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Abstract

We study linear two-and-a-half-dimensional Vlasov equations under the logarithmic
gravity potential in the half-space of diffuse reflection boundary. We prove decay-in-
time of the exponential moments with a polynomial rate, which depends on the base
logarithm.

Keywords Vlasov equation - Diffusive reflection boundary - Logarithmic gravity
potential

1 Introduction

In this paper, we consider a free molecules without intermolecular interaction which
are contained in a horizontally periodic three- dimensional half-space Q = T2 x R,
and subjected to the gravity field. A governing kinetic model of the system is the
Vlasov equations:

OF4+v-ViF—Vo&(x)-V,F =0, for (t, x,v) € Ry x Q x R3. (1.1)

Here, @ (x) is a given external field (gravity), which will be specified later in (1.6).
At the bottom of domain, the phase boundary y :={(x, v) € dQxR?}is decomposed

into the outgoing boundary and incoming boundary y:={(x, v) € dQxR3, n(x)-v 2

0} with the outward normal n(x) at x € 9. It is clear that |02] = 1. Further, we
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consider the molecules interact with the boundary thermodynamically via a diffusive
reflection boundary condition

F(', X, U) = I'L(xa U)
/ F(,x, vl){n(x) . Ul}dv1 for (x,v) € y— :={x € 9Q and v3 > 0},
n(x)-v!>0

(1.2)

such that an outgoing distribution is proportional to the thermal equilibrium of the unit
boundary temperature:

[v[?

1
ux,v) = —e (wall Maxwellian). (1.3)

21

where fn(x)-v1>0 n(x, vH{n(x) - vi}dv! = 1, and we have a null flux at the boundary
and enjoy the conservation of total mass:

// F(t,x,v)dxdv = // F (0, x,v)dxdv =m > 0.
QxR3 QxR3

Throughout this paper, we always assume that the total mass equals m.

If the boundary temperature varies with the position on the boundary, then station-
ary solutions to (1.2) are neither given by explicit formulas nor are equilibria (local
Maxwellian) in general, if they exist (see [5] for the construction of steady solutions).
This is because any explicit solution can be obtained by backtracking along the charag—
teristics until the boundary. Under the non-isothermal case when g (x, v) = %e_ %
and 0 (x) varies with x, local Maxwellian doesn’t satisfy the diffusive boundary con-
dition in general.

In this paper, we only focus on the asymptotic stability of simpler isothermal bound-
ary for the sake of simplicity. In this case of the isothermal boundary (1.3), a stationary
solution has an explicit form: for some ¢y, > 0

_ Cm —(#wm)
n(x,v):=—e .
2

The uniqueness of stationary problem can be easily proved as the problem is linear
(see [5] for the details).

The main interest in this paper is to study stabilizing effect of the diffusive reflection
boundary to the Vlasov equations under the logarithmic potential

®(x) =log, (1 + x3). (1.4)

This potential is physically relevant in the 2D universe. Indeed the logarithmic potential
(1.4) corresponds to the Newtonian potential in the 2-dimensional universe. A relevant
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model is the two-and-a-half-dimensional Vlasov equation:

UF 4+ Y 00y F — 0y ®(x)0y F =0, (1.5)
i=1,3

where the spatial domain is T x Ry:={(x1,x3) € T x R: x3 > 0}.

Our full 3-dimensional problem (1.1) can directly apply to this two-and-a-half-

dimensional model (1.5) by setting data homogeneous in x»-direction, that is, F' =
F(t,x1,x3,v) and Fy = Fo(x1, x3, v) in the spatial domain 2 = T x Ry and the
domain of the velocities is still R3.
Notations. Here we clarify some notations: NT represents the set of all positive
natural numbers; A < B if A < CB for a constant C > 0 which is independent
on A,B; A <y Bif A < CB for a constant C = C(0) > 0 which depends on
6 but is independent on A, B; || - ||,1 for the norm of LY x R | - llLge, or
| - lloo for the norm of L®(Q x R3); |g|L|Vi =/, lg(x, v)||n(x) - v|dSydv where
dS; = dxjdx; represents the measure on the boundary 02 and n(x) is the outward
normal at x € d€2; an integration fy f(y)dy is often abbreviated to fY f,if it is not
ambiguous. We remark that n represents an integer without x € d<2 (e.g.,Proposition
10). Finally, when we write (A.1) < C, we mean that C is an upper bound of the
most right-hand side of the equation (A.1).

Main Theorems. The main interest in this work is to study a long-time behavior of
solutions to the Vlasov equations for the field as follows:

d(x) =log,(1 +x3), and A= |: j| > 8, (1.6)

In(a)

where [m] represents the biggest integer less than or equal to m. Here we set A as
the integer part of 1/1In(a) for the convenience of decay rates in main results (see
Theorem 1 and Theorem 3).

The gravitational potential in the logarithm form plays an important role to the
convergence speed which turns out a polynomial rate depends on the base of the
logarithm.

We express the perturbation form as

F(t,x,v) = p(x,v)+ f(t,x,v), 1.7)

and the initial data Fo(x, v) = &(x, v) + fo(x, v).

Theorem 1 shows L !-estimates on every fluctuation which is of zero initial mass.

Theorem 1 Consider the initial data Fo(x, v) = fi(x, v) + fo(x, v) > 0, such that

/fg iy fo(x, v)dxdv =0, ||e%‘”'2+¢<)‘>f0||% < oo. (1.8)
R’
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There exists a unique global-in-time solution
F(t,x,v) =px,v)+ f(t,x,v) >0 (1.9)

to (1.1) and the boundary condition (1.2) with the initial condition F (t, x, v)|;=0 =
Fo(x, v) in  x R3, such that

f/ f(t,x,v)dxdv =0, forallt > 0. (1.10)
QxR3
Moreover, we have
S (A— L2
LFOlzy, < CAnE) A2 (1) = A0 x 2 MHOO e (111

where C = C(R2) only depends on the domain Q, 0 < § < 1 and A is given as in
(1.6).

Remark 2 To prove Theorem 1, we introduce and compute the norms of f (¢, x, v) at
time r = kT with k € N (see (3.38)). Further, the time interval 7 depends only on
the domain €2 (see Propositions 18 and 21). Therefore, the constant C only depends
on the domain 2.

Theorem 3 proves the decay of the exponential moment on the fluctuation.

Theorem 3 Assume all conditions in Theorem 1. Forallt > 0and 0 <20 < 0’ = 3

’ 2 ’ 2
sup [le? 1PTH2PCN ()|l oo < e IIH2PED £ oo (1.12)
sup : :
sup f A2 | £ v)|dv Sp (1) (1.13)
xeQ JIR3

Remark 4 The decay rate and the potential have a close relation. When the gravity is
constant (for example: ®(x) = gx3), then the system has an exponential decay [5,
6]. On the other hand, when the domain is bounded and the potential is zero, the decay
rate is polynomial depending on the spatial dimension. This is due to the fact that low
velocities stay in the system for a long time. About this direction, we refer to [1, 2, 4,
7] and the references therein.

Difficulties and Ideas. Throughout this paper, we use the fundamental idea where for
each velocity obtained from the diffusive reflection boundary condition, we compute
how the velocity transfers through space under the kinetic operator. This idea is realized
by the stochastic cycles.
The characteristics of (1.1) are determined by the Hamilton ODEs
{%X(s;t,x,v): V(s;t,x,v), (1.14)
EV(S; t,x,v) = —-VO(X(s;t,x,v)),
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for —oco < 5,1t < cowith (X(¢; ¢, x,v), V(t; 1, x,v)) = (x,v).

Definition 5 (Stochastic Cycles)
Consider (X, V) solving (1.14), which is the characteristics of the Vlasov equations
(1.1). Define the backward exit time 7, and the forward exit time f¢,

tp(x,v):=sup{s > 0: X(t —1;t,x,v) € 2, Vr € [0, )}, xp(x, v):=X( — tp(x, v); 1, x, V),
te(x,v):=sup{s > 0: X(t+1;¢t,x,v) € Q, VT € [0,5)}, x¢(x, v):=X({ + tg(x,v); t, x, V).
(1.15)

We define the stochastic cycles:

Mt x v) = 1=y, 0), 2 v) = apx,v) = X 1 x,v), vy, v) = V! 1),
K x vl L E T = AT g R R = T = R R
xk(t, v, vl vk_l) = X(tk; k=1 k=1 vk_l), vllg = V(tk+l; kXK, vk),

(1.16)

where we define v/ € Vj::{vj e R : n(x/) - v/ > 0} with the measure doj =
doj(x7) on V; which is given by

doji=p /™, vy n(d) - v/ )dv/ (1.17)

Here, n(x) is the outward normal at x € 9. To clarify the notation, in the rest of
this paper,we let the superscript of x, v, ¢, vp, Xp, p (€. g.,xi, tl‘;) denote the notation in
the stochastic cycles; we include absolute brackets or parentheses or angle brackets to
denote the power of these terms (e.g., ()2, (t{))“).

Given (f, x,v) € Ry x Q x R3, suppose that (X (s; ¢, x, v), V(s; t, x, v)) solves
(1.14), the backward exit time #, stands for the longest backward time, for which the
characteristic X (s; ¢, x, v) stays in the domain Q2. And xp = X (¢ — tp; ¢, x, v) is the
boundary position when s = t — #,. Similarly, the forward exit time # is the longest
forward time, for which the characteristic X (s; 7, x, v) stays in the domain €2, and
x¢ = X(t + t; t, x, v) is the boundary position when s = ¢ + #r. Moreover, since
the field ®(x) is timely independent, this leads that both #, and # are also timely
independent.

Now we explain a major difficulty in the presence of logarithmic potential. Com-
pared to the constant potential considered in [5], the backward exit time #, and the
forward exit time ff have much weaker control. Indeed,we can derive that, for any

(x,v) € y-,
a? P\ 1 — 3P < e, v) < a3l

using the conservation of mass on the characteristic line crucially. This control shows
. . L2 .
that the backward exit time 7}, is comparable to a2 131" when n(x) - v > 1. The crucial
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observation is that the Maxwellian p(x, v) = 2L has a polynomial control on

ty, (or #¢ for (x, v) € Y1) depending on A = [ln(a ]. Therefore, we are able to control
the sum of infinite Maxwellian terms produced by the periodic domain (see Lemma
13).

The proof of dynamical stability on the fluctuations f (¢, x, v), which solves (1.1),
(1.2), and (1.8), is based on a lower bound with the unreachable defect (see Proposition
17) as follows:

F(NTy, x,v) = mx, v){//g = DT x v

B //;2 R3 1lf(x,v)>T4—0f((N — DTo, x, v)dvdx],
xR3 >

where m(x, v) is defined in (3.32). This is also considered as the Doeblin condition
where f(z, x, v) is bounded below by the part of the mass of molecules in previous
stochastic cycles. We refer to [3], which includes a systematic exposition of Doeblin-
type arguments.

Next we control the unreachable defect (see Lemma 15). Since the forward exit
time under Vlasov operator can be controlled as follows:

0 0 ad
—t(t, x,v) +v- —F, x,v) — VO(x) - —tf(t x,v) =—1,
at 0x

any weight function ¢ (f¢) satisfies (v - Vy — V®(x) - Vy)o(tr) = —¢'(t5). Moreover,
we consider the weight function ¢ : [0, 00) — R to satisfy that for any t > 0,
o(t) >0,¢ >0, and

foo 37 Ap(r)dr < 0. (1.18)
1

It is worth to compare to the constant gravity case [5] when we allow || 1°° e? ngo(l’)d‘(
< oo and then the system has an exponential decay. This weaker weight in t restricts
the range of ¢ and consequently deduces a polynomial decay.

Suppose f solves (1.1) and (1.2), there exists C > 0 independent of #,, ¢, such that
forall0 <t, <t,

o) f O, / " ee) f 1 d5+/ o) fly, ds
< o) f@llpr +CE =t +DIf @I, / | flLy, ds.

We remark that the exponent 3 — A in (1.18) is determined from the initial condition

1 2 .
e2!?! +¢(x)f0||L39v < o0 and polynomial control between u(x, v) and # for (x, v) €
y+. Furthermore, this exponent will restrict the decay rate of Theorem 3. Then we
introduce two norms |||-]||, and [||-|ll4 as
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4mT

WA= ey, + —— o~ i1 flly, +
ot (22)

4emTO

—3T)||(Pi(tf)f||1‘;v,

0
3T,
0 Togi—1 (TO

1
where four polynomial weights @1, 2, ¢3, ¢4 are defined in (3.39). We derive the
polynomial decay in L' after using an energy estimate on these norms.

At last, to conclude a pointwise bound on the exponential moment, we intro-
duce several weight functions ¢(z) and w’(x, v). Then we control the bound on
o(Hw'(x, v) f(¢, x, v) via stochastic cycles expansions and polynomial decay on the
fluctuations proved before. This allows us to conclude the decay of the exponential
moment.

Structural of the paper. For the rest of the paper, we collect some basic preliminaries
in Sect.2. Then in Sect. 3, we study the weighted L !-estimates and prove Theorem 1.
Finally in Sect.4, we show an L°°-estimate of moments in Theorem 3.

2 Background

We first list some properties for (1.14), the characteristics of (1.1).

Lemma 6 [5] Forany g(t, x,v) and (X, V) solving (1.14), we have

r
/ / gt, X, t +s,x,v), V(t, t +5,x,v))|n(x) - v|ldsdvdSy = // g(t, y,v)dydv, (2.1)
y+ JO QxR3
t
/ / * gt, X, t —s,x,v),V(t, t —s,x,v))|n(x) - v|ldsdvdSy = // g(t, y,v)dydv, (2.2)
_Jo QxR3

/ g(t, xx(x,v), v(x,v))|n(x) - v|dvdSy = / g(t, y,v)|n(y) - v|dvdSy. 2.3)
Y+ YT

Here, for the sake of simplicity, we have abused the notations temporarily: t_ =
ty, X— = xp and ty = ty, X4 = Xf.

The following Lemma will let us derive the stochastic cycles.

Lemma7 [5]
Suppose F(x,v) solves (1.1) and (1.2). Consider (X, V) solving (1.14) with O
te <t,thenfork > 1,

IA

F(-x7 U) = 1[1<I*F(X(t>k; t’xs U)s V(t*; t’xs U))

k—1
+u(xl,vb)2f.
i=1 I—[lj=lvj

[l et FX (s 6,200, V(s of, 57 v
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+u(x!, vp) /1'[" , L, F(x*, v5)d3y, (2.4)
j=1%J

where dEi:zﬁdm_l-udm, with doj = pu(x/+1, v{;){n(xj) - viYdvd in
°“b

(1.17), and v}, = vp(x/ , v7) defined in (1.16).
Proof The proof follows from a similar argument, Lemma 2 in [5]. O

Lemma 8 Consider (X, V) solving (1.14), then for x € 0Q2 and v € V:={v € R3 :
n(x)-v > 0},

lup| = [v].

where vy, = vp(x, v) defined in (1.16).

Proof The proof follows from a similar argument, Lemma 3 in [5]. Since (X, V') solves
(1.14) with v € V, we compute the following derivative:

d Vst x,v)2
a(M+d>(X(s;t,x,v)))
dv dX ’
:V(s;t,x,v)~d_+V<I>-d_=_V(s;t,x,v)'Vcb(x(s?t’x’”)) >
Ky S

+ Vo - -V(s;t,x,v) =0.

Recall that (X (¢; ¢, x,v), V(t;t,x,v)) = (x,v), (Xt —tp; t,x,0), V(t—1p; 1, X, V))
= (xp, vp). By taking s = ¢t — 1, and s = ¢, we obtain

02/2+ @) = [vp[*/2 + P (p).
Since @ (x)]y;=0 = log, (1 + x3)|x;=0 = 0 and x, xp € 92, we have
®(x) = (xp) =0,
which implies |vp| = |v|. O

2, . .
Remark 9 We compute that p(x, v) = %e‘T is radial, that is, w(x, v1) = u(x, v2)

if [vj| = |vz|. From the Lemma 8, we obtain u(x/™!, vj)) = pu(x/*!, v/) where

vj = vp(x/, v/). Therefore, in the rest of the paper, we write do; as
doj = p( ™ vy - v/)dv/,
where v/ € Vj:={v/ € R? : n(x/) - v/ > 0} and (X, V) solves (1.14).
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Now we consider the change of variables v € {v € R} :n(x)-v > 0}
(xp(x, v), h(x, v)) € 02 x R.. Since the domain is periodic, this is a local bijective
mapping. For fixed x, #, and xp, we introduce the set of velocities {v"""} withm, n € Z
such that

Ve (M e R n(x) - v™" > 0) > (xp, ty):=(xp + (m, n, 0), 1p)
= (xp, ) € 0Q x Ry. (2.6)

Proposition 10 Consider (X, V) solving (1.14),

e For fixed x € 02, and m, n € Z, we introduce the following map:

ve{veR3:n(x)~v > 0} = (xp, tp)
=(xp(x, v) + (m, n,0), H(x,v)) € 02 x R 2.7

Then the map (2.7) is locally bijective and has the change of variable formula as
(1) 2(1 + |v3]tm) ™' dipdSy, < dv S (1) 2dipdSy,. (2.8)
e Similarly we have a locally bijective map:
vel{ve R3 : n(x)-v <0} — (x¢, tp):=(x¢(x, v) + (m, n,0), tr(x, v)) € IQ x Ry,
with
(1) 21+ [v3lt0) ' depd Sy S dv S (1) 2 dtd Sy (2.9)

Proof We just need to show (2.8), since (2.9) can be deduced after changing the
backward variables into forward variables. For the sake of simplicity, we have abused
the notations temporarily:

. 1 11 1 1 1
xpi=x" = (X, Xy, x3) = (X, x3), v =(v1,v2,v3) = (v, v3),

vp = (Up,1, Ub,2, Ub,3), th = tp(X, V).

Recall @ (x) = log, (1 + x3), then we get V& = (0, 0, i) With i > 1

Now we compute the determinant of the Jacobian matrix. Fixing x, ¢ and following
the characteristics trajectory, we deduce

t
x! +/ V(s;t,x,v)ds + (m,n,0) = x, (2.10)
t

—tp

t
vp + / —Vo(X(s;t,x,v))ds = v. (2.11)
I—1p
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Inputting (2.11) into (2.10), we have

xll + tpv; + m = xq,

| (2.12)
Xy +pv2 +1n = x2.
From (2.11), we obtain #y, = f,(v3) and
dty otp axd —n 0 —vla—tb
— =(0,0, —), and — = ).
v dvs av 0 —n —V2 gy
Therefore, we get
x| oy ot
I b 2 b
d t(—, —) — (1) x 22 2.13
¢ v dv ()7 > dv ( )
Now recall (1.14),
d 1
—V3(s;t,x,v) = — . (2.14)
ds (14 X3(s;t,x,v))In(a)
Thus, we obtain
L Xs(5:,x,v) = @203V 0inen), 2.15)
and
[up,3| = |v3]. (2.16)
Inputting (2.15) into (2.14), we derive
d 1
_V ;t7 ) = - )
g5 O ) = In(a)
and thus
1 a*%l}%
20
a 2V3EEVqYs (st x,v) = — ds (2.17)
In(a)

Note that v3 = V3(t; ¢, x, v) and vp 3 = V3(t — tp; t, x, v). Taking the integration
toward time s € [t — tp, t] on (2.17), we get

1.2 1.2
U3 1,2, t a 2U3 a*j?)}
/ a"2V3SLEVqya(si 1, x, v) = / — ds = — tp.
b3 -, In(a) In(a)

. _ly2. .
From Lemma 8, vp 3 = —v3 > 0. Further, since a™ 2 V" is an even function, we have
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/U3 a‘%‘@z(m’x*”)dVg(S; f,x,v) = _2/‘1)3' a—%Vaz(s;z,x,v)dV3(s; 1,x,v) = —0771}3 -
Up,3 0 In(a)
(2.18)
We estimate the following integration:
[v3] 00
/ a_%yzdy < / a_%yzdy < ! .
0 0 In(a)
On the other hand,
|vs] 3 s e
/ a dy > \//2 / a3 rdrag > | L2
0 o Jo In(a)
From (2.18), we get
| o flvsl Ly2 s
h :21n(a)a7”3/ a"2V3SEEVqya(si 1, x, v). (2.19)
0

Then

21n(a)a%v§ /1—a_%”§§tb§ 21n(a)a%,}§.

JIn(a)

Since a is fixed, for simplicity we rewrite the above as

a?By1—a % <y <ar¥, (2.20)

. _1,2 .
Note that for 0 < |v3| « 1, we use the Taylor expansion on a~2"3, and obtain

1,2 1.2 1.2
thaEUS\/l—a_7”3 Z\/l—a_f% 2 |vsl. (2.21)
Next, we take the derivative % on (2.19) and write 3%‘; as

dr
— = —21In(a) + v3tp, < 0.
dus

Thus, we derive that

1+ Ivala%”§m§ (jﬁ‘ <1+ |v3la2. (2.22)
v3
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Since a is a fixed constant, we can write

ds
1+ [vsla?y/ 1 — ”vs<‘ b‘<1+|v3|tb

Inputting (2.20), (2.22) into (2.13), we get the following:

8x1 on
et (S, 20| = (12 | 2] 2 )2 x (14 st V1 a3 2 2,
dv  Jv v

and

x| 32| < ) x (1 + 1usn)

v’ 9
Therefore, we conclude
ad -1
;<)det(ﬂ aﬂ)) <L,
(1)?(1 + [v3|ty) ™ dv - dv ~ (1p)?
and we conclude (2.8). m]

The following lemma is a consequence of Proposition 10.

Lemma 11 Consider (X, V) solving (1.14),

e Forx € 0Q andv € V:={v € R3:nkx) v> 0}, we consider the map (2.7) with
m,n € 7Z, then

lus = [vp3| < tp(x, v). (2.23)

o Similarly for x € 9Q and v € {v € R : n(x) - v < 0}, we consider the map (2.9)
withm, n € 7, then

[v3] = [ve 3] < te(x, v). (2.24)
Proof We just need to show (2.23), since (2.24) can be deduced after changing the
backward variables into forward variables. Similar to Proposition 10, we have abused

the notations temporarily:

v = (v1,v2,03), Up = (Up,1, Vb2, Ub,3), b = tp(xX, V).

The first equality |v3| = |vp, 3| follows from (2.16).

Next, from (2.20) we have
a%v§\/ 1—a"7% < tp.
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Since a > 1 is fixed, then for |v3| > 0,

1.2 1.2
f a2y 1 —a 2%
b S 27V % "7

LS > 0. (2.25)
[v3] |v3]

Moreover, there exists sufficiently large n > 1 such that for any |v3| > n,

i<l (2.26)

2

Using the Taylor expansion on a%vg, we obtain
a?’ > 2 > 3. (2.27)

From (2.26), (2.27), we derive that for any |v3| > n,

1
m > a2yl —a> ‘v55—2|v3|. (2.28)

On the other hand, from (2.21) for 0 < |v3| < 1, we have
2 |v3l. (2.29)
Together with (2.25), (2.28) and (2.29), we conclude (2.23). O

Remark 12 We can apply Proposition 10 on v/ € Vi = (x+1, tl{) = (op (7, v9),
ty(x7, v7)), and this is also a local bijective mapping. For fixed #) and x/*!, we
introduce the set of velocities {v;ﬁ’"} with m, n € Z such that

v e Vi (I 4 (mn, 0), i) =@ty ea x 0,471, (2.30)
with the change of variable formula as

dvi" S 15 172de] dS 1. (2.31)

Because of the periodic domain, we will gain an infinite sum of Maxwellian terms
as the integrand after the change of variable in Remark 12. In the following lemma,
we do an estimate on this infinite sum.

Lemma 13 Consider (X, V) solving (1.14) with x' =" € 3R, for t{ > > 1,

Yo ) Sl A (2.32)

m,nez
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2

For(0 < tti)_ <1,

1
i—1 m, i—1 . m, a2
Yoo n TS Y kGt ) Fe M (233)

m,nez Im|<2,|n|<2

where v} | = = vp(x' =1, "), which was defined in (1.16) and (2.6).
Proof Here, for the sake of simplicity, we have abused the notations temporarily:

m,n mn m,n m,n
= (x}, %3, x}) = (x”,x3) U, b = (] by2 Vibyo Vi, b;) = (Vi by Viby)-

To estimate vf"_’ggbu, we recall (2.12) and get

i—1 i—2 i—1 i—2
|vm,n | |)C + m— xl | |va’l | |)C + n-— 'xz | (2 34)
i—2,by! — ti72 ’ i—2,by! — [' 2 . .
b b

-2

Now we split the length of tl’; into two cases:

Case 1: 1, > > 1. From (2.34), for |m| > (%), we bound

i—1 i—2
i m = 2  m
i—2 N2
t 2t
Similarly, for |n| > (tl’;_z)z, we bound
i—1 i—2
Xy +n—x; |> n
i—2 ~o5i2
Iy 2t
m, n

For |m| < (tb )2, we bound |v;” | > 0, and for |n| < (tb )2, we bound
m,n

[y b,| = 0. In order to derive (2. 32) we divide {v;""5 |} nez into four parts.
, , 1p,mn 2 .
(a) For |m| < (7% and |n| < ()% we bound a?Viaml > 72 in (2.20).
Therefore, we have

S ey S @G R S A
Im|<(t))2 In| <(t)%)?
= |2 (2.35)
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(b) For |m| < (3% and |n| > (t{ )%, we bound 075 b, | z . Thus, we have
b

> N SO P D T ( l,' U5 b))

Im| <6732, In|= (1 72)? Im|<(i2)2 b

ST AZM LI

26,
< (t;;‘z)z(r{;‘z)*f‘(l TSN
(2.36)
where the last 1nequa11ty holds from the Taylor expans1on
(c) For |m| > (t )2 and |n| < (t )2 case, we bound Iv 2b1| = 7 . Similar as
in (2.36), we get 3
> pG s ) Sy A (237)

i—2 i—2
Im|= ()2, Inl< ()2

(d) For |m| > (z"._z)2 and |n| > (t{;_z)z, we use two lower bounds |v?ﬁ§ b2| > _In]

W p, | 2 2"," 1Ml Then, we derive that

> pO T )

i—2 i—2
lm|>(ty~)2, n|> ()2

o)
. m| |n|
< i—1 | mn
~ Z M<x ’<2i 2’ 2! 2’ l 2b3>>
— 1, t
m,n=0 b

o0
O, N L |n| l 2 _
SEHAY pe S e 7!
n=0 b

-1 . . .
SEH AU —e )2 <@ DA = g A A
(2.38)

From (2.35), (2.36), (2.37) and (2.38), we conclude that for t’ 2> >1,

D oG ) Sl

m,ne”’
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Case2:0 < tl;_z < 1. In this case tl’;_z is small, for |m| > 2 and |n| > 2, we bound
(2.34) as

| i—1 l—2|

x +m_xl | i—1 l—2|

X n—Xx
> + 2 I Inl
2 [—2°

-2 ~ [ —2° i— ~
28, ty 28,

|

Ip
For |m| < 2, we bound |vm’" /1 =0, and for [n| < 2, we bound |vm’" | =0.To
obtain (2.33), we again d1v1de {”ifz,b}m,nEZ into four parts.
(a) For |m| < 2 and |n| < 2, we keep the following five terms summation:

p ). (2.39)

|m|<2,|n|<2

(b) For |m| < 2 and |n| > 2, we bound |vmgb2| > 21'"‘ . Thus, we have
b

- I
n(x' 1: 1—2b)< Z (l ! . (0, 22’ zm—gb3))

Im|<2,|n|>2 m|<2,|n|>2 b
<3 it L) o W @40
w(x )
Z 2 i—2 rg

1

- [—22 - [—22 _ T2
<e 2t )(l—e 8(ty, )) 1A<,€ 2(1y, )’

where the last inequality holds from 0 < tl"’*z < 1.

(c) For [m| > 2 and |n| < 2 case, we bound |v Z bl| pe l’,»",lz. Similar as in (2.40),

24
we get
S
Z w(xi = ”’”b)<e 2, 2 (2.41)
[m|>2,|n|<2
m.,n m,n
(d) For |m| > 2 and |n| > 2, we bound [v]" | | > 21'7‘2, " | 2 2|b_ and we
derive

i—1 m n < —1 |m| |n| m,n
E nx Vi o, b S § 122 x! "\ 22 52 Vi—2.bs
m|>2,|n|>2 2 b b
m=2In] = a4

< z—l |n| T a2
Z ( 2 l72) 6‘ b :

n=2
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From (2.39), (2.40), (2.41) and (2.42), we conclude that for 0 < tl’;_z <1,

1
i—1 m,n i—1 m,n T 22
Z u(x'7, vi—2,b) S Z p(x'7, U,'_z’b) +e 7,

m,ne’l |m|<2,|n|<2

so we prove (2.32) and (2.33). O

3 Weighted L'-Estimates

The main purpose of this section is to prove Theorem 1, in which we do L'-estimates
on fluctuations. Then we show the existence and uniqueness of the stationary solution.

3.1 f(t, x, v) via Stochastic Cycles

The main purpose of this section is to show Lemma 15, where we control
lo(te) f()[|;1 under some weight function s ¢. To prove Lemma 15, we first express

v

f(t, x,v) with the stochastic cycles in Lemma 14, then we do some energy estimates
in Lemma 16.

Lemma 14 For any integer k > 2, suppose f(t,x,v) solves (1.1) and (1.2), and
te < t, then we have

fx,v) =11, f(te, Xt 1, x,0), V(s £, x,0)) 3.1

k—1
+u<x1,vb)2f, [V oz s Xt 60, V(s 2 0 Ja
im1 Y= Vi
(3.2)

+ e, o) /n R PO (3.3)
_f:]Vj

wheredZ,ﬁ:%dai_l -+ -doy, withdo; = p(x/*1, v/ {n(x/)-v/}dv/ in(1.17).

Yyl

Here, (X, V) solves (1.14).
Proof We can obtain this Lemma by following Lemma 7 and Remark 9. O

Lemma 15 Given a function ¢ : [0, 00) — R, suppose ¢ satisfies that for any t > 0,
¢(t) >0, ¢" >0, and

/OO t3*A<p(r)dr < 00. 3.4
1
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Suppose f solves (1.1) and (1.2), there exists C > 0 independent of t,, t, such that
forall0 <t, <t,

t t
loGe) F O, + / o' @) £y ds + / l9Gp) f1, ds
b b (3.5)

1 t
<l fF @y, + C =+ DIF @I, +Z/ £l ds.
s f +

For the proof of Lemma 15, we shall start it from the energy estimate, Lemma 16.

Lemma 16 [5] Suppose f solves (1.1) and (1.2), then for 0 < t, <t with0 < <
min(l, r — t,),

1/ Olley, < 1F @, (3.6)
t
/,* )l ds < |

and if fy is non-negative, so is f(t, x, v) forall (t, x,v) € Ry x Q x R3.

t—t, !
-‘Ilf(t*)llu +0(@ )f [f ()| ds, 3.7
S i v+

Proof Since f (¢, x, v) solves (1.1) and (1.2) in the L! sense, according to [2, Lemma
2], | f (¢, x, v)| is also a solution to (1.1) and (1.2).

From (1.1) and (1.2), taking integration on | f (¢, x, v)| over (#, 1) x Q X R3, we
derive that

i@ty + [ [ =[] s =i,
tx Jyp tx Jy_

Due to the choice of w(x, v) in (1.2), for V¢ > 0,

/ | f(t, x,v)||n(x) - v|dSydv = ‘ f, x,v){n(x) - v}dSidv|.
v+

Therefore, we have

/l:/y+|f|ds—fl;/y_|f|ds
=ft*t/y+|flds—/t; /V+f

t t
dsz/f Iflds—// flds =0,
Ik Jy4 Bk Jy4
therefore we prove (3.6).

Next we work on (3.7). For § € (0, t —t,) and (x, v) € y4, we split the time interval
[£*, ¢] into some subintervals as follows:

t—t,— 34
[, " + 81, [tF +8,t" +258],.... [+ (T*w,t].
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Since f is invariant along the characteristic, we backward f (s, x, v) into a new time
depending on s and #, (x, v). Then we do estimates on different cases.

[f(s,x, vl
rt—tgk—zS-l
=

Z Lt ks <s<tut(k+1)8, <ty (v,v)} | f (s + k8, X (s + k8,5, x,0), V(tx + k8, 5, %, v))]
k=1

(3.8);
+ 1, 5<s, 520} f (5 — 1p(x, 0), xp (%, V), Vp(x, V)]

3.8)2
+ 15y, <5, x—t*<tb(x,v)}|f(t*, X(te,s,x,0), V(t, s, x,0))|

+ 1 (v, <s—t <8} | [ (s — 1p (x, v), xp (x, V), VB (¥, V)], (3.8)

(3.8)4

where s € [t4, 1].

First we do estimate on (3.8);. From (2.1), (3.6) and t,+38 < s < t with§ < ty(x, v),

t
/ / (3.8)ds
L Jy+

I—t—l*—ﬁ-‘

=y
k=1 Y+

titkd+tp (x,v)
/ | f(te+kS, X(te + k6,5, x,0), V(t.+kd, s, x,v))[ds{n(x)- v}dS,ydv
1tk S

t—tx—6
gl f—te—3
= Y Gy, < [ | X If @l (3.9)
k=1
Now we consider (3.8),. For y = xp(x, v) and s € [#4, t], we have
Lz o) = Loz (y.up)- (3.10)

From Lemma 11, for (x, v) € y4 and v3 < fp(x, v) < § < 1, we get

Ly 1<s = Lissap(x,0)-
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Thus, we compute that
f Loy (e, )| - vld
n(x)-v>0
5/ p(xp, v)|n(x) - vidv (3.11)
vs| <6
3
5/ e~ 7 |uslduy < €82
lvs] <8

From (2.3), (3.10) and using the Fubini’s theorem, we derive

t t
/ (3.8),ds = / / Lo ooy £ (5 = 1, ), b, vp)|ds [ (x) - v}dSydv
te Jyy vi Jtts

t
S/ / 13>zf(y,v)/ |f (s, y, v)lds|n(y) - v|dSydv
Q2 Jn(y)-v<0 1y

<[ ([ tuvnt o) - vidv)
oQ n(y)-v<0

3.12),

t
f / | £ (s, y, v)|{n(y) - v'}dv'dsdS,. (3.12)
ty n(y)~v1>0 i

From (3.11), we derive

t
(3.12)50(52)// | fds.
L Jy+

From (2.1) and s < 1, + tp(x, v), we have

t ti+ip (x,0)
| [ esness | | G8nds <ireny,.
L JY4+ 1y Y+ ’

Again setting y = xp(x, v) and s € [t,, t], we have

Ly (v, 0)<s—1<8) = Ls=ap(y,0p)- (3.13)

From (2.3), (3.13) and using the Fubini’s theorem, we derive

t ttd
/ (3.8)sds = / / Loy ey | £ (5 =t (s 0, 2, vp)|ds{(x) - v}dSidv
ty Jyt v+ b (x,v)

ty+95
< / / Loits0 / £ (s, v, 0)lds|n(y) - v]dS,dv
Q2 Jn(y)-v<0 ty
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ty+6
<[ ([ tsuvntoono)vdaw) [ [ 1rias
R n(y)-v<0 1y Y+

(3.14),

(3.14)

Then we conclude (3.14) < 0(8?) fti fy+ | f|ds, therefore we prove (3.7).
To prove the positivity property, we write

If1=f
B

f7 =

Since both f(¢, x, v) and | f (¢, x, v)| are solutions to (1.1) and (1.2), it is clear that
f— also solves (1.1) and (1.2). From (3.6) and the assumption fy > 0, we have

| RO ICTI H (If1 = )@ H
2

2 Ly

fO ||

If-®llL1, =0,

= 1
L)c,v

L, 2

(3.15)
then we conclude f_ (¢, x,v) =0 on 2 x R3. O
Now we are ready to prove Lemma 15, which will be used frequently in this paper.

Proof of Lemma 15 Consider (s, X(s;t,x,v), V(s;t,x, v)) solving (1.14), we now
compute the forward exit time #(x, v) under this characteristics. Recall that # is
timely independent because of the timely independent field @ (x).

d
—1 = —1(X(s;t,x,v), V(s; 1, x,0))
ds

0 Xy dx+ O (X V).
“oax!t v T

By setting s = ¢, we have

d 0
—(x,v) v+ —f(x,v) —VO(x) = —
0x ov

On the other hand, since f (¢, x, v) solves (1.1) and (1.2), then | f (¢, x, v)| also solves
(1.1)and (1.2), thatis, [0; +v-V, —V®-V,]| f| = 0. Then, in the sense of distribution

[0 + v - Vi = VO -V, 1(0lp)| f1) = ¢ ()3 + v - V4
—Vo - V)l fl = —¢' )| f]. (3.16)

From (1.1), (3.16), ¢(t) > 0, ¢’ > 0 and taking integration over (¢, 1) x Q x R3, we
derive

t t
o sl + [ 10 @roias+ [ [ eairias (3.17)
[ ! L Jy4
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t
Sllw(tf)f(t*)IILi,v+/f / ()| flIn(x) - vidvdSyds
’ ty JOQ Jn(x)v<0
t
=|I<ﬂ(tf)f(t*)I|L;U+/ / / () u(x, v)|n(x) - v|dvdSyds
’ te JOQ Jn(x)v<0
x/ |f (s, x, v)|{n(x) - v'}dv'. (3.18)
n(x)v!'>0

We remark that from Definition 5, #(x, v) = O for any (x, v) € y4. Thus, the third
integration in (3.17) follows

t t
/ f @) flds :/ / @) fIds. (3.19)
L Jy+ L

Now we prove the following claim: If (3.4) holds, then

sup / @(te) (x, v)p(x, v)|n(x) - v|dv S 1. (3.20)
x€dQ Jn(x)v<0
We split fn(x)‘v<0 o(te)(x, v)(x, v)|n(x) - v|dv into two parts:
/ 1e<1 @) p(x, v)|n(x) - v|dv and / Ly>1 @) p(x, v)[n(x) - v|dv.
n(x)-v<0 n(x)-v<0

For #¢ < 1, since x € 92 and n(x) - v < 0, we consider x¢(x, v), vg(x, v) and get
tp(xg, v¢) = tp(x, v). Using Lemma 11, we have

[vs] = v 3] St (Cxr, vp),
and thus
lua] < tp(x,v) < 1.
Combining with ¢’ > 0, we bound
f Ly<i () p(x, v)|n(x) - v|dv S w(l)/ P24y < 1. 321)
n(x)-v<0 R3
For# > 1,applying (2.9) in Proposition 10 and Lemma 13, together with |n(x)-v| <
te(x, v) from Lemma 11, we obtain

00 f
/ () x, ) n(x) - vldv < f f o) Y ner, - dnds,,.
n(x)v<0 Q2 J1 1 |

m,nez | f

(3.22)
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From Lemma 13 and (3.4), we derive that

o0 o0

() _ _

(3.22) < / ¢|¢_f|'tf'4 Adre < / ()|~ Ade S 1.
1 1

Combining the above bound with (3.21), we prove (3.20). Then picking sufficiently
small § in (3.7) and using (3.20), we conclude (3.5), through, for C > 1,

t
(3.18)5// L £ (s, x, vD){n(x") - v'}dv'dS,ds
L JY+

1 t
=Cl—t+DIf@IL + Z/ [F L)
A

3.2 Lower Bound with the Unreachable Defect

In this section, we prove Proposition 17 to obtain a lower bound with the unreachable
defect. It is the key to control the fluctuations.

Proposition 17 Suppose f solves (1.1) and (1.2). Assume fo(x,v) > 0. For any
To > 1 and N € N7, there exists m(x, v) > 0, which only depends on Q and Ty (see
(3.32) for the precise form), such that

F(NTy, x, v) zm(x,v)[//g (O = DTy, x, v)dvds

_//Q Mg [N = DTo.x, v)dvdx}. (3.23)
§ >

Proof Step 1. From (3.15) the assumption fy(x, v) > 0, we have f(z,x,v) > 0.
From (3.1)—(3.3) and setting t = NTp, t. = (N — 1)Tp, k = 2, we can derive that

FNTo, x,0) =1, pu(x!, vp)

/V /v Losv_nyp f (&%, 2%, vD){n(x?) - v*}dv?dor. (3.24)
1 2

Now we apply Proposition 10 on v! € V; with (2.7) and (2.8). In order to have the
bijective mapping with (2.7), we restrict the range of vf, as

t
Vl,b::{vll, eR3:x? +/

1—

N
(Ub+/ —VCD(X(a;tl,xl,vl))da)ds =x'}.
Iy I—1tp

(3.25)

This implies all characteristic trajectories X («; thxl vl) between x! and x2 under
vll) € V1, don’t cross the periodic boundary.
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Therefore, using the change of variables vl e Vi — (xz, t,;) € 02 x Ry for
vllj € V15 in (2.8), together with Fubini’s theorem, we derive

To—1p(x,v) n(xl) ) Ul
(3.24) > 1 7 (x!, vb)/ / —— e (x?, v})
(x0) =P 0 oo (6))2(1+ [v}Ie)) b

(3.26).

x / F@, 32, v {n(x?) - v?)dv?dS,dy,
n(x2)-v2>0

(3.26)

where 12 = NTy — ty(x, v) — tll and n(x") - 0! = vé.

Step 2. In order to bound the integrand of the first line in (3.26), we will further
restrict integration regimes. Note that x! = Xxp(x, v) is given, x2 is free variable and
2> (N =DTp.

Now we restrict the integral regimes of the variable té as

T
STO:z{t,; € [0, 00) : Ty — t(x, v) — min (tb(xz, v?), ZO> <1 <Tp— (. u)}.

(3.27)

As a consequence of (3.27) and #p(x, v) < % in (3.26), we will derive (3.28) and

(3.29),
Ty To
-5 = To — th(x,v) — 2 =h= To. (3.28)

Secondly, we prove (3.29). Note that if té € T we have

2 | - 2 2 To
(N — DTy <t = NTy — tp(x,v) — f < (N — )Ty + minf{ry(x?, v?), Z}.
This implies that, for y, = X(N — DTp; >, x%,v%) and v, = V(N —
DTy, 12, x2, vz), we have
2 1 To
tr(yer v3) =12 — (N — DTp = Ty — tpy(x, v) — 1. € [o, T]’ (3.29)

2

where we use #¢(yy, vy) < tb(xz, vz) since X~ = xg(Vx, Us).

Step 3. For (3.26), we apply the restriction of integral regimes in (3.25) and (3.27).
Note that
n(xl) cpl _ Ivél 1
)2+ o3le) ()2 + [v3l @)~ Iyl
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Using % < tll < Ty in (3.28), we have

1 1 x2 — X
(3.26), 2, %u( vb) = 1—3M(|n(x2) : U11)|)“(| 1 |)
lbl |tb| |[b|

1 V2 1 ) —

> > Ivg\ T,

——n(v3hu e 250 e 70
|tb|3 U3 (|tb|) (T)3

(T oy o (1) A > (1) A,

where the second last inequality follows from Ty > 1, (2.20) and A < i % D < A+1.
Finally, we get

—4-A 1 2 2y .2
(2621, 0 (T !, w) ]; _ds. f iy VD7)
x[ Al F(INTY — ty(x, v) — 1, %%, v%)
<To

o (T0) ™A', vp) / ds, / AP () - v)

1
(¥, v)=7 n(x2)-v2>0

To—tp(x,v)
x/ d F(INTY — ty(x, v) — 1, x%, v?). (3.30)
To—ty (x,v)—min (tl,(x2 v2) T—O)

0—

Now we focus on the integrand of (3.30). Recall (3.27), we have
T
(NTy = 1y, 0) = 1) = (N = DTy = Ty — tp(x, ) — 13 € [0, min (1, 0?), ZO)]

Now setting y, = X((N — DTo; 12, x%,0%), vy = V((N — DTp; t%, x%,v?) and
=Ty —th(x,v) — tb, we have

min (tb(x v2) 0)
(3.30) = / f((N — DT, y«, v*)doz. (3.31)
0
From (3.29), we have t¢(ys, v4) € [O, %] Now applying (2.1), we conclude that
(3 26) - T (X v)<T0 (TO) —4 AM(-X vb) // 3 lf(y v)E[O TO]f((N - I)TOs ya v)dvdy
We conclude (3.23) by setting

70 (T) ™ Au(x!, vp). (3.32)

m(x, v)::ltb(m)ST

An immediate consequence of Proposition 17. follows.
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Proposition 18 Suppose f solves (1.1), (1.2) and satisfies (1.10). Then for all Ty > 1
and N € NT,

IFNT)lly, < (= Imll DIFN = DTl
2l 1, FN = DTy (3.33)

Moreover, there exists Ty = To(S2), such that
”m”L}.v::mTo < (To)_3_“4|8§2| < 1. (3.34)
Proof We decompose

fUN = DTy, x,v) = fn—1,4(x,v) — fy—1,—(x,v),
where

In-14(,v) =1 pn—DTy.x0=0f (N = DTo, x, v),
Fn—1,—(x, v) = 1pN=DTp.x.my<0l f (N — DT, x, v)].

Let f4+ (s, x, v)solve(1.1)fors € [(N—1)Ty, NTp] with the initial data fy_1 4+ and
fn—1,— ats = (N — 1)Top, respectively. Now we apply Proposition 17 on f4.(¢, x, v)
and conclude (3.23) for f = f4 and f = f_,respectively. We also note that

/f fUN — DTy, x, v)dxdv = // Iv=1+(x, v)dxdv
QxR3 QxR3
— // In—1,—(x,v)dxdv = 0.
QxR3

This implies

/f fn-1,+(x, v)dxdv = l// |f((N —1)Tp, x, v)|dxdv. (3.35)
QxR3 2 JJaxgr3
From (3.23),
Sn-1,£(x, v) > m(x, v) // Sn—1,£(x, v)dxdv
—m(x, v) // lz 1 fn—1,+(x, v)dxdv
QxR3 f(x,v)> Pl

Using (3.35), we have

1
fy1. )z mee o) (SIAW = DTy, = 11,5 FN = DTl )

[(x,v)

@ Springer



630 La Matematica (2024) 3:604-650

(3.36)
Then we deduce
If(NTo, x, 0)| = [ fn-1,4+(x,v) = fy—1,-(x, v) + I(x, v) — [(x, V)]
< =140, 0) =l V[ + [ fy-1,-(x, v) = (x, V)]
From (3.36),
|f(NTo, x, v)| < fn—1,+(x,v) + fn-1,-(x, v) = 2l(x, v). (3.37)

Note that fx_1,+(NTp, x, v)+ fy—1,—(NTp, x, v) solves (1.1) with the initial datum
v+ + -1 = | f((N = DTy, x, v)].

Using (3.35), (3.37) and taking the integration on (3.36) over 2 x R3, we derive

Ty, = [[ vt odsd
QxR3

+ // Sn—1,—(x, v)dxdv — // 2[(x, v)dxdv
QxR3 QxR3

= (1= l[mll 1 AN = DTl
+20mlg I, N = DTy

therefore we prove (3.33).
To derive (3.34), it suffices to bound Hltb(x U)<Eﬂ(x1» vp) |1 . From Lemma 6,
’ =7 X, v

Lemma 8, and t,(X(t — 5,1, x,v), V(t —s,t,x,v)) = tp(x,v) — s, we have

1,y =i HE S D)y,
tp(x,v)
= M(xl, v){n(x) - vidsdvdSy
v Jmax{0,n(x,v)— 2}
tp(x,v) tp(x,v) l\vlz
< (1 / ds+1 / ds)e_7 n(x) - vidvdS
~ /}:+ th(x,v)g% 0 th(x,v)z% tb(x,v)f% { (x) } X

T
< —0/ de/ e 2P (n(x) - v)dv < Tyl
4 Joa n(x)-v>0

Combining the above bound with (3.32), we conclude (3.34). O

Remark 19 Throughout this paper, we consider Q = T? x Ry and [d2| = 1. Thus,
any Tp > 1 satisfies (3.34). In general, Ty depends heavily on |9€2], otherwise mp, > 1
and it leads to a negative estimate for L!in (3.33).
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3.3 Proof of Weighted L"-Estimates

In this section, we prove Theorem 1. We start with establishing the uniform estimates
of the following energies:

4mT

WA= fllpy, + —F i1 Ge) fligy +
T gl (—) ’

mr,

de s
—T>||¢l<f>f||L;v,

0
3Ty 3
0 Togi—1 (TO

)
(3.38)

where ||m||L; ,i=mr, (see (3.34)) and ¢;’s defined in (3.39) withi = 2, 4.
Here we first introduce the weight functions ¢;’s.

Definition 20 For 0 < § < 1, we set

¢1(t):=(eln(e + 1))~ (e + ) In(e + In(e + 1)),

@2(v):=(e’ In(e + 1)) "' (e + 7)* In(e + In(e + 1)),

03(1):=> AT + e)AfS(ln(r + e))i(Ha), 339
oa(r):=e*A(x + &) (In(z + ).

First, ¢; satisfies (3.4) fori = 1, 2, 3, 4: for example, fori = 4,

o0 0
f 3 Agu(r)dr = / A A 4 e)A_“(ln(r + e))_(Ha)dr
1 1

)
: /1 ( +e>(1n<1r Teprm =
Second, ¢; satisfies
pi(0) =1, fori =1,2,3,4. (3.40)
Finally, we have

@y(1) = (@ In(e + 1) 12(e + 1) In(e + In(e + 1)) = 2¢ 91 (1), ¢} (x) >0,

, _ o, 1+
40 = (A In(t +e)

3.41
)t A + A5 (In(x + ) "M > g3(0), @h(x) = 0. (3-41)

Proposition 21 Choose Ty > 20, such that for the constant C in (3.5),

4C(e + 3T0)(<p,'(34ﬂ))71 < % fori=1,3. (3.42)
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Forany N e NT, andi =2, 4,

4m7"0 e
If(NTo)llp1 , + —”{2||§0i71(tf)f(NT0)”L}( ot llei) f(NTo)l v}
T gim (TO) ' 0 ’
< B3 X IF (N =DTo)l.1 (3.43)

4dm To

Pi—1 (%)

where (3.43)y:=1 — my, !1 — et } with mr, defined in (3.34).

ey

Proof As key steps, we apply Lemma 15 on f (¢, x, v) solving (1.1) and (1.2) with
@;’s in (3.39). Using ¢; (0) = 1 for i = 1, 2, 3, 4 in (3.40), together with (3.19), we

getfori =1,2,3,4,
t t
| [ etwisias= [ [ 17
L Y+ te Jy4

Thus, we derive that, for (N — )Ty <t < NTpandi = 2,4,

3
+ {Z 010 7 = DTy, + o0 F(V = DTy .
Tt ,

4
+CTH Itz (3.44)

3 NTy
loim1(0) F N1+ f Iy, ds < g1 G0 £ @l
, t* .

and

NTy 3
llgi (te) £ (NTO) I 11, +/ Ugien flizy, + 71f1zy, Mds
’ (N—=1)Tpy : +

(3.45)
< llgi ) fF(N = DT 1, + CTHIF(N = DT,
where we set t, = (N — 1)Tp in (3.45).
From (3.6), (3.41) and (3.44), we derive that, fori = 2, 4,
NTy NTy
[ s, = [ e e ey dn
(N=DTp ’ (N—=DTp :
(3.46)

> 2¢" Tollgi1 () f(NTO) 1,
—2¢7'C(T)? 1 (N = DTl -
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Applying (3.46) on (3.45), we conclude that, fori = 2, 4,

B 3 NTy
lgi (te) F(NTO) 1+ 2e Tollgi—1 (1) fF(NTO) I .1 + —/ [flp
XU X,V 4 (N*])T() V4
< llgi ) f((N = DTo) 1, + CTo(1+2¢ ™ To)ILf (N = DTp) 1 -
(3.47)
Note that from (3.41), we have, fori = 2, 4,
3To\ -1
L, m = (¢i-1 <T>) @i—1(1p), (3.48)

Now we combine (3.33) with (3.44)-(3.48) and my, in (3.34) with [9Q2] = 1, and
obtain

LFNTYlLy, < (1= ma) | F(N = DTl |
2my,

_2mn
Yi1 (%)

For i = 2,4 and Ty > 1 in (3.42), considering (3.49) +%{% (3.44)
Qi—1\ 7

lte=(N—1)Tp + %0 (3.47) }, then we conclude (3.43). m]

(3.49)

+ lgi—1 G0 f (N = DTo)lI -

Now we are well equipped to prove Theorem 1.

Proof of Theorem 1 Fix Ty in (3.42) and recall norms of |||-|||, and |||-l|4 in (3.38). From
(3.43), fori = 2,4,

(NI < F (N = DT)l; < -+ < W Ol;, forall N e NT. (3.50)

Step 1. Under direct computation, we obtain

’

i((pz(l’)) < (14+8)In(e +1n(e + 1)) — (A — 6)In(e + In(e + 7)) (In(T + €))°
dr \g4(r)/ ™ (In(t + €)= (r + )43
(3.51)

which shows that the function ¢, (7)/@4(7) is decreasing when 7 >> 1. Thus, we can
choose M > 1 satisfying (3.55) and (3.60), such that

©2(t8) = 1> po2(t8) + 1< p2(t)

) (3.52)

w2 (M
<1 st 1 Mo (1),
= tsz(p4(M)¢4( ) + tr<M @1 (t¢)

where we use ¢2(1) = “t¢i(7) and “EX < M for M >> 1.
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Applying (3.50) fori = 4 and (3.52) with M >> 1, we obtain for 1 < N € N*,

1
o) F(N = DTy,

_</)2( )
04(M)

3T¢
_ L ga0on Town (33
= M) demy,

<

lgain) S (N = DTy, + 1S (N = DTo)ley, (553,

1 O)llly + llg1 (@) £ (N = DTo)l 1.

After inputting (3.53) into (3.43) for i = 2, we derive that

3Ty
1 M 4
IfF(NTO)ly < 359« x I (N = DTo)l, + — W(M) (‘;>|||f<0>|||4,
Mo ()
(3.54)

with (3.54),:=max {(1 — myp, {1 — B0y -3 4 £), (1= 39}

o (3TO)
Step 2. Using 7y > 20 in (3.42), we have 3 7+ i < 1. Thus, tentatively we make
an assumption, which will be justified later behlnd (3 60),

4C(e + 3T)y) 3 e q 1 }

(%)

For any > 0, we choose N, € N such thatt € [N, Ty, (N« + 1)Tp]. From (3.54) and
(3.55), we derive, forall 1 < N < N, + 1,

(1 n %)_1 > max {(1 ~mp {1 —

(3.55)

15\-1
IFN Tl < (1+57) WA = DT, + R, (3.56)

1 gp(M) %3 (STO)
where R:=; ZiEM; (Wo Il 7 (O)lll4-

From (3.5) and 0 < N, Ty < t, there exists a constant C > 0, such that
o) FOllr, < el FNTD 1, + CTol F NGOy - (3.5T)

Now applying (3.57) first and using (3.56) successively, we conclude that

1\-1
IF Ol So IIF NIl < (14 22) LA (e = DTl + %

< (14 2) @ = 2Tl + (14 1) R4
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1\ N
<= (1+27) PO+ 1+ MR, (3.58)

From N, Ty <t < (N + DTpand 1 < TM <2, we get

Ny+1 Ns+1 4

(l—l-%)_N* 5((1+%)—M) M <em W <e T 2M |

3%
(1 + M)% < z"’ZEM; . E%g £ Ol

Then we have

1£0, < IFOl < (3.58) < max (e 07 gy(M)/s(M))
<{I1L£ Ol + £ Ol }- (3.59)

Step 3. To make |e_ﬁ —p(M)/ps(M)] < 1 ast — oo, we set M as follows:
= 1[2T In(10 + +4-0)] ', (3.60)

so that
max {e” 07, ga(M)/ga(M)} gy (nfe))A=07% (1)0~A, (3.61)

Clearly such a choice assures our precondition (3.55) for ¢ > 1.
Now we claim that

1L O)llla + 1Ol < fle2™ T2 foll e, (3.62)

. 1,2
Note that it suffices to check that [|4(tr) foll 11 < [le2! P fo]l oo .

Assume ||e%‘”|2+¢(x)fo||Lg?v < o0, from (2.1), (2.20), ®(x)|yeso = 0 and A =
[ﬁ], then we derive

= _Lp2-
fo o (040D S0, w)ldydw S f / (. o)A 2P ) - v jdsduasy
X

- 2
/ / (I (x, V)A e 2 n(x) - v]dsdvdSy
- (3.63)

1.2 12
N/ (a7L3)'A 367 2 |vz|dvdSy
Y+

2
5/ a~1v3! dvy < oo,
v3<0

and this concludes the claim. Finally, together with (3.59), (3.61) and (3.62), we prove
(1.11). O
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4 Estimates on Exponential Moments

Now we are able to show the asymptotic behavior of the exponential moments. The
main purpose of this section is to prove Theorem 3.

4.1 Some Preparation on Exponential Moments

To estimate the exponential moments, we include two weight functions: (i) a time-
dependent weight function o(¢), and (ii) a time-independent weight function w’(x, v),
which is constant along the characteristic trajectory (1.14). Then we consider the
stochastic cycle representation of o (£)w’(x, v) f(z, x, v).

Lemma 22 Suppose f(t, x, v) solves(1.1) and (1.2) withO = t, < t. Consider a time-
dependent function o(t) and a time-independent function w'(x, v), which is constant
along the characteristic (1.14). Then for k > 1,

oMw'(x, v) f (1, x,v) =11 g (W' (X(0: 1, x,v), V(0: 1, x,v)) f(0, X, V) 4.1

(o) Y f , [1,i+1<0§,i.g(0>w’(X<o; 1 xt ), V(0 1 X' ')
; i=1Vj

10, X, V)}di,- 4.2)
+w'px', vp) Zf 10<,, / o' (W (X(sst',x", v, Vst x', v")
max(0,zi+1)
X (s, X310, %0, 00y, Vis: o, x0 v"))ds]dii (4.3)
+ ', ) / R P O G RG> (4.4)
j=1 Vi
where diizzmdm_l ---doy, withdoj = M(xjﬂ, v {n(xd) - vi}dul.

Here, (X, V) solves (1.14).

Proof Following Lemma 7 and Remark 9, we obtain this Lemma. O

We start with a simple case when w’(x, v) = 1. Applying Lemma 22, we derive
the stochastic cycle representation of o(¢) f (¢, x, v) as follows.

o) f(t,x,v) = 1; <o 0 f(0, X052, x,v), V(0; 7, x, v)) 4.5)

+ p(x', vp) Z f ,,+1<o§,,-g(0>f<o, X(0; 1", x" v, V(O0; 1, X', vl'»}dz,
, 1 Vi
4.6)

ti . . .
+/L(x vb)Z/ 10<t, / . Q' () f(s, X(s;t', x",v"),

max (0,7 +1)
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Vs o, v))ds s 4.7

+ (xt, vb)/ Lisg o(t*) f(t*, x*, v5)dEy, (4.8)
[T v

where d%; = —$%—do;_; ---doy, with doj = u(x/*!, v/){n(x/) - v/}dv/, and

(X, V) solves (1.14).

Here, we put emphasis on (4.7) and (4.8) since (4.5) and (4.6) can be controlled by
Theorem 1 and initial condition, which will be shown in the proof of Theorem 3.

To estimate (4.7), for j =i — 2,i — 1, we apply Proposition 10 on V;, together
with 4 > [n(x/) - v/| in Lemma 11, then we obtain for j =i —2,i — 1,

doj = ;L(xj+1, vj){n(xj) . vj}dvj

S T oD ) o)) 6) PdmdSy, S pe/ ) = didSy,,.

T
Then we derive
da~_2/ do-_1/ L+ i
/Vi—z l Vici l Vi b=
/ o () f(s, X(sit', x' v, Vs ', x' v' D {n(x") - v' }dsdo!
0
ti72 ) dS
i—1 xi—1 i—1 . mn
S A B = DTN
tb m,ne’ (49)
12 ds.
i—2 x! i .m,n
/o dn, /asz D DALY
tb m,ne”’

t oL oL S
X[ lti+l<0<ti[ O If (s, X(sst', x 01, Vsi ', x", v')ds{n(x") - v' }do',
Vi - 0

(4.9)*
: i—1 _ 42 i—-2 i -1 i—1 m,n i ..m,n mmn
with ¢ =t & 5, =t — and Vi = vp(x', v;2)), Vil =
i—1 .,m,n
vp(x' T, v 05).

Now we can control (4.7) via the following lemma:

Lgmma 23 Suppose f(t,x,v) solves (1.1), (1.2) and (X, V) solves (1.14), for 0 <
t' <tandi=3,---,k—1,

[

1 .
j=1VYj

V(s;t', x", v))dsdE; < / o' () f(s)|l1 ds. (4.10)
O X,V

tf
Liti o< / o () f(s, X(s; 1", x", v,
0
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where d%; = /ﬁd@_l -+ -doy, with do; = p(x/t v {n(x/) - v/}dv/, and

(X, V) solves (1.14).

Proof Step 1. For (4.10), it suffices to prove this upper bound fori =2, ..., k — 1,

ti
/FIV/VIZHI<0511'/(; o ()N f (s, X(s; 1", x', v,
j=1YiVi

Vis; ', xt o) ds{n(x") - vi}dvidoi_y - - - doy. 4.11)

Applying Prop osition 10 as in (4.9), we bound the above integration as

=2 . t"*z—tl‘;‘l
@.11) 5/ dc71~~/ dai_3/ dt;;l/ dt;;?/ ds,
Vi Vi3 0 0 Q
o -
D2 P PR A 4.12)
x </m . = x = wet dst) x (4.9)*.
b b
“4.12),
Step 2. We claim that
(412), S 11 i (= A L1y (i hy=A, (4.13)

In order to prove this claim, we split into the following two cases:
Case 1: i~ < 1172, Using (2.32) and (2.33) in Lemma 13, we bound

Zzu(xiil’vfn‘!g"’) 1 1 (4.14)
m,ne
’ : Lio — 41,0 —— :
I A
b b b

Replacing i with i 4+ 1 in (2.32) and (2.33), we bound

>onE vt )

m.neZ 1 ;x4 (a,b) — x|
T N Z 11‘{;'51'[[71' (x T )
b la|<2.]b| <2 b b
4.15); (4.15)
) TodiI2 ) i—1,4—A
+1tl‘1_151|t{)71|e b +1tl’)_'zl|tb | .
—_—
4.15)3

4.15),
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For (4.15)1, we employ a change of variables, for xi €99, lal <2,|b| <2and
0< t{fl <1,

. 1

Al e i=—— G (@ b) —x) e &,
I Xt
b

where the image 6 -1 of the map is a two-dimensional smooth plane. Using the
Ty

local chart of 9Q2, we have dS,i-1 < |t it |>dS,. From this change of variables and
(4.14), we conclude that

Z I‘L(xi_ ’ lm’zlb)

m,ne
ltli) L= /asz 2 x (4.15)1 dS,i—1
L2
< Lio1_i2(4.14) x Z ) lti71<1€77|1| |tll) 1|dSZ
b =h S b =
lal<2,1b1<2 " =i izt (4.16)
1 1 :
< . - ) i—1
Nll l 2{11 2. |tl 2| +ltlt)72zl|tl._2|A_4}1tlz)—l§1|tb |
b b
1
|tb | 1 1
< ) <1. )
~ 1 l 2!1 i— 2 |tl 2| + lt{,_zzl |ti72|-’4_4} ~ 11";_251 + 11";_221 Iti72|_A—4.
b b b
. -1 2
For (4.15), since e 22 < ¢t for 0 < ¢ < 1, then we have
i—1 s
ZZu(x‘ Vo)
€
1Hi4/'“ : x (4.15)2 dS, i1
y =t 90 |tll)72| X
| -t
i—12
< ltli,—lst]i)—Z(4.14) X lt,",flsl —e 2y ) f dsS,i-1
7, aQ
1 1
<1i1_,- [11‘7 — 4+ 1, .—}11‘ il (4.17)
S S T |l{)_2| 'z |l{,_2|“4_4 Ty 1<]| |
i—1
Ity | 1
= lté_lflﬁ_zﬁll{)_zfl + lfl_zilm
b b
1
= lté_zil + 1’£_231—|tll;*2|A—4'
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For (4.15)3, from lli71>1|t{)_1|4’“4 S L1, we derive
b = b

BN

S G )
NEL
lti—l<ti—2/ mne = x (4.15)3dS,i—1
b = Q |t{) |

b

e
S (1) x Ll A /a 48 wis)

<1 ‘72{1-72 — +1i .—}1-71
~ T < % 51”1—2' 1 =1 |tz—2|A_4 n'=1
b b
1

<1, -
~ ltll) 251 |lli)_2|~A—4'
Collecting estimate from (4.16)—(4.18), we deduce that

L2 (12 S L2y + Lo Iy 21 (4.19)

Case 2: tl"f] > t{;z. We change the role of i — 1 and i — 2 and follow the argument
of the previous case. We employ a change of variables, for ¥ ledQlal <2,|b| <2
and 0 < t{)_z <1,

. 1 . .
X0 = (T — T € 6 e, (4.20)
b
with dSz,-’fz S Itl’;_2|2dSz. Then we can conclude that
1tli)—12lli)—2(4.12)* <1 1<) + 1tli;1Zl |tlf)*1 |4_-A. (4.21)

Therefore, we show (4.13).
Step 3. Now we apply (4.13) on (4.12). Then we have

2

i i1 i iml el
@i </ do—l.“/ o 3/~t L/mm{t Iy ol }dti_2
. S i -
Vi Vi3 0 (fll)_l)'A_4 0 b

/ dS, x (4.9)* 4.22)
I
e min{t'2—f 72472
+/ doy / dGi—3/ +/ dg,”!
Vi Viss o (A Jo
/ 48, x (4.9)". 423)
IQ

For (4.22), we employ the change of variables
@ty 0D e w) = (X3 =7 =l ),

@ Springer



La Matematica (2024) 3:604-650 641

V(s; P t{)_Z — tl';_l,xi, vi)) e Qx R3,

and we have |n(x!) - Ui|dSXidtli)_2dUi < dydw from (2.1). From 0 < ¢/ < ¢ and
A > 8, we bound (4.22) as

i—2

tt
(4.22) < / doy - -- f do;_3 / dri=ti=tya=A
Vi Vios 0

tl
x / 0'(s) // | f(s,y, w)|dydwds
0 QxR3

t
S /O ') /)y, ds.

A bound of (4.23) can be derived similarly, by using the change of variables

G v e hw) = X2 =72 = X0,

' T 3
Visitio—ty "=t ,x',v")) e QxR

with |n(x?) - vildSXidt{;_ldvi < dydw. O
Next, we control (4.8) by establishing the following estimate:

Lemma 24 Consider (X, V) solving (1.14), there exists € = €(2) > 0 (see (4.28)
for the precise choice), such that

if k> Ct, then sup (/ Lkt x w0l e wk-1)>0 dOT "~dak,1> <e™,
IT; o B

(x,0)eQxR3 ]};i 1%

(4.24)

where doj = ,u(xj+l, v {n(x7) - vj}dvj in(1.17).

Proof From (3.11), we have
[ ot i vy < €5%
n(x)-v>0

Thus we define Vl.a::{vi eV : |n(x!) - v| < 8} and derive that

/ doj < C8%.
Vi

On the other hand, since f,(x, v) > |n(x) - v'|, we derive that for v € V;\V?,
m(x',v') > Cgs.
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If 1. (¢, x, vl vk’l) > 0, we conclude such v’ € V,-\Vf canexistatmost[ﬁ]+l
. . M ) (M—
times. Denote the combination N)= M(MN&_({‘;I._INH) = N,(M N), for M, N €

Nand M > N.From 0 < § <« 1, we have

/nk.—u v, Lyt k120 d0%—1 -+ - doy

lchs1+1 [C;ZB]H

kem k (4.25)

O 0]

Vi =0
N
4.25),
Recall the Stirling’s formula,

Vit ek < k< kb rehEL (4.26)

Using (1 + ﬁ)“_l < e and (4.26), we have for a € Nt and a > 2,

R
£ _(k—é)!é!_ a—1 “ k(a—1)
1 1
:ﬁ<ua a—l Va— __(ea)4

where the last inequality follows from % < 2. Hence, we derive that

]
<k> < E (]If) < i\/g(ea)“ﬁ. (427)
! 1 a I 27 a

Now we estimate (4.25),. For fixed 0 < § <« 1 which is independent of ¢, we
choose

—
alx

1

1 t
a € Nt such that (8’%ea)T2® < ¢~ 2, and Setk::%([CQa] + 1) (4.28)

Using (4.27), we have
t k [eos 141 t [~ ]+1
425, 3 \lg 51+ 1(6[,—) @< =]+ l(ew) e,

Hence, we bound (4.25) by

@ enlea ! [ ]41<e o
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4.2 Estimates on Exponential Moments

Now we are ready to prove Theorem 3. First, we set

6(Jv> 420 (x))

w(x, v):=e and w'(x, v)::ee/(ll"z”q’(x)), (4.29)

where 0 <20 < §' = % Suppose (X, V) solves (1.14). From (2.5), we have

a(|V(s; 1, x, )22+ ®(X(s; 1, x,0))) = 0.

This indicates that both w(x, v) and w’(x, v) are constant along the the characteristic
(1.14).

Proof of Theorem 3 We start to prove (1.12), and pick o(¢) = ¢t + 1 to utilize the
L'-decay of Theorem 1. Then we work on the stochastic cycle representation of
o(Hw'(x,v) f(t, x,v) in (4.1)—(4.4).

For the contribution of (4.1), note that t! <0, and both w’ and f are constant along
the characteristic trajectory. Thus, we deduce that

w' (x,v) f(t, x,v) = w'(X(0; t, x,v), V(0; £, x, v)) £ (0, X(O; £, x, v),

430
V(0;1,x,v) < [[w f(O)Le,. -

Now we bound the contribution of (4.2). Since [n(x)-v| < w'(x, v) = %,u_l (x,v),
we derive

1 k ~
%|(4-2)| S %(SQP/ . ltf+1<0<tid2i>Q(0)||w/f(o)”L;f’U

j=1%J
Kk InGeh) v . 431
Q(,)( f o w,(xj’vj)dv)nwf(onux,v @.31)
k.
o(r)

A

lw’ £ (0l e, -

Applying Lemma 23 and Theorem 1, we bound the contribution of (4.3).
Since [n(x) - v| < wi(x,v) = %u’l(x,v) and ¢’ = 1, together with
w' (v = w (X (s; o', xT ), Vs, x', vh) for max(0, 1) < s < ¢ and
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< d
dEi: mdo‘i_l s dO'], we have
k ! ) o S
—I( 3 < —SUP/ logti/ ow (X (s X ), Vst x ')
o(t) @ ]_[, i max (0,71 +1)

x f(s, X(s3 ', x" 00, Vs o', x7, v'))dsd S

oo ]
= —su 1y,
o(t) ip iy O

j=1"J
/i S S 4.32)
X/ Fls, X(s3t',x",0"), V(ss t', x', v'))ds
max(0,zi+1)
dO’,’
mdaifl i 'd0'1
k
(s) 1ds<—>< w' £(0)
(t)f ILf )Lt o) lw f(O)l e,

Lastly we bound the contribution of (4.4). From Lemma 24, we get

k
o(t")
_(t)|( < 2@ sup </1“[HV L ¢xwol o k-1y=0d01 "'dUk—l)
j=1Yi

(") (x v)eaxRr3
lw’ f (8 Les, (4.33)

Se' sup lw' f$)llze,-

t>5>0

Collecting estimates from (4.30)—(4.33) and using k < 7, we derive

- e*t) sup lw' fOllLge, S A+ ﬂ) x |w' fO)llzgs,- (4.34)

Therefore, we prove (1.12).

Next, we prove (1.13). To show the decay of exponential moments and again utilize
the L'-decay, we set a new weight function

o(t):=(n(r))*=A(r)A=>. (4.35)

Clearly we have o'(r) < (ln(t))ﬁ_““(t)““_6 fort > 1.

Step 1. From Lemma 14, we derive the form of fR3 w(x, v)| f(t, x, v)|dv. First we
split |[v| > #/2 and #; < 3¢/4 case to get (4.36) and (4.37). Next, for t; > 3¢/4 case,
we follow along the stochastic cycles twice with k = 2, #, = t/2, and obtain (4.38)
and (4.39).

/ wx, v)| f(, x,v)|dv < / w(x, v)| f(t, x,v)|dv (4.36)
R3 [v|>t/2
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+/ L1 230w (x, 0)[ f(3t/4, X (3t /45, x,v), V(3t/4; t, x, v))|dv (4.37)
vl<t/2

+/ 1,123,/4w(x,v)u(xl,vb)/2 Lo ppopw o) fe! x! vh)dEidy
R3 [V
(4.38)

+ f 1t133,/4w<x,u>u<x‘,vb>\ / L Lo pwG 0?) f7 2%, 0?)d B3 |d,
R3 l_[j:I Vi

(4.39)
2 _ d 2 _ d
where le = dﬁzm and d22 = W(Mdﬁl.
For (4.36), from the L*°-boundedness, ®(x)|,.q > 0,and 0 < w < w’, we derive

that

/ w(x,v)lf(t,x,v)ldvff D) g ! F(O) s,
[v|=1/2 \ '

vzt72 WX, v)
< / OO qy ! £(O) 1, (4.40)
[v|=1/2 -

1 @-on®
5 (9, — 0)3/26 4 ”w f(o)”L%OU

For (4.37), from it < 3¢/4 and Lemma 8, we have for th<s <,

Vst x,v)? 2
e, v) =1 —1' > 1/4, M FO(X(s: 1, x, V) = 'U;| . (441
On the other hand, using (2.20), we get
i (x, v) < a2 V), (4.42)
Then, from the L°°-boundedness, (4.41) and (4.42), we deduce that
w(x, v) /
(4.37) < ; - : dv[w" f(O)ll L,
i<tz W(X@Bt/4;t,x,v), V(3t/4; 1, x,v)) :
< [ e f g,
Iol=t/2 (4.43)

< / e3P gy’ £0) 1%,
lv|<t/2 |
_A -7
<[ ool f e f O, S 010 O,
lv3|<t/2

Next, we bound ng w(x, v)u(x!, vp)dv shownin (4.38) and (4.39). Note that from
(4.41), we have

et op) = 2w (x, v).
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Thus, we derive

/ w(x, v)p(x!, vp)dv :/ Mdv <g 1.
R3

R3 2w’ (x, v)

For (4.38), since fv2 do» is bounded and from (4.44), we have
(4.38)5/ Lo peml £ x' oDnGeh - v'do'
Vi

From 1! > 3t/4, 1> < t/2 and (2.20), we have

1 1,2
o)y =t =2 =174, az® >t oh).

Then, from the L>-boundedness and 0 < n(x') - v! < et < w'(x!,

0 < e K 1/2, we derive

Iy 1
(445) S / 2D F(O) s,
v, w(xt v :

o\ 12
< / =M dug |’ £(0) | o,
v%gO

AT N R AT [
S [T Dl ),
v3=0

. _A
5/1 NUCER) Lo o F O,
V, <

3=

(4.44)

(4.45)

(4.46)

v!) for

(4.47)

5<r>*7/ 0< DINEA! £ O) I, < (07w FO)120 -
v3<

Step 2. Now we only need to bound (4.39). Since fR3 w(x, v)u(xl, vp)dv S 1,

and fV1 do is bounded, it suffices to prove the decay of

sup ’ [V 1,22,/2f(t2, x2, vz){n(xz) . vz}dvzl.
2

veR3 vley)

Here we define g(z, x, v):=o(t)w(x, v) f (¢, x, v) and note that
|n<x2> v?|
(t2)/ 2 >t/2 v ) g(lzsxzv Uz)dvz
= f Losyp f(22, 2%, D) {n(x?) - v }dv?.
V2 N

n(x )v

Therefore, it suffices to show the decay of ’ ﬁ fvz 221/2 96200 g(tz, X
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Applying Lemma 22 with w(x, v) = e (VPH22() ypq o(t) in (4.35), and choosing
k > €t as in Lemma 24, we obtain the following stochastic cycle representation of
g(t*. x*, v?) = 0w, v?) (%, 2, v?):

g(t*, x%, v?)
= 1500w (x?, v) £(0, X (0; 12, x%, v?), V(0; 2, x%, v?)) (4.49)
t2
+wx?, v?) 0/ () f(s. X (5342, x%, %), V(s: 17, %%, v)ds  (4.50)
max(0,13)
k—1
+wp e, vp) Y
i=3
f ,- {lti+1<05tiQ(0)w(xi, v
j=3"YJ
X fO,X©: 1 o), VO, 2 v fAE 4.51)
k—1
+wp e vp) Y
i=3
f. 10§t"{/ ow', v
]_[_'/.=3 \Z max(0,ri+1)
x f(s, X(s; ti, xi, vi), V(s; ti, xi, vi))ds}dfli (4.52)
+w,u(x3,vﬁ)/k Liog g5, xF, v9)dEy, (4.53)
Hj=3 V./'
wheredY;i=——9% _do; | ...dos with3 < i < k. Here, we regard 12, x2, v?
l'_u(xl'i-l,vl)w(xt,vl) i—1 3 — — v ’ g ’ ’
as free parameters and from Lemma 8, we have w(x3, v%) = u(x3, v?).
Step 3. Next timate the contribution of (4.49)~(4.53) in —Ly- [, 12G)
P S. Xt we esuumate € contribution O . —(4. m Q(IZ) Yy w(xz,vz)

g(t2, x2, 1)2)dv2 term by term.
We start with the contribution of (4.49). From 2>t /2 and 3 < 0, we have

lw?, v £ x2 vz, < lwx, v) £, x, V)L,

X, v =

From the L°°-boundedness and 0 < n(x?2) - v2 < w(xZ, v?) < w'(x2, v?), we deduce
that

1 n(x%) - v > o 1 n(x?) - v?| 2
o@D by, wizon NN S o | T vy 0O X wf Ol
< ——0O)wf Oz, S —— 0/ f Oz,
~ o) e

(4.54)
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Now we bound the contribution of (4.50). Recall Theorem 1 with o'(r) <
(n(r)®~ A1)~ for  >> 1, and Lemma 23, we get

1 In(x?) - v?|
o(t?) Jy, wx2, v?)

|(4.50)|dv* < —/ llo" () f () ds

(t) / ()5 A ()47 £s) 1,y ds

N ﬁ x lw' £(0)| L, -

(4.55)

Next, we bound the contribution of (4.51). From it <0 < ¢, we have

lwe', o) £ ' ) L, < llwx, v) £0, x, ) L2, -

X, v

From the L°-boundedness and 0 < n(x2) - v? < wx2, v < w2 v?)
= %/x—l(ﬁ, vz), we derive

1 In(x?) - v?|
0(t?) Jrs w(x?,v?)

k ~
S _<SUP/ _ 1,i+1<05,id2i>9(0)||wf(0)||L;?U
i b=V

1(4.51)|dv?

o(r)

k In(x’) - vl i)
< ——d 0)]l o0
~ Q(t)(fn<x'>v'>o wixl o) lf Oz,

Tllw SO,

(4.56)

Again using Lemma 23 and Theorem 1, we bound the contribution of (4.52). From
0<n(x?) v> <wx?v?) <pu @3 v and o' (1) < (ln(t))éf““(t)““*6 fort > 1,
we have

1 In(x?) - v?|
0(t?) Jrs w(x?,v?)

k o o
< — x sup/ 4 10<lif w(x', v)o'(s)
o(1r) i [—[’F; Vi Jmax(0,1+h)

1(4.52)|dv?

f (s, X(s‘ ) xt, vi) V(s‘ti Xt vi))dsdfli (4.57)
t
20 / ') f )1 ds S ft) /0 IAn(s)®A () F ()l ds
kt
S —— x|l fO)llLs,

o
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Lastly we bound the contribution of (4.53). Applying Lemma 24 with k > €t, we
get

1 In(x?) - v?|
4.53)|dv?
o@D Jar wixz, vy |V
5 Q(tz) up (/ Lik2 x2 02, pk-1)>0d03 - "dffk—l) sup [lwf ()l .z,
o )(x v)eQxR3 I}:iV; T - 17=>0
<e” su%“w ft iz, S e llw'f (0L,
1=
(4.58)
Collecting estimates from (4.54)—(4.58) and using k < 7, we derive
— f LG K PR
Q(t ) w(x<, v7) 4.59)
L k+Dr , 0 '
ax{——, ————, ¢ "} x [[w fO)llre, S —= x |w f(O0)Lx,
o) o) = o(r) o

Using o(7) = (In{r)*~A(1)A75,0 < w(x, v) < u~'(x, v) and (4.59), we conclude

(4.39) < n? < (AT
~o@t) ~

From the above estimate, together with (4.40), (4.43) and (4.47), we prove (1.13). O
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