponds to a Yamabe flow starting
from an asymptotically flat manifold with Y (M™, [go]) = 0, we have that its maximum
values remain in the compact set K, which contains the support of R,,.

Lemma 4.5. Let B(t) = max,en v(z,t), and let K C M be a compact set. Then

B(t) = max v(z,t).

Proof. Since R, ¢ is supported within K for all £ > 0 and R;, < 0 by Lemma 4.4, the
function v(x,t) — 1 is subharmonic on M \ K and tends to zero at spatial infinity. So the
maximum principle yields that

sup v(x,t) —1 < max v(z,t) — 1,

zeM\K zCOK

which leads to the desired conclusion. O

Next, with the help of the functions v, and vg, we establish a Harnack inequality for
Up.

Proposition 4.6. For p € M and R > 0, there exists C' such that

sup u,(x,t) < C inf  w,(x,t),
z€B(p,R) p( ) z€B(p,R) p( )

for any t > 0.

Proof. It suffices to prove a Harnack inequality for v. Indeed, a Harnack inequality for
v implies a Harnack inequality for both v, and vg. Moreover, since

0 n—2

a'{) = *TRgﬂU,
with —% <Ry, <0 by Lemma 4.4, we have vg < %vb. Putting things together, we then
see that (omitting the = € B(p, R) subscript) we would have
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B B B
supu, < supvp < zsupvb < C’zinfvb < C’zinfup,

as desired. So we will now prove that v satisfies a Harnack inequality.
Recall that v satisfies
—anAg, v+ Ry, ;v = Rgpvﬁv. (4.6)
By Lemma 4.4 and Proposition 2.5, we have that ‘Rgpvﬁ‘ is bounded by a uniform
constant, while (4.6) is an elliptic equation, with the operator A, , defined using the
fixed metric g, 0. Therefore the Harnack inequality for v follows (for instance, by [15,
Theorem 8.20]). O

Corollary 4.7. We have that maxzcx v(z,t) = o(t"3"), which in turn implies

n—2 n—2
maxgex u(z,t) = o(t 1 ). More generally, we have that max,ep v(z,t) = o(t 1 ) and
maxgear w(z,t) = o(t"T ).

Proof. By Proposition 4.6, there exists some fixed C' > 0 such that for all times ¢ > 0
there holds

sup v(z,t) < C inf v(x,t). (4.7
zeK zeK
Then for any € > 0, by Theorem A we can pick xg € K and find T' > 0 large enough so
that whenever ¢ > T we have

€ n-—2

t) < =t 4.
U(I(), )— C

So by (4.7) we conclude that when ¢ > T we also have sup,cx v(z,t) < et"7°. Lem-
mas 4.5 and 4.3 imply the decay of sup,cy, v(z,t) and sup,ep; u(z,t). O

Using the above facts, we can now show that we have a strictly positive subsequential
Xre K u(xat)
u(x,t)
maXge K u(z,t)
positive function w(x) > 0 satisfying

Proposition 4.8. The functions subconverge in Clkof‘ for any o < a to a

—anAgyw + Rgyw > 0. (4.8)
Proof. For 7 > 0, we define
L =
(1) max u(z, T),

and
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U (z,t) = L(7)"\u ((:r, L(r)7=t + T) .

Then U, also solves (1.5). Moreover for 7 > 0 sufficiently large, U, is uniformly bounded
fort € [—%, 1] from above on M, and uniformly bounded from below away from zero on
compact subsets of M. To see the upper bound, first observe that by Corollary 4.7,

L(r)y»= <7
whenever 7 is sufficiently large. Therefore

sup U (z,t) < L(t)"" sup wu(z,s).
te[—3,1] se[F,27]

Next, we have that

sup u(x,s) < B sup wvp(z,s) < 32271772B(T)7
se[z,27] se[3,27]

using for the second inequality that %v = f"T_zR v. Since we also have that

bQB(T) < bsup vp(z,7) < L(T),
xeK

putting all these estimates together yields the upper bound

B? .
Unla,t) < 57277, (4.9)

which hold for all ¢t € [%, 1].
For the lower bound, we first note that positive constant multiples of w(z,t) also
satisfy a Harnack inequality as in Proposition 4.6 because u,(z,t) does, since

sup  u(z,t) < B sup up(z,t)
z€B(p,R) z€B(p,R)

B
< BC inf t) < —C inf t).
- $€113I(IP,R) up(®,1) < b weg(lp,R)U(mv )

We also have that

n—2

1 4
b? (—) B(t) <bsupuwp(z,7/2) <b sup up(zr,s) < sup wu(x,s),
2 zeK zeK

56[%,27'] 36[5,27’}

and that

L(r) < Bsup up(z,7) < B2B(T).
xeK
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Hence
n—2
b2 /1) *
— | = < L(r)! .
7 (2) < L(7) sup u(z, s)
€3]

Applying the Harnack inequality and translating back, this shows that U, is indeed

bounded from below away from zero uniformly on compact sets for ¢ € [—%, 1].
Because U, is uniformly bounded above and below away from zero on compact sets,

we can now apply local parabolic Krylov-Safonov and Schauder estimates to (1.5) to

obtain uniform local Holder estimates on € x [%, 1]. In particular we have uniform C’l]f)f

control of U, (x,0) = #ﬁ(rﬂ and therefore subconvergence in C’lkoca for any o/ < «

to some w(x) > 0 as 7 — oo. The positivity of w(x) is a consequence of our uniform
u(z,7)
maxgzex u(z,T)

To verify the equation satisfied by w, recall that

lower bound on on compact sets.

u(z,t)
maxgecr u(z,t)

u(z,t)
® max,er u(z,t)
u(zx,t)
maxgex u(w,t)’

—anAg, + R,

_a_
= Rg(t)u(ac, t)n-2

On the right-hand side we have R,y > —1 by Lemma 2.4 and u,(z,t) = o(t%z) by
Theorem B. So it follows that in the limit we have (4.8) in the classical sense. O

From the discussion leading up to (2.11), we know there exists a function ug which

makes (4.8) an equality. The following uniqueness result will allow us to identify the
up (x,t)

limit of the rescaling T R

s . 2, .
Proposition 4.9. Suppose (M, g) is a W=¥ AF manifold for some p > n/2 and > % —2,
with Y (M, [g]) = 0. Recall that there is a positive function ug solving the equation

—anAgug + Ryug = 0,

such that ug = O(|2|?>™™) as |z| — oo. Then if w is a positive function on (M, g) in Wlif
such that

—anAgw + Ryw > 0,
then there is a positive constant ¢ such that

w = cug.
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Proof. We write w = 1ug and a classical calculation yields the equality:

—apAw + Ryw = (—an,Aug + Ryug) ¥ — 2ay, (dug, dip) — anuoAy
_2an <du07 d¢> - anUOAw
fanualdiv (ugdi//) .

Integration this identity against 21 ~'ug where ¢ is a non negative compactly supported
function and taking in account our hypothesis, one gets

A2 2
/¢2| ﬂg%d‘/g < 2/<p<d¢,dw>%dVg-
M M

And with the Cauchy-Schwarz inequality, one obtains the inequality

2|d¢|§ 2 2,2
® 02 updVy <4 [ |dp|gugdVy.
M M

Using a sequence of functions ¢, satisfying

pr=1 on |z| </
wr=0 on |z| >2¢
|dpe] <2/¢ on € < |z| <20,

together with the decay estimate of ug and the fact that
Vo({<lz[ <26}) =0 (0)

one obtains that

d 2
/ ‘ ;qu%dvg < O(gQ—n)
{lzI<e}

Hence letting £ — +00, one deduces that di¢y =0. O
Putting everything together, we can now prove Theorem C.

Proof of Theorem C. This follows immediately from Propositions 4.8 and 4.9; note that
} u(x,t) — ) P @ — i S

SUPy e K e e a5 ) 1 for all ¢ implies sup,cx w(z) = 1. The uniqueness of ug up to
scaling is provided by either Proposition 4.9 or Proposition 2.9. Because any convergent
u(,t)

————— must converge to the same limit, we in fact have convergence
maxg ek u(z,t)

subsequence of

of — =) agt 00 tow(z). O

maxge i u(x,t)
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