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1. Introduction

The Ricci flow deforms a metric g on a Riemannian manifold (Mn, g) according to 
the equation

∂

∂t
g(t) = −2Ricg(t).

Since its introduction by Hamilton [23], the Ricci flow has been used in a wide variety of 
settings to regularize metrics. One sense in which this occurs is described by Perelman’s 
pseudolocality theorem [43], which has played a crucial role in work on the short time 
existence of the Ricci flow, especially in settings where the initial data lacks bounded 
curvature or completeness [50,27].

Theorem 1.1. [43, Theorem 10.1] For any α > 0, there exist positive constant ε and δ
such that if (Mn, g(t)), t ∈ [0, εr0] is a solution to the Ricci flow for some r0 > 0 and in 
addition

• R ≥ −r−2
0 on B0(x0, r0);

• |∂Ω|n ≥ (1 −δ)cn|Ω|n−1, for any open set in B0(x0, r0), where cn is the isoperimetric 
constant of Rn,

then for any t ∈ [0, (εr0)2] and x ∈ Bt(x0, εr0)

|Rm|(x, t) ≤ αt−1 + (εr0)−2.

Thus, Perelman’s pseudolocality tells us that given a lower Ricci bound on an almost 
Euclidean region, we can deduce regularization in the sense of curvature control along the 
Ricci flow for short times. Since Perelman’s work, many extensions have been developed 
in a variety of settings [15,8,49,53].

Related regularization results for the Ricci flow under critical Ln/2 bounds of Rm have 
previously been studied in [56,38] assuming also pointwise two-sided bounds on |Ric|, 
and in [51] assuming alternatively a supercritical ‖Ric‖p, p > n/2 bound. In this note, 
we will consider conditions which are scaling invariant. In particular, we study the flow 
under local critical Ln/2 bounds of Rm, but will instead do so in combination with a 
Ricci lower bound and control of the local entropy, a localization of Perelman’s entropy 
introduced by Wang [52].

Below we state our main result, referring to the beginning of Section 2 for most of the 
associated notation. Throughout, we will use a ∧ b to denote min{a, b}.

Theorem 1.2. For all A, λ > 0, there are C0(n, A, λ), σ(n, A) and T̂ (n, A, λ) > 0 such 
that the following holds. Suppose (Mn, g(t)) is a complete Ricci flow of bounded curvature 
on [0, T ] and the initial metric g(0) satisfies the followings:
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(a) Ric(g(0)) ≥ −λ;
(b) ν(Bg(0)(p, 5), g(0), 1) ≥ −A;

(c)
(´

Bg(0)(p,2) |Rm(g0)|n/2dμ0

)2/n

≤ ε for some ε < σ,

for all p ∈ M . Then we have for any x ∈ M and t ∈ (0, T ∧ T̂ ],

|Rm|(x, t) ≤ C0ε

t
and injg(t)(x) ≥ C−1

0
√

t. (1.1)

Moreover, we have 
(´

Bt(x,1) |Rm(g(t))|n/2dμt

)2/n

≤ C0ε for all x ∈ M . In particular, 
the Ricci flow must exist up to T̂ .

Remark 1.1. In the statement above, we choose the scale 1 in the local entropy condition 
only for convenience.

Theorem 1.2 is a smoothing result also based on an initial “almost Euclidean” as-
sumption. However, instead of characterizing this using the isoperimetric constant as in 
Theorem 1.1, we instead use rough non-collapsing and small curvature concentration.

Using ideas related to those used to prove Theorem 1.2 and point-picking technique, 
we prove a gap result for steady and shrinking gradient Ricci solitons without assuming 
curvature boundedness.

Theorem 1.3. For all A > 0, there is ε(n, A) > 0 such that if (Mn, g, f) is a complete 
shrinking or steady gradient Ricci soliton satisfying

(a) ν(M, g) ≥ −A;
(b)

(´
M

|Rm|n/2dμ
)2/n ≤ ε,

then (M, g) is isometric to the standard Euclidean space Rn.

Remark 1.2. The smallness condition (b) in Theorem 1.3 is necessary. Indeed, as pointed 
out by Chen-Zhu [12], the Eguchi-Hanson metric (M, g) is Ricci flat with |Rm(x)| ≤
C(dg(x, p) +1)−6 and has Euclidean volume growth. Therefore it satisfies ||Rm||Ln/2 < ∞
and ν(M, g) > −∞ by Remark 1.4 and a scaling argument. However, it is not isometric 
to Euclidean flat metric.

Gap results for gradient Ricci solitons have been previously studied for instance in 
[58,21,60] under global assumptions on the potential function f , sometimes along with 
pointwise curvature control (see also [42,16,20,7]).

Theorem 1.2 lends itself to several applications. First, we have a gap result for Ricci-
nonnegative Riemannian manifolds with ‖Rm‖Ln/2 small.
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Corollary 1.1. For all A > 0, there is σ(n, A) > 0 such that if (Mn, g) is a complete 
noncompact manifold with

1. bounded curvature
2. Ric ≥ 0;
3. ν(M, g) ≥ −A;
4.

(´
M

|Rm|n/2dμg

)2/n ≤ σ.

Then g is of Euclidean volume growth. Moreover, Mn is diffeomorphic to Rn.

There is a large body of work on Ricci-nonnegative noncompact manifolds, and several 
results show that under some additional assumptions (such as almost Euclidean volume 
growth), such manifolds must be diffeomorphic to Rn [4,10,54]. Corollary 1.1 is related to 
two results of this kind by Ledoux and Xia [35,55], which assert that a complete, Ricci-
nonnegative manifold with Euclidean-type Sobolev constant close to that of Euclidean 
space must be diffeomorphic to Rn. Indeed, Condition (3) of Corollary 1.1 above can be 
seen as a weakening of this requirement, since it holds as long as there is some constant 
which makes the Euclidean-type Sobolev inequality valid. This is compensated for by 
Condition (4) on the smallness of the total scale-invariant curvature.

Carron has also pointed out to us that Corollary 1.1 is related to the following state-
ment which can be derived from works of Cheeger [9] and Cheeger-Colding [10]: If a 
complete noncompact manifold with Ric ≥ 0 has 

´
M

|Rm|n/2dμg sufficiently small rel-
ative its asymptotic volume ratio (assumed nonzero), then it must be diffeomorphic to 
Rn. Indeed, these hypotheses ensure by [9, Theorem 4.32] that the manifold must have 
asymptotic volume ratio close to one, from which one can conclude that the manifold 
must be diffeomorphic to Rn by [10, Theorem A.1.11.] (see also [53, Theorem 5.7] for a 
recent proof via Ricci flow). Our assumptions in Corollary 1.1 differ slightly from this 
statement’s because our required smallness of σ is relative to a lower bound on entropy. 
Although we will prove below that under bounded curvature, bounded entropy, and small 
||Rm||Ln/2 we indeed have almost Euclidean volume growth, it is unclear to us whether 
an entropy lower bound implies an asymptotic volume ratio lower bound in general. 
The method here relies on the existence of Ricci flow with uniform estimates. It will be 
interesting to know if the curvature boundedness is necessary to ensure its existence in 
general.

We can also apply Theorem 1.2 to obtain a finite diffeomorphism-type result and a 
Gromov-Hausdorff compactness result in the setting of length spaces.

Corollary 1.2. For all A > 0, there is σ(n, A) > 0 such that for C1, C2, the space of 
compact manifolds (M, g) satisfying

(a) Ric(g) ≥ −C1;
(b) V olg(M) ≤ C2;
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(c) infp∈M ν(Bg(p, 5), g, 1) ≥ −A;

(d) supp∈M

(´
Bg(p,2) |Rm|n/2dμg

)2/n

≤ σ

contains finitely many diffeomorphism types.

Corollary 1.2 follows via an argument analogous to the that in the proof of [32, 
Theorem 37.1], which was proved by Perelman [43, Remark 10.5] using Perelman’s pseu-
dolocality. In our case, the use of Perelman’s pseudolocality is replaced by Theorem 1.2.

Theorem 1.4. For any positive integer n ≥ 3 and constant A ≥ 1000n, there exists 
constant ε0(n, A) such that the following holds. Suppose (Mn

i , gi, pi) is a pointed sequence 
of Riemannian manifolds with the following properties:

(a) (Mi, gi) has bounded curvature;
(b) Ric(gi) ≥ −λ;

(c)
(´

Bgi
(q,2) |Rm(gi)|n/2dμi

)2/n

≤ ε0 for all q in Mi;
(d) ν(Bgi

(q, 5), gi, 1) ≥ −A, for all q in Mi.

Then there exists a smooth manifold M∞ and a complete distance metric d∞ on M∞
generating the same topology as M∞ such that after passing to sub-sequence, (Mi, dgi

, pi)
converges in pointed Gromov Hausdorff sense to (M∞, dg∞ , p∞).

Remark 1.3. The Ricci lower bound assumption on the initial metric can in fact be 
weakened to a scalar curvature lower bound and uniform volume doubling for some fixed 
scale. But we feel it is more natural to state the result with the Ricci assumption.

Remark 1.4. The initial Ricci curvature lower bound in fact gives a Sobolev inequality 
on the geodesic balls in M , which in turn implies a Log Sobolev inequality and provides 
a lower bound for the local entropy in terms of its volume. Hence the local entropy 
ν(Bg0(p, 5), g0, 1) lower bound condition in the above theorem can be replaced by a 
uniform volume lower bound condition for the geodesic balls on M , namely,

Volg0(Bg0(p, 5)) ≥ v0, (1.2)

for some positive constant v0, for all p ∈ M . In that case, the constants ε, C and T̂ also 
depend on v0. In particular, the global entropy ν(M, g)’s lower bound can be replaced 
by Ric ≥ 0 and a lower bound on the asymptotic volume ratio.

There have been many studies of compactness under scale-invariant integral curva-
ture bounds, notably Anderson–Cheeger’s diffeomorphism finiteness result [2]. Orbifold 
compactness results under ‖Rm‖Ln/2 bounds have also been obtained for Einstein man-
ifolds as well as for both compact and noncompact gradient Ricci solitons [1,6,26]. In 
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comparison, Theorem 1.4 does not impose such analytic conditions on (Mi, gi), but does 
require sufficient smallness of the local scale-invariant curvature concentration.

Theorem 1.4 is also a smoothing result for limit spaces of manifolds with lower curva-
ture bounds, achieved via distance distortion estimates and pseudolocality-type estimates 
of the Ricci flow. There has been much recent work in this direction in many different 
settings [3,40,41,46,47,36,28,33,30,31].

The structure of the rest of this paper is as follows. In Section 2, we prove our main 
smoothing result, Theorem 1.2. In Section 3, we prove our gap result for gradient Ricci 
soliton, Theorem 1.3. In Section 4, we prove our gap result for complete noncompact 
Ricci nonnegative manifolds, Corollary 1.1. Finally in Section 5, we prove our Gromov-
Hausdorff compactness result, Theorem 1.4.

Acknowledgments: The authors would like to thank Peter Topping for the interest in 
this work as well as Gilles Carron for pointing out the reference [9] and related results. 
The authors would also like to thank the referee for pointing out a mistake in the 
earlier version of this paper. P.-Y. Chan would like to thank Bennett Chow, Lei Ni 
and Jiaping Wang for continuous encouragement and support. E. Chen thanks Guofang 
Wei and Rugang Ye for their support. Part of this work was carried out while M.-C. Lee 
was working at the Department of Mathematics at Northwestern University as a Boas 
Assistant Professor and at the Department of Mathematics at University of Warwick as 
a Research Fellow, which he would like to thank for the hospitality. E. Chen was partially 
supported by an AMS–Simons Travel Grant. M.-C. Lee was partially supported by NSF 
grant DMS-1709894 and EPSRC grant number P/T019824/1.

2. Curvature estimates of Ricci flows

In this section, we will prove the semi-local estimates of the Ricci flow. We begin by 
fixing some notation below.

Suppose (Mn, g) is an n dimensional complete (not necessarily compact) Riemannian 
manifold and Ω is a connected domain on M with smooth boundary (boundaryless if 
M = Ω). Hereinafter, we shall reserve the positive integer n for the dimension of M . 
Wang [52] localized Perelman’s entropy and proved an almost monotonicity in local 
entropy when Ω is bounded, generalizing the result in [43]. Using his notation, we have:

Dg(Ω) :=
{

u : u ∈ W 1,2
0 (Ω), u ≥ 0 and ‖u‖2 = 1

}
, (2.1)

W (Ω, g, u, τ) :=
ˆ

Ω

τ(Ru2 + 4|∇u|2) − 2u2 log udμ (2.2)

− n

2 log(4πτ) − n,

ν(Ω, g, τ) := inf
u∈Dg(Ω),s∈(0,τ ]

W (Ω, g, u, s), (2.3)

ν(Ω, g) := inf ν(Ω, g, τ). (2.4)

τ∈(0,∞)
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In order to prove the curvature estimate of Theorem 1.2, we first show that it can be 
reduced to the preservation of local Ln/2 control of Rm(g(t)).

Proposition 2.1. For all A > 0, there is c0(n, A) > 0 such that the following holds. 
Suppose (M, g(t)), t ∈ [0, T ] is a complete Ricci flow with bounded curvature such that 
for all (x, t) ∈ M × [0, T ], the following holds:

(a) ν(Bg0(x, 106n
√

T ), g0, 2T ) ≥ −A;

(b)
(´

Bg(t)(x,
√

t) |Rm(g(t))|n/2dμg(t)

)n/2
≤ c0ε for ε < 1,

then we have

sup
M

|Rm(x, t)| < εt−1 (2.5)

for all t ∈ (0, T ].

Proof. By rescaling, we may assume T = 1. Suppose on the contrary that the result is 
not true. Then for some A, ε > 0, we can find sequences of δi = ciεi with ci → 0, εi

∈ (0, 1) and {(Mi, gi(t), pi)} with bounded curvature such that

1. ν(Bgi(0)(x, 106n), gi(0), 2) ≥ −A;

2.
(´

Bt(x,
√

t) |Rm(gi(t))|n/2dμi,t

)2/n

≤ δi → 0 for all (x, t) ∈ Mi × [0, 1]

but for some (xi, ti) ∈ Mi × (0, 1],

|Rmi(xi, ti)| = εit
−1
i .

We may choose ti > 0 such that for all (y, s) ∈ Mi × (0, ti),

|Rmi(y, s)| < 2εis
−1. (2.6)

This can be done since the upper bound of curvature varies continuously by boundedness 
of curvature. Let Qi = t−1

i ≥ 1. Consider the rescaled Ricci flow g̃i(t) = Qigi(Q−1
i t) for 

t ∈ [0, 1] which satisfies

(a) ν(Bgi(0)(y, 106n), ̃gi(0), 2) ≥ −A for all y ∈ Mi;

(b)
(´

Bg̃i(t)(y,
√

t) |Rm(g̃i(t))|n/2dμ̃i,t

)2/n

≤ δi → 0 for all (y, t) ∈ Mi × [0, 1];
(c) |Rmg̃i

(y, s)| < s−1 on Mi × (0, 1);
(d) |Rmg̃i

(xi, 1)| = εi.

By (a) and [52, Theorem 5.4], we have uniform lower bound of the entropy
ν(Bg̃i(t)(y, 1), ̃gi(t), 1). Now (c) and [52, Theorem 3.3] implies an uniform lower bound 
of the volume of Bg̃i(t)(xi, r) which depends only on A and n for any r, t ∈ [1/2, 1]. 
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By the curvature bound (c), we also have uniform Sobolev inequality on Bg̃i(t)(xi, 1), 
for t ∈ [1/2, 1] (see [44] and [37]). It follows from Kato’s inequality and the evolution 
equation of Rm under the Ricci flow that(

∂

∂t
− Δ

)
|Rm| ≤ 8|Rm|2. (2.7)

Since the curvature is uniformly bounded on [ 1
2 , 1], we may apply the Moser iteration 

argument [37], together with (b) and Hölder inequality to show that

εi = |Rmg̃i
(xi, 1)|

≤ C(n, A)
1ˆ

1/2

 

Bg̃i(t)(xi,1/2)

|Rmg̃i
|dμsds

≤ C ′(n, A)

⎛⎜⎝ 1ˆ

1/2

 

Bg̃i(t)(xi,1/2)

|Rmg̃i
|n/2dμsds

⎞⎟⎠
2/n

≤ C ′(n, A)ciεi → 0 as i → ∞,

(2.8)

which is impossible if ci is too small. This completes the proof of the lemma. �
Remark 2.1. The a-priori curvature boundedness and completeness is in fact unnecessary, 
see Section 3.

Next, we will show that if the initial local Ln/2 is small enough, then it is preserved 
in some semi-local sense. We first begin with the energy evolution of Ln/2 norm.

Lemma 2.1. Suppose n ≥ 3 and (M, g(t)) is a complete solution to the Ricci flow, t ∈
[0, T ]. Then for any α ≥ n

4 , β > 0 and φ(x, t) compactly supported function in spacetime, 
there exist positive constants C(α) and C ′(n, α) such that

d

dt

ˆ

M

φ2(|Rm|2 + β)αdμt ≤ − C(α)
ˆ

M

|∇(φ(|Rm|2 + β)α/2)|2dμt

+ C ′(n, α)
ˆ

M

φ2(|Rm|2 + β)α+1/2dμt

+ C ′(n, α)
ˆ

M

|∇φ|2(|Rm|2 + β)αdμt.

+
ˆ

M

2φ�φ(|Rm|2 + β)αdμt,

(2.9)

where � = ∂ − Δg(t).
∂t
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Proof. We compute the time derivative of the integral norm as in [17]. Using ∂
∂tdμt =

−Rdμt ≤ c(n)|Rm|dμt, we have

d

dt

ˆ

M

φ2(|Rm|2 + β)αdμt ≤
ˆ

M

∂

∂t

(
φ2(|Rm|2 + β)α

)
dμt

+ c(n)
ˆ

M

φ2(|Rm|2 + β)α+1/2dμt.

(2.10)

For the first term on the R.H.S.,

ˆ

M

∂

∂t

(
φ2(|Rm|2 + β)α

)
dμt

=
ˆ

M

� (
φ2(|Rm|2 + β)α

)
dμt

=
ˆ

M

2φ�φ(|Rm|2 + β)αdμt −
ˆ

M

2|∇φ|2(|Rm|2 + β)αdμt

+
ˆ

M

αφ2(|Rm|2 + β)α−1�|Rm|2dμt

−
ˆ

M

4α(α − 1)φ2(|Rm|2 + β)α−2|Rm|2|∇|Rm||2dμt

−
ˆ

M

8αφ〈∇φ, ∇|Rm|〉|Rm|(|Rm|2 + β)α−1dμt,

(2.11)

where � = ∂
∂t − Δg(t). To proceed, we apply the evolution equation of |Rm|2 (see [17]

and ref. therein)

�|Rm|2 ≤ −2|∇Rm|2 + 16|Rm|3. (2.12)

It follows from (2.12) that

ˆ

M

αφ2(|Rm|2 + β)α−1�|Rm|2dμt ≤ − 2α

ˆ

M

φ2(|Rm|2 + β)α−1|∇Rm|2dμt

+ 16α

ˆ

M

φ2(|Rm|2 + β)α+1/2dμt.

(2.13)

Hence by Kato’s inequality and Hölder inequality,
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ˆ

M

αφ2(|Rm|2 + β)α−1�|Rm|2dμt

−
ˆ

M

4α(α − 1)φ2(|Rm|2 + β)α−2|Rm|2|∇|Rm||2dμt

−
ˆ

M

8αφ〈∇φ, ∇|Rm|〉|Rm|(|Rm|2 + β)α−1dμt

≤ −C(α)
ˆ

M

φ2(|Rm|2 + β)α−1|∇|Rm||2dμt

+16α

ˆ

M

φ2(|Rm|2 + β)α+1/2dμt

+
ˆ

M

8αφ|∇φ||∇|Rm|||Rm|(|Rm|2 + β)α−1dμt

≤ −C ′(α)
ˆ

M

φ2(|Rm|2 + β)α−2|Rm|2|∇|Rm||2dμt

+16α

ˆ

M

φ2(|Rm|2 + β)α+1/2dμt

+C ′′(α)
ˆ

M

|∇φ|2(|Rm|2 + β)αdμt.

We also have by Cauchy Schwarz inequality

C ′(α)
ˆ

M

φ2(|Rm|2 + β)α−2|Rm|2|∇|Rm||2dμt

= C ′′′(α)
ˆ

M

φ2|∇(|Rm|2 + β) α
2 |2dμt

≥ C ′′′(α)
2

ˆ
|∇(φ(|Rm|2 + β) α

2 )|2dμt − C ′′′(α)
ˆ

|∇φ|2(|Rm|2 + β)αdμt.

(2.14)
M M
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All in all,

d

dt

ˆ

M

φ2(|Rm|2 + β)αdμt ≤ C(n, α)
ˆ

M

φ2(|Rm|2 + β)α+1/2dμt

+
ˆ

M

2φ�φ(|Rm|2 + β)αdμt

+ C(α)
ˆ

M

2|∇φ|2(|Rm|2 + β)αdμt

− C ′′′(α)
2

ˆ

M

|∇(φ(|Rm|2 + β) α
2 )|2dμt.

(2.15)

Our desired inequality (2.9) then follows. �
We also need the following lemma showing that the local entropy implies local Sobolev 

inequality.

Lemma 2.2. For all A ≥ 1000n, λ > 0 and δ > 0, there are positive constants 
CS(n, A, λ, δ) and T̂ (n, A, λ, δ) such that the following holds. Suppose (M, g(t)) is a com-
plete Ricci flow with bounded curvature on [0, T ] and for all p ∈ M and all t ∈ (0, T ], all 
of the following conditions are satisfied

1. Rg(0) ≥ −nλ;
2. ν(B0(p, 5), g(0), 1) ≥ −A;
3. Ric(p, t) ≤ δt−1.

Then we have for any p ∈ M and t ∈ (0, min{T, T̂}],

ν(Bt(p, 2), g(t), 32−1) ≥ −2A (2.16)

and for any ϕ ∈ C∞
0 (Bt(p, 2))

⎛⎜⎝ ˆ

Bt(p,2)

|ϕ| 2n
n−2 dμt

⎞⎟⎠
n−2

n

≤ CS

⎛⎜⎝ ˆ

Bt(p,2)

|∇ϕ|2 + (R + cnλ + 1)ϕ2dμt

⎞⎟⎠ . (2.17)

Proof. For (2.16), we apply [52, Theorem 5.4] to get for all small t ≤ min{T̂ (n, A, δ), T}

ν(Bt(p, 2), g(t), 32−1) ≥ ν(B0(p, 5), g(0), t + 32−1) − 16t

≥ ν(B0(p, 5), g(0), 1) − A

≥ −2A

(2.18)
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This completes the proof of (2.16). Since the Ricci flow has bounded curvature, it follows 
from the maximum principle that there exists a dimensional constant cn such that for 
all t ≤ min{T̂ (n, A, δ), T }

R(x, t) ≥ −cnλ. (2.19)

By the definition of local ν entropy (2.2) and (2.16), we have a uniform Log Sobolev 
inequality: for any τ ∈ (0, 32−1), u ∈ W 1,2

0 (Bt(p, 2)), with ‖u‖g(t),2 = 1,

ˆ

Bt(p,2)

u2 log u2dμt ≤τ

ˆ

Bt(p,2)

4|∇u|2 + Ru2dμt

− n

2 log(4πτ) − n + 2A.

(2.20)

The uniform Log Sobolev inequality then implies a uniform Sobolev inequality along the 
Ricci flow as first described in [59] (see also [17,57] and Theorems 2.1 and 2.2). Indeed, 
when ∂Bt(p, 2) is nonempty, the same arguments as in [19,57] will give us Theorems 2.1
and 2.2 below for the Dirichlet Sobolev inequality, and these together with (2.20) imply 
(2.17), finishing the proof. �

We shall now state Theorems 2.1 and 2.2 without mentioning the proofs, since they 
are essentially the same as those found in [19,57]. Let (N, h) be a smooth compact 
Riemannian manifold with metric h and smooth boundary ∂N , H the elliptic operator 
= −Δ + 4−1(R + cnλ), where λ and cn are non-negative constants such that R ≥ −cnλ

on N ,

Q(u, v) =
ˆ

N

∇u · ∇v + 4−1(R + cnλ)u · vdμh (2.21)

and write Q(u, u) as Q(u). For t > 0, consider the semigroup e−tH of the operator H. For 
any u0 ∈ L2(N, h), the function u(t) := e−tHu0 is the solution to the Dirichlet evolution 
equation

⎧⎪⎨⎪⎩
∂u
∂t = −Hu

u(0) = u0
u = 0 on ∂N.

(2.22)

Theorem 2.1 ([19,57]). Let σ∗ ∈ (0, ∞]. Suppose that for all σ ∈ (0, σ∗),

ˆ
u2 log u2dμ ≤ σ

ˆ
|∇u|2 + 4−1(R + cnλ)u2dμ + β(σ) (2.23)
N N
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is true for any u ∈ W 1,2
0 (N) with ‖u‖2 = 1, where β is a continuous nonincreasing 

function and R + cnλ ≥ 0. If in addition the function,

τ(t) := 1
2t

tˆ

0

β(s)ds (2.24)

is finite for any t ∈ (0, σ∗). Then for each u ∈ L2(N)

‖e−tHu‖∞ ≤ eτ(t)‖u‖2 (2.25)

for t ∈ (0, σ∗/4). Moreover, for all u ∈ L1(N)

‖e−tHu‖∞ ≤ e2τ( t
2 )‖u‖1 (2.26)

for t ∈ (0, σ∗/4).

Theorem 2.2 ([19,57]). Suppose there exist positive constants c1 and t1 such that for all 
t ∈ (0, t1) and u ∈ L2(N)

‖e−tHu‖∞ ≤ c1t− n
4 ‖u‖2. (2.27)

Set H0 = H + 1. Then for some constant C(c1, t1, n),

‖H
−1/2
0 u‖ 2n

n−2
≤ C‖u‖2, (2.28)

for any u ∈ L2(N). In particular,

‖u‖2
2n

n−2
≤ C2‖H

1/2
0 u‖2

2

≤ C2(Q(u) + ‖u‖2
2),

(2.29)

for all u ∈ W 1,2
0 (N), where H1/2

0 and H−1/2
0 denote the fractional operator of H0 and 

its inverse respectively (see [19,57]).

With Proposition 2.1 and Lemmas 2.1 and 2.2 in hand, we can now prove Theorem 1.2
to conclude this section.

Proof of Theorem 1.2. Let Λ be a constant to be chosen later. Since g(t) has bounded 
curvature, we may let T̂ be the maximal time such that for all (x, t) ∈ M × [0, T̂ ∧ T ), 
we have ⎛⎜⎝ ˆ

B (x,1)

|Rm(g(t))|n/2dμt

⎞⎟⎠
2/n

≤ Λε. (2.30)

g(t)
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By [52, Theorem 3.3], Proposition 2.1 and the injectivity radius estimates in [11], it suf-
fices to show that T̂ is bounded from below uniformly if ε and Λ are chosen appropriately.

We may choose ε small enough so that Λε = δ < 1 is small. Therefore, the Ricci flow 
g(t) satisfies

1.
(´

Bg0 (x,2) |Rm(g(0))|n/2dμ0

)2/n

≤ ε;

2.
(´

Bg(t)(x,1) |Rm(g(t))|n/2dμt

)2/n

≤ δ;
3. ν(Bg0(x, 5), g0, 1) ≥ −A;
4. Ric(g0) ≥ −λ

for all (x, t) ∈ M × [0, T ∧ T̂ ). By the monotonicity of the local entropy over domain 
and scale, we may assume T̂ < 25n−210−12 so that applying Proposition 2.1 on g(t), t ∈
[0, T ∧ T̂ ) yields

sup
M

|Rm(g(t))| ≤ c(n, A)δt−1 < t−1. (2.31)

Now we are ready to estimate T̂ . For any x0 ∈ M , we let η(x, t) = dt(x, x0) + cn

√
t

and define φ(x, t) = e−10tϕ(η(x, t)) where ϕ(s) is a cutoff function on R so that ϕ ≡ 1 on 
(−∞, 12 ], ϕ ≡ 0 outside (−∞, 1] and satisfies ϕ′′ ≥ −10ϕ, 0 ≥ ϕ′ ≥ −10√

ϕ. By choosing 
cn large enough, we have from [43, Lemma 8.3] that

(
∂

∂t
− Δ

)
φ ≤ 0 (2.32)

in the sense of barrier and hence in the sense of distribution, see [39, Appendix A].
Using Lemma 2.1 with the above choice of φ and α = n/4, we conclude that

d

dt

ˆ

M

φ2(|Rm|2 + β)n/4dμt ≤ − C−1
n

ˆ

M

|∇(φ(|Rm|2 + β)n/8)|2dμt

+ Cn

ˆ

M

φ2(|Rm|2 + β)n/4+1/2dμt

+ Cn

ˆ

supp(φ)

(|Rm|2 + β)n/4dμt.

(2.33)

Noted that φ is supported on Bt(x0, 1), By Lemma 2.2, the first term on the right 
can be estimated as



P.-Y. Chan et al. / Journal of Functional Analysis 282 (2022) 109420 15
C−1
n

ˆ

M

|∇(φ(|Rm|2 + β)n/8)|2dμt

≥ C1(n, A)

⎛⎝ˆ

M

|(φ2(|Rm|2 + β)n/4)| n
n−2 dμt

⎞⎠
n−2

n

− C1(n, A)
ˆ

M

φ2(R + cnλ + 1)(|Rm|2 + β)n/4dμt

(2.34)

while the second term can be estimated by

Cn

ˆ

M

φ2(|Rm|2 + β)n/4+1/2dμt

≤ Cn

⎛⎜⎝ ˆ

supp(φ)

(|Rm|2 + β) n
4 dμt

⎞⎟⎠
2
n ⎛⎝ˆ

M

[
φ2(|Rm|2 + β) n

4
] n

n−2 dμt

⎞⎠
n−2

n

≤ Cnδ

⎛⎝ˆ

M

[
φ2(|Rm|2 + β) n

4
] n

n−2 dμt

⎞⎠
n−2

n

(2.35)

as β → 0. We can apply the same argument to 
´

M
φ2R(|Rm|2 + β)n/4dμt to deduce the 

same upper bound. Therefore, we conclude that if δ ≤ σ(n, A) << 1, then as β → 0 we 
have

d

dt

ˆ

M

φ2(|Rm|2 + β)n/4dμt ≤C(n, A, λ)
ˆ

Bt(x0,1)

(|Rm|2 + β)n/4dμt

≤C(n, A, λ)δ n
2

(2.36)

By letting β → 0 together with the assumption on the initial metric, we conclude that 
for all (x0, t) ∈ M × [0, T ∧ T̂ ),

ˆ

Bt(x0, 1
4 )

|Rm|n/2dμt ≤ e10T̂ (C1(n, A, λ)Λ n
2 t + 1)ε n

2 . (2.37)

Now we claim that there is T̃ (n, A) depending only on n, A such that for all (y, t) ∈
M × [0, T ∧ T̂ ], if T ∧ T̂ ≤ T̃ (n, A), then we have

Bt(y, 1) ⊂
N⋃

Bt(xi,
1
4) (2.38)
i=1
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for some N(n, A, λ) ∈ N. If the claim is true, then we conclude that for all (y, t) ∈
M × [0, T ∧ T̂ ∧ T̃ (n, A)],

ˆ

Bt(y,1)

|Rm|n/2dμt ≤
N∑

i=1

ˆ

Bt(xi, 1
4 )

|Rm|n/2dμt

≤ Ne10T̃ (C1Λ n
2 T̃ + 1)ε n

2 .

(2.39)

Therefore if we choose Λn/2 = 4N and further require T̃ ≤ (4 n
2 N

n
2 C1)−1, then we 

have contradiction and hence T̂ ≥ T̃ (n, A, λ). This will complete the proof. Hence, it 
remains to establish the uniform covering.

For each (y, t) × M × [0, T ∧ T̂ ∧ T̃ ), we let {xi}N
i=1 be a maximal set of points in 

Bt(y, 1) such that Bt(xi, 18 ) are disjoint from each other and (2.38) holds. By (2.31) and 
distance distortion estimates [43, Lemma 8.3], we have Bt(y, 1) ⊂ B0(y, 2) if T̃ is small. 
At the same time, by choosing δ sufficiently small, we may apply the proof of [29, Lemma 
2.4] (see also [34, Lemma 2.2]) to show that Bt(xi, 18 ) ⊃ B0(xi, r0) for some uniformly 
small r0. Therefore,

N∑
i=1

Volg0 (B0(xi, r0)) ≤
N∑

i=1
Volg0

(
Bt(xi,

1
8)

)
≤ Volg0 (Bt(y, 1))

≤ Volg0 (B0(y, 2)) .

(2.40)

Since xi ∈ Bt(y, 1) ⊂ B0(y, 2), the estimates on N then follow from Ric(g0) lower bound 
and volume comparison. The desired result follows by re-labeling the constants. �
3. Gap theorem of Ricci solitons

In this section we will prove Theorem 1.3, a gap theorem for shrinking and steady 
gradient Ricci solitons. We do not assume a-priori bounds on the curvature. The novel 
idea is to obtain local curvature control under the small Ln/2 curvature and local entropy 
bound (see also [22]). We first prove the following result, from which Theorem 1.3 shall 
follow.

Theorem 3.1. For all A ≥ 1000n, there is ε(n, A), C(n, A), T̂ (n, A) > 0 such that the 
following holds. Suppose (M, g(t)) is a Ricci flow on [0, T ] and p ∈ M be a point such 
that for all t ∈ (0, T ],

1. Bt(p, 1) � M ;

2.
(´

Bt(p,4A
√

t) |Rm|n/2dμt

)2/n

≤ ε0 for some ε0 < ε;
3. ν(Bt(p, 4A

√
t), g(t), t) ≥ −A;
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then we have {
|Rm|(x, t) ≤ C(n, A)ε0t−1

inj(x, t) ≥ C(n, A)−1√
t

(3.1)

for all x ∈ Bt(p, 14A
√

t), t ≤ T ∧ T̂ .

Proof. We will split the proof into three parts.
Step 1. Rough estimates under stronger assumption. We first prove the rough curva-

ture estimate: |Rm(x, t)| ≤ C(n, A)t−1 on Bt(p, 12A
√

t) under an extra assumption:

� Ric(x, t) ≤ t−1, on Bt(p,
√

t), t ∈ (0, T ].

The injectivity radius estimates will follow from the work of [11] by [52, Theorem 3.3]. 
For x ∈ Bt(p, A

√
t), t < T , we define

r(x, t) = sup
{

0 < r < A
√

t − dt(x, p) : sup
P (x,t,r)

|Rm| ≤ r−2

}
(3.2)

where P (x, t, r) = {(y, s) : y ∈ Bs(x, r), s ∈ [t − r2, t] ∩ (0, T ]}. We claim that there are 
ε, c0, T0 > 0 depending only on n, A such that if assumptions hold for ε0 < ε, then for 
all x ∈ Bt(p, A

√
t) and t < T ∧ T0,

F (x, t) = r(x, t)
A

√
t − dt(x, p)

≥ c0. (3.3)

The rough curvature estimate then follows immediately from the claim since for any x
∈ Bt(p, 12A

√
t) and t < T ∧ T0,

|Rm|(x, t) ≤ 1
r2(x, t)

≤ 1
c2

0(A
√

t − dt(p, x))2

≤ 4
c2

0A2t
.

(3.4)

Suppose on the contrary that the claim is not true for some A and n, we can find a 
sequence of Ricci flow {(Mi, gi(t), pi)}∞

i=1, ti, εi → 0 such that

• Rici(x, t) < t−1 for all x ∈ Bt(pi, 
√

t), t < ti;
•

ˆ

Bgi(t)(pi,4A
√

t)

|Rmi|n/2dμi,t ≤ εi for all t < ti;

• ν(Bgi(t)(p, 4A
√

t), gi(t), t) ≥ −2A for t < ti,



18 P.-Y. Chan et al. / Journal of Functional Analysis 282 (2022) 109420
but for some sequence xi ∈ Bt(pi, A
√

t), we have

Fi(xi, ti) = min{Fi(y, s) : s ∈ (0, ti), y ∈ Bs(pi, A
√

s)} → 0. (3.5)

Re-scale the flow by g̃i(t) = Qigi(ti + Q−1
i t), −Qiti ≤ t ≤ 0 where Q−1/2

i = ri(xi, ti) so 
that r̃i(xi, 0) = 1. Then by (3.5)

dg̃i(0)(xi, ∂Bgi(ti)(pi, A
√

ti)) =
dgi(ti)(xi, ∂Bgi(ti)(pi, A

√
ti))

r(xi, ti)

≥ A
√

ti − dti
(xi, pi)

r(xi, ti)

= Fi(xi, ti)−1

→ +∞.

(3.6)

That is to say the pointed Cheeger-Gromov limit of the flow centred at xi is complete 
provided it exists. Furthermore, we may invoke (3.5) again to see that

Qiti = ti

ri(xi, ti)2

>
1

A2

(
A

√
ti − dti

(xi, pi)
ri(xi, ti)

)2

→ +∞.

(3.7)

Next, we would like to show that after passing to a sub-sequence, the flows converge in 
Cheeger-Gromov sense. The two key ingredients are uniform curvature bound in i on 
compact sets in spacetime and the injectivity radius lower bound at xi w.r.t. g̃i(0).

Let r > 0 and y ∈ B̃s(xi, r), s ∈ (−1, 0]. Using ri(xi, ti) = Q
−1/2
i <<

√
ti and 

assumption �, we apply Hamilton-Perelman’s distance estimates [43, Lemma 8.3] (see 
also [25]) with r0 = Q

−1/2
i and K = Qi so that

dQ−1
i s+ti

(xi, pi) ≤ dti
(xi, pi) + CnQ

1/2
i · (ti − Q−1

i s − ti)

≤ dti
(xi, pi) + CnQ

−1/2
i .

(3.8)

Hence

dQ−1
i s+ti

(y, pi) ≤ Q
− 1

2
i r + dQ−1

i s+ti
(xi, pi)

≤ CnQ
− 1

2
i r + dti

(xi, pi)
(3.9)

It follows from (3.5) and (3.7) that for all large i > N(n, A, r),
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A
√

Qiti + s − Q
1
2
i dti

(xi, pi) ≥ A
√

Qiti − 1 − Q
1
2
i dti

(xi, pi)

≥ A
√

Qiti − Q
1
2
i dti

(xi, pi) − A

= F (xi, ti)−1 − A

> Cnr.

(3.10)

Hence by (3.9), y ∈ BQ−1
i s+ti

(pi, A
√

Q−1
i s + ti). We have by (3.5), (3.9) and (3.10) that

r̃i(y, s) = ri(y, Q−1
i s + ti)

ri(xi, ti)

= Fi(y, Q−1
i s + ti)

Fi(xi, ti)
·

A
√

Q−1
i s + ti − dQ−1

i s+ti
(y, pi)

A
√

ti − dti
(xi, pi)

≥
A

√
Q−1

i s + ti − dQ−1
i s+ti

(y, pi)
A

√
ti − dti

(xi, pi)

≥
A

√
Q−1

i s + ti − dQ−1
i s+ti

(xi, pi) − Q
−1/2
i r

A
√

ti − dti
(xi, pi)

≥ F (xi, ti)−1 − A − Cnr

F (xi, ti)−1 .

(3.11)

Thus for all y ∈ B̃s(xi, r), s ∈ (−1, 0], r > 0 and i > N(n, A, r), we have

r̃i(y, s) >
1
2 . (3.12)

This gives the curvature estimates on any compact subset in space-time. By our 
assumptions, for any r > 0 and i > N(n, A, r), the entropy satisfies

ν(B̃t(xi, r), g̃i(t), Qiti + t)

≥ ν(B̃t(pi, 4A
√

Qiti + t), g̃i(t), Qiti + t)

= ν(Bt(pi, 4A

√
ti + Q−1

i t), gi(ti + Q−1
i t), ti + Q−1

i t)

≥ −2A.

(3.13)

By virtue of (3.7), (3.12), (3.13) and [52, Theorem 3.3], the volume ratios Ṽ0(B̃0(xi,r))
rn

are uniformly bounded from below in i for any all r ∈ (0, 1/2]. Thanks to (3.12) and 
Cheeger-Gromov-Taylor injectivity radius estimate [11], the injectivity radius at xi w.r.t. 
g̃i(0) have a uniform positive lower bound in i. Hence by Hamilton’s compactness theorem 
(see [24], [18]), we can pass g̃i(t) to a complete limiting Ricci flow (M∞, ̃g∞(t), x∞), t ∈
(−1, 0] which is a complete solution with bounded curvature. By the choice of Q

−1/2
i
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and (3.9), we have Bti
(xi, Q

−1/2
i ) � Bti

(pi, A
√

ti). Therefore, for all −1 < s < 0, if 
dQ−1

i s+ti
(xi, y) < r, then by (3.8)

dQ−1
i s+ti

(y, pi) ≤ dQ−1
i s+ti

(y, xi) + dQ−1
i s+ti

(xi, pi)

≤ r + dti
(xi, pi) + CnQ

−1/2
i

≤ r + 2A
√

ti.

(3.14)

Therefore, if r =
√

ti, then we have

BQ−1
i s+ti

(xi,
√

ti) � BQ−1
i s+ti

(pi, 3A

√
Q−1

i s + ti)

for all i → +∞. This together with the assumption implies
ˆ

M∞

|R̃m|n/2dμ̃s ≡ 0 (3.15)

for all −1 < s ≤ 0 and hence is a flat solution. Moreover, by the monotonicity of local 
entropy over domain, (3.13) and the proof of Lemma 6.28 in [18], we have

ν(M∞, g̃∞(t)) ≥ −2A (3.16)

for all −1 < t ≤ 0. Recall that we have r̃i(xi, 0) = 1. As the entropy is bounded from 
below for all scales, the manifolds must be of maximum volume growth which implies 
that g̃∞(t) is the static flat Euclidean metric. This contradicts with the curvature radius 
at (x∞, 0) and completes the proof under the assumption �. Now the injectivity radius 
estimate follows from the curvature estimate and the work of [11].

Step 2. Removing assumption � in Step 1. Since Bt(p, 1) � M for t ≤ T , by smoothness 
of solution we may find T̃ ≤ T such that |Ric| < t−1 for x ∈ Bt(p, 

√
t), t ∈ (0, T̃ ). 

W.L.O.G., we may assume that T̃ to be small uniformly, otherwise the required estimate 
on |Rm| follows by Step 1. Hence the result under � gives the curvature estimates over 
a smaller ball, i.e. for some T̂ (n, A),

|Rm|(x, t) ≤ C(n, A)t−1 (3.17)

for all x ∈ Bt(p, 12A
√

t), t ≤ min{T̃ , T̂ (n, A)}.
We claim that T̃ ≥ T ∧ T̂ (n, A). Suppose that is not the case, denote s = T̃ , then by 

the maximality of T̃ there is x̄ ∈ Bs(p,
√

s) such that |Ric|(x̄, s) = s−1. By considering 
the flow s−1g(st), t ∈ [0, 1], we may wlog assume s = 1. By the estimates of inj(x, t), 
(3.17), Theorem 3.3 in [52], Volg(s)

(
Bs(x̄, 1

4A
√

s)
)

is uniformly bounded from below for 
any s ∈ [1/2, 1]. Together with a result of Saloff-Coste [44], we get a uniform Sobolev 
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inequality on Bs(x̄, 14A
√

s) for any s ∈ [1/2, 1]. Then the Moser iteration argument [37, 
Chapter 19] on Bs(x̄, 14A

√
s) and the Hölder inequality would imply

1 = |Ric|(x̄, 1)

≤ c(n)|Rm|(x̄, 1)

≤ C ′(n, A)

⎛⎜⎝ 1ˆ

1/2

 

Bs(x̄, 1
4 A

√
s)

|Rm|n/2dμsds

⎞⎟⎠
2/n

≤ C ′′(n, A)ε0,

(3.18)

which is impossible if ε0 ≤ ε(n, A) is sufficiently small. Hence T̃ ≥ T ∧ T̂ (n, A). This 
implies the curvature estimate for |Rm| on Bt(p, 14A

√
t) by Step 1.

Step 3. Improved curvature estimates. At this point we have already obtained a rough 
curvature estimate on Bt(p, 12A

√
t), t ∈ [0, T ∧T̂ ]. For each s ∈ [0, T ∧T̂ ], we may consider 

g̃(t) = s−1g(st), t ∈ [0, 1]. Since we have curvature bound on [ 1
2 , 1] and entropy lower 

bound, with the scaling invariant Ln/2 assumption we can apply iteration [37] again to 
show that

|Rm(g̃(x, 1))|

≤ C(n, A)

⎛⎜⎝ 1 

1/2

 

Bg̃(s)(x, 1
4 A

√
s)

|Rm(g̃(t))|n/2dμsds

⎞⎟⎠
2/n

≤ C(n, A)ε0.

(3.19)

This gives an improved coefficient on curvature decay by rescaling it back to g(t). �
We now show how our gap theorem for complete shrinking and steady gradient Ricci 

solitons with small ||Rm||Ln/2 , Theorem 1.3, follows from Theorem 3.1. Recall that a 
complete Riemannian manifold (M, g) is said to be a shrinking (steady) gradient Ricci 
soliton if there exists a smooth function f such that

Ric + ∇2f = λg, (3.20)

where the constant λ = 1
2 (= 0 resp.).

Proof of Theorem 1.3. Let λ = 1/2 or 0 be the constant as in (3.20). We consider the 
flow φt of the vector field ∇f

1−2λt with φ0 being the identity map. It is known that g(t) :=
(1 −2λt)φ∗

t g is an ancient solution to the Ricci flow on M with g(0) = g and t ∈ (−∞, 1
2λ )

(= R if λ = 0, see [18,61]). By the reparametrization and the scaling invariance of 
Conditions 1 and 2 in Theorem 1.3, we have for all t ∈ (−∞, 1 ):
2λ
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1. ν(M, g(t)) ≥ −A;
2.

´
M

|Rm|n/2
g(t)dμg(t) ≤ ε.

We are going to show something slightly more general, namely if (M, g(t)) is a complete 
ancient solution to the Ricci flow on (−∞, 0] such that g(t) satisfies the above two 
conditions for each t ∈ (−∞, 0], then (M, g(t)) is isometric to Rn. For any Q > 1 and 
τ ≤ 0, we consider the rescaled solution h(t) := (Q

T̂
)−1g(Q

T̂
t − Q + τ), where t ∈ [0, T̂ ]

and T̂ is the constant as in Theorem 3.1. It is not difficult to see that h(t) also satisfies 
the two conditions in Theorem 1.3. Hence we may apply Theorem 3.1 for all sufficiently 
small ε to get for any x ∈ M

Q|Rm|g(x, τ) = T̂ |Rm|h(x, T̂ )

≤ C(n, A)ε.

By letting Q → ∞, we have g(τ) is flat. The entropy lower bound at all scales then 
implies the maximal volume growth of g(τ) and thus it is isometric to Rn. �
4. Gap theorem with small ||Rm||Ln/2

In this section, we will use Ricci flow to discuss Riemannian manifolds with Ric ≥ 0
and with small ||Rm||Ln/2 which are non-collapsed in term of entropy. We first show that 
under the assumption of Corollary 1.1, we have a long-time solution of the Ricci flow 
and g0 has maximal volume growth.

Theorem 4.1. For any A > 0, there is σ(n, A), C1(n, A) > 0 such that the following 
holds. Suppose (M, g0) is a complete non-compact Riemannian manifold with bounded 
curvature such that

1. Ric(g0) ≥ 0;
2. ν(M, g0) ≥ −A;
3.

(´
M

|Rm(g0)|n/2dμg0

)2/n ≤ ε for some ε < σ.

Then there is a Ricci flow g(t) starting from g0 on M × [0, ∞) such that for all t > 0,

{
supM |Rm(g(t))| ≤ C1εt−1(´

M
|Rm(g(t))|n/2dμt

)2/n ≤ C1ε
(4.1)

Moreover, g0 is of maximal volume growth.

Remark 4.1. The assumption on the global entropy of all scale can also be implied by 
maximal volume growth.
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Proof. For R > 0, we let gR,0 = R−2g0 which still satisfies the assumptions of the 
Theorem, which are scaling invariant. Therefore we can run Shi’s Ricci flow gR(t) [45]
for a short-time with initial metric gR,0. By Theorem 1.2, if σ is sufficiently small, gR(t)
exists on M × [0, T (n, A)] and satisfies⎧⎨⎩ |Rm(gR(t))| ≤ C1εt−1(´

BgR(t)(x,1) |Rm(gR(t))|n/2dμR,t

)2/n

≤ C1ε
(4.2)

for all (x, t) ∈ M × [0, T ]. By re-scaling it back and the uniqueness of Ricci flow [14], we 
obtain a Ricci flow g(t) on [0, TR2) with |Rm| ≤ C1εt−1 and g(0) = g0. Moreover, we 
have for all R, t > 0,

⎛⎜⎝ ˆ

Bt(x,R)

|Rm(g(t))|n/2dμt

⎞⎟⎠
2/n

≤ C1ε. (4.3)

The global integral estimate then follows by letting R → +∞.
To see that g0 is of maximal volume growth, thanks to the improved regularity on 

curvature and monotonicity of entropy ν, the re-scaled Ricci flow gR(t) satisfies

VolgR(1)(BgR(1)(x, 1)) ≥ c. (4.4)

Since the lower bound of scalar curvature is preserved along the Ricci flow, together with 
[46, Corollary 3.3], we have, if σ is sufficiently small, that

c ≤ VolgR(1)(BgR(1)(x, 1))

≤ VolgR(0)(BgR(0)(x, 2))

= Volg0(Bg0(x, 2R))
Rn

.

(4.5)

Since R is arbitrarily large, this completes the proof. �
Before we prove the Corollary 1.1, we will show that the asymptotic volume ratio 

can be improved to be almost Euclidean if we further shrink the integral curvature and 
hence is almost Euclidean in the sense of local entropy [53, Lemma 4.10]. This is in spirit 
similar to the gap theorem proved by Cheeger [9, Theorem 4.32].

Theorem 4.2. For all A, λ, δ > 0, there are σ(n, A, λ, δ), r(n, A, λ, δ) > 0 such that if 
(M, g) is a complete Riemannian manifold of bounded curvature so that for all p ∈ M ,

1. Ric(g) ≥ −λ;
2. ν (Bg(p, 5), g, 1) ≥ −A;



24 P.-Y. Chan et al. / Journal of Functional Analysis 282 (2022) 109420
3.
(´

Bg(p,2) |Rm(g)|n/2dμg

)2/n

< σ.

Then for all p ∈ M ,

Volg (Bg(p, r)) ≥ (1 − δ)ωnrn. (4.6)

Proof. Let g(t), t ∈ [0, T̂ ] be the Ricci flow solution obtained from Theorem 1.2 and 
Shi’s Ricci flow [45]. We claim that for given δ, there are constants T (n, A, λ, δ) and 
σ̂(n, A, λ, δ) such that if σ < σ̂, then for (x, t) ∈ M × [0, T ],

Volg(t)

(
Bg(t)(x,

√
t)

)
≥ (1 − δ)ωntn/2. (4.7)

Suppose on the contrary, we can find a sequence of gi(t), t ∈ [0, T̂ ] such that gi(0)
satisfies the same assumptions as in Theorem 1.2 with εi → 0 now but for some x̂i ∈ Mi

and 0 <
√

ti → 0,

Volgi(ti)
(
Bgi(ti)(x̂i,

√
ti)

)
< (1 − δ)ωnt

n/2
i . (4.8)

We note here that since εi → 0, the existence time T̂ can be chosen to be independent 
of i → +∞ by Theorem 1.2.

Consider the rescaled Ricci flow g̃i(t) = t−1
i g(tit) on Mi × [0, 1]. The original estimates 

from Theorem 1.2 imply that for all sufficiently large i and all (x, t) ∈ Mi × (0, 1],

|Rm(g̃i(t))| ≤ C0(n, A, λ)εit
−1 and injg̃i(t) ≥ c0(n, A, λ)

√
t

which enable us to pass (Mi, ̃gi(t), ̂xi) to a sub-sequential limit (M∞, ̃g∞(t), ̂x∞) in 
smooth Cheeger-Gromov sense by Hamilton’s compactness [24]. In particular, g̃∞(t)
is flat for t ∈ (0, 1] since εi → 0. On the other hand, since ti → 0, we may apply the local 
monotonicity of entropy in [52, Theorem 5.4] again to show that ν(M∞, ̃g∞(t)) ≥ −2A

which implies g̃∞(t) is of Euclidean volume growth by Theorem [52, Theorem 3.3] and 
hence (M∞, ̃g∞(1)) ≡ (Rn, geuc) which contradicts (4.8).

After relabeling the constants, (4.7), together with volume comparison implies that 
for all t ∈ [0, T ] and r <

√
t,

Volg(t)
(
Bg(t)(x, r)

)
≥

(
1 − δ

)
ωnrn. (4.9)
2
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By the scalar curvature lower bound of g(t) and [46, Corollary 3.3],

Volg0 (Bg0(x, r)) ≥ e−nλt · Volg(t) (Bg0(x, r))

≥ e−nλt · Volg(t)

(
Bg(t)(x, r − cn

√
σt)

)
≥ e−nλt

(
1 − δ

2

)
ωn

(
r − cn

√
σt

)n

≥ (1 − δ) ωnrn

(4.10)

if we choose t, σ small enough and r = 1
2
√

t. This completes the proof. �
Proof of Corollary 1.1. Theorem 4.1 implies that g0 is of maximal volume growth. By 
[10, Theorem A.1.11] (see also [53, Theorem 5.7]), it suffices to show that the asymptotic 
volume growth can be made arbitrarily close to the Euclidean one if we shrink σ. This 
follows from Theorem 4.2 and the rescaling argument as in the proof of Theorem 4.1.

Alternatively, we can also prove the homeomorphism by showing M =
⋃∞

i=1 Ui where 
Ui is diffeomorphic to a Euclidean ball and Ui ⊂ Ui+1 for all i using the expansion of 
injectivity radius, curvature estimate |Rm(x, t)| ≤ εt−1 from Theorem 4.1. Then the 
homeomorphism will follow from the main result of [5], see also [13, Section 3]. Notice 
that Gompf’s result says that among the Euclidean spaces only R4 has exotic differential 
structures. So for n > 4, the homeomorphisms can be made to be diffeomorphisms (see 
[48]). �
5. Regularity of Gromov-Hausdorff limit

In this section, we discuss the compactness of Riemannian manifolds satisfying small 
Ln/2 bound. We remark here that the Gromov-Hausdorff limit follows from Ricci lower 
bound directly. The key part is to construct the differentiable structure on the limit 
using the pseudolocality of Ricci flows.

Proof of Theorem 1.4. By Shi’s Ricci flow existence [45] and Theorem 1.2, by choosing 
ε0 small enough we can find a sequence of Ricci flow gi(t) on Mi × [0, T (n, A)] such that

1. Ric(gi(0)) ≥ −λ;
2. ν(Bgi(t)(x, 1), gi(t), 1

32 ) ≥ −2A;
3. |Rm(gi(t))| ≤ Cε0

t

for all (x, t) ∈ Mi × (0, T ]. By [52, Theorem 3.3] and [11], we can apply Hamilton’s 
compactness to pass (Mi, gi(t), pi) to (M∞, g∞(t), p∞) for t ∈ (0, T ] in the smooth 
Cheeger-Gromov sense after passing to sub-sequence. More precisely, there is an ex-
haustion {Ωi}∞

i=1 of M∞ and a sequence of diffeomorphism Fi : Ωi → Mi onto its image 
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such that for any compact subset Ω × [a, b] � M∞ × (0, T ], we have F ∗
i gi(t) → g∞(t) in 

C∞
loc(Ω × [a, b]).
We now construct the Gromov-Hausdorff limit of gi using Fi in a more precise way 

so that its relation to M∞’s topology is clearer. This essentially follows from the proofs 
of Gromov’s compactness theorem and the distance distortion estimates. Since M∞ is 
a smooth manifold, we let {xk}∞

k=1 be a countable dense set with respect to g∞(1). 
Then for each k, l, we have xk, xl ∈ Bg∞(1)(p∞, Rk,l) and hence by distance distortion 
estimates [46, Corollary 3.3] using curvature estimates above, we have

dF ∗
i gi

(xk, xl) ≤ dF ∗
i gi(1)(xk, xl) + Cn ≤ C(k, l) (5.1)

as i → +∞. Here we have used the fact that F ∗
i gi(1) converges locally uniformly to 

g∞(1). Therefore, limi→+∞ dF ∗
i gi

(xk, xl) exists after we pass it to some sub-sequence 
which we denote it as d∞(xk, xl). Repeating the process for each k, l, we define d∞ on 
the dense set. For general x, y ∈ M∞, we define d∞(x, y) using the density of {xk}. This 
is well defined since if there are two sequences xi, x′

i → x ∈ M∞ and yi, y′
i → y ∈ M∞

with respect to g∞(1), then for i sufficiently large,

d∞(xi, yi) ≤ d∞(x′
i, y′

i) + d∞(xi, x′
i) + d∞(yi, y′

i)

≤ d∞(x′
i, y′

i) + C
(
dg∞(1)(xi, x′

i)
)1/2 + C

(
dg∞(1)(yi, y′

i)
)1/2

= d∞(x′
i, y′

i) + o(1),

(5.2)

by using [29, Lemma 2.4] and [46, Corollary 3.3]. By passing i → +∞ and switching the 
sequences, we have the uniqueness of the limit. In other words, we have

lim
i→+∞

dF ∗
i gi

(x, y) = d∞(x, y) (5.3)

for all x, y ∈ M∞.
Now we claim that d∞(·, ·) is in fact a distance defined on M∞ × M∞. To see this, let 

y, z ∈ M∞ be such that d∞(z, y) = 0. If y �= z, then we have dg∞(1)(z, y) > r for some 
r > 0. For any ε > 0, we can find y′, z′ ∈ {xi}∞

i=1 such that dg∞(1)(y, y′) + dg∞(1)(z, z′) +
d∞(y′, z′) < ε and therefore we can find N ∈ N such that for i > N , dF ∗

i gi
(y′, z′) < 3ε. 

Applying [29, Lemma 2.4] again, we deduce

dF ∗
i gi(1)(y′, z′) ≤ C(n, λ)ε2/3. (5.4)

Here we note that although [29, Lemma 2.4] is stated globally, it is easy to see that the 
proof holds locally and only require the curvature bound in form of εt−1 for ε small 
enough and an initial Ricci lower bound which is available in our situation. Therefore, if 
ε is sufficiently small, it will violate the fact that dg∞(1)(y, z) > r. This shows that d∞
defines a distance metric on M∞.
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To see that d∞ generates the same topology as M∞, it suffices to point out that [29, 
Lemma 2.4] together with a limiting argument implies that for d∞(x, y) < 1, we have

C−1
n dg∞(1)(x, y)3/2 ≤ d∞(x, y) ≤ Cndg∞(1)(x, y)1/2 (5.5)

and hence all small open balls are uniformly comparable. Moreover by [34, Lemma 2.2], 
we also see that {Bd∞(p∞, k)}∞

k=1 is an exhaustion of M∞. By the construction, (5.3), 
and (5.5), the pointed Gromov-Hausdorff convergence is straight forward with Fi being 
the Gromov-Hausdorff approximation on each compact set Ω � M∞. �
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