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Convergence of the Ricci flow on asymptotically flat manifolds
with integral curvature pinching

ERrRIC CHEN

Abstract. We prove a curvature pinching result for the Ricci flow on asymp-
totically flat manifolds: if an asymptotically flat manifold of dimension n > 3
has scale-invariant integral norm of curvature sufficiently pinched relative to the
inverse of its Sobolev constant, then the Ricci flow starting from this manifold
exists for all positive times and converges to flat Euclidean space. In particular
our result implies that the initial manifold must have been diffeomorphic to R”.

Mathematics Subject Classification (2020): 53C44 (primary); 58J35 (sec-
ondary).

1. Introduction

Since the initial work of Hamilton [12], many curvature pinching results guaran-
teeing the long-time existence and convergence of the Ricci flow (or its suitable
normalization) on compact manifolds have been proved. In this paper a curvature
pinching result for the Ricci flow on noncompact, asymptotically flat (AF) mani-
folds is proved. We first give a short review of known results on the Ricci flow in
regard to both curvature pinching and AF manifolds.

For compact manifolds, the long-time existence and convergence of the Ricci
flow assuming curvature pinching at the initial time has been well-studied, begin-
ning from Hamilton’s proof that the normalized Ricci flow starting from a closed
3-manifold with Ric > 0 exists for all positive times and converges smoothly to a
spherical space form [12]. Many other curvature pinching results on the long-time
existence and convergence of the Ricci flow on compact manifolds generalizing
this statement have since been proved [3, 4, 11, 16, 18, 22, 24], among these for
instance the quarter-pinching sphere theorem of Brendle—Schoen.
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For noncompact manifolds and in particular AF manifolds, under some as-
sumptions different from curvature pinching long-time existence and convergence
results for the Ricci flow have also been proved [25,27]. We remark that AF man-
ifolds are a particularly interesting class of noncompact manifolds to study with
regard to the Ricci flow because the flow preserves the AF property as well as the
ADM mass [8]. There is also a curvature pinching result for the Ricci flow on
AF manifolds due to Shi [29], but Chen—Zhu later showed that there exist no AF
manifolds satisfying Shi’s curvature pinching condition [6].

Our main result, Theorem A, is a curvature pinching result for the Ricci flow
on AF manifolds for which there exist many nontrivial examples of AF manifolds
satisfying its curvature pinching condition. Our other results consist of auxiliary
Sobolev inequalities used to prove Theorem A as well as statements addressing
some questions in the special cases of conformally flat and rotationally symmetric
AF manifolds.

The remainder of this introduction has two parts. In the first part we state our
results. In the second part we discuss some earlier curvature pinching theorems
for the Ricci flow on compact manifolds in order to describe the motivation for
our results, and then conclude by outlining the plan of the proofs in the rest of the

paper.

1.1. Results

We now state the results of this paper. First we state our main theorem on curvature
pinching for AF manifolds, Theorem A. Then we state the uniform curvature-
weighted Sobolev inequalities, Theorems B and C, used in the proof of Theorem
A. Finally we state Corollary D and Theorem E, which are concerned with the
special cases of conformally flat and rotationally symmetric AF manifolds.

1.1.1. Main theorem

Below is the main theorem of this paper. We refer to Section 2 for the relevant
definitions in the statement below, in particular for the Ricci flow g(¢) and the
Sobolev constant Cg,, .

Theorem A. Let (M", go) be an asymptotically flat manifold of order t > 0, with
n > 3. There exists a §(n) > 0 such that if:

2
n n 1
(/ [Rmg, |2 dVgO) < é(n)—m, (1.1)
Mn Ceo

where Cg, is the Sobolev constant of go given by Definition 2.3, then the Ricci flow
g(t) with initial condition g(0) = go exists for all times t € [0, 00) and converges
in C2%,(M") for any t" € (0, min(z,n — 2)) to the flat R". In particular, M" is
diffeomorphic to R".

This can be viewed as a noncompact analogue of integral curvature pinching results
for the Ricci flow on compact manifolds such as [11,16]. Note that we do not need
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to assume a priori that M" is diffeomorphic to R”, in contrast to related stability
results for the Ricci flow on Euclidean space such as [25,27]. In Section 1.2.2
we will see that the integral curvature pinching condition of Theorem A is satis-
fied by many nontrivial examples of AF manifolds, unlike the pointwise curvature
pinching condition on AF manifolds of Shi [29], as discussed earlier.

We now describe the difficulties we encounter in the two main steps of the
proof of Theorem A, which are: first, showing the long-time existence of the Ricci
flow; and second, showing the convergence of the flow to flat space once long-time
existence is known.

For the first step of long-time existence we seek to use the weak maximum
principle of Moser [23] to show that |[Rmyg )| oo (arn) does not blow up along
the flow. Therefore, starting from the hypotheses of Theorem A, we first need to
control integral norms of Rm along the flow. The main difficulty is that in order
to do this we need control of the Sobolev constant Cg () along the Ricci flow, even
though such control cannot be expected in general. To overcome this issue, we
study Perelman’s VV-functional on AF manifolds and prove a curvature-weighted
Sobolev inequality that holds under the assumptions of Theorem A along the Ricci
flow (Theorem C), inspired by work on curvature-weighted Sobolev inequalities
along the Ricci flow on compact manifolds developed by Ye from the initial work
of Zhang [33, 34]. Despite the curvature weight, we show that this inequality is
enough for us to carry out the weak maximum principle argument.

For the second step of convergence of the flow to flat space, the main
difficulty is that we need to obtain the much stronger curvature decay estimate
[Rmg )|l Looarny = o(:71). To overcome this difficulty we first study the evolu-
tion of ||[Rmyg ) || L4 (arn) for a specific choice of ¢ = Z -, and we obtain a decay

2n-2"°
estimate for this quantity using the monotonicity of |[Rmg || which was

L3 mny
shown in the first step. Using this estimate, we can then rework thé Mz)ser iteration
procedure to find that the specific choice of exponent g gives us exactly the desired
L decay rate of o(t ') for Rm. To finish it suffices to adapt work of [21] to pass
from the decay estimate to convergence to flat space; Li assumes unlike us though
that Rg(;) > 0, so we will show how this can be replaced by our assumptions in
Theorem A.

1.1.2. Curvature-weighted Sobolev inequalities

One of the main tools we use in proving Theorem A is a curvature-weighted
Sobolev inequality which we will also prove, stated below. It is an analogue of
a curvature-weighted Sobolev inequality proved for compact manifolds along the
Ricci flow by Ye [33], which was obtained using the monotonicity of Perelman’s
W-functional [26]. We state two versions of this inequality. In the first version we
assume that R, > 0 but require no smallness of [,,, |[Rmg | 5 dVy,.

Theorem B. Let (M™, g(t)) be a Ricci flow on [0, T] starting from an asymp-
totically flat manifold (M", go), n > 3, of nonnegative scalar curvature. There
exists an A > 0 depending only on n and the Sobolev constant Cg, such that the
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following weighted Sobolev inequality holds for allu € W12(M™, g(t)) on [0, T]:

2n_ n
(/M |u|n—2 dVg(t)) < A (/M |Vg(t)u|2 -+ Rg(;)uz dVg(t)) . (12)

Moreover, in any fixed dimension n, A depends linearly on Cg,.

We will not use the result of Theorem B in any subsequent arguments in this paper,
but we include it because its proof is a simpler version of that of Theorem C and
we will refer to this in order to explain the latter proof. Theorem B is also related
to results in [20].

The second version of the curvature-weighted Sobolev inequality does not
require any pointwise assumptions on Rg, but assumes instead that the quantity

Sagn IRMg | >d Vg, is small. This is the version we will use to prove Theorem A.
In fact it suffices to assume just that [}, |Rg| 5d Vg, is small, but for our appli-

cations this distinction is not significant. Below, R™ (x) := max(0, R(x)) denotes
the positive part of the scalar curvature.

Theorem C. Let (M", g(t)) be a Ricci flow on [0, T] starting from an asymptot-
2

ically flat manifold (M",g¢), n > 3. If (fM,, |Rmg, |2 dVgO)ﬁ < 2%, then
there exists A > 0 depending only on n and the Sobolev constant Cg, such that the
following weighted Sobolev inequality holds for allu € W12(M", g(t)) on [0, T]:

n—2

on T
(/ |u|i2 dVg(t)) <4 (/ [Vewul® + Ry ,u? dVg(,)). (1.3)
M7 M"
Moreover, in any fixed dimension n, A depends linearly on Cg,,.

1.1.3. Conformally flat AF metrics

Returning to the statement of Theorem A, we have the following consequence for
asymptotically flat conformal deformations of the flat metric on R”:

Corollary D. Let (R", go) be asymptotically flat of order T > 0, with n > 3 and
g0 = e?*|dx|?, where u € C®(R"). There exists a constant A(n) > 0 such that if

2
(f IRmy, |2 dvgo) < A@n), (1.4)
Rn

then the Ricci flow g(t) with initial condition g(0) = go exists for all times t €
[0, 00) and converges in C*%,(R") for any t" € (0, min(z, n — 2)) to the flat metric
on R".
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In particular the above statement holds for rotationally symmetric asymptotically
flat metrics on R”, since these are conformal deformations of the flat metric. Such
metrics are exactly those studied by [25], and we will briefly discuss the following
connection between our scale-invariant L% curvature pinching condition and the
no minimal hyperspheres condition of [25] guaranteeing long-time existence and
convergence of the flow in the rotationally symmetric asymptotically flat setting,
which we have quoted in Theorem 6.1. It is easily obtained in even dimensions n
as a consequence of the Chern-Gauss-Bonnet formula for manifolds with boundary
[1], but we will see that it holds in any dimension n > 2.

Theorem E. For every n > 2, there exists a C(n) > 0 such that if (R",g) is a
rotationally symmetric metric with [g, |ng|% dVgy < C(n), then (R", g) does
not contain any minimal hyperspheres.

Whether the special case of Corollary D in the rotationally symmetric setting is a
consequence of the work of [25] or not would depend on a comparison of the sizes
of the constants A(n) and C(n), but we will not further pursue this question in this

paper.

1.2. Some previous results and motivation

From among the variety of curvature pinching results known on compact man-
ifolds, below we will look specifically at the integral curvature pinching results
of [11, 16] in more detail in order to describe how those results help motivate the
study in this paper. This will also lead us to examples of nontrivial AF manifolds
which satisfy the curvature pinching condition in Theorem A.

1.2.1. Integral curvature pinching on compact manifolds

On compact manifolds, the long-time existence and convergence of Ricci flow was
studied first under pointwise curvature pinching hypotheses, such as in [12, 18,22,
24], which were later partially generalized to integral curvature pinching hypothe-
ses, including in [9, 11, 16,32]. In what follows we want to discuss in particular
some statements of [11,16]; Y+ (M™) will denote the set of positive scalar curva-
ture Yamabe metrics of a closed manifold M" with unit volume. A special case of
a result of Gursky’s showed the following:

Theorem 1.1. ([11]] There exists € > 0 such that if go € YT (S*) satisfies
Jsa Wy, |> dVg, < €, then the normalized Ricci flow g(t) with initial condition
2(0) = gy exists for all times t € [0, 00) and converges to the standard S*.

Later, Hebey—Vaugon showed the following result in the same spirit, but with less
restriction on the underlying manifold:

Theorem 1.2. ([16]) For n > 3 and q > 7%, there exists € = €(n,q) > 0

such that if (M™, go) is a closed manifold with go € YT (M™) which satisfies
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—

q

(an [Weo + 23 Ego ® g0 dVgo)
g(t) with initial condition g(0) = gg exists for all times t € [0, 00) and converges
to a spherical space form.

< €Rg,, then the normalized Ricci flow

Above, W denotes the Weyl tensor, E denotes the traceless Ricci tensor, and
® denotes the Kulkarni-Nomizu product of two symmetric (0, 2)-tensors, which
is a (0, 4)-tensor having the same symmetries as the Riemannian curvature ten-
sor, defined by (¢ ® B)ijke = ixBje + jefix — @ieBjk — ojiBie [2, Def-
inition 1.110]. We will now point out how the integral curvature pinching hy-
pothesis in Theorem A can be seen as a natural analogue of the hypotheses of
Theorem 1.1 and 1.2. First note that by the Chern—Gauss—Bonnet theorem, the hy-
pothesis [¢4 [Wg, |2 d Vg, < € from Gursky’s theorem may be rewritten in a form
analogous to that of the hypothesis in the result of Hebey—Vaugon:

(1.

Furthermore, note that by the assumption go €)™ (M™) we have Rg =Y (M", [go]),
which is the inverse of its conformally invariant Sobolev constant in the sense that
forallu e WH2(M", go),

n—2
2n n 1 n—1
= S 4——|Vul* + R, u? . (1.
(/M Ju ZdVgo) = Yo ) (/M 5| Vul® + Requ dVgo) (1.6)

Recall now the curvature decomposition Rm = W+ ﬁE Dg+ ﬁ gdg. On
spherical space forms, the first two components of this decomposition vanish, while
the third does not (the scalar curvature is a positive constant). Thus, the results of
Gursky and Hebey—Vaugon state that if a compact manifold whose components of
curvature which vanish on spherical space forms (W and E) are small in an integral
sense relative the inverse of its conformally invariant Sobolev constant, then the
normalized Ricci flow starting from that manifold exists for all positive times and
converges to a spherical space form. For flat Euclidean space, all three components
of the curvature decomposition vanish. Thus Theorem A can be viewed as stating
in the spirit of [11, 16] (and also [9, Theorem 1.2]) that if an AF manifold whose
components of curvature which vanish on flat Euclidean space (all of them) are
small in an integral sense relative the inverse of its Sobolev constant, then the Ricci
flow starting from that manifold exists for all positive times and converges to flat
Euclidean space.

1
Wgo + EEgo D go

2 2
dVgO) <'€R,,, forsomee > 0. (1.5)

1.2.2. Stereographic projection and integral curvature pinching for AF manifolds

We will now see another way in which the curvature pinching results in the compact
setting quoted above, in particular the result of Gursky, Theorem 1.1, lead naturally
to the question of whether an integral curvature pinching hypothesis as in our main
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result, Theorem A, can guarantee long-time existence and convergence of the Ricci
flow on an AF manifold to flat space. This will also result in many nonflat examples
of AF manifolds satisfying the hypotheses of Theorem A.

Consider metrics go € YT(S%) with [g4 [We,|> dVg, < € satisfying the
hypotheses of Gursky’s theorem. Then, using the Green’s function of the confor-
mal Laplacian with respect to any p € S* gives a conformal change of the initial
metric go on S*\{p} to an AF metric g, viewed on R* with vanishing scalar cur-
vature. Therefore, by applying the Chern—-Gauss—Bonnet formula on S* and the
conformal invariance of the Yamabe constant, it can be seen that this AF metric’s
Sobolev constant (see Definition 2.3 for notation) is bounded from above by an ab-
solute constant if we assume € < 1. Moreover, fR4 |[Rmg; 12 d Vg5 is small. To see
this, apply the Chern—Gauss—Bonnet formula for asymptotically locally Euclidean
spaces [30] to the AF setting:

1 1 1
ZA4|W%|2 dV%—§A4|E%|2dVg+ﬁA4 RZ dVg =0.  (1.7)

Since Rgz = 0, and [ |W|? dV is conformally invariant in dimension four, we see
that [p4 |Egs|? d Ve < i€ and so indeed [p4 [Rmgg|? d Vgg is small.

Gursky’s result tells us that on S*, the metric go evolves under the Ricci flow
to the round metric on the sphere, which stereographically projects to the flat R*.
We might ask instead whether the noncompact, generalized stereographic projec-
tion of (S*\{p}. go) would evolve under the Ricci flow to flat space; note that
for p fixed, our stereographically projected metric depends only on the conformal
class [go] on S* (up to constant scaling), which is different from the situation on
S*, where Gursky’s result picks out the Yamabe metric out of the many metrics
belonging to [go] as a starting point for the Ricci flow. Since we observed above
that go has bounded Sobolev constant with [p4 |[Rmgs|? d Vg small, this setting
is indeed just a special four-dimensional case of the general dimension n setting
addressed by our main result, Theorem A.

1.2.3. Outline of the paper

In the rest of this paper we will present the proofs for our results stated in the
first part of the introduction. In Section 2 we will state some preliminary notions
and the known short-time existence and uniqueness results for the Ricci flow on
asymptotically flat manifolds. In Section 3 we will prove Theorem B using Perel-
man’s VW-functional along with heat semigroup arguments originally adapted to
compact manifolds by Ye [33]; modifying this proof we will also obtain Theorem
C. In Section 4 we will prove Theorem A in dimensions n > 4; using Theo-
rem C we will obtain L2 and higher L? boundedness of |[Rm| for a particular
choice of ¢ > 7, and then we will prove the long-time existence of the Ricci flow
g(t) on [0, c0) by showing that |[Rm| is uniformly bounded along the flow using
Moser iteration. Then, using the long-time existence of the flow we conclude the
proof of Theorem A when n > 4 by proving the much stronger decay estimate
lim; 00 SUP, < pgn £ |[RM(?)| = O; at this point a straightforward adaptation of work
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of Li then implies that (M", g(¢)) converges to (R", g(¢)) [21]. In Section 5 we
address a technical point regarding the proof of Theorem A in dimension n = 3 and
show how the arguments of the previous section can be modified to complete the
proof in this remaining case. We end with Section 6 in which we show how Corol-
lary D follows from Theorem A and further discuss it in the context of rotationally
symmetric metrics by proving Theorem E.

Regarding notation, M" and M will refer to the same manifold; the super-
script n just emphasizes the dimension of n. We will often use Cy, Ry instead of
Cg,, Rg, and so on to denote quantities associated with the metric go = g(0) along
a Ricci flow, as well as C;, R; for quantities associated with g(¢) in a similar way.
Norms such as |Rm| along the Ricci flow are computed with respect to the same
metric at time ¢ from which Rm arises, unless otherwise indicated, and we adopt
a similar convention when denoting function spaces such as W12(M). We will
always be integrating over the entirety of the manifold under discussion, so we will
no longer use subscripts to specify this unless necessary. Constants Cy, C5, and so
on which appear below, primarily in Section 4, are strictly positive and may change
in size between lines but will not depend on quantities involved in the assumptions
of Theorem A with the exception of the dimension n (unless otherwise indicated).
Dependence on other constants that may appear in computations will be denoted
by C; (@) for dependence on «, for example.
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helpful comments as well as her constant support and encouragement. I further
thank her and Paul Yang for their support and many helpful discussions. Addition-
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2. Preliminaries

2.1. Definitions

We now introduce some notation and definitions that we will need later. First we
state the definition we will use for an asymptotically flat manifold.

Definition 2.1. We call a smooth Riemannian manifold (M", g) asymptotically
flat of order ¢ > 0 if for some compact set K C M", there exists an R > 0 and a
diffeomorphism ® : M"*\ K — R"\ Bg(0) such that

gij(x) =8 +O0(x|™") and 3g;j(x) = O(|x[7CFeDy  @.1)

for partial derivatives 0% of any order, as |x| — oo in R”. We call ® the asymptot-
ically flat coordinate system.
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We will not mention the order of an asymptotically flat manifold unless it is
specifically needed. Note however that we always have 7 > 0 in our discussion.
Also note that by (2.1) we have for any asymptotically flat (M, g) of order 7 > 0
that [ [Rm|? dV, < oo forall p > %, and in fact for all p > 54+ Next we define
the notion of convergence obtained in Theorem A.

Definition 2.2. Let (M", g) be an asymptotically flat manifold of order t. For any
B € R and nonnegative integer k, the space C é‘ (M) is given by the C¥ functions
on M for which the norm

k
lullcx = Zsup rBTViu| < oo, (2.2)
B~y
i=0
where r € C*°(M) is a smooth positive function with r = |x| on M"\K, in the

notation of Definition 2.1. We say that we have convergence in C /30 if we have

convergence in C f’; forall k > 0.

Now we define our convention of notation for the Sobolev constant Cy, asso-
ciated to an asymptotically flat manifold (M", g).

Definition 2.3. If (M", g) is an asymptotically flat manifold, then there exists a
smallest constant C; > 0 such that for every u € W2(M, g), the following
Sobolev inequality holds:

n—2

(/|u|nz—"z dVg) ’ §Cg/|Vu|2dVg. 2.3)

We call C, the Sobolev constant of the metric g.

The constant C; > 0 above exists because any asymptotically flat mani-
fold satisfies an isoperimetric inequality, and this implies the validity of the Eu-
clidean Sobolev-type inequality (2.3). We may also see that (2.3) holds in the
following way: [5, Proposition 2.5] implies that (2.3) is valid if it holds for all
u € Cg°(M\K), where K C M is some compact set, and the validity of this
second inequality can be easily seen using the asymptotically flat coordinate sys-
tem, since (®~!)*g is uniformly equivalent to |dx|? on the set ®~1(R"\ Bg(0)),
for R > 0 sufficiently large. It is well known that C, . < Cg, where C, ¢ is the
Sobolev constant for the flat metric on R” (see for instance [15, Proposition 4.2]).

2.2. Short-time existence of the Ricci flow for AF manifolds

The Ricci flow evolves metrics g(¢) on a manifold M" by the equation d;g(¢) =
—2Ricg (). Short time existence, uniqueness, and blowup alternative results for the
Ricci flow on compact manifolds were proved by Hamilton [12, 13]. In the com-
plete noncompact setting, Shi proved the short-time existence of the Ricci flow for



24 ERIC CHEN

initial metrics of bounded curvature [28], and later Chen—Zhu show the uniqueness
of Ricci flows of bounded curvature with the same initial data [6]. These results
have been adapted to the asymptotically flat setting, where the asymptotically flat
condition has been shown to be preserved along the Ricci flow by [8], with later
proofs also in [21,25]. This is summarized in the following short-time existence
and uniqueness statement, which describes exactly those Ricci flows which we
consider in this paper.

Theorem 2.4. ([8,21,25]) Let (M", go) be an asymptotically flat manifold of order
T > 0. There exists a unique Ricci flow g(t) with initial condition g(0) = go on
a maximal time interval 0 < t < Tp; < oo such that g(t) remains asymptotically
flat of the same order T > 0 with the same asymptotically flat coordinate system,
and if Ty < oo then

limsup sup |[Rm| = oo. (2.4)

t—>Typy xeM
In particular, for any T € [0, Tyr), it holds that

sup |Rm| < oo, (2.5)
t€l0,T]
xeM

and the metrics g(t) are equivalent for all t € [0, T]. More precisely

e KT gy < g(r) < e*XT gy, (2.6)

where K = sup;efo,r] IRm(Z, x)|g(1,x) < 00.
xeM

To conclude this section we point out some uniform estimates that the Ricci flow
of Proposition 2.4 satisfies on closed intervals [0, 7'] on which it exists.

Theorem 2.5. ([21,28]) Let (M™, gg) be an asymptotically flat manifold of order
t > 0. Suppose that the Ricci flow as in Proposition 2.4 exists on the interval

[0, T]. Then forallk = 0,1,2,..., there exist constants Cy > 0 depending on T
such thaton [0, T] x M,

|VFRm(z, x)| < Cpr—27%7. (2.7)
These estimates will be important in allowing us to consider the evolution of cur-
vature integrals over (M", g(¢)) when the flow exists, primarily in the arguments
of Section 4.

3. Uniform weighted Sobolev inequalities along the flow

In this section we will prove the curvature-weighted Sobolev inequality of Theo-
rem B, and then conclude by showing how to adapt the proof to prove the related
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inequality of Theorem C. The general idea comes from the method of Ye [33],
who obtains some uniform curvature-weighted Sobolev inequalities in the compact
setting along the Ricci flow. In his work, he first derives a log Sobolev inequal-
ity at t = 0, applies the well-known monotonicity of Perelman’s VV/-functional in
the compact case to obtain a curvature-weighted log Sobolev inequality along the
Ricci flow, and then adapts heat semigroup arguments of Davies [10] to the setting
of compact manifolds to conclude a uniform curvature-weighted Sobolev inequal-
ity along the flow (under suitable assumptions on the initial compact manifold).

We will follow the same outline, under the hypotheses of Theorems B or C.
First, simple estimates give a log Sobolev inequality for g(0) as a consequence of
the Sobolev inequality for g(0). Second, we translate this log Sobolev inequality
at t = 0 into a log Sobolev inequality at later times ¢ using the monotonicity
of Perelman’s VV-functional, but we need to justify the monotonicity of the W-
functional in our particular noncompact asymptotically flat setting. Moreover, the
Sobolev and log Sobolev inequalities we work with in the noncompact case are
different from those that Ye considers in the compact case. To conclude (1.2) we
apply semigroup arguments just as [10, 33] but on an exhaustion of bounded sets
Bn (0) covering M" as N — oo to pass from the log Sobolev to the Sobolev
inequality, referring to those works for details.

3.1. Log Sobolev inequalities and the entropy functional
3.1.1. Log Sobolev inequality att = 0

The first fact we will need is that a log Sobolev inequality holds for any asymptot-
ically flat manifold (M", g):

Lemma 3.1. Let (M", g) be an asymptotically flat manifold with Sobolev constant
Cy (recall Definition 2.3). Then the following log Sobolev inequality holds for all
u € Wh2(M, g) satisfying [u? dVgy = 1:

n

/uZIOgu2 dVg§4r/|Vu|2 dVy — %logr + > (10gCg +log% — l). 3.

Proof. We apply Jensen’s inequality to (2.3), obtaining

n—

2
/u210g|u|ni2 dVg <logCyq —|—10g/ |Vul? d V.

The conclusion follows after we apply to the second term on the right the elemen-
tary inequality (see [33, Lemma 3.2] for a short proof),

logA <20A—1—1log20, forany A >0, o > 0. 0
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3.1.2. Perelman’s VV-functional and monotonicity along the flow

Next we will establish the monotonicity of Perelman’s VV-functional in our asymp-
totically flat setting. Such a result was stated in [21] for complete noncompact
manifolds, but with necessary conditions on such manifolds not explicitly stated.
After a preprint of this paper appeared online, Hong Huang also brought to our
attention his recent result which has conclusions similar to those of Lemmas 3.2
and 3.3 [17, Proposition 4.1]. Recall that the VV/-functional [26] is the following
quantity on a Riemannian manifold (M, g):

-f
e
/[r(|Vf|2+R)+f—n]—,,dVg, (3.2)
(4nt)>2
givent > 0 and f € C*®°(M") satisfying
e_f

— dVy = 1.
(4nt)2

_L
Making the change of variable u = (e j% , We write
4t

W(g,u,t) = / [1(4|Vu|2 + Ru?) —u?log uz] dVe —n — %log drwzr, (3.3)

where [u?dV, = 1. We also define

pu(g,t)y = inf  W(gu,1). (3.4
uew!.2
Ju? dvg=1

Note for asymptotically flat manifolds that p(g, v) is bounded below for any fixed
T > 0 by (3.1), since we have Lemma 3.1, and we can bound the additional term
involving scalar curvature in the W-functional from below by [tRu? dV, >
tinfps R. Therefore (g, v) is well defined in our setting. Furthermore in the def-
inition of (g, 7) it suffices to consider u € C{°(M), which is dense in W1-2(M)
due to a result of Aubin (see for instance [14, Theorem 3.1]). Alternatively we may
also consider positive functions u € C°°(M) with quadratic exponential decay
whose derivatives also have quadratic exponential decay,

lu(x)| < CoeBods (O,x)z’

[VPu(x)| < Cpe_B”dg(O’x)z, p=12,....

We denote such functions below by C4+(M).
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Lemma 3.2. Let g(t) be a solution of the Ricci flow defined on [0, T starting from
an asymptotically flat manifold (M", g¢). Let L > T, and consider ©(t), v(t, x)

satisfying

3.5
g—’t’:—Av-i-Rv (t,x) €0, T]x M, (3.5)

{r(l‘)zL—t t€[0,T]
where v(T) > 0 is a given terminal value in C+ (M) satisfying [v(T) dV; = 1.
Let u(t,x) = /v(t,x). Then Perelman’s monotonicity formula holds for VW =
W(g(1), u(t),z(r)) on [0,T],

dw
7—21’/

Proof. The proof proceeds in the same way as the proof of [35, Corollary 4.1].
There, (3.6) was proved when the terminal value v(7) was a specific function
whose existence was shown in an earlier part of the paper; however, the comparison
arguments and heat kernel estimates used in [35] to prove the formula only used the
fact that v(T') and |Vv(T)| have quadratic exponential decay with respect to |x|,
along with an assumption of bounded geometry — that is, Rm and its derivatives
bounded as well as a lower bound for metric balls of radius one.

In our case, v(T') and |Vv(T)| do indeed have quadratic exponential decay
with respect to |x| by assumption. For bounded curvature, observe that by the
short-time existence results of Proposition 2.4, we have that |Rm| is uniformly
bounded on [0, 7] and the metrics g(¢) are also equivalent on this interval, hence

1 2
Ric—Vzlogv—Zg vdV; > 0. (3.6)

sup |Rm| < C,
tel0,T]
xXeM

inf Vol(Bx(1)) > 8 > 0,
t€f0,T]
xXeEM
for some constants C, 8 > 0. The boundedness of all higher derivatives of Rm then

follows by applying a noncompact maximum principle to the parabolic inequality
satisfied by [Rm|?:

3;/Rm|> < A|Rm|? + 16|Rm|. (3.7)
Details of such an argument may be found for instance in [21]. Therefore the
comparison arguments and heat kernel estimates used in [35] apply in our setting

as well to conclude the proof. 0

As a consequence we obtain monotonicity of the quantity (g, t) along the
Ricci flow:



28 ERIC CHEN

Lemma 3.3. Let g(t) be a solution of the Ricci flow defined on [0, T'| starting from
an asymptotically flat manifold (M", go). Let L > T, and set t = L —t. Then
u(g(t), t(t)) is nondecreasing in t.

Proof. We have earlier remarked that in the definition of ¢ as an infimum it suffices
to consider functions u € C4 (M ). Therefore, if there existed 0 < #; < t, < T such
that w(g(t1), t(t1)) > u(g(t2), t(t2)), then applying the monotonicity formula of
Lemma 3.2 by specifying terminal values vg (t3) € C4 (M), where {vg} are such

k—
that W(g(t2), v vk (t2), T(22)) it w(g(t2), t(t2)), would give a contradiction
when k is sufficiently large. O

3.2. Log Sobolev inequalities along the flow
3.2.1. Proof of Theorem B
Applying the above results, we are now able to prove Theorem B.

Proof of Theorem B. By Lemma 3.1 we have the log Sobolev inequality (3.1) for
the metric go at time ¢ = 0, for all u € W'2(M) with [u? dVy, = 1. Using
the monotonicity of VW we will now translate this into a Sobolev inequality at time
t € [0, T']. We consider the functional YW* as in [33],

W*(g,u, 1) = /‘1(4|Vu|2 + Ru?) —u?logu? dV,

n n (3.8)
=W(g,u,1) + Elogr + Elog4n +n,
and the associated quantity
w*(g,t)y = inf  W*(g,u,1). 3.9
uew!.2
Ju? dve=1

Notice that WW* is equal to WV up to an additive constant plus a term depending on
7. Then, arguing as in the proof of Lemma 3.3 and accounting for this extra term,
we find that for any o > O and ¢ € [0, T'],

W (g(t).0) > p*(g(0).1 + o) + glog (3.10)

t+o

Now, since R > 0 at time ¢ = 0, we can add in a scalar curvature-weighted term
in (3.1) to see that

1 (g(0), 1 + o) > % log(t + o) — % (log Co + log% . 1) : 3.11)
while by definition,

w*(g(t),0) < /0(4|Vu|2 + Ru?) —u?logu? dV;, (3.12)
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for any u € W12(M) satisfying [u? dV, = 1. The following log Sobolev in-
equality therefore holds at time ¢ for any ¢ € [0, 7] and o > O:

R n n n
/uzlnu2 dvy 50/|Vu|2+zu2 th_Elog(H_E (logCo—Hogg — 1), (3.13)

for any u € W1-2(M) with [u? dV; = 1. In particular, such an inequality holds
on WOI’Z(BN(O)) C WL2(M) if fu? dV,; = 1 forany N > 0. The arguments
of [33, Appendix 3], then adapt to show that there exists an A > 0 depending only
on Cy and n such that for any u € WOI’Z(B ~ (0)) we have the Sobolev inequality

n—2

. " R
(/|u|n2—z th) §A(/|Vu|2 +Zu2dV,). (3.14)

In particular tracing the constant dependence in [33, Theorems 5.4-5.5] we find
that A depends linearly on Cy for fixed n. Taking N — oo, we may therefore
obtain (1.2). I

3.2.2. Proof of Theorem C

We conclude by showing how the proof of Theorem B can be modified to prove
Theorem C.

Proof of Theorem C. Proceeding just as in the proof of Theorem B, we again arrive
at the inequality (3.10) without having used the assumption Ry > 0. In the next
step (3.11) where Ry > 0 was used, we instead consider

4r/|Vu|2 v, +2r/ Ru? dVy — %10gr + 2

3 (log Co + log% — 1)

(3.15)
z/uzlogude0+2r/Ru2dVo.
Then we observe that
n—2
2r/Ru2 dVy > -2t (f |R|Z dVO) |u|z dVO)
> (3.16)
>

—27C, (/|R| a’VO) /|Vu|2dV0

2
Hence if ( f R3 d VO) "< 2Ci0 then we can absorb it on the left of (3.15) to obtain

81/|Vu|2 dV0+2z/Ru2 dVy — Llog2e 4+ (logCo +log 2 — 1)
2 2 8

i (3.17)

zfuzlogudeo—ElogZ
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As a result we may continue as in the proof of Theorem B to obtain (3.13) with a
different constant in the last term:

R
/uzlnu2 dVi<o |Vu|2+zu2 dVi— %loga—l—% (logCo—Hog%—l). (3.18)

We conclude by proceeding through the arguments of [33, Appendix 3] as adapted
to our case by studying the semigroup associated with the positive operator
—A + RT on By(0), instead of —A + R in the case when R > 0, and taking
N — 00. As at the conclusion of the proof of Theorem B, we find that A depends
linearly on Cy for fixed n. O

4. Long-time existence and convergence of the flow, n > 4

We will now prove Theorem A in dimensions n > 4; as mentioned in the intro-
duction, in dimension n = 3 there are some additional technical considerations
that we will address later in Section 5. Using our main tool, Theorem C, which
was proved in the previous section, in this section we first show monotonicity of
/ IRm|2 dV, and / |Rm| 3722 dV; before proceeding to prove a pointwise bound
on |[Rm|, which implies the long time existence of the Ricci flow by the blowup
alternative of Proposition 2.4. Once we have the long-time existence of the flow,
we will then complete the proof of Theorem A for n > 4.

4.1. Long-time existence

We begin by stating some inequalities for the evolution of |[Rm|? under the Ricci
flow, which follow straightforwardly from the well-known pointwise inequality
(4.1), using the Kato inequality |V|T|| < |VT|, for any tensor 7. We have already
mentioned a weaker form of (4.1) in the proof of Lemma 3.2.

Lemma 4.1. Let (M", go) be a smooth Riemannian manifold, and let g(t) be a
solution of the Ricci flow with initial condition g¢. Then we have

3;[Rm|> < A|JRm|? — 2|VRm|? + 16|Rm|. 4.1)

Suppose also that (M", go) is an asymptotically flat manifold. Then for o >
max(1, ),

d
» / Rm[2 4V, < —C; (@) [ VRm[ dV; + Co(@) / Rm[+! dV;, 42)

for some constants Cy(a), Ca(at) > 0.

Proof. As mentioned above, (4.1) may be found in many places, for instance in [7].
Then (4.2) is a consequence of (4.1) and the curvature decay from our assumption
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of asymptotic flatness; using that d; dV; = —R d'V;, we obtain

d

d—/ [Rm|** dV; < a/ |Rm[**~2 (A|Rm|* — 2|VRm|* + 16/Rm|?)
! 4.3)

—/R|Rm|2“ dv;.

Indeed, since by Proposition 2.5 Rm and its derivatives have controlled rates of
asymptotic decay on closed intervals where the Ricci flow g(¢) exists, the domi-
nated convergence theorem allows us to compute % J |IRm|?* dV; from the corre-
sponding pointwise formula. For the term involving A|Rm|? we may integrate by
parts on Bg(x) for a fixed x € M to see that

/ IRm|**"2A[Rm|? dV;

Br(x)

= —/ V|Rm|?**"2V|Rm|? dV; +/ |IRm|?*~29,|Rm|? dSS; (4.4)
Br(x) 0BR(x)

=—2Qa — 2)/ |[Rm|?*~2|V[Rm||? dV; + [ |IRm|?*~29, |[Rm|? dS;.
Br(x)

dBR(x)

We take R — oo to study this integral, which is the first term on the right in
(4.3); again by Proposition 2.5 we see that the boundary integral tends to zero as
R — oo. Substituting our result back into (4.3), after straightforward pointwise
manipulations of the remaining terms we obtain (4.2). O

4.1.1. Monotonicity of ||Rm||L% and a uniform Sobolev inequality

Now we show that [ |IRm|Z dV, is nonincreasing along the Ricci flow under the
assumptions of Theorem A if it is initially sufficiently small.

Lemma 4.2. Let (M", go), n > 4, be an asymptotically flat manifold. There exists
2
a 81(n) > 0 such that zf(f|Rm|% dVO)" < 51(11)&, then [|Rm|3 dV; is
0

nonincreasing along the Ricci flow when it exists. In particular | |Rm|% dV; <
81(n)2 along the flow.

Proof. By Lemma 4.1 we have
d n
— | |IRm|2 dV,
dt / |Rm| t

- / VRm|% 2 dV, + sz Rm|5+! aV, @5)

n—2

2
<_¢ / VIRmI% 2 dV; + C (/ Rm[% dv,) (/ R4 22 dv,)
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Now we restrict 61 (n) < 2 small enough so that Theorem C holds. Then we find

n—2
n 1 n 2n n "
_f|V|Rm|4|2 dV; S_Z (/ |Rm|ZIET2 th) +/R+|an|2 dv,
(4.6)

n—2

1 n 2n n n
<1 (/ Rm| 72 dv,) +Co [ IRmf# v,

Therefore, continuing from (4.6), we find that

d n
E/|Rm|2 dv;
n—2

C n _2n n
<= (f IRm| %72 de) @.7)

n—2

2
+ G (/ |Rm| % dv,) (/ |Rm| % 22 dV,)

Thus, the right-hand side will be nonpositive if

1 C 1
§1(n)—— < =L 48
1(’1)Cg0 =G4 4.3)

Since A depends linearly on Cg, we may indeed find a §;(n) > 0 small enough,
depending only on 7 so that (4.8) holds.

2
This shows that % f |Rm|% dV; < 0 whenever (f |Rm|% th>”< 81(1’!)%,
2
and since at time ¢ = 0 we have <f |Rm| 2 dV()) "< 81(n)éo by assumption, it

follows that | |Rm| 5 dV, is nonincreasing along the Ricci flow. O

As a consequence we can obtain under the same assumptions a uniform, un-
weighted Sobolev inequality along the Ricci flow we consider in Theorem A if we
further restrict §; (n) to be sufficiently small.

Corollary 4.3. Let (M", gg), n > 4, be an asymptotically flat manifold. There
2

exists a §1(n) > 0 such that if <f |Rm|% dV())Z < 81(”)01T0 then the following
uniform Sobolev inequality holds along the Ricci flow g(t) whenever it exists, for
ueWwh(M):

n—2

(/|u|n2"2 dv,) ’ 5A0[|Vu|2dv, (4.9)

Moreover, in any fixed dimension n, Ao depends linearly on Cg,.
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Proof. First take §;(n) > 0 sufficiently small so that the conclusion of Lemma 4.2
holds. Then consider the scalar curvature-weighted term in the weighted Sobolev
inequality (1.2) of Theorem C. If we further shrink §; () we can obtain from the
linear dependence of A on Cg,, that

n—2

2
A/R+u2dv, 5A(/|R|5 dV,) (/|u|"2n2 dV,)

n—2
1 n n
<= (/ Ju| 72 th)
2

Absorbing this term back into the left hand side of (1.2), we obtain the
conclusion. O

(4.10)

4.1.2. Monotonicity of ||Rm||L%nnT2
Having now established a uniform Sobolev inequality along the Ricci flow of the
metric considered in Theorem A, we proceed to estimate higher order integral cur-
vature norms. First we will see that the L2 72 norm of Rm is nondecreasing
following the same argument used to prove Lemma 4.2. Note as in Lemma 4.2

that the exponent % 2. = % 2" 5 exactly the one which appears in Corollary 4.3

2n—2 ~ 4n-2

when applied to ¥ = |[Rm|%. Unlike in Lemma 4.2 however, the next lemma will
. . . . n_n . .

not give control of the explicit size of the L27—2 norm of Rm, since we did not

make any assumption on its size at the initial time r = 0.

For the purpose of proving the boundedness of |[Rm| and the long-time exis-
tence result of Proposition 4.5, our choice of estimating this particular norm is not
particularly special; we could have obtained the same kind of nondecreasing esti-
mate for any fixed L? with p > %, and such a control would also suffice. Note
however that in order to obtain the monotone nondecreasing of [ |[Rm|? dV;, the

2
smallness of §;(n) in the restriction ( J |Rm] 5d Vo) "< 8 (n)é depends on the
0

choice of p; thus we cannot directly obtain L* control of |[Rm| by this kind of
estimate and require an extra step involving Moser iteration.

In the next section however, for the purpose of proving the long-time curvature
decay and convergence of the flow in Section 4.2, we will see that our choice of
estimating the particular L4 norm for ¢ = Z-25 of |Rm| becomes important.

2n—2
Lemma 4.4. Let (M", go), n > 4, be an asymptotically flat manifold. There exists
2
a8(n) > 0 such thatif(f IRm|% dVO)" < 81(n) g then [ [Rm|37"2 dV, is
0

nonincreasing along the Ricci flow whenever it exists.
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Proof. Again we compute starting from the pointwise formulas of Lemma 4.1:

d gk n_n n_n
E/'R“”z” def—Q[lVlRmHHFdv,+czf|Rm|2nz+1dV,

< _CI/|V|Rm|1iniz|2th (4.11)

2 n
+C (/|Rm|’%dv,) (/|Rm|’in”—zn2—”z dV,)

We may now apply Corollary 4.3 with u = |Rm|%rrnTz and conclude by taking
81(n) > O sufficiently small so that % / |IRm|2772 dV, < 0, via an argument
similar to that in the proof of Lemma 4.2. Alternatively we could also use Theorem
C to argue instead of Corollary 4.3 since we can deal with the curvature weight by
the assumption that | |IRm|2 dV; is small. O

4.1.3. Bounds on |Rm| pco and long-time existence

We now come to the L*° estimate of Rm along the Ricci flow of Theorem A. The
proof is an adaptation of D. Yang’s argument in [31] from the compact setting to
our asymptotically flat setting. Although arguments following this general idea can
be found in a variety of sources, we will include details below because our Sobolev
inequality from Corollary 4.3 is slightly different from the one in [31] and also
because in Section 4.2 we will need to refer to the proof in order to show how it

1—>00
can be used to prove the curvature decay sup,.¢,, t|Rm(z, x)] —— 0.

Proposition 4.5. Let (M", go), n > 4, be an asymptotically flat manifold. Let
81(n) > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma 4.4 hold. Then whenever the Ricci flow exists we have the following
estimate for |Rm|:

5 _2(m—=2) 4(n—2)
[Rm|* < max [ Ci(go)t™ 7 ,Ca(go)t »* |, (4.12)

for constants C1(go) and C5(go) depending only on the initial metric gg. In partic-
ular, they depend only on the initial Sobolev constant Cy and the initial curvature
quantity [ IRm|2 772 d V.

Proof. For convenience of notation we let f(z,x) = |Rm|?. Again, the decay
estimates for curvature resulting from Proposition 2.4 will allow us to integrate
by parts and differentiate in the integral below using the pointwise formulas of
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Lemma 4.1. For p > 7 and any fixed ¢ > 7, we have

pdt/f”th _ff”‘lAf+16|Rm|f” dv, (4.13)

< He- ”/W(f )2 av,

7 _, 1-35
+16 (/ |Rm|qdv,) (s—m/fp th)

n—2 n_
(s [ e an) ™

where the last line holds for any § > 0. Let 8 > 0 be a constant such that we
have the bound 16|Rm|| L« < f along our Ricci flow. We set ¢ = 5 ..% so that by
Lemma 4.4 there indeed exists such a 8. Continuing, we obtain,

1d
? dv 4.14
| v @14)

<020 [iverbppsi [ 7 avips (/f

n—2

S
=
IL S
IS W
=
N~
=

We apply the Sobolev inequality of Corollary 4.3 and set § = ( 3 j’o_; )2q_n to

obtain
d P 212 P
s avis [INGBDP AV = Cpap | £7 AV @13)

n
BAop? 29"
3p—4

we have considered earlier, C,, ; g will always denote this particular value given
p.4q,B. Now let T > 0 be such that the Ricci flow is defined on [0, T'] and define,
for0 < 7 <t/ < T, the function ¥ : [0, T] — [0, 1],

where C, ;8 = pB ( . Unlike other constants such as Cy, C, that

0
V() =1 7=
1

~ o~
QA

! (4.16)

=)
A A TA
(A A IA

Then we multiply (4.15) by ¥ and find that

d P
(v [rrav)ev [I9GOR v < gy +0) [ 17 v, @i
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so that integrating, for any 7 € [¢/, T'] we have

/f”dVr //lV(f )|2dV,dt<(pq,g—|— )/ /f”dV,dt

(4.18)
We define for p > 7 and 7 € [0, T,
T
Hoo = [ [ rravia, (4.19)
T
andletv =1 + % We now claim that for p > Zand0 <7 <7’ < T,
1 v
H(vp,t') < Ay (Cp’q, - ) H(p,1)". (4.20)
-7
Indeed,
r r 3 =
[ o[ (fraf (] 5o
i i 4.21)

2
n T
5A0< - /deV,) / /IV(f’Z’)Idetdt,
v/'<t<T T/

so that (4. 18) implies the claim. Now we iterate (4.20) to obtain L°° control. Let
po = % = -1 and define

2q

1
n=vin, pr=vpy, w=0—-nT, & =Hpr,w)?. 4.22)

We apply (4.20) to see that

1
Op 1 = HWpg, Toy1) 7k

1

= A(:pk (Cpk,q,ﬂ +

1

1 Pk 1
) Hpe. 1) 7

Tk+1 — Tk

1

(4.23)

1

VPK 2’17_,, 24 nk+l 1
<Ay [ A" (Bpo)za— i 4+ C(n.,q)

Pi
H(pr, 1) 7%
T ) (Pk» k)

1

1

v s 2q_ Pk k.
= 40" (Aéq (Bpo) 7 +C(n,q>¥) 7% B
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Now since > p—, ka = % <ooand ) o, If—k < 00, we can take k — 0o
to obtain
5 _2(n2-4)
sup [Rm(7', x)|” < max(C1(4o, B)T #* , Ca(Ao, B))Po
veM (4.24)

_2(n2-4) 2, 401=2)

< maX(Cl (A(), IB)T n2 Cz(A(), ﬂ))ﬂ T n2 |
which gives us the desired conclusion, since the choice of T for which the Ricci
flow exists on [0, T'] was arbitrary. O

Corollary 4.6. Let (M",go), n > 4, be an asymptotically flat manifold. Let
81(n) > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma 4.4 hold. Then the Ricci flow g(t) exists for all t € [0, 00) and there
exists a K > 0 such that

sup |[Rm| < K < o0. (4.25)
t€[0,00)
xXeM
Proof. The bounds we have obtained in Proposition 4.5 immediately imply that
the flow exists for all times ¢ € [0, 00), by the blowup alternative in the short-time
existence statement of Proposition 2.4.

For the uniform bound on |[Rm| observe first that by the estimates in Propo-
sition 4.5 |Rm| is bounded for ¢ € [1,2]. Moreover the estimates on [Rm| in the
short-time existence results of Proposition 2.4 tells us that [Rm| is bounded on
[0, 1]. Next, by Proposition 4.3 we have a uniform upper bound on the Sobolev
constant Cg(y) along the flow, and by Proposition 4.4, [ |[Rm|2#=2 dV, is nonin-
creasing along the flow. Therefore we can apply the estimates of Proposition 4.5
with an initial time ¢ = 1 instead of # = 0 to see that

sup |Rm| < sup |Rml]. (4.26)
t€[2,3] t€[1,2]
xeEM xeM

Repeating this by applying Proposition 4.5 for initial times # € N, we conclude that

sup |Rm| < sup |Rm| < oo. 4.27)
t€[0,00) t€[0,2]
xeM xXeEM
O

Next we will look more carefully at [ |IRm|27=2 dV, and take advantage of
the improved decay that we obtain to pass to decay of |[Rm| in time.

4.2. Curvature decay and convergence — proof of Theorem A

We will now complete the proof of Theorem A when n > 4 by showing that the
long-time existence of the flow considered in Theorem A along with our estimates
in Section 4.1 imply its convergence to R” with the standard flat metric. Below we
first prove the curvature decay estimate [|[Rmg)|lzeo = o(¢™'), and then discuss
why this decay estimate is sufficient to conclude convergence.
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4.2.1. Decay of ||Rm||L% n

As a preliminary step, we will first obtain decay of the curvature in an integral sense
along the flow, which improves the monotonic nonincreasing property established
in Lemma 4.4.

Lemma4.7. Let (M™, go), n > 4, be an asymptotically flat manifold. Let §,(n) >
0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3, and
Lemma 4.4 hold. Then for every A > 0, there exists Ty > 0 such that along the
Ricci flow,

n—2

(/ |Rm|2 72 th) <At”Y, forallt > Ty. (4.28)

Proof. We showed in the proof of Lemma 4.2 that there exists a C = C(go) > 0
such that at all times where our Ricci flow is defined,

n—2

%/mmﬂ dV, +C ([ [Rm|2 72 dV,) " <o (4.29)

Furthermore we know by Corollary 4.6 that the flow exists for all times ¢ € [0, c0).
Since [ |Rm|% dV; is nonnegative, we can integrate (4.29) to see that

n—2

/ (/ IRm|% 7% th) " dt < oo (4.30)
0

n—2
This combined with the fact that ( / IRm| a2 d V,) " is monotonic nonincreas-
ing along the flow by Lemma 4.4 implies that
n=2

lim ¢ (/ IRm|Z 72 th) =0, 4.31)

1—>00
which gives (4.28). O
4.2.2. Decay of |[Rm| oo from decay of ||Rm||L% n

Using the integral curvature decay estimate just obtained we can now revisit the
iteration argument of Proposition 4.5 to prove our L decay estimate for Rm.

Proposition 4.8. Let (M", go), n > 4, be an asymptotically flat manifold. Let
81(n) > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma4.4 hold. Then the singularity at infinity of the Ricci flow g(t) starting
from go which exists for all times t € [0, 00) by Corollary 4.6 satisfies

hm t sup |Rm(z, x)| = 0. (4.32)
xeM
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Proof. We will follow a line of argument similar to that used in the proof of
Proposition 4.5. Recall that in that proof we used a constant 8§ > 0 such that
[Rm| s < B, where ¢ = 5 .%5. But now by Lemma 4.7 we have a better estimate
— given A > 0,

n—2

S]IN]

n

n_n 2
|IRm(2)|| e = (/ |Rm|2 72 th) <(™h)", forallt > Ty. (4.33)

Recall that in the proof of Proposition 4.5 we produced an L*° estimate of Rm at

time t = T using an L4 bound of Rm at time ¢ = 0. Here, taking advantage of

the uniform Sobolev inequality (4.9) along the flow combined with (4.33), we will

instead produce an L*° estimate of Rm at time ¢ = T using L4 bounds of Rm for
2

t € [£,T], given any T > 2T,,. Define now B(t) = 16 (1t~!)". Then we have

the following analogue of (4.20):

v
H(vp,t') < Ay (Cp,q,ﬂ(r) + ) H(p, 1), (4.34)

/-1

which holds for any % < 1 <t/ < T. Again we intend to iterate to obtain L

control. Define as before pg = 4 = - with
2q k 1
n=v, pr=v-po, Pr=H(pr ), (4.35)

but this time with 75 = % +(1—n7* )% We then see that (restricting to A < 1)

1

1
> %n 2¢q n\ Pk k_
Dpp1 < Ay"* (Aozq (B(zk) po) 24— + C(’ﬂ‘])f) nrk O

1
1 n 2 C Pk k.
< Ay"* (Aéq” Py 71 - C(n,q)%) * n7e @y

Iterating as in the proof of Proposition 4.5 we therefore see that for some constant
C > 0 depending only on (M™", g9),
22 —4)

sup Rm(T,x)|> < CT~ 22 &,. (4.37)
xeM

Finally, we have that

T
p = (/ /|Rm|’£n’iz dV, dt)
%
n—2
T o
< </§ (At™H)n—=2 dt)

T (4.38)
4 8
< C(n)Ain T n2 .

n—2
n

BJES

NN
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Combining this with (4.37), we conclude (4.32), since we find that for some con-
stant C depending only on (M", g¢) and any A > 0,

sup [Rm(T,x)[> < CA# T2, forall T > 2T;. (4.39)
xeM

O

4.2.3. Sufficient decay of |Rm|| Lo implies convergence to flat space

Now that we have proved the L* curvature decay estimate of Proposition 4.8, a
straightforward adaptation of the results of [21, Sections 4-5] implies the weighted
convergence of g(¢) to an AF metric on M with |Rm| = 0, so that M is diffeomor-
phic to R". First we now quote the particular statement due to [21] which we will
adapt:

Proposition 4.9. ([21, Sections 4-5]) Let (M", go) be an asymptotically flat man-
ifold of order t > 0. Suppose that the Ricci flow g(t) with initial condition
g(0) = go satisfying R, > 0 exists for all times 0 < t < oo and moreover
has curvature decay satisfying

lim ¢ sup [Rm(z, x)| = 0. (4.40)

t—>00 xeM

Then there exists an asymptotically flat metric g(o0) with the same asymptotically
flat coordinate system as the metrics g(t) such that the g(t) converge to g(oo) as
t — o00in C2,(M), for any v’ € (0, min(z,n — 2)).

Note however that unlike in Proposition 4.9 and in the main results of Li’s paper,
we have not made any assumptions on the sign of the scalar curvature of the initial
metric. Hence that result cannot be directly applied to our setting. Instead, below
we will describe how the arguments used to prove Proposition 4.9 in [21] can be
modified so that the assumption Rg, > 0 can be replaced by the assumptions of
Theorem A. As a result this concludes the proof of Theorem A in dimensions
n >4

Proposition 4.10. Let (M™, go) be an asymptotically flat manifold of order T > 0.
Suppose that the Ricci flow g(t) with initial condition g(0) = go exists for all times
0 <t < oo and moreover has curvature decay satisfying

lim ¢ sup [Rm(z, x)| = 0. 4.41)

t—>00 xeM

IS)

There exists §1(n) > 0 such that if (f IRm|Z d V0> "< 8 (n)é then there exists
0

a flat, asymptrotically flat metric g(00) with the same asymptotically flat coordinate
system as the metrics g(t) such that the g(t) converge to g(oco) as t — 00 in
C2,(M), for any " € (0, min(z, n — 2)).
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Proof. We refer to [21, Sections 4-5] for most parts of the proof. There it is as-
sumed R > 0 along the flow; however, the first part of the proof of [21, Theo-
rem 4.4] is the only point where R > 0 is used. At that point, we have a solution of
the heat equation d,u = Au satisfying on any [0, T'] the bounds ¢;(7T)r=27° <
u(t,x) < cp(T)r=27%. Here r is a positive function on M, equal to |x| on
the image of the asymptotically flat coordinate system in R”. We just need to
show that % JuPdV; < 0 for any fixed p € (m, %) if we assume that
J |Rm| % dV, is small, instead of that R > 0 along the flow.
To see this, by Lemma 4.2, Corollary 4.3, and Lemma 4.4 we have that

n n 1 2
/lRm|2 dv, < / IRm|% dV, < (S(n)—) : (4.42)
CgO

2
n

if (f |Rm| > dVO) < 8(11)%20. We then observe that

d 4(p—1
—/ul’thE—Mﬁw’z’ﬁdv,—/ml’dw
dt P

n—2

5—4(”—_1)% (/uﬁ’z—z dV,) ’ (4.43)

p
2 n
(o) (o550

n 2
which is indeed nonpositive if ( JIRm|2 d Vo)™ <8, (n)é with a possibly smaller
0

value of §; (n) than appeared in earlier lines, if we restrictto p € (
4(p—1)

e 3)>
since this bounds the coefficient — away from zero. As remarked earlier,
after this step the rest of the proof in [21] does not use that R > 0 along the flow
and so by the exact same arguments we obtain the C°,(M) convergence of g(r)
for ¢/ € (0, min(z,n — 3)).

However, if 7 > n—3 then we have not yet realized the C°,(M) convergence
of g(¢) for the full claimed range of v/ € (0, min(z,n — 2)). To achieve this, we
need to see that % fu”dV, < 0 also for p € ( For

n n ]
2+min(z,n—2)° 2+min(t,n—3) 1"

oo
_r/

nonincreasing quantity [ IRm|Z dV; goes to 0 as 1 — oo. Returning to (4.43) we
therefore see that for any p > m we have % f uPdV; < 0whent > Ty
is sufficiently large. Then we can apply again the remaining arguments from [21],
starting at g(7') instead of g(0), to conclude the C=7, (M) convergence of g(¢) for
the full range ' € (0, min(z’, n — 2)). O

this, since now g(¢) it g(00) in C2,(M) for some 7’ > 0, the monotonically
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5. Thecasen =3

In this section we will complete the proof of Theorem A by addressing the case of
dimension n = 3. Here, a technical issue arises in estimating 9; [ |[Rm|Z dV, as
we did in Section 4, since up to now we have computed everything using the dif-
ferential inequality satisfied by the smooth function [Rm|?. When n = 3 however,
we would have

3
3 |Rm|3 = Z|Rm|-%a,|Rm|2. (5.1)

But |Rm| may be vanishing at some points along the flow, so this identity creates
difficulties if we try to establish an analogue of Lemma 4.1 in dimension n = 3 via
integration by parts.

To avoid this issue we instead proceed in the following way. Given an AF
manifold satisfying the hypotheses of Theorem A, for € > 0 let u.(z, x) be the
solution of the heat equation,

OiUe = AUe
5.2
ue(0,x) = er—27T, (5-2)

Recall that r is taken to be a positive function on M, equal to |x| on the image
of the asymptotically flat coordinate system in R”. In particular, u¢ (0, x) satisfies
the same spatial decay rate as [Rmg,|. Moreover, by standard maximum principle
arguments as in [8,21], we have on any interval [0, 7] on which the Ricci flow of
(M™, go) exists that

eCL(T)r 27" <uc(t,x) <eCo(T)r 277,
|Vue(t,x)| < eCo(T)r 377,
|V2uc(t, x)| < eCo(T)r—*7°.

Furthermore, we note that d,u2 = Au2 — 2|Vu,|?>. Combining this with (4.1) we
obtain

3 (IRm[? + u2) < A(Rm|? + u2) — 2|VRm|? — 2| Vuc|? + 16[Rm[>.  (5.3)

Since |[V(IRm|* + u?)|*> < 4(Rm|*> 4+ u?) (|V|Rm||* + |Vu€|2), then setting
|IRm|? + u2 = K2 we find that

3 K> < AK? —2|VK|* + 16K2. (5.4)

Note also that this differential inequality satisfied by K. takes the same form as
the differential inequality satisfied by (4.1), and moreover K. > €C1(T)r 277 is
bounded away from 0 by a function with a controlled rate of spatial decay on any
time interval [0, 7] on which the Ricci flow exists. Therefore we have an analogue
of Lemma 4.1 for K.
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Lemma 5.1. Let (M", go), n = 3, be an asymptotically flat manifold. Then for

3
(XZZ’

d
E/Kf"‘dV, < —Cl(a)/|VK2‘|2th +C2(a)/1<3“+1 dv,, (5.5

Sfor some constants C1(a), Ca () > 0.

Proof. Since K¢ is strictly positive (unlike |Rm|) we can compute using the spatial
asymptotic upper and lower bounds of u. that

d
E/Kf“dlf, ga/Kf‘H (AKZ —2|VKc|* + 16K7) dV, —/RK?"‘dV,
<o @40 K2VKPL dVi+ Gt [ K2 av,

< —cl(a)/|v1<g|2dv, +c2(a)fK3“+1 dv;.
O

Having established Lemma 5.1, we may now take € > 0 sufficiently small so

that under the hypotheses of Theorem A we also have ( / KE% d Vo) Y (n)Cgy.,

and then we can follow the idea of the proof in Section 4 applied to the function
K, to complete the proof of Theorem A by proving it in the case n = 3.

We will now briefly describe how this proceeds. At this point in Lemma 5.1
we have found an analogue for Lemma 4.1 for dimension n = 3, with K replacing
the role of |[Rm|. From this and the fact that K, > |Rm| we straightforwardly obtain
the analogue of Lemma 4.2 for dimension n = 3, again with |[Rm| replaced by K.
Thus Corollary 4.3 follows as before, and we may continue to obtain analogues of
Lemma 4.4 and Proposition 4.5, still for dimension n = 3 and with |Rm| replaced
by K. Since K. > |Rm| we therefore obtain L°° bounds for |Rm| as well, and
also the long-time existence result in Corollary 4.6 for the Ricci flow of (M3, go).
To pass from long-time existence of the flow to convergence, we first obtain the
analogues of Lemma 4.7 and Proposition 4.8 for dimension n = 3 by another use
of Lemma 5.1, K¢ replacing |Rm|. Thus,

lim z sup K¢ =0, 5.6)

t—>00 xeM
which implies lim; o0  SUp, s IRM(2, x)| = 0. To conclude we apply Proposi-
tion 4.10, which can be used in our setting of dimension n = 3 since by now we

have shown that ( [KZ d Vt) Py (n)Cg, remains small and bounded along the
flow under the hypotheses of Theorem A.
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6. Conformally flat AF metrics

We will discuss here the special case of asymptotically flat metrics go = e2*|dx|?
on R” which are conformal deformations of the flat metric. We begin by giving the
proof of Corollary D as a consequence of Theorem A.

6.1. Proof of Corollary D

Proof of Corollary D. By the conformal invariance of the Yamabe quotient, we
have that for every u € W12(R”, go),

n n 1
(/ || 722 dVo) <Cne (/|Vu|2+gRu2dVo), (6.1)

where C, . is the Sobolev constant for the flat metric on R”. Therefore if
/ |Rm|% dVy is sufficiently small then we find that the Sobolev constant of gg
satisfies Cg, < 2C, .. Moreover by Theorem A there exists an € = €(2Cy ) > 0
such that if we also have [ IRm|2 dV, < e, then the Ricci flow starting from g
will converge to the flat metric on R”. Thus we can find A(n) > 0 as claimed. [

Note that in this setting we do not require a separate assumption on the Sobolev
constant because of the conformal invariance of the Yamabe constant. As men-
tioned earlier, Corollary D applies in particular to rotationally symmetric asymp-
totically flat metrics on R”, and therefore gives another long-time existence and
convergence statement for the Ricci flow in this setting different from that in [25].
The main result there states that the Ricci flow of a rotationally symmetric, asymp-
totically flat metric go on R” exists for all times ¢ € [0, c0) and converges to the
flat metric on R” in the pointed Cheeger-Gromov sense if the initial metric (R”, go)
contains no minimal hyperspheres. For clarity we quote the relevant parts of that
result below.

Theorem 6.1. ([25, Theorem 1.1]) Let go be an asymptotically flat, rotationally
symmetric metric on a fixed coordinate system on R", with n > 3. If (R", go)
does not contain any minimal hyperspheres, then there exists a solution g(t,x) €
C°((0, 00) x R™) of the Ricci flow with initial condition g(0) = go which remains
asymptotically flat for all times t € [0, 00) and:

(a) We have g(t,x) € C1([0,T] x R");
(b) For each integer £ > 0 there exists a constant Cy > 0 such that

C
VERm(t,x)‘ <t forallt > 0;

su 5
; gtx) ~ (14 1)tt/2

X €ER”?

(c) The flow converges to flat Euclidean space in the pointed Cheeger-Gromov
sense ast — 00.
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By proving Theorem E below, we will observe the following relation between
Corollary D and Theorem 6.1: the pinching assumption | |Rm| 2 dVy < A(n)
which we assumed in Corollary D also rules out minimal hyperspheres in the rota-
tionally symmetric setting (in fact without requiring asymptotic flatness), if we sup-
pose that A(n) > 0 satisfies an additional smallness constraint that A(n) < C(n),
for some constant C(rn) > 0. As a result, under this additional supposition, the
special case of Corollary D in the rotationally symmetric setting would then be a
consequence of Theorem 6.1. Note however that we have not estimated the size
of A(n) in the proof of Corollary D, and also will not estimate the size of C(n) in
the proof of Theorem E below, so whether or not A(n) < C(n) and Corollary D
actually follows from Theorem 6.1 in the rotationally symmetric setting is unclear.

6.2. Rotationally symmetric AF metrics — proof of Theorem E

Below we consider rotationally symmetric metrics on R” in the standard form
g =dr*+ f(r)*do?, (6.2)

where r is the metric distance to the origin and do? is the standard metric on S”~!.
We assume f(r) extends to a smooth odd function of r with f/(0) = 1, so that gg
is well defined at r = 0. When f(r) = r then g¢ is exactly the flat metric on R”.
First we recall the following facts which may be found for instance in [7, 19].

Lemma 6.2. The sectional curvatures of g = dr?+ f(r)? do? for the planes tan-
gent to the distance spheres, v (r), and for the planes containing a radial direction,
V2 (1), are respectively given by

B 1_(f/)2 _f//

VI—T, V2 = 2

and the eigenvalues of the curvature operator are vy and v, with multiplicities

(”;1) = (n_l)zﬂ and n — 1, respectively.

(6.3)

Therefore [ |Rm|? d Vj is bounded from below by both [ [v1]2 d Vg and [ |v2|2 d V.
The space (R”, g) possesses a minimal hypersphere exactly when there exists an

R > 0 such that f/(R) = 0. We will show that this implies [ |IRm|2 d Vg cannot
be too small.

Proof of Theorem E. By our discussion above, it suffices to show that if there exists
a function f : [0, R] — R such that f(0) = 0 and f/(0) = 1, f/(R) = 0 with
f'(r) > 0on [0, R), then there exists a C = C(n) > 0 such that

R n2 s R
1—

max / # frt dr,/
0 J 0

="
f

: frl dr) >C(n). (6.4)
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We may rescale by defining g(r) = %f(Rr) on [0, 1] so that g(0) = 0 and
g'(0) = 1,¢’(1) = 0 with g’(r) > 0 on [0, 1), and since [ |Rm| 2 dV, is scale-
invariant, we find that

1 1 — (g2 5 R 1— N2 13
El(g) ::/ (zg) gn—l dr :/ JE{) fn—l dr,
01 N . o (6.5)
E>(g) == / s ¢ ldr = / =/ fdr.
0 0 f

So it suffices to show that the maximum of E;(g), E>(g) is bounded below by

some C(n). To do this, first we will show that there exists a C1(n) > 0 such that

if g(1) = D > Cy(n), then E1(g) > 1. We note g(r) is monotonically increasing
1

on [0, 1] and that D = fol g dr < (fol (g")? dr)j, so that

11_ /2%
a@=LL—%le

- 2 [ -l ar .
1 v 3 .

ZBWA(g)dr‘l

- Lot ips1.

D

Thus if D is sufficiently large, E1(g) > 1 and then max(E;(g), E2(g)) > 1.

Next we estimate E1(g), E2(g) from below. Because of our preceding esti-
mates we only need to consider those g for which g(1) < Cy(n). For E1(g) we
have similar to before,

n
2

1 1
Ei(g) > —— 1—(g)2dr| | 6.7)
= oo | [ 1= @)
while for E>(g) we have
1 _ "
Ex) = [ |7 e ar
0 g
o 5
> f g"g" dr (6.8)
0

2

n

_(n=2\f 1 Y
= (") @ ([ wrar)

1
n—2 —2 n—211
/O (g)’g™ dr+ [g’g " ]0
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Hence if g(1) < C;(n) then max(E;(g), E»>(g)) is also bounded below by some
constant depending only on n, completing the proof. O

We have seen that [ |Rm|> d V, small alone suffices to guarantee the long-
time existence and convergence of this flow to flat space, without a bound on the
Sobolev constant as required in Theorem A. This is implied either by Corollary D
alone, or by a combination of Theorem E with Theorem 6.1 from [25]. It would be
interesting to see how this situation relates to the general case. Another interesting
question is whether | IRm|?% d V, sufficiently small has any connection to the ex-
istence of closed minimal hypersurfaces on a general asymptotically flat manifold.
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