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The Yamabe flow on asymptotically
flat manifolds

By Eric Chen at Berkeley and Yi Wang at Baltimore

Abstract. We study the Yamabe flow starting from an asymptotically flat manifold
(M"™, g9). We show that the flow converges to an asymptotically flat, scalar flat metric in
a weighted global sense if Y(M, [go]) > 0, and show that the flow does not converge other-
wise. If the scalar curvature is nonnegative and integrable, then the ADM mass at time infinity
drops by the limit of the total scalar curvature along the flow.

1. Introduction

In this article, we study the long-time existence and convergence of the Yamabe flow

og
2% — _Rg.
(1.1) ot &
g(0) = go,

starting from an asymptotically flat manifold (M", g¢). Here R denotes the scalar curvature
of the Riemannian metric g = g(¢). This flow preserves the conformal class of g and is the
natural analogue of the volume-normalized Yamabe flow on compact manifolds introduced by
Hamilton [18]. He was motivated by the resolution of the Yamabe problem due to Yamabe,
Trudinger, Aubin, and Schoen [1, 30, 35, 36], which showed that every conformal class of
Riemannian metrics on a compact manifold admits at least one metric of constant scalar curva-
ture, known as a Yamabe metric, which minimizes the Einstein—Hilbert functional. Hamilton
proposed the volume-normalized Yamabe flow, which can be viewed as the gradient flow of
the Einstein—Hilbert functional within a fixed conformal class, as a natural evolution equation
which could potentially evolve a given metric on a compact manifold to one of constant scalar
curvature within the same conformal class.
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Hamilton was already able to prove the long-time existence of the volume-normalized
Yamabe flow on compact manifolds when he introduced it. Convergence of the flow to a metric
of constant scalar curvature has now been mostly settled by work of Ye, Schwetlick—Struwe,
and Brendle [4,5,34,38].

The study on non-compact manifolds is less developed, but there have been a number
of long-time existence results for the flow (1.1). For complete non-compact manifolds, Ma
has shown long-time existence when starting from a metric of nonnegative scalar curvature
which is conformal to a metric of nonpositive scalar curvature, assuming the corresponding
conformal factor is bounded from above [24]. Schulz has shown long-time existence under
related hypotheses—namely when starting from a metric of positive Yamabe constant which is
conformal to a metric of nonpositive and bounded scalar curvature, assuming the corresponding
conformal factor is bounded both from above and from below [33]. Other works give long-
time existence results in the settings of conformally hyperbolic and singular spaces [2,23,32].
Similar to the compact case, convergence results for (1.1) have been slower to develop—we
are aware only of Ma’s work mentioned above [24] in which he is also able to show Clsz
convergence to a scalar flat limit metric, using crucially the assumption of initially nonnegative
scalar curvature.

Our work adds to the study of (1.1) in the non-compact case by providing a long-time
existence result in the setting of asymptotically flat manifolds without requiring additional
curvature assumptions, and by showing that the flow in this setting converges in a strong,
global weighted sense (in C23/) to a scalar flat, asymptotically flat metric whenever one might
hope for this—namely whenever there exists a scalar flat, asymptotically flat metric lying in
the conformal class of go. This condition is equivalent to assuming Y (M, [go]) > 0. We also
show that, for all other cases, namely when Y (M, [go]) < 0, the flow must diverge. This gives
a complete picture of the Yamabe flow on asymptotically flat manifolds. Asymptotically flat
metrics are interesting to study under Yamabe flow because, as shown by Cheng—Zhu, who
were motivated by similar results in the Ricci flow setting [14], asymptotic flatness is preserved
and moreover the ADM mass is monotonically decreasing under the Yamabe flow [10]. As
a consequence of our convergence results, the drop from the ADM mass along the flow to the
mass of the limiting scalar flat metric is accounted for by the total scalar curvature pushed out
to spatial infinity by the flow.

We now summarize some of the main technical difficulties in our work. Although the
boundedness of the conformal factor u is not so hard to derive using the maximum principle,
since we are considering the flow in a non-compact setting, this is not sufficient in order to
deduce convergence in either a uniform or weighted global sense. What we need are decay
estimates in both spatial and time variables. Unlike in the Ricci flow setting where Shi’s esti-
mates give control of higher derivatives of the curvature, assuming decay of the total curvature
tensor, when dealing with the Yamabe flow, we only have a decay estimate of the scalar curva-
ture that does not pass analogously to control of derivatives of scalar curvature. To overcome
this difficulty, we must control the Laplacian of the Euclidean distance with respect to g(z) by
a mixed spatial and time bound (see Lemma 5.5). This requires a fast spatial decay rate estimate
on the scalar curvature which we prove in Propositions 1.7 and 1.8. To obtain the fast decay
rate, we use Moser iteration arguments twice. In the first step, starting from the monotonicity
of the L2 bound of the scalar curvature, we prove that the L°° norm of R goes to 0. In the
second step, from the smallness of the L 2 bound of the scalar curvature, we derive the uniform
decay estimate of L.°° bound of R.
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Weighted convergence of asymptotically flat metrics to a limiting asymptotically flat met-
ric has earlier appeared in some Ricci flow contexts [8,21]. However, there are some crucial
differences from the Yamabe flow setting which we consider. Unlike in [21], in which curva-
ture decay and eventually convergence is derived from long-time existence by the use of scaling
arguments using Perelman’s p-functional (for which no known analogue exists in the Yamabe
flow setting), we will need to instead work more directly from the evolution of scalar curvature
integral norms. Integral curvature is studied in [8], but unlike in that work, we do not need any
initial smallness assumption on the L2 norm of curvature.

1.1. Main results. Below, we describe our main results in detail. The definition of
a C]_‘;r % asymptotically flat (AF) manifold below is the same as in [10, 24], and this along
with related notions of weighted Holder and Sobolev spaces are stated precisely in Section 2.1.

Our first result is the long-time existence of the Yamabe flow on all AF manifolds. On
the order of asymptotic flatness, we always assume that > 0.

Theorem 1.1. Given any C f;" % AF manifold (M"™, go), k > 2, there exists a Yamabe
flow starting from it defined for all positive times with (M", g(t)) remaining C k ;to‘ asymptoti-
cally flat for all T" < min{t,n — 2}.

We will not be concerned in this work with the uniqueness of Yamabe flow in the AF
setting; above, Theorem 1.1 refers to any fine solution of the Yamabe flow whose short-time
existence on AF manifolds was shown in [10, Corollary 2.5]—see Definition 2.3 for details.
These are always the solutions which we study in this work, but below, we will often write the
Yamabe flow with this meaning implicit for ease of presentation.

The special case Rg, > 0 of Theorem 1.1 was previously known from work of Ma
[24, Theorem 1], while work of Schulz implies the case Y (M, [go]) > O (see [33, Theorem 1]).
As mentioned earlier, while we were preparing this manuscript, we also learned of recent work
of Ma [25] establishing the C2* version of the long-time existence result of Theorem 1.1.

Here Y(M, [go]) denotes the following conformally invariant quantity which we call the
Yamabe constant, motivated by the definition of the Yamabe constant in the compact case:

YOl (go) = inf Sz JulVVP+ Reov® dVe

oe] 2n n—=2
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which plays an important role in the prescribed scalar curvature problem on conformal classes
of AF metrics [6,16,27]. For instance, by [27, Proposition 3], which gives the correct version of
a result first claimed in [6, Theorem 2.1], the conformal class (M, [go]) admits a scalar flat, AF
metric if and only if it is Yamabe-positive—we state a version of this result in Proposition 3.2.

Having obtained long-time existence of the Yamabe flow on AF manifolds, we next study
its convergence properties. On compact manifolds, proving the convergence of the Yamabe flow
required much more work than proving long-time existence—see [4, 5, 34, 38]. In our setting,
if the conformal class (M, [go]) admits a scalar flat, asymptotically flat metric (which must be
unique), this gives additional information with which we are able to obtain strong quantitative
decay of the scalar curvature. By our earlier discussion, we can equivalently formulate such
a condition in terms of the positivity of Y (M, [go]), and we have two distinct possibilities for
the behavior of the flow as t — oo, as below.



64 Chen and Wang, The Yamabe flow on asymptotically flat manifolds

Theorem 1.2. Let (M", go) be a Cf;"“ AF manifold with k > 3.

(1) IfY(M™",[go]) > 0, then the Yamabe flow (M™, g(t)) starting from (M", go) converges
uniformly in Céc'm to the unique Ck+

) If Y(M™, [go]) <O, then the Yamabe flow (M", g(t)) starting from (M™, go) does not
converge. In particular, g(t) = u(1)*' =2 go will fail to remain uniformly equivalent to
go as t — oo, and both ||u(t)| Lo and the L? Euclidean-type Sobolev constant of g(t)
will tend to positive infinity.

AF metric goo € [go] ast — oo.

The second part of Theorem 1.2 raises the question of what more can be determined re-
garding the non-convergence along the Yamabe flow on a large class of AF manifolds. In the
compact case, Schwetlick—Struwe showed that a failure of convergence must imply a particular
kind of infinite time bubbling behavior for the volume-normalized Yamabe flow [34]. In the
non-compact, conformally flat setting, Choi—Daskalopoulos have produced examples of Yam-
abe flows with infinite-time Type II singularities, which satisfy supyz.[o,00)|[Rm(x, )| = 00
(see [11]). Finite-time singularities in the non-compact, conformally flat setting have also been
studied in [12, 15].

The first part of Theorem 1.2 above gives a uniform global convergence which is strong
enough to allow us to identify the limiting metric go. If we impose some mild restrictions on
the decay order 7 (which are natural for instance if we wish to consider the ADM mass under
the flow), then we can further improve to weighted convergence in Theorems 1.3 and 1.4 below.

Theorem 1.3. Let (M", g¢) be a Cl_‘;"“ AF manifold with Y(M, [go]) > 0, k > 3, and
T > 1. Then there exists a Yamabe flow (M", g(t)) starting from (M", go) defined for all
positive times and a metric goo on M™ which is C]f:?a AF for all ' < min{t,n — 2} so that,
for any such t’/, we have

lg(6) = goollchte = O(™%) ast — oo,

or some o9 > 0. In particular, this Yamabe flow converges in C”_,™ to the asymptotica at,
8o > 0. In particular, this Yamab ges in CX1% 10 the asymptotically fla,
scalar flat metric goo.

As noted earlier, the work of Cheng—Zhu shows that, under appropriate initial conditions,
the ADM mass of an asymptotically flat manifold with nonnegative and integrable scalar cur-
vature is nonincreasing under Yamabe flow [10, Theorem 1.5], which suggests further study of
the mass along the flow. Theorem 1.3 will suffice for this purpose when n > 4 since mass is
well-defined for 7 > % > 1; however, when n = 3, the condition T > 1 forces the mass to
vanish and is too restrictive.

However, by adding the natural conditions Rg, > 0 and Rg, € L! (if we are concerned
with the mass), we can still obtain a weighted convergence result that will allow us to study the

mass in dimension n = 3.

Theorem 1.4. Let (M3, go) be a C¥X® AF manifold with

1
Y(M.[go]) >0, k=3, >3, Rg =20, and Rg € L.
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Then there exists a Yamabe flow (M", g(t)) starting from (M", go) defined for all positive
times and a metric goo on M™ which is ij,“ AF for all T < min{z, 1} so that, for any
such t’, we have

|8(t) = goollckiz = OG™) ast — oo,

. . . k+(x .
for some 8o > 0. In particular, this Yamabe flow converges in C=_,* to the asymptotically flat,
scalar flat metric goo.

It is well known that m(gg) > m(geo) since a scalar flat AF metric minimizes the mass
among scalar nonnegative metrics within its conformal class [31], and one can moreover com-
pute this difference as a multiple of the integral of R, against u«, with respect to the volume
form of gg, where g = ugé(”_z) go- By our weighted convergence results in Theorems 1.3
and 1.4 combined with the monotonicity of mass along Yamabe flow [10] and the lower
semicontinuity of the ADM mass under C Er convergence when t > % (see [21], [28, Theo-
rem 14], [20, Theorem 13]), this difference is also the mass drop at time infinity of the Yamabe
flow starting from (M™, g¢), and is therefore controlled by the L' norm of the scalar curvature
as it escapes to infinity.

Corollary 1.5. For n >3, let (M™, go) be a C fj % AF manifold with nonnegative
scalar curvature and k > 3, T > %, along with Rg, € LY(M™", go). Then, along the Yamabe
flow (M™, g(t)) starting from (M", g¢),

nm@mm% :

100 2(n — Dwy—1

/Rg«)th) = m(geco)-

In particular, ifn = 3,4, or 5orif t > n — 3 so that m(g(t)) is constant along the flow, then

1

(1.2) m(go) —m(goo) = 20— Doy Aim o ReydVi.

Since, for any compact region K C M, lim; o0 [ Rg(r) dVg() = 0, we see in (1.2)
that, along the Yamabe flow, the difference between the initial mass and the limit mass is
accounted for by the total scalar curvature pushed out to infinity by the flow. Such a phe-
nomenon has also been shown by Li to occur for the Ricci flow on asymptotically flat spaces
if long-time existence is assumed [21]. We also note that, although [10] does not show that the
mass is constant along the Yamabe flow in general when n = 5, our convergence results give
us additional curvature control that allows us to deduce this as well from their arguments.

While we were completing this manuscript, we learned of recent new work by Ma [25]
in some directions similar to ours. His result considers the long-time existence of the flow,
which overlaps with some of the content in our Lemma 3.4 and its corollary, Theorem 1.1. But
the focus of our paper is to prove the strong global C %}, convergence when Y (M", [go]) > 0.
Towards this goal, the central issue is the sufficiently fast decay rate estimate of || R| zoo, which
we achieve in Sections 4 and 5.

1.2. The main technical estimates. Theorem 1.1 is proved straightforwardly from
a maximum principle argument using a result of Dilts—-Maxwell which states that one can
prescribe any strictly negative scalar curvature in the conformal class of AF metrics associated
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to any asymptotically flat (M", g¢) (see [16]), along with standard parabolic regularity theory.
The bulk of the paper which follows is devoted to the proof of Theorems 1.2, 1.3, and 1.4.

To prove our convergence results in Theorems 1.2, 1.3, and 1.4, we will need to estab-
lish the decay of scalar curvature at suitably fast rates. Towards this purpose, we again start
with bounds on the conformal factor u(x,¢) along Yamabe flow using the assumption that
there exists a scalar flat, AF metric in the conformal class (M, [go]) (or equivalently, that
Y(M,[go]) > 0), which gives us enough control to conclude uniformly bounded scalar cur-
vature for all positive times by local parabolic estimates (see Proposition 3.6). Then we use the
monotonicity of certain integral norms of scalar curvature along with Moser iteration to first
show that || R|| o~ tends to zero as t — oo.

Proposition 1.6. Along the Yamabe flow (M™, g(t)) starting from a C f;" % AF manifold
with Y(M™",[go]) > 0, k > 3, and T > 0, we have that

T
sup |R(x,T)| %0,
xeMn

After this, we obtain a quantitative decay rate estimate of the L°°-norm of R, ;) along
the flow. This gives rise to the following result, which is an important step towards deriving our
desired convergence of the flow.

Proposition 1.7. Let (M", go) be a Cf:‘”‘ AF manifold with Y(M, [go]) > 0, k > 3,
and t > 0. Then, for any § < 3, there exists C > 0 such that || R||poc < Cct—1-3.

This decay rate estimate will allow us to derive our first uniform convergence result,
Theorem 1.2. In fact, it will also be strong enough to allow us to conclude our first weighted
convergence result, Theorem 1.3, once we further assume on the order of asymptotic flatness
that ¢ > 1. However, as mentioned before, this condition is too restrictive when n = 3 because
it excludes many manifolds with well-defined mass. So, in this case, we need another estimate
which gives faster decay of the scalar curvature than in Proposition 1.7. By adding the natural
conditions of nonnegative, integrable scalar curvature, we can satisfactorily weaken the restric-
tion on 7. Although analogues of the following estimate can be proven for other dimensions as
well, we will only state it for dimension n = 3 since Proposition 1.7 already sufficiently covers
dimensions n > 4.

Proposition 1.8. In the setting of Proposition 1.7, if

1 1 n
n =3, r>§, Rg, >0, and Rg, € L (M",go),

then for all o < % there exists C > 0 such that |R||pe < Ct™%.

Together, Propositions 1.7 and 1.8 allow us to establish that u(#) must converge to some
Uso Which is asymptotic to 1 and is a conformal factor corresponding to a scalar flat deforma-
tion of go. We can then conclude that ©,, must be the conformal factor corresponding to the
unique C ’_‘;" @ scalar flat metric in the conformal class of g, and proceed to prove the weighted
convergence results of Theorems 1.3 and 1.4.
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1.3. Organization of the article. The organization of the article is as follows. In Sec-
tion 2, we start by recalling some preliminaries on the short-time existence of Yamabe flow on
AF manifolds as well as definitions of the relevant weighted Holder spaces and Sobolev spaces,
before proceeding in Section 3 to prove the bounds on the conformal factors u(x, ¢) needed in
the rest of the paper. These bounds then allow us to prove the general long-time existence
result, Theorem 1.1, as well as the uniform scalar curvature estimate of Proposition 3.6 when
Y(M™",[go]) > 0. In Section 4, we study the decay of the scalar curvature under the flow when
Y(M, [go]) > 0 in order to prove Propositions 1.7 and 1.8 on the decay of scalar curvature. In
Section 5, we use these estimates to first prove uniform convergence in Theorem 1.2, and then
our weighted convergence results of Theorems 1.3 and 1.4.

2. Preliminaries

We begin with a brief general discussion of Yamabe flow, before proceeding to introduce
background results on the short-time existence of Yamabe flow on asymptotically flat manifolds
and conformal deformations.

Suppose that (M", g(¢)) evolves according to the Yamabe flow with initial metric go,
satisfying

0
Ze—_R
alg g,
g(0) = go.

As g(t) remains in the same conformal class along the flow, we may write g(¢) = u(t)ﬁ go-
Then we have the following relation between Rg and Ry :

n+
—a(n)Agou + Rgou = Rgun=2,

N

where a(n) = %. Thus the Yamabe flow can be rewritten as an evolution equation for the

conformal factor u(t),
0 n+2 n+2

(21) g“”*2

(a(n)Agou — Rgout).

N

n+

Below, we will often denote N = e

N

2.1. Analytic preliminaries. We first recall some standard function spaces and related
definitions used in the analysis and definition of asymptotically flat (AF) manifolds. See for
instance [3, 16].

Definition 2.1. Let M”" be a complete differentiable manifold such that there exist
a compact K C M" and a diffeomorphism ®: M"\K — R\ Bg,(0) for some Ry > 0. Let
r > 1 be a smooth function on M" that agrees under the identification ® with the Euclidean
radial coordinate |x| in a neighborhood of infinity, and let g be a smooth metric on M"
which is equal to the Euclidean metric in a neighborhood of infinity under the identification ®.
Then, with all quantities below computed with respect to the metric g, we have the following
function spaces.
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The weighted Lebesgue spaces L% (M) for g > 1 and weight B € R consist of those
locally integrable functions on M such that the following respective norms are finite:

1

q
(/ lo|2r—Ba—n dx) , g < o0,
Ivllzg ey = § VM

esssup(r 8 |v]), q = oo.
M

The weighted Sobolev spaces Wléc “1(M) are then defined in the usual way with the norms

k
||v||Wﬁk~'1(M) = ZHDJJCU”Lf,_j(M)-
j=0

The weighted C* spaces C /’3‘ (M) consist of the C* functions for which the following respective
norms are finite:

k
lolickan =Y supr=?+/|D{v],
j=o M

The weighted Holder spaces C ;]; TE(M), a € (0, 1), consist of those v € C g (M) for which the

following respective norms are finite:

. _ D¥v(x) = Dkv
lollck+ean = lollcsan + sup min(r(x), r(yy) A +e+el 2xt) = Dav @)l
: son+ s ax.y)

Remark. The function spaces defined above are independent of the choices of g and r.
In fact, different choices of the metric g and the positive function r will produce equivalent
norms. Since g agrees with the Euclidean metric in a neighborhood of infinity, we will often
use §;; to denote a choice of metric g.

We can now define our precise notions of asymptotically flat metrics. An asymptotically
flat manifold is then a smooth manifold with an asymptotically flat metric.

Definition 2.2 (Asymptotically flat metrics). Given M" as in Definition 2.1, a metric g
is said to be a Wf;q (respectively C k. C fj ®) asymptotically flat (AF) metric if t > 0 and

_‘c’?
~ k, : k k
g—8e€W5I(M) (respectively C*_ (M), CXF¥(M)).

The number t > 0 is called the order of the asymptotically flat metric.

2.2. Short-time existence. We now recall the short-time existence results for Yamabe
flow on asymptotically flat manifolds which will be used in this paper. The short-time existence
of the Yamabe flow starting from an asymptotically flat manifold and the preservation of
asymptotic flatness along the flow have been established by Cheng—Zhu for C21% AF met-
rics (quoted in Theorem 2.4 below). However, we will study certain higher-order C fj “ AF
metrics along the Yamabe flow; hence we will also check that results analogous to those of
Cheng—Zhu hold in these cases as well.

We start by recalling the definition of the particular kind of solution of the Yamabe flow
which we will consider throughout. As mentioned earlier, whether the Yamabe flows defined
below are unique in general remains open.
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Definition 2.3 ([10, Definition 1.2]). We say that g(¢) is a fine solution of the Yamabe
flow on a complete manifold (M", g¢) on a maximal time interval [0, Tp) if g(¢) = u(t)% g0
with u#(0) = 1 satisfies (1.1) and, for any T € (0, Tp), there exist 6 = 6(7) and C = C(T)
such that on [0, T7],

0<6<lulx,1<C, sup |Vgou(x,1)| < C, sup  |Rm(g)|(x,7) < C,
[0,T]xM" [0,T]xM"

and moreover either 7y < oo and lim;_, 1, |Rm|(-,?) = oo, or Ty = oo.

Remark. In fact, by [26, Theorem 1], the blowup alternative in the definition above
also holds true when rewritten in terms of the scalar curvature: we must have either 7y < oo
and lim; .7, |R|(-,t) = o0, or Ty = o0.

We now quote Cheng—Zhu’s results on the existence of fine solutions to the Yamabe flow
starting from C2$% AF manifolds.

Theorem 2.4 ([10, Corollary 2.5]). If (M", go) is a C2* AF manifold, T > 0, then
there exists a fine solution of the Yamabe flow starting from (M", go) on a maximal time
interval [0, To) with Ty > 0.

Theorem 2.5 ([10, Theorem 1.3]). Ler u(x,t) on 0 <t < Ty be the conformal factor
corresponding to a fine solution to the Yamabe flow on a CE;"“ AF manifold (M™, go) with
u(-,0) =1, and let v =1—u. Then v(x,1) € C2F*(M). Hence gij(t) —8;; € C2F*(M)

fort €0, To), and in particular, (M", g(t)) remains a C2F* AF manifold along the Yamabe
flow fort € [0, Ty).

As mentioned before, we require the analogues of the above two results for AF mani-
folds with estimates also on higher-order derivatives—in particular, for C¥® AF manifolds,
k > 2. Clearly, if we replace C E;H" with C fj‘ ® in the statement of Theorem 2.4, the state-
ment remains true. Thus we can conclude with the analogue of Theorem 2.5 below. The proof
is a straightforward adaptation of Cheng—Zhu’s proof of Theorem 2.5 and is presented in
Appendix A.

Theorem 2.6. Letu(x,t)on0 <t < Ty be the conformal factor corresponding to a fine
solution to the Yamabe flow on a Cf;"“ AF manifold (M", go), k > 2, with u(-,0) = 1, and
letv=1—u.Thenv(x,t) € C’_‘;H"(M). Hence gj(t) —8;; € Cf;“"(M)fort € [0, Top), and
in particular, (M™, g(t)) remains a Cf;"“ AF manifold along the Yamabe flow fort € [0, Tp).

3. Bounds on the conformal factor and long-time existence

In this section, we recall the results of [6, 16] on conformal deformations of asymptoti-
cally flat metrics in order to obtain upper and lower bounds on the conformal factor u(¢) as it
evolves along Yamabe flow. These bounds will then imply the long-time existence of any fine
Yamabe flow starting from an asymptotically flat manifold.
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3. 1 Conformal deformations of asymptotically flat metrics. = We observe that if
go = vi— i go is a fixed metric conformal to the initial metric go on M" from Wthh we start
a Yamabe flow, then the conformal factor u(¢) of (2.1) also satisfies, for w = u(¢)v—1!,

0 n+t2 n+2

3.1 Ewn—z =

(a(n)Agow — Rgow),

which is exactly (2.1) but with go and w(?) replacing go and u(t), respectively.

This suggests making an advantageous choice of background metric go with which to
study (3.1). First, Dilts—Maxwell showed that, for suitable W_; kP AF manifolds, it is always
possible to deform to negative scalar curvature [16]. For our purposes, it is more convenient to
work with C fj’ % AF manifolds, and the analogous statement holds in this setting as well.

Proposition 3.1. Let (M™, g) bea Ck+“ AF manifold, k > 2, witht € (0,n — 2). Sup-
pose R' € Ck o satisfies R" < Ry. Then there exists a positive functlon pwithg — 1 € CkFe
such that the scalar curvature of g’ = ¢pn— = gis R'. In particular, g is also a ij‘“ AF metric.

If instead we want to conformally deform to R’ = 0, then work of Cantor—Brill [6] (cor-
rected and completed by Maxwell [27]) tells us that we can do so for AF metrics belonging
to suitable W_—; kP Classes if and only if they are Yamabe positive [6,27]. Again, the analogous
statement holds for Ck+ AF manifolds.

Proposition 3.2. Let (M™, g) be a C*¥F* AF manifold, k > 2, witht € (0,n — 2). Then
the following are equivalent.

(1) We have Y (M, [g]) > 0.

(2) There exists a positive function ¢ with ¢ — 1 € ij‘ % such that g = ¢rf%2g is confor-
mally equivalent to g and Rz = 0.

We will describe how Propositions 3.1 and 3.2 follow from their Wf}p versions in
Appendix B.

3.2. Conformal factor bounds. By making a suitable choice of background metric as
detailed earlier, with the results of Section 3.1, we can obtain some control of the conformal
factor u(¢) of (2.1) along the Yamabe flow of an asymptotically flat metric. In turn, we can then
achieve some control of the Sobolev constant as defined below.

Definition 3.3. If (M",g) is a C°, AF manifold, then there exists a smallest con-
stant Cg > 0 such that, for every u € W12(M, g), the following L? Euclidean-type Sobolev
inequality holds:

n—2

(/|u|n2”2d[/) ’ <cg/|w|2dvg.

We call Cy the Sobolev constant of the metric g.

Remark. It is well known that C, . < Cg, where Cy , is the Sobolev constant of the
flat metric on R”; see for instance [19, Proposition 4.2].



Chen and Wang, The Yamabe flow on asymptotically flat manifolds 71

We will consider two cases—first, the general case where (M", g¢) is an arbitrary C fj o
AF manifold, and second, the case when moreover Y(M",[go]) > 0. In the general case,
below, we show that, for any finite time 7 > 0, the conformal factor u(z) is bounded away
from both 0 and co.

Lemma 3.4. If u(x,t) is a solution of (2.1) corresponding to a fine solution of the
Yamabe flow starting from the Cf?‘“ AF manifold (M"™, go), k = 2, then for any T for which
the Yamabe flow exists on [0, T], there exists a C(T) > 0 depending only on T and gy such
that we have the bounds

0<C(T) ' <u(x,1) <C(T) < o0
forany (x,t) € [0,T] x M.

Proof.  First, observe that

0 n—2 n—2
=" Rewu=-

inf R
(inf Rg(o)(x))u
since infyeps Rg(r)(x) is nondecreasing under the Yamabe flow. Therefore, we have
u(x,t) <C(T) < o0

if the flow exists on [0, T'] for C(T') > 0 depending only on 7" and infyepsr Rg(0)(X).

Next, using Proposition 3.1, we may write w = u(¢)v~! as in (3.1), with v corresponding
to a suitable choice of prescribed Rz, < 0 with rapid decay. The following maximum princi-
ple type argument shall give us the lower bound on w, and hence u also, thereby completing
the proof.

Let U C M be a bounded open set, and let

U = (0.10] x U, Ty, = ({0} x U) U ([0, 10] x dU)).

We claim that, for € > 0, if the Yamabe flow exists on [0, zo], then the minimum of w + €t¢
cannot be achieved on Uy,. Otherwise, at such a space-time point (x,?) in Uy, we have
aa—t(w +€t) <0, and

n—2

0> %(w +e) =w ™" (T)(a(")%o(w +et) = Rgow) + ¢

> wl_N(n ;2)a(n)Ag~0(w + €t).

But this is impossible since Ag (w + €¢) > 0 at the point we consider, so we have proven
the claim.

This implies w(x, ) > infyepr w(x,0) > 0, giving us the desired lower bound. Indeed,
suppose at some (x, 7) that w(x, 1) < infyepsr w(x, 0); then, if we take € > 0 sufficiently small,
we also have w(x, 1) + et < infyepr w(x,0) at this same space-time point. But w is asymp-
totic to 1 at spatial infinity in the interval [0, 7o], so by taking U sufficiently large, we see that
this means w + € achieves a minimum in U;, which we have seen is impossible. o
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Lemma 3.4 immediately implies the long-time existence of the Yamabe flow under the
hypotheses of Theorem 1.1.

Proof of Theorem 1.1.  Suppose on the contrary that (M", g(¢)) is a fine solution of the
Yamabe flow starting from a C2}% AF manifold (M", go) which exists up to a finite-time sin-
gularity 7 > 0. But Lemma 3.4 implies that the conformal factor u(¢) is uniformly bounded on
[0, T'), and by estimating as in the proof of Lemma 5.2, it follows by standard parabolic regu-
larity theory that u(¢) is uniformly bounded in C02+°‘. Hence the scalar curvature of (M™, g(t))
is uniformly bounded on [0, 7'), contradicting the blowup alternative for fine solutions of the
Yamabe flow given in the remark following Definition 2.3. O

If we additionally suppose that Y(M", [go]) > 0, then we can uniformly bound the con-
formal factor u(z) both from above and from below.

Lemma 3.5. Let u(x,t) be the solution of (2.1) given by Theorems 2.4 and 2.6 start-
ing from the Cf;"o‘ AF manifold (M", go), k > 2, and further suppose that Y (M",[go]) > O.
Then, for any time interval [0, T'] on which u is defined and any (x,t) € [0, T| x M, there exist
C1, Cy > 0 depending only on go such that

0<Ci Zulx,t) <Cy < .

Proof. We already saw in the proof of Lemma 3.4 how to obtain the lower bound
0 < Cy < u(x,t), so we only need to justify the upper bound.

Write w = u(¢)v~! as in (3.1), with v given by the conformal factor corresponding to
Rz, = 0 whose existence is given by Proposition 3.2. Using the same notation as in the proof
of Lemma 3.4, we claim that, for € > 0, the maximum of w — €¢ cannot be achieved on Uy, .
Otherwise, at such a point in Uy,, we have %(u} — €t) > 0, and therefore,

0< %(w —et) = w!=N (#)a(n)Ago(w —€t)—¢€

< wl_N(n ;2)a(n)A§0(w —€t).

But A(w — et) < 0 at such a maximum point, giving a contradiction, thus proving the claim.
This implies the upper bound of w(x, ¢). Suppose not; then there exists (x, ¢) such that
w(x,1) > supy,epr w(0, y); then w(x, 1) — et > sup,,¢pr w(0, y) for € > O sufficiently small.
Since w is asymptotic to 1 at spatial infinity on the time interval [0, ], if we take U sufficiently
large, then w — et achieves a maximum in U;, which we have seen is impossible. O

Lemma 3.5 then implies the uniform boundedness of the scalar curvature for all positive
times by the same argument used to prove Theorem 1.1. We will need this fact later.

Proposition 3.6. Let (M", go) be a C¥T* AF manifold with Y (M, [go]) > 0, k > 3,
and t > 0. Then the Yamabe flow starting from (M", go) has scalar curvature uniformly
bounded in time for all t > 0.
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Proof. Because of the uniform bounds from Lemma 3.5, standard parabolic regularity
theory applied to the evolution equation of u(¢) implies that the scalar curvature R is uniformly
bounded for all # > 0. O

Moreover, as a consequence of Lemma 3.5, for the Yamabe flow starting from an asymp-
totically flat manifold with Y (M ", [go]) > 0, we have uniform control of the Sobolev constant
of (M", g(t)) for all positive times. This will allow us to study the convergence of the flow
ast — oo.

Corollary 3.7. Ifu(x,t) is the solution of (2.1) corresponding to a fine solution of the
Yamabe flow starting from the Cf;"“ AF manifold (M"™, go), k > 2, and Y (M, [go]) > O, then
there exists a constant D = D(gg) such that, for any T for which the Yamabe flow exists on
[0, T], the following Sobolev inequality holds for every u € W12(M, g(t)):

n—2

on n
3.2) (/|u|n—2 dVg(,)) < D/|Vu|2dVg(,).

4. Evolution of the scalar curvature

We now study the evolution of the scalar curvature R along the Yamabe flow starting
from an asymptotically flat manifold in the Y(M", [go]) > O case, in preparation for proving
convergence result of Theorem 1.3. Recall that, at this point, we already have the general long-
time existence by Theorem 1.1, proved in the previous section. Using in this Y(M", [go]) > 0
setting the uniform L? Euclidean-type Sobolev inequality (3.2) for all positive times, we first
establish the monotonicity of certain integral norms of R, and then proceed to establish the
decay rate estimates of Propositions 1.7 and 1.8 on the L°° norm of R in time.

4.1. Monotonicity of some integral norms of the scalar curvature. We have the
following equations for the evolution of the scalar curvature and the volume form under the
Yamabe flow:

0 0 n
—R=(m—-1)AR+ R?>, — =——R
5 (n—1) + R”, atht > dVvy

Under the hypotheses of Theorem 1.3, we can therefore compute the evolution of || R||z»
along the Yamabe flow for p sufficiently large.

Lemma 4.1. Let (M", gg) be a Cf;""‘ AF manifold with Y (M, [go]) > 0, k > 3 and

t € (0,n —2). Then, forall p > 2L+t’ along the Yamabe flow starting from (M", gy), we have

d 4(n — 1 —1
@1 E/|R|Pdvts—(” [)f” )/|V|R|’2’|2dvt

+ (p—g)/lRl”Rth.

Proof. This follows from

0
ERZ = (n—1)AR?> —2(n — 1)|VR|* + 2R?
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and

d P p_; 0 n
4.2 — R”dV:/—Rz 21 —R* -~ —|R|’RAY,
2 & [iriravi= [ 2512w -t iriera,
since, by our assumptions on the asymptotic decay of (M", gg) which are preserved along
the flow by Theorem 2.6 (and indeed for all positive times by Theorem 1.1), these integral
quantities are well-defined. ]

Since C I_‘%" ¢ AF manifolds are also C fj “if T > 7, for the purpose of proving Theo-

rem 1.3, it suffices to assume that 7 < n — 2, in which case we always have p > 2"? > 1.

Therefore, we will always be assuming that t < n — 2 in the rest of this paper. Next we estab-
lish that || R||» is a monotonically nonincreasing quantity along the flow, for appropriate p.

Corollary 4.2. We have that & [|R|2 dV; < 0.

As a result, we also have monotonicity of % [IR|? dV;, for p close to %, as well as the
integrability in time of certain other L? norms of R in space, which will be important when
we establish the L decay of R.

Lemma 4.3. There exists € = €(go) > 0 such that

d
E/|R|Pth <0 forallpe (%—6,%—1—6).

Moreover, for all such p,
n—2

4.3) / (/|R|Pnfzdvt) " dt < .
0

Proof.  Applying the Sobolev inequality (3.2) to the first term and the Holder inequality
to the second term on the right-hand side of (4.1), we obtain

d C(n, p) n n
“ P _ Pt
4.4) T /|R| dVy < ) (/|R| 2 dV,)

n—2
o) )

Hence there exists an € > 0 such that, if p — '2—’ < €, then

_C@.p)
K

n—2

2
n

4.5)

n
+|p = 5|IReolls <o0.

Together with Corollary 4.2, this implies that % [IR|? dV; <O.
For such p, we additionally see that (4.4) implies

n—2

d n 7
o e aviee( firpszan) " <o

for some C which may depend on 7, p, and go. Since [|R|? dV; is nonincreasing and non-
negative, we may integrate this inequality to deduce (4.3). O



Chen and Wang, The Yamabe flow on asymptotically flat manifolds 75

Remark. In order to prove Proposition 1.7, we actually need the monotonicity in Corol-

lary 4.3 to hold for all p > 2"? (for sufficiently large times). But to justify this fact, we will
need to demonstrate the decay of || R|| o first in Proposition 4.4 below, before returning to this

in Corollary 4.6.

In the above discussions, if p <2 (such as when n is small), then one may wish to
be careful with the |V|R|g |2 integrand in (4.1). We check that the discussion in this section
leading up to Lemma 4.3 still holds in this context in Appendix C.

4.2. Uniform decay of R. Having obtained the decay of appropriate integral norms
of R, we can now proceed to control the L° norm of R along the flow by Moser iteration
arguments similar to those in [37]. The central ideas are standard, but we include some details
for clarity because we need to adapt them to obtain precise control on the decay rate of R,
similar to the situation for [Rm| on certain asymptotically flat Ricci flows studied by the first
named author in [8].

In fact, we will need to pass from L? to L°° control of R several times, so we begin with
the following estimate with somewhat general assumptions.

Proposition 4.4. Let (M", g(t)) be a Yamabe flow starting from Cl_‘;" % AF manifold
with Y(M, [go]) > 0, k > 3, and t € (0,n — 2), and suppose that

— n
IRIze < nr™ forg > 2.

n
4.6 R < [_y2 > —
(4.6) |Rllzro < a2 Jor po e

for some nonnegative constants o1, 02, Y1, Y2. Then there exists a constant
C =C(n,q, po.a1,02,80) >0
such that

(n+2) n
4.7) sup |R(x, T)| < C max{T 761 poGa-m Y2 T~ 2572},
xXeMn

Proof. We selectively denote f = | R| below in order to distinguish the roles that dif-
ferent factors of | R| play. Applying Holder’s inequality to the second term on the right in (4.1),
we see that, for any p > 2"?, g > %5,and§ > 0,

(p—1)
P2

1d
e [rravi= By [rteay,
1—-2

+(/|R|4dv,)°l’(5—z”q/fpdv,) Y

n—=2 n_

(5(1—2’11),112/f’2’n2_”2 dV,) "

Note that the above in fact holds for all p > 1, assuming the integrability of all terms involved.

We restrict to p > 52— because of the spatial decay of f = |R| on a C k+o AF manifold,

recalling that we assume 7 <n — 2. Let § = B(¢) = a1t~ V1 sothat |R||r« < B(¢). We apply
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Young’s inequality to the last term on the right to see that
[ rrave =2 - [ivote
p dt
+ B8 / fPav, + ps' =2 (/ = dV,)

Applying the Sobolev inequality (3.2) to the last term on the right above and setting

5 (3<p— D — 1))25"”
a BDp? ’

n—2
n

we obtain, for all p > po,

d o
@43) S rravis G [IVGBPaV <G [ 17V,
where n
(po— D —1) ( BDp? )”‘”
Cpo=-2—" " and Cpop=pBl—w>"""r—— .
7 Po pap 3(p—D(n—1)
Now define, for % <t < 1t/ < T, the function v: [0, T] — [0, 1],
0, 0<t<r,
y() =55, t<r=<7,
1, <t <T.

Then we multiply (4.8) by ¥ and find that

d P
G [rrav)vucy [vGHPav < Cpupv ) [ 17 av,

so that, integrating and using the fact that B(¢) is decreasing, for any 7 € [/, T'], we have

3
(4.9) /fpdv,~+ c,,O/ /|V(f‘z’)|2dv,dz

T)/tT/fpdV,dt.

H(p,r)=/T/dethl‘

= (Cp,q,ﬁ

We now define, for t € [0, T],

andletv—l—i- . We claim that, for p > 57— and0 <7 <7’ < T,
/ l) 1 ' v
(4.10) H(p,7') < ol Cp’q,ﬁ(r) +— H(p,7)".
po T —71
Indeed,

n—2

/:ffwdvtdz§/T([fpdvt)3(/f§f_n2d%) c
(,/i‘?ET/fpth) /:/IV(f'z’)de, dr
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so that (4.9) implies the claim. Now we iterate (4.10) to obtain L°° control. Let pgo be as
assumed in (4.6), and define

2q T . T 1
n=va, pe=vipy, T = 5 +=n k)? O = H(pr. k) 7 .
We apply (4.10) to see that
1
(4.11) Qi1 = H(vpk, Tet1) "7k

IA

1
D \ vrk 1 Pr 1
=) (c )" Hpe
(Cpo) ( pksqrﬂ(rk) Tk—{—] — T

1
D VoK n 2q
S(—) (Cl(n,q,Po)Dz‘f—”ﬂ(Tk)M—"
CPO 1
n \ Pk _k_
+C2(”761)T) N’k Op

29

1
< (i) h (Cl(n,q,po)DJ‘”(a_l) et

where
2¢ Ta-n
= Po g 2
Ci(n,q, = poi" d Cy(n,qg) = —.
1(n.4. po) = pg (4(p0_1)(n_1)) and Cz(n,q) —
Since Y 7o ﬁ = %”;2 <ooand Y o, If—k < 00, we can iterate (4.11) to obtain
2 1 nt2
(4.12) sup |R(x,T)| < C(n,q, po, a1, D) max(T V' 2a=n T~)75 2 &,
xeM”
Finally, we have that
1
r 20 -yt
dy = / /|R|p°th dt < C(ap)T 0,
%
Putting things together, we obtain the claimed estimate for |R]. |

Next, by slightly modifying the proof of Proposition 4.4, we will establish Proposi-
tion 1.6, which shows that | R| 1o decays to zero in time.

Proof of Proposition 1.6.  Substituting p = Z into (4.3), from Lemma 4.3, we have

n—2

oo n
(4.13) / (/|R|’§nfzdv,) dt < .
0

Moreover, | |R|2 72 dV; is uniformly bounded along the flow since || R| zo and |R||z% are
both uniformly bounded by Proposition 3.6 and Corollary 4.2, respectively. Hence

o0 n n
4.14) / /|R|2n—2 dV; < 0.
0
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We now refer back to the proof of Proposition 4.4. Choose ¢ > 7 so that ||R|Ls < a; for

some constant &y = «1(go), which is possible by Lemma 4.3, and set pg = %nnTZ Following
the same steps up to (4.12), we obtain with y; = 0 that
sup |R(x.T)| < C(n.q.e1. D) max(1, T~ %7 ) P,
xXeEM?”
Then, since
T 0 T
Dy = (/T /|R|P0 dV, dt) 2%,
z
we find that indeed | R||zcc — 0 in time. m]

Since, by Lemma 4.3, || R|L» is uniformly bounded along the flow for p close to 3,
Proposition 1.6 allows us to interpolate to obtain decay of integral norms of R as well.

Corollary 4.5. For € = €(go) > 0 as in Lemma 4.3 and p > 5 — €, we have

t—>00
|R|Lr —— O.
. t—>00 .
In particular, we have ||R| 42 —— 0. This allows us to strengthen the range of expo-
nents covered by Lemma 4.3.

Corollary 4.6. For any p > 52—, we have % [IR|? dV; <0 fort > T(p) sufficiently

241’
large. Moreover, for all such p,
n—2

(4.15) (/|R|Pn”z dv,)" =o(t™").

Proof. In the proof of Lemma 4.3, observe that, for any fixed p, inequality (4.5) will
hold when || R4 is replaced by || Rg(;)l[2% for all ¢ sufficiently large since we now know
that ||R||14 decays to zero in time. And because we now know that [|R|? =2 d V; is mono-
tonically nonincreasing in time for ¢ sufficiently large, the integrability expressed in (4.2)
implies (4.15). D

We will use these consequences of Proposition 1.6 to strengthen our control of R and
obtain our decay rate estimates on || R||zco.

4.3. Decay rate of R. Although Proposition 1.6 only told us that || R||z tends to zero,
we can use the consequent improved integral decay estimates of Corollaries 4.5 and 4.6 to show
that the L.°° norm of R must in fact decay at a particular rate, thus proving Proposition 1.7.

_n_

317 and o > 0,

Proof of Proposition 1.7. By Corollary 4.6, we have that, for any p >
1
for sufficiently large times, it holds that | R| Lr;25 < at™ 7. Choose

n—2 —
n n
> =,
n—2 2

n
, > —— with
P1, D2 211 P1

and apply the estimate (4.7) of Proposition 4.4 with
n

and = .
n Po Pzn_2

o n
(I—Pln_z
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We thus obtain the estimate (for 7 sufficiently large)

n2+4q __n_
sup |R(x,T)| < C(n,q, po, 1,02, go) max{T nrotn=2a) , T~ 2r3 }.
xeM"
We now compare the two 7" exponents above to see that we can achieve the decay exponent in
the statement of the proposition. For the second exponent, clearly, as p, approaches 2"? from
above, the exponent _ZnE approaches —1 — 7 from above. For the first exponent, notice that,
for fixed p, > 0, we have

. n? + 4q
lim —m =
gyt 1p2(n—2)

If t > -2 then
— n—2 n n

n—2 241
so we will always be able to choose ¢ > 7 sufficiently close to 7 such that

=

S

n’ 4 4q - n
npa(n—2q) ~ 2py’
On the other hand, if 0 < 7 < %, then the inequality

n? + 4qo n

npa(n — 2qo) 2p2

holds as
n n n

= > —.

24+1tn—-2 2
Hence this inequality remains true if we replace go with a ¢ slightly larger than gg, finishing
the proof. |

q0

As described in the introduction, the decay in Proposition 1.7 is not quite good enough for
our purposes when 7 = 3, so we need the improved estimate of Proposition 1.8 for dimension
n = 3 under additional assumptions of nonnegative, integrable scalar curvature. We conclude
this section with its proof.

Proof of Proposition 1.8. By applying [10, Theorem 1.5], under the assumptions of
Proposition 1.8, the scalar curvature remains integrable along the flow and moreover [ RdV;
is nonincreasing; in fact, for dimension n = 3, we have

d 1
— | R <—— | R? <0.
d[/ aVi = 2[ dVi =0

So we may interpolate with the L°° estimate of Proposition 1.7 to find that || R||z» < oo for all
p > 1, and moreover,

(4.16) IR[Lr = O~ A+90=3))

for all § < 5. By our hypothesis on 7, then the evolution equation for % [ R? dV; is well-
defined whenever p > 1, so we can apply the estimate (4.7) of Proposition 4.4 with

n
q4=p1—5=3p1 and po=p,

2



80 Chen and Wang, The Yamabe flow on asymptotically flat manifolds

for some p; > 2+t and p > 1 to be determined. Plugging in | R||z¢ < alt_p% and (4.16) to
estimate || R ||z 0, we obtain

sup [R(x,T)| < C(n.q. p,ar, 1. go) max{T »~G=2pa=m ~(1+5)(1=3),
xeMmr 7=~ (+8)-H)y

It suffices to show that, given any @ < 3, we can choose ¢, pg so that both exponents of T are

less than —c. For the first exponent, setting p = 1 and n = 3, we obtain

15 18 3

— < <
2q —n 7 2

if we setqg = 3 - 52— _H ,using that T > For the second exponent, setting p = 1 gives us exactly
—3. Therefore, by setting p > 1 close toland g >3- 3 — close to 3- 53— + —, we obtain our
des1red estimate. m)

5. Convergence of the Yamabe flow

Using the decay rate estimates on the scalar curvature of (M", g(t)) evolving under the
Yamabe flow from an initial Yamabe-positive asymptotically flat metric satisfying the hypo-
theses of Proposition 1.7 or 1.8, we proceed in this section to prove Theorem 1.3. Below, we
start with the unweighted convergence of the conformal factor u(¢) before proceeding to study
its weighted convergence as ¢ — oo.

5.1. Unweighted convergence. We first show that the decay rate estimate of Proposi-
tion 1.7 gives us uniform convergence to a limiting continuous function ¥ .

Lemma 5.1. Under a Yamabe flow satisfying the hypotheses of Proposition 1.7, there
exists a continuous function Ueo(x) > 0 on M such that

[ (x, 1) — oo (X)[|Loo () = —5
and
5.1 Uoo(X) —1 >0 asr — oo,

for all § < = If the flow additionally satisfies the hypotheses of Proposition 1.8, this holds for
all § < 5 (Recall from Definition 2.1 that r > 1 is a smooth function that agrees with |x| in
asymptotlc coordinates on M™.)

Proof.  Since aa—tu = —%Ru, we have for all x € M" that
t on—
u(x,t) = elo _TZR(x”)dtu(x,O).

By Proposition 1.7, forany 0 < § < I,

|R(x,1)| < m
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Thus, for f1,1, > 1,
u(x. 1) — u(x. )] < Clec™ VG _ e 1/G13)|y(x 0)

<C “u(x,0)| >0 asty,tr, = 0.

1
Y]
L 4

This implies u(x,?) is a Cauchy sequence in L°°(M) as t — co. We then immediately con-
clude that there exists a limiting function uso(x) € L° (M) which satisfies

C
l[u(x, 1) — uoo(X)|[Loo(ar) = 5
And since, for each time ¢ > 0,
C
(5.2) u(x,t) —1] < — asr — oo,
r

we deduce (5.1).
If we are in the setting of Proposition 1.8, then the entire argument above carries through
but with § < 1. O

Note that we could not yet conclude above that
C
[Uoo(x) = 1| = — asr — 00
r

because the bound C in (5.2) is not uniform in ¢ > 0. But, in the next two propositions, we will
4 . .

be able to first show that u 72 g is a scalar flat metric, and then show that Uso(x) — 1 does

indeed satisfy such a spatial decay estimate.

Proposition 5.2. Under a Yamabe flow satisfying the hypotheses of Proposition 1.7, for
all0 < o' < «,

., C
(5.3) lute.1) = ool it = 75
forany0 < § < 5. Moreover, uxo € Cllgc"'“ (M) and goo = uoo(x)ﬁgo is a scalar flat metric,

ie.

AgoUoo(X) — Rgy(X)uoo(x) = 0.

1
a(n)
Recall a(n) = %. If the flow additionally satisfies the hypotheses of Proposition 1.8, then
(5.3) holds for all § < 3.

Proof. First recall that

1
0 1 2t Reo
Since we have uniform and positive upper and lower bounds on u by Lemma 3.5, and since
Ry, € CE=2T (M), we see that

Rgo
ulN-2

<C forallt € [0, 00).
L (M)
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Thus, for all p > 1, on any compact subset 2 CC M,

RgO
uN—2

< C forallzy € [0, 00),
LE(Q@x[to,to+1])

lullLgo@xlro.0+17) < € forall zg € [0, 00).

We now apply the standard Schauder estimates for parabolic equations to see that u is in
Wz’l’p(Q X [to, to + 1]) and satisfies

loc

RgO
uN—2

e llw-'-2 @xleo.t0+1) = C( + ||u||Lg°(szx[t0,z0+1]))

L (Q@xto,t0+1])
< (Cy,, foralltg € [0, 00).

Therefore, by the results on embedding of suitable Sobolev spaces into Holder spaces on
parabolic domains, see e.g. [9, Theorem 3.4],

(5.4 ull e+ 3% J@xitoto+1]) < Clas

where we have chosen p > n + 2 so that 1 — % = o.. The embedding constant depends on

n, p, diam(2)~!, g, and the length of time interval (which is 1 in our case). In particular, it is
independent of #y.
To derive higher-order local regularity of u, we use an induction argument to prove that

kta
u e C(;H_a’ 2 (R x [to, to + 1]).
Assuming e
u e CT"2 (@ x [t9, 10 + 1)),

we want to show that
1+2

+o
u e CP2T737(Q x rg, 10 + 1))

if [ <k —2. From (5.4), this is already proved for / = 0 and 1. Since Rg, € Cllgc_z"'“, by
a product estimate for parabolic Holder spaces, we find for such / that

Rgo

N3 < C forallty € [0, 00).
u

4o
Cor "3 (Qxlto,to+1])

Therefore, by higher-order Schauder estimates for parabolic equations,
[+2+a
u e CP2TT37 (@ x rg, 10 + 1))

and it satisfies

ol ct2+e- S5 @ufrg, 10+ 1)

uN—2
< Ciq2, forallzg € [0, 00).

Tl tHD)
1+ 0,510
clte 5% @xto.t0+1]) 0

The induction argument stops when [ = k — 2.
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Hence we have proved that
u e CEPe 5 (Q x (10,10 + 1)).
Taking j = 0 and ¢ = ¢ in Definition A.1, we obtain
||u(x,t)||cé'+a(g) < Ckq forallt € [0,00).

Note that Cy o depends on 2, k, «, and is independent of 7, so for every 0 < o’ < « and every
sequence {#; } — 00, there exist a subsequence {z, } — oo and a limiting function %~ (x) such
that

(5.5) u(x, 1) = floo(x) in CKFY | ast; — oo,

by the Arzela—Ascoli theorem. But, by Lemma 5.1, we also have
u(x,t) = uoo(x) in L®°(M), ast — oo.
Thus Ueo = U, and this implies

u(x,1) > uoo(x) in C]];C”L“/, ast — 00,

o . 4

As k > 2, we can pass the limit in the scalar curvature equation to see that e (Xx)7—2 gg
is a scalar flat metric, i.e.

Agotioo — ——Rgotico = 0.
80" oo a(n) 80" oo

Finally, we claim that ueo(X) € Cllg:r “, even though the sequence does not converge in
this space as in (5.5). This is because the Cé""“ (2) norm is lower semicontinuous. Namely,
for any compact subset 2 CC M,

oo (V) llchte(@) = lim |lulx.0)[ci+e @) = Cra- o

We now have enough information to conclude that u, is in fact the conformal factor ¢
from Proposition 3.1 corresponding to the scalar flat metric g.

Proposition 5.3. We have uq, — 1 € C¥F%. In particular,

C

(5.6) [Uoo(x) — 1] < = asr — 0o,
C

|0jUoo(x)] < R asr — oo.

Here r is defined as in Definition 2.1.

Proof. By Proposition 3.2, thege exists a positive function ¢ with ¢ — 1 € C fj % such
that g = ¢n—2 g¢ scalar flat. Since u =2 go is also scalar flat, the function w := Ueo - o1 will
satisfy Azw(x) = 0. Moreover, by Lemma 5.1, w(x) — 1 — 0 as 7 — o0. Thus the maximum
principle asserts that w = I sothat ugo — 1 =¢ — 1 € Cf;“". m]

We can now prove Theorem 1.2.
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Proof of Theorem 1.2. Part (1) of Theorem 1.2 follows immediately from combining
the results of Propositions 5.2 and 5.3.

To see part (2), notice that all we have used to prove part (1) is that u(¢) remains uniformly
bounded from above and below for all times. So, if Y (M, [go]) < 0 but u(¢) remains uniformly
bounded from above and below, then the Sobolev inequality with a uniform constant holds
for all g(¢). This would lead to the decay estimate of the scalar curvature using the same
argument of Proposition 1.7. Note that, with the Sobolev inequality, we do not need to assume
Y(M, [go]) > 0 as in Proposition 1.7. Lemma 5.1 and Proposition 5.2 again show that u(¢)
converges uniformly to some uy, € C k+a (M), asymptotic to 1 at spatial infinity. But, by the

loc
conformal invariance of the Yamabe constant, we have

—1 2
v lgo) = it r2JulVeet Ve, 1

0o on n—2 - C
ve(,;();égM), (f|v|”_2dVgoo) n 8o

> 0,

where the L? Euclidean-type Sobolev constant Cg., of goo exists because uyo is asymp-
totic to 1 at spatial infinity. This contradicts our initial assumption on the Yamabe constant
of (M, [go]). Therefore, from the proof of Lemma 3.4, we see that we must in fact have

sup u(x,t) 2% 0.
xeM
It remains to show that the L? Euclidean-type Sobolev constant of (M, g(¢)) also blows
up as t — oo. If not, then we have uniform control of this constant, which allows us to carry
out nearly all the arguments of Section 4 (without any assumption on the boundedness of u())
until Proposition 1.6, where we passed from (4.13) to (4.14) using the L°° bound of R, which
was a consequence of the uniform bounds on u established when Y (M, [g]) > 0. But we can
recover the boundedness of R simply with the bound on the Sobolev constant by plugging the
uniform bound of ||R||L» for p slightly larger than 5 from Lemma 4.3 into the estimate of
Proposition 4.4. In fact, the constant in that estimate only depends on the Sobolev constant
bound D of gy, so since we are now assuming control of the Sobolev constant, we obtain the
same estimates for ||R| Lo on the intervals [T, T + 1] for all T € Zxg, and hence uniform
bound of R for all times. As a result, we can continue through the same arguments we used to
prove u(¢) is unbounded earlier. Note that, although Proposition 5.2 uses the boundedness of
u(t), we do actually obtain this beforehand when we integrate in proving Lemma 5.1. O

5.2. Weighted convergence. We will now prove the weighted convergence of Yamabe
flows starting from AF manifolds with Y (M",[go]) > 0, and need to assume for the rest of this
section that T > 1 as in Theorem 1.3, or thatn = 3, 7 > %, Rg, > 0,and Rg, € LY(M™, g¢)
as in Theorem 1.4. The difference between the proofs of Theorems 1.3 and 1.4 occurs with
the distinct decay rate estimates, Propositions 1.7 and 1.8, required to prove Proposition 5.4
below in the respective settings of the two theorems. In particular, the decay rate of R from
Proposition 1.7 alone is not enough to give us the estimates of Lemma 5.5 when n = 3 and
T > %, so for this case, we must bring in the improved estimate of Proposition 1.8.

Using a strategy similar to that used to prove [21, Lemma 5.2] in a Ricci flow setting, we
now prove below Proposition 5.4, a decay estimate for the scalar curvature in both space and
time. In fact, once we have this, the rest of the proofs of Theorems 1.3 and 1.4 are the same,
and we will complete the proofs of both together at the end of this section.
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Proposition 5.4. Under the hypotheses of either Theorem 1.3 or Theorem 1.4, for any
t/ < 1, there exist some 8o > 0 and C > 0 depending only on go such that

C

R(x,t <
| ( )l_ rT (1+t)1+5()

forall (x,t) € M x [0, 00) along the flow.

Proof. Given t/ < 1, choose 09, 01 such that 7/ < 07 <09 < 7. Let§ = 2, and con-
2

sider D :={(x,t) € M x [0,00) : r(x) > t*}, where a > % is to be determined.
For (x,t) ¢ D, by Proposition 1.7,
IR|<Ct '8 <171

for some 1 > 0, when a > % but it is close enough to %
We now claim the estimate

|R| < Cr=27°" for(x,t) € D

holds. In fact, we define i := r*+2°1 and w = h - |R|?. Then w satisfies the evolution equation

0
(5.7 (a —(n— I)A)w < (n—1)(Bw—2Vlogh - Vw) + 2h|R|.
Here
_ (2|Vh|*> — hAh)
B = W .

From Lemma 5.5 below, for any 8 < %, we can bound B uniformly by

3

Cr 2+ r_lt_ﬂ) <Ct™27% onD
by choosing f sufficiently close to % By Proposition 1.7,
90

WMRP <w-1 ' =w. 71772,

Thus (5.7) becomes

0 ,
(E —(n— I)A)w <-2(n—1)Viegh-Vw + Cw -t~ 17%,

I minfe 1 g0
where & 1= mm{2 g 2}>0.

On 0D, we have
IR| < Ct~1=% = ¢~ +P)a < ¢ 201

for a sufficiently close to % So we can apply the maximum principle on the non-compact
manifold as in [13, Theorem 12.14] to conclude the claim holds. (See also the statement in
[21, Theorem 2.1].)

Therefore, on D, we have

|R| < Cr 2o < ¢y~ 100,

for some §¢ > 0 and a sufficiently close to % o
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Lemma 5.5. Under the hypotheses of either Theorem 1.3 or Theorem 1.4, for r(x) > 1,
t> 1, andany B < %,

Ch
(5.8) Vew)lgw) = ClVeohlg) = ——
Ch (1 1
5.9 |Agyh| < o (; + t_ﬂ)

Proof. (5.8) is straightforward as u is uniformly bounded by Lemma 3.5 and

_2_
IVeyhlg@y = w72 [Vgohlg(o)-
Regarding (5.9), we consider

__4 _nt2 g;
(5.10) Agyh = u =2 Agoh +2u™ n=2 g4 0;hoju.
We know from calculation

Ch
(5.11) Agoh < R

Ch
(5.12) oih < —.

r

The next step is to estimate d;u. From the proof of Proposition 5.2, formula (5.3), we see

C
[ (x. 1) —uco(X)llckte = —

loc t
forany 0 < § < % On the other hand, by (5.6), from Proposition 5.3, we have

31100 ()| = —7-

Recall that, in the n = 3 case where we imposed additional assumptions on Ry, we can replace
the restrictionon § by 0 < § < %, and this also holds when n > 4 since we assumed in this case
that t > 1.

So, putting these estimates together, we can obtain for any dimension n > 3 and any
B < 3 that

1 1 1 1
(5.13) |0ju(x,1)] Sc(t_ﬂ+m) fc([_ﬂ+;)_

Then, plugging (5.11), (5.12), (5.13) into (5.10), we complete the proof of (5.9). O

Now that we have weighted decay of the scalar curvature, by integrating, we can start to
prove the weighted convergence of the conformal factor u(%).

Proposition 5.6. Under the hypotheses of either Theorem 1.3 or Theorem 1.4, for any
7/ < t, we have
u(x,t) —uUoo(x) >0 in C_Or/, ast — oo,

where Uso € ij‘“ is as in Proposition 5.3. Moreover, there is a 8¢ > 0 such that

C
(5.14) e, 1) = oo (®lco,, < 5o
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Proof. Since aatu = ——Ru we have

(5.15) u(x,t) = elo _%R(X’Z)dtu(x, 0).
By Proposition 5.4,

(5.16) R0 < ——C

rt/(l + t)1+80 ’

Thus, for t1,t, > 1,

1
|M(X,Zl) _ u(x’ t2)| S Cer.[/ . |e()—1/(80-tf0) _ eC—l/(SO-t§0)| . u(x,o)
1 1

=CT 5~
r t20

? < u(x,0)].

This implies

/7

1
r® o lu(x,t) —u(x, )| < C 5o o
[20 llo

— 0 asty,tp — oo.

Note that u(x,t) —1 € C2 for every t > 0 by [10, Theorem 1.3]. Thus u(x,z) —1 is a
Cauchy sequence in C_O,/ as t — 0o. We may then conclude that

fur.1) = uso(lico,, = = o

Before proceeding to the proof of Theorem 1.3, we need to establish some uniform
control of the conformal factor u(¢) in some parabolic weighted Sobolev and Holder spaces.

Lemma 5.7. Under the hypotheses of either Theorem 1.3 or Theorem 1.4, and for any
1t/ < 1, the following holds.

(1) For any p > 1, there exists a constant C > 0 such that, for any 0 < 11 < v’ and all
10 =0,
[l — 1||Wf%’§/2”’(MX[to,to+1]) =C.

(2) There exists a constant C > 0 such that, for all ty > 0,
e = ekt 55 (uxfro.ao+11) = C-
Here C is independent of time ty.

Proof. To estimate ||u — 1||Wf%/;/2-P(MX[,0’,O+1]), we observe that u — 1 satisfies the
equation

N0 1) = gy 1) — () Ry~ 1)+ ) R

where a(n) = By Proposition A.S5,

4(n 1)
lle = TllwAA7222 (Mg to-+11)

= CURgolw* 2572717 (i o+11) + U = L2, aax(zo.00+1D))-
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Since Rg, € Cft__zj"‘ (M) and Ry, is independent of 7,

1Rgo lw* 2872712 (b xfzg,00+17) = €

Thus it suffices to prove that ||u — 1||L£t1(MX[thtO+1]) <C.
Recall (5.15) and (5.16) from the proof of Theorem 5.6,

u(x,t) = oo —"32 RGx.1) 4ty (x,0),

and
C

(5.17) [R(x,7)] < EATETIETS

We also know from the AF assumption on g that
C
r‘E
Thus
(5.18)  [u(x.1) — 1] < fo "TRENAL (¢ 0) — 1] + |efo ~"FFRODr _q

t
§C-|u(x,0)—1|+C/ —R(x,t)dt 5%.
0 r

Above, in the second line of (5.18), we have used |e¥ — 1| < e/ - |s|, where § is some point in
[0, 5], so that |5 — 1| < els! - |s]|. Letting

t
-2
s=/ TSR 1) di
o 4

so that
t < C

=0 —

—C
Is| < %
7 (1 + t/)%0

by (5.17) gives us the estimate.

As a result, we see that u — 1 € CO (M x [tg, to + 1]) < L2, (M x [t9, 10 + 1]) for
any 71 < 7/, completing the proof of (1).

To prove (1), again by Proposition A.5, we have

Jlu—1 ||ij,a‘w(M><[to,to+1])

< C(IRgo llck—24 55 (Mxto o+ 1) + 1t = Ulco_ (xfro.co+11)-

Since u — 1 € C2/(M x [tg, 10 + 1]) and Ry, € Cft__zgr“ (M), we obtain our desired esti-
mate. m]

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. 'We will bootstrap to inductively prove higher global
regularities of ¢ in weighted parabolic Holder spaces. More precisely, we want to show the fol-
lowing estimate: for all / < k and 7/ < t (assuming as throughout this section that T < n — 2),

N C
(5.19) ||¢(x,l)||cij,“’f’3 (M x[to,to+1]) = e
0
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Claim 1. (5.19) holds for 1 = 0.

Let ¢p(x,t) = u(x,t) —uso(x). Subtracting the two equations that u(x,?) and U (X)
satisfy,

0
EMN =(n-— 1)N|:Ag0u an )Rgo(x)u]
Aatton() = =5 R (o () = 0
we obtain
(520) S000) = 2| A ) = R (0950 |

By (5.14) of Proposition 5.6, there is a 8o > 0 such that

C
lo(x.Dllco ) = 5

Therefore, forall p > 1 and 7; < 7/,

C

(5.21) loCeDILz. axtrorot1) = 55
0

where C depends only on p > 1 and g¢ (but is independent of #g).
Since u(x,1) — 1€ C2,(M)and 0 < C; < u(x,t) < Cy < oo, we have
1
— —leC’ (M
ulN=1(x,1) ~(M)

as well. We also have Rg, € C ft_ _2; “(M). Hence, by the triangle inequality and the product
estimate from Lemma A.3,

Rgo(x) 1 0
—uN_l(x,t) = Rgo(x) - —uN_l(x,t) — 1) 4+ Rgo(x) € CZp (M),
and thus, forall0 < 7; < 7/,
Rgo(x) D
N 1(x0) L2 (M xto, 10 + 1]).

Putting everything together, we obtain that, for any 79 > 0,

(5.22) H g°¢

L”r (M x[to,to+1])

Ry (x)

ulN=1(x,1) o

C
e Dllcoan =
L? 5 (Mx[to.t0+1]) lo

Now, by the weighted Schauder estimate for parabolic equations from [10, Theorem 5.3] (or

see Proposition A.5) applied to (5.20), we have for each 79 > 0 that

(5.23) @ llw2,17 (M xlro,00+1D)

uN—1

gl (Mx[,o,tom)),
L2 > (Mx[to.to+1])
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so substituting (5.22) and (5.21) into (5.23), we derive
C
(5.24) 1 Ce. DMl w22 (M x[to,00+1]) = e
0
Since (5.24) holds for all p > 1, we have by Sobolev embedding results for parabolic weighted
spaces that (see statement (iii) of Lemma A.2)
C
¢ Cx. D)l e®2/2 (M xito,t0+11) = s
0

where C = C(w, 71) and we have chosen p > n + 2 so that 1 — % =a.

Claim 2. [f (5.19) is valid for | > 0, then it holds for | + 2 whenl <k — 2.

Again from the evolution equation for ¢ and the weighted Schauder estimates of Propo-
sition A.5, we have

(525 llpCe.O)llcr2+"5 arxirg to+1])

Rgo®
5C( = + lPllco, (mxizo,r0+1 )
ulN-1 Cl+°‘ 7(M><[to,t0+1]) O/ (M x[to,t0+1])
From (5.14), we have
C
léllco_ mxiro.io+1D) = 50
0
So it remains to show that
Rgo¢ C
(520 ulN-1 H—oz— =5
ch (Mx[to,to+1]) I

In fact, by the product estimate of Lemma A 3 along with Lemma 5.7, and the fact that
w—1e e (M x 10,10 +1]) = CLY* 3 (M x [t0.10 + 1)) forl <k —2,

1
ol

< CllRgollcte  ary - lu = Ll +e- 5 (mxiroro+1) = €
and also have Ry, € Ck 2FeM) — Cl+°‘2(M) foralll <k —2.
Therefore,
Reo _ g L ) +r ClEo S (M x [to.10 + 1
uN-1 — 780 m_ + Rgg € (M x [tg, 1o + 1]).

Hence (5.26) follows as

we have

c“r“ 2 (M x[to,to+1])

R
(5.27) H f,"_¢
u C’+“ z (M x[to,t0+1])
Rgo
< - NG Dl el E* xiro.0+1])
ulN=1 Cl+°‘7(Mx[t0 to+1]) wHo-fo
C
< —.

— 44
150
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Above, the last inequality uses the inductive hypothesis (5.19). By substituting (5.27) into
(5.25), we have proved Claim 2.

Claims 1 and 2 together complete the proof of (5.19). To conclude, in the definition of the
Cf:r“’%(M X [to, o + 1]) spaces as stated in Definition A.1, we can take j = O and ¢ = ¢,

and derive, for all ¢t > 0,

o A
lp(x, Dllck 4oy = llg(x, Dllck+e 5 mxitoto+1) = 5

t%
and thus
u(x,1)— 1 = ug(x)—1 in Cf:ﬁa(M), ast — oo. O

A. Cf;" * AF metrics along the Yamabe flow

Here we prove Theorem 2.6—namely, we check thata C¥F® AF metric, k > 2, continues
to be a CK* AF metric along a fine solution of the Yamabe flow. First we need to recall the
definitions of some parabolic Holder spaces from [10].

Definition A.1 (see [10, Definition 4.1]). Let (M", g) be a complete Riemannian mani-
fold such that there exist a compact K C M" and a diffeomorphism ®: M"\ K — R"\ Bg,(0)
for some Ry > 0. Let r > 1 be a smooth function on M" that agrees under the identification
® with the Euclidean radial coordinate |x| in a neighborhood of infinity, and let g be a smooth
metric on M" which is equal to the Euclidean metric in a neighborhood of infinity under the
identification ®. Let M = M x [0, T']. Then, with all quantities below computed with respect
to the metric g, we have the following function spaces.

The weighted Lebesgue spaces qug (M), for ¢ > 1 and weight § € R, consist of those
locally integrable functions on M for which the following respective norms are finite:

r !
(/ / |v|qr_ﬂq_” dx) , g <00,
lvllLg e = \o /M

ess sup(r_'B|v|), q = oo.
M

k,k/2

The weighted Sobolev spaces Wﬂ “4(M) are then defined in the usual way with the norms

lollwscr2ag =Y IDLD]vllLg

fi—2; (M)
i+2j<k

The weighted C¥ spaces C é‘ (M) consist of the C¥ functions for which the following respective
norms are finite:

Ivllcsn = Y supr P+ |DiD]v|.
i+2j<k

The weighted Holder spaces Cé‘“"(k“‘)/z(d\/(), a € (0, 1), consist of those v € Clg‘(eM) for
which the following respective norms are finite:

[vllck+atrarz gy = vlickw + [lek+ewy + (v)ck+ewo-
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Here
Rlcktewo = Y, sup  min(r(x),r(y)PHFTe
l+2]=k (xst)7é(yss)€*M i ] i ]
|D.D;jv(x,t) — D D;v(y,s)|
8((x,1), (y,5)* ’
where §((x, 1), (v, s)) = d(x,y) + |t — 5|2, and for k > 1,
o _ —B+i+2j+a+1
(U>C§+ o i+2z::k—1 (x,t)s'és?yl?s)eeMr(X) . .
/ |DLDJv(x,t) — DLD]v(x,s)|

atl
|t —s| 2

We now record some embedding results for the spaces above from [10, Theorem 4.5].
Note that (iii) below is a sharpened version of an embedding result which appears in the proof
of [10, Theorem 1.3]

Lemma A.2. Under the hypotheses of Definition A.1, the following inequalities hold.

(1) For1 < p <q <ooand By < B1, we have
||v||L§](M) < ClvllLy, (M).
(i) Forp =1+ P21 < p,q.5s <00, and% = é + % we have
llizgao = vlizg wollvlizy o

llicge2w = Ivlicg2wolviicg 2w

";2, we have

(iii) Forp>n+2anda =1—
||U||Cg.a/2(d“) < C”v”Wﬂle(M)

We next state some generalizations of product inequalities for the weighted parabolic
Sobolev and Holder norms found in [10, Theorem 4.5]. They follow from the definitions of
these weighted norms. In the Holder case, one must check that

Jta,(j+a)/2

L>Cﬂ

C/I;+a,(k+a)/2 forall0 < j <k.

Lemma A.3. Let f = 1 + B2 with 1,2 < 0.

(i) For1 < p,q,s < oo with % = é + % and a given nonnegative integer k, we have

luvllwsrr2ra = Cillullwhr2a g [vllwi 2 o,
where Cy depends on M and k.
(ii) For k > 0, we have
luv ||C§+a,(k+a)/2(d%) < Callu ||C§l+a.(k+a)/2(M) v ||C§2+a,(k+a)/z(M),

where Cy depends on M and k.
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We now check that an unweighted Holder estimate holds for the conformal factor ¥ which
evolves along the Yamabe flow.

Lemma A.4. Let g(t) be a fine solution of the Yamabe flow starting from the asymptot-
ically flat manifold (M", go) on the maximal time interval [0, Ty), given by

g(t) =u(t)i2gy withu(0) = 1,
and let T < Ty. Then, given ro > 0, there exists a sequence Ay > 0 fork = 1,2, ... such that

lull ¢htetkrarrz g, (pro)xio, 1)) < Ak

independently of the point p € M. Hence there exist uniform bounds on [0, T for the curvature
Rm(x, 1) and all of its derivatives.

Proof. By [10, Theorem 2.4], on a given [0, T'], the conformal factor u(x,¢) satisfies
0 < ¢y <u(x,t) < cpfor some constants ¢y, c2. Therefore, we may apply the Krylov—Safonov
estimate for parabolic equations to (2.1) and then repeatedly apply the Schauder estimates for
parabolic equations (see for instance [22, Theorem 4.9]) to obtain the conclusion. o

With the help of the product inequalities of Lemma A.3, we can then adapt the argu-
ments in the proof of [10, Theorem 5.4] to establish higher-order weighted Sobolev and Holder
estimates for the conformal factor u(z).

Proposition A.5. Let u(x,t) be a fine solution of the Yamabe flow starting from an
asymptotically flat manifold (M™, go) on the maximal time interval [0, Ty), given by

gt) = u(t)n%Zgo withu(0) = 1.

Further, let v = 1 — u, and suppose for a fixed T < Ty that 0 < § < u(x,t) < C’'on|[0,T].

1) If (M™, go) is Wf}p asymptotically flat for some k > 2, then there exists a constant
C =C(n,k,p,t,8,C’) such that

[vllwkx2r ey < CUIRgollwhs 2217 () + VL2, (a0))-
(i) If (M", go) is C f;" ® asymptotically flat for some k > 2 and we have
||v||c(1)c—z+a.(k—z+a)/z(M) <C’,
then there exists C = C(n,k,t,8,C’,C") such that

(A1) lvllckpa-ttarz gy < C([|Rgo | k2t k=202 4y + [Vl o, (a0))-

Proof.  The proofs of (i) and (ii) are similar and moreover are straightforward adapta-
tions of the proofs of [10, Theorem 5.3] and [10, Theorem 5.4], respectively, once we have the
multiplicative inequalities of Lemma A.3. Indeed, the statements of [10, Theorems 5.3, 5.4]
are exactly the statements of Proposition A.5 in the case k = 2. As a result, we will only give
the proof of (ii) below, making this choice because, in this work, we are mainly concerned with
C fj‘ % asymptotically flat manifolds.
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Following the proof of [10, Theorem 5.4], we first use a scaling argument on annuli along
with the Schauder estimates for parabolic equations as in [22, Theorem 4.9] to obtain
(A2)  lvllcksettar2 gyxio,r)
< C (10 = Ao)v|lcks2retk=2+r2(gpy0.17) + [VllcO, (Erx[0.7T))

for R > R, where Ro > 0 is as in Definition 2.1 and Eg = &1 (R”\Bg(0)) C M. Here Ay
denotes the Laplacian with respect to the flat metric defined by ® on Eg. Define the operator

62
1ox/

P = h(Ago _a(n)RgO) = h(gé)J Ox + b ox/ _Cl(n)Rgo),

where 1 = m and, in the last expression above, we have rewritten Ag in terms of the
Euclidean coordinates given by ®. We then have

(0 — P)v =a(n)Rg,.

We will now compare (0; — Ag) and (d; — P) on Eg x [0, T]. Decompose v = vy + Voo
using a suitable cutoff function so that supp(veo) C ER; then, with the help of the product
inequality of Lemma A.3, we can estimate
(A.3) (Ao = P)veollch2tete=24a/2 g 10, T7)
< ||hgf)j — 8ijllclten k=242 (g xjo,1])
”D)zcvoo||sz__zj'a’(k_2+a)/2(ER><[0,T])
+ ||h||Cg_2+""(k_2+°‘)/2(ER><[0,T])
||b||C’_‘l_2+°"(k_2+°‘)/2(ERx[O,T])
|| DV ||Cfl__zj'“’(k_2+a)/2(ERX[O,T])
+ ||h||C(’)‘_2+“'(k_2+°‘)/2(ERx[O,T])
[ Rgq l| k5 2te-tk=2+0/2 (o xfo,T])
[veo [l ¢k 72t tk=2402/2 (g x0,1])
< C(||hg(i)j —8ij ||Cé€72+a,(k72+ot)/2(ERX[O’T])
+ ||b||Cfl_2+°"(k_2+°‘)/2(ER><[0,T])
+ | Rgo ll ¢k 52+ k=24/2 (g 0, 17))
Voo [l c& e teten/2 (g g xfo, 1))
Moreover,
(A4) lhgd — &) [ cl—2tetk=240/2 (g 1 10,T7)
+ bl ch2tet=240/2(g 0,17y
+ | Rgo l c¥5 2t k=272 o, 1) — O

as R — oo because of the asymptotic decay of v and go. Thus, by taking R sufficiently large,
we obtain by combining (A.2), (A.3), and (A.4) that

(AS) ool chetkterrz gy < C([[(0r — Pvoo || ck5 2o k=2+e/240) + Vool cO, (u)-
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To deal with the first term on the right, if we let {g be a suitably chosen cutoff function so that
vo = {RV, Voo = (1 = {R)v, then we have
(A.6) [ (0r — P)Uoo||sz__2ja,(k—2+a)/2
< 1@ = P)vl|ch 2o k=2+e0/2
+ 1@ — P)(LrV)||c*5 2 e tk—24e/2
< 2||(0r — P)v||ck;2tetk—2twr2
+ CR|v + [Vgov| | ck=2+a- k=242 (g o\ E, ) x[0,T)
We leave this for now and consider vg. On the bounded space-time domain supp(vg) C M, we

can directly apply the Schauder estimates for parabolic equations as in [22, Theorem 4.9], to
obtain, similarly to (A.5),

(A7) lvollcka-tetarz yy < C([[0r — P)vollchy2te- k=242 40y + [lvollco, (a0))
and similar to (A.6), we also have

(A.8) (0 — P)v0||cl_<2—_2:ra,(k—2+a)/z
< 2[[(0r — P)vl|ck 2t k—2Fa/2

+ Crllv + [Vgovll ck—2+e- 24072 (g o\ By ) x[0,T]) -

Finally, putting (A.5), (A.6), (A.7), and (A.8) together, applying a Holder norm interpolation
inequality to deal with the |V gov| terms, and recalling that (0; — P)v = a(n)Rg,, we obtain
the desired estimate (A.1). O

We are now in a position to prove Theorem 2.6.

Proof of Theorem 2.6. The case k = 2 is proved in [10, Theorem 1.3]. So we need only
concern ourselves with k > 3, and by induction, we may assume that ||v||ck 2+e.(k—2+0)/2 jg
bounded on M.

Clearly, by our hypotheses, v is bounded in Cé‘ —2+4e.(k=2+a)/2( (). And since (M™", go)
is Cf;r“ asymptotically flat, we also have Rg, € sz__z;"“’(k_2+“)/2(M). Proposition A.5
therefore implies that v € CKHe-*+0/2 'which in turn gives

u(x,t)—1¢€ Cf:a forallt € [0, T7],

as desired. O

B. Cf;" * conformal deformations

We will indicate here how the statements Propositions 3.1 and 3.2 on conformal defor-
mations of AF manifolds with metrics lying in weighted Holder spaces follow from the corre-
sponding results given in [6, 16,27], which work with weighted Sobolev spaces. We begin by
recalling those results.

Corresponding to Proposition 3.1, we have the following result.
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Proposition B.1 ([16, Lemma 4.3]). Let (M",g) be a W_k}p AF manifold with k > 2,
k > %, and t € (0,n — 2). Suppose R’ € sz__zt satisfies R' < Rq. Then there4exists a pos-
itive function ¢ with ¢ — 1 € W_k;p such that the scalar curvature of ¢’ = ¢pn—2g is R'. In
particular, g’ is also a W_k;p AF metric.

Corresponding to Proposition 3.2, we have the following result.

Proposition B.2 ([16, Proposition 3]). Let (M", g) be a Wf;p AF manifold with k > 2,
k > %, and t € (0,n — 2). Then the following are equivalent.

(1) We have Y(M, [g]) > 0.

(2) There exists a positive function ¢ with ¢ — 1 € W_k;p such that ¢ = qﬁ%g is confor-
mally equivalent to g and Rz = 0.

We note that, in [16], Proposition B.1 is actually stated in the W_2;p setting, but the proof
uses the Wf;p results established earlier in [27], and the more general W_k;p statement given
above follows by the same argument.

Now, starting from the hypotheses of Propositions B.1 and B.2, we first observe that
C fj ® s Wf;f’ for any sufficiently large p < oo if T’ < . Therefore, Propositions 3.1 and 3.2
immediately give us the existence of metrics g’ and g belonging to Wf;f’ , and we just need to
establish that they additionally belong to Cf;" “. Moreover, by taking p sufficiently large, we
have Wf;f’ < C%_, for any v’ < 7. We can then conclude the results of both Propositions 3.1
and 3.2 by proving a regularity estimate arising from this information. Indeed, this is essentially
an application of the elliptic theory of weighted Holder spaces on punctured regions of R” as

for instance in [29, Chapter 2].

Lemma B.3. Ler (M”, g) be a C*¥}* AF manifold, with k > 2 and t© € (0,n —2). If

R € sz__zja and ¢ € ij,a forall T < T satisfy

(B.1) —a(n)Ag¢ + Rgdp = RpY,

then p — 1 € Ckte.,

Proof. Let ¥ = ¢ — 1. Elliptic weighted Schauder estimates can be derived by scaling
on annuli as in the proof of Proposition A.5 (essentially the same procedure as in [3,10]), which
when applied to (B.1) then imply

IWlickte < CAIRgllc* 24 + IRl c* 28 + [V lico, -

—2—1/ —2—1/

Above, we have used the product inequalities of Proposition A.3 along with v € C in order
to deal with the multiplications of Ry and R against powers of ¥. The same estimate would
then show us that € C f;" % once we establish that ¢ € C_Or, and we shall now do so.

For ease of notation, we assume that we have asymptotic coordinates

®: M\K — R"\ B1(0).
Then we can rewrite (B.1) in the Euclidean coordinates as

(B.2) —Aoy + (87 = g")DEY + b/ Dy + Rg(1+ ) = R(1L+ )N,
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where Ay is the Euclidean Laplacian and —A, = —g%/ Dizj + b/ D;. Using that

kre D2y e R s %, Dy e CRIITY s 0O, ReCRAMe

geC
all together with the product inequality from Proposition A.3, we see that (B.2) takes the form
(B.3) —Aoy = f € C°F%  onR"\B;(0).

We now apply the Kelvin transform from R\ B; (0) to B;(0)\{0}. Following the definitions
in [29, Chapter 2], we will denote weighted spaces on B;(0)\{0} by for instance C *]2‘:‘;‘ i,
in order to distinguish them from weighted spaces on R\ B1(0), which we will still denote
by C fj ® We will similarly denote the Kelvin transform of ¥ by ¥*: B;(0)\{0} — R, and
similarly for other functions.

It is then possible to check that ¢ € Ci‘;" % implies ¥ * € C *Ich,‘lx 1 In particular, since

7 € (0,n —2), we also have 2 +n — t € (0,n — 2), and therefore, by [29, Proposition 2.4],

L2t *0
Ao:CT5ptrp 7 Copir

is invertible for all T € (0,n — 2). Here C *gf,‘f 41, means those functions of C *%f,‘f 1 wWhich

vanish on dB;(0). Thus, since we already know that Y € C f;’?"‘ for any 7/ < 7, we see that
y* e C*31Y  and
—4
_AOW* = |X*| f* € C*g—n—i-‘c’—Z’

while using (B.3) and [29, Proposition 2.4], there exists a w* € C*37¢ 0.0 solving

—4 o

Hence it follows that ¢* —w € C *%J_r,‘f 4~ must be harmonic in the entire ball B;(0) since
the order 2 —n + 1t/ > 2 —n implies the singularity at zero can be removed. Thus we see
that y* € C *%fff .= C *(2)—n .7 as well, and transforming back to R\ B;(0), we obtain as
desired that Y € C2_.. O

C. LP control of R for small p

Here we address regularity issues that might potentially arise in proving Lemma 4.3, and
show that they do not pose any problems.

We first look at a lemma about the auxiliary function w constructed in order to deal with
the set the scalar curvature vanishes {x € M", R(x,t) = O} at time ¢.

Lemma C.1. There exists a solution w to o;w = (n — 1)Aw + Rw with the appropri-
ate spatial decay w(x,0) ~ |x|™5 and |Vw(x,0)| ~ |x|™5~! at the initial time and w(x,0) > 0
on M", and w(x,t) > 0 forallx € M"™,t > 0.

Proof. We have already got L control of R from the Moser iteration, so there exists
A > SUPRn[0,00)| R|. By results of [7], the fundamental solution W(x, 7) to the operator

exists and satisfies a heat kernel type estimate. Thus define
w(x,t) = / Y(x —y,H)w(y,0)dy
M

satisfying 0;w = (n — 1) Aw + Rw with initial condition.
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We now want to show
(1) w(x,t) > 0if w(x,0) > 0; and
(2) w(x,t) decays of order s for all 0 < ¢ < tax if w(x,0) decays of order s.

It is not hard to see w satisfies conditions of the maximum principle of Ecker and Huisken
[17, Theorem 4.3]. In fact, conditions (i), (i1), (iv) in [17, Theorem 4.3] are obvious. To show
condition (iii),

/ / exp(—a37' (p, ¥)?)|[Vw|?(y) dus (y) dt < co  for some ap > 0,
0.7 Jm

we note that since Vw(x, 0) decays and is thus L> on M", [,, W(x — y,1)Vw(y,0) dps(y)
is L°° on M™. Thus

/eXp(—aﬁr’(p,y)z)IVWIz(y)dut(y)5/ exp(—a3r' (p. y)?) dps (y) < oo.
M M

To prove (2), w(x, t) decays of order s if w(x, 0) decays of order s, we use the idea of
Cheng—Zhu [10] and consider the function f(x,?) := h(x)w(x,t) — C, where h(x) := |x|*
and C is a large enough constant so that f(x,0) < 0 using the decay assumption of w(x, 0).
Then f(x,t) satisfies an evolution equation in which its coefficients satisfy all the conditions
of the maximum principle of Ecker—Huisken [17] that we used before. Thus f(x,7) <0 as
f(x,0) <0. This is to say,

w(x,t) <

Jx|*

Note |x| is equivalent to the distance function with respect to the metric g (), so

wix,f) < —— .
dg)(x,0)S

This allows us to prove a version of Lemma 4.3 without needing to worry about regularity
issues at points when R = 0. We can control |R| from above by a positive function which
satisfies the same decay estimates along with

0
—A<(n—-1)AA+ RA,
ot

SO we can carry out our estimates on A4 instead.

Proof of Lemma 4.3. Now we can run the rest of the argument to control L? norms
of R when p < 7. Let A% := R? + w?,0,w = (n — 1)Aw + Rw. By the above explanation,
w > 0. Hence 4 > 0.

Note that w? satisfies

ow? = (n—1DAW?) —2(n — 1)|Vw|? + 2Rw?.

We set the initial condition on u so that it has the same asymptotic decay rate as R, i.e.
w ~ €r~277 Then, by the Cauchy—Schwarz inequality,

IV(R? + w?)[> < 4(|RI> + w?)(IVIR|[> + |Vuw[?).
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Thus A2 = R? + w? satisfies the evolution inequality

n—1|Va??
2

yv +2RA?,

;A% < (n —1)AA% —
and therefore (since we have the strict inequality A > 0),

A< (n—1)AA+ RA.

The evolution inequality A satisfies is exactly the form of inequality satisfied by R, except now
we know that A > |R| > 0. Thus, for any p such that [ A? dV; is integrable (in particular,
p < 5 butclose to %),

%/Apdl/, §/pAp_la,A—%RAPth.

Hence
d
E/AP dV; < /pAp_l[(n —1)AA + RA] — gRAP dv;,
d s 5 n

Note n > 3 implies, for p < % but close to %, p — 1 > 0. So the first term on the right
has a negative sign. In the meanwhile, recall for the second term that
n—2

n n n_ n
‘(p - 5) / RA?| < |p— E‘MRHL; (/ AP dvt)

Since we have proved || R| 1% is monotonic decreasing, it is bounded depending only on go,

=

so for p < Z but very close to 7, this second term can be absorbed by the gradient term, using
the Sobolev inequality. Therefore, we see as desired that, for such p,

d
— | AP dV; <.
dt/ r= -
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