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1. Introduction

The Ricci flow deforms a metric g on a Riemannian manifold (M™, g) according to
the equation

0

Since its introduction by Hamilton [23], the Ricci flow has been used in a wide variety of
settings to regularize metrics. One sense in which this occurs is described by Perelman’s
pseudolocality theorem [43], which has played a crucial role in work on the short time
existence of the Ricci flow, especially in settings where the initial data lacks bounded
curvature or completeness [50,27].

Theorem 1.1. [/3, Theorem 10.1] For any a > 0, there exist positive constant € and §
such that if (M™, g(t)), t € [0,ero] is a solution to the Ricci flow for some rg > 0 and in
addition

e R>—ry? on By(xo,7m0);
o 109" > (1=08)en|Q"L, for any open set in Bo(xo,70), where c,, is the isoperimetric
constant of R™,

then for any t € [0, (e70)?] and x € By(zo,cr0)
|Rm|(z,t) < at™* + (ero) 2.

Thus, Perelman’s pseudolocality tells us that given a lower Ricci bound on an almost
Euclidean region, we can deduce regularization in the sense of curvature control along the
Ricci flow for short times. Since Perelman’s work, many extensions have been developed
in a variety of settings [15,8,49,53].

Related regularization results for the Ricci flow under critical L™2 bounds of Rm have
previously been studied in [56,38] assuming also pointwise two-sided bounds on |Ric],
and in [51] assuming alternatively a supercritical ||Ric||,, p > n/2 bound. In this note,
we will consider conditions which are scaling invariant. In particular, we study the flow
under local critical L™/? bounds of Rm, but will instead do so in combination with a
Ricci lower bound and control of the local entropy, a localization of Perelman’s entropy
introduced by Wang [52].

Below we state our main result, referring to the beginning of Section 2 for most of the
associated notation. Throughout, we will use a A b to denote min{a, b}.

Theorem 1.2. For all A, X > 0, there are Co(n, A, \), o(n, A) and T(n, A,\) > 0 such
that the following holds. Suppose (M™, g(t)) is a complete Ricci flow of bounded curvature
on [0, T] and the initial metric g(0) satisfies the followings:
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(a) Ric(g(0)) = —A;
(b) V(Bg(O)(p, 5)3g(o)ﬂ 1) > 7A;'

2/n
() (fng)(p,Q) |Rm(90)|”/2duo) <e¢ for some e < o,

for all p € M. Then we have for any x € M and t € (O,T/\T],

|Rm|(z,t) <

Coe - -
TO and injgqy(z) = Cy Wt (1.1)

2/n
Moreover, we have (th(z ) |Rm(g(t))|"/2dut> < Coe for all x € M. In particular,

the Ricci flow must exist up to T.

Remark 1.1. In the statement above, we choose the scale 1 in the local entropy condition
only for convenience.

Theorem 1.2 is a smoothing result also based on an initial “almost Euclidean” as-
sumption. However, instead of characterizing this using the isoperimetric constant as in
Theorem 1.1, we instead use rough non-collapsing and small curvature concentration.

Using ideas related to those used to prove Theorem 1.2 and point-picking technique,
we prove a gap result for steady and shrinking gradient Ricci solitons without assuming
curvature boundedness.

Theorem 1.3. For all A > 0, there is e(n, A) > 0 such that if (M™,g,f) is a complete
shrinking or steady gradient Ricci soliton satisfying

() v(Mg) > —A;
(b) (fy, IRm["/2dp)*" < e,

then (M, g) is isometric to the standard Euclidean space R™.

Remark 1.2. The smallness condition (b) in Theorem 1.3 is necessary. Indeed, as pointed
out by Chen-Zhu [12], the Eguchi-Hanson metric (M, g) is Ricci flat with |Rm(z)| <
C(dy(x,p)+1)~% and has Euclidean volume growth. Therefore it satisfies ||Rm||;n/2 < 00
and v(M, g) > —oco by Remark 1.4 and a scaling argument. However, it is not isometric
to Euclidean flat metric.

Gap results for gradient Ricci solitons have been previously studied for instance in
[58,21,60] under global assumptions on the potential function f, sometimes along with
pointwise curvature control (see also [42,16,20,7]).

Theorem 1.2 lends itself to several applications. First, we have a gap result for Ricci-
nonnegative Riemannian manifolds with ||[Rm||;n/2 small.
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Corollary 1.1. For all A > 0, there is o(n,A) > 0 such that if (M™,g) is a complete
noncompact manifold with

1. bounded curvature
2. Ric > 0;

3. v(M,g) > —A;

4

(i Ron/2dp,)" < o
Then g is of Euclidean volume growth. Moreover, M™ is diffeomorphic to R™.

There is a large body of work on Ricci-nonnegative noncompact manifolds, and several
results show that under some additional assumptions (such as almost Euclidean volume
growth), such manifolds must be diffeomorphic to R™ [4,10,54]. Corollary 1.1 is related to
two results of this kind by Ledoux and Xia [35,55], which assert that a complete, Ricci-
nonnegative manifold with Euclidean-type Sobolev constant close to that of Euclidean
space must be diffeomorphic to R™. Indeed, Condition (3) of Corollary 1.1 above can be
seen as a weakening of this requirement, since it holds as long as there is some constant
which makes the Euclidean-type Sobolev inequality valid. This is compensated for by
Condition (4) on the smallness of the total scale-invariant curvature.

Carron has also pointed out to us that Corollary 1.1 is related to the following state-
ment which can be derived from works of Cheeger [9] and Cheeger-Colding [10]: If a
complete noncompact manifold with Ric > 0 has [’ M |Rm|"/ 2dp, sufficiently small rel-
ative its asymptotic volume ratio (assumed nonzero), then it must be diffeomorphic to
R”™. Indeed, these hypotheses ensure by [9, Theorem 4.32] that the manifold must have
asymptotic volume ratio close to one, from which one can conclude that the manifold
must be diffeomorphic to R™ by [10, Theorem A.1.11.] (see also [53, Theorem 5.7] for a
recent proof via Ricci flow). Our assumptions in Corollary 1.1 differ slightly from this
statement’s because our required smallness of ¢ is relative to a lower bound on entropy.
Although we will prove below that under bounded curvature, bounded entropy, and small
R
an entropy lower bound implies an asymptotic volume ratio lower bound in general.

1n/2 we indeed have almost Euclidean volume growth, it is unclear to us whether

The method here relies on the existence of Ricci flow with uniform estimates. It will be
interesting to know if the curvature boundedness is necessary to ensure its existence in
general.

We can also apply Theorem 1.2 to obtain a finite diffeomorphism-type result and a
Gromov-Hausdorff compactness result in the setting of length spaces.

Corollary 1.2. For all A > 0, there is o(n,A) > 0 such that for C1,Cy, the space of
compact manifolds (M, g) satisfying

(a) Ric(g) > —C1;
(b) Voly(M) < Ca;
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(C) ianGM V(Bg(pv5)7gv 1) > _A;
2/n
(d) suppens (fBg(p,Q) |Rm|n/2dug) <o

contains finitely many diffeomorphism types.

Corollary 1.2 follows via an argument analogous to the that in the proof of [32,
Theorem 37.1], which was proved by Perelman [43, Remark 10.5] using Perelman’s pseu-
dolocality. In our case, the use of Perelman’s pseudolocality is replaced by Theorem 1.2.

Theorem 1.4. For any positive integer n > 3 and constant A > 1000n, there exists
constant eg(n, A) such that the following holds. Suppose (M, g;, p;) s a pointed sequence

3
of Riemannian manifolds with the following properties:

(a) (M;,g;) has bounded curvature;
(b) Ric(g:) = —A;
2 2/n .
( (fBgi(q,g) |Rm(9z‘)|n/ dui) < egq for all q in M;;
(d) v(By,(¢,5),9:,1) > —A, for all g in M;.

Then there exists a smooth manifold My, and a complete distance metric doy on My
generating the same topology as Mo, such that after passing to sub-sequence, (M;, dg,, ;)
converges in pointed Gromov Hausdorff sense to (Ms,dg__ , Doo)-

Remark 1.3. The Ricci lower bound assumption on the initial metric can in fact be
weakened to a scalar curvature lower bound and uniform volume doubling for some fixed
scale. But we feel it is more natural to state the result with the Ricci assumption.

Remark 1.4. The initial Ricci curvature lower bound in fact gives a Sobolev inequality
on the geodesic balls in M, which in turn implies a Log Sobolev inequality and provides
a lower bound for the local entropy in terms of its volume. Hence the local entropy
v(Bg,(p,5),g0,1) lower bound condition in the above theorem can be replaced by a
uniform volume lower bound condition for the geodesic balls on M, namely,

VOlgo(Bgo(pa 5)) 2 Vo, (12)

for some positive constant vg, for all p € M. In that case, the constants ¢, C and T also
depend on vg. In particular, the global entropy v(M, g)’s lower bound can be replaced
by Ric > 0 and a lower bound on the asymptotic volume ratio.

There have been many studies of compactness under scale-invariant integral curva-
ture bounds, notably Anderson—Cheeger’s diffeomorphism finiteness result [2]. Orbifold
compactness results under |Rm|| /2 bounds have also been obtained for Einstein man-
ifolds as well as for both compact and noncompact gradient Ricci solitons [1,6,26]. In
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comparison, Theorem 1.4 does not impose such analytic conditions on (M;, g;), but does
require sufficient smallness of the local scale-invariant curvature concentration.

Theorem 1.4 is also a smoothing result for limit spaces of manifolds with lower curva-
ture bounds, achieved via distance distortion estimates and pseudolocality-type estimates
of the Ricci flow. There has been much recent work in this direction in many different
settings [3,40,41,46,47,36,28,33,30,31].

The structure of the rest of this paper is as follows. In Section 2, we prove our main
smoothing result, Theorem 1.2. In Section 3, we prove our gap result for gradient Ricci
soliton, Theorem 1.3. In Section 4, we prove our gap result for complete noncompact
Ricci nonnegative manifolds, Corollary 1.1. Finally in Section 5, we prove our Gromov-
Hausdorff compactness result, Theorem 1.4.

Acknowledgments: The authors would like to thank Peter Topping for the interest in
this work as well as Gilles Carron for pointing out the reference [9] and related results.
The authors would also like to thank the referee for pointing out a mistake in the
earlier version of this paper. P.-Y. Chan would like to thank Bennett Chow, Lei Ni
and Jiaping Wang for continuous encouragement and support. E. Chen thanks Guofang
Wei and Rugang Ye for their support. Part of this work was carried out while M.-C. Lee
was working at the Department of Mathematics at Northwestern University as a Boas
Assistant Professor and at the Department of Mathematics at University of Warwick as
a Research Fellow, which he would like to thank for the hospitality. E. Chen was partially
supported by an AMS—Simons Travel Grant. M.-C. Lee was partially supported by NSF
grant DMS-1709894 and EPSRC grant number P/T019824/1.

2. Curvature estimates of Ricci flows

In this section, we will prove the semi-local estimates of the Ricci flow. We begin by
fixing some notation below.

Suppose (M™, g) is an n dimensional complete (not necessarily compact) Riemannian
manifold and 2 is a connected domain on M with smooth boundary (boundaryless if
M = Q). Hereinafter, we shall reserve the positive integer n for the dimension of M.
Wang [52] localized Perelman’s entropy and proved an almost monotonicity in local
entropy when ( is bounded, generalizing the result in [43]. Using his notation, we have:

Dy(9Q) == {u cu € WEA(Q),u >0 and |Jully = 1}, (2.1)
W(Q,g,u,7) = /T(Ru2 + 4|Vul*) — 2u? log udp (2.2)
Q

- g log(4nT) — n,

v(Q,g,7) = W(Q,g,u,s), (2.3)

inf
u€Dy(2),s€(0,7]

v(Q,9) = inf v(Q,g,7). (2.4)
7€(0,00)
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In order to prove the curvature estimate of Theorem 1.2, we first show that it can be
reduced to the preservation of local L™/ control of Rm(g(t)).

Proposition 2.1. For all A > 0, there is co(n,A) > 0 such that the following holds.
Suppose (M, g(t)),t € [0,T] is a complete Ricci flow with bounded curvature such that
for all (z,t) € M x [0,T], the following holds:
(a) v(By, (2,10°0V/T), g0, 2T) = —A;

n/2
) ([, e RGO 2dptg)) ™ < e fore <1,

then we have

sup [Rm(z,t)| < et™* (2.5)
M
for all t € (0,T].

Proof. By rescaling, we may assume 1" = 1. Suppose on the contrary that the result is
not true. Then for some A, > 0, we can find sequences of d; = c;e; with ¢; — 0, &;
€ (0,1) and {(M;, g:(t),pi)} with bounded curvature such that
1. v(By,0)(2,10°n),4;(0),2) > —A;
2/n
2. (th(I B |Rm(gi(t))|”/2dui7t) < 5; — 0 for all (z,t) € M; x [0, 1]

but for some (z;,t;) € M; x (0,1],
IRm; (z;,t;)] = eit; '
We may choose t; > 0 such that for all (y,s) € M; x (0,¢;),
IRm;(y, s)| < 2g;5~ 1. (2.6)

This can be done since the upper bound of curvature varies continuously by boundedness
of curvature. Let Q; = t;l > 1. Consider the rescaled Ricci flow g;(t) = Qigi(Qflt) for
t € [0, 1] which satisfies

a) V(Bg-;(()) (y7 106n)a§i(0)7 2) > —A for all y € M;;

(
2/n

) ([, v IRIM@G ) i) < 05— 0 for all (y,1) € M; x [0,1];

(c) [Rmg, (y, )| < s~ on M; x (0,1);

(d) [Rmg, (i, 1)] = .

By (a) and [52, Theorem 5.4], we have uniform lower bound of the entropy
v(Bg,4)(y,1),§i(t),1). Now (c) and [52, Theorem 3.3] implies an uniform lower bound
of the volume of Bj, (s, 7) which depends only on A and n for any r, t € [1/2,1].

i
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By the curvature bound (c), we also have uniform Sobolev inequality on Bjg,)(z4, 1),
for t € [1/2,1] (see [44] and [37]). It follows from Kato’s inequality and the evolution
equation of Rm under the Ricci flow that

(% - A> |Rm| < 8Rm|*. (2.7)

Since the curvature is uniformly bounded on [%, 1], we may apply the Moser iteration
argument [37], together with (b) and Hélder inequality to show that
& = |ng1 (Iia 1)|
1
< C(n,A) / ][ |Rmyg,

1/2 Bé,i(t) ($1,1/2)

dpsds

1 2/n (28)

< C'(n, A) / ][ R,

1/2 Bgi(t)(rivl/Q)

"2 dpsds

< C'(n,A)cie; — 0 as i — oo,
which is impossible if ¢; is too small. This completes the proof of the lemma. O

Remark 2.1. The a-priori curvature boundedness and completeness is in fact unnecessary,
see Section 3.

Next, we will show that if the initial local L™/2 is small enough, then it is preserved
in some semi-local sense. We first begin with the energy evolution of L™/? norm.

Lemma 2.1. Suppose n > 3 and (M, g(t)) is a complete solution to the Ricci flow, t €

[0,T]. Then for any o > %, B> 0 and ¢(x,t) compactly supported function in spacetime,
there exist positive constants C(a) and C'(n,«) such that

d
G [ Rl 9 < = C@) [ IV (R + )7 P
M M
+C'(n,a) /¢2(\Rm\2 + B)* T 2 dp,
M
+C'(m,a) [ V6P (Ruaf + 5)"d.
M
+ [ 2606(Ruf? + 5 s

M

where O = % — Dy
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Proof. We compute the time derivative of the integral norm as in [17]. Using %d,ut =
—Rdp < ¢(n)|Rm|du,, we have

d 0
pr /q52(|Rm|2 + B)%dps < / e (¢*(|Rm|* + B)*) dps
M M

(2.10)
+c(n) / ¢*(|Rm|? + B)* T/ 2dy,.
M
For the first term on the R.H.S.,
/ 9 (B(Rmf> + B)*) dpu
ot
M
~ [ 6 (@ (RaP + 5)") di
M
_ / 2606(Rm|? + ) djs; — / 2V|2(Rm? + 5)dus
M M (2.11)
+/a¢2(|Rm|2+B)C“_1D|Rm|2d,ut
M
— /4a(a — 1)@1)2(|Rm|2 + 6)0‘72\Rm|2|V|Rm||2dut
M
- / 80:6(Vb, V|Rml)|Rm|(|Rm|? + 5)° " dpu,
M

where O = % — Agy)- To proceed, we apply the evolution equation of |IRm|? (see [17]

and ref. therein)
ORm[? < —2|VRm|? + 16/Rm>. (2.12)

It follows from (2.12) that

/ ad?([Rm? + £)* 0[Rm [y, < — 2a / ¢*(IRm[? + B)*!|VRm[*dp,
M M (2.13)
+ 16a/¢2(|Rm|2 + B) 1 2qy,.

M

Hence by Kato’s inequality and Hélder inequality,
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/a¢2(|Rm|2 + 8)° ' a[Rm|dp
M

- [ ata = V(R + 5)* 2Rl V|Ran|*du
M

~ [ 86(V6. VR Runf (Ranf + 5)°
M

< —C(a) / ¢*(IRm? + )|V [Rum [2dy
M

1160 / &(Rml? + £)*+2dy,
4 / 80:6|V||V|Rum]||Rm|([Rm[? + 5)*Lds
M
< -C'a) / ¢*(IRm[? + £)°~2|Rum 2|V |Run| [*dp,

+16a/¢2(|Rm|2 + B)* 24y,

+0" () / V2 (Rmf? + 8)*dpe.

We also have by Cauchy Schwarz inequality

‘(@) [ ¢*(Ranf? + 5)*|Ranf 7 Ron Pl
M

= C"(0) / FIV(Rmf? + 5)% dp 214

C//l

/ V(@(Ranf + 5)8)Pdue — €"(a) [ V6 (Ranf? + 5)° s

M
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All in all,

%/¢2(|Rm|2 + B8)%dpy < C(n,a)/¢2(|Rm|2 +5)a+1/2dﬂt
M M

+ [ 2606(Rf? + 5 dus

M

+Cla) / 2V (Rmf? + B)*dpu
M

e R
M

(2.15)

Our desired inequality (2.9) then follows. O

We also need the following lemma showing that the local entropy implies local Sobolev
inequality.

Lemma 2.2. For all A > 1000n,A > 0 and 6 > 0, there are positive constants
Cs(n, A, N, 6) and T(n,A, A, 0) such that the following holds. Suppose (M, g(t)) is a com-
plete Ricci flow with bounded curvature on [0,T] and for allp € M and allt € (0,T1], all
of the following conditions are satisfied

1. Rg() 2 —nA;
2. V(Bo(p75),g(0), 1) Z _A;
3. Ric(p,t) <ot L.

Then we have for any p € M and t € (0, min{T, T}],
v(Bi(p,2),9(t),327") > —24 (2.16)

and for any ¢ € C3°(B(p,2))

n—2
n

/ o Zdu, | < Cs / Vol + (R4 end + De2dpe | . (217)

Bt (p,2) Bt (p,2)

Proof. For (2.16), we apply [52, Theorem 5.4] to get for all small ¢ < min{T'(n, A, §), T}

v(Bo(p,5),9(0),t +3271) — 16t
V(BO(pv 5)7 g(o)a ]-) —-A (218)
—2A

V(Bt(pa 2)7 g(t)’ 3271)

AVARRLY,

Y
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This completes the proof of (2.16). Since the Ricci flow has bounded curvature, it follows
from the maximum principle that there exists a dimensional constant c¢,, such that for
all t < min{T(n,A,(S), T}

R(z,t) > —cp. (2.19)

By the definition of local v entropy (2.2) and (2.16), we have a uniform Log Sobolev
inequality: for any 7 € (0,3271), u € Wol’Q(Bt(p,Q)), with [lul g2 =1,

/ u?logu?dp, <t / 4|Vu|? + Ru*dp,
Bi(p.2) Bi(p.2) (2.20)

- g log(4mT) — n + 2A.

The uniform Log Sobolev inequality then implies a uniform Sobolev inequality along the
Ricci flow as first described in [59] (see also [17,57] and Theorems 2.1 and 2.2). Indeed,
when 0B (p, 2) is nonempty, the same arguments as in [19,57] will give us Theorems 2.1
and 2.2 below for the Dirichlet Sobolev inequality, and these together with (2.20) imply
(2.17), finishing the proof. O

We shall now state Theorems 2.1 and 2.2 without mentioning the proofs, since they
are essentially the same as those found in [19,57]. Let (N,h) be a smooth compact
Riemannian manifold with metric h and smooth boundary 0N, H the elliptic operator
=-A+ 4’1(R + ¢pA), where A and ¢,, are non-negative constants such that R > —c, A
on N,

Qu,v) = /Vu Vo +4 YR+ e\ - vdpuy, (2.21)
N

—tH

and write Q(u,u) as @Q(u). For t > 0, consider the semigroup e~ " of the operator H. For

any ug € L?(N, h), the function u(t) := e~ g is the solution to the Dirichlet evolution

equation
ou __
3t — —Hu
u(0) = ug (2.22)
u =0 on ON.

Theorem 2.1 ([19,57]). Let o* € (0, 00]. Suppose that for all o € (0,0%),

/u2 log u?dp < 0’/ |Vul? + 47 1R + e, Nuldp + B(0) (2.23)
N N
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is true for any u € Wy 2(N) with ||ully = 1, where B is a continuous nonincreasing
function and R+ c, A > 0. If in addition the function,

1 t
r(t) = — [ B(s)ds (2.24)
2t 0/

is finite for any t € (0,0*). Then for each u € L?*(N)

lle™ ulloo < e™®Jull (2.25)
fort € (0,0*/4). Moreover, for all uw € L*(N)

e ufloo < €270 uly (2.26)
fort e (0,0%/4).

Theorem 2.2 ([19,57]). Suppose there exist positive constants ¢ and t1 such that for all
t € (0,t1) and u € L?(N)

le™ P ulloo < ert™ % |Julf2. (2.27)
Set Hy = H 4+ 1. Then for some constant C(cy,t1,n),

1Hy 20| 20, < Cllull2, (2.28)
for any u € L*(N). In particular,

lull?n < C2|1Hy ul3
g (2.29)
< CHQw) + [[ul3),

for all w € Wy *(N), where Hé/z and HJI/Q denote the fractional operator of Hy and
its inverse respectively (see [19,57]).

With Proposition 2.1 and Lemmas 2.1 and 2.2 in hand, we can now prove Theorem 1.2
to conclude this section.

Proof of Theorem 1.2. Let A be a constant to be chosen later. Since g(t) has bounded
curvature, we may let 7' be the maximal time such that for all (z,t) € M x [0, A T),
we have

2/n

[Rm(g(t))|"?dps | < Ae. (2.30)

By (x,1)
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By [52, Theorem 3.3], Proposition 2.1 and the injectivity radius estimates in [11], it suf-
fices to show that 7" is bounded from below uniformly if £ and A are chosen appropriately.

We may choose ¢ small enough so that Ae = § < 1 is small. Therefore, the Ricci flow
g(t) satisfies

2/n
1 <fBgo (z,2) ‘Rm(g(())””/?dﬂo) < €;

2/
2. (fBg(t)(z,l) |Rm(9(t))|n/2dﬂt)
3. v(By,(2,5),90,1) > —A;
4. Ric(go) > —A

n
<4

for all (z,t) € M x [0,T AT). By the monotonicity of the local entropy over domain
and scale, we may assume 1’ < 25121012 so that applying Proposition 2.1 on g(t),t €
0,7 AT) yields

S]l\l/[p Rm(g(t))| < ¢(n, A)ot~! < t~1 (2.31)

Now we are ready to estimate 7. For any 2o € M, we let n(z,t) = dy(x, z0) + cnV/t
and define ¢(x,t) = e 1% p(n(x,t)) where ¢(s) is a cutoff function on R so that ¢ = 1 on

(=00, 3], ¢ = 0 outside (—oo, 1] and satisfies ¢” > —10¢p, 0 > ¢’ > —10,/. By choosing

¢n large enough, we have from [43, Lemma 8.3] that

(6875 - A) <0 (2.32)

in the sense of barrier and hence in the sense of distribution, see [39, Appendix A].
Using Lemma 2.1 with the above choice of ¢ and o« = n/4, we conclude that

d
G [ R+ 9yt <= €t [ 19(@(RmP + )"/ P
M M
+Co [ (R 4/ 2 (2.33)
M

+C, / (|Rm|2 +6)n/4d,ut.

supp(®)

Noted that ¢ is supported on Bi(xg,1), By Lemma 2.2, the first term on the right
can be estimated as
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o / IV (G(Rm? + B)"/®) 2dp,

n—2
n

M
> Ci(n, A) (M/|(¢52(|Rm|2 + )M 7 dpy (2.34)

— Ci(n, A) /¢2(R +eah + 1)(|Rm[? + 8)"*dp,
M

while the second term can be estimated by

C, / $(Rml? + B)"/ 41/ 2y,
M

n

<0, / (IRm|* + 8) % dp Q/ [$*(IRm? + 8) %] ™7 due (2.35)

supp(¢)

< Cpd <M/ [6*(IRm|? + £)%] ™ dp,

as 8 — 0. We can apply the same argument to [, $*R(|Rm|* + 3)"/*dp; to deduce the
same upper bound. Therefore, we conclude that if § < o(n, A) << 1, then as 8 — 0 we

n

have

d
M Bi(z0,1) (2.36)

<C(n,A,\)5%

By letting 5 — 0 together with the assumption on the initial metric, we conclude that
for all (z0,t) € M x [0,T AT),

IRm|"™2dp; < €7 (Cy(n, A, \)AZt + 1)e5. (2.37)
Bt(wo,i)
Now we claim that there is T'(n, A) depending only on n, A such that for all (y,t) €

M x [O,T/\T]7 ifTAT < T(n, A), then we have

(2.38)
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for some N(n,A,\) € N. If the claim is true, then we conclude that for all (y,t) €
M x [0,T AT AT(n, A,

N
Rl e <3° [ (R 2
=g, (2, 1) (2.39)

< NeOT(CLAST +1)e5.

Bt(yvl)

Therefore if we choose A™/? = 4N and further require T < (43 N2C;)~!, then we
have contradiction and hence T’ > T(n,AQ\). This will complete the proof. Hence, it
remains to establish the uniform covering.

For each (y,t) x M x [0,T AT AT), we let {z;}), be a maximal set of points in
By (y,1) such that By(x;, §) are disjoint from each other and (2.38) holds. By (2.31) and
distance distortion estimates [43, Lemma 8.3], we have By(y,1) C Bo(y,2) if T is small.
At the same time, by choosing ¢ sufficiently small, we may apply the proof of [29, Lemma
2.4] (see also [34, Lemma 2.2]) to show that By(z;, ) D Bo(wi, ) for some uniformly
small ro. Therefore,

N N 1

Z:VolgO (Bo(z4,70)) < Z:Volg0 <Bt(mi7 g))

i=1 =1 (2.40)
< Voly, (Bi(y, 1))

S VOlgo (BO(y’ 2)) .

Since z; € Bi(y,1) C By(y, 2), the estimates on N then follow from Ric(gg) lower bound
and volume comparison. The desired result follows by re-labeling the constants. 0O

3. Gap theorem of Ricci solitons

In this section we will prove Theorem 1.3, a gap theorem for shrinking and steady
gradient Ricci solitons. We do not assume a-priori bounds on the curvature. The novel
idea is to obtain local curvature control under the small L"™/? curvature and local entropy
bound (see also [22]). We first prove the following result, from which Theorem 1.3 shall
follow.

Theorem 3.1. For all A > 1000n, there is £(n, A),C(n, A),T(n,A) > 0 such that the
following holds. Suppose (M, g(t)) is a Ricci flow on [0,T] and p € M be a point such
that for all t € (0,7,

1. Bt(p, 1) c M,'

2/n
2. (th(pAA\/g) |Rm|"/2dut) < egg for some gy < €;
3. v(Bi(p,4AV1), g(t),t) > —A;
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then we have

|[Rm|(z,t) < C(n, A)got ™!
inj(x,t) > C(n, A)~"/t

for all x € By(p, %A\/i),t <TAT.

Proof. We will split the proof into three parts.
Step 1. Rough estimates under stronger assumption. We first prove the rough curva-
ture estimate: |[Rm(z, t)| < C(n, A)t~" on By(p, 3 AV/t) under an extra assumption:

*  Ric(x,t) <t7', on B(p,V1),t e (0,T).

The injectivity radius estimates will follow from the work of [11] by [52, Theorem 3.3].
For = € By(p, AV't),t < T, we define

r(z,t) = sup {O <r < AVt —di(z,p): sup |Rm|< 7“_2} (3.2)
P(x,t,r)

where P(z,t,7) = {(y,s) : y € Bs(z,7),s € [t —r2,t] N (0,T]}. We claim that there are
€,¢o, Ty > 0 depending only on n, A such that if assumptions hold for g < ¢, then for
all z € By(p, AVt) and t < T ATy,

r@t) (3.3)

P = = o) -

The rough curvature estimate then follows immediately from the claim since for any x
€ Bi(p, %A\/f) and t < T ATy,

1
< -
|Rm|(z,t) < )

1
<
T A(AVEt—di(p,x))?
< 4
~ A%

(3.4)

Suppose on the contrary that the claim is not true for some A and n, we can find a
sequence of Ricci flow {(M;, ¢g;(t), pi)}24, ti,e; — 0 such that

e Ric;(z,t) <t for all x € By(p;, V1), t <ty
. / |Rmi|”/2dui,t < g for all t < t;;

Bgi(t)(p“iAA\/z)
o V(B (p,4AV1), gi(1), 1) > —2A for t < t;,
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but for some sequence z; € By(p;, AV't), we have

Fi(z;,t;) = min{F;(y,s) : s € (0,t;),y € Bs(p;, AV/s)} — 0. (3.5)

Re-scale the flow by g;(t) = Qig:(t; + Q;lt), —Qit; <t <0 where Qi_l/2

that fi(xi, O) = 1. Then by (35)

= ri(z;,t;) so

_ dgi(ti)(miv 8Bgi(ti)(pi7 A\/E))
(i, ti)

AVt — dy, (i, pi)
= r(wg,t;) . (3.6)

= Fy(wi,t) "

3. (0) (i, OBy, 1) (Pi> AVE))

— +00.

That is to say the pointed Cheeger-Gromov limit of the flow centred at x; is complete
provided it exists. Furthermore, we may invoke (3.5) again to see that

t;
iti = ————5
@ ri(x;, t;)?
1 (AVE — dy, (i, pi) ? (3.7)
A2 Ti(zhti)
— +00.

Next, we would like to show that after passing to a sub-sequence, the flows converge in
Cheeger-Gromov sense. The two key ingredients are uniform curvature bound in ¢ on
compact sets in spacetime and the injectivity radius lower bound at z; w.r.t. §;(0).

Let r > 0 and y € By(z;,7),s € (—1,0]. Using r;(x;,t;) = Qi_l/2 << +/t; and
assumption x, we apply Hamilton-Perelman’s distance estimates [43, Lemma 8.3] (see
also [25]) with rg = Q;1/2 and K = @Q; so that

Aoty (@i p) < diy(wip) + CoQ)? - (8= Q7 's — 1) (3.8)
<d,(xi,pi) + Canl/z-
Hence
_1
dQ;lerti (y,pi) < Ql r+ dQ;lerti (i, pi) (3.9)

< CpQ; 21 +dy, (x4, p5)

It follows from (3.5) and (3.7) that for all large i > N(n, A,r),
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A\/ ta +S Q dt xz;pz >A\/ Qll _Q dt xz;pz)

> A\/ Qz 7 Q dt xz,pz) - A (310)
= F(.’Ei,ti)_l — A
> Cpr.

Hence by (3.9), y € Bo-1,4s, (pi, A/ Q; s 4 t;). We have by (3.5), (3.9) and (3.10) that

ri(y, Qi 's +t;)

7:i(yag) = 7"'(1“ t)
Ry, Qs 1) AVQsHti—doigy, (1)
B Fi(xs,t;) AVt — dy, (2, pi)

A\/QT o st (Y Pi) (3.11)

A\/_z dy, (xz,pz)

A\/Q s+t —d o 9+t xz,pz)—Qi_l/?r
A\/_ dt (Il;pt)

F(xjt;) ™t — A= Cyr
> .
- F(zzﬁti)il

Thus for all y € By(x;,7),s € (—1,0], 7 > 0 and i > N(n, A,r), we have

Fi(y,s) > (3.12)

N =

This gives the curvature estimates on any compact subset in space-time. By our
assumptions, for any r > 0 and i > N(n, A,r), the entropy satisfies

v(Bi(wi,7), §i(t), Qit'+t)
> v(By(pi, AA/ Qiti + 1), Gi(t), Qiti + )

(3.13)
= v(By(pi, 44\t + Q) gs(t; + Q7 1), t; + Q7 ')

> —2A.

By virtue of (3.7), (3.12), (3.13) and [52, Theorem 3.3], the volume ratios w
are uniformly bounded from below in ¢ for any all » € (0,1/2]. Thanks to (3.12) and
Cheeger-Gromov-Taylor injectivity radius estimate [11], the injectivity radius at z; w.r.t.
gi(0) have a uniform positive lower bound in . Hence by Hamilton’s compactness theorem
(see [24], [18]), we can pass §;(t) to a complete limiting Ricci flow (Moo, foo (), Too), t €
(—1,0] which is a complete solution with bounded curvature. By the choice of Q;l 2
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and (3.9), we have Bti(xi,Qfl/z) € By, (pi, AV/t;). Therefore, for all —1 < s < 0, if

i

dQ:15+ti (z4,y) < r, then by (3.8)

dQ;lsHi (y,pi) < dQ;15+ti (y,2) + dQ;lerti (i, p:)
<r+ 244

Therefore, if r = /f;, then we have

BQ;15+ti (zi, Vi) € BQ;15+t7¢ (pi, 3A\/ Qi_ls +t:)

for all ¢ = +oo. This together with the assumption implies

/ |Rm|"/2dji; = 0 (3.15)

MOO

for all —1 < s < 0 and hence is a flat solution. Moreover, by the monotonicity of local
entropy over domain, (3.13) and the proof of Lemma 6.28 in [18], we have

U(Moo, Goo(t)) > —24 (3.16)

for all —1 < t < 0. Recall that we have 7;(z;,0) = 1. As the entropy is bounded from
below for all scales, the manifolds must be of maximum volume growth which implies
that §oo(t) is the static flat Euclidean metric. This contradicts with the curvature radius
at (Zo0,0) and completes the proof under the assumption x. Now the injectivity radius
estimate follows from the curvature estimate and the work of [11].

Step 2. Removing assumption x in Step 1. Since B:(p,1) € M for t < T, by smoothness
of solution we may find T < T such that |[Ric| < t~' for = € B;(p,v1), t € (0,T).
W.L.O.G., we may assume that 7" to be small uniformly, otherwise the required estimate
on |Rm]| follows by Step 1. Hence the result under * gives the curvature estimates over
a smaller ball, i.e. for some T(n, A),

|Rm|(z,t) < C(n, A)t™* (3.17)

for all x € By(p, %A\/z_t), t <min{T, T’(n, A)}.

We claim that T > T A T(n, A). Suppose that is not the case, denote s = T, then by
the maximality of T there is Z € B,(p, v/s) such that |Ric|(Z,s) = s~'. By considering
the flow s~lg(st),t € [0,1], we may wlog assume s = 1. By the estimates of inj(x, ),
(3.17), Theorem 3.3 in [52], Voly(s) (Bs(Z, $A4/s)) is uniformly bounded from below for
any s € [1/2,1]. Together with a result of Saloff-Coste [44], we get a uniform Sobolev



P.-Y. Chan et al. / Journal of Functional Analysis 282 (2022) 109420 21

inequality on B, (Z, $A4/s) for any s € [1/2,1]. Then the Moser iteration argument [37,
Chapter 19] on B,(Z, $A/s) and the Holder inequality would imply

1 = [Ric|(z, 1)
< ¢(n)[Rm|(z, 1)

2
1 /m

< C'(n, A) / ][ |Rm | 2dyusds
172 B,z 1 AV5)

< C"(n, A)eo,

(3.18)

which is impossible if g9 < e(n, A) is sufficiently small. Hence T > T A T'(n, A). This
implies the curvature estimate for [Rm| on By(p, ; AV/t) by Step 1.

Step 3. Improved curvature estimates. At this point we have already obtained a rough
curvature estimate on By (p, 1 Av/1),t € [0, T AT). For each s € [0, TAT)], we may consider
G(t) = s71g(st),t € [0,1]. Since we have curvature bound on [, 1] and entropy lower
bound, with the scaling invariant L™/? assumption we can apply iteration [37] again to
show that

[Rm(g(z, 1))

2
1 /n

<coun|f  f  Rm@Oduds (3.19)
1/2 By(ay (2,2 A/5)

< C(n, A)eo.
This gives an improved coefficient on curvature decay by rescaling it back to g(¢). O

We now show how our gap theorem for complete shrinking and steady gradient Ricci
solitons with small ||[Rm||zn/2, Theorem 1.3, follows from Theorem 3.1. Recall that a
complete Riemannian manifold (M, g) is said to be a shrinking (steady) gradient Ricci
soliton if there exists a smooth function f such that

Ric + V2 f = \g, (3.20)
where the constant A = % (=0 resp.).

Proof of Theorem 1.3. Let A = 1/2 or 0 be the constant as in (3.20). We consider the
flow ¢; of the vector field % with ¢y being the identity map. It is known that g(t) :=
(1—2At)¢; g is an ancient solution to the Ricci flow on M with g(0) = g and ¢ € (—o0, 55)
(= R if A = 0, see [18,61]). By the reparametrization and the scaling invariance of
Conditions 1 and 2 in Theorem 1.3, we have for all t € (—o0, %)
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L. V(M7g(t)) > _A;
/2
2. [y |Rm|Z(t)dpg(t) <e.
We are going to show something slightly more general, namely if (M, g(t)) is a complete
ancient solution to the Ricci flow on (—o0,0] such that g(¢) satisfies the above two
conditions for each t € (—o0,0], then (M, g(t)) is isometric to R™. For any @ > 1 and
7 < 0, we consider the rescaled solution h(t) := (%)*lg(%t — Q +7), where t € [0,7]
and T is the constant as in Theorem 3.1. It is not difficult to see that h(t) also satisfies
the two conditions in Theorem 1.3. Hence we may apply Theorem 3.1 for all sufficiently
small ¢ to get for any z € M

Q|Rmlg(z,7) = T|Rm\h(aj,’f”)
< C(n,Ae.

By letting @ — oo, we have g(7) is flat. The entropy lower bound at all scales then
implies the maximal volume growth of g(7) and thus it is isometric to R”. O

4. Gap theorem with small ||Rm||zn/2

In this section, we will use Ricci flow to discuss Riemannian manifolds with Ric > 0
and with small ||Rm|

1n/2 Which are non-collapsed in term of entropy. We first show that
under the assumption of Corollary 1.1, we have a long-time solution of the Ricci flow
and gg has maximal volume growth.

Theorem 4.1. For any A > 0, there is o(n, A),C1(n,A) > 0 such that the following
holds. Suppose (M, go) is a complete non-compact Riemannian manifold with bounded
curvature such that

1. RlC(go) Z 0,’
2. V(M, g()) > _A,'
3. (fM \Rm(go)\"md,ugo)wn < ¢ for some e < 0.

Then there is a Ricci flow g(t) starting from go on M x [0,00) such that for allt >0,

{ sup,; [Rm(g(t))| < Cyet=? (4.1)

n 2/n
(Jfar Rm(g(t)[*2dpe) ™" < Che
Moreover, go is of maximal volume growth.

Remark 4.1. The assumption on the global entropy of all scale can also be implied by
maximal volume growth.
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Proof. For R > 0, we let gro = R 2go which still satisfies the assumptions of the
Theorem, which are scaling invariant. Therefore we can run Shi’s Ricci flow gg(t) [45]
for a short-time with initial metric gg 0. By Theorem 1.2, if o is sufficiently small, gr(t)
exists on M x [0,T'(n, A)] and satisfies

IRm(gr(t))] < Cret!

2/n (4.2)
(fBgR(t)(z,l) |Rm(9R(t))|”/2duR,t) < Cie

for all (x,t) € M x [0, T]. By re-scaling it back and the uniqueness of Ricci flow [14], we
obtain a Ricci flow g(t) on [0, TR?) with |Rm| < Cyet~! and g(0) = go. Moreover, we
have for all R, > 0,
2/n
[Ran(g(t))|"*dpue < Che. (4.3)
Bt (z,R)
The global integral estimate then follows by letting R — +o0.

To see that g is of maximal volume growth, thanks to the improved regularity on
curvature and monotonicity of entropy v, the re-scaled Ricci flow gr(t) satisfies

Volg . 1) (Bgr(1)(2,1)) > ¢ (4.4)

Since the lower bound of scalar curvature is preserved along the Ricci flow, together with
[46, Corollary 3.3], we have, if o is sufficiently small, that

¢ < Volg,(1)(Bgr(1y (2, 1))

< Volg,, (0) (Byr(0)(7,2)) (4.5)
— VOlgo (BQO (l‘, 2R>)
Rr '

Since R is arbitrarily large, this completes the proof. O

Before we prove the Corollary 1.1, we will show that the asymptotic volume ratio
can be improved to be almost Euclidean if we further shrink the integral curvature and
hence is almost Euclidean in the sense of local entropy [53, Lemma 4.10]. This is in spirit
similar to the gap theorem proved by Cheeger [9, Theorem 4.32].

Theorem 4.2. For all A, \,§ > 0, there are o(n, A, \,0),r(n, A, \,0) > 0 such that if
(M, g) is a complete Riemannian manifold of bounded curvature so that for allp € M,

1. Ric(g) > =X;
2. v(By(p,5),9,:1) = —4;
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3. (L, oy IR( )\n/2dug)2/n <o.

Then for allp € M,

Vol, (By(p, 7)) > (1 — §)wpr™. (4.6)

Proof. Let g(t),t € [0,7] be the Ricci flow solution obtained from Theorem 1.2 and
Shi’s Ricci flow [45]. We claim that for given §, there are constants T'(n, A, A, d) and
6(n, A, A\, d) such that if o < &, then for (z,t) € M x [0, T,

Vol () (Bg<t) (z, ﬁ)) > (1= §)wnt"?. (4.7)

Suppose on the contrary, we can find a sequence of g;(t),t € [0,7] such that g;(0)
satisfies the same assumptions as in Theorem 1.2 with ¢; — 0 now but for some &; € M;
and 0 < v/; — 0,

VOlgi(ti) (Bgi(ti)(-f:ia \/E)) < (1 — (5) ntn/Q. (48)

We note here that since £; — 0, the existence time 7' can be chosen to be independent
of i — +o00 by Theorem 1.2.

Consider the rescaled Ricci flow §;(t) = t; 'g(t;it) on M; x [0, 1]. The original estimates
from Theorem 1.2 imply that for all sufficiently large ¢ and all (z,t) € M; x (0, 1],

Rm(g;(t))| < Co(n, A, N)e;t™'  and  inj, 4 > co(n, A, NV
gi(t)

which enable us to pass (M;,g;(t),2;) to a sub-sequential limit (Mso, Goo(t), £oo) in
smooth Cheeger-Gromov sense by Hamilton’s compactness [24]. In particular, §oo(t)
is flat for ¢ € (0, 1] since ; — 0. On the other hand, since ¢; — 0, we may apply the local
monotonicity of entropy in [52, Theorem 5.4] again to show that v(Mu, §oo(t)) > —2A
which implies §oo(t) is of Euclidean volume growth by Theorem [52, Theorem 3.3] and
hence (Mo, §oo(1)) = (R™, geue) which contradicts (4.8).

After relabeling the constants, (4.7), together with volume comparison implies that
for all t € [0,T] and r < V/1,

0
Volg) (Byy(2,7)) > (1 - 5) wpr™. (4.9)
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By the scalar curvature lower bound of g(t) and [46, Corollary 3.3],

VOlgo (Bgo (1‘, 7")) > e—nAt . VOlg(t) (Bgo (:L‘, T))

> oA <1 - é) Wn, (r - cn\/E>n

> oAt .VOlg(t) (Bg(t) (l‘, r— Cn\/a))
(4.10)

2

> (1=0)wnr"
if we choose t, 0 small enough and r = %\/f This completes the proof. O

Proof of Corollary 1.1. Theorem 4.1 implies that g¢ is of maximal volume growth. By
[10, Theorem A.1.11] (see also [53, Theorem 5.7]), it suffices to show that the asymptotic
volume growth can be made arbitrarily close to the Euclidean one if we shrink o. This
follows from Theorem 4.2 and the rescaling argument as in the proof of Theorem 4.1.

Alternatively, we can also prove the homeomorphism by showing M = U;’il U; where
U, is diffeomorphic to a Euclidean ball and U; C U;y; for all ¢ using the expansion of
injectivity radius, curvature estimate |Rm(xz,t)| < et=! from Theorem 4.1. Then the
homeomorphism will follow from the main result of [5], see also [13, Section 3]. Notice
that Gompf’s result says that among the Euclidean spaces only R* has exotic differential
structures. So for n > 4, the homeomorphisms can be made to be diffeomorphisms (see
[48]). O

5. Regularity of Gromov-Hausdorff limit

In this section, we discuss the compactness of Riemannian manifolds satisfying small
L"/? bound. We remark here that the Gromov-Hausdorff limit follows from Ricci lower
bound directly. The key part is to construct the differentiable structure on the limit
using the pseudolocality of Ricci flows.

Proof of Theorem 1.4. By Shi’s Ricci flow existence [45] and Theorem 1.2, by choosing
o small enough we can find a sequence of Ricci flow g;(t) on M; x [0,T(n, A)] such that

for all (z,t) € M; x (0,T]. By [52, Theorem 3.3] and [11], we can apply Hamilton’s
compactness to pass (M;, g;(t),pi;) to (Mso,goo(t), Do) for t € (0,T] in the smooth
Cheeger-Gromov sense after passing to sub-sequence. More precisely, there is an ex-
haustion {£2;}5°, of M and a sequence of diffeomorphism F; : Q; — M; onto its image



26 P.-Y. Chan et al. / Journal of Functional Analysis 282 (2022) 109420

such that for any compact subset Q x [a,b] € Mo x (0,T], we have Fg;(t) = goo(t) in
Cr (€ x [a,b]).

We now construct the Gromov-Hausdorff limit of g; using F; in a more precise way
so that its relation to My,’s topology is clearer. This essentially follows from the proofs
of Gromov’s compactness theorem and the distance distortion estimates. Since M, is
a smooth manifold, we let {z1}32, be a countable dense set with respect to goo(1).
Then for each k,[, we have xy,z; € By (1)(Poo, Ri,1) and hence by distance distortion
estimates [46, Corollary 3.3] using curvature estimates above, we have

dFi*gz‘ (mk,xl) < dFi*g7,(1)(xkvxl> +C, < C(k‘,l) (5.1)

as i — +oo. Here we have used the fact that Fg;(1) converges locally uniformly to
goo(1). Therefore, lim; ;| oo drrg, (Tr, 1) exists after we pass it to some sub-sequence
which we denote it as doo (2, 2;). Repeating the process for each k, [, we define do, on
the dense set. For general x,y € M, we define do (2, y) using the density of {z;}. This
is well defined since if there are two sequences x;, 2, — & € Mo and y;,y; — y € My
with respect to goo(1), then for i sufficiently large,

< doo(x;,yg) + doo(xi,x;) + dOO(yzdy;)

1/2 \1/2
< doo(xgvy;) +C (dgoo(l)(lfi,x;)) / +C (dgoc(l)(yi7yi)) / (52)
doo(x;,yg) +o(1),

doo (i, Yi)

by using [29, Lemma 2.4] and [46, Corollary 3.3]. By passing i — +oo and switching the
sequences, we have the uniqueness of the limit. In other words, we have

z—li—o—moo dF,fgf, ($7 y) =dw (l‘, y) (53)
for all z,y € M.

Now we claim that doo (-, -) is in fact a distance defined on My, x M. To see this, let
Y,2 € My be such that doo(z,y) = 0. If y # 2z, then we have d,_(1)(z,y) > r for some
r > 0. For any ¢ > 0, we can find ¢/, 2’ € {;}§2, such that dy__1)(y,y") +dy__1)(2,2") +
deo(y',2") < € and therefore we can find N € N such that for i > N, dp-g, (4, 2') < 3e.
Applying [29, Lemma 2.4] again, we deduce

drz gy, 2') < Oln, N, (5.4)

Here we note that although [29, Lemma 2.4] is stated globally, it is easy to see that the
proof holds locally and only require the curvature bound in form of et=! for ¢ small
enough and an initial Ricci lower bound which is available in our situation. Therefore, if
¢ is sufficiently small, it will violate the fact that d,__(1)(y, 2) > 7. This shows that d
defines a distance metric on M.
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To see that d., generates the same topology as M, it suffices to point out that [29,
Lemma 2.4] together with a limiting argument implies that for de(z,y) < 1, we have

Cgldgoo(l) (:I:a y)3/2 < doo(xa y) < Cndgoo(l)(x) y)1/2 (55)

and hence all small open balls are uniformly comparable. Moreover by [34, Lemma 2.2,
we also see that {By__ (pso, k)}52; is an exhaustion of M. By the construction, (5.3),
and (5.5), the pointed Gromov-Hausdorff convergence is straight forward with F; being
the Gromov-Hausdorff approximation on each compact set Q € M,,. O
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