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Convergence of the Ricci flow on asymptotically flat manifolds
with integral curvature pinching

ERIC CHEN

Abstract. We prove a curvature pinching result for the Ricci flow on asymp-
totically flat manifolds: if an asymptotically flat manifold of dimension n � 3
has scale-invariant integral norm of curvature sufficiently pinched relative to the
inverse of its Sobolev constant, then the Ricci flow starting from this manifold
exists for all positive times and converges to flat Euclidean space. In particular
our result implies that the initial manifold must have been diffeomorphic to Rn.

Mathematics Subject Classification (2020): 53C44 (primary); 58J35 (sec-
ondary).

1. Introduction

Since the initial work of Hamilton [12], many curvature pinching results guaran-
teeing the long-time existence and convergence of the Ricci flow (or its suitable
normalization) on compact manifolds have been proved. In this paper a curvature
pinching result for the Ricci flow on noncompact, asymptotically flat (AF) mani-
folds is proved. We first give a short review of known results on the Ricci flow in
regard to both curvature pinching and AF manifolds.

For compact manifolds, the long-time existence and convergence of the Ricci
flow assuming curvature pinching at the initial time has been well-studied, begin-
ning from Hamilton’s proof that the normalized Ricci flow starting from a closed
3-manifold with Ric > 0 exists for all positive times and converges smoothly to a
spherical space form [12]. Many other curvature pinching results on the long-time
existence and convergence of the Ricci flow on compact manifolds generalizing
this statement have since been proved [3, 4, 11, 16, 18, 22, 24], among these for
instance the quarter-pinching sphere theorem of Brendle–Schoen.
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For noncompact manifolds and in particular AF manifolds, under some as-
sumptions different from curvature pinching long-time existence and convergence
results for the Ricci flow have also been proved [25, 27]. We remark that AF man-
ifolds are a particularly interesting class of noncompact manifolds to study with
regard to the Ricci flow because the flow preserves the AF property as well as the
ADM mass [8]. There is also a curvature pinching result for the Ricci flow on
AF manifolds due to Shi [29], but Chen–Zhu later showed that there exist no AF
manifolds satisfying Shi’s curvature pinching condition [6].

Our main result, Theorem A, is a curvature pinching result for the Ricci flow
on AF manifolds for which there exist many nontrivial examples of AF manifolds
satisfying its curvature pinching condition. Our other results consist of auxiliary
Sobolev inequalities used to prove Theorem A as well as statements addressing
some questions in the special cases of conformally flat and rotationally symmetric
AF manifolds.

The remainder of this introduction has two parts. In the first part we state our
results. In the second part we discuss some earlier curvature pinching theorems
for the Ricci flow on compact manifolds in order to describe the motivation for
our results, and then conclude by outlining the plan of the proofs in the rest of the
paper.

1.1. Results

We now state the results of this paper. First we state our main theorem on curvature
pinching for AF manifolds, Theorem A. Then we state the uniform curvature-
weighted Sobolev inequalities, Theorems B and C, used in the proof of Theorem
A. Finally we state Corollary D and Theorem E, which are concerned with the
special cases of conformally flat and rotationally symmetric AF manifolds.

1.1.1. Main theorem

Below is the main theorem of this paper. We refer to Section 2 for the relevant
definitions in the statement below, in particular for the Ricci flow g.t/ and the
Sobolev constant Cg0

.

Theorem A. Let .M n; g0/ be an asymptotically flat manifold of order ⌧ > 0, with
n � 3. There exists a ı.n/ > 0 such that if:

✓Z
Mn

jRmg0
jn2 dVg0

◆ 2
n

< ı.n/
1

Cg0

; (1.1)

where Cg0
is the Sobolev constant of g0 given by Definition 2.3, then the Ricci flow

g.t/ with initial condition g.0/ D g0 exists for all times t 2 Œ0;1/ and converges
in C1

�⌧ 0.M n/ for any ⌧ 0 2 .0;min.⌧; n � 2// to the flat Rn. In particular, M n is
diffeomorphic to Rn.

This can be viewed as a noncompact analogue of integral curvature pinching results
for the Ricci flow on compact manifolds such as [11,16]. Note that we do not need
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to assume a priori that M n is diffeomorphic to Rn, in contrast to related stability
results for the Ricci flow on Euclidean space such as [25, 27]. In Section 1.2.2
we will see that the integral curvature pinching condition of Theorem A is satis-
fied by many nontrivial examples of AF manifolds, unlike the pointwise curvature
pinching condition on AF manifolds of Shi [29], as discussed earlier.

We now describe the difficulties we encounter in the two main steps of the
proof of Theorem A, which are: first, showing the long-time existence of the Ricci
flow; and second, showing the convergence of the flow to flat space once long-time
existence is known.

For the first step of long-time existence we seek to use the weak maximum
principle of Moser [23] to show that kRmg.t/kL1.Mn/ does not blow up along
the flow. Therefore, starting from the hypotheses of Theorem A, we first need to
control integral norms of Rm along the flow. The main difficulty is that in order
to do this we need control of the Sobolev constant Cg.t/ along the Ricci flow, even
though such control cannot be expected in general. To overcome this issue, we
study Perelman’s W-functional on AF manifolds and prove a curvature-weighted
Sobolev inequality that holds under the assumptions of Theorem A along the Ricci
flow (Theorem C), inspired by work on curvature-weighted Sobolev inequalities
along the Ricci flow on compact manifolds developed by Ye from the initial work
of Zhang [33, 34]. Despite the curvature weight, we show that this inequality is
enough for us to carry out the weak maximum principle argument.

For the second step of convergence of the flow to flat space, the main
difficulty is that we need to obtain the much stronger curvature decay estimate
kRmg.t/kL1.Mn/ D o.t�1/. To overcome this difficulty we first study the evolu-
tion of kRmg.t/kLq.Mn/ for a specific choice of q D n

2
n

n�2 , and we obtain a decay
estimate for this quantity using the monotonicity of kRmg.t/kLn

2 .Mn/
, which was

shown in the first step. Using this estimate, we can then rework the Moser iteration
procedure to find that the specific choice of exponent q gives us exactly the desired
L1 decay rate of o.t�1/ for Rm. To finish it suffices to adapt work of [21] to pass
from the decay estimate to convergence to flat space; Li assumes unlike us though
that Rg.t/ � 0, so we will show how this can be replaced by our assumptions in
Theorem A.

1.1.2. Curvature-weighted Sobolev inequalities

One of the main tools we use in proving Theorem A is a curvature-weighted
Sobolev inequality which we will also prove, stated below. It is an analogue of
a curvature-weighted Sobolev inequality proved for compact manifolds along the
Ricci flow by Ye [33], which was obtained using the monotonicity of Perelman’s
W-functional [26]. We state two versions of this inequality. In the first version we
assume that Rg0

� 0 but require no smallness of
R
Mn jRmg0

jn2 dVg0
.

Theorem B. Let .M n; g.t// be a Ricci flow on Œ0; T ç starting from an asymp-
totically flat manifold .M n; g0/, n � 3, of nonnegative scalar curvature. There
exists an A > 0 depending only on n and the Sobolev constant Cg0

such that the
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following weighted Sobolev inequality holds for all u 2 W 1;2.M n; g.t// on Œ0; T ç:

✓Z
Mn

juj 2n
n�2 dVg.t/

◆n�2
n

 A

✓Z
Mn

jrg.t/uj2 CRg.t/u
2 dVg.t/

◆
: (1.2)

Moreover, in any fixed dimension n, A depends linearly on Cg0
.

We will not use the result of Theorem B in any subsequent arguments in this paper,
but we include it because its proof is a simpler version of that of Theorem C and
we will refer to this in order to explain the latter proof. Theorem B is also related
to results in [20].

The second version of the curvature-weighted Sobolev inequality does not
require any pointwise assumptions on Rg0

but assumes instead that the quantityR
Mn jRmg0

jn2 dVg0
is small. This is the version we will use to prove Theorem A.

In fact it suffices to assume just that
R
Mn jRg0

jn2 dVg0
is small, but for our appli-

cations this distinction is not significant. Below, RC.x/ WD max.0; R.x// denotes
the positive part of the scalar curvature.

Theorem C. Let .M n; g.t// be a Ricci flow on Œ0; T ç starting from an asymptot-

ically flat manifold .M n; g0/, n � 3. If
⇣R

Mn jRmg0
jn2 dVg0

⌘ 2
n
< 2 1

Cg0
, then

there exists A > 0 depending only on n and the Sobolev constant Cg0
such that the

following weighted Sobolev inequality holds for all u 2 W 1;2.M n; g.t// on Œ0; T ç:

✓Z
Mn

juj 2n
n�2 dVg.t/

◆n�2
n

 A

✓Z
Mn

jrg.t/uj2 CRC
g.t/u

2 dVg.t/

◆
: (1.3)

Moreover, in any fixed dimension n, A depends linearly on Cg0
.

1.1.3. Conformally flat AF metrics

Returning to the statement of Theorem A, we have the following consequence for
asymptotically flat conformal deformations of the flat metric on Rn:

Corollary D. Let .Rn; g0/ be asymptotically flat of order ⌧ > 0, with n � 3 and
g0 D e2ujdxj2, where u 2 C1.Rn/. There exists a constantƒ.n/ > 0 such that if

✓Z
Rn

jRmg0
jn2 dVg0

◆ 2
n

< ƒ.n/; (1.4)

then the Ricci flow g.t/ with initial condition g.0/ D g0 exists for all times t 2
Œ0;1/ and converges in C1

�⌧ 0.Rn/ for any ⌧ 0 2 .0;min.⌧; n� 2// to the flat metric
on Rn.
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In particular the above statement holds for rotationally symmetric asymptotically
flat metrics on Rn, since these are conformal deformations of the flat metric. Such
metrics are exactly those studied by [25], and we will briefly discuss the following
connection between our scale-invariant L

n
2 curvature pinching condition and the

no minimal hyperspheres condition of [25] guaranteeing long-time existence and
convergence of the flow in the rotationally symmetric asymptotically flat setting,
which we have quoted in Theorem 6.1. It is easily obtained in even dimensions n
as a consequence of the Chern-Gauss-Bonnet formula for manifolds with boundary
[1], but we will see that it holds in any dimension n � 2.

Theorem E. For every n � 2, there exists a C.n/ > 0 such that if .Rn; g/ is a
rotationally symmetric metric with

R
Rn jRmg j

n
2 dVg < C.n/, then .Rn; g/ does

not contain any minimal hyperspheres.

Whether the special case of Corollary D in the rotationally symmetric setting is a
consequence of the work of [25] or not would depend on a comparison of the sizes
of the constants ƒ.n/ and C.n/, but we will not further pursue this question in this
paper.

1.2. Some previous results and motivation

From among the variety of curvature pinching results known on compact man-
ifolds, below we will look specifically at the integral curvature pinching results
of [11, 16] in more detail in order to describe how those results help motivate the
study in this paper. This will also lead us to examples of nontrivial AF manifolds
which satisfy the curvature pinching condition in Theorem A.

1.2.1. Integral curvature pinching on compact manifolds

On compact manifolds, the long-time existence and convergence of Ricci flow was
studied first under pointwise curvature pinching hypotheses, such as in [12, 18, 22,
24], which were later partially generalized to integral curvature pinching hypothe-
ses, including in [9, 11, 16, 32]. In what follows we want to discuss in particular
some statements of [11, 16]; YC.M n/ will denote the set of positive scalar curva-
ture Yamabe metrics of a closed manifoldM n with unit volume. A special case of
a result of Gursky’s showed the following:

Theorem 1.1. ([11]] There exists ✏ > 0 such that if g0 2 YC.S4/ satisfiesR
S4 jWg0

j2 dVg0
< ✏, then the normalized Ricci flow g.t/ with initial condition

g.0/ D g0 exists for all times t 2 Œ0;1/ and converges to the standard S4.

Later, Hebey–Vaugon showed the following result in the same spirit, but with less
restriction on the underlying manifold:

Theorem 1.2. ([16]) For n � 3 and q > n
2 , there exists ✏ D ✏.n; q/ > 0

such that if .M n; g0/ is a closed manifold with g0 2 YC.M n/ which satisfies
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⇣R
Mn

ˇ̌
Wg0

C 1
n�2Eg0

? g0
ˇ̌q
dVg0

⌘ 1
q
< ✏Rg0

, then the normalized Ricci flow
g.t/ with initial condition g.0/ D g0 exists for all times t 2 Œ0;1/ and converges
to a spherical space form.

Above, W denotes the Weyl tensor, E denotes the traceless Ricci tensor, and
? denotes the Kulkarni–Nomizu product of two symmetric .0; 2/-tensors, which
is a .0; 4/-tensor having the same symmetries as the Riemannian curvature ten-
sor, defined by .˛ ? ˇ/ijk` D ˛ikˇj` C ˛j`ˇik � ˛i`ˇjk � ˛jkˇi` [2, Def-
inition 1.110]. We will now point out how the integral curvature pinching hy-
pothesis in Theorem A can be seen as a natural analogue of the hypotheses of
Theorem 1.1 and 1.2. First note that by the Chern–Gauss–Bonnet theorem, the hy-
pothesis

R
S4 jWg0

j2 dVg0
< ✏ from Gursky’s theorem may be rewritten in a form

analogous to that of the hypothesis in the result of Hebey–Vaugon:

 Z
S4

ˇ̌
ˇ̌Wg0

C 1

2
Eg0

? g0

ˇ̌
ˇ̌2 dVg0

! 1
2

<e✏Rg0
; for somee✏ > 0: (1.5)

Furthermore, note that by the assumption g02YC.M n/we haveRg0
DY.M n; Œg0ç/,

which is the inverse of its conformally invariant Sobolev constant in the sense that
for all u 2 W 1;2.M n; g0/,

✓Z
Mn

juj 2n
n�2 dVg0

◆n�2
n

 1

Y.M n; Œg0ç/

✓Z
Mn

4
n�1
n�2 jruj

2 CRg0
u2 dVg0

◆
: (1.6)

Recall now the curvature decomposition Rm D WC 1
n�2E?gC R

2m.m�1/g?g. On
spherical space forms, the first two components of this decomposition vanish, while
the third does not (the scalar curvature is a positive constant). Thus, the results of
Gursky and Hebey–Vaugon state that if a compact manifold whose components of
curvature which vanish on spherical space forms (W andE) are small in an integral
sense relative the inverse of its conformally invariant Sobolev constant, then the
normalized Ricci flow starting from that manifold exists for all positive times and
converges to a spherical space form. For flat Euclidean space, all three components
of the curvature decomposition vanish. Thus Theorem A can be viewed as stating
in the spirit of [11, 16] (and also [9, Theorem 1.2]) that if an AF manifold whose
components of curvature which vanish on flat Euclidean space (all of them) are
small in an integral sense relative the inverse of its Sobolev constant, then the Ricci
flow starting from that manifold exists for all positive times and converges to flat
Euclidean space.

1.2.2. Stereographic projection and integral curvature pinching for AF manifolds

Wewill now see another way in which the curvature pinching results in the compact
setting quoted above, in particular the result of Gursky, Theorem 1.1, lead naturally
to the question of whether an integral curvature pinching hypothesis as in our main
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result, Theorem A, can guarantee long-time existence and convergence of the Ricci
flow on an AFmanifold to flat space. This will also result in many nonflat examples
of AF manifolds satisfying the hypotheses of Theorem A.

Consider metrics g0 2 YC.S4/ with
R
S4 jWg0

j2 dVg0
< ✏ satisfying the

hypotheses of Gursky’s theorem. Then, using the Green’s function of the confor-
mal Laplacian with respect to any p 2 S4 gives a conformal change of the initial
metric g0 on S4nfpg to an AF metric eg0 viewed on R4 with vanishing scalar cur-
vature. Therefore, by applying the Chern–Gauss–Bonnet formula on S4 and the
conformal invariance of the Yamabe constant, it can be seen that this AF metric’s
Sobolev constant (see Definition 2.3 for notation) is bounded from above by an ab-
solute constant if we assume ✏ < 1. Moreover,

R
R4 jRmfg0

j2 dVfg0
is small. To see

this, apply the Chern–Gauss–Bonnet formula for asymptotically locally Euclidean
spaces [30] to the AF setting:

1

4

Z
R4

jWfg0
j2 dVfg0

� 1

2

Z
R4

jEfg0
j2 dVfg0

C 1

24

Z
R4

R2fg0
dVfg0

D 0: (1.7)

Since Rfg0
⌘ 0, and

R
jW j2 dV is conformally invariant in dimension four, we see

that
R
R4 jEfg0

j2 dVfg0
< 1

2✏ and so indeed
R
R4 jRmfg0

j2 dVfg0
is small.

Gursky’s result tells us that on S4, the metric g0 evolves under the Ricci flow
to the round metric on the sphere, which stereographically projects to the flat R4.
We might ask instead whether the noncompact, generalized stereographic projec-
tion of .S4nfpg; g0/ would evolve under the Ricci flow to flat space; note that
for p fixed, our stereographically projected metric depends only on the conformal
class Œg0ç on S4 (up to constant scaling), which is different from the situation on
S4, where Gursky’s result picks out the Yamabe metric out of the many metrics
belonging to Œg0ç as a starting point for the Ricci flow. Since we observed above
that eg0 has bounded Sobolev constant with

R
R4 jRmfg0

j2 dVfg0
small, this setting

is indeed just a special four-dimensional case of the general dimension n setting
addressed by our main result, Theorem A.

1.2.3. Outline of the paper

In the rest of this paper we will present the proofs for our results stated in the
first part of the introduction. In Section 2 we will state some preliminary notions
and the known short-time existence and uniqueness results for the Ricci flow on
asymptotically flat manifolds. In Section 3 we will prove Theorem B using Perel-
man’s W-functional along with heat semigroup arguments originally adapted to
compact manifolds by Ye [33]; modifying this proof we will also obtain Theorem
C. In Section 4 we will prove Theorem A in dimensions n � 4; using Theo-
rem C we will obtain L

n
2 and higher Lq boundedness of jRmj for a particular

choice of q > n
2 , and then we will prove the long-time existence of the Ricci flow

g.t/ on Œ0;1/ by showing that jRmj is uniformly bounded along the flow using
Moser iteration. Then, using the long-time existence of the flow we conclude the
proof of Theorem A when n � 4 by proving the much stronger decay estimate
limt!1 supx2Mn t jRm.t/j D 0; at this point a straightforward adaptation of work
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of Li then implies that .M n; g.t// converges to .Rn; g.t// [21]. In Section 5 we
address a technical point regarding the proof of Theorem A in dimension n D 3 and
show how the arguments of the previous section can be modified to complete the
proof in this remaining case. We end with Section 6 in which we show how Corol-
lary D follows from Theorem A and further discuss it in the context of rotationally
symmetric metrics by proving Theorem E.

Regarding notation, M n and M will refer to the same manifold; the super-
script n just emphasizes the dimension of n. We will often use C0, R0 instead of
Cg0

; Rg0
and so on to denote quantities associated with the metric g0 D g.0/ along

a Ricci flow, as well as Ct , Rt for quantities associated with g.t/ in a similar way.
Norms such as jRmj along the Ricci flow are computed with respect to the same
metric at time t from which Rm arises, unless otherwise indicated, and we adopt
a similar convention when denoting function spaces such as W 1;2.M/. We will
always be integrating over the entirety of the manifold under discussion, so we will
no longer use subscripts to specify this unless necessary. Constants C1, C2, and so
on which appear below, primarily in Section 4, are strictly positive and may change
in size between lines but will not depend on quantities involved in the assumptions
of Theorem A with the exception of the dimension n (unless otherwise indicated).
Dependence on other constants that may appear in computations will be denoted
by C1.˛/ for dependence on ˛, for example.

ACKNOWLEDGEMENTS. I thank my advisor, Sun-Yung Alice Chang, for many
helpful comments as well as her constant support and encouragement. I further
thank her and Paul Yang for their support and many helpful discussions. Addition-
ally I am grateful to Eric Woolgar for several informative correspondences, and to
Hong Huang for pointing out the references [17, 20]. Finally, I thank the anony-
mous referees whose suggestions helped to improve the presentation of this paper.

2. Preliminaries

2.1. Definitions

We now introduce some notation and definitions that we will need later. First we
state the definition we will use for an asymptotically flat manifold.

Definition 2.1. We call a smooth Riemannian manifold .M n; g/ asymptotically
flat of order ⌧ > 0 if for some compact set K ⇢ M n, there exists an R > 0 and a
diffeomorphism ˆ WM nnK ! RnnBR.0/ such that

gij .x/ D ıij CO.jxj�⌧ / and @˛gij .x/ D O.jxj�.⌧Cj˛j//; (2.1)

for partial derivatives @˛ of any order, as jxj ! 1 in Rn. We call ˆ the asymptot-
ically flat coordinate system.
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We will not mention the order of an asymptotically flat manifold unless it is
specifically needed. Note however that we always have ⌧ > 0 in our discussion.
Also note that by (2.1) we have for any asymptotically flat .M; g/ of order ⌧ > 0
that

R
jRmjp dVg <1 for all p � n

2 , and in fact for all p >
n

2C⌧ . Next we define
the notion of convergence obtained in Theorem A.

Definition 2.2. Let .M n; g/ be an asymptotically flat manifold of order ⌧ . For any
ˇ 2 R and nonnegative integer k, the space C k

ˇ .M/ is given by the C k functions
onM for which the norm

kukCk
ˇ
D

kX
iD0

sup
M

r�ˇCi jriuj <1; (2.2)

where r 2 C1.M/ is a smooth positive function with r D jxj on M nnK, in the
notation of Definition 2.1. We say that we have convergence in C1

ˇ if we have
convergence in C k

ˇ for all k � 0.

Now we define our convention of notation for the Sobolev constant Cg asso-
ciated to an asymptotically flat manifold .M n; g/.

Definition 2.3. If .M n; g/ is an asymptotically flat manifold, then there exists a
smallest constant Cg > 0 such that for every u 2 W 1;2.M; g/, the following
Sobolev inequality holds:

✓Z
juj 2n

n�2 dVg

◆n�2
n

 Cg

Z
jruj2 dVg : (2.3)

We call Cg the Sobolev constant of the metric g.

The constant Cg > 0 above exists because any asymptotically flat mani-
fold satisfies an isoperimetric inequality, and this implies the validity of the Eu-
clidean Sobolev-type inequality (2.3). We may also see that (2.3) holds in the
following way: [5, Proposition 2.5] implies that (2.3) is valid if it holds for all
u 2 C1

0 .MnK/, where K ⇢ M is some compact set, and the validity of this
second inequality can be easily seen using the asymptotically flat coordinate sys-
tem, since .ˆ�1/⇤g is uniformly equivalent to jdxj2 on the set ˆ�1.RnnBR.0//,
for R > 0 sufficiently large. It is well known that Cn;e  Cg , where Cn;e is the
Sobolev constant for the flat metric on Rn (see for instance [15, Proposition 4.2]).

2.2. Short-time existence of the Ricci flow for AF manifolds

The Ricci flow evolves metrics g.t/ on a manifold M n by the equation @tg.t/ D
�2Ricg.t/. Short time existence, uniqueness, and blowup alternative results for the
Ricci flow on compact manifolds were proved by Hamilton [12, 13]. In the com-
plete noncompact setting, Shi proved the short-time existence of the Ricci flow for
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initial metrics of bounded curvature [28], and later Chen–Zhu show the uniqueness
of Ricci flows of bounded curvature with the same initial data [6]. These results
have been adapted to the asymptotically flat setting, where the asymptotically flat
condition has been shown to be preserved along the Ricci flow by [8], with later
proofs also in [21, 25]. This is summarized in the following short-time existence
and uniqueness statement, which describes exactly those Ricci flows which we
consider in this paper.

Theorem 2.4. ([8,21,25]) Let .M n; g0/ be an asymptotically flat manifold of order
⌧ > 0. There exists a unique Ricci flow g.t/ with initial condition g.0/ D g0 on
a maximal time interval 0  t < TM  1 such that g.t/ remains asymptotically
flat of the same order ⌧ > 0 with the same asymptotically flat coordinate system,
and if TM <1 then

lim sup
t!TM

sup
x2M

jRmj D 1: (2.4)

In particular, for any T 2 Œ0; TM /, it holds that

sup
t2Œ0;T ç
x2M

jRmj <1; (2.5)

and the metrics g.t/ are equivalent for all t 2 Œ0; T ç. More precisely

e�2KT g0  g.t/  e2KT g0; (2.6)

where K D supt2Œ0;T ç
x2M

jRm.t; x/jg.t;x/ <1.

To conclude this section we point out some uniform estimates that the Ricci flow
of Proposition 2.4 satisfies on closed intervals Œ0; T ç on which it exists.

Theorem 2.5. ([21, 28]) Let .M n; g0/ be an asymptotically flat manifold of order
⌧ > 0. Suppose that the Ricci flow as in Proposition 2.4 exists on the interval
Œ0; T ç. Then for all k D 0; 1; 2; : : :, there exist constants Ck > 0 depending on T
such that on Œ0; T ç ⇥M ,

jrkRm.t; x/j  Ckr
�2�k�⌧ : (2.7)

These estimates will be important in allowing us to consider the evolution of cur-
vature integrals over .M n; g.t// when the flow exists, primarily in the arguments
of Section 4.

3. Uniform weighted Sobolev inequalities along the flow

In this section we will prove the curvature-weighted Sobolev inequality of Theo-
rem B, and then conclude by showing how to adapt the proof to prove the related
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inequality of Theorem C. The general idea comes from the method of Ye [33],
who obtains some uniform curvature-weighted Sobolev inequalities in the compact
setting along the Ricci flow. In his work, he first derives a log Sobolev inequal-
ity at t D 0, applies the well-known monotonicity of Perelman’s W-functional in
the compact case to obtain a curvature-weighted log Sobolev inequality along the
Ricci flow, and then adapts heat semigroup arguments of Davies [10] to the setting
of compact manifolds to conclude a uniform curvature-weighted Sobolev inequal-
ity along the flow (under suitable assumptions on the initial compact manifold).

We will follow the same outline, under the hypotheses of Theorems B or C.
First, simple estimates give a log Sobolev inequality for g.0/ as a consequence of
the Sobolev inequality for g.0/. Second, we translate this log Sobolev inequality
at t D 0 into a log Sobolev inequality at later times t using the monotonicity
of Perelman’s W-functional, but we need to justify the monotonicity of the W-
functional in our particular noncompact asymptotically flat setting. Moreover, the
Sobolev and log Sobolev inequalities we work with in the noncompact case are
different from those that Ye considers in the compact case. To conclude (1.2) we
apply semigroup arguments just as [10, 33] but on an exhaustion of bounded sets
BN .0/ covering M n as N ! 1 to pass from the log Sobolev to the Sobolev
inequality, referring to those works for details.

3.1. Log Sobolev inequalities and the entropy functional

3.1.1. Log Sobolev inequality at t D 0

The first fact we will need is that a log Sobolev inequality holds for any asymptot-
ically flat manifold .M n; g/:

Lemma 3.1. Let .M n; g/ be an asymptotically flat manifold with Sobolev constant
Cg (recall Definition 2.3). Then the following log Sobolev inequality holds for all
u 2 W 1;2.M; g/ satisfying

R
u2 dVg D 1:

Z
u2 logu2 dVg 4⌧

Z
jruj2 dVg � n

2
log ⌧ C n

2

⇣
logCg C log

n

8
� 1

⌘
: (3.1)

Proof. We apply Jensen’s inequality to (2.3), obtaining

n � 2
n

Z
u2 log juj 4

n�2 dVg  logCg C log
Z

jruj2 dVg :

The conclusion follows after we apply to the second term on the right the elemen-
tary inequality (see [33, Lemma 3.2] for a short proof),

logA  2�A � 1 � log 2�; for any A > 0; � > 0:
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3.1.2. Perelman’sW-functional and monotonicity along the flow

Next we will establish the monotonicity of Perelman’sW-functional in our asymp-
totically flat setting. Such a result was stated in [21] for complete noncompact
manifolds, but with necessary conditions on such manifolds not explicitly stated.
After a preprint of this paper appeared online, Hong Huang also brought to our
attention his recent result which has conclusions similar to those of Lemmas 3.2
and 3.3 [17, Proposition 4.1]. Recall that the W-functional [26] is the following
quantity on a Riemannian manifold .M; g/:

Z ⇥
⌧.jrf j2 CR/C f � n

⇤ e�f

.4⇡⌧/
n
2

dVg ; (3.2)

given ⌧ > 0 and f 2 C1.M n/ satisfying

Z
e�f

.4⇡⌧/
n
2

dVg D 1:

Making the change of variable u D e
� f

2

.4⇡⌧/
n
4
, we write

W.g; u; ⌧/ D
Z ⇥

⌧.4jruj2 CRu2/ � u2 logu2
⇤
dVg � n � n

2
log 4⇡⌧; (3.3)

where
R
u2dVg D 1. We also define

�.g; ⌧/ D inf
u2W 1;2R
u2 dVgD1

W.g; u; ⌧/: (3.4)

Note for asymptotically flat manifolds that �.g; ⌧/ is bounded below for any fixed
⌧ > 0 by (3.1), since we have Lemma 3.1, and we can bound the additional term
involving scalar curvature in the W-functional from below by

R
⌧Ru2 dVg �

⌧ infM R. Therefore �.g; ⌧/ is well defined in our setting. Furthermore in the def-
inition of �.g; ⌧/ it suffices to consider u 2 C1

0 .M/, which is dense in W 1;2.M/
due to a result of Aubin (see for instance [14, Theorem 3.1]). Alternatively we may
also consider positive functions u 2 C1.M/ with quadratic exponential decay
whose derivatives also have quadratic exponential decay,

ju.x/j  C0e
�B0dg.0;x/

2
;

jrpu.x/j  Cpe
�Bpdg.0;x/

2
; p D 1; 2; : : : :

We denote such functions below by CC.M/.
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Lemma 3.2. Let g.t/ be a solution of the Ricci flow defined on Œ0; T ç starting from
an asymptotically flat manifold .M n; g0/. Let L > T , and consider ⌧.t/, v.t; x/
satisfying

(
⌧.t/ D L � t t 2 Œ0; T ç
@v
@t D �Åv CRv .t; x/ 2 Œ0; T ç ⇥M; (3.5)

where v.T / > 0 is a given terminal value in CC.M/ satisfying
R
v.T / dVt D 1.

Let u.t; x/ D
p
v.t; x/. Then Perelman’s monotonicity formula holds for W D

W.g.t/; u.t/; ⌧.t// on Œ0; T ç,

dW
dt

D 2⌧

Z ˇ̌
ˇ̌Ric � r2 log v � 1

2⌧
g

ˇ̌
ˇ̌2 v dVt � 0: (3.6)

Proof. The proof proceeds in the same way as the proof of [35, Corollary 4.1].
There, (3.6) was proved when the terminal value v.T / was a specific function
whose existence was shown in an earlier part of the paper; however, the comparison
arguments and heat kernel estimates used in [35] to prove the formula only used the
fact that v.T / and jrv.T /j have quadratic exponential decay with respect to jxj,
along with an assumption of bounded geometry — that is, Rm and its derivatives
bounded as well as a lower bound for metric balls of radius one.

In our case, v.T / and jrv.T /j do indeed have quadratic exponential decay
with respect to jxj by assumption. For bounded curvature, observe that by the
short-time existence results of Proposition 2.4, we have that jRmj is uniformly
bounded on Œ0; T ç and the metrics g.t/ are also equivalent on this interval, hence

sup
t2Œ0;T ç
x2M

jRmj  C;

inf
t2Œ0;T ç
x2M

Vol.Bx.1// � ˇ > 0;

for some constantsC , ˇ > 0. The boundedness of all higher derivatives of Rm then
follows by applying a noncompact maximum principle to the parabolic inequality
satisfied by jRmj2:

@t jRmj2  ÅjRmj2 C 16jRmj3: (3.7)

Details of such an argument may be found for instance in [21]. Therefore the
comparison arguments and heat kernel estimates used in [35] apply in our setting
as well to conclude the proof.

As a consequence we obtain monotonicity of the quantity �.g; ⌧/ along the
Ricci flow:
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Lemma 3.3. Let g.t/ be a solution of the Ricci flow defined on Œ0; T ç starting from
an asymptotically flat manifold .M n; g0/. Let L > T , and set ⌧ D L � t . Then
�.g.t/; ⌧.t// is nondecreasing in t .

Proof. We have earlier remarked that in the definition of � as an infimum it suffices
to consider functions u 2 CC.M/. Therefore, if there existed 0  t1 < t2  T such
that �.g.t1/; ⌧.t1// > �.g.t2/; ⌧.t2//, then applying the monotonicity formula of
Lemma 3.2 by specifying terminal values vk.t2/ 2 CC.M/, where fvkg are such

that W.g.t2/;
p
vk.t2/; ⌧.t2//

k!1����! �.g.t2/; ⌧.t2//, would give a contradiction
when k is sufficiently large.

3.2. Log Sobolev inequalities along the flow

3.2.1. Proof of Theorem B

Applying the above results, we are now able to prove Theorem B.

Proof of Theorem B. By Lemma 3.1 we have the log Sobolev inequality (3.1) for
the metric g0 at time t D 0, for all u 2 W 1;2.M/ with

R
u2 dV0 D 1. Using

the monotonicity ofW we will now translate this into a Sobolev inequality at time
t 2 Œ0; T ç. We consider the functionalW⇤ as in [33],

W⇤.g; u; ⌧/ D
Z

⌧.4jruj2 CRu2/ � u2 logu2 dVg

D W.g; u; ⌧/C n

2
log ⌧ C n

2
log 4⇡ C n;

(3.8)

and the associated quantity

�⇤.g; ⌧/ D inf
u2W 1;2R
u2 dVgD1

W⇤.g; u; ⌧/: (3.9)

Notice that W⇤ is equal to W up to an additive constant plus a term depending on
⌧ . Then, arguing as in the proof of Lemma 3.3 and accounting for this extra term,
we find that for any � > 0 and t 2 Œ0; T ç,

�⇤.g.t/; �/ � �⇤.g.0/; t C �/C n

2
log

�

t C �
: (3.10)

Now, since R � 0 at time t D 0, we can add in a scalar curvature-weighted term
in (3.1) to see that

�⇤.g.0/; t C �/� n

2
log.t C �/ � n

2

⇣
logC0 C log

n

8
� 1

⌘
; (3.11)

while by definition,

�⇤.g.t/; �/ 
Z

�.4jruj2 CRu2/ � u2 logu2 dVt ; (3.12)
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for any u 2 W 1;2.M/ satisfying
R
u2 dVt D 1. The following log Sobolev in-

equality therefore holds at time t for any t 2 Œ0; T ç and � > 0:
Z
u2lnu2 dVt �

Z
jruj2CR

4
u2 dVt �

n

2
log �C n

2

⇣
logC0Clog

n

8
� 1

⌘
; (3.13)

for any u 2 W 1;2.M/ with
R
u2 dVt D 1. In particular, such an inequality holds

on W 1;2
0 .BN .0// ⇢ W 1;2.M/ if

R
u2 dVt D 1 for any N > 0. The arguments

of [33, Appendix 3], then adapt to show that there exists an A > 0 depending only
on C0 and n such that for any u 2 W 1;2

0 .BN .0// we have the Sobolev inequality

✓Z
juj 2n

n�2 dVt

◆n�2
n

 A

✓Z
jruj2 C R

4
u2 dVt

◆
: (3.14)

In particular tracing the constant dependence in [33, Theorems 5.4–5.5] we find
that A depends linearly on C0 for fixed n. Taking N ! 1, we may therefore
obtain (1.2).

3.2.2. Proof of Theorem C

We conclude by showing how the proof of Theorem B can be modified to prove
Theorem C.

Proof of Theorem C. Proceeding just as in the proof of Theorem B, we again arrive
at the inequality (3.10) without having used the assumption R0 � 0. In the next
step (3.11) where R0 � 0 was used, we instead consider

4⌧

Z
jruj2 dV0 C 2⌧

Z
Ru2 dV0 � n

2
log ⌧ C n

2

⇣
logC0 C log

n

8
� 1

⌘

�
Z
u2 logu2 dV0 C 2⌧

Z
Ru2 dV0:

(3.15)

Then we observe that

2⌧

Z
Ru2 dV0 � �2⌧

✓Z
jRjn2 dV0

◆ 2
n

✓Z
juj 2n

n�2 dV0

◆n�2
n

� �2⌧C0

✓Z
jRjn2 dV0

◆ 2
n
Z

jruj2 dV0:
(3.16)

Hence if
⇣R
R

n
2 dV0

⌘ 2
n
< 2 1

C0
then we can absorb it on the left of (3.15) to obtain

8⌧

Z
jruj2 dV0C2⌧

Z
Ru2 dV0 � n

2
log 2⌧C n

2

⇣
logC0 C log

n

8
� 1

⌘

�
Z
u2 logu2 dV0 � n

2
log 2:

(3.17)
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As a result we may continue as in the proof of Theorem B to obtain (3.13) with a
different constant in the last term:
Z
u2 lnu2 dVt �

Z
jruj2CR

4
u2 dVt �

n

2
log �C n

2

⇣
logC0Clog

n

4
�1

⌘
: (3.18)

We conclude by proceeding through the arguments of [33, Appendix 3] as adapted
to our case by studying the semigroup associated with the positive operator
�Å C RC on BN .0/, instead of �Å C R in the case when R � 0, and taking
N ! 1. As at the conclusion of the proof of Theorem B, we find that A depends
linearly on C0 for fixed n.

4. Long-time existence and convergence of the flow, nnn ��� 444

We will now prove Theorem A in dimensions n � 4; as mentioned in the intro-
duction, in dimension n D 3 there are some additional technical considerations
that we will address later in Section 5. Using our main tool, Theorem C, which
was proved in the previous section, in this section we first show monotonicity ofR
jRmjn2 dVt and

R
jRmjn2 n

n�2 dVt before proceeding to prove a pointwise bound
on jRmj, which implies the long time existence of the Ricci flow by the blowup
alternative of Proposition 2.4. Once we have the long-time existence of the flow,
we will then complete the proof of Theorem A for n � 4.

4.1. Long-time existence

We begin by stating some inequalities for the evolution of jRmj2 under the Ricci
flow, which follow straightforwardly from the well-known pointwise inequality
(4.1), using the Kato inequality jrjT jj  jrT j, for any tensor T . We have already
mentioned a weaker form of (4.1) in the proof of Lemma 3.2.

Lemma 4.1. Let .M n; g0/ be a smooth Riemannian manifold, and let g.t/ be a
solution of the Ricci flow with initial condition g0. Then we have

@t jRmj2  ÅjRmj2 � 2jrRmj2 C 16jRmj3: (4.1)

Suppose also that .M n; g0/ is an asymptotically flat manifold. Then for ˛ �
max.1; n4 /,

d

dt

Z
jRmj2˛ dVt  �C1.˛/

Z
jrjRmj˛j2 dVt C C2.˛/

Z
jRmj2˛C1 dVt ; (4.2)

for some constants C1.˛/; C2.˛/ > 0.

Proof. As mentioned above, (4.1) may be found in many places, for instance in [7].
Then (4.2) is a consequence of (4.1) and the curvature decay from our assumption
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of asymptotic flatness; using that @t dVt D �R dVt , we obtain

d

dt

Z
jRmj2˛ dVt  ˛

Z
jRmj2˛�2

�
ÅjRmj2 � 2jrRmj2 C 16jRmj3

�

�
Z
RjRmj2˛ dVt :

(4.3)

Indeed, since by Proposition 2.5 Rm and its derivatives have controlled rates of
asymptotic decay on closed intervals where the Ricci flow g.t/ exists, the domi-
nated convergence theorem allows us to compute d

dt

R
jRmj2˛ dVt from the corre-

sponding pointwise formula. For the term involving ÅjRmj2 we may integrate by
parts on BR.x/ for a fixed x 2M to see that

Z
BR.x/

jRmj2˛�2ÅjRmj2 dVt

D �
Z
BR.x/

rjRmj2˛�2rjRmj2 dVt C
Z
@BR.x/

jRmj2˛�2@⌫ jRmj2 dSt (4.4)

D �2.2˛ � 2/
Z
BR.x/

jRmj2˛�2jrjRmjj2 dVt C
Z
@BR.x/

jRmj2˛�2@⌫ jRmj2 dSt :

We take R ! 1 to study this integral, which is the first term on the right in
(4.3); again by Proposition 2.5 we see that the boundary integral tends to zero as
R ! 1. Substituting our result back into (4.3), after straightforward pointwise
manipulations of the remaining terms we obtain (4.2).

4.1.1. Monotonicity of kRmk
L

n
2
and a uniform Sobolev inequality

Now we show that
R
jRmjn2 dVt is nonincreasing along the Ricci flow under the

assumptions of Theorem A if it is initially sufficiently small.

Lemma 4.2. Let .M n; g0/, n � 4, be an asymptotically flat manifold. There exists

a ı1.n/ > 0 such that if
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

, then
R
jRmjn2 dVt is

nonincreasing along the Ricci flow when it exists. In particular
R
jRmjn2 dVt <

ı1.n/
n
2 along the flow.

Proof. By Lemma 4.1 we have

d

dt

Z
jRmjn2 dVt

 �C1

Z
jrjRmjn4 j2 dVt C C2

Z
jRmjn2C1 dVt (4.5)

 �C1

Z
jrjRmjn4 j2 dVt C C2

✓Z
jRmjn2 dVt

◆ 2
n

✓Z
jRmjn4 2n

n�2 dVt

◆n�2
n

:
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Now we restrict ı1.n/ < 2 small enough so that Theorem C holds. Then we find

�
Z

jrjRmjn4 j2 dVt  � 1
A

✓Z
jRmjn4 2n

n�2 dVt

◆n�2
n

C
Z
RCjRmjn2 dVt

(4.6)

 � 1
A

✓Z
jRmjn4 2n

n�2 dVt

◆n�2
n

C C3

Z
jRmjn2C1 dVt :

Therefore, continuing from (4.6), we find that

d

dt

Z
jRmjn2 dVt

 �C1

A

✓Z
jRmjn4 2n

n�2 dVt

◆n�2
n

(4.7)

C C2

✓Z
jRmjn2 dVt

◆ 2
n

✓Z
jRmjn4 2n

n�2 dVt

◆n�2
n

:

Thus, the right-hand side will be nonpositive if

ı1.n/
1

Cg0

 C1

C2

1

A
: (4.8)

Since A depends linearly on Cg0
we may indeed find a ı1.n/ > 0 small enough,

depending only on n so that (4.8) holds.

This shows that d
dt

R
jRmjn2 dVt  0whenever

⇣R
jRmjn2 dVt

⌘ 2
n
< ı1.n/

1
Cg0

,

and since at time t D 0 we have
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

by assumption, it

follows that
R
jRmjn2 dVt is nonincreasing along the Ricci flow.

As a consequence we can obtain under the same assumptions a uniform, un-
weighted Sobolev inequality along the Ricci flow we consider in Theorem A if we
further restrict ı1.n/ to be sufficiently small.

Corollary 4.3. Let .M n; g0/, n � 4, be an asymptotically flat manifold. There

exists a ı1.n/ > 0 such that if
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

then the following
uniform Sobolev inequality holds along the Ricci flow g.t/ whenever it exists, for
u 2 W 1;2.M/: ✓Z

juj 2n
n�2 dVt

◆n�2
n

 A0

Z
jruj2 dVt (4.9)

Moreover, in any fixed dimension n, A0 depends linearly on Cg0
.
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Proof. First take ı1.n/ > 0 sufficiently small so that the conclusion of Lemma 4.2
holds. Then consider the scalar curvature-weighted term in the weighted Sobolev
inequality (1.2) of Theorem C. If we further shrink ı1.n/ we can obtain from the
linear dependence of A on Cg0

that

A

Z
RCu2 dVt  A

✓Z
jRjn2 dVt

◆ 2
n

✓Z
juj 2n

n�2 dVt

◆n�2
n

 1

2

✓Z
juj 2n

n�2 dVt

◆n�2
n

:

(4.10)

Absorbing this term back into the left hand side of (1.2), we obtain the
conclusion.

4.1.2. Monotonicity of kRmk
L

n
2

n
n�2

Having now established a uniform Sobolev inequality along the Ricci flow of the
metric considered in Theorem A, we proceed to estimate higher order integral cur-
vature norms. First we will see that the L

n
2

n
n�2 norm of Rm is nondecreasing

following the same argument used to prove Lemma 4.2. Note as in Lemma 4.2
that the exponent n

2
n

n�2 D n
4

2n
n�2 is exactly the one which appears in Corollary 4.3

when applied to u D jRmjn4 . Unlike in Lemma 4.2 however, the next lemma will
not give control of the explicit size of the L

n
2

n
n�2 norm of Rm, since we did not

make any assumption on its size at the initial time t D 0.
For the purpose of proving the boundedness of jRmj and the long-time exis-

tence result of Proposition 4.5, our choice of estimating this particular norm is not
particularly special; we could have obtained the same kind of nondecreasing esti-
mate for any fixed Lp with p > n

2 , and such a control would also suffice. Note
however that in order to obtain the monotone nondecreasing of

R
jRmjp dVt , the

smallness of ı1.n/ in the restriction
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

depends on the
choice of p; thus we cannot directly obtain L1 control of jRmj by this kind of
estimate and require an extra step involving Moser iteration.

In the next section however, for the purpose of proving the long-time curvature
decay and convergence of the flow in Section 4.2, we will see that our choice of
estimating the particular Lq norm for q D n

2
n

n�2 of jRmj becomes important.

Lemma 4.4. Let .M n; g0/, n � 4, be an asymptotically flat manifold. There exists

a ı1.n/ > 0 such that if
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

then
R
jRmjn2 n

n�2 dVt is
nonincreasing along the Ricci flow whenever it exists.
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Proof. Again we compute starting from the pointwise formulas of Lemma 4.1:

d

dt

Z
jRmjn2 n

n�2 dVt �C1

Z
jrjRmjn4 n

n�2 j2 dVtCC2

Z
jRmjn2 n

n�2C1dVt

 �C1

Z
jrjRmjn4 n

n�2 j2dVt (4.11)

C C2

✓Z
jRmjn2 dVt

◆2
n

✓Z
jRmjn4 n

n�2
2n
n�2 dVt

◆n�2
n

:

We may now apply Corollary 4.3 with u D jRmjn4 n
n�2 and conclude by taking

ı1.n/ > 0 sufficiently small so that d
dt

R
jRmjn2 n

n�2 dVt  0, via an argument
similar to that in the proof of Lemma 4.2. Alternatively we could also use Theorem
C to argue instead of Corollary 4.3 since we can deal with the curvature weight by
the assumption that

R
jRmjn2 dVt is small.

4.1.3. Bounds on kRmkL1 and long-time existence

We now come to the L1 estimate of Rm along the Ricci flow of Theorem A. The
proof is an adaptation of D. Yang’s argument in [31] from the compact setting to
our asymptotically flat setting. Although arguments following this general idea can
be found in a variety of sources, we will include details below because our Sobolev
inequality from Corollary 4.3 is slightly different from the one in [31] and also
because in Section 4.2 we will need to refer to the proof in order to show how it
can be used to prove the curvature decay supx2M t jRm.t; x/j t!1���! 0.

Proposition 4.5. Let .M n; g0/, n � 4, be an asymptotically flat manifold. Let
ı1.n/ > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma 4.4 hold. Then whenever the Ricci flow exists we have the following
estimate for jRmj:

jRmj2  max
✓
C1.g0/t

� 2.n�2/
n ; C2.g0/t

4.n�2/

n2

◆
; (4.12)

for constants C1.g0/ and C2.g0/ depending only on the initial metric g0. In partic-
ular, they depend only on the initial Sobolev constant C0 and the initial curvature
quantity

R
jRmjn2 n

n�2 dV0.

Proof. For convenience of notation we let f .t; x/ D jRmj2. Again, the decay
estimates for curvature resulting from Proposition 2.4 will allow us to integrate
by parts and differentiate in the integral below using the pointwise formulas of
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Lemma 4.1. For p � n
4 and any fixed q > n

2 , we have

1

p

d

dt

Z
f p dVt 

Z
f p�1Åf C 16jRmjf p dVt (4.13)

 �4.p � 1/
p2

Z
jr.f p

2 /j2 dVt

C 16

✓Z
jRmjq dVt

◆ 1
q

✓
ı� n

2q

Z
f p dVt

◆1� n
2q

✓
ı

⇣
1� n

2q

⌘
n

n�2

Z
f

p
2

2n
n�2 dVt

◆n�2
n

n
2q

;

where the last line holds for any ı > 0. Let ˇ > 0 be a constant such that we
have the bound 16kRmkLq  ˇ along our Ricci flow. We set q D n

2
n

n�2 so that by
Lemma 4.4 there indeed exists such a ˇ. Continuing, we obtain,

1

p

d

dt

Z
f p dVt (4.14)

 �4.p � 1/
p2

Z
jr.f p

2 /j2Cˇı� n
2q

Z
f p dVtCˇı1� n

2q

✓Z
f

p
2

2n
n�2 dVt

◆n�2
n

:

We apply the Sobolev inequality of Corollary 4.3 and set ı D
⇣

3p�4
ˇA0p2

⌘ 2q
2q�n to

obtain

d

dt

Z
f p dVt C

Z
jr.f p

2 /j2 dVt  Cp;q;ˇ

Z
f p dVt ; (4.15)

where Cp;q;ˇ D pˇ
⇣
ˇA0p

2

3p�4

⌘ n
2q�n . Unlike other constants such as C1, C2 that

we have considered earlier, Cp;q;ˇ will always denote this particular value given
p; q; ˇ. Now let T > 0 be such that the Ricci flow is defined on Œ0; T ç and define,
for 0 < ⌧ < ⌧ 0 < T , the function  W Œ0; T ç ! Œ0; 1ç,

 .t/ D

8̂
<
:̂
0 0  t  ⌧
t�⌧
⌧ 0�⌧ ⌧  t  ⌧ 0

1 ⌧ 0  t  T:

(4.16)

Then we multiply (4.15) by  and find that

d

dt

✓
 

Z
f p dVt

◆
C 

Z
jr.f p

2 /j2 dVt 
�
Cp;q;ˇ C  0� Z f p dVt ; (4.17)
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so that integrating, for anyet 2 Œ⌧ 0; T ç we have

Z
f p dVet C

Z et

⌧ 0

Z
jr.f p

2 /j2 dVt dt 
✓
Cp;q;ˇ C 1

⌧ 0 � ⌧

◆ Z T

⌧

Z
f p dVt dt:

(4.18)

We define for p � n
4 and ⌧ 2 Œ0; T ç,

H.p; ⌧/ D
Z T

⌧

Z
f p dVt dt; (4.19)

and let ⌫ D 1C 2
n . We now claim that for p � n

4 and 0  ⌧ < ⌧ 0  T ,

H.⌫p; ⌧ 0/  A0

✓
Cp;q;ˇ C 1

⌧ 0 � ⌧

◆⌫

H.p; ⌧/⌫ : (4.20)

Indeed,

Z T

⌧ 0

Z
f ⌫pdVt dt

Z T

⌧ 0

✓Z
f p dVt

◆2
n

✓Z
f

p
2

2n
n�2 dVt

◆n�2
n

dt

 A0

 
sup

⌧ 0tT

Z
f p dVt

!2
n Z T

⌧ 0

Z
jr.f p

2 /j2 dVt dt;
(4.21)

so that (4.18) implies the claim. Now we iterate (4.20) to obtain L1 control. Let
p0 D q

2 D n
4

n
n�2 , and define

⌘ D ⌫
2q

2q�n ; pk D ⌫kp0; ⌧k D .1 � ⌘�k/T; ˆk D H.pk; ⌧k/
1

pk : (4.22)

We apply (4.20) to see that

ˆkC1 D H.⌫pk; ⌧kC1/
1

⌫pk

 A
1

⌫pk
0

✓
Cpk ;q;ˇ C 1

⌧kC1 � ⌧k

◆ 1
pk

H.pk; ⌧k/
1

pk

 A
1

⌫pk
0

 
A

n
2q�n

0 .ˇp0/
2q

2q�n ⌘k C C.n; q/
⌘kC1

T

! 1
pk

H.pk; ⌧k/
1

pk

 A
1

⌫pk
0

✓
A

n
2q�n

0 .ˇp0/
2q

2q�n C C.n; q/
⌘

T

◆ 1
pk

⌘
k
pk ˆk :

(4.23)
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Now since
P1

kD0
1
pk

D 2.n2�4/
n2 < 1 and

P1
kD0

k
pk

< 1, we can take k ! 1
to obtain

sup
x2M

jRm.T; x/j2  max.C1.A0; ˇ/T
� 2.n2�4/

n2 ; C2.A0; ˇ//ˆ0

 max.C1.A0; ˇ/T
� 2.n2�4/

n2 ; C2.A0; ˇ//ˇ
2T

4.n�2/

n2 ;

(4.24)

which gives us the desired conclusion, since the choice of T for which the Ricci
flow exists on Œ0; T ç was arbitrary.

Corollary 4.6. Let .M n; g0/, n � 4, be an asymptotically flat manifold. Let
ı1.n/ > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma 4.4 hold. Then the Ricci flow g.t/ exists for all t 2 Œ0;1/ and there
exists a K > 0 such that

sup
t2Œ0;1/
x2M

jRmj  K <1: (4.25)

Proof. The bounds we have obtained in Proposition 4.5 immediately imply that
the flow exists for all times t 2 Œ0;1/, by the blowup alternative in the short-time
existence statement of Proposition 2.4.

For the uniform bound on jRmj observe first that by the estimates in Propo-
sition 4.5 jRmj is bounded for t 2 Œ1; 2ç. Moreover the estimates on jRmj in the
short-time existence results of Proposition 2.4 tells us that jRmj is bounded on
Œ0; 1ç. Next, by Proposition 4.3 we have a uniform upper bound on the Sobolev
constant Cg.t/ along the flow, and by Proposition 4.4,

R
jRmjn2 n

n�2 dVt is nonin-
creasing along the flow. Therefore we can apply the estimates of Proposition 4.5
with an initial time t D 1 instead of t D 0 to see that

sup
t2Œ2;3ç
x2M

jRmj  sup
t2Œ1;2ç
x2M

jRmj: (4.26)

Repeating this by applying Proposition 4.5 for initial times t 2 N, we conclude that
sup

t2Œ0;1/
x2M

jRmj  sup
t2Œ0;2ç
x2M

jRmj <1: (4.27)

Next we will look more carefully at
R
jRmjn2 n

n�2 dVt and take advantage of
the improved decay that we obtain to pass to decay of jRmj in time.

4.2. Curvature decay and convergence — proof of Theorem A

We will now complete the proof of Theorem A when n � 4 by showing that the
long-time existence of the flow considered in Theorem A along with our estimates
in Section 4.1 imply its convergence to Rn with the standard flat metric. Below we
first prove the curvature decay estimate kRmg.t/kL1 D o.t�1/, and then discuss
why this decay estimate is sufficient to conclude convergence.
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4.2.1. Decay of kRmk
L

n
2

n
n�2

As a preliminary step, we will first obtain decay of the curvature in an integral sense
along the flow, which improves the monotonic nonincreasing property established
in Lemma 4.4.

Lemma 4.7. Let .M n; g0/, n � 4, be an asymptotically flat manifold. Let ı1.n/ >
0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3, and
Lemma 4.4 hold. Then for every � > 0, there exists T� > 0 such that along the
Ricci flow,

✓Z
jRmjn2 n

n�2 dVt

◆n�2
n

 �t�1; for all t � T�: (4.28)

Proof. We showed in the proof of Lemma 4.2 that there exists a C D C.g0/ > 0
such that at all times where our Ricci flow is defined,

d

dt

Z
jRmjn2 dVt C C

✓Z
jRmjn2 n

n�2 dVt

◆n�2
n

 0: (4.29)

Furthermore we know by Corollary 4.6 that the flow exists for all times t 2 Œ0;1/.
Since

R
jRmjn2 dVt is nonnegative, we can integrate (4.29) to see that

Z 1

0

✓Z
jRmjn2 n

n�2 dVt

◆n�2
n

dt <1: (4.30)

This combined with the fact that
⇣R

jRmjn2 n
n�2 dVt

⌘n�2
n is monotonic nonincreas-

ing along the flow by Lemma 4.4 implies that

lim
t!1 t

✓Z
jRmjn2 n

n�2 dVt

◆n�2
n

D 0; (4.31)

which gives (4.28).

4.2.2. Decay of kRmkL1 from decay of kRmk
L

n
2

n
n�2

Using the integral curvature decay estimate just obtained we can now revisit the
iteration argument of Proposition 4.5 to prove our L1 decay estimate for Rm.

Proposition 4.8. Let .M n; g0/, n � 4, be an asymptotically flat manifold. Let
ı1.n/ > 0 be sufficiently small so that the conclusions of Lemma 4.2, Corollary 4.3,
and Lemma4.4 hold. Then the singularity at infinity of the Ricci flow g.t/ starting
from g0 which exists for all times t 2 Œ0;1/ by Corollary 4.6 satisfies

lim
t!1 t supx2M

jRm.t; x/j D 0: (4.32)
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Proof. We will follow a line of argument similar to that used in the proof of
Proposition 4.5. Recall that in that proof we used a constant ˇ > 0 such that
kRmkLq  ˇ, where q D n

2
n

n�2 . But now by Lemma 4.7 we have a better estimate
— given � > 0,

kRm.t/kLq D
✓Z

jRmjn2 n
n�2 dVt

◆ 2
n

n�2
n


�
�t�1

� 2
n ; for all t � T�: (4.33)

Recall that in the proof of Proposition 4.5 we produced an L1 estimate of Rm at
time t D T using an Lq bound of Rm at time t D 0. Here, taking advantage of
the uniform Sobolev inequality (4.9) along the flow combined with (4.33), we will
instead produce an L1 estimate of Rm at time t D T using Lq bounds of Rm for
t 2 ŒT2 ; T ç, given any T � 2T⌘ . Define now ˇ.t/ D 16

�
�t�1

� 2
n . Then we have

the following analogue of (4.20):

H.⌫p; ⌧ 0/  A0

✓
Cp;q;ˇ.⌧/ C

1

⌧ 0 � ⌧

◆⌫

H.p; ⌧/⌫ ; (4.34)

which holds for any T
2  ⌧ < ⌧ 0  T . Again we intend to iterate to obtain L1

control. Define as before p0 D q
2 D n

4
n

n�2 with

⌘ D ⌫
2q

2q�n ; pk D ⌫kp0; ˆk D H.pk; ⌧k/
1

pk ; (4.35)

but this time with ⌧k D T
2 C .1 � ⌘�k/T2 . We then see that (restricting to � < 1)

ˆkC1  A
1

⌫pk
0

✓
A

n
2q�n

0 .ˇ.⌧k/p0/
2q

2q�n C C.n; q/
⌘

T

◆ 1
pk

⌘
k
pk ˆk

 A
1

⌫pk
0

✓
A

n
2q�n

0 p
2q

2q�n

0

C1

T
C C.n; q/

⌘

T

◆ 1
pk

⌘
k
pk ˆk :

(4.36)

Iterating as in the proof of Proposition 4.5 we therefore see that for some constant
C > 0 depending only on .M n; g0/,

sup
x2M

jRm.T; x/j2  CT
� 2.n2�4/

n2 ˆ0: (4.37)

Finally, we have that

ˆ0 D
 Z T

T
2

Z
jRmjn2 n

n�2 dVt dt

! 4
n

n�2
n


 Z T

T
2

.�t�1/
n

n�2 dt

! 4
n

n�2
n

 C.n/�
4
nT

� 8

n2 :

(4.38)
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Combining this with (4.37), we conclude (4.32), since we find that for some con-
stant C depending only on .M n; g0/ and any � > 0,

sup
x2M

jRm.T; x/j2  C�
4
nT �2; for all T � 2T�: (4.39)

4.2.3. Sufficient decay of kRmkL1 implies convergence to flat space

Now that we have proved the L1 curvature decay estimate of Proposition 4.8, a
straightforward adaptation of the results of [21, Sections 4–5] implies the weighted
convergence of g.t/ to an AF metric onM with jRmj ⌘ 0, so thatM is diffeomor-
phic to Rn. First we now quote the particular statement due to [21] which we will
adapt:

Proposition 4.9. ([21, Sections 4-5]) Let .M n; g0/ be an asymptotically flat man-
ifold of order ⌧ > 0. Suppose that the Ricci flow g.t/ with initial condition
g.0/ D g0 satisfying Rg0

� 0 exists for all times 0  t < 1 and moreover
has curvature decay satisfying

lim
t!1 t supx2M

jRm.t; x/j D 0: (4.40)

Then there exists an asymptotically flat metric g.1/ with the same asymptotically
flat coordinate system as the metrics g.t/ such that the g.t/ converge to g.1/ as
t ! 1 in C1

�⌧ 0.M/, for any ⌧ 0 2 .0;min.⌧; n � 2//.

Note however that unlike in Proposition 4.9 and in the main results of Li’s paper,
we have not made any assumptions on the sign of the scalar curvature of the initial
metric. Hence that result cannot be directly applied to our setting. Instead, below
we will describe how the arguments used to prove Proposition 4.9 in [21] can be
modified so that the assumption Rg0

� 0 can be replaced by the assumptions of
Theorem A. As a result this concludes the proof of Theorem A in dimensions
n � 4.

Proposition 4.10. Let .M n; g0/ be an asymptotically flat manifold of order ⌧ > 0.
Suppose that the Ricci flow g.t/ with initial condition g.0/ D g0 exists for all times
0  t <1 and moreover has curvature decay satisfying

lim
t!1 t supx2M

jRm.t; x/j D 0: (4.41)

There exists ı1.n/ > 0 such that if
⇣R

jRmjn2 dV0
⌘ 2

n
< ı1.n/

1
Cg0

, then there exists
a flat, asymptotically flat metric g.1/ with the same asymptotically flat coordinate
system as the metrics g.t/ such that the g.t/ converge to g.1/ as t ! 1 in
C1

�⌧ 0.M/, for any ⌧ 0 2 .0;min.⌧; n � 2//.
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Proof. We refer to [21, Sections 4-5] for most parts of the proof. There it is as-
sumed R � 0 along the flow; however, the first part of the proof of [21, Theo-
rem 4.4] is the only point where R � 0 is used. At that point, we have a solution of
the heat equation @tu D Åu satisfying on any Œ0; T ç the bounds c1.T /r�2�⌧ 
u.t; x/  c2.T /r

�2�⌧ . Here r is a positive function on M , equal to jxj on
the image of the asymptotically flat coordinate system in Rn. We just need to
show that d

dt

R
updVt  0 for any fixed p 2 . n

2Cmin.⌧;n�2/ ;
n
2 / if we assume thatR

jRmjn2 dV0 is small, instead of that R � 0 along the flow.
To see this, by Lemma 4.2, Corollary 4.3, and Lemma 4.4 we have that

Z
jRmjn2 dVt 

Z
jRmjn2 dV0 <

✓
ı.n/

1

Cg0

◆n
2

; (4.42)

if
⇣R

jRmjn2 dV0
⌘ 2

n
< ı.n/ 1

Cg0
. We then observe that

d

dt

Z
up dVt  �4.p � 1/

p

Z
jrup

2 j2 dVt �
Z
Rup dVt

 �4.p � 1/
p

1

A

✓Z
u

p
2

2n
n�2 dVt

◆n�2
n

C
✓Z

jRmjn2
◆ 2

n
✓Z

u
p
2

2n
n�2 dVt

◆n�2
n

(4.43)

which is indeed nonpositive if
�R

jRmjn2 dV0
� 2
n<ı1.n/

1
Cg0

with a possibly smaller
value of ı1.n/ than appeared in earlier lines, if we restrict to p 2

�
n

2Cmin.⌧;n�3/ ;
n
2

�
,

since this bounds the coefficient �4.p�1/
p away from zero. As remarked earlier,

after this step the rest of the proof in [21] does not use that R � 0 along the flow
and so by the exact same arguments we obtain the C1

�⌧ 0.M/ convergence of g.t/
for ⌧ 0 2 .0;min.⌧; n � 3//.

However, if ⌧ > n�3 then we have not yet realized the C1
�⌧ 0.M/ convergence

of g.t/ for the full claimed range of ⌧ 0 2 .0;min.⌧; n � 2//. To achieve this, we
need to see that d

dt

R
updVt  0 also for p 2

�
n

2Cmin.⌧;n�2/ ;
n

2Cmin.⌧;n�3/

⇤
. For

this, since now g.t/
t!1���! g.1/ in C1

�⌧ 0.M/ for some ⌧ 0 > 0, the monotonically
nonincreasing quantity

R
jRmjn2 dVt goes to 0 as t ! 1. Returning to (4.43) we

therefore see that for any p > n
2Cmin.⌧;n�2/ we have

d
dt

R
updVt  0 when t � Tp

is sufficiently large. Then we can apply again the remaining arguments from [21],
starting at g.Tp/ instead of g.0/, to conclude the C1

�⌧ 0.M/ convergence of g.t/ for
the full range ⌧ 0 2 .0;min.⌧ 0; n � 2//.
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5. The case nnn DDD 333

In this section we will complete the proof of Theorem A by addressing the case of
dimension n D 3. Here, a technical issue arises in estimating @t

R
jRmjn2 dVt as

we did in Section 4, since up to now we have computed everything using the dif-
ferential inequality satisfied by the smooth function jRmj2. When n D 3 however,
we would have

@t jRmj 32 D 3

4
jRmj� 1

2 @t jRmj2: (5.1)

But jRmj may be vanishing at some points along the flow, so this identity creates
difficulties if we try to establish an analogue of Lemma 4.1 in dimension n D 3 via
integration by parts.

To avoid this issue we instead proceed in the following way. Given an AF
manifold satisfying the hypotheses of Theorem A, for ✏ > 0 let u✏.t; x/ be the
solution of the heat equation,

(
@tu✏ D Åu✏

u✏.0; x/ D ✏r�2�⌧ :
(5.2)

Recall that r is taken to be a positive function on M , equal to jxj on the image
of the asymptotically flat coordinate system in Rn. In particular, u✏.0; x/ satisfies
the same spatial decay rate as jRmg0

j. Moreover, by standard maximum principle
arguments as in [8, 21], we have on any interval Œ0; T ç on which the Ricci flow of
.M n; g0/ exists that

✏C1.T /r
�2�⌧  u✏.t; x/  ✏C2.T /r

�2�⌧ ;

jru✏.t; x/j  ✏C2.T /r
�3�⌧ ;

jr2u✏.t; x/j  ✏C2.T /r
�4�⌧ :

Furthermore, we note that @tu2✏ D Åu2✏ � 2jru✏j2. Combining this with (4.1) we
obtain

@t .jRmj2 C u2✏ /  Å.jRmj2 C u2✏ / � 2jrRmj2 � 2jru✏j2 C 16jRmj3: (5.3)

Since jr.jRmj2 C u2✏ /j2  4.jRmj2 C u2✏ /
�
jrjRmjj2 C jru✏j2

�
, then setting

jRmj2 C u2✏ D K2
✏ we find that

@tK
2
✏  ÅK2

✏ � 2jrK✏j2 C 16K3
✏ : (5.4)

Note also that this differential inequality satisfied by K✏ takes the same form as
the differential inequality satisfied by (4.1), and moreover K✏ � ✏C1.T /r

�2�⌧ is
bounded away from 0 by a function with a controlled rate of spatial decay on any
time interval Œ0; T ç on which the Ricci flow exists. Therefore we have an analogue
of Lemma 4.1 for K✏ .
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Lemma 5.1. Let .M n; g0/, n D 3, be an asymptotically flat manifold. Then for
˛ � 3

4 ,

d

dt

Z
K2˛

✏ dVt  �C1.˛/

Z
jrK˛

✏ j2 dVt C C2.˛/

Z
K2˛C1

✏ dVt ; (5.5)

for some constants C1.˛/; C2.˛/ > 0.

Proof. SinceK✏ is strictly positive (unlike jRmj) we can compute using the spatial
asymptotic upper and lower bounds of u✏ that

d

dt

Z
K2˛

✏ dVt  ˛

Z
K2˛�2

✏

�
ÅK2

✏ � 2jrK✏j2 C 16K3
✏

�
dVt �

Z
RK2˛

✏ dVt

 ˛

Z
.2 � 4˛/K2˛�2

✏ jrK✏j2 dVt C C2.˛/

Z
K2˛C1

✏ dVt

 �C1.˛/

Z
jrK˛

✏ j2 dVt C C2.˛/

Z
K2˛C1

✏ dVt :

Having established Lemma 5.1, we may now take ✏ > 0 sufficiently small so

that under the hypotheses of Theorem A we also have
⇣R
K

n
2

✏ dV0

⌘n
2
< ı.n/Cg0

,
and then we can follow the idea of the proof in Section 4 applied to the function
K✏ to complete the proof of Theorem A by proving it in the case n D 3.

We will now briefly describe how this proceeds. At this point in Lemma 5.1
we have found an analogue for Lemma 4.1 for dimension n D 3, withK✏ replacing
the role of jRmj. From this and the fact thatK✏ > jRmjwe straightforwardly obtain
the analogue of Lemma 4.2 for dimension n D 3, again with jRmj replaced byK✏ .
Thus Corollary 4.3 follows as before, and we may continue to obtain analogues of
Lemma 4.4 and Proposition 4.5, still for dimension n D 3 and with jRmj replaced
by K✏ . Since K✏ > jRmj we therefore obtain L1 bounds for jRmj as well, and
also the long-time existence result in Corollary 4.6 for the Ricci flow of .M 3; g0/.
To pass from long-time existence of the flow to convergence, we first obtain the
analogues of Lemma 4.7 and Proposition 4.8 for dimension n D 3 by another use
of Lemma 5.1, K✏ replacing jRmj. Thus,

lim
t!1 t supx2M

K✏ D 0; (5.6)

which implies limt!1 t supx2M jRm.t; x/j D 0. To conclude we apply Proposi-
tion 4.10, which can be used in our setting of dimension n D 3 since by now we

have shown that
⇣R
K

n
2

✏ dVt

⌘n
2
< ı.n/Cg0

remains small and bounded along the
flow under the hypotheses of Theorem A.
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6. Conformally flat AF metrics

We will discuss here the special case of asymptotically flat metrics g0 D e2ujdxj2
on Rn which are conformal deformations of the flat metric. We begin by giving the
proof of Corollary D as a consequence of Theorem A.

6.1. Proof of Corollary D

Proof of Corollary D. By the conformal invariance of the Yamabe quotient, we
have that for every u 2 W 1;2.Rn; g0/,

✓Z
juj 2n

n�2 dV0

◆n�2
n

 Cn;e

✓Z
jruj2 C 1

6
Ru2 dV0

◆
; (6.1)

where Cn;e is the Sobolev constant for the flat metric on Rn. Therefore ifR
jRmjn2 dV0 is sufficiently small then we find that the Sobolev constant of g0

satisfies Cg0
 2Cn;e . Moreover by Theorem A there exists an ✏ D ✏.2Cn;e/ > 0

such that if we also have
R
jRmjn2 dV0 < ✏, then the Ricci flow starting from g0

will converge to the flat metric on Rn. Thus we can find ƒ.n/ > 0 as claimed.

Note that in this setting we do not require a separate assumption on the Sobolev
constant because of the conformal invariance of the Yamabe constant. As men-
tioned earlier, Corollary D applies in particular to rotationally symmetric asymp-
totically flat metrics on Rn, and therefore gives another long-time existence and
convergence statement for the Ricci flow in this setting different from that in [25].
The main result there states that the Ricci flow of a rotationally symmetric, asymp-
totically flat metric g0 on Rn exists for all times t 2 Œ0;1/ and converges to the
flat metric onRn in the pointed Cheeger-Gromov sense if the initial metric .Rn; g0/
contains no minimal hyperspheres. For clarity we quote the relevant parts of that
result below.

Theorem 6.1. ([25, Theorem 1.1]) Let g0 be an asymptotically flat, rotationally
symmetric metric on a fixed coordinate system on Rn, with n � 3. If .Rn; g0/
does not contain any minimal hyperspheres, then there exists a solution g.t; x/ 2
C1..0;1/⇥Rn/ of the Ricci flow with initial condition g.0/ D g0 which remains
asymptotically flat for all times t 2 Œ0;1/ and:

(a) We have g.t; x/ 2 C 1.Œ0; T ç ⇥ Rn/;
(b) For each integer ` � 0 there exists a constant C` > 0 such that

sup
x2Rn

ˇ̌
ˇr`Rm.t; x/

ˇ̌
ˇ
g.t;x/

 C`

.1C t /t`=2
; for all t > 0I

(c) The flow converges to flat Euclidean space in the pointed Cheeger-Gromov
sense as t ! 1.
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By proving Theorem E below, we will observe the following relation between
Corollary D and Theorem 6.1: the pinching assumption

R
jRmjn2 dVg < ƒ.n/

which we assumed in Corollary D also rules out minimal hyperspheres in the rota-
tionally symmetric setting (in fact without requiring asymptotic flatness), if we sup-
pose that ƒ.n/ > 0 satisfies an additional smallness constraint that ƒ.n/  C.n/,
for some constant C.n/ > 0. As a result, under this additional supposition, the
special case of Corollary D in the rotationally symmetric setting would then be a
consequence of Theorem 6.1. Note however that we have not estimated the size
of ƒ.n/ in the proof of Corollary D, and also will not estimate the size of C.n/ in
the proof of Theorem E below, so whether or not ƒ.n/  C.n/ and Corollary D
actually follows from Theorem 6.1 in the rotationally symmetric setting is unclear.

6.2. Rotationally symmetric AF metrics — proof of Theorem E

Below we consider rotationally symmetric metrics on Rn in the standard form

g D dr2 C f .r/2 d�2; (6.2)

where r is the metric distance to the origin and d�2 is the standard metric on Sn�1.
We assume f .r/ extends to a smooth odd function of r with f 0.0/ D 1, so that g0
is well defined at r D 0. When f .r/ D r then g0 is exactly the flat metric on Rn.
First we recall the following facts which may be found for instance in [7, 19].

Lemma 6.2. The sectional curvatures of g D dr2Cf .r/2 d�2 for the planes tan-
gent to the distance spheres, ⌫1.r/, and for the planes containing a radial direction,
⌫2.r/, are respectively given by

⌫1 D 1 � .f 0/2

f 2
; ⌫2 D �f 00

f
; (6.3)

and the eigenvalues of the curvature operator are ⌫1 and ⌫2 with multiplicities�n�1
2

�
D .n�1/.n�2/

2 and n � 1, respectively.

Therefore
R
jRmjn2 dVg is bounded from below by both

R
j⌫1j

n
2 dVg and

R
j⌫2j

n
2 dVg .

The space .Rn; g/ possesses a minimal hypersphere exactly when there exists an
R > 0 such that f 0.R/ D 0. We will show that this implies

R
jRmjn2 dVg cannot

be too small.

Proof of Theorem E. By our discussion above, it suffices to show that if there exists
a function f W Œ0; Rç ! R such that f .0/ D 0 and f 0.0/ D 1; f 0.R/ D 0 with
f 0.r/ > 0 on Œ0; R/, then there exists a C D C.n/ > 0 such that

max

 Z R

0

ˇ̌
ˇ̌1 � .f 0/2

f 2

ˇ̌
ˇ̌
n
2

f n�1 dr;

Z R

0

ˇ̌
ˇ̌�f 00

f

ˇ̌
ˇ̌
n
2

f n�1 dr

!
� C.n/: (6.4)
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We may rescale by defining g.r/ D 1
Rf .Rr/ on Œ0; 1ç so that g.0/ D 0 and

g0.0/ D 1; g0.1/ D 0 with g0.r/ > 0 on Œ0; 1/, and since
R
jRmjn2 dVg is scale-

invariant, we find that

E1.g/ WD
Z 1

0

ˇ̌
ˇ̌1 � .g0/2

g2

ˇ̌
ˇ̌
n
2

gn�1 dr D
Z R

0

ˇ̌
ˇ̌1 � .f 0/2

f 2

ˇ̌
ˇ̌
n
2

f n�1 dr;

E2.g/ WD
Z 1

0

ˇ̌
ˇ̌�g00
g

ˇ̌
ˇ̌
n
2

gn�1 dr D
Z R

0

ˇ̌
ˇ̌�f 00

f

ˇ̌
ˇ̌
n
2

f n�1 dr:

(6.5)

So it suffices to show that the maximum of E1.g/; E2.g/ is bounded below by
some C.n/. To do this, first we will show that there exists a C1.n/ > 0 such that
if g.1/ D D � C1.n/, then E1.g/ � 1. We note g.r/ is monotonically increasing

on Œ0; 1ç and thatD D
R 1
0 g

0 dr 
⇣R 1

0 .g
0/2 dr

⌘ 1
2 , so that

E1.g/ D
Z 1

0

ˇ̌
1 � .g0/2

ˇ̌n
2

g
dr

� 1

D

Z 1

0

ˇ̌
1 � .g0/2

ˇ̌n
2 dr

� 1

D

ˇ̌
ˇ̌
Z 1

0

.g0/2 dr � 1
ˇ̌
ˇ̌
n
2

� 1

D

�
D2 � 1

�n
2 ; ifD � 1:

(6.6)

Thus ifD is sufficiently large, E1.g/ � 1 and then max.E1.g/; E2.g// � 1.
Next we estimate E1.g/; E2.g/ from below. Because of our preceding esti-

mates we only need to consider those g for which g.1/  C1.n/. For E1.g/ we
have similar to before,

E1.g/ � 1

C1.n/

ˇ̌
ˇ̌
Z 1

0

1 � .g0/2 dr
ˇ̌
ˇ̌
n
2

; (6.7)

while for E2.g/ we have

E2.g/ D
Z 1

0

ˇ̌
ˇ̌�g00
g

ˇ̌
ˇ̌
n
2

gn�1 dr

�
ˇ̌
ˇ̌
Z 1

0

g00g
n�2
n dr

ˇ̌
ˇ̌
n
2

(6.8)

D
ˇ̌
ˇ̌
Z 1

0

n � 2
n

.g0/2g
�2
n dr C

h
g0g

n�2
n

i1
0

ˇ̌
ˇ̌
n
2

�
✓
n � 2
n

◆n
2 1

C1.n/

✓Z 1

0

.g0/2 dr
◆n

2

:
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Hence if g.1/  C1.n/ then max.E1.g/; E2.g// is also bounded below by some
constant depending only on n, completing the proof.

We have seen that
R
jRmjn2 dVg small alone suffices to guarantee the long-

time existence and convergence of this flow to flat space, without a bound on the
Sobolev constant as required in Theorem A. This is implied either by Corollary D
alone, or by a combination of Theorem E with Theorem 6.1 from [25]. It would be
interesting to see how this situation relates to the general case. Another interesting
question is whether

R
jRmjn2 dVg sufficiently small has any connection to the ex-

istence of closed minimal hypersurfaces on a general asymptotically flat manifold.
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