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VORTICITY CONVERGENCE FROM BOLTZMANN TO 2D
INCOMPRESSIBLE EULER EQUATIONS BELOW YUDOVICH
CLASS*
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Abstract. It is challenging to perform a multiscale analysis of mesoscopic systems exhibiting
singularities at the macroscopic scale. In this paper, we study the hydrodynamic limit of the Boltz-
mann equation StoiF +v -V F = %Q(F7 F) toward the singular solutions of 2D incompressible
Euler equations whose vorticity is unbounded: Oiu + u - Vzu + Vzp = 0, div u = 0. We obtain a
microscopic description of the singularity through the so-called kinetic vorticity and understand its
behavior in the vicinity of the macroscopic singularity. As a consequence of our new analysis, we
settle affirmatively an open problem of convergence toward Lagrangian solutions of the 2D incom-
pressible Euler equation whose vorticity is unbounded (w € L for any fixed 1 <p < 00). Moreover,
we prove the convergence of kinetic vorticities toward the vorticity of the Lagrangian solution of
the Euler equation. In particular, we obtain the rate of convergence when the vorticity blows up
moderately in LP as p — oo (a localized Yudovich class).
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1. Introduction. One of the fundamental questions in the area of partial dif-
ferential equations is Hilbert’s sixth problem, seeking a unified theory of the gas
dynamics including different levels of descriptions from a mathematical standpoint by
connecting the mesoscopic Boltzmann equations to the macroscopic fluid models that
arise in formal limits. The Boltzmann equation is a fundamental model of kinetic
theory for dilute collections of gas particles, which undergo elastic binary collisions.
The dimensionless form of the equation is given as an integro-differential equation,
where F(t,x,v) >0 is a density distribution of particles on the phase space. Here, the
Strouhal number and Knudsen number are denoted by St and Kn, which are a ratio
of the characteristic length to the characteristic time and a ratio of mean free path to
the characteristic length, respectively.

The effect of binary collision between particles is described by Q(F, F'), which
takes various forms of the nonlocal-in-velocity operator depending on the nature of
particles and its intermolecular interaction [11]. An intrinsic equilibrium, satisfying
Q(-,-) = 0, is given by the so-called local Maxwellian associated with (R,U,©) €
R+ X RS X R+Z
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The collision operator enjoys the so-called collision invariance: [ Q(F,G) [1 v |U|2]
dv = 0 for arbitrary F,G. The celebrated Boltzmann’s H-theorem (entropy H =
[ FlnFdv) reveals the entropy dissipation: [ Q(F,F)InFdv < 0. In this paper, we
consider the most basic hard-sphere collision cross section:

QF / / (v — v.) - o {F(W)G(u) + G F(v))
G(0.) — Gv)F(v.)}dodu.,

(1.2)

where postcollision velocities are denoted by v' =v — ((v — v.) - 0)o and v, = v, +
((v—4) - 0)o.

Besides St and Kn, we introduce the Mach number Ma as a size of fluctuations
of F around the global Maxwellian M o1(v) of the reference state (1,0,1). Relations
between St,Kn, and Ma are important. Naturally, Ma is bounded above by St/c,
where c is denoted by the speed of sound. On the other hand, the famous Reynolds
number Re appears as a ratio between Kn and Ma through the von Karman relation:
1/Re = Kn/Ma. By passing Kn to zero and choosing different St(Kn) and Ma(Kn)
as functions of Kn, we can formally derive various PDEs of macroscopic variables.
Formally, the incompressible Euler limit can be realized in the following scaling of the
large Re limit:

(1.3) St=e=Ma and Kn=xe with k=k(e) =0 ase—0.

In the diffusive scaling, the same scaling of (1.3) with x = 1, the corresponding
macroscopic PDE is the incompressible Navier—Stokes—Fourier system. This scaling
problem is better understood as a singular perturbation in being milder than our case
(1.3) (see [23, 31, 25, 26] and references therein). In [23], Esposito et al. establish a
uniform bound of a perturbation f in F' = M1 +ef+/Mi,0,1 without a priori in-
formation of the fluid solutions, and hence, they derive (actually construct) a strong
solution of the incompressible Navier—Stokes—Fourier system for both steady and un-
steady cases in the presence of a boundary. One of the key ingredients is to obtain an
LS (+= H} in three dimensions) control of f by realizing a hidden elliptic equation of
the bulk velocity part of f in

1
(1.4) v-Vyfr gLf (macro-micro scale balance)

for a linearized operator L of @. Unfortunately, a uniform bound of f in the Euler
scaling seems not feasible even in two dimensions without a priori information of
solutions of the incompressible Euler equations, due to an additional singularity in
both macro-micro scale balance and nonlinear perturbation, which are major obstacles
in our analysis.

The regularity of fluid solutions plays a crucial rule in the multiscale analysis in
the Euler scaling (1.3), which has been revealed differently in a modulated entropy
inequality by Saint-Raymond [42] and an asymptotic expansion by Jang and Kim
[35]. This effect appears as an growth in the microscopic scale (see (1.15)), which
resembles the famous Beale, Kato, and Majda result [6]. For a spatially Lipschitz
continuous velocity field, Saint-Raymond proves in [42] a hydrodynamic limit toward
such solutions of the incompressible Euler equations. It has been an open problem to
study the hydrodynamic limit toward solutions of the Euler equations that are not
spatially Lipschitz continuous, such as vortex sheet solutions. Due to the transport
feature of 2D Euler equations, such singular solutions have been well understood. For
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compactly supported initial vorticities in LP for 1 < p < oo, global existence theory
was first proved by DiPerna and Majda in [21]. Using the so-called concentration-
cancellation, the result was extended for a finite measure with distinguished sign by
Delort in [18], and L' vorticities by Vecchi and Wu in [43]. Recently, Bohun, Bouchut,
and Crippa constructed Lagrangian solutions of w € L! in [7] using a stability estimate
of [8].

A. Main theorems. We recall the main object of this paper: the scaled Boltz-
mann equation of the scaling (1.3)

1
(1.5) €0 F° +v-V,F*=—Q(F°,F%) in [0,T] x T? x R.

KE
In this paper, we set that the spatial variables and velocity variables belong to the
2D periodic domain and 3D whole space, respectively:

11

11
(1.6) x=(x1,29) €T?:= [—2, 2} X {—2, 2] with the periodic boundary

(1.7) v=(v,v3) := (v1,v2,v3) € R3.

The existence and uniqueness of the Boltzmann equation with fixed scaling have been
extensively studied in [28, 29, 30]; the initial-boundary value problem in [32, 38, 39];
the singularity formation in [37]; the boundary regularity estimate in [33, 10]; and
nonequilibrium steady states in [22]. For the weak solution contents, we refer to
[19, 26] and the references therein.

As the main quantities in the hydrodynamic limit, we are interested in the fol-
lowing observables and their convergence toward the counterparts in fluid.

DEFINITION 1 (Boltzmann’s macroscopic velocity and vorticity).

1
up(t,z) = g/ (F=(t,z,v) — M1 0,1(v))vdo,
RS
0 0
G (t:2) =V up(t0) = (= g ) ulee)

In two dimensions, the incompressible Euler equation has the vorticity formulation

(1.8)

(1.9) Ow+u-Vw=0 in [0,T] x T2,
(1.10) u=—-VH(=A)"'w in [0,T] x T2,
(1.11) W|i—o =wp in T2,

We will present the Biot-Savart formula of (1.10) in the periodic box T? at (3.19).
When a velocity field is Lipschitz continuous, there exists a Lagrangian flow X (s;¢,x)
solving

d
(1.12) d—X(s; t,x)=u(s, X(s;t,x)), X(s;t,x)|s=t = 2.

s
Then, a smooth solution of the vorticity equation (1.9), (1.10), and (1.11) is given by
(1.13) w(t,z) =wo(X(0;t,2)), u(t,z)=—-V(=A)"lw(t,z).

Out of the smooth context, a general notion of Lagrangian flow has been introduced.
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DEFINITION 2 ([20, 15]). Let uwe L'([0,T] x T%;R?). A map X :[0,T] x T? — T?
is a regular Lagrangian flow of (1.12) if and only if, for almost every x € T? and
for any t € [0,T], the map s € [0,t] — X(s;t,x) € T? is an absolutely continuous
integral solution of (1.12) and there exists a constant € >0 such that, for all (s,t) €
[0,¢] x [0,T], there holds

(1.14) (X (s;t,x))de <C [ ¢(z)dx
T2 T2

for every measurable function ¢ : T? — [0, 00].

For a given regular Lagrangian flow to (1.12), we can define the Lagrangian solution
(u,w) along with the regular Lagrangian flow as in (1.13). In fact, the existence and
uniqueness (for a given u) of the regular Lagrangian flow is proved in [20, 15, 8] as
long as (1.10) holds while w € L¥ for p > 1.

Our first theorem is about the convergence of wj to the Lagrangian solution w
when vorticities belong to L?(T?) when p < oo.

THEOREM 1 (informal statement of Theorem 8: strong convergence). Suppose
that e,k = k(e), 8 = B(e) satisfy (2.3). Let arbitrary T > 0 and (ug,wo) € L?(T?) x
LP(T?) for p > 1. Let (u,w) € L>((0,7); L*(T?) x LP(T?)) be a Lagrangian solu-
tion of 2D incompressible Euler equations (1.9), (1.10), and (1.11) with initial data
(up,wo). Then, we construct a family of solutions to the Boltzmann equation (1.5)
whose macroscopic velocity and vorticity (uS,w$) of (1.8) converge to the Lagrangian
solution. Moreover, we have

wh —w strongly in [0,T] x T2,

Remark 1. The uniqueness of the incompressible Euler equations in two dimen-
sions is only known for vorticities with moderate growth of LP norm as p — oo by
Yudovich [36, 45]. In some sense, we can view the theorem as a “selection principle”
of a Lagrangian solution of the incompressible Euler equations from the Boltzmann
equation.

Remark 2. Our proof does not rely on a result of the inviscid limit of the nonlin-
ear Navier—Stokes equations (cf. [35]) nor the higher-order Hilbert expansion (cf. the
results by Guo [31] and de Masi, Esposito, and Lebowitz [17]). A direct approach we
develop in this paper is based on stability analysis for both the Lagrangian solutions
of the inviscid fluid and the Boltzmann solutions with a new corrector.

Our second theorem is about the quantitative rate of convergence/stability of w%
to w when the uniqueness of the fluid is guaranteed. In [45], Yudovich extends his
uniquness result for bounded vorticities [36] to the so-called localized Yudovich class;
namely, wy € Yu(?(ﬂ) with a certain modulus of continuity for its velocity u. Here,

w
[wllyerzy = sup Jellze for some O(p) — oo as p — co.
" 1<p<oo O(p)

Here, we specify © : Ry — Ry; there exists m € Z, such that O(p) = [[,, log, p
for large p > 1, where log; p is defined inductively by logyp = 1, log; p = logp, and
logy, 1 p =loglog, p. Also, we denote the inverse function of log,, (p) (defined for large
p) by ep,. Finally, we note that feo,: 1 p@—%p) = 00, which turns out to be important in

the uniqueness of the solution.
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THEOREM 2 (informal statement of Theorem 9: rate of convergence). Suppose
that e,k = k(), B = B(e) satisfy (2.3). If we further assume wy € Y.§ (T?) in addition
to Theorem 1, then

wh —w strongly in [0,T] x T? with an explicit rate,

where the explicit rates are defined as in (4.35) and (4.45).

B. Novelties, difficulties, and idea. The major novelty of this paper is to
establish the incompressible Euler limit in the level of vorticity without using the
inviscid limit of the Navier—Stokes equations in the vicinity of the macroscopic singu-
larity (w ¢ L°°(T?)). We study the convergence of Boltzmann’s macroscopic vorticity
toward Euler’s vorticity because interesting singular behavior, e.g., interfaces in vor-
tex patches, can be observed only in a stronger topology of velocities. We believe
this new approach will shed light on the validity of Euler equations in a more direct
fashion. A possible application would be a direct validity proof of Euler solutions
from the kinetic theory without relying on the inviscid limit results. In addition, we
are able to allow quite far-from-equilibrium initial data (see (1.16)).

There are two major difficulties in the proof. First, the macroscopic solutions are
singular, and their singularity appears as growth at the microscopic level ([35]):

(1.15) exp (/Ot ||qu(s)||Lfi_ods> .

This factor becomes significantly difficult to control when we study the Boltzmann
solutions close to the solution of Euler equations instead of Navier—Stokes equations.
The diffusion in the bulk velocity has a considerable magnitude and causes a singular
term due to the growth of (1.15). Second, the macro-micro scale balance is singular
in the Euler scaling. Because the transport effect is weaker, this results in the lack of
a scale factor of the hydrodynamic bound in the dissipation. In fact, an integrability
gain in LP (+= H} in 2D) of [23] or velocity average lemma [24] are not useful to
control the singular nonlinearity. In addition, the perturbation equations suffer a
loss of scale due to the commutator of spatial derivatives and the linearized operator
around a local Maxwellian associated with macroscopic solutions.

To overcome the difficulties, we devise a novel viscosity-canceling correction in an
asymptotic expansion of the scaled Boltzmann equations. To handle the low regularity
of fluid velocity fields, we regularize the initial data with scale 5 and expand the
Boltzmann equations around the local Maxwellian M .5 ; associated with the Euler
solution u” starting from ug . In the first place, one may try a form of the standard
Hilbert expansion

(1.16) My oy g + €2pﬂM1,su5,1 - 52"5(Vzuﬁ) :Q[\/ My cus 1 tefr\/ Micus 1,

where 20 is defined as (2.13), by matching to cancel most singular terms. The
Euler equation is in the hierarchy of O(¢?); it comes from €0; M .51 and correc-
tors. However, the third term of order e2x introduces the viscosity contribution
—e2kmoAgu? - (v — 5uB)Ml75ug71, and, comparing it to e fr\/Mj .5 1, We see that, if
this term is not canceled, then it will drive the remainder to order O(ex). However,
once the remainder fr grows to O(ex) size, the effect of nonlinearity i (fr, [r)
becomes O(ek) as well (see (2.37)). As a consequence, we cannot close the bootstrap
argument; we need to keep the remainder fg to the size o(ex). Note that this term is
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hydrodynamic, so we cannot rely on coercivity provided by L; it provides additional
€y/k smallness only for nonhydrodynamic terms.

A simple but useful observation is that this term is still in a lower hierarchy than
that of the Euler equation. When x = ¢, this observation leads to an introduction of
next-order expansion, which absorbs the viscosity contribution to the hydrodynamic
equation of smaller-scale fluctuation. However, in our setting, « is not an integer power
of £, and therefore, choosing the right next-level corrector is a nontrivial problem. One
key observation in this work is that a corrector can be found in a very similar fashion
as the k = € case; by introducing an additional corrector in ek level, we were able
to cancel out the viscosity contribution. Of course, one needs to be careful because
we introduce an ek-size term to cancel out an e?k-size term! However, by carefully
choosing the form of the ex-size corrector

(1.17) FE = (116) +exit® - (v — eu® )My 1y + 205 My Ly 1,

we can actually fulfill our goal.

1. erii-(v—euP)M 1,ew# 1 is fully hydrodynamic, and therefore, the most singular
term coming from collision with the local Maxwellian vanishes. Then, the
largest term coming from collision is the collision of this corrector with itself,
which is of size ex but nonhydrodynamic. Thus, it is in fact small (due to
ev/k gain for a nonhydrodynamic term, nonhydrodynamic source terms of
ev/k drive the remainder to order O(ek).)

2. By imposing V. -@ =0, we can cancel out the hydrodynamic part for v-V . (@-
(v —eu?) M, .us.1), which is of order ex. Also, by introducing an additional
corrector at €2k level, one can cancel out all hydrodynamic terms of £2x level
by the evolution equation for @, including A, u. Therefore, the remaining
hydrodynamic terms are of order o(s?x) and nonhydrodynamic terms are of
order O(ek), and both are small.

3. The interaction of this corrector and the remainder also turns out to be
innocuous as well.

It is worth remarking that, in this corrector-based Hilbert expansion, we do not
need to set up € = k as in the usual Hilbert expansion [17]; we only need /x? — 0.
This is satisfactory, in the sense that a regime that is close to the Navier—Stokes
regime (whose k vanishes slowly) should be more tractable in philosophy, and indeed,
for such a regime, we can allow a larger deviation from the equilibrium. In addition,
we note that this expansion in fact allows even more general data than (1.16); we have
additional freedom in choosing g, so, in principle, a remainder with a certain part of
size ek is in fact admissible, while in (1.16), all parts of the remainder should be of
size o(ex). We believe that this new idea of correction will have many applications.

The search for an additional corrector in (1.17) has been largely indebted to our
H2L? framework. The framework was introduced for two reasons: First, our goal was
to obtain the hydrodynamic limit in a stronger topology. Second, this framework gives
better control of the nonlinearity. To elaborate, one can start from the observation
that, when measuring the Li’v norm of the nonlinearity I'(fr, fr), one only lacks
L2-integrability of z (see Lemma 1) since I is also an integral operator whose kernel
decays rapidly in v. Therefore, to control the nonlinearity, we may first establish
HZ2L2 control of the remainder and use interpolation inequalities (see Lemma 4).
It turns out that this framework gives a sharper scaling than previously considered
methods, which is reasonable in the sense that this method relies on the coercivity
of the linearized collision operator, while other methods do not use it and treat the
linearized collision operator, which is the most singular term in (2.37), as a forcing.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/03/25 to 173.239.64.5 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3150 CHANWOO KIM AND JOONHYUN LA

In addition to the aforementioned advantages, the H2L? framework greatly sim-
plifies the searching process for correctors. One can almost close the estimate for
fr in the H2L? framework, except for the term coming from the momentum-stream
(fa(w%w) in (2.37)), which can be closed using an L* estimate with a very
small prefactor. Therefore, to check if a proposed corrector works, one only needs to
measure the size of its effect in the energy space.

The paper is organized as follows. In section 2, we introduce our new expansion,
derive the equation for the remainder, and conclude that the size of the remainder can
be controlled in the H2L2 N LS space. In section 3, we present the derivative bounds
for Euler equations with smoothly approximated initial data. In section 4, we show
the stability of class of solutions of Euler equations we consider (Yudovich/localized
Yudovich/Diperna-Majda) under smooth approximation of initial data. In particular,
for the localized Yudovich class, we find explicit convergence rate for both velocity

and vorticity. Finally, in section 5, we prove our main hydrodynamic limit theorem.

Notations. For the sake of readers’ convenience, we list notations used often in
this paper.

(1.18) 9 :0f= 0Oy, f or Oy, f
(1.19) 0O f= > 0NN
artas<s

(120)  fegfrate)= [ f@—noa

(121) - frweg 2 freeg(z)= | @ =y)g(y)dy

(122) ()4 : (a) = max{a, 0}

(1.23) log, : log, a=max{loga,0}

(1.24) < : there exists C' > 0 such that a < b implies a < Cb

(1.25) a~b : a consists of an appropriate linear combination of the terms in b
(1.26) [-,-] : [A,B]g:= A(Bg) — B(Ag) (commutator)

@27) -y s ey = 1 e,y (e =1 leer2)s 1f 11z = [1f]]ze @s)

(1.28) | -llrerz : (1 fllzerz == Ifllresze@sy) = ||I1F (2, 0) | L2 @) Lo(r2)

(1.29) drz2(z,y) : geodesic distance between x and y in T?, often abused as |z — y|

2. Hilbert-type expansion with viscosity-canceling corrector.

2.1. Formulation around a local Maxwellian. We denote a local Maxwellian
corresponding to (1,eu”,1) by

(2.1) = My .
We try to construct a family of solutions F¢ in the form of

(2.2) Fe=pu+e®pPu—e®rm(Voul) A+ {eni? - (v —eu?) + 2kpP Y+ e fr/1,

where p?, @7, and P satisfy (3.9) and (3.10) and 2/ will be defined in (2.13).
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Also, we assume the following assumption on the relative magnitudes on e,k =

k(e), 8= B(e):

. €
hm—2:0,
e—0 K
1
lim k2 V =0
(2.3) lim £2V(5) =0,
. 1 2CT||V.u?|?
limk2e e7 lzee (0. )x12) = (),
e—0

where Cy is specified in section 2.5.
We define

(2.4) Lf= ;;Q(u, Vif), T(f,g)= \/lﬁQ(\/ﬁﬂ Viig)-

From the collision invariance, a null space of L, denoted by N, has five orthonormal
bases {¢;\/p}i—; with

Y= ((p0a¢154p279037904)7

(2.5) lv—euf|? —

V6

po:=1, @;i:=v;— su? fori=1,2,3, @4:=
We define P, an L2-projection on N, as

Pg:=(Pog, P1g, P2g, P3g, Psg), Pjg::/Sgcpj\/ﬁdv for j=0,1,...,4,
R
(2.6) 4
Pg:=Y (Pig)e;v/i="Pg-o\/ii

Jj=0

We record the exact form of L and I' for the later purpose; the calculation is due
to Grad [27], and one can also read [24] for details of derivations. Also, the exact form
of the formulae were excerpted from [35]: For certain positive constants c1, ¢, cs,

2.7)
L1 (0) = wf(0) = K (@) =) f0) = [ Ko, f(0.)do.

1 lv—eu”| lo— suﬁ\Q
I/(U):C1 <2’U—€Uﬁ|+v_€uﬂ|>/o _2d2+6 5

2 2
lv—euP P4 jv, —cuf? c3 —Lv—v, |2 -4 Qo= cuB 2oy —euf|?)
4

[0—vx]

k(v,vs) = co|v —vile” )

- Iv—v*\

/ / (v = 0.) - wlViu(w) (£ 4 g(o') £ (0)))dwdo,
/Rs 0= 0wl V(o) (£ (0)g(w.) + 9(0) f(v.) o,

where v/ =v — ((v — v4) - w)w, v, =vs + ((v — v4) - w)w. Here, all v,k,T" also depend
on z and ¢ in a straightforward manner; that is, Lf(x,¢,v) and T'(f, g)(z,t,v) depend
on f(z,t,-), g(z,t,-), and u?(z,t). We omitted them for the sake of simplicity.
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Also, we define oL and peT for s > 1:
(2.8)
o LI 0) =000 (0) = | 0 K)(w.0.)f(w.)do.
o TG00 = [ [ 1000 -wl0 (Valo D) )a(0l) + ) F 0l o
= [ 1= 008 (Vo) @)a(0) + 9(0) 02 s

We list standard results that will be used later in this section for the sake of
readers’ convenience. First, we note that

(2.9) Q(u,p)=0=PL=LP=PT

from the collision invariance.

LEMMA 1 ([23, 31, 29]). Suppose that (2.3) holds. Then,
v 2L 22 ey S VP = P) fll L2 (12 xg2),

I - P2, < \ [ s

3

210 ' [oLiwgteias

Sello g, (IPFliz + I3 @=P) Sz ) (IPgllsz + 113 X —Pglz2 )

‘/F(f,g)hdvdxdt‘
S [ (1Pl + 1@ =P)floz) Lol
+ (IPgllus + 113 (X =Pgllzz ) £z Iv* (1= P)h] o,
(2.11) ‘/asf(f,g)hdvda:dt’

selouluz, [ [(IPAlz + 1A @ P)Flsz) loloz

1
+ (IPgllze + w4 X =Pyglizz ) 1]12]

X (\|Ph||L5 +lvE(I - P)h||L3) dadt.

Next, we introduce a lemma illustrating the structure of higher derivatives of L f.
Recall the notation [-,-] for the commutator (1.26).

LEMMA 2. For s>1, [0°,L]f is a linear combination, whose coefficient depends
only on s, of the terms having one of the following forms:
1. 5 LI—P)O* I f, where 1 <j <s;
2. LO---[P,0]---0f, where §---[P,0]---0f is an application of s —1 0 and
one [P,0] at jth order to f (0<j<s); or
3. 95 L0---[P,0]---0f, where 1 <j<s—1and d---[P,0]---0f is an applica-
tion of s—j—1 0 and one [P,0] at ith order to f (0<i<s—j).
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Proof. We proceed by the induction on s; first, we note that
I(Lf)=0LA-P)f=pL(I-P)f+LOI-P)f
=oL(I-P)f+ L[P,J]f+ LA —-P)of,
[0,L]f=oL(I—-P)f+ L[P,J],

which proves the claim for s =1. Next, for s > 1, we have

[0°F, L] f =0T Lf — Lo*F' f = 00°, L] f + [0, L] 0" f,

and, by the first step, [0, L]0® f consists of terms in the lemma. Also, application of 9
to the terms of the second and third form of the lemma produces terms of the second
and third form again, while application of 9 to the first form produces

09 LA—-P)O* I f= i1 LI=P)O* T f + 5, LOAI —P)O* I f
=9i1 LA=P)O* I f+ 5, L[P,0]0° 7 f+- -+ 5 LO* I [0° I[P, D]
+ s L(I— P)as_j+1f,
which proves the claim. 0
Also, we have the following straightforward estimate for [P,d]f.
LEMMA 3. Suppose that (2.3) holds. For s + s3 <1, the following holds:

4

[P,01F = — S U, i/ 12 (i /1),

i=0
1P, 01 f 1l 2 S ellVau|lLe, 1 fllzz,
[0°1[P,0]0% fll 2 S eV (B)|0°F2 f| 2.

Next, we introduce anisotropic spaces; this will be key to our analysis. For p €
[1,00], we recall the space LP(T?; L(R?)) by the norm || f|| 1» (12,12 (rs)) in (1.28). For
p,q € [1,00], L4([0,T]; LP(T?; L?(R?))) is defined similarly. We have the following
anisotropic interpolations.

LEMMA 4. We have the following:
L. (anisotropic Ladyzhenskaya) || f|lz1r2 S ||f||L2L2 H6f||L2L2 and
1

2. (anisotropic Agmon) || f||Ler2 < Hf||L2L2||32f||L2Lz

Proof. We only prove the former; the latter is derived in a similar manner.

e (L ()] <] () )
U Hf("v)”%idv)é <( L <vv>llpz||af<-,v>||Lgdv>é
(/Rd 1Plfwv 2d$dv>212 (/ /TQ|5fxv | dxdv>2}2

= Hf”LngHafHLnga

where we applied Minkowski for the first, the usual Ladyzhenskaya for the second,
and Holder for the last inequalities. 0

1

2-2
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From Lemma 4, we have the following.

LEMMA 5.
1
[v2(I—P)fllpare
1
S 2w (I=P)fl|7

x (10wl Ifllnzez + e~ w3 (U= P)Of 2z + VAl v A= P)fllszsz ),
lv® (T —P)fllpoer2
S 32 (T=P)fl7

x 100 | 110f Iz s + e~ w3 (1= P)O* fll 21z

W=

+V(8) (e v A= P)leaes + e~ v A= P)Oflrars + 1fllszsz)] -

Proof. We only give the proof for the first inequality; the second inequality can
be proved by a similar argument. By Lemma 4, it suffices to control 3(1/%(1 -P)f);
we have

D (1-P)f) = %y—la(y)y% (1-P)f + v3[P.0]f + v} (1 P)of.

One can easily check that sup,, [v™10(v)| < €]|0u”||Ls, and thus, the inequality
follows. O

LeEMMA 6 ([11, 31]). L|x: : Nt — N2t is a bijection, and thus, L~1 : Nt — N+
is well defined. Also, L™ is symmetric under any orthonormal transformation. In
particular, if f € N+ is an even (resp., odd) function, then so is L™ f.

Proof. The proof follows the Fredholm alternative and rotational invariance of Q).
We refer to [11, 31] for the proof. d

The term (v — eu®) ® (v — Euﬂ)\/ﬁ and its image over L™1 turns out to play an
important role in the Hilbert expansion. Note that

(2.12)
I-P)((v-ev’)® (v—cu?)yp)= <(v —euf)® (v —euf) — é|v - su5|213> NI

Thus, we define 2 :=2((t,z) € M3x3(R) by (see [5])

(2.13) A =L" (((U—Euﬁ)i(v—euﬁ)j - W_?W@j) \/ﬁ>

Regarding 2(, we have the following useful lemma.

LEMMA 7 ([5, 4]). (LU, Asj) =10 (8irbje + 6ie0jk) — 21005 0ke-

Proof. We refer to [5, 4] for the proof. O
From explicit calculation, we can also establish the following result.

LEMMA 8. Fori,j, k€ {1,2,3},

3
P(pipjorv/i) = 2(52'3'51:2 + 0100 + 0j10i) e/ -
—1
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We also have the following useful pointwise estimates. First, we have the following
)

LEMMA 9. Suppose that (2.3) holds. Then, for s <2, we have

o (FOLETNY g (02 V)

/ 1 s
+> (0 Hs > (0 0p ) pip; + R,

s'<s ,]

pointwise estimates on o°(f

(2.14)

where |R| S eV (B)v(v) ¥, ., 10 fl.
Proof. Tt suffices to notice that

(O +¢-Va) i

1 1
NG =3 Z@xiufgaigoj +35¢ Z(@tu'ﬁ +uP - V)i

0] i

and that the first two terms of the right-hand side of (2.14) correspond to the terms

where all 9 are applied to either f or 8@“? and R are all others. 0
Next, we present pointwise estimates on A and its derivatives ([35]).

LEMMA 10 (Lemma 3 of [35]). Suppose that (2.3) holds. For o€ (0,1/4),

125 (v)| S e—elv—=u’l?

> 100 (1 + (WP, @) DA (v))| SeV(B)e e
5<2,D€{0;,0}

ﬂ‘Z

Next, we have the following pointwise estimates on I'" and L.

LeEMMA 11 (Lemma 4 of [35]). Suppose that e|uf(z,t)] < 1. For 0 < o < 1/4,
C eR3, and s <2, we have

v(v)

24 0. 2. 0.
|F(f79)(’0)|§||eglv‘ * vf(U)HL:O”@Q‘yl * UQ(U)”LgOWv

0D, 9) (O] SV (B) e+ F(0) | e e+ O g (o) o 20—
&

v(v)?

o LI S V(e f )| s

v

Here, we can choose the constant for the bound uniformly for {|C| <1}.
Finally, we present pointwise estimates regarding projections P and I — P.

LEMMA 12. Suppose that f(t,x,v) € L2 satisfies |f(t,z,v)| < C(t,z)exp(—olv
—eub (t,x)|?) for some constant C(t,z) independent of v and o € (0,1/4). Then,

)%
")

where the constants for inequalities are independent of t,x,v but depend on g.

(2.15) [Pf(t,z,v)| SC(t x)exp (—g|v—€u2( T
x

t
(I-P)f(t,2,0)| S C(t,x) exp (—olv —eu”(t, )
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Proof. Tt suffices to show (2.15) only; the other follows from |(I — P)f(t, x,v)| <
|Pf(t,x,v)|+ |f(t,z,v)|. Note that, from (2.6),

[P f(t,z,v)|
5
1 ) ,
< ;O(t,ﬂf) /(U — €u5>2€Xp < (QJF 4> |lv— é‘uﬁ(t,x” ) dv{v — Euﬁ> Vi
§ C(t,x)cg exp (*Q|U — 57.1/8(15,;1:)‘2) ) -

2.2. New Hilbert-type expansion. We recall an explicit form of derivatives

of p*:

[0y +u? - V| 1 = ek(9pu® +uP - Vi) - (v —cu?) ¥,

(216) (1} . €u5) . vz,uk — E]{E(Vzuﬁ) : ((U — Suﬁ) ® (U - €UB))Mka

where k>0 and A: B=tr(4B) =" A;ijBj; for arbitrary rank 2 tensors A, B.

ij=1
Now, we derive an equation of fg. First, we plug (2.2) into (1.5) to obtain

(217)  (v—eu?) -V, (p+e?pPu—e*w(V,u?) A futeri® - (v — eu? ) p+e?kp® 1)

(2.18)
+e(@ +u? V) (n+ e’ — e2k(VouP) s Ay/itert” - (v —eul )+ 2kpP )

(2.19) - é@(y + 2P — 2k(V o) : Ay + eni® - (v —eu? )+ erpP 1)
e20)  +{olnyD +E ValnvE) - S QUrEIaVi) )
(2.21)

2
= =Qu+ " n = R(Vou?) 1 At ewi” - (v — eul)u+ 5, /) = 0,

where we have used an abbreviation Q(g) =Q(g,g) in (2.19).

We group the source terms (2.17), (2.18), and (2.19) with corresponding orders of
magnitude; it is good to keep in mind that, in our method, all hydrodynamic terms
of order of magnitude less than 2« are considered small and all nonhydrodynamic
terms of order of magnitude less than ev/k are considered small. In the end, we will
group all small terms altogether.

Terms that are greater than . Among terms that are independent of fg, there
are no terms whose magnitude is greater than . For terms in (2.17) and (2.18), this
is obvious; the largest term comes from (v —eu?) -V, which is of order e. For terms
in (2.19), we note that, since (v—eu?)\/&t, /i €N, in fact, (2.19) can be rewritten as

(2.22)
2eQ(p(1+e%p” + 2kpP), (Vou?) : A/ 1) —keQ (0P - (v — eu)p, @ - (v — euP)p)
+2e2kQ (07 - (v — eul ), (Vo) - A /1) — 36Q((Voul?) - A1, (Vo) : 2Ay/10),

whose leading order is €.
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2.2.1. Order e. Among terms that are independent of fgr, there are two terms
of order e:

(0= <0} Vop Qe n(Vou) : A7)
=eV,ul (v—euﬁ) @ (v—eu’)p—e(Vyu?): LA/ =0
because V- u? =0.

2.2.2. Order ex. Among terms that are independent of fg, there are two terms
of order ek.

ek(v —eu?) - Vo (0 - (v —euP)p) — erQ(@? - (v — eu ), @ - (v — euP)p)
(223)  =er ((Vo0”) : LA-T (@7 - (v —eu’) /1, 0" - (v —eu”) /1)) Vi

(2.24) + %k Z(g - Euﬁ)zuj ( 0 u + (v —eu?)j(v—cu )ka%uk) ,u
(2%
because V, - @” = 0. Note that terms of order ex are nonhydrodynamic: 7(2 23) €
N+
2.2.3. Order 2. The following terms are of order £2:

e +u’ - Vo)p+e*(w—eu’) - Vo (p'p)

=¢? ((@ +uf- Vx)uﬁ + Vmpﬁ) (v— 5u5)u
(2.25) + E3pﬁvwiuf(y —euf)i(v—eu’)u=c¢ p5V$iu§(y —euf)i(v—eul);p

since (0; +u? -V, )uP + V,pP =0.

2.2.4. Order e2k. The key reason to introduce correctors ex@® - (v —eu®)p and
e2kpPp is to get rid of hydrodynamic terms of order e%x; as payback, we obtained
terms of order ex, which is larger, but all of them are nonhydrodynamic, so they are
small in our scale. The following is the collection of all terms of order £2x:

—2k(v —euP) - Vo (Vou?) 1 A/1) + k(v — eu?) - Vo (57 ) + (2.24)

+2k(0 +uP - V) (@ - (v — euP)p) + 262k (07 - (v — eu®) /i, (Voul) ) /1
(2.26)

=2k{—noAsu’ + Vi’ + (9, +u? - V,)i} - (v — v

(2.27)

Zuﬂ&hug —euf); + Z ﬂf@xiuf(éi]ﬁu + 6irdje + Sjxdie) (v — eul)e |
ik,

(2.28)  +&%k (20" - (v — eu”) /i, (Vou?) 1 A) — (V2uP) : (I—P) (v — eu”)A) /i

(2.29) +€2/$Zﬂ?8miuf(IfP) ((v—eu?);(v—eu?); (v —euP) /1) VR
igk
(2.30) +e2ﬁ(—(v$u ) (v —euP) - Vo (AYE) + 57 (v — ew?) - Vo + @

(B +uP Vo) (v — Euﬂ)u)) = (2.28) + (2.29) + (2.30).
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Here, we have used Lemma 8 and that (2.26) and (2.27) can be gathered to form

(2.26) 4 (2.27) = 2k ((8; + u” - V)i’ + 7P - Vi —noAguP + V5P - (v —euf)u=0.
Note that # ((2.28) + (2.29)) € N'L; that is, it is nonhydrodynamic, so small in our
scales, and (2.30) is small—in fact, it is of order &3x.

2.2.5. Small, nonnecessarily nonhydrodynamic remainders. The remain-
ing terms are small in our scales; the following gathers all remaining terms.

3 /IRy = (2.25) + (2.30) +£3(0; +u” - V) (" 1)
+ %R0+ 0’ - Vo) (—(Vou) 1 A+ 57 )
— P (L(V ) : ) /11 — 3kpP (L(V 1) - 2) /1t
— KT ((Voul?) - 2, (Voul)  20) /1.

One can easily observe the following.

(2.31)

PROPOSITION 1. Suppose that (2.3) holds. Ry consists of a linear combination of
the terms in the following tensor product:

1
&)
p 8 Vi
1 8 D 1
K Vf;l Uﬁ <92 I 518,591
- @ p ®D v uf P> ((v—eu”))| 0A |,
ck U;B fﬂ LQ‘
i? @ uf p (2, 2)
B
u

where D is either 0, or 0, which is applied to p® v,V uP,pP, and PB=? is a polynomial
of degree < 2 of its arguments. In particular, for o € (0, i) and s < 2, we have the
following pointwise estimate:

(2.32) 059, | SV (B)e—elv—=v"I,

2.2.6. Small nonhydrodynamic remainders. Equations (2.23), (2.28), and
(2.29) are nonhydrodynamic remainders. We group them to obtain the following
proposition.

PROPOSITION 2. Suppose that (2.3) holds. Let Ry be defined by
(2.33) ery/pR2 = (2.23) 4 (2.28) 4+ (2.29).

Then, Ro consists of a linear combination of the terms in the following tensor product:

v LA
0o [0 ) o[ P
X -~ ® V—Eu H,
ST (I-P)(v—zu’)

I1-P)(v—euf)® VL

In particular, Ry € N, and, for o€ (0, i) and s <2, we have the following pointwise
estimate:
|(T-P)a9a| SV(B)e el =T,

B‘Z

(2.34)
IPO*Ry| SeV(B)eelv—ew’l™,
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Proof. Tt suffices to show (2.34); we see that, if all 9° are applied to macroscopic
quantities V,@”,..., V2u?, then the resulting term is still nonhydrodynamic. In that
case, the first inequality of (2.34) applies. On the other hand, if some of 9 are applied
to microscopic quantities g = L, ..., (I—P)(v — eu?)®” V/It, we note that

9" g=0"(1-P)g=(1-P)d* g+ [P,8"]g.

The first term belongs to A'*, and the second term belongs to N and is bounded by
eI+ ey ||8S”u||Loo)||8s/_1g||LgeL36_9“’_5“&'2. In both cases, (2.34) is valid. 0O
Also, v;e can collect terms in (2.21) except for p and fr by Rs.
PROPOSITION 3. Suppose that (2.3) holds. Let Rs be defined by
(2.35) etz = 2ek” - (v — eu® )+ 2pP u — 2K (V ) A/ + 2k .
Then, for o€ (0, %) and s <2, we have the following pointwise estimate:
(2.36) |0°Rs| SV (B)eelv=v"F,

2.3. Remainder equation and its derivatives. We have simplified (2.17),
(2.18), (2.19), (2.20), and (2.21) so far. Finally, by dividing (2.17), (2.18), (2.19), (2.20),
and (2.21) by £2,/11, we obtain

(at+% Vz)\/ﬁ 1
)

1 1 K
= —ID(fr, fr) + =T'(R3, fr) — R1 — —Ra,
€K € €

where JR1,MR,, and R are defined by (2.31), (2.33), and (2.35), respectively.
Also, we have the equation for 9°f, for s <2; by Lemma 9,

Oifr+=-Vofn+ fr (
(2.37) €

O +%-Va 1
8,0 fr+ = - V,0° fr+ O fr (M/ﬁ) + 5L fr
€ NI %K
’ ]_ _s
=Y o fR§Z(88 a0 ) pip; + Ry

(2.38) s'<s ]
1 S 1 S 1 S
+ TQK[[@ L] fr+ Qa L'(fr, fr) + ga I'(R3, fr)

—OR, — g(l PR, — SPBS%Q,

where |[Ry| £ eV (B)(v) ., [0 11.

2.4. Scaled L*°-estimate. In this section, we prove a pointwise estimate (with
a weight (2.43)) of an L? solution of the linear Boltzmann equation with a force term.
We consider the following transport equation with (2.40) term:

(0t 20-V.) i
\/ﬁ

Also, we have an issue of momentum stream; the remainder equation (2.37) in our
case contains the term

(2.39) [8t+£_1y-V$]f+€2%Lf— fr=H in [0,T] x T? x R®.

(0 +zv-Va) Vi
N

(2.40) IR,
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which cannot be controlled by fg for large v. This term precisely comes from the one
that we expand around the local Maxwellian, not the global one. In [35], a weight
function of the form

(2.41) w(z,v) = exp(Vv|> — Z(z) - v),

where Z(x) is a suitable vector field, was introduced to bound the (2.40) term in the
expansion around the local Maxwellian

(2.42) u;(@%iv~vx)fR(&+iv-vz>(wfR)+i(v~VmZCw~v)wfR

and if Z(z) is chosen so that v-V,Z(z)-v > 0 for any v (Z(x) = z(z)x for a suitably
chosen function z(x) works), one may control the most problematic term in (2.40):
(Vou” v @v)wfg.

Inspired by this, we introduce a suitable weight function, which is appropriate for
the periodic domain. Unlike the whole Euclidean space, the existence of such Z(z) in
T? is less obvious; in fact, if Z = (Z;, Z) is smooth, then, since le N Zy(x1,29)dx =
0, 01Z; will have a mixed sign along the circle T* x {z2} for each x5 € T! unless it
is 0 over whole circle. Thus, V,Z 4 (V,Z)T is neither positive definite nor negative
definite over the whole domain TZ2.

To overcome this difficulty, we introduce a weight function that cancels the most
problematic term of (2.40) instead of controlling it; we introduce

1
(2.43) w(t,x,v) :=exp (19U|2 - §€u5(t,x) -v) )

where ¢ € (0, %), under the assumption
(2.44) elu (t,z)| = o(1).

In our scale regime, (2.3) and (2.44) hold.

PROPOSITION 4. For an arbitrary T > 0, suppose that f(t,z,v) is a distribution
solution to (2.39). Also, suppose that (2.3) holds.
Then, for w =PI’ =25’ (to)2 yigh 9 € (0,%) in (2.43),

(2.45)

ek sup [lwf(t)||Lo (T2 xr3)
te[0,T]

Sekllwfol Lo (r2xr3) + sup Hf(5)||L2(Tr2xR3)+€3f€2 sup ||V_1Wﬁ||Lw(1r2xR3)-
te[0,T) t€[0,T7]

The proof is based on the Duhamel formula (2.56) along the trajectory with scaled
variables and the LP-L°° interpolation argument based on the change of variable.
Let, with w of (2.43),

(2.46) h=wf.
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From (2.39), we can write the evolution equation of h:

{&Jriv-vz] h=w [8t+iv-vz] f+f [8t+iv-vz]w

1 O+ vV, - 1 1
:_7wa+[t+Ey ]\/ﬁh—l—wH—l—h Oy ——v-V, —eu” v
€2k Vi 3 2
1 -
(2.47) = _527wa +wH

1 1 1 1
—(v—eu®) 0+ v -V (—euf) = = |0+ vV B.
+h< 2(1) eu”) [t—&-gv =) (—eu?) 2[t+€v x]eu v)

1 h 2 ~
:_527101; (w) —h (Zuﬁﬂtuﬁ + %y- (Vo) -uﬁ> +wH.

Next, we recall that Lf = vf — K f from (2.7). From the explicit form of v in
(2.7), we have a positive constant v > 0 such that

(2.48) vo(lv —evP|+1) <v(v) < 2u0(Jv — v +1).

In particular, (2.48) and (2.3) imply that

etk 3k
(2.49) v(t,z,v) = v(t,x,v) + 7uﬁ 9P + v (Vou?) -
satisfies
1 _ 5
(2.50) éuo(\v|+1)§u(t7x,v)§§V0(|v|+1).

With 7, we can write the evolution equation for h:

1 1 1 h ~
(2.51) O +-v-Vy | h+ 5—ih=—wK—+wH.
€ 2K 2K w

Let Kyyh(v) = [ ki (v, 0:)h(vs)dv, with ky, (v, v,) :=k(v,vy) ;U“((v”j). Then,

(2.52) w(v)K = (v) = /IR k(o,00) SR v = Kuh(v),

We will need the following estimate for k.

LEMMA 13 (Lemma 2 of [35]; also [23]). Suppose that (2.44) holds. For w =
0P =5eu’ v yith 9 € (0,1), there exists Cy >0 such that

1 vy |2

(2.53) ky(v,04) S e Co =3t =k (v—u,),

v — v

1 1

2.54 1+ — Ux kw y Ux d * 5 N 5 ’
(2.54) [ o= dn. S o5 S 7

1 1
(2.55) / ——— ko (v, v,)dvs S <1.

M r— V)

Note that k? € L'(R?).
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We solve (2.51) along the characteristics

(2.56)
t ~
Y(r;t
h(t,m’y) _ hO(Y(O7t’x’y)’v) exp (_/ V(Tv (7’2 ,x,y)7’l]) dT>

0 E°R

t *ft P(T,Y(T:tvﬂ.&)»v)df

—|—/ ¢ 5 —- / ko (s, Y (s5t,z,v),v,v)h(s, Y (s;t,2,v),v.)dveds
0 E°KR R3

¢ S TCR RO RONE PR
L e (wH)(s,Y (s;t,z,v),v)ds.
0

Proof of Proposition 4. We again apply (2.56) to the second term on the right-
hand side of (2.56):

Wit 2,0) = ho(Y (0:t,2,0),v) exp <_/0

Lo, Y (Tt
V(T7 (7—72 7x7y)7v) dT)
ER

'Y eismmar
+/ e Js - (wH)(s,Y (s;t,x,v),v)ds
0

t v(r,Y (T;t,z,v),v)dr
b - Jp HrYinta s

EQK,

+/0 o /]RS kuy (s,Y (sit,2,0),v,v4)

' ' s D(T'~Y(T’;5,Y(S;t,w,3)=£*)y’v*)dT/
X ho(Y (058, Y (s;t,7,v),0,),v)e Jo B dv,ds

_ [t UnY (rite ) v)dr
S

¢
—|—/ € /kw(s,Y(s;t,x,y),v,v*)
0 R3

2k

s e (!, Y ()38, (sit,z,0),v,),v4)d7!
« P g (wH)(1,Y (7;8,Y(s5t,2,0),0,),v.)d7dv,ds
0
e 5(r,Y (5t,2,0),0)dT

t
+/ ‘ /kw(va(S;t,x,y),v,v*)
0 R3

2k

s P Y ()38, Y (sit,@,0) v, ), vs)dT]

s _fT 2k
<[ f - [ Y (s (st ), )00

X h(T,Y (758, Y(s;t,2,0),0,), Vax )dvssdrdv,.ds
:ZI1+12+.[3+I4+IK.

First, we control Iy := I; + I3, the contribution from the initial data. We easily
notice from (2.50) and (2.54) that

_voul+1)e
(1] <[lhollzoe (2 xmaye” 2% < |[hollLoe (12 x3),
_ roUul(=s)

t

e PE _ vo(vx|+1)s

B < [ [ Ku(vo)e S o croydveds S oo ook
0 R

In the second inequality, the dependence of k,, on the ¢, z variables is omitted because
the bound is uniform on them.

Next, we control Iy := Is + I, the contribution from source H. Again, from
(2.50) and (2.54), we have

b el —s) 5 1 1
] < [ e 225 |wH (v)|ds S ekllv™ " wH || poo (jo,7]xT2 xR3),
0
_ v(ul+D(t—s)

t 2 5 up(ualtD)(s=7)
ni< [ [ o) [ S o )fdrdu.ds
0 E°R R3 0

Se%|lv T wH || oo (0,7 xT2 xR -
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Finally, we control Ix. The idea is the following: We decompose the time interval
[0, 5] into [0,s — e2ko(1)] and [s — e%ko(1), s]; the first integral is controlled using the
change of variables v, — Y (7;s,Y (s;¢,2,v),v,), and thus, we can rewrite the integral
of h with respect to wv.,v., variables into the space-time integral of f. For that
reason, we plugged (2.56) into itself. Also, the splitting of the time gives control of
the Jacobian factor obtained from change of variables. On the other hand, the second
term is controlled by the fact that it is a short time integral; this gives smallness, and
thus, we can bound the integral with o(1)[|A| Lo (j0,7]xT2 xR3)-

For this purpose, we introduce a small positive number 1 > 0, which is to be
determined. Using (2.50) and (2.54), we have the following:

vo(lv[+1)(t—s) vo(vx|+1)(s—7)

teT T aem. Se” 2k
|IK|§/ e 2 / e 2
0

€2k 0 €2k

x/ / k(v — 0K (vs — v) |R(T, Y (735, Y (551, 2,0), 0, ), Vss ) |[dVsrdv,dTds
R3JR3

vo(lvl+1(t=s) vo(lvxl+1) (s—7)

L2 _volvx|rD(s=7)

/t e 2:25 \/‘5 ERN o 2:25
- —_—

0 E°KR

//kﬁv—v* ( — V) |R(T, Y (758, Y (851, 2,0),0, ), Vs ) |[dvssdvedrds
R3JR3

,M s _voUuxl+D)(s=7)
/ 2:25 / e 2:25
2k s—e2nn 2k
/ / k(v — v, )k (vy — ve)|R(T, Y (755, Y (558, 2,0),0,), Vss ) |dVsrdv,dTds
R3 JR3
=151+ I52.
We first bound I5 5. From the integrability of k?, we have

_vo(vl+D)(t—s)

t
e 225 e2kn
Fa < | s sy Wl = oy S 1l .y

Next, to treat I5 1, we introduce the following decomposition of k¥ (v —v,); for a
given N >0,

k? (v —v,) =k% (v,v.) + k%(v,v,), where
k% (v,v,) =k’ (v — U*)lBN(O)\B%(O)('U — )1, (0)(vs) and
k% (v,v.) =k” (v — v,) — k% (v, v).
With this decomposition, we can split I5; by
vo(lvl+1)(t—s) 2 vo(oxl+1)(s=7)

b T aeTe o [STERT gm T
IS,l = . ——
0 E°R 0 E°R

></ / K (0,0, K% (Vs Vi) |A(T, Y (758, Y (53, 2,0),0,), Vs ) |0y pdv, drds
R3 JR3

vo(vl+1)(t—s) 2 vo(lvxl+1D)(s—7)

b~ 22k STERN o7 2e2r
Jr - N
0 €2k 0 ek
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></ / K2 (0, 02 ) K% (Va, V) [R(T, Y (758, Y (851, ,0), ), Vs ) | dVsndv, dTds
R3 JR3

_vo(v[+D)(t=s) 2 _vo(us|+1)(s—7)
t e 2:2 5 STERN (& 2e25
_l’_ - N —
0 52/9 0 52:‘<E

x/ / k%(v,v*)k%(v*,v**”h(ﬂY(T;S,Y(s;t,:E&)&*)’U**)|dv**dv*d7d5
R: BE%VO(WZ# s—e2kn €_W

e e

X /3 /3 K2 (0,00 K% (Vs Vas ) |W(T, Y (738, Y (851, 2,0),1,.), Vus ) |dVsndv, dTds

INﬁ -|-R[NR+IRN+I

Since [os k% (v,v:)dvs 1[[K?|| 1 (re) as N — oo, and thus, Ay = [, k% (v, v, )dv, —
0 as N — oo by the monotone convergence theorem, we have

o S ANIK? (|21 ) 1Bl Lo o, 7112 xB2) 5
I < AN K || pr ey |7l oo (0,77 T2 xR2)
IRRSA ||h||L°° ([0, T]xT2xR3)-

Finally, we estimate I2}. First, we recall that k% (v,v,) is supported on {3
|v —v.| <N} and therefore is bounded by some constant Cy. Thus, we have

kR (v, 0.) < On1py (o) (v),
k’l]g\/'(v*v’u**) S CNlBN(O) (U**)
Next, we expand |h(7,Y (755, Y (s;t,7,0),v,), Vs )|; in support of K3 (v, v, ) KR (Vs Vs ),
[vil, |[vex| < N. Note that this implies that |v,| < N and |(vs)3 | < N, where v, =
(v,, (v«)3). Together with (2.44), we have
‘h(T,Y(T;S,Y(S;t,.ﬁ,y),y*),U**” - |wf<T7Y(T;SaY(S;t7$7y)7Q*>7’U**)|
f(rY (738, Y (s5t,2,0),0,), Vi)
< CN‘f(T’Y(T;S7Y(S;t’xag)aﬂ*)av**)|'

2 3
S 619|U**| JF%EH“[ ”LOO([O)T]xTQ)l’Uﬁl

Also, we rewrite Y (7;,Y (s;¢,2,v),0,); we have

t—s s —
v —

3

Y(7;5,Y(s;t,2,0),0,) =2 — Ty, /Z? € T2

S—T

Finally, we remark that, since 7 € [0, s — 2], we have > ekn. Combining these

all together, for 7 € [0, s — £2kn)], we have

/ / 12 (0, 0K (0 00 ) (7, Y (73, Y (56,2, 0), ), 0|l
RrR3 JR3

t—s S—T
<N/ / / |fr (T,CE— v — v*/ZQ,v**> |dvsdo,
[(va)s|<N Ju, |<N J|v. | <N € €
2 3
SN / / dvedo, |
v, <N JR3

where we have used that the integrand is independent of (v.)3 and [[1{jy_|<N}x{jv..|<N}
22 xr3) SN 1.

S—T

v*/Zz,v**>

fR (Tvzt
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Next, we apply the change of variables v, —y=x— %y =Ty, € R%. This map

is one-to-one and maps v, € By (0) onto y € Bs—r y(z — t_TSy) w1th dy = (—) dv,.
Therefore, we have :

2

dv**dv*>

(2.57)
of e\’
= / /|fR(T,y/Z2,v**)| < )dv**dy
yEBgN(I*t_TSQ) R3 §—T

</U*I<N/1R3
c 2
= Z/ 2 / ‘fR(Tay_k;'U**)‘Q () dv**dy
ve([=33] +MNBor  (a—1520) JR? s—T

kez?
c 2
= Z |fR(T7Z,’U**)|2< ) dv,.dz ,
t=sy_k) JR3 §—T
T Y

1 1
reze ) €[~ 53] NBar

Nl=

S§—T

fR(T € Q*/Z27U**)

N

S—T N
€

|-

where 2=y - k in each integral. Next, we count the number of k € Z? such that

[— %,%] N Bs- TN(a: — 29 — k) # 0. There are two cases: If N==T <1, there are

O(1) such k € 72, 1If NSET > 1, there are O((N2=2)?) such k € Z*. Therefore, we

have
2
< X c 2 T, sk 2 *%
(2.57)N<ma ((sr) ,N)/W/RSUR( R ) dz)

1
SN,ng sup || fr(7)ll2(T2 xr3)-

T€[0,t]

1
2

Choosmg N large enough and 7 small enough so that we can bury Is o, 15 I5 1,
and I5R 51 gives

Hh||L°°([0,T]><’[F2><R3) 5 ||h0HLoo(T2xR3) +€2H|\V_11UHHL<>C([0,T]xﬂrzxﬂ@)
+ 67{||fRHL°°([O,T];L2(’]1‘2><]R{3)),

which is the desired conclusion. 0

2.5. Remainder estimate. To admit far-from-equilibrium initial data, we need
to keep the characteristic size of remainder as large as possible. A heuristic calcula-
tion suggests that the size o(ek) for the remainder is the threshold; if the remainder
becomes of the size O(ek), we lose control of the nonlinearity of the remainder equa-
tion. Thus, we aim to keep our characteristic size of the remainder slightly smaller
than ex.

There is only very slight room for this; the only possible gain is the coercivity
of the linearized Boltzmann operator L. However, many conventional techniques
(averaging lemma, L>°-estimates) do not rely on it; up to the authors’ knowledge, the
coercivity of L is exploited only in L? estimates. If we rely on other techniques at too
early a stage, we enormously lose the scale and fail to achieve the goal.

As a consequence, we need to push the L? estimates as far as possible. The
important observation made in [29] is that, even for the nonlinear term, we have
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control by the L2-in-v integral of remainders since the nonlinear term is also expressed
in terms of an integral with nicely decaying kernel; what is lacking is L? integrability
in 2. This observation naturally leads us to pursue the L2-estimate for derivatives of
the remainder and then rely on interpolation—H?2, but L? estimate.

It turns out that this idea gives a sharper scaling than many conventional tech-
niques; the commutator [0°, L] between spatial derivatives and L forces us to lose v/k
scale for each derivative, but we do not lose scale in nonlinearity for the 2D domain.
Thus, by setting the initial data decaying to 0 at an arbitrary slow rate as € — 0, we
can keep the L2 L2 norms of the remainder and its derivatives small provided that the
source terms are also small, which is the main point of the next idea.

Furthermore, we note that H2L? fits very well with our goal to see convergence in
a stronger topology; because we can control up to second derivatives of the remainder
small, we can keep our Boltzmann solution close to the local Maxwellian M; .5 1.
Its zeroth and first derivatives may converge; they correspond to the velocity and
vorticity. Its second derivatives may blow in general, which represents the formation
of a singular object, e.g., interfaces.

Now, we are ready to prove the compactness of fr in a suitable topology, thereby
proving convergence. For a fixed T > 0 and ¢t € (0,7T), we use the following scaled
energy and its dissipation:

E):=)_ sup [k 720 fr(t)|7a e,
s<2 t'€0,t) v

— _3,.s 1
D(t):=Y lle " w2 203 (T = P)0* frll72((0.4):0212))-

s<2

(2.58)

We also need the following auxilliary norm:

(2.59) ]:(t) =& Ssup HfR(t/)HLOC(’]I‘2><R3)~
t’€(0,t)

Also, we will frequently use the following basic inequality:

t
> 15714 20° fR T2 (0,09:22 1.2) :/0 ESr &)

s<2
The main theorem of this section is the following.
THEOREM 3. Let T > 0. Suppose that §s =ds(e), s=0,1,2 satisfy the following:
(2.60)

1im 80(2)? (V0”1 012y + 2) €x0 (2C0 (V0 I3 0,1y ) +2) T) =0,
(2.61) 0s(e) < (e7twTY2)% s =1,2.
Suppose that fr(0) satisfies

\/5(0), .7:(0)<§0(5), staszOHLx(szRg) <5S(€),S:1,2.

Then, (2.37) with initial data fr(0) and @°(0) = 0 has a solution fr(t), t € (0,T)
such that
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£(t) +D(t)

)+
< (624 K)(1+T)C(Cy)
x (2C0 (Va3 o sy +2) exp (2C0 (I Vot ey sy +2) 7))

and im0 Sup;¢ (o 1) (E(t)+ F(t))=0.

2.5.1. Energy estimate. By taking the L? norm for (2.37) and (2.38) for s <2
and integrating over time, we have

£(t) +D(t) <E(0)

(2.62) +|IV. u5||Loo Z/ fz, v2dvdadt’
s<2 0,t)xT2 xR3 kT2
(2.63)
+ Kf%’v(m/ 0" Jr alfi‘ V2dvdzdt’ 4+ £V (8)(E(t) + D(t))
s 0.5)xT2xR® | KIZ | | K772
—2 72+ s asz
(2.64) +3 £ 0%, L] fr = dvda A’
5<2 (0,t)xT2xR3
(2.65) +Z/ RO (i fr) OIn gudzar
§<2 (0,t)xT2xR3
—1 _1+ 89f
(266) + € 20° F(gﬁ,fR) d dxdt
s<2 (0,t)xT2xR3
(2.67) ,Z/ K z(gasm1+ (I-P)d*R, + a%) fRdddt
s<2 (0,t) x T2 xRR3

Step 1. Control of (2.67). From (2.32) and (2.34), we have

(2.68) 2675 (sn’lJr%V(B)\/E(t) + V(8D + mV(B)\/E(t))

St (VED + VD)

by (2.3).
Step 2. Control of (2.66). We note that

OTRs, fr)= D>, 0T (0"Rs,0% [r).

s1+S2+83=s

There are two cases. First, if s1 =0, then

fR + dvdadt

LT IHED(92 iy, 0%
/(0 t)><’]1‘2><]R3€ ( f )

s2+s3=s
1

<Z"6 TRy ()00 *frllL20,0;222)VD(t) SK2V E(t)V/D(t).

s3<s
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If s > 1, then, by Lemma 1, we have
9 fr

k1=3

dvdzdt

/(0 £)XT? RsE_IK_H%QSIF(aszmSvassz)
)X T2 X

S1+s2+s3=s

S Z V(BT (||3s3fR||L2((o,t);Lng) + e (- P)as?’fRHm((o,T);Lng))

X («/E(t) +5f<:%\/D(t)> <KEV(B)(E(t) + 2kD(L))
since s3 < s. In conclusion, we have
(2.69) (2.66) < k2 V(B)(E(t) + D(1)).

Step 3. Control of (2.64). For s =0, [0°,L] =0. When s =1, [0°, L] fr consists
of type 1 and type 2 terms in Lemma 2. When s = 2, there is exactly one term in
[0%, L] fr that is of type 3 in Lemma 2: 5L[P,d]fr. For a given s < 2 and type 1
term in Lemma 2, we have an upper bound

(2.70) (1920 luss, +#2V(8)) VDO ,//Oeﬂmé D)

t
SUVAllis, +1) [ £+o(upl)

where the first |V u”||r term corresponds to gei L(I — P)9** fr and the second
H%V(ﬂ) term corresponds to g2 L(I—P) fr. For example, for s =2 with s L(I-P)0fgr

term, we have

/ e 2k L(I — P)O fr0? frdvdadt’
(0,t)x T2 xR3
SV |lig e n w2 (L= P)Ofr] L2022 12)
1 _ _1 1
X (”‘92fRHL2<<o,t>;L§L3)+€'€§||€ 'K W(I—P><92fR||L2<<o¢>;LiL%>)’

which is bounded by the right-hand side of (2.70).
For a given s <2 and type 2 term in Lemma 2, we have a similar upper bound

Yo e wT2 T30 [P,A] - Ofullrao.:L2 02 VD),

where summation is over possible combinations of 9--- [P, d] - - - 9, consisting of s — 1
0 and one [P,9]. We note that

0---[P,0] - OfrllL2(0,0);02L2)

Se (”VruﬁlL;’fm“as1fR||L2((0,t);L§L%) +V(B) Z ||aslfR||L2((o,t);L§Lg)> ;

s'<s—1

where the former term corresponds to the case that all s —1 derivatives 9 are applied
to fr and the latter corresponds to the others. Thus, again, we have a bound

(Il + 62V () || [ VDD SV +1) [ €+ 00D00).
0 0
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Finally, for a type 3 term in Lemma 2 (which immediately implies that s = 2),

we have
t t
[esivacii, [ e
L2((0,t);2L2) ¥ JO o,

(2.71) (2.64) S (|Vou 3, +1) /Otg +o(1)D(L).

fr

B2
19003, |2

To summarize, we have

Step 4. Control of (2.62) and (2.63). We use the following standard estimate: Let
O<192<?91<190<i, and let

(2.72) w; = elill’=seul e 50 9

For s <2, we have

/ 9 fr
(0,t) x T2 xRR3

I-P)?fr
2

PO fr |

5
I 2

2
Vidodzdt’ < ‘

e L2((0,);L313)
2

1/1

RE e on:car)
' 2
(I-P)o°fr
5/ £+ Hl{v—euﬁb(sﬁ)om}vll_s
0 R oLz
2
(I-P)0fr
+ ‘1{|v—suﬁ§(g\/g)o(1)}yll_s
e L2((0,t);L2L2)

t
S/O E+ 11 o—cut|>(evm -3V Wy 720,002 12y [050° |70 (0,0) L= (72 xR2))
+ (evm) Vo)

t
1—o(1) - e s
5/0 E+ (evr) D(t) +e VoD [|wed® flIT o ((0,0); 100 (12 xR3))

Similar calculation for (2.63) gives the following bound:
¢
(2.73) (2.62) + (2.63) < (1 + ||vIu5\|fo)/ £+ o(1)D(1)
" Jo

N B )
+e v Z staéfll%w((o,t);Lm(T?><]R3))'
s<2

Step 5. Control of (2.65). Finally, we control the nonlinear contribution (2.65);
here, we use the anisotropic interpolation result (Lemma 4) and Lemma 1. First, from
Lemma 5 and (2.3), we remark that
f

3(I-P)L
va-p)l

ba-p) 2L
V(IP)\/E

y%(I—P%

+
L2((0,t); L3 L3)

<e? \/D(t)—ﬂ//t(‘f
0

+
L2((0,t); L3 L3)

L2((0,t); L L3)
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Next, we estimate the following integrals. First, we estimate

/ ir( fr, fR)f R qudzdt’
(0, K

2
t)xT2xR3 R

|
< \/ﬁﬁfﬁ Vo | =

In a similar fashion, we see
1 S
/ e (O e f) S vl
(0,t)xT2xR3 ER™ 2

S F = |(10°frlzz, ) Ifrllezsrs

(||fR\|LngCLg + (- P>fR\|LngCLg) 10 Frllaera,

<vDo |4/ / £+ evmy/D ||fRHLooLz

+VE@) HlelLZLwLHe% VD(t)+ / 5(/0t8+D<t)> £(t),s<2,

0

Ir

K

I

+|via-p P)=

—1
>\/E Il frll Lo L2 /D(2)
Liys

L2

. t
" sl 5 ( [ £ 400) VEW.
0

L L2,

+ v (I—P)2* frl| 2

tzv

/ ir(afR,afR)aszdvdxdt’
(

0 t)><’ﬂ“2><R3 ER

S VDW= (10frlsesrz + WA= P)0 Sl rgrans ) 100l ez

§</OS+D(t)> ().

Here, we have used Lemma 1 to first bound terms with L2 norms with mixed L?
norms and then Lemma 4 to turn back to the L2 norm. In a similar manner, we have,
for s <2, s1+s3=s, and s1 > 1,

1
/<0 )X T2 xR 230 0% fr fR) 575 f % dvdzdt’
t)x T2 xR3 2

t
1
S10" i | &g (10 fnlls,, + WA A=PY0* fullz,, ) Wl

1 S
+ (Ul iz 2 + w3 A= P)fallzrg 12 ) 110 frll e, |

< 10° | e, /Oenl 1//05+6\/E\/D(t) VE®)
+ ,//05+sf \/D(t)ﬂ//oe E0)

< (I92elus + V() (/6+eD )= m(||vmuﬁ||m;/0ts+o<t>)7
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where the first factor ||V u?|| e comes from the case s; =1 and the second factor
V(8)\/k comes from the case ss = 2,50 = 0. Also, we have used (2.3) to bury the

contribution of ||V u”||re in D(t).
Therefore, we have

(2.74) (2.65) < <(||Vruﬁ|[,t0; + 1)/(:5+D(t)) E(t).
Summing up (2.68), (2.69), (2.71), (2.73), and (2.74), we have

E() + D) SEO) + (IVar e, +1+VED) /Ote k4 VEDD()

1
+e (vor Z [ws0° FllF e ((0,);1.0 (72 xR2)) -
s<2

(2.75)

2.5.2. L control. From Proposition 4 and (2.37), we obtain the following:

lwo fRI| Loo ((0,¢); Lo (T2 xR3Y)
1
(2.76) S lwo frollLoe (T2 xr3) + -V E(t) + ellwo fRlIT 00 ((0.1): 1.5 (T2 x3))
+erV (B)|lwo frI Lo ((0,4); L0 (T2 xR3)) + e’ kV(B) +er*V(B).

Here, we have used Lemma 11 to bound the right-hand side of (2.37). Proceeding
similar argument to (2.38), for 1 <s <2, we obtain

S S 1
lws0° fR|| oo ((0,1);°0 (T2 xR3)) S |wsO® fro || oo (T2 xR3) +a755(t)

+ el|ws0° frl oo ((0,6);L5 (12 xB3)) [|W0 fR || o0 ((0,8);: 50 (T2 xR3Y)
+ekV (B)||wsO® Rl Los ((0,):L%0 (T2 xR3))
+eV(B)) lws O frll e ((0,6):Lo (T2 xR3))

s'<s

+eV(B) Z llws, 0°* fRILoo ((0,); L0 (12 xR3)) | W3, 0% fR || Lo ((0,8); Lo (12 x R3))

51+52<s,51,52<s

+3kV(B) + er?*V (B).

Here, we have used a pointwise bound wg > v?w; > v*wy for the third line. Therefore,
we have

(2.77)
F(t) SFO) + 2+ VE(t) + F(t)?

w10 frll Lo (0,605 (T2xR3) < ||w10' fRoll oo (12 xR3) +F () |w10" FR Loo ((0,): L (T2xR))
1 F(t)\*
e +evi) (1+ Y
+5\/E (t)+e¢ (ﬂ)<+ E)

||w262fR||L°°((0,t);L°°(11‘2><R3)) < ||w252f30 ||L°°('J1‘2><R3) +F(t) Hw2a2fR||L°°((O,t);L°°(T2><R3))

1 F(t 2
+ Ve +eV(D) (1 + % + ||w181fR||Loo<<o,t>;Lw<ﬂr2xRS))) :
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In particular, giving explicit constants for (2.75) and (2.77), we obtain
t
E)+D(t) <Cy <5(0) + (Hvzu5||%oo((oj)xp) +1+ \/E(t)) /0 E+rk+VER)D(t)

I S
e (evmem Z ||w36'5f|%m((o,t);Loc(Wng)).),

s<2
F(t) < Co (f(o) +e2+VE) + }'(t)z) :
lwsO° fR oo ((0,¢):L° (T2 xR3)) < Co(||wsaszo||Loo(1r2xR3)
+ F()ws0® frll Lo (0,01 (2 xr3)) + € K72/ E(L)
+5V(5)(1 R OEY ||ws’8S,fRHL°°((0,t);L°°(’]1‘2><]R<3)))2)

1<s'<s
for some constant Cg > 1.

2.6. Proof of Theorem 3. For given any arbitrary positive time T > 0, choose
T, €[0,T] such that

1 1
(2.78) T, = sup {t>0. VED < 55 F(0) < m}

Then, for t € [0,7%],

t
E(0)+D(0) < 200 (0) +2C0 (190 [ airyerey +2) [ €-+2Cun

,% s 2
+2Cpe (ve® Z [wsO® fll 700 ((0,6);1.50 (T2 xR2)) >

s<2

F(t) <2CoF(0) + 2Coe? + 2Co/E(t),

and for 1 <s<2,

lwsO® fRI Lo ((0,¢);15¢ (12 xR3)) < 2Co (Istaszohoo(nrszz) +e kT3

2
+ EV(ﬂ) <1 + 571/2 + Z stla'S/fR||Lco((o7t);Loo(’H‘2 ><]R3))> ) s
1<s'<s
— _1
w10 frll Lo (0,62 (T2 xR2)) < 2C0||w18" froll Lo (T2 xR?) + 4C0e™ K2,
w20 fRll Lo ((0,6): (T2 xR2)) < 2C0||w20? fro || Loo (T2 xR?)

+C(Co) (Jrd Froll m (ra sy + 5 71V(8))

Since /£(0), F(0) < dp = do(e), and [|ws0° frol|Loe (T2 xR3) < 05 = 0s(€) satisfy
(2.61) for s=1,2, we have

lwsO® fR Loo ((0,6); 150 (T2 xR3)) < C(Co) (e th1/2)3,

t
E(t)+ D(t) < C(Co) 5 + 1)+ 200 (190 Fieqoryorn +2) | €
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R
since e (v»°® factor decays faster than any algebraic blowups. By Gronwall’s
lemma, we have

E(t) +D(t) <C(Co) (62 + k)1 +T)
X (200 (vauﬁH%w((O,T)xT?) + 2) exp (200 <vauﬁ||%°°((0,T)><T2) + 2) T)) :

Since d¢ satisfies (2.60), we see that, for sufficiently small e, \/E(T%), F(T) satisfies
(2.78). Therefore, T, =T, and we proved the claim.

3. Approximation of the Lagrangian solutions of the Euler equations.
As discussed in the introduction, we would like to obtain a limit to weak solutions that
do not have enough regularity in the framework of the standard Hilbert expansion in
general. Moreover, we want a convergent sequence in a stronger topology than LP
for velocity because interesting singular behavior can be observed only in a stronger
topology. However, control in a stronger topology requires more regularity for the
velocity field as well. A straightforward remedy for low regularity of the fluid velocity
field is to regularize the initial data; therefore, instead of choosing the initial data
as a perturbation around the local Maxwellian M; .y, 1, We choose the initial data
as a perturbation around the local Maxwellian Ml’wéa)l, where ug is the initial data
regularization of ug with scale 8. Then, if one can prove the stability of the Euler
solution under the perturbation of the initial data, as well as control of the remaining
small terms, we can construct a sequence of Boltzmann solutions whose bulk velocity
converges to the Euler solution.

It turns out that this simple idea works well; in the class of solutions of the Euler
equation we consider, we have a certain stability, so we can prove that the solution
u? starting from ug converges to the solution u from wg. Also, for the estimate of the
remainders, the introduction of the regularization scale § gives an additional freedom
in our analysis; by sacrificing the speed of regularization convergence, we can control
the size of higher derivatives appearing in the remainder equation. In addition, many
weak solutions of fluid equations are interpreted as a limit of smooth solutions. In
that regard, this initial data regularization approach is quite natural.

3.1. Regularization. In our proof of the hydrodynamic limit from the Boltz-
mann equations, it is important to regularize the Largangian solutions of the Euler
equation (1.9). We achieve this by regularizing the initial data using the standard
mollifier. Let ¢ € C2°(R?) be a smooth nonnegative function with [p, ¢(z)dz =1 and
¢(z) =0 for |z — (0,0)| > %. For B € (0,1), we define

(3.1) o4 (x) :z%gp <Z) for xe{;;r

Note that ¢ can be extended periodically so that ¢ € C°°(T?) and Jre P (z)dr =1
as well. Also, ¢ is supported on B (0). Note that {¢?} 4 are approximate identities;
4

thus, for 1 < p < oo and ¥ € LP(T?), we have
(3:2) g%”wﬁ*?ﬁ—ﬂ)ﬂm(?ﬁ):()'
Note that we cannot expect a universal rate of convergence, which is independent of

1 if 9 is merely in LP(T?) or p = co. However, if we have a certain regularity for v,
we have the rate of convergence; for example, if 1 € W2(T?), we have
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1
2 2
1P p — 1| 22y = (/T2 da?)

5 o \?
s/wlw @)l (/Tzw(x y) — ()| dx) dy
< C’/]r2 |y||<P5(y)‘dy||1/1||w1,2(1r2) gCﬂ”y)”le(,}P)

¢t —) = vy

(3.3)

We consider approximation solutions (u?,w?) for the mollified initial data:

(3.4) O’ 4P VWP =0 in [0,T] x T?,
(3.5) u’ = —VEH(=A)"1WP in [0,T] x T2,
(3.6) wPli—o :wg =P % wy in T2

Note that, for each 8 € (0,1) this problem (3.4), (3.5), and (3.6) has a smooth (there-
fore unique) solution, which is the Lagrangian solution:

(3.7) WO (t,z) = wf (XP(0;t,2)),

d

ds

(3.8) XP(sit,2) = uP (s, XP(s:t,2)), XP(sit,0)]oms = .

Remark 3. If u” is obtained from (1.10) with w” € C*°(T), v# is incompressible,
and thus, the associated flow X? by (1.12) satisfies (1.14) with an equality and € =1
(measure-preserving).

We define a pressure as a unique solution of —Ap” = div(div(v® ® u?)) with
fr= 0" =0. Then, we have

(O +u” -V )uP +V,p =0 in [0,T] x T?
(3.9) V. -u?=0 in [0,T] x T?
uP (x,0) = ug(x) in T2.
Also, we will consider the following auxiliary linear equation:
(0 +u? - V)i’ + 07 - VuPf +Vp? —noAu’ =0 in [0,T] x T?,
(3.10) V. -@°=0 in [0,T] x T,
@P(0,x) =p(x) in T2
Here, 19 is given by Lemma 7.

3.2. Biot—Savart law in a periodic domain. In this part, we discuss the
asymptotic form of the kernel for the Biot—Savart law, which gives u from w, and
the singular integral, which gives V,u from w in our setting, the periodic domain
T2 = [—%, %]2 This is important since the compactness results we have used, in
particular [8], have the R setting; in particular, the key estimate, the weak L!
estimate for V,u, relies on the form of the Calderon—Zygmund kernel of a Riesz
transform. Therefore, we need an asymptotic form of Biot—Savart kernels and Riesz
transforms.

We start from [12].
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PROPOSITION 5 ([12], Lemma 1). The function G—defined on R? ~C by

|212—22 2z i
Gz)=Im| ——— — =+ —
(2) =TIm ( 4 212

(1—e(z XH (I—e(ni+2))(1—e(ni—2))|,

(3.11)

1
——1
2 o |(

where e(z) = e*™* —is Z2-periodic and is the Green’s function with mass on Z2; that
18,

(3.12) —A,G(x 2512— ¢) —1 for x € R?, /G

Cez?
In particular, the infinite product inside converges absolutely, and G is of the form

(3.13) c) =L~ Liogjne)
' 4 o B ’
where b is a holomorphic function with simple zeros exactly on Z2.
For the sake of completeness, we briefly reason (3.13). We recall the following
result from complex analysis.

PROPOSITION 6 (Theorem 15.5 of [41]). Suppose that {g,} is a sequence of non-
zero holomorphic functions on C such that

(3.14) Z 11— gn(z

converges uniformly on compact subsets of C. Then, the product

(3.15) 9(2) =[] 9n(2)
n=1

converges uniformly on compact subsets of C, and thus, g is holomorphic on C. Fur-
thermore, the multiplicity of g at zg (i.e., the smallest nonnegative integer k such that
lim,_,,, % #0) is the sum of multiplicities of g at zp.

Now, we see that h(2) is the product of 1—e(z) = 1—2™%% 1—e(ni+z) = 1—e~2mn+2miz,
and 1 —e(ni—z) =1—e~2™272_ Note that |1 — (1 —e(ni+2))| =|1—(1—e(ni—2z))| =
e~2™ g0 that the premise of the proposition is satisfied. Thus, h(z) is holomorphic.
Furthermore, the zeros of h are exactly the union of zeros of 1 — e(z), which are
{mi|m € Z}; zeros of 1 —e(ni+z), which are {m—ni|m € Z}; and zeros of 1 —e(ni—z),
which are {m +ni|m € Z}, for each integer n > 1. The union is exactly Z?. Moreover,
the multiplicity of each point in Z? is 1; in other words, all roots are simple.

Thus, on R? \ Z2, G is infinitely differentiable. Furthermore, let ¢ € Z?. Then,
there exists an v > 0 such that

(3.16) h(z) = (z = )H(2),

where §(2) = 22 is (O andinf.cp, (¢ |9(2)] > cc > 0.
Therefore, we can rewrite (3.13) in the following form and differentiate; for z € B ((),
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G(e) = 5 log= — ¢| + B (2),
1 z2-¢

(3.17) VG(z)=— S P + VB(2),
1 (z=0® (=) — 32— (P L
V2G(2) = o PR 2 + V3B (2),

where z =z + iy is identified with (z,y), V = (9,,0,), and

(315) ()= B~ Liogls(e)

is a smooth function (in x,y) whose all derivatives are bounded. In particular, taking
¢=0=(0,0) and taking v =1y, we have the following.

PROPOSITION 7. Let G be defined by (3.11) so that the solution to the Poisson
equation —A,q="h — f'[r? h is given by q =G *x h and the Biot-Savart law by

L
(3.19) u(m):b*w:(1|P+Vj%> * W

Then, there emsts at >0 such that G,V,G,V2G are smooth and bounded in T? \
B.(0)=[-3 7] \ B:(0), and in B.(0), we have

272

1
G(z)= —2—log|x\ + B(z),x € B:(0),

(3.20) V.G(e) =~ 5o 1 + Vo B(a).2 € B(0).

1 2@z — |z|°l,

2 —_—
VaGlo) =12 EE

+ V29B(2),z € B.(0),

where VEB are bounded in B.(0) for all k> 0.

3.3. Higher regularity of the approximations (uﬁ,wﬁ). In this section, we
establish the regularity estimate of (u”,w?) solving (3.9) and (3.4), (3.5), and (3.6)
and (@”,5%) solving (3.10).

First, we prove that, for 1 <r,p < oo,

_o(i_1

(321) Jf sy 5 872G ez,
—k—2o(i1_-1

(3.22) VRO || L2y S B G r)+||w0HLp.

From Young’s inequality, for 1 +1/r=1/p+1/q and r,p,q € [1, 0],

1
6 12 (22 < 0% zocrey lwollzocrsy < B2 wollo for v > p,
. A 1_1
19468 Lz erey < 19*0 zaesy lwolncrsy < 5757264 oz for 2.

For both, we have used

1/q 1/ )
(Lseinae) " = (Gmmm [LIvoG0% B) =57

HV <PHLq T2)-
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Using |T?| =1, we have

||wg||LT(’J1‘2) < ng”LP(T?) Sllwollzeer2y for p >,

VW | 2 (r2y < IVFwh || oo (r2y S B |woll o erzy for p >

Collecting the bounds, we conclude (3.21) and (3.22).

3.3.1. Bounds for ||Vw'u,ﬁ(t)||L°°(Tz).

THEOREM 4. Let (u”,w?) be the Lagrangian solution of (3.7) supplemented with
(3.8) and (3.5). For p € [1,00] and < |jwo|lLr, we have the following estimate for
allt>0:

(3.23)
1 _2
||Vuﬂ(t, iz S Lip(B,p) = (57% 10g+g) llowo | e etCh ¥ liwollzr for some C > 1.
We will estimate V, X by applying Gronwall’s inequality to the differentiation of
(3.8):
d

ds

(3.24) V. XP(s;t,2) =V, X(s;t,2) - (Vou)(s, X (s;t,2)).

The initial condition for each purely spatial derivative can be driven from (1.12):
(3.25) VX (858, )] 5= = id.

We use the following version of Gronwall’s inequality.

LEMMA 14 ([3], Lemma 3.3). Let ¢ and z be two C° (resp., C') nonnegative
functions on [to,T). Let G be a continuous function on [ty,T]. Suppose that, for
te [to,T},

d
—z
dt
For any time t € [ty, T], we have

(3.26) (t) <G(1)=(t) + q(t).

(3.27) 2(t) < 2(to) exp < tg(ﬂm) + /t :q(T) exp ( /T t g(ﬂ)dﬂ) dr.

to

LEMMA 15. For any r € [1,00] and 0 < s <t,
(3.28) 1V X (538, )| ey < SNV au() | godt”

Proof. The proof is immediate from Gronwall’s inequality to (3.24) and the initial
condition ||[VX?(t;t,2)| r(r2) = || V| r(12) = ||id|| r(r2) = 1 from (3.25).

Next, using Morrey’s inequality
(3.29) WL (T2) c O 7(T?) for r>2,

we estimate the Holder seminorm of w?.

LEMMA 16. For r € (2,00),

(3.30) [Wﬁ(t")]co’lf%(qrz) S5—1—2(%—%)+||w0||Lp(T2)e(lf%)fJ IVou? (¢')]| Lgedt’
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Proof. We note that

PN e = sup [BEO52) —wf (X7 (0t,9))
) 0,1—2 -
(3.31) G e oz —y(1=%)

1—2
< ) gnn- o IV X7 03,187,

where we slightly abused the notation by

(3.32) |z — y| = distr2 (z,y).
Applying Morrey’s inequality (3.29) for [Wg}c“-%mm and applying (3.28) gives the
result. |

The following standard estimate is important in the proof.

LEMMA 17. Let (u?,w?) satisfy (3.5). Then, for any v >0,
(3.33) [Vaullpeo(r2) 1+ |||l L1 (r2) + [|w] oo (12) log ([w] o (12))-

Proof. The result is well known from the potential theory (e.g., [40]), so we just
briefly sketch the proof. Assume that w € L*(T?)NC%7(T?). From (1.10) and (3.19),
for R > d >0, there exists Cy > 0 only depending on the spatial dimension (2 in our
case)

O, ui(x) = / 9jbi(r — y)w(y)dy + / 9jbi(z — y)w(y)dy
+ /| _,bile = )ly) @y + Cabig o)
T—Y|>
for
v V2w —yi) (75 — ) Gy ol
(3.35) 0;b(zr —y):= 27r( oy P +0;B(z —vy).

Here, the index 741 should be understood on a modulus of 2, and §;41 j=1ifi+1=j
mod 2 and ;41,; =0 if ¢ + 1% j mod 2. We bound (3.34) as

4 4
Ganl< [ iy [ )y
lz—y|>R |z —yl? d<|z—y|<R |z —yl?

(3.36) + [W]co,w(TZ)/ !

B

B R
SRV wlpie + I (d) el oe (r2) + d7[w] o (r2) + [|wl Lo (72).

We finalize the proof by choosing R =1 and d = max (1, [w]é/ol (Tz))- 0

Proof of Theorem 4. To prove (3.23), we apply (3.21)],=1,00 and (3.30)|,>2 to
(3.33)] to conclude that

[V (8l wos /ol 2o
S14B77 log, (5717200 gyl IV ()l o)

(3.37) t
_2 1
<148 ﬁ{log+ﬂ+log+||wo||m +/ |VUB<S7')||LocdS}.
0

Applying Gronwall’s inequality gives the result. ]
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3.3.2. Bounds for V(8). We introduce the growth-of-estimate function for
(uP,p?, P, p?), which is a function of B

V(B):= > 0= D(u® ,0u” p° 7% 57) | e,
s1+52<2,De{d:,0}
(3.38) 2
x (1 0% @ ) o ) | 14D 10707 g
7j<2

This is a pointwise bound for all derivatives of (u?,p?,@?,5%) appearing in the
remainder estimates in section 2.5.
We have the following explicit bound for V' (3).

THEOREM 5. Suppose that wo € LP(T?). Then,

V(8) 5 (Ioleces) + TUE 9O +U(5,p)

where U(B) is as defined in (3.39).
Proof. By Sobolev embedding and the formula for p?, p?, 9,u?, and 9,4”, we
have a bound
V(B) S (lu” @’ '
S (P oo 0, 1y; 15 (2)) + 1167 || oo ((0,7); 6 (T2))) -
We invoke the standard energy, commutator estimate, and algebra property of H*(T?),

s> 1:

S 1058 (1) 3
<057 () |22 19,0 - Falul oy S 1920707 o 10°0° (1) 3 gy

2dtH@6 @ (1172 72y
S10%a7 ()] L2 (r2)
x (||ﬂ36vuﬁ'vxﬂﬁ(t)|w(1r2) +110%° (£)]] L2 (r2) 1076 (1) | L2 (v2) + ”88uﬁ(t)”L2(T2))
SN0%u ()| L2 (12) 197 (0) 172 2y + 10507 ()1|72 2 -
Therefore, we have

(3.39)

<e‘|vmu ”LOO((O T)><r2)||u ( )

14?0,y 13 (2)) S | oo (0,1 15 (T2))

S0 520 g = U (,p),
~ B ~
18 | oo 0.5 r2yy S € ot @ T ((ldig | o rz) + Tllull o 0,79; 15 (72))
< (loll o (r2) + TU (B, p))eVE»). o
4. Vorticity convergence of the approximate solutions of Euler.

4.1. Stability of the regular Lagrangian flow when the vorticity is un-
bounded. To study the stability of the regular Lagrangian flow when the vorticities
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do not belong to L™, we adopt the functional used in [2, 15, 8]; for (u”, X#?) solving
(3.8),

B1(g- _ YB2(c-
(4.1) A(s;t) :Aﬁl,ﬁz(s;t) ::/ log <1 I | X7 (s;t,2) - X (s,t,w)|> d,
T2

where we again abused the notation

(4.2) | X P (s5t,2) — XP2(s5t, )| = distpa (X P (53, ), X2 (51, x)),
that is, the geodesic distance between X1 (s;¢,2) and X2 (s;t,x). We note that
(4.3) A1) =0

due to the last condition in both (1.12) and (3.8). From (1.12) and (3.8), a direct
computation yields that

| XF1(s) — XP2(s)|

[uPt (s, XP1(s)) — uP2(s, XP2(s)|
S/W TP (5 =X (s

[ (5, X7 (5)) — u” (5, X7 (s)
(4.4) S/Tz A+ | XPr(s) — XP2(s)] o

| (5, X% (s)) — uP? (s, X7 (s))|
(4.5) +/Tz A+ | XP1(s) — XPa(s)] o

PROPOSITION 8 ([15, 8]). Let (u”,wP) satisfy (3.6), (3.5), and (3.7), and let X"
be the regular Lagrangian flow of (3.8) fori=1,2. Suppose that Huﬂl—u&”Ll«O)T);Ll T2))
< 1. Then,

||)(ﬁ1 (8; t, ) — )(ﬁ2 (8; t, ')HLI(T2)
(4.6) < 1HIVeP i orycr )

~ Nog [[ufr — uP2 || L1 (o,m):01 (12y) |

for p>1.

For p=1, for every § >0, there exists Cs >0 such that, for every ~v >0,

L2{xeT?: | XP1(s;t,x) — XP2(s5t,2)| > 7))

4C
(4.7) - e [’ — || oy )
— 4Cs ¥ *
5
holds.

For the convenience of the reader, we provide a sketch of the argument. The argument
follows the line of [15] for p > 1 and that of [8] for p=1.

Proof. For (4.5), using (1.14), we have
(4.5)§% [ufr (s, XP2(s;t,2)) —uP2(s, XP2(s;t, ) |da

(4.8) T2
¢ B1 B2
< <lu”(s,) —u”(s,) |l Lr(rey
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with the common compressibility bound € = 1. In the rest of the proof, we estimate
(4.4).
Step 1. The case of p> 1. Recall that the maximal function of w is given by

1
49 Mut)=swf = e [ )l

We have the following (e.g., [34], section 2):

(4.10) u(z) = u(y)| S o =y {(MVu)(x) + (MVu)(y)}  ae. z,y€T?
(4.11) |Mw||Le(r2y Sl|wllpeer2y  for pe(1,00].
Now, we bound (4.4) for p > 1, using (4.10) and (4.11), as

WPr(s. XP (st .z uWPr(s. XP2(s:t. T
(4.12) (Ad) < | AMVu™ (5, X7 (58, 2)) + MV (s, X2(538, 2)) }d

5 HVuﬁl ||L:D(T2) for peE (1, OO]
Using the above (4.12) and (4.8), together with (4.3), we derive that

Als;t) S IV [ Lio,myr(r2)
(4.13) L4 P
+ XHU b—u ZHLI((O,T);LI(TQ)) for all (s,t)€[0,t] x [0,T].

On the other hand, for any (s,t) € [0,¢] x [0,T],

| X1 (s5t,2) —Xﬁz(s;t,x)|)

7y
(414) 1|X51 (s5t,2)—X P2 (s5t,2)| > lOg (1 + A > log (]— + X) .

Then, (4.14) with v = v/}, together with the definition (4.1), implies that

(4.15) L {xeT?:|XP (s;t,0) — X2 (s;t,2)| > VA}) < A(s;t).

" o fl

Therefore, by applying (4.13) to (4.15), together with .Z?(T?) =1 and |z —y| < V2
for =,y € T2, we establish the stability:

HXBl(s t,-)— XB"‘( t, )|l (r2y / \X’Bl (s;t,x) — X’BQ(S t,x)|dzx

)
/IXﬁl(S;ty) XP2(sit, ) |[<VA |51 (58, )= X P2 (s5t,-) | > VA

s
<VA+ = A(s;t)
[log VA
f+| f\{”vu lzr(0.7): Lzﬂ(ﬂrz))ﬂL*H“ﬁl—“62||L1 0T>L1<T2))}
Choosing
(4.16) A=l = w2 o,y o)),
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we have that
X5 (s5t,) = XP2(s5t, ) || 1 2y
(4.17) Ve [ o,m)izr(r2))

< ||,B1 _ B2 )
Sl = Tog [P — w2 [ oyt o)

1/2
L((0,1);01(12)) T

For [[u®t — uP2|| 110,711 (12)) < 1, We prove (4.6).

Step 2. The case of p = 1. Note that p = 1 fails (4.11), but ||Mul|lp1,0c(12) S
lul| 1 (12) only holds instead of (4.11). Here, we recall the quasi-norm of the Lorentz
space LP4:

|l e (T2 m) =pYYNL?({z e T? : |u(z)| > )\})l/p”Lq(RJm%)?

4.18
(4.18) [0 2y = Nl g2,y = SUDIN 2% ({2 € T2 ()] > AN}

For p=1, there exists a map M, defined as in Definition 3.1 of [8] with choice of
functions in Proposition 4.2 of [8], such that (Theorem 3.3 of [8])
(4.19)
M :we MV (VH(A)"'w) >0 is bounded in L3(T?)— L?(T?) and L'(T?) — L%>°(T?).

Note that, if (u,w) satisfy (1.10) in the sense of distributions, then MV (Bxw) = MVu.
The argument follows the line of [8], with translation to the periodic domain by
Proposition 7.

_ PROPOSITION 9. There exists an operator w — U(w), which will be denoted by
MVu, defined either on L*(T?) or L?(T?), satisfying
U(w)(x) >0,
1U (W)l 1o (r2) S |22 22y,
1U (W)l 2(r2)y S llwllL2(r2)-

Also, if w € LY(T?) and u= B *w, then there is a Lebesgue measure 0 set N such that

lu(z) —u(y)| < |z —y|(U(z) + U(y)),z,y € T*\ N

Proof. We first identify x € T? with x € [7%’ %]2 C R2, denote K(y) := VzG(y)
X[_%ér(y),y € R?, and define

1 yoy— 5yl
Ko(y)= ——3%——

2
dm ly[* e

Also, we regard w and u as a Z2-periodic function in R?: w(z+m) =w(z), u(z+m) =
u(z) for m € Z*. Now, for z € [-3, %]2 C R?, [ K(y)w(x — y)dy is well defined
because it is exactly (V2@ #p2 w)(z —m) for some m € Z* so that z —m € [—1,1] 2
Then, we see that D(z), defined by

D(z):= . K(y)w(z —y) — Ko(y)w(® = Y)XB1oo(0) (T — y)dy

= /RQ(K(y)x[,

] agd D(z) :=0 for z ¢ |
2] (Ky)x

}2 () = Ko(Y)XBioo () (¥))w(z — y)dy

1
’2

Nl

g], is bounded. First, since B,(0) C

for x € [—%,g —%,
: ]2(y) — Ko(Y)XByoo(x) (%)) is thus bounded for y €

BIOO (QIJ) n [—

11
272
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B.(0). For y ¢ B.(0), (K(y) X[ ;] 2(y) = Ko(Y)X Byoo(x) (%)) is bounded as well. Fi-
nally, (K(y)x[ ]2(y) Ko(Y)XByoo(2)(¥)) is supported on Bigo(z); thus, we have

l\D\»—A

1
’2

ID@IS [ Xmunto el ~ 1y $ Cllluscr.

N

Furthermore, this implies that |D| < C||W||L1(11‘2)X[_ ]2 50 in fact, D € L' as well.

5 5
22
Therefore, we have

(4.20) Vou(@) = D(x) + Ko #g2 (@X5,00(0) (), 7 € [—; ;}

Next, we closely follow the argument of Proposition 4.2 of [8]. Let h be a smooth,
nonnegative function supported on B - (0) with fW y)dy = 1. Also, we denote

hr(z) = 5h (%) for z € R? and r > 0. Finally, for £ € S* and j=1,2 we define

T8I (w):=h (g — w) wj,

and T is similarly defined for » > 0. Now, let x,y € T? = [—%, %]2 Then, there

exists y € [ bR 2] § — y € Z? such that the projection of the line segment of 7 and x
in R? is the geodesic connecting z,y in T2. Then, we have

u(x) —u(y) = u(z) — u(y)

/ Flos <z—>( (@) — u( dz+/ Flos (z—) (u(2) — u(y))dz.

We focus on the first term; the other gives a similar contribution. Following the
argument of Proposition 4.2 of [8], we have

[ e (5= 250 tute)- <w—mmz//f$ﬂ ) (o —w)dwds.

z—§ -

ERrIY Ty f i
Note that T *-" is supported on B, g (m) and |z — g| < %2, so, if w €

B 1oyl Qﬁi%l lw| < 2, and thus, z —w € [—%,g] , which implies that (4.20)

is satisfied at © — w. (Slmllar consideration shows that at § — w, (4.20) is satisfied.)

Therefore,
1 iy
(‘S;;ygl *R2 D) (z)

‘/]R? Fla—si (Z = ; z}) (u(x) —u(z))dz

1 e—y
Toe—vy7J
<Is|ng *r2 (Ko *r2 WXBloo)> (x)

ds

<l|lz—7

+|x7~ ds

2
Z Mizejigesty(D)(x) + Mzeijeesty (Ko *r2 WXB1oy) (2)) 5

where

M{gs,”gesl}(g)(m) = sup sup ‘ (Tf,’j *R2 g) (:c)| ,xeR2.
{%¢.d|€esSt} r>0
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By Theorem 3.3 of [8], we have
[ Mze.sieesty (Ko *r2 WX Bigo) |l Lo ®2) < CllwX Bioo |l (m2) < Cllwl| L1 (72)-
Also, by Young’s inequality, we have
[ Mgesieesty (D)l L1 r2) < | Mygesjeesty (D) Lo 2y < Cl| Dl poor2) < Cllwl| L1 (r2)-

Finally, for x € T? identified with [_71, %]2, we define

Ulz):= > > (Myzesjeesy (D)(E) + Myze. eesy (Ko *r2 WX By ) (£)) -
i€[-3,3)w—zez2 I=1
Then, obviously, for z,y € T?,

u(z) —u(y)| < dr=(z,y)(U(z) + Ul(y)),

and if U(x) > A, then, for Z1,...,%9 € [—%, %}2 such that &; — x € Z?, at least one of
Z; satisfies

2
~ N A
Z M{gg JlEeSt) D)(xz) +M{§§,]“E€S1}(KO *R2 WXBmo)(mi)) > 5;
j=1
therefore,
1177
117°

- U Y€ |55 + m|Mge.ijgesry (D)(y)

m=(a,b),a,be{—-1,0,1}

©| >

+ M{fE,j‘ggsl}(KO *R2 WXBloo)(y) >

}

C {y € R*|M{seijeesy (D)(y) + Mizeseesty (Ko *r2 WX By (Y) >

| >

Therefore, we see that
Ul Lr.o (12) < Cllwl|£2(72) -
Also, if w € L?(T?), we see that

U2 (r2) < C(|[Myze.3jeesty (Ko *r2 WXByoo) |22 (R2) + [[Mig6.4)ees} (D) L2 (r2)
< CO(lwxBigollz2(r2) + |1 D] L2(R2) < Cllw|| L2 (T2)

by, again, Theorem 3.3 of [8] and Young’s inequality.
We return to the proof of (4.7). We have (Proposition 4.2 in [8])

(4.21) Ju(x) — u(y)| < |z — y[{MVu(z) + MVu(y)} a.e. z,yecT2
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Now, we check that {w”} of (3.7) with (3.6) is equi-integrable (in the sense of
(4.25)). Fix any € > 0. We choose § > 0 such that

(4.22) if Z2(E') <6, then [, Jwo(z)|dz < 5.
From (3.6) and (1.14), for any Borel set E C T? with #?(E) <4/¢,
o (£, 2) | 1 1y = llwg (XP (038, @)l 11 (o )

SC/ Wl (2)|dz
(4.23) Xf’(t;O,x)eEl (@)

<e [ ([ txaomesints - it ) o w)a

where wy is regarded as a Z2-periodic function. For y € R?, we define

E,:={#eR?*: X% ;0,3 +y) € E+72Z°}/2* C T2
From (1.14) and the fact that x+— x — y is measure-preserving for fixed y, we have
(4.24) L7 e By})=L*{xeT?: XP(;0,2) € B}) < €L*(F) < 6.
Therefore, applying (4.24) to (4.22), we have that, from (4.23),
(4.25)
it 22(B) <0/€, then 101, )xs) < I usan sup € | l@a<e.

€L,
Since w? is equi-integrable, for every & > 0, there exists Cs > 0 and a Borel set As C T?
such that w? = w? 4+ W) such that |w?| ;1 < 6 and supp(wh) C As, [|wh]L2 < Cs
(Lemma 5.8 of [8], whose proof can be established by noting that equi-integrability
with supg [|w?|| L1 < 00 is equivalent to limg o0 supg f{lwﬁ\>K 2 [wP|dz = 0). Now,
apply (4.21) to (4.4), and use the decomposition of u? = uf +u with u’f =Vi(-A)!
wiﬁ to derive that

(4.4)§/ U{\(s;t,x)dx—i—/ Us(s;t,x)dx,
T2 T2

B Pi(s; 81 B2 (q-
. u; (s, XP1(s5t, ut (s, XP2(s;t,x

MVufl(s,Xﬂl(s;t,x))—|—MVU?1(5,X’82(3;t,x))} >0.

For U3\, we use (1.14) and (4.19) and simply derive that

2 uﬂl S 2(T2
@2 st < emin{”“j””), e ||Lz} <ecs.
For U}, using (4.19),

U (83, )| e < min

{ [FHOIPES
A

a||w1|L1(1r2)} <lwr |1 (rey <0,

B ) B 5
UG5t e S N0 s ) sm{w lwlllmz>} R

for some p € (1,2), using fractional integration.
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Using the interpolation ||g|| .1 (12) S ||g||L1,oo{1+log(H’;H%)} (Lemma 2.2 of [8]),
we end up with

UL(8, )| oo
(428) U5t )s S U5, g d 1+ 1og, (MEaC v Y U100,
101G

where we have used that the map z — z(14log, (K/z)) is nondecreasing for z € [0,00).
Together with (4.8), (4.27), and (4.28), we conclude that

t t
Alsit) < / A(rst)|dr < / ((4.4) + (4.5)}ds
St 0 p
< [ {03t 10358+ 529 = 0 s s
0
¢
< COST + {1+ [log A[}T" + XHUﬂl —uP2|| L1 (0,111 (12)) -

From this inequality and (4.14) and (4.3), we derive that

L2z e T |XP (sit, ) — XP2(s;t,2)| > 7))
(4.29) < A(s;t) < ||u51 —u52||L1L1 Cs

< S +46
log (1+ %) Aog(1+73)] [log(1+ )

for A, € (0,1/e). Here, for the last term, we have used that, for 0 < A < 1/e and
0<vy<1le,

5] log Al [log \| [log A| |log Al
[log(1+ %) —logA+log(A+7)  [logA| —[log(A+7)| = "[log Al
Choose
(4.30) A== (e 5 —1)7 1.
Note that log(1 + x2=) =log(e 5 ) = 4S5, Then, (4.20) yields (4.7). 0

4.2. Convergence of the velocity field u?.
LEMMA 18. Let T'> 0. Assume that (3.5) holds and that

sgp Hwﬂ||Leo((07T);Ll('ﬂ‘2)) < 00, sgp ||UB||Loo((0,T);L2(’]1'2)) < 00.

Then, there exists a subsequence {8’} C {8} such that u® is Cauchy in L'((0,T);
LY(T?)).

Proof. The proof is due to the elliptic regularity; the Frechet—-Kolmogorov theo-
rem, which states that W*P?(T?)— < L(T?) for s >0 and 1 < g < p < oo; and the
Aubin—Lions lemma, which states that, for reflexive Banach spaces X,Y, Z such that
Yo X2,

(4.31) W ((0,7); Z) N L*((0,T); Y)— < L'((0,T); X) for r > 1.

Note that, from L(T?) — H*(T?), for any s < —1,

w? e (0, T]; H*(T?)) uniformly-in-g for any s < —1.
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On the other hand, we have —Ap? = div(div(u® ® u?)) with f., p” =0. Since v* €
L>((0,7T); L?) uniformly-in-3, v® @ u® € L>((0,T); L*(T?)) uniformly-in-3. Using
LY(T?) — H*(T?) for s < —1, an elliptic regularity says that L>((0,T); H*~1(T?)) >
div(u® ® u?) — Vp? € L>°((0,T); H*~'(T?)) uniformly-in-3. Therefore, from dyu” =
—div(u® ® u?) — VpP, we derive that 9;u? € L>=((0,T); H*~') uniformly-in-3 for any
s < —1. Therefore, we conclude that

(4.32) u? e Wh((0,T); H=>/?(T?)) uniformly-in-3.

Next, we note that L'(T?2) < W~1-3(T2). This is a consequence of an embedding
W13(T2) — L®(T?) (note 3 > 2) and the duality argument L'(T?) < (L°(T2))* —
(W33(T2))* = W12 (T2). Therefore, we derive that w? € L°((0,T); W12 (T?2)).
Now, applying the elliptic regularity theory to (3.5), we derive that

(4.33) u? € L®((0,T); W2 (T?)) uniformly-in-3.

Now, we set Y = Wi3(T?), X = L'(T?),Z = H 3(T?). Using the Frechet
Kolmogorov theorem, we have Y = W3 (T2)— < X = L}(T?) — Z = H~3(T?).
Finally, we prove Lemma 18 using the Aubin-Lions lemma (4.31). |

4.3. Rate of convergence of u®: Localized Yudovich solutions. We use
the following version of the theorem, presented in [16]. The theorem in [16] provides
the modulus of continuity for v that we will use and explicitly states that the unique
solution is regular Lagrangian.

We begin with introducing the localized Yudovich class of vorticity. Intuitively,
the localized Yudovich class consists of vorticities with moderate growth of L? norm
as p — oo. The existence and uniqueness results of the Yudovich class of vorticity
extend to the localized Yudovich class. We refer to [16] and references therein for
further details.

HWHY@ T2) = Sup M
w(T2) > @(p)

Sp<oo

In this paper, we focus on the growth function with the following condition, which
gives quantitative bounds on the behavior of velocity field u; it would be interesting to
see if one can generalize the presented results to arbitrary admissible growth functions.
We assume that © : R>¢g — R>q satisfies the following: There exists m € Z~( such
that

(4.34) O(p) =[] logy
k=1
for large p > 1, where log,, p is defined inductively by log; p =logp and

log;. 1 p =loglog;, p.

Also, we adopt the convention that log,p =1. We remark that we are only interested
in the behavior of © for large p. Also, we denote the inverse function of log,,(p)
(defined for large p) by e,,. Finally, we note that

> 1
L
/emu) pO(p)

which turns out to be important in the uniqueness of the solution.
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THEOREM 6 ([16]). If wy € Y. (T?), for every T >0, there exists a unique weak
solution w € L>([0,T); Y. (T?)) with u € L> ([0, T]; C,?’“p@ (T?,R?)), which is a regular

» +ul

Lagrangian. Here, the function space C’g’@@ (T?,R?) is defined by

0,90 (T2 R2) = { o % (T2 R2)| su [v(z) —v(y)|
Cb (T’R)_{ €L <T ,R )|m¢5@@(d(may))<oo}’

where d(z,vy) is the geodesic distance on the torus T? =T? and pe is defined by

0,7=0,
vo(r)=< r(1—logr)O(1—logr),r € (0,e=2),
e 230(3),r >e 2.
Also, [|wl| Lo (0,739 (12)) and Hu||cg,¢@ (T2 R2) depend only on ||wol|ye(r2y and T The
dependence is nondecreasing in both ||wollye(r2y and T'.
In this subsection, we prove the following proposition.

PROPOSITION 10. Let wo € Y.§(T?). There exist constants M, depending only
on m and supco 7 |u(t)||L= (and therefore, [lwollrs) (and dimension d = 2), and
C (C =2e works), which is universal, such that

(4.35)

sup [|u® () —u(t)]|72(p2) <
0<t<T

M

e
M
Em <10gm (52|wo|im2> )>

Note that limg_, o+ Rate(wo; 5) = 0.

=: Rate(wo; 8).

~CllwolyoT
ul

In particular, the case m = 0 corresponds to the Yudovich class with Rate(8) =
ﬁQe*CIIwollyuel)T

Proof. We follow the proof of [45]. By letting v = u” — u, we have
Gtv—&—uﬁ-vggv—wku—i—vw(pﬁ —p)=0.

Noting that v is incompressible and taking the L? norm of v, we obtain

d 2
TdtHU”m(T?) < /’JI‘2 v-Vyu-vde

or
t
Io6) s < loOezen +2 [ [ [Vl
Next, we note that, by Sobolev embedding,

[0 o0 r2y < 2([|ul|F oo (p2y + ||UB||2L<><>(T2)) <20 |woll7s(p2y.

while energy conservation gives

o) 1722y < 2([[w” (017 2p2y + 1w |72 (72)) < 4lluol|72 (2
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Therefore, there exists a constant M, explicitly given by

M:=1 +4HU0H%2(T2)6m(1) + 2CHWO||%37

satisfying

> e (), [0 2y < M.
Ol L)

Then, by the definition of Yu? and the Calderon—Zygmund inequality
IVeullpe 2y < CpllwllLr (r2)
for p € (1,00), we have

IV aullio (r2) < llwollyepO ) = wollye d(p),

where we have used the conservation of ||w|| e 2y for every 1 <p < oco. We first treat
‘;lhe case of m > 1. By Holder’s inequality, for each € € (0, em_ll(l)) (em < <1), we
ave

L Vel e < ol [ 102019, ulda

< M° </Tz |v|2d93) < )
<M (olfa) ||wo|yo¢><1>

M © 1
2
= ||wi v —_— - .
[ OHYLﬁ)H ||L2(1r2) <||”||2L2(1r2)> ¢(6>

Now, choose

N 1
€ T —
OB o125 r2)
Then, since 24— > e, (1), log(r—r~d——) > log(em(1)) = em_1(1) so that
O o122 o2,

e* € (0, m) There, we have

*

Mo\ /1
M M
M
=0 ((t>n<>> |

For m =0 (the Yudovich case), e —(

1 ) ,

log ( o2

27)5(15(%)7(271)6% attains its minimum
25 o) 122 02,

at € = so we choose M such that €* < 1.

L2(T2)
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Therefore, we have

2 ) 9 M
/T V,ullol2de < ellwollys [0222)© | —o— |

||U||2L2(T2)

To sum up, we have

t
[o(Ol|72(r2y < l[voll 2272 +/0 2€||w0||11§?‘I’(||U(S)H%2(T2))d5a

where

Then, by Osgood’s lemma, we have
~M([lo@®)IZ2(r2)) + M(l[vollZ2(r2)) < 2el|wollyet,
where

M(z) = / ) \pd(:) = / THZL_l(liggk (%)

/f dz /logm(ﬁ’) dy | (M) | (M>
=) —= —= =10gi1 | — ) =108 | — )
Moz [T5= logy (2) log,, (&) Y A\ z \a

where a = 2Hu0||%2(T2) and we have used the substitution z =2 for the third identity
and y =log,, (z) with

dv_ 1
dz 2[T32 logy(2)

for the fourth identity. In particular, we have

) M
e [
L\ o) 72 o)

M M —Ct||w
>10g, 1 | 35— | ~ Cllwollyot =1log [ log,, | —mp— | e 1“2 )|
[[vol 12(T2) " ||7’0HL2(T2)

and taking e,,+1 and reciprocal gives the desired conclusion. Certainly, Rate(3) is a
continuous function of 8, and it converges to 0 as 8 — 0 as M(0) = occ. 0

4.4. Convergence of wP.

PROPOSITION 11. For any fized p € [1,00], suppose that wy € LP(T?). Recall the
reqularization of the initial data wg in (3.6). Let (u®,w?) and (u,w) be Lagrangian
solutions of (3.4) and (3.5) and (1.9) and (1.10), respectively. For any T >0 and the

subsequence {8’} C {B} in Lemma 18, we have

(4.36) sup ||w5/(t7')7W(t,')HLF(']I‘2)*>O as 3 — oo.
t€[0,T]
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Proof. For the subsequence {8’} C {f} in Lemma 18,

jw(t,z) —w” (t,2)|
= |wo (X (051, 2)) — wy (X7 (0;,))|

(4.37)  <|wo(X(03t,2)) — wh(X (058, 2))| + [w§ (X7 (05, 3)) —wf) (X7(03t,2))|

(4.38)  +|wb(X(03t,2)) —wf(X7 (0;t,2))].

Using the compressibility (1.14), we derive that, for p € [1, o0],
(4.39) 1(4.37)|| » < 2€]Jwp — w| Lo
For the last term, we need a stability of the Lagrangian flows:
1(4.38) 1 (r2) < Ve o< X (058,) = X2 (03, ) 1 2
(4.40) <||V%0g||L°°||WOHL1||X(O't )= X703, )| Lo (o2
< ESHVS@HLW (12)llwoll 1 [| X (052, -) — Xﬁ/(o;t7')||Lp(1r2)7

where we have used (3.22).
For p > 1, we use (4.6) in Proposition 8 and Lemma 18 to have

1 1+ Ve || 1 o,m)L0 (12))
~ 63 |log||u—u5 HLI ((0,T); Ll(’]I‘2))|

(4.41) (4.40) <

Now, we choose
(4.42) 0=0(B") ~ log|lu—u” || L1 ((o,ry;L1 (2| 7T for each B’
such that
={(8")10 as 5’10,
23| log |ju — Uﬁ/HLl((O’T);Ll(TZ))‘ — o0 as 3 ]0.

Therefore, for p > 1, we prove (4.41) — 0 as 8’ | 0. Combining this with (4.39), we
conclude (4.36) for p > 1.
For p =1, there exists C; > 0 for any € > 0 such that

L2z eT?: | X (s;t,2) — XP2(s3t,2)| > 7))
4C5
(443) < Huﬂl _uﬁZHLl((O,T);Ll(TZ)) n

= T4C.
- v

e for any ~v>0.

For p=1, using (4.7), we have
||X(07t7 ) - XB/(Ovta )||L1(T2)

< / 1X(0:,2) — X7 (03¢, 2)|da
[ X (05t,) =X B"(03¢,-)|[<v

+/ X (0;t,2) — X7 (0;¢,2)|dz
|X(0t Y= XB(05t,) | >

S 1y — b
<y G I Lonpe

€
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and hence,

4C /
1 = lw—u? .
(444) (440) S = {’}/ e ||U u HLl((O,T),Ll(TD)) n 5} .

120 RAEA 5

g

ac.
For each € > 0, we choose v = ¢, £ = £10, and ' >>. 1 such that Gt ||lu —
= e10

u?’ |1 ((0,7);L1 (r2)) — 0. Combining with (4.39), we conclude (4.36) for p = 1. d

4.4.1. When wq has no regularity. If wy € Y.§(T?) and no additional reg-
ularity is assumed, one cannot expect a convergence rate that is uniform over wy;
the rate crucially depends on how fast wg converges to wg. Suppose that w(t) is the
Lagrangian solution with initial data wg. Then, we have

jw(t,x) = W (t,2)| = |wo (X (0:t,2)) — wg (X (051, 2))|
< Jowo (X (058, 2)) = wi(X (0st,2))| + lwg (X7 (058, 7)) — wg (X7 (03 ,2))|
+|wp (X (01, 2)) —wi (X7 (058,2)],

where wf is the initial data regularization of wg with parameter £. Therefore, by the
compression property, we have

lw(t) = w? (#)lLr (r2) < Ellwo — wll e (r2) + [l — wh v (72)
+ 1w (X (0, ;) —wio(XP(08,) |l Lo (2.

Using (4.40), we can estimate the first two terms:

€llwo = whll v (z2) + (lw — w6 Lo r2) < (€ + Dlwo —wil v 22y + lf — woll v (r2)-
The last term is estimated by (4.40) and (4.41):

C(l + pHW0||Lp(T2)t)
3]Tog Rate(wo: B)]

lw§ (X (0,8)) = wi(XP(03,)) | o r2) <

Choosing ¢ = |log Rate(3)|~ % gives that, for t € [0, 7],

1
log Rate(wo;3)|~ 1
(o) loE Rate(eoif)|

llw(t) — Wﬂ(t)”LF(TZ) < ||Wg —wol|Lr (r2) + [lwo — Il e (T2)

(4.45) L+ pllwoll o ) T
|log Rate(wo; B)|1
=: Rate,, (wg; ).

Since there is no explicit rate for the convergence of [|wf — wol| Le(T2), the first two
terms dominate the rate of convergence in general.

4.4.2. When wg has some regularity. An important class of localized Yu-
dovich vorticity functions belong to the Besov space of positive regularity index; for
example, f(z) = log(log|z|)¢(z) € Y,§ with O(p) = logp, where p(z) is a smooth
cutoff function, belongs to W (T?), where r <2 and thus in Besov space Bj ., with
s < 1. Of course, vortex 12)%2}(153) xp with box-counting dimension of the boundary

dp(0D) < 2 belong to Bpoo” for 1 < p < oo [14], and thus, the vortex patch
with a mild singularity in the interior of D also belongs to a certain Besov space with
positive regularity.
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In this subsection, we provide the rate of convergence of vorticity when wy €
Y (T?) N Bj ,,(T?) or wo € L>(T?) N B3, (T?). Unlike the Yudovich wy € L*°(T?)
case, if wy is in the localized Yudovich class Y9 (T?), even if initial vorticity has
additional Besov regularity—that is, wo € Y, (T?) N BQ,DO(’]I‘Q) for some s > 0—the
Besov regularity of vorticity w(t) may not propagate, even in the losing manner. The
key obstruction is failure of generalization of propagation of regularity result. We will
explain this after proving the result, following the argument of [13], [3], and [44].

PROPOSITION 12. If wy € Y.§(T?) N Bs (T?) for some s> 0, then we have

[|wo *WgHL?(m)

’

s’ 1 3+4s
4.46 T, 77
(4.46) C(T, llwollL2(12), lwoll B, x2)) | BT+ +<logRate(wo;6)l)

= Ratew,s,loc—Y(ﬁ)
Jor any 5" € (0,s). Moreover, if wy € L>(T?) N B, (T?),
(4.47)
l? (t) = w(t)ll2(r2) < C(s,

In particular, if wg is Yudovich with some Besov reqularity, the vorticity converges
with an algebraic rate <.

—Cllwoll poo (p2))T
50(3)6 = Ratew,s,y<5)'

B3 oo('11‘2))

Proof. First, we prove the rate for wg € Y, (T?)N Bj . (T?). We rely on the above
rate:

C(1+ T||wollL2(T2))
leo(t) = ” Ollar) < Clllon =l crs) + o = lacen) + o i

Since wo € B3, (T?), we may use the following interpolation:

lwo — g ll 2 72y
/ ﬁ;/

‘ 1“1('[[‘2) ”WO ” HS (T2) = < ”wO - w([)g”Hfl(TZ) HWO Wo |

< flwo — w | ('J1‘2)

for arbitrary s’ € (0, s), where we have used that H® = BS , and Bj ,(T?) C B;:q,(’H‘Q)
for s’ < s and arbitrary ¢,q’. (The proof for the whole space, which is standard, can
be easily translated to periodic domain T2.) Since

llwo — w [lzr-1(72) < lluo — ug || £2cr2y < CBllwoll 22,

we have

¥
woll sy w0 557 5oy

lwo — wh || 22y < CBTH

and similarly,

/

S, = o
llwo — whllL2(r2) < CETH7 ||WOHII;E’£F2 llowol| g5 ol oo (T2)"

Finally, we match ¢ and § to find a rate of convergence; we match ¢ so that

1 s’
— T+,
03]1log Rate(B)|
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Then, we have

’

e 1 1 ey
O = Bllog Rate(3)] (IlogRate(ﬁN) -0

as # — 0. To summarize, we have

s/ 1 3+S:Ls/
— WP < (T . ey S
oo = wollzer) < CT lwoll 2, llwoll s ) | BT +(|1ogRate(B)|) ’

as desired. Note that, in the Yudovich class, Rate(8) = 3¢, and thus, this rate is
dominated by m, which is much slower than algebraic rate 8<.

Next, we prove the improved rate for the Yudovich initial data wy € L>(T?).
First, we calculate the rate of distance d(X?(0;¢,x), X?(0;t,y)) with respect to d(z,y),
which is uniform in 8. For the later purpose, we calculate the rate for localized
Yudovich class as well; m = 0 corresponds to wy € L>(T?).

If wy € Y, (T?) N B, o (T?), then so is wy € Y,§(T?) N B, (T?) with

ol
0

Slép(ngfo?(Tz) + |lw, B;oo(irz)) < (Hw0||x§?(1r2) + [lwol B;,x(qrz))-
We first estimate the modulus of continuity for v® with wy € Yuc?(’]l‘z), given by The-

orem 6.

0,7=0,
ve(r) << r(1—logr) Hz;l log, (1 —logr),0<r < ﬁ,
C(O®),r> 1,

where C'(©) is a constant depending on O.
We have

d d
—XP(s;t,x) — d—Xﬁ(s;t,y) ds
s

t
\Xﬁm;t,x)fxf’(o;t,yns|:c—y|+/
0 dS

t
—le—yl+ / u(XP (5:,2), 8) — u(XP(s:1,9), 5)|ds
0

t
<oyl + | pollX?(sitiz) - XP(sit,y)])Bds.
0
Here, by Theorem 6, C' is uniform in 8. Then, by Osgood’s lemma, we have

~M(|XP(05t,2), X7 (0st,y)]) + M(|lz — y|) < Bt,

where
fexP(em(ll)—l) 1 dr
1 dr T . g(l—logr) HZL:110gk1(1—10g7')
T
M@= [T = e <ol
L

fz Wga”) , T 2> eXp(eem(ll)fl )

and B is an upper bound for ||| Los y- For future purposes, we take

.0%%e (72 p2
M=o micpe e r b
B so that BT > e,,(1). Thus, if 2 > exp(—fy—), M(z) < Cp for some positive

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/03/25 to 173.239.64.5 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

HYDRODYNAMIC LIMIT TO SINGULAR 2D EULER EQUATIONS 3195

constant Cy. If x < exp(e%(%), then

exp(m) 1 . | ) 1
/m r(1—logr) [I,—, log, (1 —logr) 7 =108,,41(1 —logz)

using the substitution y =log,, (1 —logr), and thus,

M(x) € [logm+1(1 - IOgJ?), 10gm+1(1 - IOgJ?) + 00]

for a (possibly larger) positive constant Cy. Therefore, if |z — y| is sufficiently small
such that log,, (1 —log|z —y|) — BT > Cy, then, since

M(XP(0;t,2) — XP(0t,y)]) = M(|lz —y|) — Bt >log,, (1 —log |z — y|) — BT,

|X5(0;t,2) — XP(0;t,y)| < exp(zn—), and therefore, we have

10gm+1(1 - lOg(|Xﬁ(O,t,Ji) - Xﬁ(oatay)D) 2 logm+1(1 - IOg |J) - y|) - BT — CO?

which gives

1—1og(|X?(0;t,2) — XP(0;£,9)[) > emt1(10g 41 (1 — log|z — y|) — BT — Cy)

or

1X8(0;,2) — X°(03t,)] < eexp (— (emﬂ (1ogm+2 (M> BT %))) |

which is uniform in S.

From now on, we assume m = 0. We closely follow the proof of [13] (and [3]). We
rewrite the above as

| | o~ (BT+Cp)
X0t - X0t <o (22) = (1) — g™,

where a(T') = exp(—(BT + Cj)), which is deteriorating in time, and C(T") = exp(1 —
e~(BT+C0)) which increases in time.

Next, we introduce the space Fy (T?), which belongs to the family of Triebel-
Lizorkin spaces Fy = F , for p > 1:

F3(T?)={f € L*(T?)| there exists g € L(T?) such that, for every z,y € T?,
(4.48) [f(z) = f(y)]
|z —yl°

and its seminorm [-]p; is defined by

<g(z)+9)},

[flrs = geggfw){llgl\mm)Hf(l’) —FWI < (|2 —y1)*(9(x) + g(y)) for every z,y € T*}.
The norm on Fy(T?) is naturally defined by | - [|z» (r2) + [-] ;-

Now, we argue that a solution in the Yudovich class propagates Besov regularity.
First, we use the following embeddings: For s3 > so > s1, we have continuous embed-
dings (the proof for the whole space, which is standard, can be easily translated to
the periodic domain T?).

(4.49) B2 (T?) C B3 (T?) c W**(T?) C F;H(T?) C By, (T?).
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Therefore, since wo € Bj . (T?) for some s >0, we have wg € F3* for some s; € (0, s),
and thus, so are wgs with uniform bounds on the F5* norm. Then, for any >0 (we

introduce the convention that X% = X and w® =w), we have

[ (2,1) =P (y,t)] _ |wg (XP(0:t,2)) — wg (X°(0st,y))|

(|£L’—y‘)510¢(T) - (|(E—y|)51a (T)
|w (Xﬁ(o t {E)) —wg(XB(O;t,y)ﬂ (|XB(();t’x) _X’B(O;t,y)DSl
d(X5(05t,2), XP(05t,y))* (o — y])ore®

< (g(Xﬁ(O;t,x)) + g(Xﬁ(O;t,y))) c(T)

for any g € L2(T?) satisfying (4.48). Therefore, C(T)go X5 (0;t,-) satisfies the defining
condition for (4.48), and thus, w’(t) € F;la(T) with

o ()] s 1cry < C(T)flwo| g1 -

Therefore, using (4.49), we have

0 (Ol germ gy < O Ol v gay < OO ol g 2y < CT) ol -

Now, we use the interpolation inequality
_s0_
o () = w2 (r2) < M|w () = w570 o) I (£) — w(t )Illtilm

for some sy < s1a(T'). Therefore, we have

lo? (8) = w(®)l 22 r2) < [l (2) — ()H;Eq‘%z C(T, llwollBg. . (12))

—C(llwoll oo(g))T
SC(T»HWOHB;YOO(TZ))Bce e

by noting that the rate function for Yudovich case is algebraic; that is, Rate(8) =

5o~ CUIwol oo (12))T q
Remark 4. One may naturally ask if one can obtain a faster rate than (4.46),
analogous to (4.47). It seems that the argument we presented for (4.47) does not

extend to the localized Yudovich space.
First, if m > 0 for the modulus of continuity given by

(4.50) w(lz —y|,T) =exp <—em+1 (longr2 ﬁ — (BT + C’o)>> ,

it cannot be bounded by any Holder exponent |x — y|® for any « € (0,1). Thus, we
cannot continue the argument from there. To see this, suppose that there exists a
a >0 and C > 0 such that

p(r,T) < Cre

for any r <1 very small. This amounts to saying that

1
logm+2 —log,, 10 5— O > BT + Cy.
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Taking the exponential, we have

€
108,41 7 > oBT+Co
— = .
1Ogrn+1 Cro

Since both denominator and numerator diverge as r — 07, we may apply L’Hopital’s
rule:

a, e___ 1 (1
dr OBmAl T [T, log,, € r)’

1 1 1 a)
—1lo = ——).
dr OB+l Cra oo logy s r
Inductively, we have
lo £ 1
lim goiﬂq _—
r—0+ 10g0+1 Cro
lo £ log; = 1
lim OBy lim g 1 _ & 1,

r—0+log) ) gea o0t log & a o«

lim OBmin ﬁ logrgpw 1 _
r—0+ 10g,, 11 ﬁ Pt log;, £ «

Therefore, except for m =0, where the limit is given by é, for any a >0 and C >0,
there exists small 7 > 0 such that u(r,T') > Cr®. Thus, control of vorticity in Triebel—
Lizorkin space ;" is not available.

There are other methods for propagation of regularity (in a losing manner), but
it seems that they also suffer from similar issue; flows generated by the localized
Yudovich class do not propagate enough regularity.

The argument of [3] does not extend to the localized Yudovich class as well; when
wyp is locally Yudovich, the modulus of continuity for u is weaker than log-Lipschitz.
It is known that the norm defined by

IVSjullL~
ul|lLr = ||Uu||pe +SUp ———+—,
[l [l SUp )

where S;u=3"7_ | Agu, is equivalent to the norm of the log-Lipschitz space (Propo-
sition 2.111 of [3], which is for the whole case but can be adopted to the periodic
domain easily). However, if wg € Y9, then u has the modulus of continuity ¢e, and
the norm for C’g #9(T?) is equivalent to

IV Sjull e

[l o + P T g (1)

which is less than |lu||pz,. However, the critical growth rate for the denominator

in applying the linear loss of regularity result (for example, Theorem 3.28 of [3]) is

j + 1, which is the rate of the log-Lipschitz norm. Therefore, we cannot rely on the
argument of [3] to conclude that w(t) has certain Besov regularity.

Finally, a borderline Besov space Br, introduced by Vishik in [44], has a certain

regularity (in the sense that Br restricts the rate of growth of frequency components)
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propagates, but it is not clear how to use this to obtain convergence rate for vorticity.
For simplicity, we focus on one particular form of growth function: Let

I(r) = (r+ 2>k’g1§“g;?’),r1<r> -

for r > —1 and I'(r) =T1(r) =1 for » < —1. We define the space Br by

" SN 1A flloe o
Ny I'(N) ’

log(r + 3)
log 2

Br = {f|||f||ri=

and we define Br, in a similar manner. In [44], the following was proved.

THEOREM 7 ([44]). If wg € LP° N LP* N Br, for 1 <py <2 <p; < o0, then, for
any T > 0, there uniquely exists a weak solution w(t) of the Euler equation satisfying

[w(®)llr < A(?),
where \(t) depends only on the bounds on |lwol|zronLrinBy, -

Therefore, one can prove the uniform boundedness of vorticity in Br space. How-
ever, it is not clear how one can interpolate Br space and the velocity space (where
we have rate of convergence) to obtain the rate for the L? norm of the vorticity.

Indeed, it was recently shown that if the velocity field is worse than Lipschitz
(u € WP for p < o0), then it is possible for smooth data to lose all Sobolev regularity
instantaneously from the transport by u ([1]). Instead, only a logarithm of a derivative
can be preserved (see, e.g., [9]), and this loss of regularity prohibits faster convergence.

5. Proof of the main theorems.
LEMMA 19.

Fe(t) = My cupy

\/MlOl

(5.1) LEL2
< lu? 12 { ()] pre el 4 gmin{ LB 20 1 enV (B }
V;L(Fs - Ml,su(t),l)
5 e(1+ |v])\/Mi,01 Lr2
5.2

§{HV uﬁfvzuHLP +€HV$UHLP +sHVzuﬁHLP}652‘“““/5”1652‘“6”;
2P )2

oo (T2
+e L ('ﬂ'){ mll‘l{ ,2} / +5I€V

Proof. We only prove (5.2) because the proof of (5 ( . ) is similar and simpler. We
decompose

(5.3)
Vm(FE - Ml,f—:u,l)

e(1+[v|)y/Mi01

L2L?

HV (Ml euf,1 — M Eu,l) + VI(FE_Ml,euf’,l)
e(l+)yv/Mior ||, e(1+v))y/ M s

= (5.3), + (5.3),(5.3)5.
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The bound of (5.3); raises the need for consideration of \/Mll,t‘(jgl)/Mlyo’l for
AeR3:

—(to(1)|v—A|2+|v|2 A2
E <e 4,

(5.4) MY /Mo Se
Using (5.4) and the Taylor expansion, we derive that

(5.5)
|Va(My cyp 1 — Micun)l

e/ Mioa

: M ,
:1‘/ vgﬁ(((v,w)Jra(u,uﬁ)),(uﬂ,u)w)da‘
€lJo

vVMi0,1

2 g2 2 821 € 1
§{|qu5—V$u|—|—5\vxu|—|—a|vxu’3|}es el el E/ |M1,Eu—a(u—uﬁ)x1(v)‘4da7
0

™

where we have used \(v—eu)+a(u—u5)||M178u_a(u_u;s),1|%’°(1)/2 SIM ey a(u—us)al
and |eu — a(u — vf)| = |(e — a)u — (¢ — a)uP + eu’| < |e — a|lu — ¥P| + e|u’] <
e{lu— v’ + v}
Now, taking an LPL2-norm to (5.5), we conclude that
(5.6) (5.3), < {IVat® — Voull iz + el Voullp + e Vou || g bes oI5 e 10715
From (5.4), clearly we have
2 uf) 2

L (T2)
4

(5.7) (5.3),Se
Using the expansion (2.2), we can bound (5.3) 5
(5.3)3 SIVa S llrzre +ellw’ ool F5ll 2z +erV (B)

p=2 2 p=2 2
(5.8) SIV2ARlE IVasalls + el Il Vafall 1 fzlfs  +enV(8)
< kM3 JE(E) + eV (B).
We finish the proof by applying (5.6), (5.7), and (5.8) to (5.3). |

We claim the following.

LEMMA 20.
(5:9) i (®) = w(O)llos e S 08 (6) = w(B)ll1s o) + £ @) + enV/(8).
Proof. Recall F© in (2.2). Note that
wi(t,z) —w(t,x) =V ugh(t,x) — V- ut,z)

1
:g/ v VH(FE(t,2,0) = My 1 (v)do
R3
1
610 =2 [ 0V Ol (0) M@y (= —w)
R3

Ga1) 4 [V ata) v/
R3

(5.12) + Vvt / (2P — 2 6(VuP) : A/ + erit? - (v — eu )+ 2 kp? p}do.
R3
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Clearly,

1(5.10)| Lo (r2) = [|w? () — w(t) || Lo (72).-

From Theorem 3, we conclude that

Ve fr(t )|| (T2 xR?) SVEVE(R) for pel,2],

1
||v§f1?( )” WXW)HV fr(t )”m(mea) S kP /E(L) for p € (2,00),
where we have used (anisotropic) Gagliardo-Nirenberg interpolation for the second,

whose proof is analogous to Lemma 4.
Using Theorem 5, we get that |[(5.12)| zr 12y S ecV (B). O

(5. 11)]| e (12) §{

Equipped with Proposition 4, Proposition 11, and Proposition 3, we are ready to
prove the main theorem of this paper.

THEOREM 8. Suppose that €,k = k(€), B = B(¢) satisfy (2.3). Choose an arbitrary
T € (0,00). Suppose that (ug,wo) € L?(T?) x LP(T?) for p € [1,00) and (u,w) be
a Lagrangian solution of (1.9), (1.10), and (1.11). Assume that the initial data Fy
o (1.5) satisfy conditions in Theorem 3. Then, there exists a family of Boltzmann
solutions Fe(t,x,v) to (1.5) in [0,T] such that

FE(t) = My g
(5.13) sup " —0.
telo. 7] eV Mion L2(T2xR3)

Moreover, the Boltzmann vorticity converges to the Lagrangian solution w:

(5'14) sup HWEB(tf) _w(tv')HLP('JI‘Q) —0.
0<t<T
THEOREM 9. Suppose that e,k = k(e), B = B(e) satisfy (2.3). Choose an arbitrary
T € (0,00). Suppose that wy € Y.§(T?) for some © in (4.34) with m € Zso, and
let (u,w) be the unique weak solution of (1.9), (1.10), and (1.11). Assume that the
ingtial data Fy to (1.5) satisfy conditions in Theorem 3. Then, there exists a family
of Boltzmann solutions F¢(t,z,v) to (1.5) in [0,T] such that

Fs(t) - M eu(t),1
(5.15) sup = —0.
€0, €y My 0,1 L2(T2xR?)

Moreover, the Boltzmann wvelocity and vorticity converge to the solution w with an
explicit rate Rate(5(e)), Rate,(8(g)) as defined in (4.35) and (4.45):

sup |lup(t,-) —u(t, )llL2(r2) < Rate(B(e)),
0<t<T

sup [lwp(t,) —w(t,")||Le (r2) S Ratew (B(e)).
0<t<T

(5.16)

Furthermore, if wg € Y.§ (T?)NB5 . (T?) for some s > 0, Boltzmann vorticity converges
to the solution w with a rate that is uniform in wo as in (4.46) and (4.47):

(5.17)
sup |lwp(t,-) —w(t,)|lor(r2) S Ratey, s joc—y (B),m >0 (localized Yudovich),
0<t<T
sup |lwg(t,-) —w(t, )|lor(r2) S Ratey, s,y (B8),m =0 (Yudovich).
0<t<T
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