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1. Introduction

Let Mn be a compact smooth manifold of dimension n ≥ 3 and g a smooth Rie-
mannian metric on M . Recall that the Yamabe invariant of the conformal class of g, 
[g] = {eug, u ∈ C∞(M)}, is defined to be
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Y ([g]) ≡ Y (M, [g]) = inf
g̃∈[g],

volg̃(M)=1

∫
M

Rg̃ d volg̃,

where R denotes the scalar curvature. We will also call Y (M, [g]) the Yamabe invariant 
of (M, g) or g and denote it by Y (M, g) or Y (g). Recall also that the σ-invariant σ(M)
of M is defined to be

σ(M) = sup{Y (M, g) : g is a smooth metric on M}.

By the solution of the Yamabe problem [17,16,1,14], we know that the infimum 
Y (M, [g]) is achieved in the conformal class [g] for any smooth metric g on M . The 
minimizers, i.e. the infimum achieving metrics, have constant scalar curvature of the 
same sign as that of Y (M, [g]) and are referred to as Yamabe metrics. (Note that the 
corresponding result in dimension 2 is the classical uniformization theorem and Yamabe 
metrics there have constant Gauss curvature.) In this paper we will focus on Yamabe 
metrics with positive scalar curvature and establish a sphere and Ricci flow convergence 
theorem for such metrics (i.e. for Riemannian manifolds whose metrics are Yamabe met-
rics) with Ln/2-pinched curvature.

Let

Y+(M) = {Yamabe metrics g on M : Rg > 0, volg(M) = 1}.

Let Rm denote the Riemann curvature tensor and Z the concircular curvature tensor :

Z = Rm − R

2n(n − 1)g ©∧ g.

Note that Z ≡ 0 if and only if the metric g has constant sectional curvature. Employing 
the Ricci flow, G. Huisken, C. Margerin and S. Nishikawa obtained differential sphere 
theorems for Riemannian manifolds satisfying pointwise pinching conditions of the form 
|Z| < c(n)R [10,11,13], where the scalar curvature is assumed to be positive and c(n) is 
a sufficiently small positive constant depending only on the dimension n. Subsequently, 
R. Ye obtained a differential sphere and Ricci flow convergence theorem for Riemannian 
manifolds satisfying an integral pinching condition in terms of the concircular curvature 
tensor Z [19]. In [19], the L2-norm is employed for integral curvature pinching, but a 
pointwise upper bound for |Rm| is assumed. An integral pinching condition allows large 
deviation of Z from 0 in some places, and hence is significant geometrically. On the other 
hand, although the pointwise upper bound assumed for |Rm| in [19] is natural, it is not 
an integral condition. It is very desirable to remove this pointwise curvature bound.

In [9] a differential sphere and Ricci flow convergence theorem for Lp-integral pinching 
with p > n/2 without involving pointwise curvature bounds was obtained for Yamabe 
metrics. An Ln/2-pinching theorem was also obtained in [9], but it is valid only under 
the assumption that the given conformal class is locally conformally flat or contains 
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an Einstein metric. Note that the Ln/2 formulation with the critical exponent n/2 is 
most natural from a geometrical point of view, as the integral 

∫
M

|Z|n/2dvol is scaling 
invariant. In contrast, the integral 

∫
M

|Z|pdvol with p > n/2 needs to be multiplied e.g. 
by a power of the volume to become scaling invariant. The work [8] contains a sphere 
theorem (Theorem B) for 4-dimensional manifolds with positive Euler characteristic, 
where the metric is assumed to have L2-pinched Weyl curvature tensor W , which is 
a part of the concircular curvature tensor Z. Note that this pinching condition is a 
conformally invariant one. A Ricci flow convergence result for Yamabe metrics under the 
said conditions follows from the proof of Theorem B in [8].

We would also like to mention that A. Chang, M. Gursky and P. Yang obtained a 
deep differential sphere theorem for 4-dimensional Riemannian manifolds which have 
positive Yamabe invariant and satisfy a sharp L2-pinching condition for the Weyl tensor 
[4]. Previously, Margerin obtained a sphere theorem in dimension 4 with a sharp point-
wise pinching condition [12]. Sphere theorems in dimension 4 for 

∫
| Rm |2- as well as ∫

| Z |2-pinching were obtained in [15] and [2] respectively, in which the gradient flows 
of the corresponding functionals were employed. See [3] for a related sphere theorem in 
dimension 3.

Our main result is as follows.

Theorem 1.1. For each n ≥ 3 there exists a constant Λ(n) > 0 depending only on n such 
that if (Mn, g0) is a compact Riemannian manifold of dimension n with g0 ∈ Y+(M)
and

‖Z‖ n
2

< Λ(n)Rg0 , (1.1)

then Mn is diffeomorphic to an isometric quotient of Sn. Moreover, the volume-
normalized Ricci flow starting from (Mn, g0) exists for all positive times and converges 
smoothly to a spherical space form at the time infinity.

The 4-dimensional case of this theorem can also be derived from Theorem B and its 
proof in [8], as the 

∫
|Z|2-pinching implies positivity of the Euler characteristic in this 

dimension via Chern-Gauss-Bonnet theorem.
There are several good reasons for considering Yamabe metrics in the set-up. These 

metrics are important because of their minimizing and constant scalar curvature prop-
erty. They are also abundant as they exist in every conformal class of metrics. Indeed, 
they can be used to represent conformal classes. (In general Yamabe metrics are not 
unique in a conformal class. But one can consider all Yamabe metrics in a conformal 
class.) In this regard, our main theorem can be reformulated as a differential sphere 
theorem about conformal classes, in which the condition is that a given conformal class 
contains a Yamabe metric satisfying the conditions of the above main theorem. We would 
like to point out that the 4-dimensional hypotheses in [8,4] are formulated for general 
metrics in a given conformal class. Note however that in [8] Yamabe metrics or nearly 
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Yamabe metrics serve as the key bridge leading to the conclusion about the conformal 
class. In [4], instead of Yamabe metrics some other geometrically special metrics are 
employed.

Another point about Yamabe metrics is their role in the study of the σ-invariant. Thus 
our main theorem can also be related to this topic. Furthermore, the limit behavior 
of a sequence of Yamabe metrics gk on a manifold M with Y (gk) → σ(M) can be 
exploited to understand the existence of Einstein metrics (possibly with singularities) on 
M . We would also like to note that in dimensions higher than 4 one does not expect the 
smallness of 

∫
M

|Z|n/2dvol to be sufficient for a sphere theorem to hold true for general 
metrics, as this integral condition alone does not imply enough control of geometrical 
structures. Finally, the assumption of Yamabe metrics is very natural from the viewpoint 
of geometrical analysis, as Yamabe metrics enjoy a natural Sobolev inequality, which 
plays a crucial role in our main result.

Recently the first named author [5] showed that the Ricci flow deforms an asymp-
totically flat metric with Ln/2-pinching of curvature to a Euclidean metric. The present 
paper is in part inspired by that work. A key tool is a Sobolev inequality along the Ricci 
flow derived from [20], see Theorem 2.2. Along related lines we have obtained in [6] an 
extension of Gromov-Ruh almost flat manifold theorem to “Ln/2-almost flat manifolds,” 
and derived in [7] sphere theorems and other space form theorems under Ln/2-pinching.

2. Preliminaries

Our starting point is that if g0 ∈ Y+(Mn), then it satisfies the Sobolev inequality

‖u‖2
2n

n−2
≤ c(n)

R0

∫
|∇u|2 dV0 +

∫
u2 dV0 for all u ∈ C∞(Mn), (2.1)

where c(n) = 4 n−1
n−2 , R0 = Rg0 and dV0 = d volg0 . This was used in [9], and is an easy 

consequence of the minimizing property of g0 and the elementary formulae

∫
M

Rgd volg =
∫
M

(c(n)|∇g0u|2g0
+ Rg0u2)d volg0 , volg =

∫
M

u
2n

n−2 d volg0 (2.2)

for g = u
4

n−2 g0.
We will also use the fact that for any Riemannian metric g,

Y (Mn, [g]) ≤ Y (Sn) = n(n − 1)ω2/n
n , (2.3)

where ωn is the volume of Sn, see [1].
Recall that the Ricci flow and normalized Ricci flow starting from (Mn, g0) are re-

spectively given by
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{
∂
∂t g = −2Ricg,

g(0) = g0,

{
∂
∂t g = −2Ricg + 2

n R̄g,

g(0) = g0,
(2.4)

where R̄ is the average of the scalar curvature R.
From the Sobolev inequality (2.1) we can argue as in [20] to deduce the following 

log-Sobolev inequality.

Proposition 2.1. Let (M, g0) be a compact manifold, and g0 ∈ Y+(M). Then there exists 
d(n) > 0 such that the following log-Sobolev inequality holds for any u ∈ W 1,2 with ∫

u2 dVt = 1 and all σ > 0 along the Ricci flow starting from (Mn, g0):

∫
M

u2 log u2 dVg(t) ≤ σ

∫
M

(
|∇u|2 + R

4 u2
)

dVg(t) − n

2 log σ + n

2 log c(n)
R0

+ d(n).

(2.5)

Proof. In what follows we refer extensively to notations and results of [20]. Since g0 ∈
Y+(Mn), we have the Sobolev inequality (2.1) which implies that in the notation of 
[20], we have C2

S(M, g0) = c(n)
R0

and C̃2
S(M, g0) = max{ c(n)

R0
, 1}. By the resolution of the 

Yamabe problem we have two cases:

(i) c(n) ≤ R0 ≤ Y (Sn, [g0]); then C̃S(M, g0) = 1.
(ii) 0 < R0 ≤ c(n); then C̃S(M, g0) = c(n)

R0
.

One may check explicitly that both cases are possible. We will now go through the 
log Sobolev inequalities of [20, Theorems 1.1, 1.2], in our particular situation when 
g0 ∈ Y+(M).

By [20, Theorem 1.1], in the two cases described above, we have

(i) For each σ > 0 and t ∈ [0, T ), there holds

∫
M

u2 log u2 dVt ≤ σ

∫
M

(
|∇u|2 + R

4 u2
)

dVt − n

2 log σ

+ 4 R0

c(n)

(
t + σ

4

)
+ n

2 (log n − 1). (2.6)

(ii) For each σ > 0 and t ∈ [0, T ), there holds

∫
M

u2 log u2 dVt ≤ σ

∫
M

(
|∇u|2 + R

4 u2
)

dVt − n

2 log σ

+ 4 R0
(

t + σ )
+ n log c(n) + n (log n − 1). (2.7)
c(n) 4 2 R0 2
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To apply [20, Theorem 1.2], first we note that λ0 ≥ R0
4 , where λ0 is the first eigenvalue 

of −Δ + R0
4 , and that

δ0 = 1
1 + λ0

c(n)
R0

≤ 1
1 + c(n)

4

,

σ0 = n

2

[
log

(
1 + R0

λ0c(n)

)
− 1

]
≤ n

2 log
(

1 + 4
c(n)

)
− n

2 .

In particular, δ0 and σ0 are bounded by dimensional constants. Thus in both cases 
described above we obtain the same statement:

Let t ∈ [0, T ) and σ > 0 satisfy t + σ ≥ n
8 CS(M, g0)2δ0. Then there holds

∫
M

u2 log u2 dVt ≤ σ

∫
M

(
|∇u|2 + R

4 u2
)

dVt − n

2 log σ

+ n

2 log n + n

2 log c(n)
R0

+ σ0. (2.8)

We can now conclude Proposition 2.1, which can be considered as a specialized version 
of [20, Theorem 1.3] for the case g0 ∈ Y+(Mn) and brings out the analytic role of the 
scalar curvature R0. Note that n

8 CS(M, g0)2δ0 ≤ nc(n)
8R0

δ0. For any fixed t, suppose that 
t + σ < nc(n)

8R0
δ0. Then by putting (2.6) and (2.8) together in the first case, and (2.7) and 

(2.8) together in the second case, we obtain the result. Here we are using the fact that 
log c(n)

R0
can be bounded from below by the dimensional constant log c(n)

Y (Sn,[g0]) in order 
to deal with (2.6) where the term n

2 log c(n)
R0

does not appear. �
Now (2.5) combined with the general Sobolev inequality in [20] gives the following 

Sobolev inequality along Ricci flow, which is our main analytic tool. Note that the 
explicit dependence on the coefficients is very important here. See also [21] for related 
more general results.

Theorem 2.2. Let (Mn, g0) be a compact manifold, and g0 ∈ Y+(M). Then there exists 
C(n) > 0 such that the following Sobolev inequality holds for any u ∈ C∞(M) along the 
Ricci flow starting from (Mn, g0):

(∫
u

2n
n−2 dVg(t)

) n−2
n

≤ C(n)
Rg(0)

(∫
|∇u|2 + Rg(t)u

2 dVg(t)

)
(2.9)

Proof of Theorem 2.2. Again we employ the notations and results in [20]. Dimensional 
constants below may change in size at different points of the argument. Apply [20, 
Theorem 5.5] to the log Sobolev inequality (2.5) of Proposition 2.1 and take σ∗ → ∞. To 
conclude it suffices to check that the constant C(C, μ) in [20, (5.18)] becomes C(n) 1 , 
R0
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with μ = n. From [20, (5.22)] we check that from (2.5), we have C = C(n)R− n
4

0 . Then 

from [20, (9.32)], we check that C(C, n) = K(n)C
4
n , which gives us the conclusion. �

We will also use a standard parabolic Moser iteration argument. In particular, we will 
use the following formulation due to D. Yang [18], in which the dependence of estimates 
on uniform Sobolev constants and integral bounds is made explicit.

Theorem 2.3 ([18, Theorem 4]). Let f, b be smooth nonnegative functions satisfying on 
M × [0, T ],

∂

∂t
f ≤ Δf + bf,

where Δ is the Laplace-Beltrami operator of the metric gt, and suppose ∂
∂tdVgt

= htdVgt
. 

Let A, B > 0 be such that

‖u‖2
2n

n−2
≤ A‖∇u‖2

2 + B‖u‖2
2,

for all u ∈ C∞(M) and for all t ∈ [0, T ], and assume that for some q > n/2,

max
0≤t≤T

(‖b‖q + ‖ht‖q) ≤ β.

Then given p0 > 1, there exists a constant C = C(n, q, p0) such that for all x ∈ M and 
t ∈ (0, T ],

|f(x, t)| ≤ CA
n

2p0

[
B

A
+ A

n
2q−n β

2q
2q−n + 1

t

] n+2
2p0

⎛
⎝ t∫

0

∫
fp0 dVt dt

⎞
⎠

1
p0

. (2.10)

Finally we will need the following pointwise pinching result.

Theorem 2.4 ([11], see also [10,13]). For a compact Riemannian manifold (Mn, g), if

|Z| <

√
1

2n(n − 1)(n − 2) R, (2.11)

then the normalized Ricci flow starting from (Mn, g) exists for all positive times and 
converges to a spherical space form at the time infinity.

3. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into several steps. The first key step is to establish 
that for the Ricci flow starting from (Mn, g0) with pinching condition (1.1), the pinching 
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is controlled for a uniform time whenever Ricci flow exists. Compare to [5, Lemma 4.2], 
where it is shown the pinching is non-increasing along the flow, which is not the case 
here.

For simplicity we often use subscripts of 0 and t to denote geometric quantities at 
certain times along the flow as before; for instance R0 denotes Rg(0). Below, “�” indicates 
an inequality which holds when the terms involved are multiplied by appropriate positive 
dimensional constants.

Lemma 3.1. There exist Λ(n) > 0 and δ(n) > 0 such that if (Mn, g0) is a compact 
manifold satisfying the hypotheses of Theorem 1.1, and the Ricci flow of (Mn, g0) exists 
on [0, T0), then on [0, T0) ∩ [0, δ(n)R−1

0 ] along the flow we have the bound

‖|Z| + (R − R0)‖ n
2

< 2Λ(n)R0. (3.1)

Proof. Under the Ricci flow, we have [9]

∂

∂t
|Z| � Δ|Z| + |R||Z| + |Z|2,

∂

∂t
R = ΔR + 2|Ric|2 � ΔR + |Z|2 + R2.

Moreover, the evolution equation for R together with the maximum principle implies 
R − R0 ≥ 0, and we have

∂

∂t
(R − R0) � Δ(R − R0) + |Z|2 + (R − R0)2 + R2

0.

Let P = |Z| + (R − R0), then

∂

∂t
P � ΔP + P 2 + R2

0. (3.2)

Since

∂

∂t
(dVt) = −Rt dVt,

and Rt > 0, we have

d

dt

∫
P

n
2 dVt � −

∫
|∇P

n
4 |2 dVt +

∫
P

n
2 +1 + R2

0P
n
2 −1 dVt. (3.3)

We have that ‖P0‖ n
2

< Λ(n)R0. Let T ∈ (0, T0) be such that ‖P‖ n
2

< 2Λ(n)R0 on [0, T ]. 
Then applying (2.9) with u = P

n
4 , we have
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∫
|∇P

n
4 |2 dVt � R0

(∫
P

n
2

n
n−2 dVt

) n−2
n

−
∫

RtP
n
2 dVt

≥ R0

(∫
P

n
2

n
n−2 dVt

) n−2
n

−
∫

P
n
2 +1 dVt − R0

∫
P

n
2 dVt.

By Hölder’s inequality

∫
P

n
2 +1 ≤ ‖P‖ n

2

(∫
P

n
2

n
n−2 dVt

) n−2
n

≤ 2Λ(n)R0

(∫
P

n
2

n
n−2 dVt

) n−2
n

.

Plugging this into (3.3) we find that for Λ(n) > 0 sufficiently small,

d

dt

∫
P

n
2 dVt � −R0

(∫
P

n
2

n
n−2 dVt

) n−2
n

+ R0

∫
P

n
2 dVt + R2

0

∫
P

n
2 −1 dVt (3.4)

≤ R0

∫
P

n
2 dVt + R2

0vol(gt)
2
n

(∫
P

n
2 dVt

) n−2
n

� R0

(∫
P

n
2 dVt + R

n
2
0

)
,

where we have applied Hölder’s and Young’s inequalities in the second and third lines 
above, respectively, and used the fact that vol(gt) ≤ vol(g0) = 1. Hence

∫
P

n
2 dVt + R

n
2
0 ≤

(∫
P

n
2 dV0 + R

n
2
0

)
exp (C(n)R0t) , (3.5)

for some dimensional constant C(n) > 0. We therefore conclude that there exists a 
δ(n) > 0 such that ‖P ‖ n

2
< 2Λ(n)R0 on [0, T0) ∩ [0, δ(n)R−1

0 ]. Recall that by (2.3)
R0 = Y (Mn, [g0]) is bounded above by the dimensional constant Y (Sn), hence R−1

0 is 
uniformly bounded below by a positive dimensional constant. �
Remark. The constant of the Sobolev inequality (2.9) is C(n)

R0
, and hence becomes large 

when R0 is small. On the other hand, the larger the Sobolev constant is, the worse the 
estimate in Theorem 2.3 becomes. So the time δ(n)R−1

0 in the above lemma seems to be 
in conflict with the Sobolev constant C(n)

R0
and in fact has exactly the right dependence on 

R0 to allow us to prove Theorem 1.1. (Note that this time leads to a similar consequence 
for the existence time of the Ricci flow.) This delicate phenomenon seems to be new and 
is very interesting.

With the pinching assumption (3.1) the Sobolev inequality (2.9) immediately gives 
a uniform Sobolev inequality without the scalar curvature term by an application of 
Hölder’s inequality.
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Lemma 3.2. Let (Mn, g0) be a compact manifold with g0 ∈ Y+(M). Suppose that the Ricci 
flow starting from (Mn, g0) exists on [0, T ] so that the bound (3.1) holds along [0, T ]. Then 
the following uniform Sobolev inequality holds along the flow for all u ∈ C∞(M) along 
the Ricci flow starting from (Mn, g0):

(∫
u

2n
n−2 dVg(t)

) n−2
n

≤ C(n)
R0

∫
|∇u|2 dVt + C(n)

∫
u2 dVt, (3.6)

where C(n) > 0 is a dimensional constant which is different from the constant of (2.9)
of Theorem 2.2.

With the Sobolev inequality (3.6) and the Ln/2 smallness of P = |Z| +(R−R0), since 
P satisfies the nonlinear evolution equation (3.2) it is known that we can improve the 
estimate and get an Ln/2+1 (higher power) bound of P , in fact also small.

Lemma 3.3. Let (Mn, g0) be a compact manifold with g0 ∈ Y+(M), and the bound (3.1)
holds along the Ricci flow starting from (Mn, g0) in the interval [0, T ]. Then for t ∈ [0, T ],

∫
P

n
2 +1 dVt � Λ(n) n

2 (R0t + 1)
(

R0 + 1
t

)
R

n
2
0 . (3.7)

As mentioned before the bootstrap to get some bound is standard. But since we need 
an explicit dependence of the bound on R0 later, which is not in the literature, we present 
a proof. Compare [8, Lemma 4.2].

Proof. By Lemma 3.2, Sobolev inequality (3.6) holds.
From (3.2) we have (see (3.3))

1
q

d

dt

∫
P q dVt ≤ −C1

4(q − 1)
q2

∫
|∇P

q
2 |2 dVt + C2

∫
P q+1 + R2

0P q−1 dVt,

where C1, C2 > 0 are dimensional constants independent of q. Using this for q = n
2 as 

before as well as for q = n
2 + 1, we find as for (3.4) by using (3.6) that for Λ(n) > 0

sufficiently small,

d

dt

∫
P

n
2 dVt + R0

(∫
P

n
2

n
n−2 dVt

) n−2
n

�
∫

R0P
n
2 + R2

0P
n
2 −1 dVt

d

dt

∫
P

n
2 +1 dVt + R0

(∫
P

(
n
2 +1

)
n

n−2 dVt

) n−2
n

�
∫

R0P
n
2 +1 + R2

0P
n
2 dVt.

Thus, if we take 0 < τ < τ ′ < T , and define ψ by
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ψ(t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t ≤ τ,
t−τ

τ ′−τ , τ ≤ t ≤ τ ′,

1, τ ′ ≤ t ≤ T.

Multiply above inequalities by ψ(t) and integrate from τ to t0 ∈ [τ ′, T ], we have

∫
P

n
2 dVt0 + R0

t0∫
τ ′

(∫
P

n
2

n
n−2 dVt

) n−2
n

(3.8)

�
(

R0 + 1
τ ′ − τ

) t0∫
τ

∫
P

n
2 + R0P

n
2 −1 dVt dt,

∫
P

n
2 +1 dVt0 + R0

t0∫
τ ′

(∫
P

(
n
2 +1

)
n

n−2 dVt

) n−2
n

(3.9)

�
(

R0 + 1
τ ′ − τ

) t0∫
τ

∫
P

n
2 +1 + R0P

n
2 dVt dt.

Let t0 = t, and τ = t
2 , τ ′ = 3

4 t in (3.9) and τ = t
4 , τ ′ = t

2 in (3.8), we obtain

∫
P

n
2 +1 dVt �

(
R0 + 1

t

) (
sup

s∈[ t
2 ,t]

(∫
P

n
2 dVs

) 2
n

) t∫
t
2

(∫
P

n
2

n
n−2 dVs

) n−2
n

ds

+
(

R0 + 1
t

) t∫
t
2

∫
R0P

n
2 dVs ds

� Λ(n)
(

R0 + 1
t

)2 t∫
t
4

∫
P

n
2 + R0P

n
2 −1 dVs ds

+ (R0t + 1)Λ(n) n
2 R

n
2 +1
0

� Λ(n) n
2 (R0t + 1)

(
R0 + 1

t
+ R0

)
R

n
2
0 ,

which is the desired estimate. �
With this Ln/2+1 bound we can use Theorem 2.3 to get an L∞ bound of |Z| +(R−R0)

and a uniform lower bound on the time of existence of the Ricci flow.
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Proposition 3.4. Let (Mn, g0) be as in the hypotheses of Theorem 1.1. Then the Ricci 
flow starting from (Mn, g0) exists on the interval of time [0, δ(n)R−1

0 ], where δ(n) > 0
is as in Lemma 3.1.

Proof. Let (Mn, g0) be as in the hypotheses of Theorem 1.1, and suppose the Ricci flow 
starting from (Mn, g0) exists on [0, T0). We first claim that in the notation of Lemma 3.1, 
δ(n)R−1

0 < T0. Suppose not; then T0 ≤ δ(n)R−1
0 , so on [0, T0),

‖|Z| + (R − R0)‖ n
2

< 2Λ(n)R0. (3.10)

Therefore by Lemma 3.3, we see that ‖|Z| + (R − R0)‖ n
2 +1 is uniformly bounded (by 

some constant depending on n, R0 and T0) on [ T0
2 , T0). Thus, ‖Rm‖ n

2 +1 is uniformly 
bounded on [ T0

2 , T0). Also by Lemma 3.2 we have the uniform Sobolev inequality (3.6). 
Recall that under the Ricci flow, |Rm| satisfies

∂

∂t
|Rm| ≤ Δ|Rm| + D(n)|Rm|2

for some D(n) > 0. Therefore we can apply Moser’s weak maximum principle as stated in 
Theorem 2.3: let f = |Rm|, b = D(n)|Rm|, ht = −Rt, and take q = n

2 + 1, p0 = n
2 . Since (∫ T0

T0
4

∫
|Rm| n

2 dVt dt
) 2

n

< ∞ by (3.10), we conclude that |Rm| must be bounded by a 

uniform constant in 
[

T0
2 , T0

)
, and hence does not blow up as t → T0, which contradicts 

the maximality of T0. Hence δ(n)R−1
0 < T0 and the Ricci flow of (Mn, g0) exists as 

claimed on the uniform time interval [0, δ(n)R−1
0 ]. �

We can now use Theorem 2.3 a second time to control |Z| uniformly along the Ricci 
flow starting from (Mn, g0) and thus prove Theorem 1.1.

Proof of Theorem 1.1. Let f = |Z|; then we have ∂
∂tf ≤ Δf + |Rm|f , and by Lemma 3.3

we have that ‖Rm‖q ≤ β for q = n
2 + 1, where β = c(n)R0 for some c(n) > 0, on the 

interval 
[

δ(n)R−1
0

2 , δ(n)R−1
0

]
along the Ricci flow starting from (Mn, g0). We also have 

the uniform Sobolev inequality of Lemma 3.2 in this interval, so that in the notation of 
Theorem 2.3, A = C(n)

R0
and B = C(n).

We now apply Theorem 2.3 to estimate |Z| on the time interval 
[

δ(n)R−1
0

2 , δ(n)R−1
0

]
with q = n

2 +1 and p0 = n
2 . Note that the factor 

[
B
A + A

n
2q−n β

2q
2q−n + 1

t

] n+2
2p0 appearing in 

the right-hand side of (2.10) involves a sum of three different terms, and this complication 
may appear to make troubles for our scheme. However, applying our earlier estimates 
established on this particular time interval we can readily bound each of these terms 
by a constant multiple of R0. Putting everything together we obtain exactly the correct 
power of R0 on the right needed to apply pointwise pinching results:
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|Z| � R
2
n
0

⎛
⎝ t∫

0

∫
|Z| n

2 dVt dt

⎞
⎠

2
n

� R
2
n
0

(
Λ(n)R−1+ n

2
0

) 2
n

� Λ(n) 2
n R0.

If we assume that Λ(n) is sufficiently small, then since the scalar curvature of (M, gt)
is everywhere greater than R0, we have at the time t = δ(n)R−1

0 the pinching

|Z| <

√
1

2n(n − 1)(n − 2) R. (3.11)

By Theorem 2.4, we may therefore conclude that the normalized Ricci flow starting from 
(Mn, g0) exists for all times and converges to a spherical space form. �
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