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VORTICITY CONVERGENCE FROM BOLTZMANN TO 2D
INCOMPRESSIBLE EULER EQUATIONS BELOW YUDOVICH

CLASS\rightarrow 

CHANWOO KIM† AND JOONHYUN LA‡

Abstract. It is challenging to perform a multiscale analysis of mesoscopic systems exhibiting
singularities at the macroscopic scale. In this paper, we study the hydrodynamic limit of the Boltz-
mann equation St\omega tF + v · \uparrow xF = 1

KnQ(F,F ) toward the singular solutions of 2D incompressible
Euler equations whose vorticity is unbounded: \omega tu + u · \uparrow xu + \uparrow xp = 0, div u = 0. We obtain a
microscopic description of the singularity through the so-called kinetic vorticity and understand its
behavior in the vicinity of the macroscopic singularity. As a consequence of our new analysis, we
settle a!rmatively an open problem of convergence toward Lagrangian solutions of the 2D incom-
pressible Euler equation whose vorticity is unbounded (\varepsilon \downarrow Lp for any fixed 1\updownarrow p<\nearrow ). Moreover,
we prove the convergence of kinetic vorticities toward the vorticity of the Lagrangian solution of
the Euler equation. In particular, we obtain the rate of convergence when the vorticity blows up
moderately in Lp as p\searrow \nearrow (a localized Yudovich class).
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1. Introduction. One of the fundamental questions in the area of partial dif-
ferential equations is Hilbert’s sixth problem, seeking a unified theory of the gas
dynamics including di!erent levels of descriptions from a mathematical standpoint by
connecting the mesoscopic Boltzmann equations to the macroscopic fluid models that
arise in formal limits. The Boltzmann equation is a fundamental model of kinetic
theory for dilute collections of gas particles, which undergo elastic binary collisions.
The dimensionless form of the equation is given as an integro-di!erential equation,
where F (t, x, v)\rightarrow 0 is a density distribution of particles on the phase space. Here, the
Strouhal number and Knudsen number are denoted by St and Kn, which are a ratio
of the characteristic length to the characteristic time and a ratio of mean free path to
the characteristic length, respectively.

The e!ect of binary collision between particles is described by Q(F,F ), which
takes various forms of the nonlocal-in-velocity operator depending on the nature of
particles and its intermolecular interaction [11]. An intrinsic equilibrium, satisfying
Q(·, ·) = 0, is given by the so-called local Maxwellian associated with (R,U,"") \uparrow 
R+\downarrow R3\downarrow R+:

(1.1) MR,U,!(v) :=
R

(2\omega "")3/2
exp

\Biggr) 
\updownarrow |v\updownarrow U |2

2""

\Biggl[ 
.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3145

The collision operator enjoys the so-called collision invariance:
\Biggr] 
Q(F,G)

\Biggl\lfloor 
1 v |v|2

\Biggr\rfloor 

dv = 0 for arbitrary F,G. The celebrated Boltzmann’s H-theorem (entropy H =\Biggr] 
F lnFdv) reveals the entropy dissipation:

\Biggr] 
Q(F,F ) lnFdv \nearrow 0. In this paper, we

consider the most basic hard-sphere collision cross section:

Q(F,G)(v) =
1

2

\Biggl\lceil 

R3

\Biggl\lceil 

S2
|(v\updownarrow v\rightarrow ) · \varepsilon |{F (v\uparrow )G(v\uparrow \rightarrow ) +G(v\uparrow )F (v\uparrow \rightarrow )

\updownarrow F (v)G(v\rightarrow )\updownarrow G(v)F (v\rightarrow )}d\varepsilon dv\rightarrow ,
(1.2)

where postcollision velocities are denoted by v\uparrow = v \updownarrow ((v \updownarrow v\rightarrow ) · \varepsilon )\varepsilon and v\uparrow \rightarrow = v\rightarrow +
((v\updownarrow v\rightarrow ) · \varepsilon )\varepsilon .

Besides St and Kn, we introduce the Mach number Ma as a size of fluctuations
of F around the global Maxwellian M1,0,1(v) of the reference state (1,0,1). Relations
between St,Kn, and Ma are important. Naturally, Ma is bounded above by St/c,
where c is denoted by the speed of sound. On the other hand, the famous Reynolds

number Re appears as a ratio between Kn and Ma through the von Karman relation:
1/Re = Kn/Ma. By passing Kn to zero and choosing di!erent St(Kn) and Ma(Kn)
as functions of Kn, we can formally derive various PDEs of macroscopic variables.
Formally, the incompressible Euler limit can be realized in the following scaling of the
large Re limit:

(1.3) St = \vargamma =Ma and Kn= \varpi \vargamma with \varpi = \varpi (\vargamma )\searrow 0 as \vargamma \searrow 0.

In the di!usive scaling, the same scaling of (1.3) with \varpi = 1, the corresponding
macroscopic PDE is the incompressible Navier–Stokes–Fourier system. This scaling
problem is better understood as a singular perturbation in being milder than our case
(1.3) (see [23, 31, 25, 26] and references therein). In [23], Esposito et al. establish a
uniform bound of a perturbation f in F = M1,0,1 + \vargamma f

\Biggr\rceil 
M1,0,1 without a priori in-

formation of the fluid solutions, and hence, they derive (actually construct) a strong
solution of the incompressible Navier–Stokes–Fourier system for both steady and un-
steady cases in the presence of a boundary. One of the key ingredients is to obtain an
L6
x
(\simeq \varrho H1

x
in three dimensions) control of f by realizing a hidden elliptic equation of

the bulk velocity part of f in

(1.4) v ·\Leftarrow xf \Rightarrow 1

\vargamma 
Lf (macro-micro scale balance)

for a linearized operator L of Q. Unfortunately, a uniform bound of f in the Euler
scaling seems not feasible even in two dimensions without a priori information of
solutions of the incompressible Euler equations, due to an additional singularity in
both macro-micro scale balance and nonlinear perturbation, which are major obstacles
in our analysis.

The regularity of fluid solutions plays a crucial rule in the multiscale analysis in
the Euler scaling (1.3), which has been revealed di!erently in a modulated entropy
inequality by Saint-Raymond [42] and an asymptotic expansion by Jang and Kim
[35]. This e!ect appears as an growth in the microscopic scale (see (1.15)), which
resembles the famous Beale, Kato, and Majda result [6]. For a spatially Lipschitz
continuous velocity field, Saint-Raymond proves in [42] a hydrodynamic limit toward
such solutions of the incompressible Euler equations. It has been an open problem to
study the hydrodynamic limit toward solutions of the Euler equations that are not
spatially Lipschitz continuous, such as vortex sheet solutions. Due to the transport
feature of 2D Euler equations, such singular solutions have been well understood. For
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3146 CHANWOO KIM AND JOONHYUN LA

compactly supported initial vorticities in Lp for 1 < p < \Uparrow , global existence theory
was first proved by DiPerna and Majda in [21]. Using the so-called concentration-
cancellation, the result was extended for a finite measure with distinguished sign by
Delort in [18], and L1 vorticities by Vecchi and Wu in [43]. Recently, Bohun, Bouchut,
and Crippa constructed Lagrangian solutions of \varsigma \uparrow L1 in [7] using a stability estimate
of [8].

A. Main theorems. We recall the main object of this paper: the scaled Boltz-
mann equation of the scaling (1.3)

(1.5) \vargamma \varphi tF
\omega + v ·\Leftarrow xF

\omega =
1

\varpi \vargamma 
Q(F \omega , F \omega ) in [0, T ]\downarrow T2 \downarrow R3.

In this paper, we set that the spatial variables and velocity variables belong to the
2D periodic domain and 3D whole space, respectively:

x= (x1, x2)\uparrow T2 :=

\Biggl\{ 
\updownarrow 1

2
,
1

2

\Biggr\} 
\downarrow 
\Biggl\{ 
\updownarrow 1

2
,
1

2

\Biggr\} 
with the periodic boundary(1.6)

v= (v, v3) := (v1, v2, v3)\uparrow R3.(1.7)

The existence and uniqueness of the Boltzmann equation with fixed scaling have been
extensively studied in [28, 29, 30]; the initial-boundary value problem in [32, 38, 39];
the singularity formation in [37]; the boundary regularity estimate in [33, 10]; and
nonequilibrium steady states in [22]. For the weak solution contents, we refer to
[19, 26] and the references therein.

As the main quantities in the hydrodynamic limit, we are interested in the fol-
lowing observables and their convergence toward the counterparts in fluid.

Definition 1 (Boltzmann’s macroscopic velocity and vorticity).

u\omega 

B
(t, x) =

1

\vargamma 

\Biggl\lceil 

R3

(F \omega (t, x, v)\updownarrow M1,0,1(v))vdv,

\varsigma \omega 

B
(t, x) :=\Leftarrow \downarrow · u\omega 

B
(t, x) =

\Biggl\langle 
\updownarrow \varphi 

\varphi x2
,

\varphi 

\varphi x1

\Biggr\rangle 
· u\omega 

B
(t, x).

(1.8)

In two dimensions, the incompressible Euler equation has the vorticity formulation

\varphi t\varsigma + u ·\Leftarrow \varsigma = 0 in [0, T ]\downarrow T2,(1.9)

u=\updownarrow \Leftarrow \downarrow (\updownarrow \#)\updownarrow 1\varsigma in [0, T ]\downarrow T2,(1.10)

\varsigma |t=0 = \varsigma 0 in T2.(1.11)

We will present the Biot–Savart formula of (1.10) in the periodic box T2 at (3.19).
When a velocity field is Lipschitz continuous, there exists a Lagrangian flow X(s; t, x)
solving

(1.12)
d

ds
X(s; t, x) = u(s,X(s; t, x)), X(s; t, x)|s=t = x.

Then, a smooth solution of the vorticity equation (1.9), (1.10), and (1.11) is given by

\varsigma (t, x) = \varsigma 0(X(0; t, x)), u(t, x) =\updownarrow \Leftarrow \downarrow (\updownarrow \#)\updownarrow 1\varsigma (t, x).(1.13)

Out of the smooth context, a general notion of Lagrangian flow has been introduced.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3147

Definition 2 ([20, 15]). Let u\uparrow L1([0, T ]\downarrow T2;R2). A map X : [0, T ]\downarrow T2 \searrow T2

is a regular Lagrangian flow of (1.12) if and only if, for almost every x \uparrow T2
and

for any t \uparrow [0, T ], the map s \uparrow [0, t] \Downarrow \searrow X(s; t, x) \uparrow T2
is an absolutely continuous

integral solution of (1.12) and there exists a constant C> 0 such that, for all (s, t) \uparrow 
[0, t]\downarrow [0, T ], there holds

(1.14)

\Biggl\lceil 

T2

\leftharpoonup (X(s; t, x))dx\nearrow C

\Biggl\lceil 

T2

\leftharpoonup (x)dx

for every measurable function \leftharpoonup :T2 \searrow [0,\Uparrow ].

For a given regular Lagrangian flow to (1.12), we can define the Lagrangian solution

(u,\varsigma ) along with the regular Lagrangian flow as in (1.13). In fact, the existence and
uniqueness (for a given u) of the regular Lagrangian flow is proved in [20, 15, 8] as
long as (1.10) holds while \varsigma \uparrow Lp for p\rightarrow 1.

Our first theorem is about the convergence of \varsigma \omega 

B
to the Lagrangian solution \varsigma 

when vorticities belong to Lp(T2) when p<\Uparrow .

Theorem 1 (informal statement of Theorem 8: strong convergence). Suppose

that \vargamma ,\varpi = \varpi (\vargamma ),\leftharpoondown = \leftharpoondown (\vargamma ) satisfy (2.3). Let arbitrary T > 0 and (u0,\varsigma 0) \uparrow L2(T2)\downarrow 
Lp(T2) for p \rightarrow 1. Let (u,\varsigma ) \uparrow L\nearrow ((0, T );L2(T2) \downarrow Lp(T2)) be a Lagrangian solu-

tion of 2D incompressible Euler equations (1.9), (1.10), and (1.11) with initial data

(u0,\varsigma 0). Then, we construct a family of solutions to the Boltzmann equation (1.5)
whose macroscopic velocity and vorticity (u\omega 

B
,\varsigma \omega 

B
) of (1.8) converge to the Lagrangian

solution. Moreover, we have

\varsigma \omega 

B
\searrow \varsigma strongly in [0, T ]\downarrow T2.

Remark 1. The uniqueness of the incompressible Euler equations in two dimen-
sions is only known for vorticities with moderate growth of Lp norm as p \searrow \Uparrow by
Yudovich [36, 45]. In some sense, we can view the theorem as a “selection principle”
of a Lagrangian solution of the incompressible Euler equations from the Boltzmann
equation.

Remark 2. Our proof does not rely on a result of the inviscid limit of the nonlin-
ear Navier–Stokes equations (cf. [35]) nor the higher-order Hilbert expansion (cf. the
results by Guo [31] and de Masi, Esposito, and Lebowitz [17]). A direct approach we
develop in this paper is based on stability analysis for both the Lagrangian solutions
of the inviscid fluid and the Boltzmann solutions with a new corrector.

Our second theorem is about the quantitative rate of convergence/stability of \varsigma \omega 

B

to \varsigma when the uniqueness of the fluid is guaranteed. In [45], Yudovich extends his
uniquness result for bounded vorticities [36] to the so-called localized Yudovich class;
namely, \varsigma 0 \uparrow Y !

ul (\$) with a certain modulus of continuity for its velocity u. Here,

\leftrightarrow \varsigma \leftrightarrow Y !

ul
(T2) := sup

1\searrow p<\nearrow 

\leftrightarrow \varsigma \leftrightarrow Lp(T2)

""(p)
for some ""(p)\searrow \Uparrow as p\searrow \Uparrow .

Here, we specify "" : R+ \searrow R+; there exists m \uparrow Z+ such that ""(p) =
\Bigg/ 

m

k=1 logk p
for large p > 1, where log

k
p is defined inductively by log0 p = 1, log1 p = log p, and

log
k+1 p= log log

k
p. Also, we denote the inverse function of log

m
(p) (defined for large

p) by em. Finally, we note that
\Biggr] \nearrow 
em(1)

1
p!(p) =\Uparrow , which turns out to be important in

the uniqueness of the solution.
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3148 CHANWOO KIM AND JOONHYUN LA

Theorem 2 (informal statement of Theorem 9: rate of convergence). Suppose

that \vargamma ,\varpi = \varpi (\vargamma ),\leftharpoondown = \leftharpoondown (\vargamma ) satisfy (2.3). If we further assume \varsigma 0 \uparrow Y !
ul (T2) in addition

to Theorem 1, then

\varsigma \omega 

B
\searrow \varsigma strongly in [0, T ]\downarrow T2

with an explicit rate,

where the explicit rates are defined as in (4.35) and (4.45).

B. Novelties, di!culties, and idea. The major novelty of this paper is to
establish the incompressible Euler limit in the level of vorticity without using the
inviscid limit of the Navier–Stokes equations in the vicinity of the macroscopic singu-

larity (\varsigma /\uparrow L\nearrow (T2)). We study the convergence of Boltzmann’s macroscopic vorticity
toward Euler’s vorticity because interesting singular behavior, e.g., interfaces in vor-
tex patches, can be observed only in a stronger topology of velocities. We believe
this new approach will shed light on the validity of Euler equations in a more direct
fashion. A possible application would be a direct validity proof of Euler solutions
from the kinetic theory without relying on the inviscid limit results. In addition, we
are able to allow quite far-from-equilibrium initial data (see (1.16)).

There are two major di\%culties in the proof. First, the macroscopic solutions are
singular, and their singularity appears as growth at the microscopic level ([35]):

(1.15) exp

\Bigg\backslash \Biggl\lceil 
t

0
\leftrightarrow \Leftarrow xu(s)\leftrightarrow L\rightarrow 

x
ds

\Big/ 
.

This factor becomes significantly di\%cult to control when we study the Boltzmann
solutions close to the solution of Euler equations instead of Navier–Stokes equations.
The di!usion in the bulk velocity has a considerable magnitude and causes a singular
term due to the growth of (1.15). Second, the macro-micro scale balance is singular
in the Euler scaling. Because the transport e!ect is weaker, this results in the lack of
a scale factor of the hydrodynamic bound in the dissipation. In fact, an integrability
gain in Lp (\simeq \varrho H1

x
in 2D) of [23] or velocity average lemma [24] are not useful to

control the singular nonlinearity. In addition, the perturbation equations su!er a
loss of scale due to the commutator of spatial derivatives and the linearized operator
around a local Maxwellian associated with macroscopic solutions.

To overcome the di\%culties, we devise a novel viscosity-canceling correction in an
asymptotic expansion of the scaled Boltzmann equations. To handle the low regularity
of fluid velocity fields, we regularize the initial data with scale \leftharpoondown and expand the
Boltzmann equations around the local Maxwellian M1,\omega u\omega ,1 associated with the Euler
solution u\varepsilon starting from u\varepsilon 

0 . In the first place, one may try a form of the standard
Hilbert expansion

M1,\omega u\omega ,1 + \vargamma 2p\varepsilon M1,\omega u\omega ,1 \updownarrow \vargamma 2\varpi (\Leftarrow xu
\varepsilon ) :A

\Big\backslash 
M1,\omega u\omega ,1 + \vargamma fR

\Big\backslash 
M1,\omega u\omega ,1,(1.16)

where A is defined as (2.13), by matching to cancel most singular terms. The
Euler equation is in the hierarchy of O(\vargamma 2); it comes from \vargamma \varphi tM1,\omega u\omega ,1 and correc-
tors. However, the third term of order \vargamma 2\varpi introduces the viscosity contribution
\updownarrow \vargamma 2\varpi \rightharpoonup 0\#xu\varepsilon · (v \updownarrow \vargamma u\varepsilon )M1,\omega u\omega ,1, and, comparing it to \vargamma fR

\Biggr\rceil 
M1,\omega u\omega ,1, we see that, if

this term is not canceled, then it will drive the remainder to order O(\vargamma \varpi ). However,
once the remainder fR grows to O(\vargamma \varpi ) size, the e!ect of nonlinearity 1

\omega \vargamma 
\&(fR, fR)

becomes O(\vargamma \varpi ) as well (see (2.37)). As a consequence, we cannot close the bootstrap
argument; we need to keep the remainder fR to the size o(\vargamma \varpi ). Note that this term is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3149

hydrodynamic, so we cannot rely on coercivity provided by L; it provides additional
\vargamma 
\nwarrow 
\varpi smallness only for nonhydrodynamic terms.
A simple but useful observation is that this term is still in a lower hierarchy than

that of the Euler equation. When \varpi = \vargamma , this observation leads to an introduction of
next-order expansion, which absorbs the viscosity contribution to the hydrodynamic
equation of smaller-scale fluctuation. However, in our setting, \varpi is not an integer power
of \vargamma , and therefore, choosing the right next-level corrector is a nontrivial problem. One
key observation in this work is that a corrector can be found in a very similar fashion
as the \varpi = \vargamma case; by introducing an additional corrector in \vargamma \varpi level, we were able
to cancel out the viscosity contribution. Of course, one needs to be careful because
we introduce an \vargamma \varpi -size term to cancel out an \vargamma 2\varpi -size term! However, by carefully
choosing the form of the \vargamma \varpi -size corrector

(1.17) F \omega = (1.16) + \vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )M1,\omega u\omega ,1 + \vargamma 2\varpi p̃\varepsilon M1,\omega u\omega ,1,

we can actually fulfill our goal.
1. \vargamma \varpi ũ·(v\updownarrow \vargamma u\varepsilon )M1,\omega u\omega ,1 is fully hydrodynamic, and therefore, the most singular

term coming from collision with the local Maxwellian vanishes. Then, the
largest term coming from collision is the collision of this corrector with itself,
which is of size \vargamma \varpi but nonhydrodynamic. Thus, it is in fact small (due to
\vargamma 
\nwarrow 
\varpi gain for a nonhydrodynamic term, nonhydrodynamic source terms of

\vargamma 
\nwarrow 
\varpi drive the remainder to order O(\vargamma \varpi ).)

2. By imposing \Leftarrow x ·ũ= 0, we can cancel out the hydrodynamic part for v ·\Leftarrow x(ũ·
(v \updownarrow \vargamma u\varepsilon )M1,\omega u\omega ,1), which is of order \vargamma \varpi . Also, by introducing an additional
corrector at \vargamma 2\varpi level, one can cancel out all hydrodynamic terms of \vargamma 2\varpi level
by the evolution equation for ũ, including \#xu. Therefore, the remaining
hydrodynamic terms are of order o(\vargamma 2\varpi ) and nonhydrodynamic terms are of
order O(\vargamma \varpi ), and both are small.

3. The interaction of this corrector and the remainder also turns out to be
innocuous as well.

It is worth remarking that, in this corrector-based Hilbert expansion, we do not
need to set up \vargamma = \varpi as in the usual Hilbert expansion [17]; we only need \vargamma /\varpi 2 \searrow 0.
This is satisfactory, in the sense that a regime that is close to the Navier–Stokes
regime (whose \varpi vanishes slowly) should be more tractable in philosophy, and indeed,
for such a regime, we can allow a larger deviation from the equilibrium. In addition,
we note that this expansion in fact allows even more general data than (1.16); we have
additional freedom in choosing ũ0, so, in principle, a remainder with a certain part of
size \vargamma \varpi is in fact admissible, while in (1.16), all parts of the remainder should be of
size o(\vargamma \varpi ). We believe that this new idea of correction will have many applications.

The search for an additional corrector in (1.17) has been largely indebted to our
H2

x
L2
v
framework. The framework was introduced for two reasons: First, our goal was

to obtain the hydrodynamic limit in a stronger topology. Second, this framework gives
better control of the nonlinearity. To elaborate, one can start from the observation
that, when measuring the L2

x,v
norm of the nonlinearity \&(fR, fR), one only lacks

L2-integrability of x (see Lemma 1) since \& is also an integral operator whose kernel
decays rapidly in v. Therefore, to control the nonlinearity, we may first establish
H2

x
L2
v
control of the remainder and use interpolation inequalities (see Lemma 4).

It turns out that this framework gives a sharper scaling than previously considered
methods, which is reasonable in the sense that this method relies on the coercivity
of the linearized collision operator, while other methods do not use it and treat the
linearized collision operator, which is the most singular term in (2.37), as a forcing.
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3150 CHANWOO KIM AND JOONHYUN LA

In addition to the aforementioned advantages, the H2
x
L2
v
framework greatly sim-

plifies the searching process for correctors. One can almost close the estimate for
fR in the H2

x
L2
v
framework, except for the term coming from the momentum-stream

(fR(
(\varepsilon t+

v

\vargamma 
·\uparrow x)

\downarrow 
µ

\downarrow 
µ

) in (2.37)), which can be closed using an L\nearrow estimate with a very
small prefactor. Therefore, to check if a proposed corrector works, one only needs to
measure the size of its e!ect in the energy space.

The paper is organized as follows. In section 2, we introduce our new expansion,
derive the equation for the remainder, and conclude that the size of the remainder can
be controlled in the H2

x
L2
v
\swarrow L\nearrow 

xv
space. In section 3, we present the derivative bounds

for Euler equations with smoothly approximated initial data. In section 4, we show
the stability of class of solutions of Euler equations we consider (Yudovich/localized
Yudovich/Diperna–Majda) under smooth approximation of initial data. In particular,
for the localized Yudovich class, we find explicit convergence rate for both velocity
and vorticity. Finally, in section 5, we prove our main hydrodynamic limit theorem.

Notations. For the sake of readers’ convenience, we list notations used often in
this paper.

\varphi : \varphi f = \varphi x1
f or \varphi x2

f(1.18)

\varphi s : \varphi sf =
\left( 

\varpi 1+\varpi 2\searrow s

\varphi \varpi 1

x1
\varphi \varpi 2

x2
f(1.19)

f \propto g : f \propto g(x) :=
\Biggl\lceil 

T2

f(x\updownarrow y)g(y)dy(1.20)

f \propto R2 g : f \propto R2 g(x) =

\Biggl\lceil 

R2

f(x\updownarrow y)g(y)dy(1.21)

( · )+ : (a)+ =max{a,0}(1.22)

log+ : log+a=max{loga,0}(1.23)

\leftrightsquigarrow : there exists C > 0 such that a\leftrightsquigarrow b implies a\nearrow Cb(1.24)

a\prime b : a consists of an appropriate linear combination of the terms in b(1.25)

[[·, ·]] : [[A,B]]g :=A(Bg)\updownarrow B(Ag) (commutator)(1.26)

\leftrightarrow · \leftrightarrow Lp2 : \leftrightarrow f\leftrightarrow Lp

t
= \leftrightarrow f\leftrightarrow Lp(0,T ), \leftrightarrow f\leftrightarrow Lp

x
= \leftrightarrow f\leftrightarrow Lp(T2), \leftrightarrow f\leftrightarrow Lp

v
= \leftrightarrow f\leftrightarrow Lp(R3)(1.27)

\leftrightarrow · \leftrightarrow Lp

xL
2
v

: \leftrightarrow f\leftrightarrow Lp

xL
2
v
:= \leftrightarrow f\leftrightarrow Lp(T2;L2(R3)) =

\right) \right) \leftrightarrow f(x, v)\leftrightarrow L2(R3
v
)

\right) \right) 
Lp(T2

x
)

(1.28)

dT2(x, y) : geodesic distance between x and y in T2, often abused as |x\updownarrow y|(1.29)

2. Hilbert-type expansion with viscosity-canceling corrector.

2.1. Formulation around a local Maxwellian. We denote a local Maxwellian
corresponding to (1,\vargamma u\varepsilon ,1) by

(2.1) µ :=M1,\omega u\omega ,1.

We try to construct a family of solutions F \omega in the form of

(2.2) F \omega = µ+ \vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ+ {\vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon ) + \vargamma 2\varpi p̃\varepsilon }µ+ \vargamma fR

\nwarrow 
µ,

where p\varepsilon , ũ\varepsilon , and p̃\varepsilon satisfy (3.9) and (3.10) and A will be defined in (2.13).
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3151

Also, we assume the following assumption on the relative magnitudes on \vargamma ,\varpi =
\varpi (\vargamma ),\leftharpoondown = \leftharpoondown (\vargamma ):

lim
\omega \simeq 0

\vargamma 

\varpi 2
= 0,

lim
\omega \simeq 0

\varpi 
1

4V (\leftharpoondown ) = 0,

lim
\omega \simeq 0

\varpi 
1

2 e
2C0T\Leftarrow \Rightarrow xu

\omega \Leftarrow 2

L\rightarrow ((0,T )\updownarrow T2) = 0,

(2.3)

where C0 is specified in section 2.5.
We define

(2.4) Lf =
\updownarrow 2
\nwarrow 
µ
Q(µ,

\nwarrow 
µf), \&(f, g) =

1
\nwarrow 
µ
Q(

\nwarrow 
µf,

\nwarrow 
µg).

From the collision invariance, a null space of L, denoted by N , has five orthonormal
bases {\rightharpoondown i

\nwarrow 
µ}5

i=1 with

\rightharpoondown = (\rightharpoondown 0,\rightharpoondown 1,\rightharpoondown 2,\rightharpoondown 3,\rightharpoondown 4),

\rightharpoondown 0 := 1, \rightharpoondown i := vi \updownarrow \vargamma u\varepsilon 

i
for i= 1,2,3, \rightharpoondown 4 :=

|v\updownarrow \vargamma u\varepsilon |2 \updownarrow 3\nwarrow 
6

.
(2.5)

We define P, an L2
v
-projection on N , as

Pg := (P0g,P1g,P2g,P3g,P4g), Pjg :=

\Biggl\lceil 

R3

g\rightharpoondown j

\nwarrow 
µdv for j = 0,1, . . . ,4,

Pg :=
4\left( 

j=0

(Pjg)\rightharpoondown j

\nwarrow 
µ= Pg ·\rightharpoondown \nwarrow µ.

(2.6)

We record the exact form of L and \& for the later purpose; the calculation is due
to Grad [27], and one can also read [24] for details of derivations. Also, the exact form
of the formulae were excerpted from [35]: For certain positive constants c1, c2, c3,

Lf(v) = \lhook f(v)\updownarrow Kf(v) = \lhook (v)f(v)\updownarrow 
\Biggl\lceil 

R3

k(v, v\rightarrow )f(v\rightarrow )dv\rightarrow ,

\lhook (v) = c1

\left[ \Bigg\backslash 
2|v\updownarrow \vargamma u\varepsilon |+ 1

|v\updownarrow \vargamma u\varepsilon |

\Big/ \Biggl\lceil |v\updownarrow \omega u
\omega |

0
e\updownarrow 

z
2

2 dz + e\updownarrow 
|v\nearrow \vargamma u

\omega |2
2

\right] 
,

k(v, v\rightarrow ) = c2|v\updownarrow v\rightarrow |e\updownarrow 
|v\nearrow \vargamma u

\omega |2+|v\searrow \nearrow \vargamma u
\omega |2

4 \updownarrow c3
|v\updownarrow v\rightarrow |

e
\updownarrow 1

8
|v\updownarrow v\searrow |2\updownarrow 1

8

(|v\nearrow \vargamma u
\omega |2\nearrow |v\searrow \nearrow \vargamma u

\omega |2)
2

|v\nearrow v\searrow |2 ,

\&(f, g)(v) =

\Biggl\lceil 

R3

\Biggl\lceil 

S2
|(v\updownarrow v\rightarrow ) · \varsigma |

\Biggr\rceil 
µ(v\rightarrow )(f(v

\uparrow )g(v\uparrow \rightarrow ) + g(v\uparrow )f(v\uparrow \rightarrow ))d\varsigma dv\rightarrow 

\updownarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

S2
|(v\updownarrow v\rightarrow ) · \varsigma |

\Biggr\rceil 
µ(v\rightarrow )(f(v)g(v\rightarrow ) + g(v)f(v\rightarrow ))d\varsigma dv\rightarrow ,

(2.7)

where v\uparrow = v \updownarrow ((v \updownarrow v\rightarrow ) · \varsigma )\varsigma , v\uparrow \rightarrow = v\rightarrow + ((v \updownarrow v\rightarrow ) · \varsigma )\varsigma . Here, all \lhook ,k,\& also depend
on x and t in a straightforward manner; that is, Lf(x, t, v) and \&(f, g)(x, t, v) depend
on f(x, t, ·), g(x, t, ·), and u\varepsilon (x, t). We omitted them for the sake of simplicity.
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3152 CHANWOO KIM AND JOONHYUN LA

Also, we define \varrho sL and \varrho s\& for s\rightarrow 1:

\varrho sLf(v) = \varphi s(\lhook )(v)f(v)\updownarrow 
\Biggl\lceil 

R3

\varphi s(k)(v, v\rightarrow )f(v\rightarrow )dv\rightarrow ,

\varrho s\&(f, g)(v) =

\Biggl\lceil 

R3

\Biggl\lceil 

S2
|(v\updownarrow v\rightarrow ) · \varsigma |\varphi s(

\Biggr\rceil 
µ(v\rightarrow ))(f(v

\uparrow )g(v\uparrow \rightarrow ) + g(v\uparrow )f(v\uparrow \rightarrow ))d\varsigma dv\rightarrow 

\updownarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

S2
|(v\updownarrow v\rightarrow ) · \varsigma |\varphi s(

\Biggr\rceil 
µ(v\rightarrow ))(f(v)g(v\rightarrow ) + g(v)f(v\rightarrow ))d\varsigma dv\rightarrow .

(2.8)

We list standard results that will be used later in this section for the sake of
readers’ convenience. First, we note that

(2.9) Q(µ,µ) = 0=PL=LP=P\&

from the collision invariance.

Lemma 1 ([23, 31, 29]). Suppose that (2.3) holds. Then,

\leftrightarrow \lhook \updownarrow 1/2Lf\leftrightarrow L2(T2\Uparrow R3) \leftrightsquigarrow \leftrightarrow 
\nwarrow 
\lhook (I\updownarrow P)f\leftrightarrow L2(T2\Uparrow R3),

\leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow 2
L2

v

\leftrightsquigarrow 
    
\Biggl\lceil 

Lf(v)f(v)dv

    ,
    
\Biggl\lceil 

\varrho sLf(v)g(v)dv

    

\leftrightsquigarrow \vargamma \leftrightarrow \varphi su\varepsilon \leftrightarrow L\rightarrow 
t,x

\Biggl\langle 
\leftrightarrow Pf\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow L2
v

\Biggr\rangle \Biggl\langle 
\leftrightarrow Pg\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)g\leftrightarrow L2
v

\Biggr\rangle 
,

(2.10)

    
\Biggl\lceil 

\&(f, g)hdvdxdt

    

\leftrightsquigarrow 
\Biggl\lceil  \Biggl\langle 

\leftrightarrow Pf\leftrightarrow L2
v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow L2
v

\Biggr\rangle 
\leftrightarrow g\leftrightarrow L2

v

+
\Biggl\langle 
\leftrightarrow Pg\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)g\leftrightarrow L2
v

\Biggr\rangle 
\leftrightarrow f\leftrightarrow L2

v

 
\leftrightarrow \lhook 1

2 (I\updownarrow P)h\leftrightarrow L2
v
dxdt,

    
\Biggl\lceil 

\varrho s\&(f, g)hdvdxdt

    

\leftrightsquigarrow \vargamma \leftrightarrow \varphi su\leftrightarrow L\rightarrow 
t,x

\Biggl\lceil  \Biggl\langle 
\leftrightarrow Pf\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow L2
v

\Biggr\rangle 
\leftrightarrow g\leftrightarrow L2

v

+
\Biggl\langle 
\leftrightarrow Pg\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)g\leftrightarrow L2
v

\Biggr\rangle 
\leftrightarrow f\leftrightarrow L2

v

 

\downarrow 
\Biggl\langle 
\leftrightarrow Ph\leftrightarrow L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)h\leftrightarrow L2
v

\Biggr\rangle 
dxdt.

(2.11)

Next, we introduce a lemma illustrating the structure of higher derivatives of Lf .
Recall the notation [[·, ·]] for the commutator (1.26).

Lemma 2. For s\rightarrow 1, [[\varphi s,L]]f is a linear combination, whose coe!cient depends

only on s, of the terms having one of the following forms:

1. \varrho jL(I\updownarrow P)\varphi s\updownarrow jf , where 1\nearrow j \nearrow s;
2. L\varphi · · · [[P,\varphi ]] · · ·\varphi f , where \varphi · · · [[P,\varphi ]] · · ·\varphi f is an application of s \updownarrow 1 \varphi and

one [[P,\varphi ]] at jth order to f (0\nearrow j \nearrow s); or
3. \varrho jL\varphi · · · [[P,\varphi ]] · · ·\varphi f , where 1\nearrow j \nearrow s\updownarrow 1 and \varphi · · · [[P,\varphi ]] · · ·\varphi f is an applica-

tion of s\updownarrow j \updownarrow 1 \varphi and one [[P,\varphi ]] at ith order to f (0\nearrow i\nearrow s\updownarrow j).
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3153

Proof. We proceed by the induction on s; first, we note that

\varphi (Lf) = \varphi L(I\updownarrow P)f = \varrho L(I\updownarrow P)f +L\varphi (I\updownarrow P)f

= \varrho L(I\updownarrow P)f +L[[P,\varphi ]]f +L(I\updownarrow P)\varphi f,

[[\varphi ,L]]f = \varrho L(I\updownarrow P)f +L[[P,\varphi ]]f,

which proves the claim for s= 1. Next, for s\rightarrow 1, we have

[[\varphi s+1,L]]f = \varphi s+1Lf \updownarrow L\varphi s+1f = \varphi [[\varphi s,L]]f + [[\varphi ,L]]\varphi sf,

and, by the first step, [[\varphi ,L]]\varphi sf consists of terms in the lemma. Also, application of \varphi 
to the terms of the second and third form of the lemma produces terms of the second
and third form again, while application of \varphi to the first form produces

\varphi \varrho jL(I\updownarrow P)\varphi s\updownarrow jf = \varrho j+1L(I\updownarrow P)\varphi s\updownarrow jf + \varrho jL\varphi (I\updownarrow P)\varphi s\updownarrow jf

= \varrho j+1L(I\updownarrow P)\varphi s\updownarrow jf+\varrho jL[[P,\varphi ]]\varphi s\updownarrow jf+· · ·+\varrho jL\varphi s\updownarrow j [[\varphi s\updownarrow j [[P,\varphi ]]f

+ \varrho jL(I\updownarrow P)\varphi s\updownarrow j+1f,

which proves the claim.

Also, we have the following straightforward estimate for [[P,\varphi ]]f .

Lemma 3. Suppose that (2.3) holds. For s1 + s2 \nearrow 1, the following holds:

[[P,\varphi ]]f =\updownarrow 
4\left( 

i=0

\infty f,\rightharpoondown i

\nwarrow 
µ\in L2

v
\varphi (\rightharpoondown i

\nwarrow 
µ),

\leftrightarrow [[P,\varphi ]]f\leftrightarrow L2
v
\leftrightsquigarrow \vargamma \leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
t,x

\leftrightarrow f\leftrightarrow L2
v
,

\leftrightarrow \varphi s1 [[P,\varphi ]]\varphi s2f\leftrightarrow L2
v
\leftrightsquigarrow \vargamma V (\leftharpoondown )\leftrightarrow \varphi s1+s2f\leftrightarrow L2

v
.

Next, we introduce anisotropic spaces; this will be key to our analysis. For p \uparrow 
[1,\Uparrow ], we recall the space Lp(T2;L2(R3)) by the norm \leftrightarrow f\leftrightarrow Lp(T2;L2(R3)) in (1.28). For
p, q \uparrow [1,\Uparrow ], Lq([0, T ];Lp(T2;L2(R3))) is defined similarly. We have the following
anisotropic interpolations.

Lemma 4. We have the following:

1. (anisotropic Ladyzhenskaya) \leftrightarrow f\leftrightarrow L4
x
L2

v
\leftrightsquigarrow \leftrightarrow f\leftrightarrow 

1

2

L2
x
L2

v

\leftrightarrow \varphi f\leftrightarrow 
1

2

L2
x
L2

v

and

2. (anisotropic Agmon) \leftrightarrow f\leftrightarrow L\rightarrow 
x

L2
v
\leftrightsquigarrow \leftrightarrow f\leftrightarrow 

1

2

L2
x
L2

v

\leftrightarrow \varphi 2f\leftrightarrow 
1

2

L2
x
L2

v

.

Proof. We only prove the former; the latter is derived in a similar manner.

\leftrightarrow f\leftrightarrow L4
x
L2

v
=

\left[ \Biggl\lceil 

T2

\Bigg\backslash \Biggl\lceil 

R3

|f(x, v)|2dv
\Big/ 4

2

dx

\right] 1

2·2

\nearrow 
\left[ \Biggl\lceil 

R3

\Bigg\backslash \Biggl\lceil 

T2

|f(x, v)|4dx
\Big/ 1

2

dv

\right] 1

2

=

\Bigg\backslash \Biggl\lceil 

R3

\leftrightarrow f(·, v)\leftrightarrow 2
L4

x

dv

\Big/ 1

2

\leftrightsquigarrow 
\Bigg\backslash \Biggl\lceil 

R3

\leftrightarrow f(·, v)\leftrightarrow L2
x
\leftrightarrow \varphi f(·, v)\leftrightarrow L2

x
dv

\Big/ 1

2

\nearrow 
\Bigg\backslash \Biggl\lceil 

R3

\Biggl\lceil 

T2

|f(x, v)|2dxdv
\Big/ 1

2·2
\Bigg\backslash \Biggl\lceil 

R3

\Biggl\lceil 

T2

|\varphi f(x, v)|2dxdv
\Big/ 1

2·2

= \leftrightarrow f\leftrightarrow 
1

2

L2
x
L2

v

\leftrightarrow \varphi f\leftrightarrow 
1

2

L2
x
L2

v

,

where we applied Minkowski for the first, the usual Ladyzhenskaya for the second,
and Hölder for the last inequalities.
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3154 CHANWOO KIM AND JOONHYUN LA

From Lemma 4, we have the following.

Lemma 5.

\leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow L4
x
L2

v

\leftrightsquigarrow \vargamma 
1

2 \leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow 
1

2

L2
x
L2

v

\downarrow 
\Biggl\langle 
\leftrightarrow \varphi u\varepsilon \leftrightarrow L\rightarrow 

x
\leftrightarrow f\leftrightarrow L2

x
L2

v
+ \leftrightarrow \vargamma \updownarrow 1\lhook 

1

2 (I\updownarrow P)\varphi f\leftrightarrow L2
x
L2

v
+ V (\leftharpoondown )\leftrightarrow \vargamma \updownarrow 1\lhook 

1

2 (I\updownarrow P)f\leftrightarrow L2
x
L2

v

\Biggr\rangle 1

2

,

\leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow L\rightarrow 
x

L2
v

\leftrightsquigarrow \vargamma 
1

2 \leftrightarrow \lhook 1

2 (I\updownarrow P)f\leftrightarrow 
1

2

L2
x
L2

v

\downarrow 
 
\leftrightarrow \varphi u\varepsilon \leftrightarrow L\rightarrow 

x
\leftrightarrow \varphi f\leftrightarrow L2

x
L2

v
+ \leftrightarrow \vargamma \updownarrow 1\lhook 

1

2 (I\updownarrow P)\varphi 2f\leftrightarrow L2
x
L2

v

+ V (\leftharpoondown )
\Biggl\langle 
\leftrightarrow \vargamma \updownarrow 1\lhook 

1

2 (I\updownarrow P)f\leftrightarrow L2
x
L2

v
+ \leftrightarrow \vargamma \updownarrow 1\lhook 

1

2 (I\updownarrow P)\varphi f\leftrightarrow L2
x
L2

v
+ \leftrightarrow f\leftrightarrow L2

x
L2

v

\Biggr\rangle  1

2

.

Proof. We only give the proof for the first inequality; the second inequality can
be proved by a similar argument. By Lemma 4, it su\%ces to control \varphi (\lhook 

1

2 (I\updownarrow P)f);
we have

\varphi (\lhook 
1

2 (I\updownarrow P)f) =
1

2
\lhook \updownarrow 1\varphi (\lhook )\lhook 

1

2 (I\updownarrow P)f + \lhook 
1

2 [[P,\varphi ]]f + \lhook 
1

2 (I\updownarrow P)\varphi f.

One can easily check that sup
x,v

|\lhook \updownarrow 1\varphi (\lhook )| \leftrightsquigarrow \vargamma \leftrightarrow \varphi u\varepsilon \leftrightarrow L\rightarrow 
x
, and thus, the inequality

follows.

Lemma 6 ([11, 31]). L|N\simeq :N\downarrow \searrow N\downarrow 
is a bijection, and thus, L\updownarrow 1 :N\downarrow \searrow N\downarrow 

is well defined. Also, L\updownarrow 1
is symmetric under any orthonormal transformation. In

particular, if f \uparrow N\downarrow 
is an even (resp., odd) function, then so is L\updownarrow 1f .

Proof. The proof follows the Fredholm alternative and rotational invariance of Q.
We refer to [11, 31] for the proof.

The term (v \updownarrow \vargamma u\varepsilon )\ni (v \updownarrow \vargamma u\varepsilon )
\nwarrow 
µ and its image over L\updownarrow 1 turns out to play an

important role in the Hilbert expansion. Note that

(2.12)

(I\updownarrow P)
 
(v\updownarrow \vargamma u\varepsilon )\ni (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ
\left\{ 
=

\Bigg\backslash 
(v\updownarrow \vargamma u\varepsilon )\ni (v\updownarrow \vargamma u\varepsilon )\updownarrow 1

3
|v\updownarrow \vargamma u\varepsilon |2I3

\Big/ 
\nwarrow 
µ.

Thus, we define A :=A(t, x)\uparrow M3\Uparrow 3(R) by (see [5])

(2.13) Aij =L\updownarrow 1

\Bigg\backslash \Bigg\backslash 
(v\updownarrow \vargamma u\varepsilon )i(v\updownarrow \vargamma u\varepsilon )j \updownarrow 

|v\updownarrow \vargamma u\varepsilon |2

3
\rhook ij

\Big/ 
\nwarrow 
µ

\Big/ 
.

Regarding A, we have the following useful lemma.

Lemma 7 ([5, 4]). \infty LA\varsigma k,Aij\in = \rightharpoonup 0(\rhook ik\rhook j\varsigma + \rhook i\varsigma \rhook jk)\updownarrow 2
3\rightharpoonup 0\rhook ij\rhook k\varsigma .

Proof. We refer to [5, 4] for the proof.

From explicit calculation, we can also establish the following result.

Lemma 8. For i, j, k \uparrow {1,2,3},

P(\rightharpoondown i\rightharpoondown j\rightharpoondown k

\nwarrow 
µ) =

3\left( 

\varsigma =1

(\rhook ij\rhook k\varsigma + \rhook ik\rhook j\varsigma + \rhook jk\rhook i\varsigma )\rightharpoondown \varsigma 

\nwarrow 
µ.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

3/
25

 to
 1

73
.2

39
.6

4.
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y
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We also have the following useful pointwise estimates. First, we have the following
pointwise estimates on \varrho 

s(f
(\varrho t+ v

\vargamma 
·\Rightarrow x)

\Downarrow 
µ\Downarrow 

µ
).

Lemma 9. Suppose that (2.3) holds. Then, for s\nearrow 2, we have

\varphi s

\Bigg\backslash 
f
(\varphi t +

v

\omega 
·\Leftarrow x)

\nwarrow 
µ

\nwarrow 
µ

\Big/ 
= \varphi sf

\Bigg\backslash 
(\varphi t +

v

\omega 
·\Leftarrow x)

\nwarrow 
µ

\nwarrow 
µ

\Big/ 

+
\left( 

s\Leftarrow <s

(\varphi s
\Leftarrow 
f)

1

2

\left( 

i,j

(\varphi s\updownarrow s
\Leftarrow 
\varphi xi

u\varepsilon 

j
)\rightharpoondown i\rightharpoondown j +R,

(2.14)

where |R|\leftrightsquigarrow \vargamma V (\leftharpoondown )\lhook (v)
\right\} 

s\Leftarrow <s
|\varphi s

\Leftarrow 
f |.

Proof. It su\%ces to notice that

(\varphi t +
v

\omega 
·\Leftarrow x)

\nwarrow 
µ

\nwarrow 
µ

=
1

2

\left( 

i,j

\varphi xi
u\varepsilon 

j
\rightharpoondown i\rightharpoondown j +

1

2
\vargamma 
\left( 

i

(\varphi tu
\varepsilon + u\varepsilon ·\Leftarrow xu

\varepsilon )i\rightharpoondown i

and that the first two terms of the right-hand side of (2.14) correspond to the terms
where all \varphi are applied to either f or \varphi xi

u\varepsilon 

j
and R are all others.

Next, we present pointwise estimates on A and its derivatives ([35]).

Lemma 10 (Lemma 3 of [35]). Suppose that (2.3) holds. For  \triangleleft \uparrow (0,1/4),

|Aij(v)|\leftrightsquigarrow e\updownarrow \varphi |v\updownarrow \omega u
\omega |2 ,

\left( 

s\searrow 2,D\leftrightarrow {\varrho t,\varrho }

  \varphi s
 
(1 + (u\varepsilon , ũ\varepsilon ))DAij(v)

\left\{   \leftrightsquigarrow \vargamma V (\leftharpoondown )e\updownarrow \varphi |v\updownarrow \omega u
\omega |2 .

Next, we have the following pointwise estimates on \& and L.

Lemma 11 (Lemma 4 of [35]). Suppose that \vargamma |u\varepsilon (x, t)| \leftrightsquigarrow 1. For 0 <  \triangleleft < 1/4,
C \uparrow R3

, and s\nearrow 2, we have

|\&(f, g)(v)|\leftrightsquigarrow \leftrightarrow e\varphi |v|
2+C·vf(v)\leftrightarrow L\rightarrow 

v
\leftrightarrow e\varphi |v|

2+C·vg(v)\leftrightarrow L\rightarrow 
v

\lhook (v)

e\varphi |v|2+C·v ,

|\varrho s\&(f, g)(v)|\leftrightsquigarrow \vargamma V (\leftharpoondown )\leftrightarrow e\varphi |v|
2+C·vf(v)\leftrightarrow L\rightarrow 

v
\leftrightarrow e\varphi |v|

2+C·vg(v)\leftrightarrow L\rightarrow 
v

\lhook (v)

e\varphi |v|2+C·v ,

|\varrho sLf(v)|\leftrightsquigarrow \vargamma V (\leftharpoondown )\leftrightarrow e\varphi |v|
2+C·vf(v)\leftrightarrow L\rightarrow 

v

\lhook (v)2

e\varphi |v|2+C·v .

Here, we can choose the constant for the bound uniformly for {|C|\nearrow 1}.
Finally, we present pointwise estimates regarding projections P and I\updownarrow P.

Lemma 12. Suppose that f(t, x, v) \uparrow L2
v
satisfies |f(t, x, v)| \nearrow C(t, x) exp(\updownarrow  \triangleleft |v

\updownarrow \vargamma u\varepsilon (t, x)|2) for some constant C(t, x) independent of v and  \triangleleft \uparrow (0,1/4). Then,

|Pf(t, x, v)|\leftrightsquigarrow C(t, x) exp
 
\updownarrow  \triangleleft |v\updownarrow \vargamma u\varepsilon (t, x)|2

\left\{ 
,

|(I\updownarrow P)f(t, x, v)|\leftrightsquigarrow C(t, x) exp
 
\updownarrow  \triangleleft |v\updownarrow \vargamma u\varepsilon (t, x)|2

\left\{ 
,

(2.15)

where the constants for inequalities are independent of t, x, v but depend on  \triangleleft .
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3156 CHANWOO KIM AND JOONHYUN LA

Proof. It su\%ces to show (2.15) only; the other follows from |(I\updownarrow P)f(t, x, v)|\nearrow 
|Pf(t, x, v)|+ |f(t, x, v)|. Note that, from (2.6),

|Pf(t, x, v)|

\nearrow 
5\left( 

\varsigma =1

C(t, x)

\Biggl\lceil 
\infty v\updownarrow \vargamma u\varepsilon \in 2 exp

\Bigg\backslash 
\updownarrow 
\Bigg\backslash 
 \triangleleft +

1

4

\Big/ 
|v\updownarrow \vargamma u\varepsilon (t, x)|2

\Big/ 
dv\infty v\updownarrow \vargamma u\varepsilon \in 2\nwarrow µ

\nearrow C(t, x)C\varphi exp
 
\updownarrow  \triangleleft |v\updownarrow \vargamma u\varepsilon (t, x)|2

\left\{ 
.

2.2. New Hilbert-type expansion. We recall an explicit form of derivatives
of µk:

\Biggl\lfloor 
\varphi t + u\varepsilon ·\Leftarrow x

\Biggr\rfloor 
µk = \vargamma k(\varphi tu

\varepsilon + u\varepsilon ·\Leftarrow xu
\varepsilon ) · (v\updownarrow \vargamma u\varepsilon )µk,

(v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow xµ
k = \vargamma k(\Leftarrow xu

\varepsilon ) : ((v\updownarrow \vargamma u\varepsilon )\ni (v\updownarrow \vargamma u\varepsilon ))µk,
(2.16)

where k > 0 and A :B = tr(AB) =
\right\} 3

i,j=1AijBji for arbitrary rank 2 tensors A, B.
Now, we derive an equation of fR. First, we plug (2.2) into (1.5) to obtain

(v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x

 
µ+\vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ+\vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+\vargamma 2\varpi p̃\varepsilon µ

\left\{ 
(2.17)

+ \vargamma (\varphi t + u\varepsilon ·\Leftarrow x)
 
µ+ \vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ+\vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+ \vargamma 2\varpi p̃\varepsilon µ

\left\{ (2.18)

\updownarrow 1

\varpi \vargamma 
Q(µ+ \vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ+ \vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+ \vargamma 2\varpi p̃\varepsilon µ)(2.19)

+ \vargamma 2
 
\varphi t(fR

\nwarrow 
µ) +

v

\vargamma 
·\Leftarrow x(fR

\nwarrow 
µ)\updownarrow 1

\vargamma \varpi 
Q(fR

\nwarrow 
µ, fR

\nwarrow 
µ)
 

(2.20)

\updownarrow 2

\varpi 
Q(µ+ \vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ+ \vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+ \vargamma 2\varpi p̃\varepsilon µ, fR

\nwarrow 
µ) = 0,

(2.21)

where we have used an abbreviation Q(g) =Q(g, g) in (2.19).
We group the source terms (2.17), (2.18), and (2.19) with corresponding orders of

magnitude; it is good to keep in mind that, in our method, all hydrodynamic terms
of order of magnitude less than \vargamma 2\varpi are considered small and all nonhydrodynamic
terms of order of magnitude less than \vargamma 

\nwarrow 
\varpi are considered small. In the end, we will

group all small terms altogether.
Terms that are greater than \vargamma . Among terms that are independent of fR, there

are no terms whose magnitude is greater than \vargamma . For terms in (2.17) and (2.18), this
is obvious; the largest term comes from (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow xµ, which is of order \vargamma . For terms
in (2.19), we note that, since (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ,

\nwarrow 
µ\uparrow N , in fact, (2.19) can be rewritten as

2\vargamma Q(µ(1+\vargamma 2p\varepsilon + \vargamma 2\varpi p̃\varepsilon ), (\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ)\updownarrow \varpi \vargamma Q(ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ, ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ)

+ 2\vargamma 2\varpi Q(ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ, (\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ)\updownarrow \vargamma 3\varpi Q((\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ, (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ),

(2.22)

whose leading order is \vargamma .
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3157

2.2.1. Order \bfitomega . Among terms that are independent of fR, there are two terms
of order \vargamma :

(v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow xµ+
2

\varpi \vargamma 
Q(µ,\vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ)

= \vargamma \Leftarrow xu
\varepsilon : (v\updownarrow \vargamma u\varepsilon )\ni (v\updownarrow \vargamma u\varepsilon )µ\updownarrow \vargamma (\Leftarrow xu

\varepsilon ) :LA
\nwarrow 
µ= 0

because \Leftarrow x · u\varepsilon = 0.

2.2.2. Order \bfitomega \bfitvarepsilon . Among terms that are independent of fR, there are two terms
of order \vargamma \varpi .

\vargamma \varpi (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x(ũ
\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ)\updownarrow \vargamma \varpi Q(ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ, ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ)

= \vargamma \varpi 
 
(\Leftarrow xũ

\varepsilon ) :LA\updownarrow \&
 
ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ, ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ
\left\{ \left\{ \nwarrow 

µ(2.23)

+ \vargamma 2\varpi 

 

 
\left( 

i,j

(v\updownarrow \vargamma u\varepsilon )iũ
\varepsilon 

j

\Biggl\langle 
\updownarrow \varphi xi

u\varepsilon 

j
+ (v\updownarrow \vargamma u\varepsilon )j(v\updownarrow \vargamma u\varepsilon )k\varphi xi

u\varepsilon 

k

\Biggr\rangle 
 

 µ(2.24)

because \Leftarrow x · ũ\varepsilon = 0. Note that terms of order \vargamma \varpi are nonhydrodynamic: 1\Downarrow 
µ
(2.23) \uparrow 

N\downarrow .

2.2.3. Order \bfitomega 2. The following terms are of order \vargamma 2:

\vargamma (\varphi t + u\varepsilon ·\Leftarrow x)µ+ \vargamma 2(v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x(p
\varepsilon µ)

= \vargamma 2
 
(\varphi t + u\varepsilon ·\Leftarrow x)u

\varepsilon +\Leftarrow xp
\varepsilon 
\left\{ 
· (v\updownarrow \vargamma u\varepsilon )µ

+ \vargamma 3p\varepsilon \Leftarrow xi
u\varepsilon 

j
(v\updownarrow \vargamma u\varepsilon )i(v\updownarrow \vargamma u\varepsilon )jµ= \vargamma 3p\varepsilon \Leftarrow xi

u\varepsilon 

j
(v\updownarrow \vargamma u\varepsilon )i(v\updownarrow \vargamma u\varepsilon )jµ(2.25)

since (\varphi t + u\varepsilon ·\Leftarrow x)u\varepsilon +\Leftarrow xp\varepsilon = 0.

2.2.4. Order \bfitomega 2\bfitvarepsilon . The key reason to introduce correctors \vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ and
\vargamma 2\varpi p̃\varepsilon µ is to get rid of hydrodynamic terms of order \vargamma 2\varpi ; as payback, we obtained
terms of order \vargamma \varpi , which is larger, but all of them are nonhydrodynamic, so they are
small in our scale. The following is the collection of all terms of order \vargamma 2\varpi :

\updownarrow \vargamma 2\varpi (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x((\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ) + \vargamma 2\varpi (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x(p̃

\varepsilon µ) + (2.24)

+ \vargamma 2\varpi (\varphi t + u\varepsilon ·\Leftarrow x)(ũ
\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ) + 2\vargamma 2\varpi \&(ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ, (\Leftarrow xu

\varepsilon ) :A)
\nwarrow 
µ

= \vargamma 2\varpi {\updownarrow \rightharpoonup 0\#xu
\varepsilon +\Leftarrow xp̃

\varepsilon + (\varphi t + u\varepsilon ·\Leftarrow x)ũ
\varepsilon } · (v\updownarrow \vargamma u\varepsilon )µ

(2.26)

+ \vargamma 2\varpi 

 

 \updownarrow 
\left( 

i,j

ũ\varepsilon 

j
\varphi xi

u\varepsilon 

j
(v\updownarrow \vargamma u\varepsilon )i +

\left( 

i,j,k,\varsigma 

ũ\varepsilon 

j
\varphi xi

u\varepsilon 

k
(\rhook ij\rhook k\varsigma + \rhook ik\rhook j\varsigma + \rhook jk\rhook i\varsigma )(v\updownarrow \vargamma u\varepsilon )\varsigma 

 

 µ

(2.27)

+ \vargamma 2\varpi 
 
2\&(ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ, (\Leftarrow xu

\varepsilon ) :A)\updownarrow (\Leftarrow 2
x
u\varepsilon ) : (I\updownarrow P)(v\updownarrow \vargamma u\varepsilon )A

\left\{ \nwarrow 
µ(2.28)

+ \vargamma 2\varpi 
\left( 

i,j,k

ũ\varepsilon 

j
\varphi xi

u\varepsilon 

k
(I\updownarrow P)

 
(v\updownarrow \vargamma u\varepsilon )i(v\updownarrow \vargamma u\varepsilon )j(v\updownarrow \vargamma u\varepsilon )k

\nwarrow 
µ
\left\{ \nwarrow 

µ(2.29)

+ \vargamma 2\varpi 
\Biggl\langle 
\updownarrow (\Leftarrow xu

\varepsilon ) : (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow x(A
\nwarrow 
µ) + p̃\varepsilon (v\updownarrow \vargamma u\varepsilon ) ·\Leftarrow xµ+ ũ\varepsilon (2.30)

· (\varphi t + u\varepsilon ·\Leftarrow x)((v\updownarrow \vargamma u\varepsilon )µ)
\Biggr\rangle 
= (2.28) + (2.29) + (2.30).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

3/
25

 to
 1

73
.2

39
.6

4.
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



3158 CHANWOO KIM AND JOONHYUN LA

Here, we have used Lemma 8 and that (2.26) and (2.27) can be gathered to form

(2.26)+ (2.27) = \vargamma 2\varpi ((\varphi t +u\varepsilon ·\Leftarrow x)ũ
\varepsilon + ũ\varepsilon ·\Leftarrow xu

\varepsilon \updownarrow \rightharpoonup 0\#xu
\varepsilon +\Leftarrow xp̃

\varepsilon ) · (v\updownarrow \vargamma u\varepsilon )µ= 0.

Note that 1\Downarrow 
µ
((2.28) + (2.29)) \uparrow N\downarrow ; that is, it is nonhydrodynamic, so small in our

scales, and (2.30) is small—in fact, it is of order \vargamma 3\varpi .

2.2.5. Small, nonnecessarily nonhydrodynamic remainders. The remain-
ing terms are small in our scales; the following gathers all remaining terms.

\vargamma 3
\nwarrow 
µR1 = (2.25) + (2.30) + \vargamma 3(\varphi t + u\varepsilon ·\Leftarrow x)(p

\varepsilon µ)

+ \vargamma 3\varpi (\varphi t + u\varepsilon ·\Leftarrow x)(\updownarrow (\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ+ p̃\varepsilon µ)

\updownarrow \vargamma 3p\varepsilon (L(\Leftarrow xu
\varepsilon ) :A)

\nwarrow 
µ\updownarrow \vargamma 3\varpi p̃\varepsilon (L(\Leftarrow xu

\varepsilon ) :A)
\nwarrow 
µ

\updownarrow \vargamma 3\varpi \&((\Leftarrow xu
\varepsilon ) :A, (\Leftarrow xu

\varepsilon ) :A)
\nwarrow 
µ.

(2.31)

One can easily observe the following.

Proposition 1. Suppose that (2.3) holds. R1 consists of a linear combination of

the terms in the following tensor product:

 

   

1
\varpi 
\vargamma 
\vargamma \varpi 

 

   \ni 

 

         

1
p\varepsilon 

\Leftarrow xu\varepsilon 

p̃\varepsilon 

ũ\varepsilon 

ũ\varepsilon \ni u\varepsilon 

u\varepsilon 

 

         

\ni D

 

   

p\varepsilon 

u\varepsilon 

\Leftarrow xu\varepsilon 

p̃\varepsilon 

 

   \ni P
\searrow 2((v\updownarrow \vargamma u\varepsilon ))

 

     

\nwarrow 
µ

1
\omega 
\varphi tA

1
\omega 
\varphi A
LA

\&(A,A)

 

     
,

where D is either \varphi t or \varphi , which is applied to p\varepsilon , u\varepsilon ,\Leftarrow xu\varepsilon , p̃\varepsilon , and P
\searrow 2

is a polynomial

of degree \nearrow 2 of its arguments. In particular, for  \triangleleft \uparrow (0, 14 ) and s \nearrow 2, we have the

following pointwise estimate:

(2.32) |\varphi s
R1|\leftrightsquigarrow V (\leftharpoondown )e\updownarrow \varphi |v\updownarrow \omega u

\omega |2 .

2.2.6. Small nonhydrodynamic remainders. Equations (2.23), (2.28), and
(2.29) are nonhydrodynamic remainders. We group them to obtain the following
proposition.

Proposition 2. Suppose that (2.3) holds. Let R2 be defined by

(2.33) \vargamma \varpi 
\nwarrow 
µR2 = (2.23) + (2.28) + (2.29).

Then, R2 consists of a linear combination of the terms in the following tensor product:

\Bigg\backslash 
1
\vargamma 

\Big/ 
\ni 

 

   

\Leftarrow xũ\varepsilon 

ũ\varepsilon \ni ũ\varepsilon 

ũ\varepsilon \ni \Leftarrow xu\varepsilon 

\Leftarrow 2
x
u\varepsilon 

 

   \ni 

 

     

LA
\&((v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ, (v\updownarrow \vargamma u\varepsilon )

\nwarrow 
µ)

\&((v\updownarrow \vargamma u\varepsilon )
\nwarrow 
µ,A)

(I\updownarrow P)(v\updownarrow \vargamma u\varepsilon )A

(I\updownarrow P)(v\updownarrow \vargamma u\varepsilon )\nwarrow 
3\nwarrow 

µ.

 

     
.

In particular, R2 \uparrow N\downarrow 
, and, for  \triangleleft \uparrow (0, 14 ) and s\nearrow 2, we have the following pointwise

estimate:

|(I\updownarrow P)\varphi s
R2|\leftrightsquigarrow V (\leftharpoondown )e\updownarrow \varphi |v\updownarrow \omega u

\omega |2 ,

|P\varphi s
R2|\leftrightsquigarrow \vargamma V (\leftharpoondown )e\updownarrow \varphi |v\updownarrow \omega u

\omega |2 .
(2.34)
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3159

Proof. It su\%ces to show (2.34); we see that, if all \varphi s are applied to macroscopic
quantities \Leftarrow xũ\varepsilon , . . . ,\Leftarrow 2

x
u\varepsilon , then the resulting term is still nonhydrodynamic. In that

case, the first inequality of (2.34) applies. On the other hand, if some of \varphi are applied
to microscopic quantities g=LA, . . . , (I\updownarrow P)(v\updownarrow \vargamma u\varepsilon )\nwarrow 

3\nwarrow 
µ, we note that

\varphi s
\Leftarrow 
g= \varphi s

\Leftarrow 
(I\updownarrow P)g= (I\updownarrow P)\varphi s

\Leftarrow 
g+ [[P,\varphi s

\Leftarrow 
]]g.

The first term belongs to N\downarrow , and the second term belongs to N and is bounded by
\vargamma (1 +

\right\} 
s\Leftarrow \Leftarrow \searrow s\Leftarrow \leftrightarrow \varphi s

\Leftarrow \Leftarrow 
u\leftrightarrow L\rightarrow )\leftrightarrow \varphi s

\Leftarrow \updownarrow 1g\leftrightarrow L\rightarrow 
x

L2
v
e\updownarrow \varphi |v\updownarrow \omega u

\omega |2 . In both cases, (2.34) is valid.

Also, we can collect terms in (2.21) except for µ and fR by R3.

Proposition 3. Suppose that (2.3) holds. Let R3 be defined by

(2.35) \vargamma \varpi 
\nwarrow 
µR3 = 2\vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+ \vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu

\varepsilon ) :A
\nwarrow 
µ+ \vargamma 2\varpi p̃\varepsilon µ.

Then, for  \triangleleft \uparrow (0, 14 ) and s\nearrow 2, we have the following pointwise estimate:

(2.36) |\varphi s
R3|\leftrightsquigarrow V (\leftharpoondown )e\updownarrow \varphi |v\updownarrow \omega u

\omega |2 .

2.3. Remainder equation and its derivatives. We have simplified (2.17),
(2.18), (2.19), (2.20), and (2.21) so far. Finally, by dividing (2.17), (2.18), (2.19), (2.20),
and (2.21) by \vargamma 2

\nwarrow 
µ, we obtain

\varphi tfR +
v

\vargamma 
·\Leftarrow xfR + fR

\Bigg\backslash 
(\varphi t +

v

\omega 
·\Leftarrow x)

\nwarrow 
µ

\nwarrow 
µ

\Big/ 
+

1

\vargamma 2\varpi 
LfR

=
1

\vargamma \varpi 
\&(fR, fR) +

1

\vargamma 
\&(R3, fR)\updownarrow \vargamma R1 \updownarrow 

\varpi 

\vargamma 
R2,

(2.37)

where R1,R2, and R3 are defined by (2.31), (2.33), and (2.35), respectively.
Also, we have the equation for \varphi sf , for s\nearrow 2; by Lemma 9,

\varphi t\varphi 
sfR +

v

\vargamma 
·\Leftarrow x\varphi 

sfR + \varphi sfR

\Bigg\backslash 
(\varphi t +

v

\omega 
·\Leftarrow x)

\nwarrow 
µ

\nwarrow 
µ

\Big/ 
+

1

\vargamma 2\varpi 
L\varphi sfR

=\updownarrow 
\left( 

s\Leftarrow <s

\varphi s
\Leftarrow 
fR

1

2

\left( 

i,j

(\varphi s\updownarrow s
\Leftarrow 
\varphi xi

u\varepsilon 

j
)\rightharpoondown i\rightharpoondown j +Rs

+
1

\vargamma 2\varpi 
[[\varphi s,L]]fR +

1

\vargamma \varpi 
\varphi s\&(fR, fR) +

1

\vargamma 
\varphi s\&(R3, fR)

\updownarrow \vargamma \varphi s
R1 \updownarrow 

\varpi 

\vargamma 
(I\updownarrow P)\varphi s

R2 \updownarrow 
\varpi 

\vargamma 
P\varphi s

R2,

(2.38)

where |Rs|\leftrightsquigarrow \vargamma V (\leftharpoondown )\lhook (v)
\right\} 

s\Leftarrow <s
|\varphi s

\Leftarrow 
f |.

2.4. Scaled L\rightarrow -estimate. In this section, we prove a pointwise estimate (with
a weight (2.43)) of an Lp solution of the linear Boltzmann equation with a force term.
We consider the following transport equation with (2.40) term:

(2.39) [\varphi t + \vargamma \updownarrow 1v ·\Leftarrow x]f +
1

\vargamma 2\varpi 
Lf \updownarrow 

 
\varphi t +

1
\omega 
v ·\Leftarrow x

\left\{ \nwarrow 
µ

\nwarrow 
µ

fR = H̃ in [0, T ]\downarrow T2 \downarrow R3.

Also, we have an issue of momentum stream; the remainder equation (2.37) in our
case contains the term

(2.40)

 
\varphi t +

1
\omega 
v ·\Leftarrow x

\left\{ \nwarrow 
µ

\nwarrow 
µ

fR,
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3160 CHANWOO KIM AND JOONHYUN LA

which cannot be controlled by fR for large v. This term precisely comes from the one
that we expand around the local Maxwellian, not the global one. In [35], a weight
function of the form

(2.41) w(x, v) := exp( \triangleright |v|2 \updownarrow Z(x) · v),

where Z(x) is a suitable vector field, was introduced to bound the (2.40) term in the
expansion around the local Maxwellian

(2.42) w

\Bigg\backslash 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Big/ 
fR =

\Bigg\backslash 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Big/ 
(wfR) +

1

\vargamma 
(v ·\Leftarrow xZ(x) · v)wfR,

and if Z(x) is chosen so that v ·\Leftarrow xZ(x) · v > 0 for any v (Z(x) = z(x)x for a suitably
chosen function z(x) works), one may control the most problematic term in (2.40):
(\Leftarrow xu\varepsilon : v\ni v)wfR.

Inspired by this, we introduce a suitable weight function, which is appropriate for
the periodic domain. Unlike the whole Euclidean space, the existence of such Z(x) in
T2 is less obvious; in fact, if Z = (Z1,Z2) is smooth, then, since

\Biggr] 
T1 \varphi 1Z1(x1, x2)dx1 =

0, \varphi 1Z1 will have a mixed sign along the circle T1 \downarrow {x2} for each x2 \uparrow T1 unless it
is 0 over whole circle. Thus, \Leftarrow xZ + (\Leftarrow xZ)T is neither positive definite nor negative
definite over the whole domain T2.

To overcome this di\%culty, we introduce a weight function that cancels the most
problematic term of (2.40) instead of controlling it; we introduce

(2.43) w(t, x, v) := exp

\Bigg\backslash 
 \triangleright |v|2 \updownarrow 1

2
\vargamma u\varepsilon (t, x) · v

\Big/ 
,

where  \triangleright \uparrow (0, 14 ), under the assumption

(2.44) \vargamma |u\varepsilon (t, x)|= o(1).

In our scale regime, (2.3) and (2.44) hold.

Proposition 4. For an arbitrary T > 0, suppose that f(t, x, v) is a distribution

solution to (2.39). Also, suppose that (2.3) holds.
Then, for w= e\leftharpoonup |v|

2\updownarrow 1

2
\omega u

\omega (t,x)·v
with  \triangleright \uparrow (0, 14 ) in (2.43),

\vargamma \varpi sup
t\leftrightarrow [0,T ]

\leftrightarrow wf(t)\leftrightarrow L\rightarrow (T2\Uparrow R3)

\leftrightsquigarrow \vargamma \varpi \leftrightarrow wf0\leftrightarrow L\rightarrow (T2\Uparrow R3) + sup
t\leftrightarrow [0,T ]

\leftrightarrow f(s)\leftrightarrow L2(T2\Uparrow R3) + \vargamma 3\varpi 2 sup
t\leftrightarrow [0,T ]

\leftrightarrow \lhook \updownarrow 1wH̃\leftrightarrow L\rightarrow (T2\Uparrow R3).

(2.45)

The proof is based on the Duhamel formula (2.56) along the trajectory with scaled
variables and the Lp-L\nearrow interpolation argument based on the change of variable.

Let, with w of (2.43),

(2.46) h=wf.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3161

From (2.39), we can write the evolution equation of h:

\Biggl\{ 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Biggr\} 
h=w

\Biggl\{ 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Biggr\} 
f + f

\Biggl\{ 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Biggr\} 
w

=\updownarrow 1

\vargamma 2\varpi 
wLf +

\Biggl\lfloor 
\varphi t +

1
\omega 
v ·\Leftarrow x

\Biggr\rfloor \nwarrow 
µ

\nwarrow 
µ

h+wH̃ + h

\Biggl\{ 
\varphi t \updownarrow 

1

\vargamma 
v ·\Leftarrow x

\Biggr\} 
1

2
\vargamma u\varepsilon · v

=\updownarrow 1

\vargamma 2\varpi 
wLf +wH̃

+ h

\Bigg\backslash 
\updownarrow 1

2
(v\updownarrow \vargamma u\varepsilon ) · [\varphi t +

1

\vargamma 
v ·\Leftarrow x](\updownarrow \vargamma u\varepsilon )\updownarrow 1

2

\Biggl\{ 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Biggr\} 
\vargamma u\varepsilon · v

\Big/ 

=\updownarrow 1

\vargamma 2\varpi 
wL

\Bigg\backslash 
h

w

\Big/ 
\updownarrow h

\Bigg\backslash 
\vargamma 2

2
u\varepsilon · \varphi tu\varepsilon +

\vargamma 

2
v · (\Leftarrow xu

\varepsilon ) · u\varepsilon 

\Big/ 
+wH̃.

(2.47)

Next, we recall that Lf = \lhook f \updownarrow Kf from (2.7). From the explicit form of \lhook in
(2.7), we have a positive constant \lhook 0 > 0 such that

(2.48) \lhook 0(|v\updownarrow \vargamma u\varepsilon |+ 1)\nearrow \lhook (v)\nearrow 2\lhook 0(|v\updownarrow \vargamma u\varepsilon |+ 1).

In particular, (2.48) and (2.3) imply that

(2.49) \lhook (t, x, v) := \lhook (t, x, v) +
\vargamma 4\varpi 

2
u\varepsilon · \varphi tu\varepsilon +

\vargamma 3\varpi 

2
v · (\Leftarrow xu

\varepsilon ) · u\varepsilon 

satisfies

(2.50)
1

2
\lhook 0(|v|+ 1)\nearrow \lhook (t, x, v)\nearrow 5

2
\lhook 0(|v|+ 1).

With \lhook , we can write the evolution equation for h:

(2.51)

\Bigg\backslash 
\varphi t +

1

\vargamma 
v ·\Leftarrow x

\Big/ 
h+

1

\vargamma 2\varpi 
\lhook h=

1

\vargamma 2\varpi 
wK

h

w
+wH̃.

Let Kwh(v) =
\Biggr] 
R3 kw(v, v\rightarrow )h(v\rightarrow )dv\rightarrow with kw(v, v\rightarrow ) := k(v, v\rightarrow )

w(v)
w(v\searrow )

. Then,

(2.52) w(v)K
h

w
(v) =

\Biggl\lceil 

R3

k(v, v\rightarrow )
w(v)

w(v\rightarrow )
h(v\rightarrow )dv\rightarrow =Kwh(v).

We will need the following estimate for kw.

Lemma 13 (Lemma 2 of [35]; also [23]). Suppose that (2.44) holds. For w =
e\leftharpoonup |v|

2\updownarrow 1

2
\omega u

\omega ·v
with  \triangleright \uparrow (0, 14 ), there exists C\leftharpoonup > 0 such that

(2.53) kw(v, v\rightarrow )\leftrightsquigarrow 
1

|v\updownarrow v\rightarrow |
e\updownarrow C\varpi 

|v\nearrow v\searrow |2
2 =: k\leftharpoonup (v\updownarrow v\rightarrow ),

(2.54)

\Biggl\lceil 

R3

(1 + |v\updownarrow v\rightarrow |)kw(v, v\rightarrow )dv\rightarrow \leftrightsquigarrow 
1

\lhook (v)
\leftrightsquigarrow 1

1 + |v| ,

(2.55)

\Biggl\lceil 

R3

1

|v\updownarrow v\rightarrow |
kw(v, v\rightarrow )dv\rightarrow \leftrightsquigarrow 

1

\lhook (v)
\leftrightsquigarrow 1.

Note that k\leftharpoonup \uparrow L1(R3).
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3162 CHANWOO KIM AND JOONHYUN LA

We solve (2.51) along the characteristics

h(t, x, v) = h0(Y (0; t, x, v), v) exp

\Bigg\backslash 
\updownarrow 
\Biggl\lceil 

t

0

\lhook (\oldstyle{0}, Y (\oldstyle{0} ; t, x, v), v)

\vargamma 2\varpi 
d\oldstyle{0}

\Big/ 

+

\Biggl\lceil 
t

0

e\updownarrow 
\Biggr) 

t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(s,Y (s; t, x, v), v, v\rightarrow )h(s,Y (s; t, x, v), v\rightarrow )dv\rightarrow ds

+

\Biggl\lceil 
t

0
e\updownarrow 

\Biggr) 
t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi (wH̃)(s,Y (s; t, x, v), v)ds.

(2.56)

Proof of Proposition 4. We again apply (2.56) to the second term on the right-
hand side of (2.56):

h(t, x, v) = h0(Y (0; t, x, v), v) exp

\Bigg\backslash 
\updownarrow 
\Biggl\lceil 

t

0

\lhook (\oldstyle{0}, Y (\oldstyle{0} ; t, x, v), v)

\vargamma 2\varpi 
d\oldstyle{0}

\Big/ 

+

\Biggl\lceil 
t

0
e\updownarrow 

\Biggr) 
t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi (wH)(s,Y (s; t, x, v), v)ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\Biggr) 

t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(s,Y (s; t, x, v), v, v\rightarrow )

\downarrow h0(Y (0;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow )e
\updownarrow 

\Biggr) 
s

0

\varrho (\varsigma 
\Leftarrow 
,Y (\varsigma 

\Leftarrow 
;s,Y (s;t,x,v),v\searrow ),v\searrow )

\vargamma 2\varphi 
d\leftharpoondown \Leftarrow 

dv\rightarrow ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\Biggr) 

t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(s,Y (s; t, x, v), v, v\rightarrow )

\downarrow 
\Biggl\lceil 

s

0
e\updownarrow 

\Biggr) 
s

\varsigma 

\varrho (\varsigma 
\Leftarrow 
,Y (\varsigma 

\Leftarrow 
;s,Y (s;t,x,v),v\searrow ),v\searrow )d\varsigma 

\Leftarrow 

\vargamma 2\varphi (wH)(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow )d\oldstyle{0}dv\rightarrow ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\Biggr) 

t

s

\varrho (\varsigma ,Y (\varsigma ;t,x,v),v)d\varsigma 

\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(s,Y (s; t, x, v), v, v\rightarrow )

\downarrow 
\Biggl\lceil 

s

0

e\updownarrow 
\Biggr) 

s

\varsigma 

\varrho (\varsigma 
\Leftarrow 
,Y (\varsigma 

\Leftarrow 
;s,Y (s;t,x,v),v\searrow ),v\searrow )d\varsigma 

\Leftarrow 

\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow , v\rightarrow \rightarrow )

\downarrow h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )dv\rightarrow \rightarrow d\oldstyle{0}dv\rightarrow ds

=: I1 + I2 + I3 + I4 + IK .

First, we control I0 := I1 + I3, the contribution from the initial data. We easily
notice from (2.50) and (2.54) that

|I1|\nearrow \leftrightarrow h0\leftrightarrow L\rightarrow (T2\Uparrow R3)e
\updownarrow \varrho 0(|v|+1)t

2\vargamma 2\varphi \nearrow \leftrightarrow h0\leftrightarrow L\rightarrow (T2\Uparrow R3),

|I3|\nearrow 
\Biggl\lceil 

t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(v, v\rightarrow )e
\updownarrow \varrho 0(|v\searrow |+1)s

2\vargamma 2\varphi \leftrightarrow h0\leftrightarrow L\rightarrow (T2\Uparrow R3)dv\rightarrow ds\leftrightsquigarrow \leftrightarrow h0\leftrightarrow L\rightarrow (T2\Uparrow R3).

In the second inequality, the dependence of kw on the t, x variables is omitted because
the bound is uniform on them.

Next, we control IH := I2 + I4, the contribution from source H. Again, from
(2.50) and (2.54), we have

|I2|\nearrow 
\Biggl\lceil 

t

0
e\updownarrow 

\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi |wH(v)|ds\leftrightsquigarrow \vargamma 2\varpi \leftrightarrow \lhook \updownarrow 1wH\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3),

|I4|\nearrow 
\Biggl\lceil 

t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 

R3

kw(v, v\rightarrow )

\Biggl\lceil 
s

0
e\updownarrow 

\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi |wH(v\rightarrow )|d\oldstyle{0}dv\rightarrow ds

\leftrightsquigarrow \vargamma 2\varpi \leftrightarrow \lhook \updownarrow 1wH\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/0

3/
25

 to
 1

73
.2

39
.6

4.
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3163

Finally, we control IK . The idea is the following: We decompose the time interval
[0, s] into [0, s\updownarrow \vargamma 2\varpi o(1)] and [s\updownarrow \vargamma 2\varpi o(1), s]; the first integral is controlled using the
change of variables v\rightarrow \searrow Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), and thus, we can rewrite the integral
of h with respect to v\rightarrow , v\rightarrow \rightarrow variables into the space-time integral of f . For that
reason, we plugged (2.56) into itself. Also, the splitting of the time gives control of
the Jacobian factor obtained from change of variables. On the other hand, the second
term is controlled by the fact that it is a short time integral; this gives smallness, and
thus, we can bound the integral with o(1)\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3).

For this purpose, we introduce a small positive number \rightharpoonup > 0, which is to be
determined. Using (2.50) and (2.54), we have the following:

|IK |\nearrow 
\Biggl\lceil 

t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup (v\updownarrow v\rightarrow )k
\leftharpoonup (v\rightarrow \updownarrow v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

=

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s\updownarrow \omega 

2
\vargamma \rightharpoonup 

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup (v\updownarrow v\rightarrow )k
\leftharpoonup (v\rightarrow \updownarrow v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s

s\updownarrow \omega 2\vargamma \rightharpoonup 

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup (v\updownarrow v\rightarrow )k
\leftharpoonup (v\rightarrow \updownarrow v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

=: I5,1 + I5,2.

We first bound I5,2. From the integrability of k\leftharpoonup , we have

I5,2 \nearrow 
\Biggl\lceil 

t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 
ds

\vargamma 2\varpi \rightharpoonup 

\vargamma 2\varpi 
\leftrightarrow k\leftharpoonup \leftrightarrow 2

L1(R3)\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3) \leftrightsquigarrow \rightharpoonup \leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3).

Next, to treat I5,1, we introduce the following decomposition of k\leftharpoonup (v\updownarrow v\rightarrow ); for a
given N > 0,

k\leftharpoonup (v\updownarrow v\rightarrow ) = k\leftharpoonup 

N
(v, v\rightarrow ) + k\leftharpoonup 

R
(v, v\rightarrow ), where

k\leftharpoonup 

N
(v, v\rightarrow ) = k\leftharpoonup (v\updownarrow v\rightarrow )1BN (0)\B 1

N

(0)(v\updownarrow v\rightarrow )1BN (0)(v\rightarrow ) and

k\leftharpoonup 

R
(v, v\rightarrow ) = k\leftharpoonup (v\updownarrow v\rightarrow )\updownarrow k\leftharpoonup 

N
(v, v\rightarrow ).

With this decomposition, we can split I5,1 by

I5,1 =

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s\updownarrow \omega 

2
\vargamma \rightharpoonup 

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup 

N
(v, v\rightarrow )k

\leftharpoonup 

N
(v\rightarrow , v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s\updownarrow \omega 

2
\vargamma \rightharpoonup 

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 
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3164 CHANWOO KIM AND JOONHYUN LA

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup 

N
(v, v\rightarrow )k

\leftharpoonup 

R
(v\rightarrow , v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s\updownarrow \omega 

2
\vargamma \rightharpoonup 

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup 

R
(v, v\rightarrow )k

\leftharpoonup 

N
(v\rightarrow , v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

+

\Biggl\lceil 
t

0

e\updownarrow 
\varrho 0(|v|+1)(t\nearrow s)

2\vargamma 2\varphi 

\vargamma 2\varpi 

\Biggl\lceil 
s\updownarrow \omega 

2
\vargamma \rightharpoonup 

0

e\updownarrow 
\varrho 0(|v\searrow |+1)(s\nearrow \varsigma )

2\vargamma 2\varphi 

\vargamma 2\varpi 

\downarrow 
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup 

R
(v, v\rightarrow )k

\leftharpoonup 

R
(v\rightarrow , v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow d\oldstyle{0}ds

=: INN

5,1 + INR

5,1 + IRN

5,1 + IRR

5,1 .

Since
\Biggr] 
R3 k\leftharpoonup 

N
(v, v\rightarrow )dv\rightarrow \bigtriangleup \leftrightarrow k\leftharpoonup \leftrightarrow L1(R3) asN \searrow \Uparrow , and thus, AN :=

\Biggr] 
R3 k\leftharpoonup 

R
(v, v\rightarrow )dv\rightarrow \searrow 

0 as N \searrow \Uparrow by the monotone convergence theorem, we have

INR

5,1 \leftrightsquigarrow AN\leftrightarrow k\leftharpoonup \leftrightarrow L1(R3)\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3),

IRN

5,1 \leftrightsquigarrow AN\leftrightarrow k\leftharpoonup \leftrightarrow L1(R3)\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3),

IRR

5,1 \leftrightsquigarrow A2
N
\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3).

Finally, we estimate INN

5,1 . First, we recall that k\leftharpoonup 

N
(v, v\rightarrow ) is supported on { 1

N
<

|v\updownarrow v\rightarrow |<N} and therefore is bounded by some constant CN . Thus, we have

k\leftharpoonup 

N
(v, v\rightarrow )\nearrow CN1BN (0)(v\rightarrow ),

k\leftharpoonup 

N
(v\rightarrow , v\rightarrow \rightarrow )\nearrow CN1BN (0)(v\rightarrow \rightarrow ).

Next, we expand |h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|; in support of k\leftharpoonup 

N
(v, v\rightarrow )k\leftharpoonup 

N
(v\rightarrow , v\rightarrow \rightarrow ),

|v\rightarrow |, |v\rightarrow \rightarrow | < N . Note that this implies that |v\rightarrow | < N and |(v\rightarrow )3| < N , where v\rightarrow =
(v\rightarrow , (v\rightarrow )3). Together with (2.44), we have

|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|= |wf(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|

\nearrow e\leftharpoonup |v\searrow \searrow |
2+ 1

2
\omega \Leftarrow u\omega \Leftarrow 

L\rightarrow ([0,T ]\updownarrow T2)
|v\searrow \searrow ||f(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|

\nearrow CN |f(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|.

Also, we rewrite Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ); we have

Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ) = x\updownarrow t\updownarrow s

\vargamma 
v\updownarrow s\updownarrow \oldstyle{0}

\vargamma 
v\rightarrow /Z2 \uparrow T2.

Finally, we remark that, since \oldstyle{0} \uparrow [0, s\updownarrow \vargamma 2\varpi \rightharpoonup ], we have s\updownarrow \leftharpoondown 

\omega 
> \vargamma \varpi \rightharpoonup . Combining these

all together, for \oldstyle{0} \uparrow [0, s\updownarrow \vargamma 2\varpi \rightharpoonup ], we have
\Biggl\lceil 

R3

\Biggl\lceil 

R3

k\leftharpoonup 

N
(v, v\rightarrow )k

\leftharpoonup 

N
(v\rightarrow , v\rightarrow \rightarrow )|h(\oldstyle{0}, Y (\oldstyle{0} ;s,Y (s; t, x, v), v\rightarrow ), v\rightarrow \rightarrow )|dv\rightarrow \rightarrow dv\rightarrow 

\leftrightsquigarrow N

\Biggl\lceil 

|(v\searrow )3|<N

\Biggl\lceil 

|v\searrow |<N

\Biggl\lceil 

|v\searrow \searrow |<N

|fR
\Bigg\backslash 
\oldstyle{0}, x\updownarrow t\updownarrow s

\vargamma 
v\updownarrow s\updownarrow \oldstyle{0}

\vargamma 
v\rightarrow /Z2, v\rightarrow \rightarrow 

\Big/ 
|dv\rightarrow \rightarrow dv\rightarrow 

\leftrightsquigarrow N

\left[ \Biggl\lceil 

|v\searrow |<N

\Biggl\lceil 

R3

    fR
\Bigg\backslash 
\oldstyle{0}, x\updownarrow t\updownarrow s

\vargamma 
v\updownarrow s\updownarrow \oldstyle{0}

\vargamma 
v\rightarrow /Z2, v\rightarrow \rightarrow 

\Big/     
2

dv\rightarrow \rightarrow dv\rightarrow 

\right] 1

2

,

where we have used that the integrand is independent of (v\rightarrow )3 and \leftrightarrow 1{|v\searrow |<N}\Uparrow {|v\searrow \searrow |<N}
\leftrightarrow L2(R2\Uparrow R3) \leftrightsquigarrow N 1.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3165

Next, we apply the change of variables v\rightarrow \searrow y= x\updownarrow t\updownarrow s

\omega 
v\updownarrow s\updownarrow \leftharpoondown 

\omega 
v\rightarrow \uparrow R2. This map

is one-to-one and maps v\rightarrow \uparrow BN (0) onto y \uparrow B s\nearrow \varsigma 

\vargamma 
N
(x\updownarrow t\updownarrow s

\omega 
v) with dy =

 
s\updownarrow \leftharpoondown 

\omega 

\left\{ 2
dv\rightarrow .

Therefore, we have

\left[ \Biggl\lceil 

|v\searrow |<N

\Biggl\lceil 

R3

    fR(\oldstyle{0}, x\updownarrow t\updownarrow s

\vargamma 
v\updownarrow s\updownarrow \oldstyle{0}

\vargamma 
v\rightarrow /Z2, v\rightarrow \rightarrow )

    
2

dv\rightarrow \rightarrow dv\rightarrow 

\right] 1

2

=

 

 
\Biggl\lceil 

y\leftrightarrow B s\nearrow \varsigma 

\vargamma 
N
(x\updownarrow t\nearrow s

\vargamma 
v)

\Biggl\lceil 

R3

  fR(\oldstyle{0}, y/Z2, v\rightarrow \rightarrow )
  2
\Bigg\backslash 

\vargamma 

s\updownarrow \oldstyle{0}

\Big/ 2

dv\rightarrow \rightarrow dy

 

 

1

2

=

 

 
\left( 

k\leftrightarrow Z2

\Biggl\lceil 

y\leftrightarrow ([\updownarrow 1

2
,
1

2 ]
2

+k)\swarrow B s\nearrow \varsigma 

\vargamma 
N
(x\updownarrow t\nearrow s

\vargamma 
v)

\Biggl\lceil 

R3

|fR(\oldstyle{0}, y\updownarrow k, v\rightarrow \rightarrow )|2
\Bigg\backslash 

\vargamma 

s\updownarrow \oldstyle{0}

\Big/ 2

dv\rightarrow \rightarrow dy

 

 

1

2

=

 

 
\left( 

k\leftrightarrow Z2

\Biggl\lceil 

z\leftrightarrow [\updownarrow 1

2
,
1

2 ]
2\swarrow B s\nearrow \varsigma 

\vargamma 
N
(x\updownarrow t\nearrow s

\vargamma 
v\updownarrow k)

\Biggl\lceil 

R3

|fR(\oldstyle{0}, z, v\rightarrow \rightarrow )|2
\Bigg\backslash 

\vargamma 

s\updownarrow \oldstyle{0}

\Big/ 2

dv\rightarrow \rightarrow dz

 

 

1

2

,

(2.57)

where z = y \updownarrow k in each integral. Next, we count the number of k \uparrow Z2 such that\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2 \swarrow B s\nearrow \varsigma 

\vargamma 
N
(x \updownarrow t\updownarrow s

\omega 
v \updownarrow k) \bigtriangledown = \not . There are two cases: If N s\updownarrow \leftharpoondown 

\omega 
\nearrow 1, there are

O(1) such k \uparrow Z2. If N s\updownarrow \leftharpoondown 

\omega 
> 1, there are O((N s\updownarrow \leftharpoondown 

\omega 
)2) such k \uparrow Z2. Therefore, we

have

(2.57)\leftrightsquigarrow 
\left[ 
max

\left[ \Bigg\backslash 
\vargamma 

s\updownarrow \oldstyle{0}

\Big/ 2

,N2

\right] \Biggl\lceil 

T2

\Biggl\lceil 

R3

|fR(\oldstyle{0}, z, v\rightarrow \rightarrow )|2dv\rightarrow \rightarrow dz
\right] 1

2

\leftrightsquigarrow N,\rightharpoonup 

1

\vargamma \varpi 
sup

\leftharpoondown \leftrightarrow [0,t]
\leftrightarrow fR(\oldstyle{0})\leftrightarrow L2(T2\Uparrow R3).

Choosing N large enough and \rightharpoonup small enough so that we can bury I5,2, INR

5,1 , IRN

5,1 ,
and IRR

5,1 gives

\leftrightarrow h\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3) \leftrightsquigarrow \leftrightarrow h0\leftrightarrow L\rightarrow (T2\Uparrow R3) + \vargamma 2\varpi \leftrightarrow \lhook \updownarrow 1wH\leftrightarrow L\rightarrow ([0,T ]\Uparrow T2\Uparrow R3)

+
1

\vargamma \varpi 
\leftrightarrow fR\leftrightarrow L\rightarrow ([0,T ];L2(T2\Uparrow R3)),

which is the desired conclusion.

2.5. Remainder estimate. To admit far-from-equilibrium initial data, we need
to keep the characteristic size of remainder as large as possible. A heuristic calcula-
tion suggests that the size o(\vargamma \varpi ) for the remainder is the threshold; if the remainder
becomes of the size O(\vargamma \varpi ), we lose control of the nonlinearity of the remainder equa-
tion. Thus, we aim to keep our characteristic size of the remainder slightly smaller
than \vargamma \varpi .

There is only very slight room for this; the only possible gain is the coercivity
of the linearized Boltzmann operator L. However, many conventional techniques
(averaging lemma, L\nearrow -estimates) do not rely on it; up to the authors’ knowledge, the
coercivity of L is exploited only in L2

v
estimates. If we rely on other techniques at too

early a stage, we enormously lose the scale and fail to achieve the goal.
As a consequence, we need to push the L2

v
estimates as far as possible. The

important observation made in [29] is that, even for the nonlinear term, we have
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3166 CHANWOO KIM AND JOONHYUN LA

control by the L2-in-v integral of remainders since the nonlinear term is also expressed
in terms of an integral with nicely decaying kernel; what is lacking is L2 integrability
in x. This observation naturally leads us to pursue the L2

v
-estimate for derivatives of

the remainder and then rely on interpolation—H2
x
, but L2

v
estimate.

It turns out that this idea gives a sharper scaling than many conventional tech-
niques; the commutator [[\varphi s,L]] between spatial derivatives and L forces us to lose

\nwarrow 
\varpi 

scale for each derivative, but we do not lose scale in nonlinearity for the 2D domain.
Thus, by setting the initial data decaying to 0 at an arbitrary slow rate as \vargamma \searrow 0, we
can keep the L2

x
L2
v
norms of the remainder and its derivatives small provided that the

source terms are also small, which is the main point of the next idea.
Furthermore, we note that H2

x
L2
v
fits very well with our goal to see convergence in

a stronger topology; because we can control up to second derivatives of the remainder
small, we can keep our Boltzmann solution close to the local Maxwellian M1,\omega u\omega ,1.
Its zeroth and first derivatives may converge; they correspond to the velocity and
vorticity. Its second derivatives may blow in general, which represents the formation
of a singular object, e.g., interfaces.

Now, we are ready to prove the compactness of fR in a suitable topology, thereby
proving convergence. For a fixed T > 0 and t \uparrow (0, T ), we use the following scaled
energy and its dissipation:

E(t) :=
\left( 

s\searrow 2

sup
t\Leftarrow \leftrightarrow (0,t)

\leftrightarrow \varpi \updownarrow 1+ s

2 \varphi sfR(t
\uparrow )\leftrightarrow 2

L2
x
L2

v

,

D(t) :=
\left( 

s\searrow 2

\leftrightarrow \vargamma \updownarrow 1\varpi \updownarrow 3

2
+ s

2 \lhook 
1

2 (I\updownarrow P)\varphi sfR\leftrightarrow 2L2((0,t);L2
x
L2

v
)).

(2.58)

We also need the following auxilliary norm:

(2.59) F(t) := \vargamma sup
t\Leftarrow \leftrightarrow (0,t)

\leftrightarrow fR(t\uparrow )\leftrightarrow L\rightarrow (T2\Uparrow R3).

Also, we will frequently use the following basic inequality:

\left( 

s\searrow 2

\leftrightarrow \varpi \updownarrow 1+ s

2 \varphi sfR\leftrightarrow 2L2((0,t);L2
x
L2

v
) =

\Biggl\lceil 
t

0
E \leftrightsquigarrow T E(t).

The main theorem of this section is the following.

Theorem 3. Let T > 0. Suppose that \rhook s = \rhook s(\vargamma ), s= 0,1,2 satisfy the following:

lim
\omega \simeq 0

\rhook 0(\vargamma )
2
\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
exp

\Biggl\langle 
2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
T
\Biggr\rangle 
= 0,

(2.60)

\rhook s(\vargamma )< (\vargamma \updownarrow 1\varpi \updownarrow 1/2)s, s= 1,2.(2.61)

Suppose that fR(0) satisfies

\Biggr\rceil 
E(0), F(0)< \rhook 0(\vargamma ), \leftrightarrow ws\varphi 

sfR0\leftrightarrow L\rightarrow (T2\Uparrow R3) < \rhook s(\vargamma ), s= 1,2.

Then, (2.37) with initial data fR(0) and ũ\varepsilon (0) \mapsto 0 has a solution fR(t), t \uparrow (0, T )
such that
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3167

E(t) +D(t)

\nearrow (\rhook 20 + \varpi )(1 + T )C(C0)

\downarrow 
\Biggl\langle 
2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
exp

\Biggl\langle 
2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
T
\Biggr\rangle \Biggr\rangle 

and lim\omega \simeq 0 supt\leftrightarrow (0,T )(E(t) +F(t)) = 0.

2.5.1. Energy estimate. By taking the L2 norm for (2.37) and (2.38) for s\nearrow 2
and integrating over time, we have

E(t) +D(t)\leftrightsquigarrow E(0)

+ \leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow L\rightarrow 

t,x

\left( 

s\searrow 2

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

    
\varphi sfR
\varpi 1\updownarrow s

2

    
2

\lhook 2dvdxdt\uparrow (2.62)

+
\left( 

s\Leftarrow <s

\varpi 
s\nearrow s

\Leftarrow 
2 V (\leftharpoondown )

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

     
\varphi s

\Leftarrow 
fR

\varpi 1\updownarrow s\Leftarrow 
2

     

    
\varphi sfR
\varpi 1\updownarrow s

2

    \lhook 
2dvdxdt\uparrow + \vargamma V (\leftharpoondown )(E(t) +D(t))

(2.63)

+
\left( 

s\searrow 2

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 2\varpi \updownarrow 2+ s

2 [[\varphi s,L]]fR
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow (2.64)

+
\left( 

s\searrow 2

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 1\varpi \updownarrow 2+ s

2 \varphi s\&(fR, fR)
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow (2.65)

+
\left( 

s\searrow 2

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 1\varpi \updownarrow 1+ s

2 \varphi s\&(R3, fR)
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow (2.66)

\updownarrow 
\left( 

s\searrow 2

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\varpi \updownarrow 1+ s

2

\Biggl\langle 
\vargamma \varphi s

R1 +
\varpi 

\vargamma 
(I\updownarrow P)\varphi s

R2 +
\varpi 

\vargamma 
\varphi s

R2

\Biggr\rangle \varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow .(2.67)

Step 1. Control of (2.67). From (2.32) and (2.34), we have

(2.67)\leftrightsquigarrow 
\left( 

s\searrow 2

\Biggl\langle 
\vargamma \varpi \updownarrow 1+ s

2V (\leftharpoondown )
\Biggr\rceil 
E(t) + \varpi 

3

2V (\leftharpoondown )
\Biggr\rceil 

D(t) + \varpi V (\leftharpoondown )
\Biggr\rceil 

E(t)
\Biggr\rangle 

(2.68)

\leftrightsquigarrow \varpi 
1

2

\Biggl\langle \Biggr\rceil 
E(t) +

\Biggr\rceil 
D(t)

\Biggr\rangle 

by (2.3).
Step 2. Control of (2.66). We note that

\varphi s\&(R3, fR) =
\left( 

s1+s2+s3=s

\varrho s1\&(\varphi s2R3,\varphi 
s3fR).

There are two cases. First, if s1 = 0, then

\left( 

s2+s3=s

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 1\varpi \updownarrow 1+ s

2\&(\varphi s2R3,\varphi 
s3fR)

\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow 

\leftrightsquigarrow 
\left( 

s3\searrow s

\varpi \updownarrow 1

2
+ s

2V (\leftharpoondown )\leftrightarrow \varphi s3fR\leftrightarrow L2((0,t);L2
x
L2

v
)

\Biggr\rceil 
D(t)\leftrightsquigarrow \varpi 

1

2V (\leftharpoondown )
\Biggr\rceil 
E(t)

\Biggr\rceil 
D(t).
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3168 CHANWOO KIM AND JOONHYUN LA

If s1 \rightarrow 1, then, by Lemma 1, we have

\left( 

s1+s2+s3=s

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 1\varpi \updownarrow 1+ s

2
\varrho s1\&(\varphi s2R3,\varphi 

s3fR)
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow 

\leftrightsquigarrow 
\left( 

s3<s

V (\leftharpoondown )\varpi \updownarrow 1+ s

2

\Biggl\langle 
\leftrightarrow \varphi s3fR\leftrightarrow L2((0,t);L2

x
L2

v
) + \leftrightarrow \lhook 1

2 (I\updownarrow P)\varphi s3fR\leftrightarrow L2((0,T );L2
x
L2

v
)

\Biggr\rangle 

\downarrow 
\Biggl\langle \Biggr\rceil 

E(t) + \vargamma \varpi 
1

2

\Biggr\rceil 
D(t)

\Biggr\rangle 
\leftrightsquigarrow \varpi 

1

2V (\leftharpoondown )(E(t) + \vargamma 2\varpi D(t))

since s3 < s. In conclusion, we have

(2.69) (2.66)\leftrightsquigarrow \varpi 
1

2V (\leftharpoondown )(E(t) +D(t)).

Step 3. Control of (2.64). For s= 0, [[\varphi s,L]] = 0. When s= 1, [[\varphi s,L]]fR consists
of type 1 and type 2 terms in Lemma 2. When s = 2, there is exactly one term in
[[\varphi s,L]]fR that is of type 3 in Lemma 2: \varrho L[[P,\varphi ]]fR. For a given s \nearrow 2 and type 1
term in Lemma 2, we have an upper bound

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
t,x

+ \varpi 
1

2V (\leftharpoondown )
\Biggr\rangle \Biggr\rceil 

D(t)

 

 
 \Biggl\lceil 

t

0
E + \vargamma \varpi 

1

2

\Biggr\rceil 
D(t)

 

 (2.70)

\leftrightsquigarrow (\leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow 2

L
\rightarrow 
t,x

+ 1)

\Biggl\lceil 
t

0
E + o(1)D(t),

where the first \leftrightarrow \Leftarrow xu\varepsilon \leftrightarrow L\rightarrow 
t,x

term corresponds to \varrho s1L(I \updownarrow P)\varphi s2fR and the second

\varpi 
1

2V (\leftharpoondown ) term corresponds to \varrho 2L(I\updownarrow P)fR. For example, for s= 2 with \varrho L(I\updownarrow P)\varphi fR
term, we have

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

\vargamma \updownarrow 2\varpi \updownarrow 1
\varrho L(I\updownarrow P)\varphi fR\varphi 

2fRdvdxdt
\uparrow 

\leftrightsquigarrow \leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow L\rightarrow 

t,x
\leftrightarrow \vargamma \updownarrow 1\varpi \updownarrow 1\lhook 

1

2 (I\updownarrow P)\varphi fR\leftrightarrow L2((0,t);L2
x
L2

v
)

\downarrow 
\Biggl\langle 
\leftrightarrow \varphi 2fR\leftrightarrow L2((0,t);L2

x
L2

v
) + \vargamma \varpi 

1

2 \leftrightarrow \vargamma \updownarrow 1\varpi \updownarrow 1

2 \lhook 
1

2 (I\updownarrow P)\varphi 2fR\leftrightarrow L2((0,t);L2
x
L2

v
)

\Biggr\rangle 
,

which is bounded by the right-hand side of (2.70).
For a given s\nearrow 2 and type 2 term in Lemma 2, we have a similar upper bound

\left( 
\vargamma \updownarrow 1\varpi \updownarrow 3

2
+ s

2 \leftrightarrow \varphi · · · [[P,\varphi ]] · · ·\varphi fR\leftrightarrow L2((0,t);L2
x
L2

v
)

\Biggr\rceil 
D(t),

where summation is over possible combinations of \varphi · · · [[P,\varphi ]] · · ·\varphi , consisting of s\updownarrow 1
\varphi and one [[P,\varphi ]]. We note that

\leftrightarrow \varphi · · · [[P,\varphi ]] · · ·\varphi fR\leftrightarrow L2((0,t);L2
x
L2

v
)

\leftrightsquigarrow \vargamma 

\left[ 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
t,x

\leftrightarrow \varphi s\updownarrow 1fR\leftrightarrow L2((0,t);L2
x
L2

v
) + V (\leftharpoondown )

\left( 

s\Leftarrow <s\updownarrow 1

\leftrightarrow \varphi s
\Leftarrow 
fR\leftrightarrow L2((0,t);L2

x
L2

v
)

\right] 
,

where the former term corresponds to the case that all s\updownarrow 1 derivatives \varphi are applied
to fR and the latter corresponds to the others. Thus, again, we have a bound

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
t,x

+ \varpi 
1

2V (\leftharpoondown )
\Biggr\rangle 
 \Biggl\lceil 

t

0
E
\Biggr\rceil 
D(t)\leftrightsquigarrow (\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L

\rightarrow 
t,x

+ 1)

\Biggl\lceil 
t

0
E + o(1)D(t).
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Finally, for a type 3 term in Lemma 2 (which immediately implies that s = 2),
we have

\leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow 2

L
\rightarrow 
t,x

\right) \right) \right) \right) 
fR
\varpi 

\right) \right) \right) \right) 
L2((0,t);L2

x
L2

v
)

 \Biggl\lceil 
t

0
E \leftrightsquigarrow \leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L

\rightarrow 
t,x

\Biggl\lceil 
t

0
E .

To summarize, we have

(2.71) (2.64)\leftrightsquigarrow (\leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow 2

L
\rightarrow 
t,x

+ 1)

\Biggl\lceil 
t

0
E + o(1)D(t).

Step 4. Control of (2.62) and (2.63). We use the following standard estimate: Let
0<  \triangleright 2 <  \triangleright 1 <  \triangleright 0 <

1
4 , and let

(2.72) wj = e\leftharpoonup j |v|2\updownarrow 1

2
\omega u

\omega ·v, j = 0,1,2.

For s\nearrow 2, we have

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

    
\varphi sfR
\varpi 1\updownarrow s

2

    
2

\lhook 2dvdxdt\uparrow \leftrightsquigarrow 
\right) \right) \right) \right) 
P\varphi sfR
\varpi 1\updownarrow s

2

\right) \right) \right) \right) 
2

L2((0,t);L2
x
L2

v
)

+

\right) \right) \right) \right) \lhook 
1 (I\updownarrow P)\varphi sfR

\varpi 1\updownarrow s

2

\right) \right) \right) \right) 
2

L2((0,t);L2
x
L2

v
)

\leftrightsquigarrow 
\Biggl\lceil 

t

0
E +

\right) \right) \right) \right) 1{|v\updownarrow \omega u\omega |>(\omega 
\Downarrow 
\vargamma )\nearrow o(1)}\lhook 

1 (I\updownarrow P)\varphi sfR
\varpi 1\updownarrow s

2

\right) \right) \right) \right) 
2

L2((0,t);L2
x
L2

v
)

+

\right) \right) \right) \right) 1{|v\updownarrow \omega u\omega |\searrow (\omega 
\Downarrow 
\vargamma )\nearrow o(1)}\lhook 

1 (I\updownarrow P)\varphi sfR
\varpi 1\updownarrow s

2

\right) \right) \right) \right) 
2

L2((0,t);L2
x
L2

v
)

\leftrightsquigarrow 
\Biggl\lceil 

t

0
E + \leftrightarrow 1{|v\updownarrow \omega u\omega |>(\omega 

\Downarrow 
\vargamma )\nearrow o(1)}\lhook 

1w\updownarrow 1
s

\leftrightarrow 2
L2((0,t);L2

x
L2

v
)\leftrightarrow ws\varphi 

sf\leftrightarrow 2
L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+
 
\vargamma 
\nwarrow 
\varpi 
\left\{ 1\updownarrow o(1)D(t)

\leftrightsquigarrow 
\Biggl\lceil 

t

0
E +

 
\vargamma 
\nwarrow 
\varpi 
\left\{ 1\updownarrow o(1)D(t) + e

\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1) \leftrightarrow ws\varphi 

sf\leftrightarrow 2
L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)).

Similar calculation for (2.63) gives the following bound:

(2.62) + (2.63)\leftrightsquigarrow (1 + \leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow L\rightarrow 

t,x
)

\Biggl\lceil 
t

0
E + o(1)D(t)(2.73)

+ e
\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1)

\left( 

s\searrow 2

\leftrightarrow ws\varphi 
sf\leftrightarrow 2

L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)).

Step 5. Control of (2.65). Finally, we control the nonlinear contribution (2.65);
here, we use the anisotropic interpolation result (Lemma 4) and Lemma 1. First, from
Lemma 5 and (2.3), we remark that
\right) \right) \right) \right) \lhook 

1

2 (I\updownarrow P)
f

\varpi 

\right) \right) \right) \right) 
L2((0,t);L4

x
L2

v
)

+

\right) \right) \right) \right) \lhook 
1

2 (I\updownarrow P)
\varphi f\nwarrow 
\varpi 

\right) \right) \right) \right) 
L2((0,t);L4

x
L2

v
)

+

\right) \right) \right) \right) \lhook 
1

2 (I\updownarrow P)
f

\varpi 

\right) \right) \right) \right) 
L2((0,t);L\rightarrow 

x
L2

v
)

\leftrightsquigarrow \vargamma 
1

2

 

 
\Biggr\rceil 

D(t) +

 \Biggl\lceil 
t

0
E

 

 .
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Next, we estimate the following integrals. First, we estimate
\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

1

\vargamma \varpi 2
\&(fR, fR)

fR
\varpi 
dvdxdt\uparrow 

\leftrightsquigarrow 
\left[ \right) \right) \right) \right) 

fR
\varpi 

\right) \right) \right) \right) 
L

2

tvx

+

\right) \right) \right) \right) \lhook 
1

2 (I\updownarrow P)
fR
\varpi 

\right) \right) \right) \right) 
L

2

tvx

\right] 
\nwarrow 
\varpi 
\updownarrow 1\leftrightarrow fR\leftrightarrow L\rightarrow 

tx
L2

v

\Biggr\rceil 
D(t)

\leftrightsquigarrow 

 

 
 \Biggl\lceil 

t

0
E+\vargamma 

\nwarrow 
\varpi 
\Biggr\rceil 
D(t)

 

 
\Biggr\rceil 
D(t)

\right) \right) \right) \right) 
fR
\varpi 

\right) \right) \right) \right) 

1

2

L
\rightarrow 
t

L2
xv

\leftrightarrow \varphi 2fR\leftrightarrow 
1

2

L
\rightarrow 
t

L2
xv

\leftrightsquigarrow 
\Bigg\backslash \Biggl\lceil 

t

0
E +D(t)

\Big/ \Biggr\rceil 
E(t).

In a similar fashion, we see
\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

1

\vargamma \varpi 2\updownarrow s

2

\&(\varphi sfR, fR)
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow 

\leftrightsquigarrow 
\Biggr\rceil 
D(t)

1

\varpi 
3\nearrow s

2

 \Biggl\langle 
\leftrightarrow \varphi sfR\leftrightarrow L2

txv
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)\varphi sfR\leftrightarrow L2

txv

\Biggr\rangle 
\leftrightarrow fR\leftrightarrow L\rightarrow 

tx
L2

v

+
\Biggl\langle 
\leftrightarrow fR\leftrightarrow L2

t
L\rightarrow 

x
L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)fR\leftrightarrow L2

t
L\rightarrow 

x
L2

v

\Biggr\rangle 
\leftrightarrow \varphi sfR\leftrightarrow L\rightarrow 

t
L2

xv

 

\leftrightsquigarrow 
\Biggr\rceil 
D(t)

 

\Bigl\langle 

 

 
 \Biggl\lceil 

t

0
E + \vargamma 

\nwarrow 
\varpi 
\Biggr\rceil 

D(t)

 

 1\nwarrow 
\varpi 
\leftrightarrow fR\leftrightarrow L\rightarrow 

tx
L2

v

+
\Biggr\rceil 
E(t)

 

 1\nwarrow 
\varpi 
\leftrightarrow fR\leftrightarrow L2

t
L\rightarrow 

x
L2

v
+ \vargamma 

1

2

 

 
\Biggr\rceil 
D(t)+

 \Biggl\lceil 
t

0
E

 

 

 

 

\Bigr\rangle 

\bigsqcup \leftrightsquigarrow 
\Bigg\backslash \Biggl\lceil 

t

0
E+D(t)

\Big/ \Biggr\rceil 
E(t), s\nearrow 2,

\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

1

\vargamma \varpi 
\&(\varphi fR,\varphi fR)\varphi 

2fRdvdxdt
\uparrow 

\leftrightsquigarrow 
\Biggr\rceil 
D(t)

1\nwarrow 
\varpi 

\Biggl\langle 
\leftrightarrow \varphi fR\leftrightarrow L2

t
L4

x
L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)\varphi fR\leftrightarrow L2

t
L4

x
L2

v

\Biggr\rangle 
\leftrightarrow \varphi fR\leftrightarrow L\rightarrow 

t
L4

x
L2

v

\leftrightsquigarrow 
\Bigg\backslash \Biggl\lceil 

t

0
E +D(t)

\Big/ \Biggr\rceil 
E(t).

Here, we have used Lemma 1 to first bound terms with L2
v
norms with mixed Lp

x

norms and then Lemma 4 to turn back to the L2
x
norm. In a similar manner, we have,

for s\nearrow 2, s1 + s2 = s, and s1 \rightarrow 1,
\Biggl\lceil 

(0,t)\Uparrow T2\Uparrow R3

1

\vargamma \varpi 2\updownarrow s

2

\varrho s1\&(\varphi s2fR, fR)
\varphi sfR
\varpi 1\updownarrow s

2

dvdxdt\uparrow 

\leftrightsquigarrow \leftrightarrow \varphi s1u\varepsilon \leftrightarrow L\rightarrow 
t,x

 \Biggl\lceil 
t

0
E 1

\varpi 2\updownarrow s

2

 \Biggl\langle 
\leftrightarrow \varphi s2fR\leftrightarrow L2

txv
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)\varphi s2fR\leftrightarrow L2

txv

\Biggr\rangle 
\leftrightarrow fR\leftrightarrow L\rightarrow 

tx
L2

v

+
\Biggl\langle 
\leftrightarrow fR\leftrightarrow L2

t
L\rightarrow 

x
L2

v
+ \leftrightarrow \lhook 1

2 (I\updownarrow P)fR\leftrightarrow L2

t
L\rightarrow 

x
L2

v

\Biggr\rangle 
\leftrightarrow \varphi s2fR\leftrightarrow L\rightarrow 

t
L2

xv

 

\leftrightsquigarrow \leftrightarrow \varphi s1u\varepsilon \leftrightarrow L\rightarrow 
t,x

 \Biggl\lceil 
t

0
E 1

\varpi 
1

2
\updownarrow s\nearrow s2

2

 

\Bigl\langle 

 

 
 \Biggl\lceil 

t

0
E + \vargamma 

\nwarrow 
\varpi 
\Biggr\rceil 
D(t)

 

 
\Biggr\rceil 
E(t)

+

 

 
 \Biggl\lceil 

t

0
E + \vargamma 

1

2

 

 
\Biggr\rceil 
D(t) +

 \Biggl\lceil 
t

0
E

 

 

 

 
\Biggr\rceil 
E(t)

\Bigr\rangle 

\bigsqcup 

\leftrightsquigarrow (\leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow L\rightarrow 

tx
+ V (\leftharpoondown )

\nwarrow 
\varpi )
\Biggr\rceil 
E(t)

\Bigg\backslash \Biggl\lceil 
t

0
E + \vargamma D(t)

\Big/ 
\leftrightsquigarrow 
\Biggr\rceil 
E(t)

\Bigg\backslash 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
tx

\Biggl\lceil 
t

0
E +D(t)

\Big/ 
,
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where the first factor \leftrightarrow \Leftarrow xu\varepsilon \leftrightarrow L\rightarrow 
tx

comes from the case s1 = 1 and the second factor
V (\leftharpoondown )

\nwarrow 
\varpi comes from the case s2 = 2, s2 = 0. Also, we have used (2.3) to bury the

contribution of \leftrightarrow \Leftarrow xu\varepsilon \leftrightarrow L\rightarrow 
t,x

in D(t).
Therefore, we have

(2.74) (2.65)\leftrightsquigarrow 
\Bigg\backslash 
(\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow L\rightarrow 
tx
+ 1)

\Biggl\lceil 
t

0
E +D(t)

\Big/ \Biggr\rceil 
E(t).

Summing up (2.68), (2.69), (2.71), (2.73), and (2.74), we have

E(t) +D(t)\leftrightsquigarrow E(0) + (\leftrightarrow \Leftarrow xu
\varepsilon \leftrightarrow 2

L
\rightarrow 
t,x

+ 1+
\Biggr\rceil 

E(t))
\Biggl\lceil 

t

0
E + \varpi +

\Biggr\rceil 
E(t)D(t)

+ e
\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1)

\left( 

s\searrow 2

\leftrightarrow ws\varphi 
sf\leftrightarrow 2

L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)).
(2.75)

2.5.2. L\rightarrow control. From Proposition 4 and (2.37), we obtain the following:

\leftrightarrow w0fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

\leftrightsquigarrow \leftrightarrow w0fR0\leftrightarrow L\rightarrow (T2\Uparrow R3) +
1

\vargamma 

\Biggr\rceil 
E(t) + \vargamma \leftrightarrow w0fR\leftrightarrow 2L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+ \vargamma \varpi V (\leftharpoondown )\leftrightarrow w0fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) + \vargamma 3\varpi V (\leftharpoondown ) + \vargamma \varpi 2V (\leftharpoondown ).

(2.76)

Here, we have used Lemma 11 to bound the right-hand side of (2.37). Proceeding
similar argument to (2.38), for 1\nearrow s\nearrow 2, we obtain

\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \leftrightsquigarrow \leftrightarrow ws\varphi 

sfR0\leftrightarrow L\rightarrow (T2\Uparrow R3) +
1

\vargamma \varpi 
s

2

E(t)

+ \vargamma \leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))\leftrightarrow w0fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+ \vargamma \varpi V (\leftharpoondown )\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+ \vargamma V (\leftharpoondown )
\left( 

s\Leftarrow <s

\leftrightarrow ws\Leftarrow \varphi 
s
\Leftarrow 
fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+ \vargamma V (\leftharpoondown )
\left( 

s1+s2\searrow s,s1,s2<s

\leftrightarrow ws1
\varphi s1fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))\leftrightarrow ws2

\varphi s2fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+ \vargamma 3\varpi V (\leftharpoondown ) + \vargamma \varpi 2V (\leftharpoondown ).

Here, we have used a pointwise bound w0 > \lhook 2w1 > \lhook 4w2 for the third line. Therefore,
we have

F(t)\leftrightsquigarrow F(0) + \vargamma 2 +
\Biggr\rceil 
E(t) +F(t)2,

\leftrightarrow w1\varphi 
1fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))\leftrightsquigarrow \leftrightarrow w1\varphi 

1fR0\leftrightarrow L\rightarrow (T2\Uparrow R3)+F(t)\leftrightarrow w1\varphi 
1fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+
1

\vargamma 
\nwarrow 
\varpi 

\Biggr\rceil 
E(t) + \vargamma V (\leftharpoondown )

\Bigg\backslash 
1 +

F(t)

\vargamma 

\Big/ 2

,

\leftrightarrow w2\varphi 
2fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))\leftrightsquigarrow \leftrightarrow w2\varphi 

2fR0\leftrightarrow L\rightarrow (T2\Uparrow R3)+F(t)\leftrightarrow w2\varphi 
2fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

+
1

\vargamma \varpi 

\Biggr\rceil 
E(t) + \vargamma V (\leftharpoondown )

\Bigg\backslash 
1 +

F(t)

\vargamma 
+ \leftrightarrow w1\varphi 

1fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

\Big/ 2

.

(2.77)
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In particular, giving explicit constants for (2.75) and (2.77), we obtain

E(t) +D(t)\nearrow C0

\left[ 
E(0) +

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 1+

\Biggr\rceil 
E(t)

\Biggr\rangle \Biggl\lceil t

0
E + \varpi +

\Biggr\rceil 
E(t)D(t)

e
\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1)

\left( 

s\searrow 2

\leftrightarrow ws\varphi 
sf\leftrightarrow 2

L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)).

\right] 
,

F(t)\nearrow C0

\Biggl\langle 
F(0) + \vargamma 2 +

\Biggr\rceil 
E(t) +F(t)2

\Biggr\rangle 
,

\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \nearrow C0

\Biggl\langle 
\leftrightarrow ws\varphi 

sfR0\leftrightarrow L\rightarrow (T2\Uparrow R3)

+F(t)\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) + \vargamma \updownarrow 1\varpi \updownarrow s

2

\Biggr\rceil 
E(t)

+ \vargamma V (\leftharpoondown )
\Biggl\langle 
1 + \vargamma \updownarrow 1F(t) +

\left( 

1\searrow s\Leftarrow <s

\leftrightarrow ws\Leftarrow \varphi 
s
\Leftarrow 
fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

\Biggr\rangle 2\Biggr\rangle 

for some constant C0 > 1.

2.6. Proof of Theorem 3. For given any arbitrary positive time T > 0, choose
T\rightarrow \uparrow [0, T ] such that

T\rightarrow = sup
 
t > 0 :

\Biggr\rceil 
E(t)< 1

10C0
,F(t)<

1

10C0

 
.(2.78)

Then, for t\uparrow [0, T\rightarrow ],

E(t) +D(t)\nearrow 2C0E(0) + 2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle \Biggl\lceil t

0
E + 2C0\varpi 

+ 2C0e
\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1)

\left( 

s\searrow 2

\leftrightarrow ws\varphi 
sf\leftrightarrow 2

L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)),

F(t)\nearrow 2C0F(0) + 2C0\vargamma 
2 + 2C0

\Biggr\rceil 
E(t),

and for 1\nearrow s\nearrow 2,

\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \nearrow 2C0

\left[ 
\leftrightarrow ws\varphi 

sfR0\leftrightarrow L\rightarrow (T2\Uparrow R3) + \vargamma \updownarrow 1\varpi \updownarrow s

2

+ \vargamma V (\leftharpoondown )

\left[ 
1 + \vargamma \updownarrow 1/2 +

\left( 

1\searrow s\Leftarrow <s

\leftrightarrow ws\Leftarrow \varphi 
s
\Leftarrow 
fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3))

\right] 2\right] 
,

\leftrightarrow w1\varphi 
1fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \nearrow 2C0\leftrightarrow w1\varphi 

1fR0\leftrightarrow L\rightarrow (T2\Uparrow R3) + 4C0\vargamma 
\updownarrow 1\varpi \updownarrow 1

2 ,

\leftrightarrow w2\varphi 
2fR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \nearrow 2C0\leftrightarrow w2\varphi 

2fR0\leftrightarrow L\rightarrow (T2\Uparrow R3)

+C(C0)
\Biggl\langle 
\leftrightarrow w1\varphi 

1fR0\leftrightarrow 2L\rightarrow (T2\Uparrow R3) + \vargamma \updownarrow 1\varpi \updownarrow 1V (\leftharpoondown )
\Biggr\rangle 
.

Since
\Biggr\rceil 
E(0),F(0) < \rhook 0 = \rhook 0(\vargamma ), and \leftrightarrow ws\varphi sfR0\leftrightarrow L\rightarrow (T2\Uparrow R3) < \rhook s = \rhook s(\vargamma ) satisfy

(2.61) for s= 1,2, we have

\leftrightarrow ws\varphi 
sfR\leftrightarrow L\rightarrow ((0,t);L\rightarrow (T2\Uparrow R3)) \nearrow C(C0)(\vargamma 

\updownarrow 1\varpi \updownarrow 1/2)s,

E(t) +D(t)\nearrow C(C0)(\rhook 
2
0 + \varpi ) + 2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle \Biggl\lceil t

0
E
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3173

since e
\updownarrow 1

(\vargamma 
\downarrow 

\varphi )
o(1) factor decays faster than any algebraic blowups. By Gronwall’s

lemma, we have

E(t) +D(t)\nearrow C(C0)(\rhook 
2
0 + \varpi )(1 + T )

\downarrow 
\Biggl\langle 
2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
exp

\Biggl\langle 
2C0

\Biggl\langle 
\leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow 2
L\rightarrow ((0,T )\Uparrow T2) + 2

\Biggr\rangle 
T
\Biggr\rangle \Biggr\rangle 

.

Since \rhook 0 satisfies (2.60), we see that, for su\%ciently small \vargamma ,
\Biggr\rceil 

E(T\rightarrow ),F(T\rightarrow ) satisfies
(2.78). Therefore, T\rightarrow = T , and we proved the claim.

3. Approximation of the Lagrangian solutions of the Euler equations.
As discussed in the introduction, we would like to obtain a limit to weak solutions that
do not have enough regularity in the framework of the standard Hilbert expansion in
general. Moreover, we want a convergent sequence in a stronger topology than Lp

for velocity because interesting singular behavior can be observed only in a stronger
topology. However, control in a stronger topology requires more regularity for the
velocity field as well. A straightforward remedy for low regularity of the fluid velocity
field is to regularize the initial data; therefore, instead of choosing the initial data
as a perturbation around the local Maxwellian M1,\omega u0,1, we choose the initial data
as a perturbation around the local Maxwellian M1,\omega u\omega 

0
,1, where u\varepsilon 

0 is the initial data
regularization of u0 with scale \leftharpoondown . Then, if one can prove the stability of the Euler
solution under the perturbation of the initial data, as well as control of the remaining
small terms, we can construct a sequence of Boltzmann solutions whose bulk velocity
converges to the Euler solution.

It turns out that this simple idea works well; in the class of solutions of the Euler
equation we consider, we have a certain stability, so we can prove that the solution
u\varepsilon starting from u\varepsilon 

0 converges to the solution u from u0. Also, for the estimate of the
remainders, the introduction of the regularization scale \leftharpoondown gives an additional freedom
in our analysis; by sacrificing the speed of regularization convergence, we can control
the size of higher derivatives appearing in the remainder equation. In addition, many
weak solutions of fluid equations are interpreted as a limit of smooth solutions. In
that regard, this initial data regularization approach is quite natural.

3.1. Regularization. In our proof of the hydrodynamic limit from the Boltz-
mann equations, it is important to regularize the Largangian solutions of the Euler
equation (1.9). We achieve this by regularizing the initial data using the standard
mollifier. Let \rightharpoondown \uparrow C\nearrow 

c
(R2) be a smooth nonnegative function with

\Biggr] 
R2 \rightharpoondown (x)dx= 1 and

\rightharpoondown (x) = 0 for |x\updownarrow (0,0)|\rightarrow 1
4 . For \leftharpoondown \uparrow (0,1), we define

(3.1) \rightharpoondown \varepsilon (x) :=
1

\leftharpoondown 2
\rightharpoondown 

\Bigg\backslash 
x

\leftharpoondown 

\Big/ 
for x\uparrow 

\Biggl\{ 
\updownarrow 1

2
,
1

2

\Biggr\} 2
.

Note that \rightharpoondown \varepsilon can be extended periodically so that \rightharpoondown \varepsilon \uparrow C\nearrow (T2) and
\Biggr] 
T2 \rightharpoondown \varepsilon (x)dx= 1

as well. Also, \rightharpoondown \varepsilon is supported on B \omega 

4

(0). Note that {\rightharpoondown \varepsilon }\varepsilon are approximate identities;

thus, for 1\nearrow p <\Uparrow and \oldstyle{1} \uparrow Lp(T2), we have

(3.2) lim
\varepsilon \simeq 0

\leftrightarrow \rightharpoondown \varepsilon \propto \oldstyle{1}\updownarrow \oldstyle{1}\leftrightarrow Lp(T2) = 0.

Note that we cannot expect a universal rate of convergence, which is independent of
\oldstyle{1} if \oldstyle{1} is merely in Lp(T2) or p=\Uparrow . However, if we have a certain regularity for \oldstyle{1},
we have the rate of convergence; for example, if \oldstyle{1} \uparrow W 1,2(T2), we have
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3174 CHANWOO KIM AND JOONHYUN LA

\leftrightarrow \rightharpoondown \varepsilon \propto \oldstyle{1}\updownarrow \oldstyle{1}\leftrightarrow L2(T2) =

\left[ \Biggl\lceil 

T2

    
\Biggl\lceil 

T2

\rightharpoondown \varepsilon (y)(\oldstyle{1}(x\updownarrow y)\updownarrow \oldstyle{1}(x))dy

    
2

dx

\right] 1

2

\nearrow 
\Biggl\lceil 

T2

|\rightharpoondown \varepsilon (y)|
\Bigg\backslash \Biggl\lceil 

T2

|\oldstyle{1}(x\updownarrow y)\updownarrow \oldstyle{1}(x)|2dx
\Big/ 1

2

dy

\nearrow C

\Biggl\lceil 

T2

|y||\rightharpoondown \varepsilon (y)|dy\leftrightarrow \oldstyle{1}\leftrightarrow W 1,2(T2) \nearrow C\leftharpoondown \leftrightarrow \oldstyle{1}\leftrightarrow W 1,2(T2).

(3.3)

We consider approximation solutions (u\varepsilon ,\varsigma \varepsilon ) for the mollified initial data:

\varphi t\varsigma 
\varepsilon + u\varepsilon ·\Leftarrow \varsigma \varepsilon = 0 in [0, T ]\downarrow T2,(3.4)

u\varepsilon =\updownarrow \Leftarrow \downarrow (\updownarrow \#)\updownarrow 1\varsigma \varepsilon in [0, T ]\downarrow T2,(3.5)

\varsigma \varepsilon |t=0 = \varsigma \varepsilon 

0 :=\rightharpoondown \varepsilon \propto \varsigma 0 in T2.(3.6)

Note that, for each \leftharpoondown \uparrow (0,1) this problem (3.4), (3.5), and (3.6) has a smooth (there-
fore unique) solution, which is the Lagrangian solution:

\varsigma \varepsilon (t, x) = \varsigma \varepsilon 

0 (X
\varepsilon (0; t, x)),(3.7)

d

ds
X\varepsilon (s; t, x) = u\varepsilon (s,X\varepsilon (s; t, x)), X\varepsilon (s; t, x)|s=t = x.(3.8)

Remark 3. If u\varepsilon is obtained from (1.10) with \varsigma \varepsilon \uparrow C\nearrow (T), u\varepsilon is incompressible,
and thus, the associated flow X\varepsilon by (1.12) satisfies (1.14) with an equality and C= 1
(measure-preserving).

We define a pressure as a unique solution of \updownarrow \#p\varepsilon = div(div(u\varepsilon \ni u\varepsilon )) with�
T2 p\varepsilon = 0. Then, we have

(\varphi t + u\varepsilon ·\Leftarrow x)u
\varepsilon +\Leftarrow xp

\varepsilon = 0 in [0, T ]\downarrow T2,

\Leftarrow x · u\varepsilon = 0 in [0, T ]\downarrow T2,

u\varepsilon (x,0) = u\varepsilon 

0 (x) in T2.

(3.9)

Also, we will consider the following auxiliary linear equation:

(\varphi t + u\varepsilon ·\Leftarrow x)ũ
\varepsilon + ũ\varepsilon ·\Leftarrow xu

\varepsilon +\Leftarrow xp̃
\varepsilon \updownarrow \rightharpoonup 0\#xu

\varepsilon = 0 in [0, T ]\downarrow T2,

\Leftarrow x · ũ\varepsilon = 0 in [0, T ]\downarrow T2,

ũ\varepsilon (0, x) = ũ0(x) in T2.

(3.10)

Here, \rightharpoonup 0 is given by Lemma 7.

3.2. Biot–Savart law in a periodic domain. In this part, we discuss the
asymptotic form of the kernel for the Biot–Savart law, which gives u from \varsigma , and
the singular integral, which gives \Leftarrow xu from \varsigma in our setting, the periodic domain
T2 =

\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2
. This is important since the compactness results we have used, in

particular [8], have the RN setting; in particular, the key estimate, the weak L1

estimate for \Leftarrow xu, relies on the form of the Calderon–Zygmund kernel of a Riesz
transform. Therefore, we need an asymptotic form of Biot–Savart kernels and Riesz
transforms.

We start from [12].
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3175

Proposition 5 ([12], Lemma 1). The function G—defined on R2 \prime C by

G(z) := Im

\Bigg\backslash 
|z|2 \updownarrow z2

\updownarrow 4i
\updownarrow z

2
+

i

12

\Big/ 

\updownarrow 1

2\omega 
log

     (1\updownarrow e(z))\downarrow 
\nearrow \bigsqcup 

n=1

(1\updownarrow e(ni+ z)) (1\updownarrow e(ni\updownarrow z))

     ,
(3.11)

where e(z) = e2\rightharpoondown iz—is Z2
-periodic and is the Green’s function with mass on Z2

; that

is,

\updownarrow \#xG(x) =
\left( 

\lhook \leftrightarrow Z2

\rhook (x\updownarrow \oldstyle{2})\updownarrow 1 for x\uparrow R2,

\Biggl\lceil 
G(x)dx= 0.(3.12)

In particular, the infinite product inside converges absolutely, and G is of the form

(3.13) G(z) =
|z|2

4
\updownarrow 1

2\omega 
log |h(z)|,

where h is a holomorphic function with simple zeros exactly on Z2.
For the sake of completeness, we briefly reason (3.13). We recall the following

result from complex analysis.

Proposition 6 (Theorem 15.5 of [41]). Suppose that {gn} is a sequence of non-

zero holomorphic functions on C such that

(3.14)
\nearrow \left( 

n=1

|1\updownarrow gn(z)|

converges uniformly on compact subsets of C. Then, the product

(3.15) g(z) =
\nearrow \bigsqcup 

n=1

gn(z)

converges uniformly on compact subsets of C, and thus, g is holomorphic on C. Fur-

thermore, the multiplicity of g at z0 (i.e., the smallest nonnegative integer k such that

limz\simeq z0

g(z)
(z\updownarrow z0)k

\bigtriangledown = 0) is the sum of multiplicities of gn at z0.

Now, we see that h(z) is the product of 1\updownarrow e(z) = 1\updownarrow e2\rightharpoondown iz, 1\updownarrow e(ni+z) = 1\updownarrow e\updownarrow 2\rightharpoondown n+2\rightharpoondown iz,
and 1\updownarrow e(ni\updownarrow z) = 1\updownarrow e\updownarrow 2\rightharpoondown n\updownarrow 2\rightharpoondown iz. Note that |1\updownarrow (1\updownarrow e(ni+z))|= |1\updownarrow (1\updownarrow e(ni\updownarrow z))|=
e\updownarrow 2\rightharpoondown n so that the premise of the proposition is satisfied. Thus, h(z) is holomorphic.
Furthermore, the zeros of h are exactly the union of zeros of 1 \updownarrow e(z), which are
{mi|m\uparrow Z}; zeros of 1\updownarrow e(ni+z), which are {m\updownarrow ni|m\uparrow Z}; and zeros of 1\updownarrow e(ni\updownarrow z),
which are {m+ni|m\uparrow Z}, for each integer n\rightarrow 1. The union is exactly Z2. Moreover,
the multiplicity of each point in Z2 is 1; in other words, all roots are simple.

Thus, on R2 \ Z2, G is infinitely di!erentiable. Furthermore, let \oldstyle{2} \uparrow Z2. Then,
there exists an r\lhook > 0 such that

(3.16) h(z) = (z \updownarrow \oldstyle{2})H(z),

where H(z) = h(z)
z\updownarrow \lhook 

is an holomorphic function onBr\leftharpoonup (\oldstyle{2}) and infz\leftrightarrow Br
\leftharpoonup 
(\lhook ) |H(z)|\rightarrow c\lhook > 0.

Therefore, we can rewrite (3.13) in the following form and di!erentiate; for z \uparrow Br\leftharpoonup (\oldstyle{2}),
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3176 CHANWOO KIM AND JOONHYUN LA

G(z) =\updownarrow 1

2\omega 
log |z \updownarrow \oldstyle{2}|+B\lhook (z),

\Leftarrow G(z) =\updownarrow 1

2\omega 

z \updownarrow \oldstyle{2}

|z \updownarrow \oldstyle{2}|2 +\Leftarrow B\lhook (z),

\Leftarrow 2G(z) =
1

4\omega 

(z \updownarrow \oldstyle{2})\ni (z \updownarrow \oldstyle{2})\updownarrow 1
2 |z \updownarrow \oldstyle{2}|2I2

|z \updownarrow \oldstyle{2}|4 +\Leftarrow 2
B\lhook (z),

(3.17)

where z = x+ iy is identified with (x, y), \Leftarrow = (\varphi x,\varphi y), and

(3.18) B\lhook (z) =
|z|2

4
\updownarrow 1

2\omega 
log |H(z)|

is a smooth function (in x, y) whose all derivatives are bounded. In particular, taking
\oldstyle{2} = 0= (0,0) and taking r= r0, we have the following.

Proposition 7. Let G be defined by (3.11) so that the solution to the Poisson

equation \updownarrow \#xq= h\updownarrow 
\Biggr] 
T2 h is given by q=G \propto h and the Biot–Savart law by

(3.19) u(x) = b \propto w=

\Bigg\backslash 
1

2\omega 

x\downarrow 

|x|2 +\Leftarrow \downarrow 
x
B

\Big/ 
\propto \varsigma .

Then, there exists a r > 0 such that G,\Leftarrow xG,\Leftarrow 2
x
G are smooth and bounded in T2 \

Br(0) =
\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2 \Br(0), and in Br(0), we have

G(x) =\updownarrow 1

2\omega 
log |x|+B(x), x\uparrow Br(0),

\Leftarrow xG(x) =\updownarrow 1

2\omega 

x

|x|2 +\Leftarrow xB(x), x\uparrow Br(0),

\Leftarrow 2
x
G(x) =

1

4\omega 

x\ni x\updownarrow 1
2 |x|

2I2
|x|4 +\Leftarrow 2

x
B(x), x\uparrow Br(0),

(3.20)

where \Leftarrow k

x
B are bounded in Br(0) for all k\rightarrow 0.

3.3. Higher regularity of the approximations (u\bfitomega ,\bfitvargamma \bfitomega ). In this section, we
establish the regularity estimate of (u\varepsilon ,\varsigma \varepsilon ) solving (3.9) and (3.4), (3.5), and (3.6)
and (ũ\varepsilon , p̃\varepsilon ) solving (3.10).

First, we prove that, for 1\nearrow r, p\nearrow \Uparrow ,

\leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \leftrightsquigarrow \leftharpoondown 
\updownarrow 2

 
1

p
\updownarrow 1

r

\left\{ 
+\leftrightarrow \varsigma 0\leftrightarrow Lp ,(3.21)

\leftrightarrow \Leftarrow k\varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \leftrightsquigarrow \leftharpoondown 
\updownarrow k\updownarrow 2

 
1

p
\updownarrow 1

r

\left\{ 
+\leftrightarrow \varsigma 0\leftrightarrow Lp .(3.22)

From Young’s inequality, for 1 + 1/r= 1/p+ 1/q and r, p, q \uparrow [1,\Uparrow ],

\leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \nearrow \leftrightarrow \rightharpoondown \varepsilon \leftrightarrow Lq(T2)\leftrightarrow \varsigma 0\leftrightarrow Lp(T2) \leftrightsquigarrow \leftharpoondown \updownarrow 2
 

1

p
\updownarrow 1

r

\left\{ 
\leftrightarrow \varsigma 0\leftrightarrow Lp for r\rightarrow p,

\leftrightarrow \Leftarrow k\varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \nearrow \leftrightarrow \Leftarrow k\rightharpoondown \varepsilon \leftrightarrow Lq(T2)\leftrightarrow \varsigma 0\leftrightarrow Lp(T2) \nearrow \leftharpoondown \updownarrow k\updownarrow 2
 

1

p
\updownarrow 1

r

\left\{ 
\leftrightarrow \varsigma 0\leftrightarrow Lp for r\rightarrow p.

For both, we have used

\Bigg\backslash \Biggl\lceil 

T2

|\Leftarrow k

x
\rightharpoondown \varepsilon |qdx

\Big/ 1/q

=

\Bigg\backslash 
\leftharpoondown 2

\leftharpoondown q(2+k)

\Biggl\lceil 

T2

|\Leftarrow k\rightharpoondown (
x

\leftharpoondown 
)|qdx1

\leftharpoondown 
d
x2

\leftharpoondown 

\Big/ 1/q

= \leftharpoondown \updownarrow k\updownarrow 2(q\nearrow 1)

q \leftrightarrow \Leftarrow k\rightharpoondown \leftrightarrow Lq(T2).
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3177

Using |T2|= 1, we have

\leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \nearrow \leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Lp(T2) \leftrightsquigarrow \leftrightarrow \varsigma 0\leftrightarrow Lp(T2) for p\rightarrow r,

\leftrightarrow \Leftarrow k\varsigma \varepsilon 

0 \leftrightarrow Lr(T2) \nearrow \leftrightarrow \Leftarrow k\varsigma \varepsilon 

0 \leftrightarrow Lp(T2) \leftrightsquigarrow \leftharpoondown \updownarrow k\leftrightarrow \varsigma 0\leftrightarrow Lp(T2) for p\rightarrow r.

Collecting the bounds, we conclude (3.21) and (3.22).

3.3.1. Bounds for \rightarrow \uparrow xu\bfitomega (t)\rightarrow L\rightarrow (T2).
Theorem 4. Let (u\varepsilon ,\varsigma \varepsilon ) be the Lagrangian solution of (3.7) supplemented with

(3.8) and (3.5). For p \uparrow [1,\Uparrow ] and \leftharpoondown \forall \leftrightarrow \varsigma 0\leftrightarrow Lp , we have the following estimate for

all t\rightarrow 0:

\leftrightarrow \Leftarrow u\varepsilon (t, ·)\leftrightarrow L\rightarrow \leftrightsquigarrow Lip(\leftharpoondown ,p) :=
\Biggl\langle 
\leftharpoondown \updownarrow 2

p log+
1

\leftharpoondown 

\Biggr\rangle 
\leftrightarrow \varsigma 0\leftrightarrow LpetC\varepsilon 

\nearrow 2

p \Leftarrow \rhook 0\Leftarrow Lp
for some C > 1.

(3.23)

We will estimate \Leftarrow xX by applying Gronwall’s inequality to the di!erentiation of
(3.8):

(3.24)
d

ds
\Leftarrow xX

\varepsilon (s; t, x) =\Leftarrow xX(s; t, x) · (\Leftarrow xu)(s,X(s; t, x)).

The initial condition for each purely spatial derivative can be driven from (1.12):

(3.25) \Leftarrow xX(s; t, x)|s=t = id.

We use the following version of Gronwall’s inequality.

Lemma 14 ([3], Lemma 3.3). Let q and z be two C0
(resp., C1

) nonnegative

functions on [t0, T ]. Let G be a continuous function on [t0, T ]. Suppose that, for

t\uparrow [t0, T ],

(3.26)
d

dt
z(t)\nearrow G(t)z(t) + q(t).

For any time t\uparrow [t0, T ], we have

(3.27) z(t)\nearrow z(t0) exp

\Bigg\backslash \Biggl\lceil 
t

t0

G(\oldstyle{0})d\oldstyle{0}
\Big/ 
+

\Biggl\lceil 
t

t0

q(\oldstyle{0}) exp

\Bigg\backslash \Biggl\lceil 
t

\leftharpoondown 

G(\oldstyle{0} \uparrow )d\oldstyle{0} \uparrow 
\Big/ 
d\oldstyle{0}.

Lemma 15. For any r \uparrow [1,\Uparrow ] and 0\nearrow s\nearrow t,

\leftrightarrow \Leftarrow xX
\varepsilon (s; t, ·)\leftrightarrow Lr(T2) \nearrow e

\Biggr) 
t

s
\Leftarrow \Rightarrow xu(t

\Leftarrow )\Leftarrow L\rightarrow 
x

dt\Leftarrow .(3.28)

Proof. The proof is immediate from Gronwall’s inequality to (3.24) and the initial
condition \leftrightarrow \Leftarrow X\varepsilon (t; t, x)\leftrightarrow Lr(T2) = \leftrightarrow \Leftarrow x\leftrightarrow Lr(T2) = \leftrightarrow id\leftrightarrow Lr(T2) = 1 from (3.25).

Next, using Morrey’s inequality

(3.29) W 1,r(T2)\exists C0,1\updownarrow 2

r (T2) for r > 2,

we estimate the Hölder seminorm of \varsigma \varepsilon .

Lemma 16. For r \uparrow (2,\Uparrow ),

[\varsigma \varepsilon (t, ·)]
C

0,1\nearrow 2

r (T2)
\leftrightsquigarrow \leftharpoondown 

\updownarrow 1\updownarrow 2
 

1

p\updownarrow 1

r

\left\{ 
+\leftrightarrow \varsigma 0\leftrightarrow Lp(T2)e

(1\updownarrow 2

r )
\Biggr) 

t

0
\Leftarrow \Rightarrow xu

\omega (t\Leftarrow )\Leftarrow L\rightarrow 
x

dt\Leftarrow .(3.30)
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3178 CHANWOO KIM AND JOONHYUN LA

Proof. We note that

[\varsigma \varepsilon (t, ·)]
C

0,1\nearrow 2

r (T2)
= sup

x \propto =y\leftrightarrow T2

|\varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))\updownarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, y))|

|x\updownarrow y|(1\updownarrow 
2

r )

\nearrow [\varsigma \varepsilon 

0 ]
C

0,1\nearrow 2

r (T)\leftrightarrow \Leftarrow xX
\varepsilon (0; t, ·)\leftrightarrow (1\updownarrow 

2

r )
L\rightarrow 

x

,

(3.31)

where we slightly abused the notation by

(3.32) |x\updownarrow y|=distT2(x, y).

Applying Morrey’s inequality (3.29) for [\varsigma \varepsilon 

0 ]
C

0,1\nearrow 2

r (T2)
and applying (3.28) gives the

result.

The following standard estimate is important in the proof.

Lemma 17. Let (u\varepsilon ,\varsigma \varepsilon ) satisfy (3.5). Then, for any \oldstyle{3} > 0,

(3.33) \leftrightarrow \Leftarrow xu\leftrightarrow L\rightarrow (T2) \leftrightsquigarrow 1 + \leftrightarrow \varsigma \leftrightarrow L1(T2) + \leftrightarrow \varsigma \leftrightarrow L\rightarrow (T2) log+([\varsigma ]C0,\leftharpoondown (T2)).

Proof. The result is well known from the potential theory (e.g., [40]), so we just
briefly sketch the proof. Assume that \varsigma \uparrow L1(T2)\swarrow C0, \triangleleft (T2). From (1.10) and (3.19),
for R\rightarrow d > 0, there exists C2 > 0 only depending on the spatial dimension (2 in our
case)

\varphi xj
ui(x) =

\Biggl\lceil 

|x\updownarrow y|\prime R

\varphi jbi(x\updownarrow y)\varsigma (y)dy+

\Biggl\lceil 

d\searrow |x\updownarrow y|\searrow R

\varphi jbi(x\updownarrow y)\varsigma (y)dy

+

\Biggl\lceil 

|x\updownarrow y|\searrow d

\varphi jbi(x\updownarrow y)[\varsigma (y)\updownarrow \varsigma (x)]dy+C2\rhook i+1,j\varsigma (x)
(3.34)

for

(3.35) \varphi jb(x\updownarrow y) :=
1

2\omega 

\Bigg\backslash 
2(xi+1 \updownarrow yi+1)(xj \updownarrow yj)

|x\updownarrow y|4 \updownarrow \rhook i+1,j

|x\updownarrow y|2

\Big/ 
+ \varphi jB(x\updownarrow y).

Here, the index i+1 should be understood on a modulus of 2, and \rhook i+1,j = 1 if i+1= j
mod 2 and \rhook i+1,j = 0 if i+ 1 \bigtriangledown = j mod 2. We bound (3.34) as

|(3.34)|\nearrow 
\Biggl\lceil 

|x\updownarrow y|\prime R

4

|x\updownarrow y|2 |\varsigma (y)|dy+
\Biggl\lceil 

d\searrow |x\updownarrow y|\searrow R

4

|x\updownarrow y|2 |\varsigma (y)|dy

+ [\varsigma ]C0,\leftharpoondown (T2)

\Biggl\lceil 

|x\updownarrow y|\searrow d

4

|x\updownarrow y|2\updownarrow  \triangleleft 
dy+C2|\varsigma (x)|

\leftrightsquigarrow R\updownarrow 1/2\leftrightarrow \varsigma \leftrightarrow L1(T2) + ln

\Bigg\backslash 
R

d

\Big/ 
\leftrightarrow \varsigma \leftrightarrow L\rightarrow (T2) + d \triangleleft [\varsigma ]C0,\leftharpoondown (T2) + \leftrightarrow \varsigma \leftrightarrow L\rightarrow (T2).

(3.36)

We finalize the proof by choosing R= 1 and d=max
 
1, [\varsigma ]1/ \triangleleft 

C0,\leftharpoondown (T2)

\left\{ 
.

Proof of Theorem 4. To prove (3.23), we apply (3.21)|r=1,\nearrow and (3.30)|r>2 to
(3.33)| to conclude that

\leftrightarrow \Leftarrow u\varepsilon (t, ·)\leftrightarrow L\rightarrow /\leftrightarrow \varsigma 0\leftrightarrow Lp

\leftrightsquigarrow 1 + \leftharpoondown \updownarrow 2

p log+(\leftharpoondown 
\updownarrow 1\updownarrow 2( 1

p\updownarrow 1

r
)+\leftrightarrow \varsigma 0\leftrightarrow Lpe

\Biggr) 
t

0
\Leftarrow \Rightarrow xu

\omega (s)\Leftarrow L\rightarrow 
x

ds)

\leftrightsquigarrow 1 + \leftharpoondown \updownarrow 2

p

\Biggr) 
log+

1

\leftharpoondown 
+ log+\leftrightarrow \varsigma 0\leftrightarrow Lp +

\Biggl\lceil 
t

0
\leftrightarrow \Leftarrow u\varepsilon (s, ·)\leftrightarrow L\rightarrow ds

\Biggl[ 
.

(3.37)

Applying Gronwall’s inequality gives the result.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3179

3.3.2. Bounds for V (\bfitvarpi ). We introduce the growth-of-estimate function for
(u\varepsilon , p\varepsilon , ũ\varepsilon , p̃\varepsilon ), which is a function of \leftharpoondown :

V (\leftharpoondown ) :=
\left( 

s1+s2\searrow 2,D\leftrightarrow {\varrho t,\varrho }

\leftrightarrow \varphi s1D(u\varepsilon ,\varphi u\varepsilon , p\varepsilon , ũ\varepsilon , p̃\varepsilon )\leftrightarrow L\rightarrow 
t,x

\downarrow 
\Biggl\langle 
1 + \leftrightarrow \varphi s2(ũ\varepsilon , u\varepsilon )\leftrightarrow L\rightarrow 

t,x

\Biggr\rangle 
 

 1 +
\left( 

j\searrow 2

\leftrightarrow \varphi ju\varepsilon \leftrightarrow L\rightarrow 
t,x

 

 
2

.

(3.38)

This is a pointwise bound for all derivatives of (u\varepsilon , p\varepsilon , ũ\varepsilon , p̃\varepsilon ) appearing in the
remainder estimates in section 2.5.

We have the following explicit bound for V (\leftharpoondown ).

Theorem 5. Suppose that \varsigma 0 \uparrow Lp(T2). Then,

V (\leftharpoondown )\leftrightsquigarrow 
\Biggl\langle 
\leftrightarrow ũ0\leftrightarrow H6(T2) + TU(\leftharpoondown ,p)eTU(\varepsilon ,p) +U(\leftharpoondown ,p)

\Biggr\rangle 6
,

where U(\leftharpoondown ) is as defined in (3.39).

Proof. By Sobolev embedding and the formula for p\varepsilon , p̃\varepsilon , \varphi tu\varepsilon , and \varphi tũ\varepsilon , we
have a bound

V (\leftharpoondown )\leftrightsquigarrow 
 
\leftrightarrow u\varepsilon \leftrightarrow L\rightarrow ((0,T );H8(T2)) + \leftrightarrow ũ\varepsilon \leftrightarrow L\rightarrow ((0,T );H6(T2))

\left\{ 6
.

We invoke the standard energy, commutator estimate, and algebra property ofHs(T2),
s > 1:

d

2dt
\leftrightarrow \varphi 8u\varepsilon (t)\leftrightarrow 2

L2(T2)

\nearrow \leftrightarrow \varphi 8u\varepsilon (t)\leftrightarrow L2(T2)\leftrightarrow [[\varphi 8, u\varepsilon ·\Leftarrow x]]u\leftrightarrow L2(T2) \leftrightsquigarrow \leftrightarrow \Leftarrow xu
\varepsilon u\varepsilon \leftrightarrow L\rightarrow (T2)\leftrightarrow \varphi 8u\varepsilon (t)\leftrightarrow 2

L2(T2),

d

2dt
\leftrightarrow \varphi 6ũ\varepsilon (t)\leftrightarrow 2

L2(T2)

\leftrightsquigarrow \leftrightarrow \varphi 6ũ\varepsilon (t)\leftrightarrow L2(T2)

\downarrow 
\Bigg\backslash 
\leftrightarrow [[\varphi 6, u\varepsilon ·\Leftarrow x]]ũ(t)\leftrightarrow L2(T2) + \leftrightarrow \varphi 6ũ\varepsilon (t)\leftrightarrow L2(T2)\leftrightarrow \varphi 7u\varepsilon (t)\leftrightarrow L2(T2) + \leftrightarrow \varphi 8u\varepsilon (t)\leftrightarrow L2(T2)

\Big/ 

\leftrightsquigarrow \leftrightarrow \varphi 8u\varepsilon (t)\leftrightarrow L2(T2)\leftrightarrow \varphi 6ũ\varepsilon (t)\leftrightarrow 2
L2(T2) + \leftrightarrow \varphi 8ũ\varepsilon (t)\leftrightarrow 2

L2(T2).

Therefore, we have

\leftrightarrow u\varepsilon \leftrightarrow L\rightarrow ((0,T );H8(T2)) \leftrightsquigarrow e\Leftarrow \Rightarrow xu
\omega \Leftarrow 

L\rightarrow ((0,T )\updownarrow T2)\leftrightarrow u\varepsilon (0)\leftrightarrow L\rightarrow ((0,T );H8(T2))

\leftrightsquigarrow eLip(\varepsilon ,p)\leftharpoondown 
\updownarrow 8\updownarrow 2( 1

p\updownarrow 1

2 )+\leftrightarrow \varsigma 0\leftrightarrow Lp =:U(\leftharpoondown ,p),

\leftrightarrow ũ\varepsilon \leftrightarrow L\rightarrow ((0,T );H6(T2)) \leftrightsquigarrow e\Leftarrow u
\omega \Leftarrow 

L\rightarrow ((0,T );H8(T2))
T
 
\leftrightarrow ũ0\leftrightarrow H6(T2) + T\leftrightarrow u\leftrightarrow L\rightarrow ((0,T );H8(T2))

\left\{ 

\leftrightsquigarrow (\leftrightarrow ũ0\leftrightarrow H6(T2) + TU(\leftharpoondown ,p))eTU(\varepsilon ,p).

(3.39)

4. Vorticity convergence of the approximate solutions of Euler.

4.1. Stability of the regular Lagrangian flow when the vorticity is un-
bounded. To study the stability of the regular Lagrangian flow when the vorticities
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3180 CHANWOO KIM AND JOONHYUN LA

do not belong to L\nearrow , we adopt the functional used in [2, 15, 8]; for (u\varepsilon i ,X\varepsilon i) solving
(3.8),

(4.1) '(s; t) ='\varepsilon 1,\varepsilon 2(s; t) :=

\Biggl\lceil 

T2

log

\Bigg\backslash 
1 +

|X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|
\oldstyle{4}

\Big/ 
dx,

where we again abused the notation

(4.2) |X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|=distT2(X\varepsilon 1(s; t, x),X\varepsilon 2(s; t, x)),

that is, the geodesic distance between X\varepsilon 1(s; t, x) and X\varepsilon 2(s; t, x). We note that

(4.3) '(t; t) = 0

due to the last condition in both (1.12) and (3.8). From (1.12) and (3.8), a direct
computation yields that

|'̇(s; t)|\nearrow 
\Biggl\lceil 

T2

|Ẋ\varepsilon 1(s)\updownarrow Ẋ\varepsilon 2(s)|
\oldstyle{4}+ |X\varepsilon 1(s)\updownarrow X\varepsilon 2(s)|dx

\nearrow 
\Biggl\lceil 

T2

|u\varepsilon 1(s,X\varepsilon 1(s))\updownarrow u\varepsilon 2(s,X\varepsilon 2(s)|
\oldstyle{4}+ |X\varepsilon 1(s)\updownarrow X\varepsilon 2(s)| dx

\nearrow 
\Biggl\lceil 

T2

|u\varepsilon 1(s,X\varepsilon 1(s))\updownarrow u\varepsilon 1(s,X\varepsilon 2(s)|
\oldstyle{4}+ |X\varepsilon 1(s)\updownarrow X\varepsilon 2(s)| dx(4.4)

+

\Biggl\lceil 

T2

|u\varepsilon 1(s,X\varepsilon 2(s))\updownarrow u\varepsilon 2(s,X\varepsilon 2(s)|
\oldstyle{4}+ |X\varepsilon 1(s)\updownarrow X\varepsilon 2(s)| dx.(4.5)

Proposition 8 ([15, 8]). Let (u\varepsilon i ,\varsigma \varepsilon i) satisfy (3.6), (3.5), and (3.7), and let X\varepsilon i

be the regular Lagrangian flow of (3.8) for i= 1,2. Suppose that \leftrightarrow u\varepsilon 1\updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))

\forall 1. Then,

\leftrightarrow X\varepsilon 1(s; t, ·)\updownarrow X\varepsilon 2(s; t, ·)\leftrightarrow L1(T2)

\leftrightsquigarrow 1 + \leftrightarrow \Leftarrow u\varepsilon 1\leftrightarrow L1((0,T );Lp(T2))

| log \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))|
for p > 1.

(4.6)

For p= 1, for every \rhook > 0, there exists C \triangleright > 0 such that, for every \oldstyle{3} > 0,

L 2({x\uparrow T2 : |X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|> \oldstyle{3}})

\nearrow e
4C

\rightharpoonup 

\rightharpoonup 

4C\rightharpoonup 

 \triangleright 

\leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))

\oldstyle{3}
+ \vargamma 

(4.7)

holds.

For the convenience of the reader, we provide a sketch of the argument. The argument
follows the line of [15] for p > 1 and that of [8] for p= 1.

Proof. For (4.5), using (1.14), we have

(4.5)\nearrow 1

\oldstyle{4}

\Biggl\lceil 

T2

|u\varepsilon 1(s,X\varepsilon 2(s; t, x))\updownarrow u\varepsilon 2(s,X\varepsilon 2(s; t, x)|dx

\nearrow C

\oldstyle{4}
\leftrightarrow u\varepsilon 1(s, ·)\updownarrow u\varepsilon 2(s, ·)\leftrightarrow L1(T2)

(4.8)
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3181

with the common compressibility bound C= 1. In the rest of the proof, we estimate
(4.4).

Step 1. The case of p > 1. Recall that the maximal function of u is given by

(4.9) Mu(x) = sup
\omega >0

 
B\vargamma (x)

|u(y)|dy= sup
\omega >0

1

L 2(B\omega (x))

\Biggl\lceil 

B\vargamma (x)
|u(y)|dy.

We have the following (e.g., [34], section 2):

|u(x)\updownarrow u(y)|\leftrightsquigarrow |x\updownarrow y|{(M\Leftarrow u)(x) + (M\Leftarrow u)(y)} a.e. x, y \uparrow T2,(4.10)

\leftrightarrow Mw\leftrightarrow Lp(T2) \leftrightsquigarrow \leftrightarrow w\leftrightarrow Lp(T2) for p\uparrow (1,\Uparrow ].(4.11)

Now, we bound (4.4) for p > 1, using (4.10) and (4.11), as

(4.4)\nearrow 
\Biggl\lceil 

T2

{M\Leftarrow u\varepsilon 1(s,X\varepsilon 1(s; t, x)) +M\Leftarrow u\varepsilon 1(s,X\varepsilon 2(s; t, x))}dx

\leftrightsquigarrow \leftrightarrow \Leftarrow u\varepsilon 1\leftrightarrow Lp(T2) for p\uparrow (1,\Uparrow ].
(4.12)

Using the above (4.12) and (4.8), together with (4.3), we derive that

'(s; t)\leftrightsquigarrow \leftrightarrow \Leftarrow u\varepsilon 1\leftrightarrow L1((0,T );Lp(T2))

+
1

\oldstyle{4}
\leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2)) for all (s, t)\uparrow [0, t]\downarrow [0, T ].

(4.13)

On the other hand, for any (s, t)\uparrow [0, t]\downarrow [0, T ],

1|X\omega 1 (s;t,x)\updownarrow X\omega 2 (s;t,x)|\prime  \triangleleft log

\Bigg\backslash 
1 +

|X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|
\oldstyle{4}

\Big/ 
\rightarrow log

\Biggl\langle 
1 +

\oldstyle{3}

\oldstyle{4}

\Biggr\rangle 
.(4.14)

Then, (4.14) with \oldstyle{3} =
\nwarrow 
\oldstyle{4}, together with the definition (4.1), implies that

L 2({x\uparrow T2 : |X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|\rightarrow 
\nwarrow 
\oldstyle{4}})\nearrow 1

| log
\nwarrow 
\oldstyle{4}|
'(s; t).(4.15)

Therefore, by applying (4.13) to (4.15), together with L 2(T2) = 1 and |x\updownarrow y| \nearrow 
\nwarrow 
2

for x, y \uparrow T2, we establish the stability:

\leftrightarrow X\varepsilon 1(s; t, ·)\updownarrow X\varepsilon 2(s; t, ·)\leftrightarrow L1(T2) =

\Biggl\lceil 

T2

|X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|dx

=

\Biggl\lceil 

|X\omega 1 (s;t,·)\updownarrow X\omega 2 (s;t,·)|\searrow 
\Downarrow 
\oldstyle{0}

+

\Biggl\lceil 

|X\omega 1 (s;t,·)\updownarrow X\omega 2 (s;t,·)|\prime 
\Downarrow 
\oldstyle{0}

\nearrow 
\nwarrow 
\oldstyle{4}+

\nwarrow 
2

| log
\nwarrow 
\oldstyle{4}|
'(s; t)

\leftrightsquigarrow 
\nwarrow 
\oldstyle{4}+

1

| log
\nwarrow 
\oldstyle{4}|

 
\leftrightarrow \Leftarrow u\varepsilon 1\leftrightarrow L1((0,T );Lp(T2)) +

1

\oldstyle{4}
\leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))

 
.

Choosing

(4.16) \oldstyle{4}= \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2)),
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3182 CHANWOO KIM AND JOONHYUN LA

we have that

\leftrightarrow X\varepsilon 1(s; t, ·)\updownarrow X\varepsilon 2(s; t, ·)\leftrightarrow L1(T2)

\leftrightsquigarrow \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow 1/2
L1((0,T );L1(T2)) +

\leftrightarrow \Leftarrow u\varepsilon 1\leftrightarrow L1((0,T );Lp(T2))

| log \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))|
.

(4.17)

For \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2)) \forall 1, we prove (4.6).
Step 2. The case of p = 1. Note that p = 1 fails (4.11), but \leftrightarrow Mu\leftrightarrow L1,\rightarrow (T2) \leftrightsquigarrow 

\leftrightarrow u\leftrightarrow L1(T2) only holds instead of (4.11). Here, we recall the quasi-norm of the Lorentz
space Lp,q:

\leftrightarrow u\leftrightarrow Lp,q(T2,m) := p1/q\leftrightarrow \oldstyle{4}L 2({x\uparrow T2 : |u(x)|> \oldstyle{4}})1/p\leftrightarrow 
Lq(R+,

d\rightharpoondown 

\rightharpoondown 
),

\leftrightarrow u\leftrightarrow p
Lp,\rightarrow (T2) = \leftrightarrow u\leftrightarrow p

Lp,\rightarrow (T2,L 2) = sup
\oldstyle{0}>0

{\oldstyle{4}pL 2({x\uparrow T2 : |u(x)|> \oldstyle{4}})}.(4.18)

For p= 1, there exists a map M̃ , defined as in Definition 3.1 of [8] with choice of
functions in Proposition 4.2 of [8], such that (Theorem 3.3 of [8])
(4.19)
M̃ : \varsigma \Downarrow \searrow M̃\Leftarrow (\Leftarrow \downarrow (\#)\updownarrow 1\varsigma )\rightarrow 0 is bounded in L2(T2)\searrow L2(T2) and L1(T2)\searrow L1,\nearrow (T2).

Note that, if (u,\varsigma ) satisfy (1.10) in the sense of distributions, then M̃\Leftarrow (B\propto \varsigma ) = M̃\Leftarrow u.
The argument follows the line of [8], with translation to the periodic domain by
Proposition 7.

Proposition 9. There exists an operator \varsigma \searrow U(\varsigma ), which will be denoted by

M̃\Leftarrow u, defined either on L1(T2) or L2(T2), satisfying

U(\varsigma )(x)\rightarrow 0,

\leftrightarrow U(\varsigma )\leftrightarrow L1,\rightarrow (T2) \leftrightsquigarrow \leftrightarrow \varsigma \leftrightarrow L1(T2),

\leftrightarrow U(\varsigma )\leftrightarrow L2(T2) \leftrightsquigarrow \leftrightarrow \varsigma \leftrightarrow L2(T2).

Also, if \varsigma \uparrow L1(T2) and u=B \propto \varsigma , then there is a Lebesgue measure 0 set N such that

|u(x)\updownarrow u(y)|\nearrow |x\updownarrow y|(U(x) +U(y)), x, y \uparrow T2 \N .

Proof. We first identify x \uparrow T2 with x \uparrow 
\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2 \exists R2, denote K(y) :=\Leftarrow 2
y
G(y)

\oldstyle{5}[\updownarrow 1

2
,
1

2 ]
2(y), y \uparrow R2, and define

K0(y) =
1

4\omega 

y\ni y\updownarrow 1
2 |y|

2I2
|y|4 , y \uparrow R2.

Also, we regard \varsigma and u as a Z2-periodic function in R2: \varsigma (x+m) = \varsigma (x), u(x+m) =
u(x) for m \uparrow Z2. Now, for x \uparrow 

\Biggl\lfloor 
\updownarrow 5

2 ,
5
2

\Biggr\rfloor 2 \exists R2,
\Biggr] 
R2 K(y)\varsigma (x \updownarrow y)dy is well defined

because it is exactly (\Leftarrow 2G \propto T2 \varsigma )(x\updownarrow m) for some m \uparrow Z2 so that x\updownarrow m \uparrow 
\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2
.

Then, we see that D(x), defined by

D(x) :=

\Biggl\lceil 

R2

K(y)\varsigma (x\updownarrow y)\updownarrow K0(y)\varsigma (x\updownarrow y)\oldstyle{5}B100(0)(x\updownarrow y)dy

=

\Biggl\lceil 

R2

(K(y)\oldstyle{5}[\updownarrow 1

2
,
1

2 ]
2(y)\updownarrow K0(y)\oldstyle{5}B100(x)(y))\varsigma (x\updownarrow y)dy

for x \uparrow 
\Biggl\lfloor 
\updownarrow 5

2 ,
5
2

\Biggr\rfloor 
and D(x) := 0 for x /\uparrow 

\Biggl\lfloor 
\updownarrow 5

2 ,
5
2

\Biggr\rfloor 
, is bounded. First, since Br(0) \exists 

B100(x) \swarrow 
\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2
, (K(y)\oldstyle{5}[\updownarrow 1

2
,
1

2 ]
2(y) \updownarrow K0(y)\oldstyle{5}B100(x)(y)) is thus bounded for y \uparrow 
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3183

Br(0). For y /\uparrow Br(0), (K(y)\oldstyle{5}[\updownarrow 1

2
,
1

2 ]
2(y)\updownarrow K0(y)\oldstyle{5}B100(x)(y)) is bounded as well. Fi-

nally, (K(y)\oldstyle{5}[\updownarrow 1

2
,
1

2 ]
2(y)\updownarrow K0(y)\oldstyle{5}B100(x)(y)) is supported on B100(x); thus, we have

|D(x)|\leftrightsquigarrow 
\Biggl\lceil 

R2

\oldstyle{5}B100(x)(y)|\varsigma (x\updownarrow y)|dy\leftrightsquigarrow C\leftrightarrow \varsigma \leftrightarrow L1(T2).

Furthermore, this implies that |D|\nearrow C\leftrightarrow \varsigma \leftrightarrow L1(T2)\oldstyle{5}[\updownarrow 5

2
,
5

2 ]
2 , so, in fact, D \uparrow L1 as well.

Therefore, we have

(4.20) \Leftarrow xu(x) =D(x) +K0 \oldstyle{6}R2 (\varsigma \oldstyle{5}B100(0))(x), x\uparrow 
\Biggl\{ 
\updownarrow 5

2
,
5

2

\Biggr\} 2
.

Next, we closely follow the argument of Proposition 4.2 of [8]. Let h̄ be a smooth,
nonnegative function supported on B 1

100

(0) with
\Biggr] 
R2 h̄(y)dy = 1. Also, we denote

h̄r(x) =
1
r2
h̄
 
x

r

\left\{ 
for x\uparrow R2 and r > 0. Finally, for \oldstyle{7} \uparrow S1 and j = 1,2 we define

T
\oldstyle{1},j(w) := h

\Bigg\backslash 
\oldstyle{7}

2
\updownarrow w

\Big/ 
wj ,

and T
\oldstyle{1},j

r
is similarly defined for r > 0. Now, let x, y \uparrow T2 =

\Biggl\lfloor 
\updownarrow 1

2 ,
1
2

\Biggr\rfloor 2
. Then, there

exists ỹ \uparrow 
\Biggl\lfloor 
\updownarrow 3

2 ,
3
2

\Biggr\rfloor 
, ỹ\updownarrow y \uparrow Z2 such that the projection of the line segment of ỹ and x

in R2 is the geodesic connecting x, y in T2. Then, we have

u(x)\updownarrow u(y) = u(x)\updownarrow u(ỹ)

=

\Biggl\lceil 

R2

h̄|x\updownarrow ỹ|

\Bigg\backslash 
z \updownarrow x+ ỹ

2

\Big/ 
(u(x)\updownarrow u(z))dz +

\Biggl\lceil 

R2

h̄|x\updownarrow ỹ|

\Bigg\backslash 
z \updownarrow x+ ỹ

2

\Big/ 
(u(z)\updownarrow u(y))dz.

We focus on the first term; the other gives a similar contribution. Following the
argument of Proposition 4.2 of [8], we have

\Biggl\lceil 

R2

h̄|x\updownarrow ỹ|

\Bigg\backslash 
z \updownarrow x+ ỹ

2

\Big/ 
(u(x)\updownarrow u(z))dz = |x\updownarrow ỹ|

2\left( 

j=1

\Biggl\lceil 1

0

\Biggl\lceil 

R2

T

x\nearrow y

|x\nearrow y| ,j

s|x\updownarrow ỹ| (w)(\varphi ju)(x\updownarrow w)dwds.

Note that T

x\nearrow ỹ

|x\nearrow ỹ| ,j

s|x\updownarrow ỹ| is supported on B 1

100
s|x\updownarrow ỹ|

\Biggl\langle 
x\updownarrow y

2|x\updownarrow ỹ|

\Biggr\rangle 
and |x \updownarrow ỹ| \nearrow 

\Downarrow 
2
2 , so, if w \uparrow 

B 1

100
s|x\updownarrow ỹ|

\Biggl\langle 
x\updownarrow ỹ

2|x\updownarrow ỹ|

\Biggr\rangle 
, |w| \nearrow 2

3 , and thus, x \updownarrow w \uparrow 
\Biggl\lfloor 
\updownarrow 5

2 ,
5
2

\Biggr\rfloor 2
, which implies that (4.20)

is satisfied at x\updownarrow w. (Similar consideration shows that at ỹ \updownarrow w, (4.20) is satisfied.)
Therefore,

    
\Biggl\lceil 

R2

h̄|x\updownarrow ỹ|

\Bigg\backslash 
z \updownarrow x+ ỹ

2

\Big/ 
(u(x)\updownarrow u(z))dz

    \nearrow |x\updownarrow ỹ|
2\left( 

j=1

\Biggl\lceil 1

0

    

\Bigg\backslash 
T

x\nearrow y

|x\nearrow y| ,j

s|x\updownarrow ỹ| \oldstyle{6}R2 D

\Big/ 
(x)

    ds

+ |x\updownarrow ỹ|
2\left( 

j=1

\Biggl\lceil 1

0

    

\Bigg\backslash 
T

x\nearrow y

|x\nearrow y| ,j

s|x\updownarrow ỹ| \oldstyle{6}R2 (K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100
)

\Big/ 
(x)

    ds

\nearrow |x\updownarrow ỹ|
2\left( 

j=1

 
M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)(x) +M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100

)(x)
\left\{ 
,

where

M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(g)(x) = sup
{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}

sup
r>0

   T\oldstyle{1},j

r
\oldstyle{6}R2 g

\left\{ 
(x)

  , x\uparrow R2.
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3184 CHANWOO KIM AND JOONHYUN LA

By Theorem 3.3 of [8], we have

\leftrightarrow M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100
)\leftrightarrow L1,\rightarrow (R2) \nearrow C\leftrightarrow \varsigma \oldstyle{5}B100

\leftrightarrow L1(R2) \nearrow C\leftrightarrow \varsigma \leftrightarrow L1(T2).

Also, by Young’s inequality, we have

\leftrightarrow M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)\leftrightarrow L1,\rightarrow (R2) \nearrow \leftrightarrow M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)\leftrightarrow L\rightarrow (R2) \nearrow C\leftrightarrow D\leftrightarrow L\rightarrow (R2) \nearrow C\leftrightarrow \varsigma \leftrightarrow L1(T2).

Finally, for x\uparrow T2 identified with
\Biggl\lfloor \updownarrow 1

2 , 12
\Biggr\rfloor 2
, we define

U(x) :=
\left( 

x̃\leftrightarrow [\updownarrow 3

2
,
3

2 ],x\updownarrow x̃\leftrightarrow Z2

2\left( 

j=1

 
M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)(x̃) +M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100

)(x̃)
\left\{ 
.

Then, obviously, for x, y \uparrow T2,

|u(x)\updownarrow u(y)|\nearrow dT2(x, y)(U(x) +U(y)),

and if U(x)> \oldstyle{4}, then, for x̃1, . . . , x̃9 \uparrow 
\Biggl\lfloor 
\updownarrow 3

2 ,
3
2

\Biggr\rfloor 2
such that x̃j \updownarrow x \uparrow Z2, at least one of

x̃i satisfies

2\left( 

j=1

 
M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)(x̃i) +M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100

)(x̃i)
\left\{ 
>

\oldstyle{4}

9
;

therefore,

\oint 
x\uparrow 

\Biggl\{ 
\updownarrow 1

2
,
1

2

\Biggr\} 2
|U(x)> \oldstyle{4}

\oint 

\exists 
\bigodot 

m=(a,b),a,b\leftrightarrow {\updownarrow 1,0,1}

\oint 
y \uparrow 

\Biggl\{ 
\updownarrow 1

2
,
1

2

\Biggr\} 2
+m

  M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)(y)

+M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100
)(y)>

\oldstyle{4}

9

\oint 

\exists 
\Biggr) 
y \uparrow R2|M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)(y) +M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100

)(y)>
\oldstyle{4}

9

\Biggl[ 
.

Therefore, we see that

\leftrightarrow U\leftrightarrow L1,\rightarrow (T2) \nearrow C\leftrightarrow \varsigma \leftrightarrow L1(T2) .

Also, if \varsigma \uparrow L2(T2), we see that

\leftrightarrow U\leftrightarrow L2(T2) \nearrow C(\leftrightarrow M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(K0 \oldstyle{6}R2 \varsigma \oldstyle{5}B100
)\leftrightarrow L2(R2) + \leftrightarrow M{T\lhook ,j |\oldstyle{1}\leftrightarrow S1}(D)\leftrightarrow L2(R2)

\nearrow C(\leftrightarrow \varsigma \oldstyle{5}B100
\leftrightarrow L2(R2) + \leftrightarrow D\leftrightarrow L2(R2) \nearrow C\leftrightarrow \varsigma \leftrightarrow L2(T2)

by, again, Theorem 3.3 of [8] and Young’s inequality.

We return to the proof of (4.7). We have (Proposition 4.2 in [8])

(4.21) |u(x)\updownarrow u(y)|\nearrow |x\updownarrow y|{M̃\Leftarrow u(x) + M̃\Leftarrow u(y)} a.e. x, y \uparrow T2.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3185

Now, we check that {\varsigma \varepsilon } of (3.7) with (3.6) is equi-integrable (in the sense of
(4.25)). Fix any \vargamma > 0. We choose \rhook > 0 such that

(4.22) if L 2(E\uparrow )< \rhook , then
\Biggr] 
E\Leftarrow |\varsigma 0(x)|dx< \omega 

2C .

From (3.6) and (1.14), for any Borel set E \exists T2 with L 2(E)< \rhook /C,

\leftrightarrow \varsigma \varepsilon (t, x)\leftrightarrow L1(E) = \leftrightarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))\leftrightarrow L1({x\leftrightarrow E})

\nearrow C

\Biggl\lceil 

X\omega (t;0,x)\leftrightarrow E

|\varsigma \varepsilon 

0 (x)|dx

\nearrow C

\Biggl\lceil 

R2

\Bigg\backslash \Biggl\lceil 

T2

1X\omega (t;0,x)\leftrightarrow E |\varsigma 0(x\updownarrow y)|dx
\Big/ 
\rightharpoondown \varepsilon (y)dy,

(4.23)

where \varsigma 0 is regarded as a Z2-periodic function. For y \uparrow R2, we define

Ẽy := {x̃\uparrow R2 :X\varepsilon (t; 0, x̃+ y)\uparrow E +Z2}/Z2 \exists T2.

From (1.14) and the fact that x \Downarrow \searrow x\updownarrow y is measure-preserving for fixed y, we have

(4.24) L 2({x̃\uparrow Ẽy}) =L 2({x\uparrow T2 :X\varepsilon (t; 0, x)\uparrow E})\nearrow CL 2(E)< \rhook .

Therefore, applying (4.24) to (4.22), we have that, from (4.23),
(4.25)

if L 2(E)< \rhook /C, then \leftrightarrow \varsigma \varepsilon (t, ·)\leftrightarrow L1(E) \nearrow \leftrightarrow \rightharpoondown \varepsilon \leftrightarrow L1(R2) sup
y\leftrightarrow R2

C

\Biggl\lceil 

x̃\leftrightarrow Ẽy

|\varsigma 0(x̃)|dx̃ < \vargamma .

Since \varsigma \varepsilon is equi-integrable, for every \rhook > 0, there exists C \triangleright > 0 and a Borel set A \triangleright \exists T2

such that \varsigma \varepsilon = \varsigma \varepsilon 

1 + \varsigma \varepsilon 

2 such that \leftrightarrow \varsigma \varepsilon 

1 \leftrightarrow L1 \nearrow \rhook and supp(\varsigma \varepsilon 

2 ) \exists A \triangleright , \leftrightarrow \varsigma \varepsilon 

2 \leftrightarrow L2 \nearrow C \triangleright 

(Lemma 5.8 of [8], whose proof can be established by noting that equi-integrability
with sup

\varepsilon 
\leftrightarrow \varsigma \varepsilon \leftrightarrow L1 <\Uparrow is equivalent to limK\simeq \nearrow sup

\varepsilon 

\Biggr] 
{|\rhook \omega |>K}\swarrow T2 |\varsigma \varepsilon |dx= 0). Now,

apply (4.21) to (4.4), and use the decomposition of u\varepsilon = u\varepsilon 

1+u\varepsilon 

2 with u\varepsilon 

i
=\Leftarrow \downarrow (\updownarrow \#)\updownarrow 1

\varsigma \varepsilon 

i
to derive that

(4.4)\nearrow 
\Biggl\lceil 

T2

U\oldstyle{0}

1 (s; t, x)dx+

\Biggl\lceil 

T2

U\oldstyle{0}

2 (s; t, x)dx,

U\oldstyle{0}

i
(s; t, x) :=min

\oint 
|u\varepsilon 1

i
(s,X\varepsilon 1(s; t, x))|

\oldstyle{4}
+

|u\varepsilon 1

i
(s,X\varepsilon 2(s; t, x))|

\oldstyle{4}
,

M̃\Leftarrow u\varepsilon 1

i
(s,X\varepsilon 1(s; t, x)) + M̃\Leftarrow u\varepsilon 1

i
(s,X\varepsilon 2(s; t, x))

\oint 
\rightarrow 0.

(4.26)

For U\oldstyle{0}

2 , we use (1.14) and (4.19) and simply derive that

(4.27) \leftrightarrow U\oldstyle{0}

2 (s; t, ·)\leftrightarrow L2(T2) \nearrow Cmin

\oint 
2\leftrightarrow u\varepsilon 1

2 (s)\leftrightarrow L2(T2)

\oldstyle{4}
,\leftrightarrow \varsigma \varepsilon 1

2 \leftrightarrow L2

\oint 
\nearrow CC \triangleright .

For U\oldstyle{0}

1 , using (4.19),

\leftrightarrow U\oldstyle{0}

1 (s; t, ·)\leftrightarrow L1,\rightarrow \leftrightsquigarrow min

\oint 
\leftrightarrow u\varepsilon 

1 (s)\leftrightarrow L1,\rightarrow 

\oldstyle{4}
,\leftrightarrow \varsigma 1\leftrightarrow L1(T2)

\oint 
\nearrow \leftrightarrow \varsigma 1\leftrightarrow L1(T2) \nearrow \rhook ,

\leftrightarrow U1
\oldstyle{0}
(s; t, ·)\leftrightarrow Lp,\rightarrow \leftrightsquigarrow \leftrightarrow U1

\oldstyle{0}
(s; t, ·)\leftrightarrow Lp \leftrightsquigarrow min

\oint 
\leftrightarrow u\varepsilon 

1 (s)\leftrightarrow Lp

\oldstyle{4}
,\leftrightarrow \varsigma 1\leftrightarrow Lp(T2)

\oint 
\leftrightsquigarrow \leftrightarrow u\varepsilon 

1 (s)\leftrightarrow Lp

\oldstyle{4}
\leftrightsquigarrow \rhook 

\oldstyle{4}

for some p\uparrow (1,2), using fractional integration.
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3186 CHANWOO KIM AND JOONHYUN LA

Using the interpolation \leftrightarrow g\leftrightarrow L1(T2) \leftrightsquigarrow \leftrightarrow g\leftrightarrow L1,\rightarrow {1+log(\Leftarrow g\Leftarrow Lp,\rightarrow 
\Leftarrow g\Leftarrow 

L1,\rightarrow 
)} (Lemma 2.2 of [8]),

we end up with

(4.28) \leftrightarrow U1
\oldstyle{0}
(s; t, ·)\leftrightarrow L1 \leftrightsquigarrow \leftrightarrow U1

\oldstyle{0}
(s, ·)\leftrightarrow L1,\rightarrow 

\oint 
1 + log+

\left[ 
\leftrightarrow U1

\oldstyle{0}
(s, ·)\leftrightarrow Lp,\rightarrow 

\leftrightarrow U1
\oldstyle{0}
(s, ·)\leftrightarrow L1,\rightarrow 

\right] \oint 
\leftrightsquigarrow \rhook + \rhook | log\oldstyle{4}|,

where we have used that the map z\searrow z(1+log+(K/z)) is nondecreasing for z \uparrow [0,\Uparrow ).
Together with (4.8), (4.27), and (4.28), we conclude that

'(s; t)\nearrow 
\Biggl\lceil 

t

s

|'̇(\oldstyle{0} ; t)|d\oldstyle{0} \nearrow 
\Biggl\lceil 

t

0
{(4.4) + (4.5)}ds

\nearrow 
\Biggl\lceil 

t

0

\Biggr) 
\leftrightarrow U1

\oldstyle{0}
(s; t, ·)\leftrightarrow L1(T2)+\leftrightarrow U2

\oldstyle{0}
(s; t, ·)\leftrightarrow L2(T2)+

C

\oldstyle{4}
\leftrightarrow u\varepsilon 1(s, ·)\updownarrow u\varepsilon 2(s, ·)\leftrightarrow L1(T2)

\Biggl[ 
ds

\nearrow CC \triangleright T + \rhook {1 + | log\oldstyle{4}|}T +
C

\oldstyle{4}
\leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2)).

From this inequality and (4.14) and (4.3), we derive that

L 2({x\uparrow T2 : |X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|> \oldstyle{3}})

\nearrow '(s; t)

log
 
1 +  \triangleleft 

\oldstyle{0}

\left\{ \leftrightsquigarrow \leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1L1

\oldstyle{4} log(1 +  \triangleleft 

\oldstyle{0}
)| +

C \triangleright 

| log(1 +  \triangleleft 

\oldstyle{0}
)| + \rhook 

(4.29)

for \oldstyle{4},\oldstyle{3} \uparrow (0,1/e). Here, for the last term, we have used that, for 0 < \oldstyle{4} < 1/e and
0< \oldstyle{3} < 1/e,

\rhook | log\oldstyle{4}|
| log(1 +  \triangleleft 

\oldstyle{0}
)| = \rhook 

| log\oldstyle{4}|
\updownarrow log\oldstyle{4}+ log(\oldstyle{4}+ \oldstyle{3})

= \rhook 
| log\oldstyle{4}|

| log\oldstyle{4}|\updownarrow | log(\oldstyle{4}+ \oldstyle{3})| \nearrow \rhook 
| log\oldstyle{4}|
| log\oldstyle{4}| \nearrow \rhook .

Choose

(4.30) \oldstyle{4}= \oldstyle{4} \triangleright , \triangleleft = (e
4C

\rightharpoonup 

\rightharpoonup \updownarrow 1)\updownarrow 1\oldstyle{3}.

Note that log(1 +  \triangleleft 

\oldstyle{0}\vargamma ,\leftharpoondown 

) = log(e
4C

\rightharpoonup 

\rightharpoonup ) = 4C\rightharpoonup 

 \triangleright 
. Then, (4.29) yields (4.7).

4.2. Convergence of the velocity field u\bfitomega .
Lemma 18. Let T > 0. Assume that (3.5) holds and that

sup
\varepsilon 

\leftrightarrow \varsigma \varepsilon \leftrightarrow L\rightarrow ((0,T );L1(T2)) <\Uparrow , sup
\varepsilon 

\leftrightarrow u\varepsilon \leftrightarrow L\rightarrow ((0,T );L2(T2)) <\Uparrow .

Then, there exists a subsequence {\leftharpoondown \uparrow } \exists {\leftharpoondown } such that u\varepsilon 
\Leftarrow 
is Cauchy in L1((0, T );

L1(T2)).

Proof. The proof is due to the elliptic regularity; the Frechet–Kolmogorov theo-
rem, which states that W s,p(T2)\oldstyle{8}\searrow \oldstyle{8}\searrow Lq(T2) for s > 0 and 1 \nearrow q \nearrow p < \Uparrow ; and the
Aubin–Lions lemma, which states that, for reflexive Banach spaces X,Y,Z such that
Y \oldstyle{8}\searrow \oldstyle{8}\searrow X \oldstyle{8}\searrow Z,

W 1,r((0, T );Z)\swarrow L1((0, T );Y )\oldstyle{8}\searrow \oldstyle{8}\searrow L1((0, T );X) for r > 1.(4.31)

Note that, from L1(T2) \oldstyle{8}\searrow Hs(T2), for any s <\updownarrow 1,

\varsigma \varepsilon \uparrow C0([0, T ];Hs(T2)) uniformly-in-\leftharpoondown for any s <\updownarrow 1.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3187

On the other hand, we have \updownarrow \#p\varepsilon = div(div(u\varepsilon \ni u\varepsilon )) with
�
T2 p\varepsilon = 0. Since u\varepsilon \uparrow 

L\nearrow ((0, T );L2) uniformly-in-\leftharpoondown , u\varepsilon \ni u\varepsilon \uparrow L\nearrow ((0, T );L1(T2)) uniformly-in-\leftharpoondown . Using
L1(T2) \oldstyle{8}\searrow Hs(T2) for s <\updownarrow 1, an elliptic regularity says that L\nearrow ((0, T );Hs\updownarrow 1(T2)) \neg 
div(u\varepsilon \ni u\varepsilon ) \Downarrow \searrow \Leftarrow p\varepsilon \uparrow L\nearrow ((0, T );Hs\updownarrow 1(T2)) uniformly-in-\leftharpoondown . Therefore, from \varphi tu\varepsilon =
\updownarrow div(u\varepsilon \ni u\varepsilon )\updownarrow \Leftarrow p\varepsilon , we derive that \varphi tu\varepsilon \uparrow L\nearrow ((0, T );Hs\updownarrow 1) uniformly-in-\leftharpoondown for any
s <\updownarrow 1. Therefore, we conclude that

(4.32) u\varepsilon \uparrow W 1,\nearrow ((0, T );H\updownarrow 5/2(T2)) uniformly-in-\leftharpoondown .

Next, we note that L1(T2) \oldstyle{8}\searrow W\updownarrow 3

4
,3(T2). This is a consequence of an embedding

W
3

4
,3(T2) \oldstyle{8}\searrow L\nearrow (T2) (note 3

4 > 2
3 ) and the duality argument L1(T2) \oldstyle{8}\searrow (L\nearrow (T2))\rightarrow \oldstyle{8}\searrow 

(W
3

4
,3(T2))\rightarrow = W\updownarrow 3

4
,
3

2 (T2). Therefore, we derive that \varsigma \varepsilon \uparrow L\nearrow ((0, T );W\updownarrow 3

4
,
3

2 (T2)).
Now, applying the elliptic regularity theory to (3.5), we derive that

(4.33) u\varepsilon \uparrow L\nearrow ((0, T );W
1

4
,
3

2 (T2)) uniformly-in-\leftharpoondown .

Now, we set Y = W
1

4
,
3

2 (T2),X = L1(T2),Z = H\updownarrow 5

2 (T2). Using the Frechet–
Kolmogorov theorem, we have Y = W

1

4
,
3

2 (T2)\oldstyle{8}\searrow \oldstyle{8}\searrow X = L1(T2) \oldstyle{8}\searrow Z = H\updownarrow 5

2 (T2).
Finally, we prove Lemma 18 using the Aubin–Lions lemma (4.31).

4.3. Rate of convergence of u\bfitomega : Localized Yudovich solutions. We use
the following version of the theorem, presented in [16]. The theorem in [16] provides
the modulus of continuity for u that we will use and explicitly states that the unique
solution is regular Lagrangian.

We begin with introducing the localized Yudovich class of vorticity. Intuitively,
the localized Yudovich class consists of vorticities with moderate growth of Lp norm
as p \searrow \Uparrow . The existence and uniqueness results of the Yudovich class of vorticity
extend to the localized Yudovich class. We refer to [16] and references therein for
further details.

\leftrightarrow \varsigma \leftrightarrow Y !

ul
(T2) := sup

1\searrow p<\nearrow 

\leftrightarrow \varsigma \leftrightarrow Lp(T2)

""(p)
.

In this paper, we focus on the growth function with the following condition, which
gives quantitative bounds on the behavior of velocity field u; it would be interesting to
see if one can generalize the presented results to arbitrary admissible growth functions.
We assume that "" : R\prime 0 \searrow R\prime 0 satisfies the following: There exists m \uparrow Z>0 such
that

(4.34) ""(p) =
m\bigsqcup 

k=1

log
k
p

for large p> 1, where log
k
p is defined inductively by log1 p= log p and

log
k+1 p= log log

k
p.

Also, we adopt the convention that log0 p= 1. We remark that we are only interested
in the behavior of "" for large p. Also, we denote the inverse function of log

m
(p)

(defined for large p) by em. Finally, we note that
\Biggl\lceil \nearrow 

em(1)

1

p""(p)
=\Uparrow ,

which turns out to be important in the uniqueness of the solution.
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3188 CHANWOO KIM AND JOONHYUN LA

Theorem 6 ([16]). If \varsigma 0 \uparrow Y !
ul (T2), for every T > 0, there exists a unique weak

solution \varsigma \uparrow L\nearrow ([0, T ];Y !
ul (T2)) with u\uparrow L\nearrow ([0, T ];C0,\oldstyle{2}!

b
(T2,R2)), which is a regular

Lagrangian. Here, the function space C0,\oldstyle{2}!

b
(T2,R2) is defined by

C0,\oldstyle{2}!

b
(T2,R2) =

\oint 
v \uparrow L\nearrow (T2,R2)| sup

x \propto =y

|v(x)\updownarrow v(y)|
\rightharpoondown !(d(x, y))<\Uparrow 

\oint 
,

where d(x, y) is the geodesic distance on the torus T2 =T2
and \rightharpoondown ! is defined by

\rightharpoondown !(r) =

\bigodot 
\bigoplus \bigoplus 

\bigoplus \bigotimes 

0, r= 0,

r(1\updownarrow log r)""(1\updownarrow log r), r \uparrow (0, e\updownarrow 2),

e\updownarrow 23""(3), r\rightarrow e\updownarrow 2.

Also, \leftrightarrow \varsigma \leftrightarrow L\rightarrow ([0,T ];Y !

ul
(T2)) and \leftrightarrow u\leftrightarrow 

C
0,\rhook !

b
(T2,R2)

depend only on \leftrightarrow \varsigma 0\leftrightarrow Y !

ul
(T2) and T . The

dependence is nondecreasing in both \leftrightarrow \varsigma 0\leftrightarrow Y !

ul
(T2) and T .

In this subsection, we prove the following proposition.

Proposition 10. Let \varsigma 0 \uparrow Y !
ul (T2). There exist constants M , depending only

on m and sup
t\leftrightarrow [0,T ] \leftrightarrow u(t)\leftrightarrow L\rightarrow (and therefore, \leftrightarrow \varsigma 0\leftrightarrow L3) (and dimension d = 2), and

C(C = 2e works), which is universal, such that

(4.35)

sup
0\searrow t\searrow T

\leftrightarrow u\varepsilon (t)\updownarrow u(t)\leftrightarrow 2
L2(T2) \nearrow 

M

em

 

  
\Bigg\backslash 
log

m

\Bigg\backslash 
M

\varepsilon 2\Leftarrow \rhook 0\Leftarrow 2

L2(T2)

\Big/ \Big/ e

\nearrow C\Rightarrow  \triangleleft 0\Rightarrow 
Y

!

ul

T
 

  

=: Rate(\varsigma 0;\leftharpoondown ).

Note that lim\varepsilon \simeq 0+ Rate(\varsigma 0;\leftharpoondown ) = 0.

In particular, the case m = 0 corresponds to the Yudovich class with Rate(\leftharpoondown ) =

\leftharpoondown 2e
\nearrow C\Rightarrow  \triangleleft 0\Rightarrow 

Y
!

ul

T

.

Proof. We follow the proof of [45]. By letting v= u\varepsilon \updownarrow u, we have

\varphi tv+ u\varepsilon ·\Leftarrow xv\updownarrow v ·\Leftarrow xu+\Leftarrow x(p
\varepsilon \updownarrow p) = 0.

Noting that v is incompressible and taking the L2 norm of v, we obtain

d

2dt
\leftrightarrow v\leftrightarrow 2

L2(T2) \nearrow 
\Biggl\lceil 

T2

v ·\Leftarrow xu · vdx

or

\leftrightarrow v(t)\leftrightarrow 2
L2(T2) \nearrow \leftrightarrow v(0)\leftrightarrow L2(T2) + 2

\Biggl\lceil 
t

0

\Biggl\lceil 

T2

|\Leftarrow xu||v|2dx.

Next, we note that, by Sobolev embedding,

\leftrightarrow v\leftrightarrow 2
L\rightarrow (T2) \nearrow 2(\leftrightarrow u\leftrightarrow 2

L\rightarrow (T2) + \leftrightarrow u\varepsilon \leftrightarrow 2
L\rightarrow (T2))\nearrow 2C\leftrightarrow \varsigma 0\leftrightarrow 2L3(T2),

while energy conservation gives

\leftrightarrow v(t)\leftrightarrow 2
L2(T2) \nearrow 2(\leftrightarrow u\varepsilon (t)\leftrightarrow 2

L2(T2) + \leftrightarrow u(t)\leftrightarrow 2
L2(T2))\nearrow 4\leftrightarrow u0\leftrightarrow 2L2(T2).
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3189

Therefore, there exists a constant M , explicitly given by

M := 1 + 4\leftrightarrow u0\leftrightarrow 2L2(T2)em(1) + 2C\leftrightarrow \varsigma 0\leftrightarrow 2L3 ,

satisfying

M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

> em(1),\leftrightarrow v(t)\leftrightarrow 2
L\rightarrow (T2) \nearrow M.

Then, by the definition of Y !
ul and the Calderon–Zygmund inequality

\leftrightarrow \Leftarrow xu\leftrightarrow Lp(T2) \nearrow Cp\leftrightarrow \varsigma \leftrightarrow Lp(T2)

for p\uparrow (1,\Uparrow ), we have

\leftrightarrow \Leftarrow xu\leftrightarrow Lp(T2) \nearrow \leftrightarrow \varsigma 0\leftrightarrow Y !

ul

p""(p) := \leftrightarrow \varsigma 0\leftrightarrow Y !

ul

\leftharpoonup (p),

where we have used the conservation of \leftrightarrow \varsigma \leftrightarrow Lp(T2) for every 1\nearrow p<\Uparrow . We first treat
the case of m \rightarrow 1. By Hölder’s inequality, for each \oldstyle{9} \uparrow (0, 1

em\nearrow 1(1)
) ( 1

em\nearrow 1(1)
\nearrow 1), we

have
\Biggl\lceil 

T2

|\Leftarrow xu||v|2dx\nearrow \leftrightarrow v\leftrightarrow 2\oldstyle{3}
L\rightarrow (T2)

\Biggl\lceil 
|v|2(1\updownarrow \oldstyle{3})|\Leftarrow xu|dx

\nearrow M \oldstyle{3}

\Bigg\backslash \Biggl\lceil 

T2

|v|2dx
\Big/ 1\updownarrow \oldstyle{3}\Bigg\backslash \Biggl\lceil 

T2

|\Leftarrow xu|
1

 \triangleright dx

\Big/ \oldstyle{3}

\nearrow M \oldstyle{3}

\Biggl\langle 
\leftrightarrow v\leftrightarrow 2

L2(T2)

\Biggr\rangle 1\updownarrow \oldstyle{3}

\leftrightarrow \varsigma 0\leftrightarrow Y !

ul

\leftharpoonup 

\Bigg\backslash 
1

\oldstyle{9}

\Big/ 

= \leftrightarrow \varsigma 0\leftrightarrow Y !

ul

\leftrightarrow v\leftrightarrow 2
L2(T2)

\left[ 
M

\leftrightarrow v\leftrightarrow 2
L2(T2)

\right] \oldstyle{3}

\leftharpoonup 

\Bigg\backslash 
1

\oldstyle{9}

\Big/ 
.

Now, choose

\oldstyle{9}\rightarrow =
1

log M

\Leftarrow v(t)\Leftarrow 2

L2(T2)

.

Then, since M

\Leftarrow v(t)\Leftarrow 2

L2(T2)

> em(1), log( M

\Leftarrow v(t)\Leftarrow 2

L2(T2)

) > log(em(1)) = em\updownarrow 1(1) so that

\oldstyle{9}\rightarrow \uparrow (0, 1
em\nearrow 1(1)

). There, we have

\left[ 
M

\leftrightarrow v\leftrightarrow 2
L2(T2)

\right] \oldstyle{3}
\searrow 

\leftharpoonup 

\Bigg\backslash 
1

\oldstyle{9}\rightarrow 

\Big/ 

= e log

\left[ 
M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

\right] 
log

\left[ 
log

\left[ 
M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

\right] \right] 
· · · log

m

\left[ 
log

\left[ 
M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

\right] \right] 

= e""

\left[ 
M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

\right] 
.

For m= 0 (the Yudovich case), \oldstyle{9}\searrow 
 

M

\Rightarrow v\Rightarrow 2
L2(T2)

\left\{ 
 \triangleright 

\oldstyle{4}( 1

 \triangleright 
)=
 

M

\Rightarrow v\Rightarrow 2
L2(T2)

\left\{ 
 \triangleright 
1

 \triangleright 
attains its minimum

at \oldstyle{9}\rightarrow = 1

log
\Biggl[ 

M

\Rightarrow v\Rightarrow 2
L2(T2)

\Biggr] , so we choose M such that \oldstyle{9}\rightarrow < 1.
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3190 CHANWOO KIM AND JOONHYUN LA

Therefore, we have

\Biggl\lceil 2

T
|\Leftarrow xu||v|2dx\nearrow e\leftrightarrow \varsigma 0\leftrightarrow Y !

ul

\leftrightarrow v\leftrightarrow 2
L2(T2)""

\left[ 
M

\leftrightarrow v\leftrightarrow 2
L2(T2)

\right] 
.

To sum up, we have

\leftrightarrow v(t)\leftrightarrow 2
L2(T2) \nearrow \leftrightarrow v0\leftrightarrow 2L2(T2) +

\Biggl\lceil 
t

0
2e\leftrightarrow \varsigma 0\leftrightarrow Y !

ul

((\leftrightarrow v(s)\leftrightarrow 2
L2(T2))ds,

where

((r) = r""

\Bigg\backslash 
M

r

\Big/ 
.

Then, by Osgood’s lemma, we have

\updownarrow M(\leftrightarrow v(t)\leftrightarrow 2
L2(T2)) +M(\leftrightarrow v0\leftrightarrow 2L2(T2))\nearrow 2e\leftrightarrow \varsigma 0\leftrightarrow Y !

ul

t,

where

M(x) =

\Biggl\lceil 
a

x

dr

((r)
=

\Biggl\lceil 
a

x

dr

r
\Bigg/ 

m

k=1 logk
 
M

r

\left\{ 

=

\Biggl\lceil M

x

M

a

dz

z
\Bigg/ 

m

k=1 logk (z)
=

\Biggl\lceil log
m
(M

x
)

log
m
(M

a
)

dy

y
= log

m+1

\Bigg\backslash 
M

x

\Big/ 
\updownarrow log

m+1

\Bigg\backslash 
M

a

\Big/ 
,

where a= 2\leftrightarrow u0\leftrightarrow 2L2(T2) and we have used the substitution z = M

r
for the third identity

and y= log
m
(z) with

dy

dz
=

1

z
\Bigg/ 

m\updownarrow 1
k=1 log

k
(z)

for the fourth identity. In particular, we have

log
m+1

\left[ 
M

\leftrightarrow v(t)\leftrightarrow 2
L2(T2)

\right] 

\rightarrow log
m+1

\left[ 
M

\leftrightarrow v0\leftrightarrow 2L2(T2)

\right] 
\updownarrow C\leftrightarrow \varsigma 0\leftrightarrow Y !

ul

t= log

\left[ 
log

m

\left[ 
M

\leftrightarrow v0\leftrightarrow 2L2(T2)

\right] 
e
\updownarrow Ct\Leftarrow \rhook 0\Leftarrow 

Y
!

ul

\right] 
,

and taking em+1 and reciprocal gives the desired conclusion. Certainly, Rate(\leftharpoondown ) is a
continuous function of \leftharpoondown , and it converges to 0 as \leftharpoondown \searrow 0 as M(0) =\Uparrow .

4.4. Convergence of \bfitvargamma \bfitomega .
Proposition 11. For any fixed p \uparrow [1,\Uparrow ], suppose that \varsigma 0 \uparrow Lp(T2). Recall the

regularization of the initial data \varsigma \varepsilon 

0 in (3.6). Let (u\varepsilon ,\varsigma \varepsilon ) and (u,\varsigma ) be Lagrangian

solutions of (3.4) and (3.5) and (1.9) and (1.10), respectively. For any T > 0 and the

subsequence {\leftharpoondown \uparrow }\exists {\leftharpoondown } in Lemma 18, we have

(4.36) sup
t\leftrightarrow [0,T ]

\leftrightarrow \varsigma \varepsilon 
\Leftarrow 
(t, ·)\updownarrow \varsigma (t, ·)\leftrightarrow Lp(T2) \searrow 0 as \leftharpoondown \uparrow \searrow \Uparrow .
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3191

Proof. For the subsequence {\leftharpoondown \uparrow }\exists {\leftharpoondown } in Lemma 18,

|\varsigma (t, x)\updownarrow \varsigma \varepsilon 
\Leftarrow 
(t, x)|

= |\varsigma 0(X(0; t, x))\updownarrow \varsigma \varepsilon 
\Leftarrow 

0 (X\varepsilon 
\Leftarrow 
(0; t, x))|

\nearrow |\varsigma 0(X(0; t, x))\updownarrow \varsigma \varsigma 

0(X(0; t, x))|+ |\varsigma \varsigma 

0(X
\varepsilon 
\Leftarrow 
(0; t, x))\updownarrow \varsigma \varepsilon 

\Leftarrow 

0 (X\varepsilon 
\Leftarrow 
(0; t, x))|(4.37)

+ |\varsigma \varsigma 

0(X(0; t, x))\updownarrow \varsigma \varsigma 

0(X
\varepsilon 
\Leftarrow 
(0; t, x))|.(4.38)

Using the compressibility (1.14), we derive that, for p\uparrow [1,\Uparrow ],

(4.39) \leftrightarrow (4.37)\leftrightarrow Lp \nearrow 2C\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow Lp .

For the last term, we need a stability of the Lagrangian flows:

\leftrightarrow (4.38)\leftrightarrow Lp(T2) \nearrow \leftrightarrow \Leftarrow \varsigma \varsigma 

0\leftrightarrow L\rightarrow \leftrightarrow X(0; t, ·)\updownarrow X\varepsilon 
\Leftarrow 
(0; t, ·)\leftrightarrow Lp(T2)

\nearrow \leftrightarrow \Leftarrow \rightharpoondown \varsigma \leftrightarrow L\rightarrow \leftrightarrow \varsigma 0\leftrightarrow L1\leftrightarrow X(0; t, ·)\updownarrow X\varepsilon 
\Leftarrow 
(0; t, ·)\leftrightarrow Lp(T2)

\nearrow 1

.3
\leftrightarrow \Leftarrow \rightharpoondown \leftrightarrow L\rightarrow (T2)\leftrightarrow \varsigma 0\leftrightarrow L1\leftrightarrow X(0; t, ·)\updownarrow X\varepsilon 

\Leftarrow 
(0; t, ·)\leftrightarrow Lp(T2),

(4.40)

where we have used (3.22).
For p> 1, we use (4.6) in Proposition 8 and Lemma 18 to have

(4.40)\leftrightsquigarrow 1

.3
1 + \leftrightarrow \Leftarrow u\varepsilon 

\Leftarrow \leftrightarrow L1((0,T );Lp(T2))

| log \leftrightarrow u\updownarrow u\varepsilon \Leftarrow \leftrightarrow L1((0,T );L1(T2))|
.(4.41)

Now, we choose

(4.42) .= .(\leftharpoondown \uparrow )\Rightarrow | log \leftrightarrow u\updownarrow u\varepsilon 
\Leftarrow 
\leftrightarrow L1((0,T );L1(T2))|\updownarrow 

1

10 for each \leftharpoondown \uparrow 

such that

.= .(\leftharpoondown \uparrow ) \emptyset 0 as \leftharpoondown \uparrow \emptyset 0,
.3| log \leftrightarrow u\updownarrow u\varepsilon 

\Leftarrow 
\leftrightarrow L1((0,T );L1(T2))|\searrow \Uparrow as \leftharpoondown \uparrow \emptyset 0.

Therefore, for p > 1, we prove (4.41) \searrow 0 as \leftharpoondown \uparrow \emptyset 0. Combining this with (4.39), we
conclude (4.36) for p> 1.

For p= 1, there exists C\omega > 0 for any \vargamma > 0 such that

L 2({x\uparrow T2 : |X\varepsilon 1(s; t, x)\updownarrow X\varepsilon 2(s; t, x)|> \oldstyle{3}})

\nearrow e
4C\vargamma 

\vargamma 

4C\vargamma 

\omega 

\leftrightarrow u\varepsilon 1 \updownarrow u\varepsilon 2\leftrightarrow L1((0,T );L1(T2))

\oldstyle{3}
+ \vargamma for any \oldstyle{3} > 0.

(4.43)

For p= 1, using (4.7), we have

\leftrightarrow X(0; t, ·)\updownarrow X\varepsilon 
\Leftarrow 
(0; t, ·)\leftrightarrow L1(T2)

\nearrow 
\Biggl\lceil 

|X(0;t,·)\updownarrow X\omega \Leftarrow (0;t,·)|\searrow  \triangleleft 

|X(0; t, x)\updownarrow X\varepsilon 
\Leftarrow 
(0; t, x)|dx

+

\Biggl\lceil 

|X(0;t,·)\updownarrow X\omega \Leftarrow (0;t,·)|\prime  \triangleleft 

|X(0; t, x)\updownarrow X\varepsilon 
\Leftarrow 
(0; t, x)|dx

\nearrow \oldstyle{3} +
e

4C\vargamma 

\vargamma 

4C\vargamma 

\omega 

\leftrightarrow u\updownarrow u\varepsilon 
\Leftarrow \leftrightarrow L1((0,T );L1(T2))

\oldstyle{3}
+ \vargamma ,
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3192 CHANWOO KIM AND JOONHYUN LA

and hence,

(4.44) (4.40)\leftrightsquigarrow 1

.3

\oint 
\oldstyle{3} +

e
4C\vargamma 

\vargamma 

4C\vargamma 

\omega 

\leftrightarrow u\updownarrow u\varepsilon 
\Leftarrow \leftrightarrow L1((0,T );L1(T2))

\oldstyle{3}
+ \vargamma 

\oint 
.

For each \vargamma > 0, we choose \oldstyle{3} = \vargamma , . = \vargamma 
1

10 , and \leftharpoondown \uparrow \Re \omega 1 such that e

4C\vargamma 

\vargamma 

4C\vargamma 

\vargamma 

1

\omega 
13

10

\leftrightarrow u \updownarrow 
u\varepsilon 

\Leftarrow \leftrightarrow L1((0,T );L1(T2)) \searrow 0. Combining with (4.39), we conclude (4.36) for p= 1.

4.4.1. When \bfitvargamma 0 has no regularity. If \varsigma 0 \uparrow Y !
ul (T2) and no additional reg-

ularity is assumed, one cannot expect a convergence rate that is uniform over \varsigma 0;
the rate crucially depends on how fast \varsigma \varepsilon 

0 converges to \varsigma 0. Suppose that \varsigma (t) is the
Lagrangian solution with initial data \varsigma 0. Then, we have

|\varsigma (t, x)\updownarrow \varsigma \varepsilon (t, x)|= |\varsigma 0(X(0; t, x))\updownarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))|

\nearrow |\varsigma 0(X(0; t, x))\updownarrow \varsigma \varsigma 

0(X(0; t, x))|+ |\varsigma \varsigma 

0(X
\varepsilon (0; t, x))\updownarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))|

+ |\varsigma \varsigma 

0(X(0; t, x))\updownarrow \varsigma \varsigma 

0(X
\varepsilon (0; t, x))|,

where \varsigma \varsigma 

0 is the initial data regularization of \varsigma 0 with parameter .. Therefore, by the
compression property, we have

\leftrightarrow \varsigma (t)\updownarrow \varsigma \varepsilon (t)\leftrightarrow Lp(T2) \nearrow C\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow Lp(T2) + \leftrightarrow \varsigma \varsigma 

0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow Lp(T2)

+ \leftrightarrow \varsigma \varsigma 

0(X(0, t; ·)\updownarrow \varsigma \varsigma 

0(X
\varepsilon (0; t, ·))\leftrightarrow Lp(T2).

Using (4.40), we can estimate the first two terms:

C\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow Lp(T2) + (\leftrightarrow \varsigma \varsigma 

0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow Lp(T2) \nearrow (C+ 1)\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow Lp(T2) + \leftrightarrow \varsigma \varepsilon 

0 \updownarrow \varsigma 0\leftrightarrow Lp(T2).

The last term is estimated by (4.40) and (4.41):

\leftrightarrow \varsigma \varsigma 

0(X(0, t; ·))\updownarrow \varsigma \varsigma 

0(X
\varepsilon (0; t, ·))\leftrightarrow Lp(T2) \nearrow 

C(1 + p\leftrightarrow \varsigma 0\leftrightarrow Lp(T2)t)

.3| logRate(\varsigma 0;\leftharpoondown )|
.

Choosing .= | logRate(\leftharpoondown )|\updownarrow 1

4 gives that, for t\uparrow [0, T ],

\leftrightarrow \varsigma (t)\updownarrow \varsigma \varepsilon (t)\leftrightarrow Lp(T2) \leftrightsquigarrow \leftrightarrow \varsigma \varepsilon 

0 \updownarrow \varsigma 0\leftrightarrow Lp(T2) + \leftrightarrow \varsigma 0 \updownarrow \varsigma | logRate(\rhook 0;\varepsilon )|\nearrow 
1

4

0 \leftrightarrow Lp(T2)

+
1+ p\leftrightarrow \varsigma 0\leftrightarrow Lp(T2)T

| logRate(\varsigma 0;\leftharpoondown )|
1

4

=: Rate\rhook (\varsigma 0;\leftharpoondown ).

(4.45)

Since there is no explicit rate for the convergence of \leftrightarrow \varsigma \varepsilon 

0 \updownarrow \varsigma 0\leftrightarrow Lp(T2), the first two
terms dominate the rate of convergence in general.

4.4.2. When \bfitvargamma 0 has some regularity. An important class of localized Yu-
dovich vorticity functions belong to the Besov space of positive regularity index; for
example, f(x) = log(log |x|)\rightharpoondown (x) \uparrow Y !

ul with ""(p) = log p, where \rightharpoondown (x) is a smooth
cuto! function, belongs to W 1,r(T2), where r < 2 and thus in Besov space Bs

2,\nearrow with
s < 1. Of course, vortex patches \oldstyle{5}D with box-counting dimension of the boundary

dF (\varphi D) < 2 belong to B
2\nearrow dF (\varepsilon D)

p

p,\nearrow for 1 \nearrow p < \Uparrow [14], and thus, the vortex patch
with a mild singularity in the interior of D also belongs to a certain Besov space with
positive regularity.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3193

In this subsection, we provide the rate of convergence of vorticity when \varsigma 0 \uparrow 
Y !
ul (T2) \swarrow Bs

2,\nearrow (T2) or \varsigma 0 \uparrow L\nearrow (T2) \swarrow Bs

2,\nearrow (T2). Unlike the Yudovich \varsigma 0 \uparrow L\nearrow (T2)
case, if \varsigma 0 is in the localized Yudovich class Y !

ul (T2), even if initial vorticity has
additional Besov regularity—that is, \varsigma 0 \uparrow Y !

ul (T2) \swarrow Bs

2,\nearrow (T2) for some s > 0—the
Besov regularity of vorticity \varsigma (t) may not propagate, even in the losing manner. The
key obstruction is failure of generalization of propagation of regularity result. We will
explain this after proving the result, following the argument of [13], [3], and [44].

Proposition 12. If \varsigma 0 \uparrow Y !
ul (T2)\swarrow Bs

2,\nearrow (T2) for some s > 0, then we have

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow L2(T2)

\nearrow C(T,\leftrightarrow \varsigma 0\leftrightarrow L2(T2),\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2))

 

 \leftharpoondown 
s
\Leftarrow 

1+s\Leftarrow +

\Bigg\backslash 
1

| logRate(\varsigma 0;\leftharpoondown )|

\Big/ s
\Leftarrow 

3+4s\Leftarrow 

 

 

=: Rate\rhook ,s,loc\updownarrow Y (\leftharpoondown )

(4.46)

for any s\uparrow \uparrow (0, s). Moreover, if \varsigma 0 \uparrow L\nearrow (T2)\swarrow Bs

2,\nearrow (T2),
(4.47)

\leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow L2(T2) \nearrow C(s,T,\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2))\leftharpoondown 
C(s)e

\nearrow C(\Rightarrow  \triangleleft 0\Rightarrow 
L\rightarrow (T2)

)T

=: Rate\rhook ,s,Y (\leftharpoondown ).

In particular, if \varsigma 0 is Yudovich with some Besov regularity, the vorticity converges

with an algebraic rate \leftharpoondown \varpi 
.

Proof. First, we prove the rate for \varsigma 0 \uparrow Y !
ul (T2)\swarrow Bs

2,\nearrow (T2). We rely on the above
rate:

\leftrightarrow \varsigma (t)\updownarrow \varsigma \varepsilon (t)\leftrightarrow L2(T2) \nearrow C(\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow L2(T2) + \leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow L2(T2)) +
C(1 + T\leftrightarrow \varsigma 0\leftrightarrow L2(T2))

.3| logRate(\leftharpoondown )| .

Since \varsigma 0 \uparrow Bs

2,\nearrow (T2), we may use the following interpolation:

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow L2(T2)

\nearrow \leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow 
s
\Leftarrow 

1+s\Leftarrow 

H\nearrow 1(T2)\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow 
1

1+s\Leftarrow 

Hs\Leftarrow (T2)
\nearrow \leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow 
s
\Leftarrow 

1+s\Leftarrow 

H\nearrow 1(T2)\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow 
1

1+s\Leftarrow 

B
s

2,\rightarrow (T2)

for arbitrary s\uparrow \uparrow (0, s), where we have used that Hs =Bs

2,2 and Bs

p,q
(T2)\exists Bs

\Leftarrow 

p,q\Leftarrow (T2)
for s\uparrow < s and arbitrary q, q\uparrow . (The proof for the whole space, which is standard, can
be easily translated to periodic domain T2.) Since

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow H\nearrow 1(T2) \nearrow \leftrightarrow u0 \updownarrow u\varepsilon 

0\leftrightarrow L2(T2) \nearrow C\leftharpoondown \leftrightarrow \varsigma 0\leftrightarrow L2(T2),

we have

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow L2(T2) \nearrow C\leftharpoondown 
s
\Leftarrow 

1+s\Leftarrow \leftrightarrow \varsigma 0\leftrightarrow 
s
\Leftarrow 

1+s\Leftarrow 

L2(T2)\leftrightarrow \varsigma 0\leftrightarrow 
1

1+s\Leftarrow 

B
s

2,\rightarrow (T2),

and similarly,

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varsigma 

0\leftrightarrow L2(T2) \nearrow C.
s
\Leftarrow 

1+s\Leftarrow \leftrightarrow \varsigma 0\leftrightarrow 
s
\Leftarrow 

1+s\Leftarrow 

L2(T2)\leftrightarrow \varsigma 0\leftrightarrow 
1

1+s\Leftarrow 

B
s

2,\rightarrow (T2).

Finally, we match . and \leftharpoondown to find a rate of convergence; we match . so that

1

.3| logRate(\leftharpoondown )| = .
s
\Leftarrow 

1+s\Leftarrow .
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3194 CHANWOO KIM AND JOONHYUN LA

Then, we have

.
s
\Leftarrow 

1+s\Leftarrow =
1

.3| logRate(\leftharpoondown )| =
\Bigg\backslash 

1

| logRate(\leftharpoondown )|

\Big/ s
\Leftarrow 

3+4s\Leftarrow 

\searrow 0

as \leftharpoondown \searrow 0. To summarize, we have

\leftrightarrow \varsigma 0 \updownarrow \varsigma \varepsilon 

0 \leftrightarrow L2(T2) \nearrow C(T,\leftrightarrow \varsigma 0\leftrightarrow L2(T2),\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2))

 

 \leftharpoondown 
s
\Leftarrow 

1+s\Leftarrow +

\Bigg\backslash 
1

| logRate(\leftharpoondown )|

\Big/ s
\Leftarrow 

3+4s\Leftarrow 

 

 ,

as desired. Note that, in the Yudovich class, Rate(\leftharpoondown ) = \leftharpoondown C , and thus, this rate is
dominated by 1

| log\varepsilon |\oldstyle{0} , which is much slower than algebraic rate \leftharpoondown \varpi .

Next, we prove the improved rate for the Yudovich initial data \varsigma 0 \uparrow L\nearrow (T2).
First, we calculate the rate of distance d(X\varepsilon (0; t, x),X\varepsilon (0; t, y)) with respect to d(x, y),
which is uniform in \leftharpoondown . For the later purpose, we calculate the rate for localized
Yudovich class as well; m= 0 corresponds to \varsigma 0 \uparrow L\nearrow (T2).

If \varsigma 0 \uparrow Y !
ul (T2)\swarrow Bs

2,\nearrow (T2), then so is \varsigma \varepsilon 

0 \uparrow Y !
ul (T2)\swarrow Bs

2,\nearrow (T2) with

sup
\varepsilon 

(\leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Y !

ul
(T2) + \leftrightarrow \varsigma \varepsilon 

0 \leftrightarrow Bs

2,\rightarrow (T2))\nearrow (\leftrightarrow \varsigma 0\leftrightarrow Y !

ul
(T2) + \leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2)).

We first estimate the modulus of continuity for u\varepsilon with \varsigma 0 \uparrow Y !
ul (T2), given by The-

orem 6.

\rightharpoondown !(r)\nearrow 

\bigodot 
\bigoplus \bigoplus 

\bigoplus \bigotimes 

0, r= 0,

r(1\updownarrow log r)
\Bigg/ 

m

k=1 logk(1\updownarrow log r),0< r < 1
eem(1)\nearrow 1

,

C(""), r\rightarrow 1
eem(1)\nearrow 1

,

where C("") is a constant depending on "".
We have

|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|\nearrow |x\updownarrow y|+
\Biggl\lceil 

t

0

    
d

ds
X\varepsilon (s; t, x)\updownarrow d

ds
X\varepsilon (s; t, y)

    ds

= |x\updownarrow y|+
\Biggl\lceil 

t

0
|u(X\varepsilon (s; t, x), s)\updownarrow u(X\varepsilon (s; t, y), s)|ds

\nearrow |x\updownarrow y|+
\Biggl\lceil 

t

0
\rightharpoondown !(|X\varepsilon (s; t, x)\updownarrow X\varepsilon (s; t, y)|)Bds.

Here, by Theorem 6, C is uniform in \leftharpoondown . Then, by Osgood’s lemma, we have

\updownarrow M(
  X\varepsilon (0; t, x),X\varepsilon (0; t, y)

  ) +M(|x\updownarrow y|)\nearrow Bt,

where

M(x) =

\Biggl\lceil 1

x

dr

\rightharpoondown !(r)
=

\bigodot 
\bigoplus \bigoplus \bigoplus 

\bigoplus \bigoplus \bigotimes 

\Biggr] exp( 1

em(1)\nearrow 1
)

x

1
r(1\updownarrow log r)

\Biggl\lfloor 
m

k=1
log

k
(1\updownarrow log r)dr

+
\Biggr] 1

1

e
em(1)\nearrow 1

dr
\oldstyle{2}!(r) , x < exp( 1

eem(1)\nearrow 1
),

\Biggr] 1
x

dr
\oldstyle{2}!(r) , x\rightarrow exp( 1

eem(1)\nearrow 1
)

and B is an upper bound for \leftrightarrow u\varepsilon \leftrightarrow 
L\rightarrow ([0,T ];C

0,\rhook !

b
(T2,R2))

. For future purposes, we take

B so that eBT > em(1). Thus, if x \rightarrow exp( 1
eem(1)\nearrow 1

), M(x) \nearrow C0 for some positive
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3195

constant C0. If x< exp( 1
eem(1)\nearrow 1

), then

\Biggl\lceil exp( 1

em(1)\nearrow 1
)

x

1

r(1\updownarrow log r)
\Bigg/ 

m

k=1 logk(1\updownarrow log r)
dr= log

m+1(1\updownarrow logx)

using the substitution y= log
m
(1\updownarrow log r), and thus,

M(x)\uparrow [log
m+1(1\updownarrow logx), log

m+1(1\updownarrow logx) +C0]

for a (possibly larger) positive constant C0. Therefore, if |x\updownarrow y| is su\%ciently small
such that log

m+1(1\updownarrow log |x\updownarrow y|)\updownarrow BT >C0, then, since

M(|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|)\rightarrow M(|x\updownarrow y|)\updownarrow Bt\rightarrow log
m+1(1\updownarrow log |x\updownarrow y|)\updownarrow BT,

|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|< exp( 1
eem(1)\nearrow 1

), and therefore, we have

log
m+1(1\updownarrow log(|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|))\rightarrow log

m+1(1\updownarrow log |x\updownarrow y|)\updownarrow BT \updownarrow C0,

which gives

1\updownarrow log(|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|)\rightarrow em+1(logm+1(1\updownarrow log |x\updownarrow y|)\updownarrow BT \updownarrow C0)

or

|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|\nearrow e exp

\Bigg\backslash 
\updownarrow 
\Bigg\backslash 
em+1

\Bigg\backslash 
log

m+2

\Bigg\backslash 
e

|x\updownarrow y|

\Big/ 
\updownarrow BT \updownarrow C0

\Big/ \Big/ \Big/ 
,

which is uniform in \leftharpoondown .
From now on, we assume m= 0. We closely follow the proof of [13] (and [3]). We

rewrite the above as

|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|\nearrow e

\Bigg\backslash 
|x\updownarrow y|

e

\Big/ e
\nearrow (BT+C0)

=:C(T )(|x\updownarrow y|)\varpi (T ),

where ,(T ) = exp(\updownarrow (BT +C0)), which is deteriorating in time, and C(T ) = exp(1\updownarrow 
e\updownarrow (BT+C0)), which increases in time.

Next, we introduce the space F s

p (T2), which belongs to the family of Triebel–
Lizorkin spaces F s

p = F s

p,\nearrow for p> 1:

F s

p (T2) = {f \uparrow Lp(T2)| there exists g \uparrow Lp(T2) such that, for every x, y \uparrow T2,

|f(x)\updownarrow f(y)|
|x\updownarrow y|s \nearrow g(x) + g(y)},

(4.48)

and its seminorm [·]F s
p
is defined by

[f ]F s
p
:= inf

g\leftrightarrow Lp(T2)
{\leftrightarrow g\leftrightarrow Lp(T2)||f(x)\updownarrow f(y)|\nearrow (|x\updownarrow y|)s(g(x)+ g(y)) for every x, y \uparrow T2}.

The norm on F s

p (T2) is naturally defined by \leftrightarrow · \leftrightarrow Lp(T2) + [·]F s
p
.

Now, we argue that a solution in the Yudovich class propagates Besov regularity.
First, we use the following embeddings: For s3 > s2 > s1, we have continuous embed-
dings (the proof for the whole space, which is standard, can be easily translated to
the periodic domain T2).

(4.49) Bs3
p,\nearrow (T2)\exists Bs2

p,1(T2)\exists W s2,p(T2)\exists F s1
p (T2)\exists Bs1

p,\nearrow (T2).
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3196 CHANWOO KIM AND JOONHYUN LA

Therefore, since \varsigma 0 \uparrow Bs

2,\nearrow (T2) for some s > 0, we have \varsigma 0 \uparrow F s1

2 for some s1 \uparrow (0, s),

and thus, so are \varsigma \varepsilon 

0 s with uniform bounds on the F s1

2 norm. Then, for any \leftharpoondown \rightarrow 0 (we
introduce the convention that X0 =X and \varsigma 0 = \varsigma ), we have

|\varsigma \varepsilon (x, t)\updownarrow \varsigma \varepsilon (y, t)|
(|x\updownarrow y|)s1\varpi (T )

=
|\varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))\updownarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, y))|

(|x\updownarrow y|)s1\varpi (T )

=
|\varsigma \varepsilon 

0 (X
\varepsilon (0; t, x))\updownarrow \varsigma \varepsilon 

0 (X
\varepsilon (0; t, y))|

d(X\varepsilon (0; t, x),X\varepsilon (0; t, y))s1
(|X\varepsilon (0; t, x)\updownarrow X\varepsilon (0; t, y)|)s1

(|x\updownarrow y|)s1\varpi (T )

\nearrow 
 
g(X\varepsilon (0; t, x)) + g(X\varepsilon (0; t, y))

\left\{ 
C(T )

for any g \uparrow L2(T2) satisfying (4.48). Therefore, C(T )g\Im X\varepsilon (0; t, ·) satisfies the defining
condition for (4.48), and thus, \varsigma \varepsilon (t)\uparrow F s1\varpi (T )

2 with

\leftrightarrow \varsigma \varepsilon (t)\leftrightarrow 
F

s1\oldstyle{0}(T )

2

\nearrow C(T )\leftrightarrow \varsigma 0\leftrightarrow F s1

2

.

Therefore, using (4.49), we have

\leftrightarrow \varsigma \varepsilon (t)\leftrightarrow 
B

s1\oldstyle{0}(T )

2,\rightarrow (T2)
\nearrow C\leftrightarrow \varsigma \varepsilon (t)\leftrightarrow 

F
s1\oldstyle{0}(T )

2
(T2)

\nearrow C(T )\leftrightarrow \varsigma 0\leftrightarrow F s1

2
(T2) \nearrow C(T )\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2).

Now, we use the interpolation inequality

\leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow L2(T2) \nearrow \leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow 
s0

1+s0

H\nearrow 1(T2)\leftrightarrow \varsigma 
\varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow 

1

1+s0

B
s1\oldstyle{0}(T )

2,\rightarrow 

for some s0 < s1,(T ). Therefore, we have

\leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow L2(T2) \nearrow \leftrightarrow u\varepsilon (t)\updownarrow u(t)\leftrightarrow 
s0

1+s0

L2(T2)C(T,\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2))

\nearrow C(T,\leftrightarrow \varsigma 0\leftrightarrow Bs

2,\rightarrow (T2))\leftharpoondown 
Ce

\nearrow C(\Rightarrow  \triangleleft 0\Rightarrow 
L\rightarrow (T2)

)T

by noting that the rate function for Yudovich case is algebraic; that is, Rate(\leftharpoondown ) =

\leftharpoondown 2e
\nearrow C(\Rightarrow  \triangleleft 0\Rightarrow 

L\rightarrow (T2)
)T

.

Remark 4. One may naturally ask if one can obtain a faster rate than (4.46),
analogous to (4.47). It seems that the argument we presented for (4.47) does not
extend to the localized Yudovich space.

First, if m> 0 for the modulus of continuity given by

(4.50) µ(|x\updownarrow y|, T ) = exp

\Bigg\backslash 
\updownarrow em+1

\Bigg\backslash 
log

m+2
e

|x\updownarrow y| \updownarrow (BT +C0)

\Big/ \Big/ 
,

it cannot be bounded by any Hölder exponent |x\updownarrow y|\varpi for any , \uparrow (0,1). Thus, we
cannot continue the argument from there. To see this, suppose that there exists a
,> 0 and C > 0 such that

µ(r,T )\nearrow Cr\varpi 

for any r < 1 very small. This amounts to saying that

log
m+2

e

r
\updownarrow log

m+2
1

Cr\varpi 
\rightarrow BT +C0.
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HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3197

Taking the exponential, we have

log
m+1

e

r

log
m+1

1
Cr\oldstyle{0}

\rightarrow eBT+C0 .

Since both denominator and numerator diverge as r\searrow 0+, we may apply L’Hôpital’s
rule:

d

dr
log

m+1
e

r
=

1\Bigg/ 
m

k=1 logk
e

r

\Bigg\backslash 
\updownarrow 1

r

\Big/ 
,

d

dr
log

m+1
1

Cr\varpi 
=

1\Bigg/ 
m

k=1 logk
1

Cr\oldstyle{0}

\Biggl\langle 
\updownarrow ,

r

\Biggr\rangle 
.

Inductively, we have

lim
r\simeq 0+

log0+1
e

r

log0+1
1

Cr\oldstyle{0}

=
1

,
,

lim
r\simeq 0+

log1+1
e

r

log1+1
1

Cr\oldstyle{0}

= lim
r\simeq 0+

log1
1

Cr\oldstyle{0}

log1
e

r

1

,
=

,

,
= 1,

· · ·

lim
r\simeq 0+

log
m+1

e

r

log
m+1

1
Cr\oldstyle{0}

=
m\bigsqcup 

k=1

log
k

1
Cr\oldstyle{0}

log
k

e

r

1

,
= 1.

Therefore, except for m= 0, where the limit is given by 1
\varpi 
, for any ,> 0 and C > 0,

there exists small r > 0 such that µ(r,T )>Cr\varpi . Thus, control of vorticity in Triebel–
Lizorkin space F s(t)

p is not available.
There are other methods for propagation of regularity (in a losing manner), but

it seems that they also su!er from similar issue; flows generated by the localized
Yudovich class do not propagate enough regularity.

The argument of [3] does not extend to the localized Yudovich class as well; when
\varsigma 0 is locally Yudovich, the modulus of continuity for u is weaker than log-Lipschitz.
It is known that the norm defined by

\leftrightarrow u\leftrightarrow LL\Leftarrow = \leftrightarrow u\leftrightarrow L\rightarrow + sup
j\prime 0

\leftrightarrow \Leftarrow Sju\leftrightarrow L\rightarrow 

(j + 1)
,

where Sju=
\right\} 

j

k=\updownarrow 1\#ku, is equivalent to the norm of the log-Lipschitz space (Propo-
sition 2.111 of [3], which is for the whole case but can be adopted to the periodic
domain easily). However, if \varsigma 0 \uparrow Y !

ul , then u has the modulus of continuity \rightharpoondown !, and
the norm for C0,\oldstyle{2}!

b
(T2) is equivalent to

\leftrightarrow u\leftrightarrow L\rightarrow + sup
j\prime 0

\leftrightarrow \Leftarrow Sju\leftrightarrow L\rightarrow 
\Bigg/ 

m+1
k=1 log

k
(e2j)

,

which is less than \leftrightarrow u\leftrightarrow LL\Leftarrow . However, the critical growth rate for the denominator
in applying the linear loss of regularity result (for example, Theorem 3.28 of [3]) is
j + 1, which is the rate of the log-Lipschitz norm. Therefore, we cannot rely on the
argument of [3] to conclude that \varsigma (t) has certain Besov regularity.

Finally, a borderline Besov space B"", introduced by Vishik in [44], has a certain
regularity (in the sense that B"" restricts the rate of growth of frequency components)
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3198 CHANWOO KIM AND JOONHYUN LA

propagates, but it is not clear how to use this to obtain convergence rate for vorticity.
For simplicity, we focus on one particular form of growth function: Let

\&(r) = (r+ 2)
log(r+ 3)

log 2
,\&1(r) =

log(r+ 3)

log 2

for r\rightarrow \updownarrow 1 and \&(r) = \&1(r) = 1 for r\nearrow \updownarrow 1. We define the space B"" by

B"" =

\oint 
f |\leftrightarrow f\leftrightarrow "" := sup

N\prime \updownarrow 1

\right\} 
N

j=\updownarrow 1 \leftrightarrow \#jf\leftrightarrow L\rightarrow 

\&(N)
<\Uparrow 

\oint 
,

and we define B""1
in a similar manner. In [44], the following was proved.

Theorem 7 ([44]). If \varsigma 0 \uparrow Lp0 \swarrow Lp1 \swarrow B""1
for 1 < p0 < 2 < p1 < \Uparrow , then, for

any T > 0, there uniquely exists a weak solution \varsigma (t) of the Euler equation satisfying

\leftrightarrow \varsigma (t)\leftrightarrow "" \nearrow \oldstyle{4}(t),

where \oldstyle{4}(t) depends only on the bounds on \leftrightarrow \varsigma 0\leftrightarrow Lp0\swarrow Lp1\swarrow B""1
.

Therefore, one can prove the uniform boundedness of vorticity in B"" space. How-
ever, it is not clear how one can interpolate B"" space and the velocity space (where
we have rate of convergence) to obtain the rate for the Lp norm of the vorticity.

Indeed, it was recently shown that if the velocity field is worse than Lipschitz
(u\uparrow W 1,p for p <\Uparrow ), then it is possible for smooth data to lose all Sobolev regularity
instantaneously from the transport by u ([1]). Instead, only a logarithm of a derivative
can be preserved (see, e.g., [9]), and this loss of regularity prohibits faster convergence.

5. Proof of the main theorems.
Lemma 19.\right) \right) \right) \right) \right) 

F \omega (t)\updownarrow M1,\omega u(t),1

\vargamma 
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L

p

xL
2
v

\leftrightsquigarrow e
\vargamma 
2

4
\Leftarrow u\omega \Leftarrow 2

\rightarrow 

 
\leftrightarrow u\varepsilon (t)\updownarrow u(t)\leftrightarrow Lp

x
e\omega 

2\Leftarrow u\updownarrow u
\omega \Leftarrow 2

\rightarrow + \varpi min{1, p+2

2p
}\Biggr\rceil E(t) + \vargamma \varpi V (\leftharpoondown )

 
.

(5.1)

\right) \right) \right) \right) \right) 
\Leftarrow x(F \omega \updownarrow M1,\omega u(t),1)

\vargamma (1 + |v|)
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L

p

xL
2
v

\leftrightsquigarrow 
\bigotimes 
\leftrightarrow \Leftarrow xu

\varepsilon \updownarrow \Leftarrow xu\leftrightarrow Lp

x
+ \vargamma \leftrightarrow \Leftarrow xu\leftrightarrow Lp

x
+ \vargamma \leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow Lp

x

\sum 
e\omega 

2\Leftarrow u\updownarrow u
\omega \Leftarrow 2

\rightarrow e\omega 
2\Leftarrow u\omega \Leftarrow 2

\rightarrow 

+ e
\vargamma 
2\Rightarrow u\omega \Rightarrow 2

L\rightarrow (T2)

4 {\varpi min{ 1

p
,
1

2
}\Biggr\rceil E(t) + \vargamma \varpi V (\leftharpoondown )}.

(5.2)

Proof. We only prove (5.2) because the proof of (5.1) is similar and simpler. We
decompose

\right) \right) \right) \right) \right) 
\Leftarrow x(F \omega \updownarrow M1,\omega u,1)

\vargamma (1 + |v|)
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L

p

xL
2
v

\nearrow 

\right) \right) \right) \right) \right) 
\Leftarrow x(M1,\omega u\omega ,1 \updownarrow M1,\omega u,1)

\vargamma (1 + |v|)
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L

p

xL
2
v

+

\right) \right) \right) \right) \right) \right) \right) 

\prod \int \int \bigcup M1+o(1)
1,\omega u\omega ,1

M1,0,1

\right) \right) \right) \right) \right) \right) \right) 
L\rightarrow 

x,v

\right) \right) \right) \right) \right) \right) 
\Leftarrow x(F \omega \updownarrow M1,\omega u\omega ,1)

\vargamma (1 + |v|)
\Big\backslash 
M1+o(1)

1,\omega u\omega ,1

\right) \right) \right) \right) \right) \right) 
L

p

xL
2
v

= (5.3)1 + (5.3)2(5.3)3.

(5.3)
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The bound of (5.3)1 raises the need for consideration of
\Big\backslash 
M1+o(1)

1,A,1 /M1,0,1 for

A\uparrow R3:

(5.4)
\Big\backslash 
M1+o(1)

1,A,1 /M1,0,1 \leftrightsquigarrow e
\nearrow (1+o(1))|v\nearrow A|2+|v|2

4 \nearrow e
|A|2

4 .

Using (5.4) and the Taylor expansion, we derive that

|\Leftarrow x(M1,\omega u\omega ,1 \updownarrow M1,\omega u,1)|
\vargamma 
\Biggr\rceil 
M1,0,1

=
1

\vargamma 

   
\Biggl\lceil 

\omega 

0
\Leftarrow x

\Biggl\langle  
(v\updownarrow \vargamma u) + a(u\updownarrow u\varepsilon )

\left\{ 
· (u\varepsilon \updownarrow u)

M1,\omega u\updownarrow a(u\updownarrow u\omega ),1\Biggr\rceil 
M1,0,1

\Biggr\rangle 
da

   

\leftrightsquigarrow {|\Leftarrow xu
\varepsilon \updownarrow \Leftarrow xu|+ \vargamma |\Leftarrow xu|+ \vargamma |\Leftarrow xu

\varepsilon |}e\omega 
2|u\updownarrow u

\omega |2e\omega 
2|u\omega |2 1

\vargamma 

\Biggl\lceil 
\omega 

0
|M1,\omega u\updownarrow a(u\updownarrow u\omega ),1(v)|

1

4 da,

(5.5)

where we have used |(v\updownarrow \vargamma u)+a(u\updownarrow u\varepsilon )||M1,\omega u\updownarrow a(u\updownarrow u\omega ),1|
1

2
\updownarrow o(1)/2 \leftrightsquigarrow |M1,\omega u\updownarrow a(u\updownarrow u\omega ),1|

1

4

and |\vargamma u \updownarrow a(u \updownarrow u\varepsilon )| = |(\vargamma \updownarrow a)u \updownarrow (\vargamma \updownarrow a)u\varepsilon + \vargamma u\varepsilon | \nearrow |\vargamma \updownarrow a||u \updownarrow u\varepsilon | + \vargamma |u\varepsilon | \nearrow 
\vargamma {|u\updownarrow u\varepsilon |+ |u\varepsilon |}.

Now, taking an Lp

x
L2
v
-norm to (5.5), we conclude that

(5.3)1 \leftrightsquigarrow 
\bigotimes 
\leftrightarrow \Leftarrow xu

\varepsilon \updownarrow \Leftarrow xu\leftrightarrow Lp

x
+ \vargamma \leftrightarrow \Leftarrow xu\leftrightarrow Lp

x
+ \vargamma \leftrightarrow \Leftarrow xu

\varepsilon \leftrightarrow Lp

x

\sum 
e\omega 

2\Leftarrow u\updownarrow u
\omega \Leftarrow 2

\rightarrow e\omega 
2\Leftarrow u\omega \Leftarrow 2

\rightarrow .(5.6)

From (5.4), clearly we have

(5.7) (5.3)2 \leftrightsquigarrow e
\vargamma 
2\Rightarrow u\omega \Rightarrow 2

L\rightarrow (T2)

4 .

Using the expansion (2.2), we can bound (5.3) 3:

(5.3)3 \leftrightsquigarrow \leftrightarrow \Leftarrow xf
\omega \leftrightarrow Lp

xL
2
x
+ \vargamma \leftrightarrow u\varepsilon \leftrightarrow \nearrow \leftrightarrow f\omega \leftrightarrow Lp

xL
2
x
+ \vargamma \varpi V (\leftharpoondown )

\leftrightsquigarrow \leftrightarrow \Leftarrow 2
x
fR\leftrightarrow 

p\nearrow 2

p

L2
x,v

\leftrightarrow \Leftarrow xfR\leftrightarrow 
2

p

L2
x,v

+ \vargamma \leftrightarrow u\varepsilon \leftrightarrow \nearrow \leftrightarrow \Leftarrow xfR\leftrightarrow 
p\nearrow 2

p

L2
x,v

\leftrightarrow fR\leftrightarrow 
2

p

L2
x,v

+ \vargamma \varpi V (\leftharpoondown )

\leftrightsquigarrow \varpi min{ 1

p
,
1

2
}\Biggr\rceil E(t) + \vargamma \varpi V (\leftharpoondown ).

(5.8)

We finish the proof by applying (5.6), (5.7), and (5.8) to (5.3).

We claim the following.

Lemma 20.

(5.9) \leftrightarrow \varsigma \omega 

B
(t)\updownarrow \varsigma (t)\leftrightarrow Lp(T2) \leftrightsquigarrow \leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow Lp(T2) + \varpi min{ 1

2
,
1

p}\Biggr\rceil E(t) + \vargamma \varpi V (\leftharpoondown ).

Proof. Recall F \omega in (2.2). Note that

\varsigma \omega 

B
(t, x)\updownarrow \varsigma (t, x) =\Leftarrow \downarrow · u\omega 

B
(t, x)\updownarrow \Leftarrow \downarrow · u(t, x)

=
1

\vargamma 

\Biggl\lceil 

R3

v ·\Leftarrow \downarrow (F \omega (t, x, v)\updownarrow M1,\omega u,1(v))dv

=
1

\vargamma 

\Biggl\lceil 

R3

v ·\Leftarrow \downarrow (M1,\omega u\omega ,1(v)\updownarrow M1,\omega u,1(v))dv (= \varsigma \varepsilon \updownarrow \varsigma )(5.10)

+

\Biggl\lceil 

R3

\Leftarrow \downarrow fR(t, x, v) · v
\nwarrow 
µdv(5.11)

+\Leftarrow \downarrow ·
\Biggl\lceil 

R3

{\vargamma 2p\varepsilon µ\updownarrow \vargamma 2\varpi (\Leftarrow xu
\varepsilon ) :A

\nwarrow 
µ+ \vargamma \varpi ũ\varepsilon · (v\updownarrow \vargamma u\varepsilon )µ+ \vargamma 2\varpi p̃\varepsilon µ}dv.(5.12)
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Clearly,

\leftrightarrow (5.10)\leftrightarrow Lp(T2) = \leftrightarrow \varsigma \varepsilon (t)\updownarrow \varsigma (t)\leftrightarrow Lp(T2).

From Theorem 3, we conclude that

\leftrightarrow (5.11)\leftrightarrow Lp(T2) \leftrightsquigarrow 
\oint 
\leftrightarrow \Leftarrow xfR(t)\leftrightarrow L2(T2\Uparrow R3) \leftrightsquigarrow 

\nwarrow 
\varpi 
\Biggr\rceil 

E(t) for p\uparrow [1,2],

\leftrightarrow \Leftarrow 2
x
fR(t)\leftrightarrow 

p\nearrow 2

p

L2(T2\Uparrow R3)\leftrightarrow \Leftarrow xfR(t)\leftrightarrow 
2

p

L2(T2\Uparrow R3) \leftrightsquigarrow \varpi 
1

p
\Biggr\rceil 

E(t) for p\uparrow (2,\Uparrow ),

where we have used (anisotropic) Gagliardo–Nirenberg interpolation for the second,
whose proof is analogous to Lemma 4.

Using Theorem 5, we get that \leftrightarrow (5.12)\leftrightarrow Lp(T2) \leftrightsquigarrow \vargamma \varpi V (\leftharpoondown ).

Equipped with Proposition 4, Proposition 11, and Proposition 3, we are ready to
prove the main theorem of this paper.

Theorem 8. Suppose that \vargamma ,\varpi = \varpi (\vargamma ),\leftharpoondown = \leftharpoondown (\vargamma ) satisfy (2.3). Choose an arbitrary

T \uparrow (0,\Uparrow ). Suppose that (u0,\varsigma 0) \uparrow L2(T2) \downarrow Lp(T2) for p \uparrow [1,\Uparrow ) and (u,\varsigma ) be

a Lagrangian solution of (1.9), (1.10), and (1.11). Assume that the initial data F0

to (1.5) satisfy conditions in Theorem 3. Then, there exists a family of Boltzmann

solutions F \omega (t, x, v) to (1.5) in [0, T ] such that

(5.13) sup
t\leftrightarrow [0,T ]

\right) \right) \right) \right) \right) 
F \omega (t)\updownarrow M1,\omega u(t),1

\vargamma 
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L2(T2\Uparrow R3)

\searrow 0.

Moreover, the Boltzmann vorticity converges to the Lagrangian solution \varsigma :

(5.14) sup
0\searrow t\searrow T

\leftrightarrow \varsigma \omega 

B
(t, ·)\updownarrow \varsigma (t, ·)\leftrightarrow Lp(T2) \searrow 0.

Theorem 9. Suppose that \vargamma ,\varpi = \varpi (\vargamma ),\leftharpoondown = \leftharpoondown (\vargamma ) satisfy (2.3). Choose an arbitrary

T \uparrow (0,\Uparrow ). Suppose that \varsigma 0 \uparrow Y !
ul (T2) for some "" in (4.34) with m \uparrow Z\prime 0, and

let (u,\varsigma ) be the unique weak solution of (1.9), (1.10), and (1.11). Assume that the

initial data F0 to (1.5) satisfy conditions in Theorem 3. Then, there exists a family

of Boltzmann solutions F \omega (t, x, v) to (1.5) in [0, T ] such that

(5.15) sup
t\leftrightarrow [0,T ]

\right) \right) \right) \right) \right) 
F \omega (t)\updownarrow M1,\omega u(t),1

\vargamma 
\Biggr\rceil 
M1,0,1

\right) \right) \right) \right) \right) 
L2(T2\Uparrow R3)

\searrow 0.

Moreover, the Boltzmann velocity and vorticity converge to the solution \varsigma with an

explicit rate Rate(\leftharpoondown (\vargamma )), Rate\rhook (\leftharpoondown (\vargamma )) as defined in (4.35) and (4.45):

sup
0\searrow t\searrow T

\leftrightarrow u\omega 

B
(t, ·)\updownarrow u(t, ·)\leftrightarrow L2(T2) \leftrightsquigarrow Rate(\leftharpoondown (\vargamma )),

sup
0\searrow t\searrow T

\leftrightarrow \varsigma \omega 

B
(t, ·)\updownarrow \varsigma (t, ·)\leftrightarrow Lp(T2) \leftrightsquigarrow Rate\rhook (\leftharpoondown (\vargamma )).

(5.16)

Furthermore, if \varsigma 0 \uparrow Y !
ul (T2)\swarrow Bs

2,\nearrow (T2) for some s > 0, Boltzmann vorticity converges

to the solution \varsigma with a rate that is uniform in \varsigma 0 as in (4.46) and (4.47):

sup
0\searrow t\searrow T

\leftrightarrow \varsigma \omega 

B
(t, ·)\updownarrow \varsigma (t, ·)\leftrightarrow Lp(T2) \leftrightsquigarrow Rate\rhook ,s,loc\updownarrow Y (\leftharpoondown ),m> 0 (localized Yudovich),

sup
0\searrow t\searrow T

\leftrightarrow \varsigma \omega 

B
(t, ·)\updownarrow \varsigma (t, ·)\leftrightarrow Lp(T2) \leftrightsquigarrow Rate\rhook ,s,Y (\leftharpoondown ),m= 0 (Yudovich).

(5.17)
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