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Abstract
We study linear two-and-a-half-dimensional Vlasov equations under the logarithmic
gravity potential in the half-space of diffuse reflection boundary. We prove decay-in-
time of the exponential moments with a polynomial rate, which depends on the base
logarithm.

Keywords Vlasov equation · Diffusive reflection boundary · Logarithmic gravity
potential

1 Introduction

In this paper, we consider a free molecules without intermolecular interaction which
are contained in a horizontally periodic three- dimensional half-space ! = T2 ! R+
and subjected to the gravity field. A governing kinetic model of the system is the
Vlasov equations:

∂t F + v · ∇x F − ∇#(x) · ∇vF = 0, for (t, x, v) ∈ R+ ! ! ! R3. (1.1)

Here, #(x) is a given external field (gravity), which will be specified later in (1.6).
At the bottomof domain, the phase boundaryγ :={(x, v) ∈ ∂!!R3} is decomposed

into the outgoing boundary and incoming boundary γ±:={(x, v) ∈ ∂!!R3, n(x)·v ≷
0} with the outward normal n(x) at x ∈ ∂!. It is clear that |∂!| = 1. Further, we
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consider the molecules interact with the boundary thermodynamically via a diffusive
reflection boundary condition

F(·, x, v) = µ(x, v)∫

n(x)·v1>0
F(·, x, v1){n(x) · v1}dv1 for (x, v) ∈ γ− := {x ∈ ∂! and v3 > 0},

(1.2)

such that an outgoing distribution is proportional to the thermal equilibrium of the unit
boundary temperature:

µ(x, v) = 1
2π

e− |v|2
2 (wall Maxwellian). (1.3)

where
∫
n(x)·v1>0 µ(x, v

1){n(x) · v1}dv1 = 1, and we have a null flux at the boundary
and enjoy the conservation of total mass:

∫∫

!!R3
F(t, x, v)dxdv =

∫∫

!!R3
F(0, x, v)dxdv = m > 0.

Throughout this paper, we always assume that the total mass equals m.
If the boundary temperature varies with the position on the boundary, then station-

ary solutions to (1.2) are neither given by explicit formulas nor are equilibria (local
Maxwellian) in general, if they exist (see [5] for the construction of steady solutions).
This is because any explicit solution can be obtained by backtracking along the charac-

teristics until the boundary.Under the non-isothermal casewhenµθ (x, v) = 1
2π e

− |v|2
2θ(x)

and θ(x) varies with x , local Maxwellian doesn’t satisfy the diffusive boundary con-
dition in general.

In this paper, we only focus on the asymptotic stability of simpler isothermal bound-
ary for the sake of simplicity. In this case of the isothermal boundary (1.3), a stationary
solution has an explicit form: for some cm > 0

µ̃(x, v):= cm
2π

e
−
(

|v|2
2 +#(x)

)

.

The uniqueness of stationary problem can be easily proved as the problem is linear
(see [5] for the details).

Themain interest in this paper is to study stabilizing effect of the diffusive reflection
boundary to the Vlasov equations under the logarithmic potential

#(x) = loga(1+ x3). (1.4)

This potential is physically relevant in the 2Duniverse. Indeed the logarithmic potential
(1.4) corresponds to the Newtonian potential in the 2-dimensional universe. A relevant
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model is the two-and-a-half-dimensional Vlasov equation:

∂t F +
∑

i=1,3

vi∂xi F − ∂x3#(x)∂v3F = 0, (1.5)

where the spatial domain is T ! R+:={(x1, x3) ∈ T ! R : x3 > 0}.
Our full 3-dimensional problem (1.1) can directly apply to this two-and-a-half-

dimensional model (1.5) by setting data homogeneous in x2-direction, that is, F =
F(t, x1, x3, v) and F0 = F0(x1, x3, v) in the spatial domain ! = T ! R+ and the
domain of the velocities is still R3.
Notations. Here we clarify some notations: N+ represents the set of all positive
natural numbers; A " B if A ≤ CB for a constant C > 0 which is independent
on A, B; A "θ B if A ≤ CB for a constant C = C(θ) > 0 which depends on
θ but is independent on A, B; ‖ · ‖L1

x,v
for the norm of L1(! ! R3); ‖ · ‖L∞

x,v
or

‖ · ‖∞ for the norm of L∞(!̄ ! R3); |g|L1
γ±

=
∫
γ± |g(x, v)||n(x) · v|dSxdv where

dSx = dx1dx2 represents the measure on the boundary ∂! and n(x) is the outward
normal at x ∈ ∂!; an integration

∫
Y f (y)dy is often abbreviated to

∫
Y f , if it is not

ambiguous. We remark that n represents an integer without x ∈ ∂! (e.g.,Proposition
10). Finally, when we write (A.1) ≤ C , we mean that C is an upper bound of the
most right-hand side of the equation (A.1).

Main Theorems. The main interest in this work is to study a long-time behavior of
solutions to the Vlasov equations for the field as follows:

#(x) = loga(1+ x3), and A =
[

1
ln(a)

]
≥ 8, (1.6)

where [m] represents the biggest integer less than or equal to m. Here we set A as
the integer part of 1/ ln(a) for the convenience of decay rates in main results (see
Theorem 1 and Theorem 3).

The gravitational potential in the logarithm form plays an important role to the
convergence speed which turns out a polynomial rate depends on the base of the
logarithm.

We express the perturbation form as

F(t, x, v) = µ̃(x, v)+ f (t, x, v), (1.7)

and the initial data F0(x, v) = µ̃(x, v)+ f0(x, v).

Theorem 1 shows L1-estimates on every fluctuation which is of zero initial mass.

Theorem 1 Consider the initial data F0(x, v) = µ̃(x, v)+ f0(x, v) ≥ 0, such that

∫∫

!!R3
f0(x, v)dxdv = 0, ‖e 1

2 |v|2+#(x) f0‖L∞
x,v

< ∞. (1.8)

123



La Matematica (2024) 3:604–650 607

There exists a unique global-in-time solution

F(t, x, v) = µ̃(x, v)+ f (t, x, v) ≥ 0 (1.9)

to (1.1) and the boundary condition (1.2) with the initial condition F(t, x, v)|t=0 =
F0(x, v) in ! ! R3, such that

∫∫

!!R3
f (t, x, v)dxdv = 0, for all t ≥ 0. (1.10)

Moreover, we have

‖ f (t)‖L1
x,v

≤ C(ln〈t〉)A−6− δ
2 〈t〉−(A−6) ! ‖e 1

2 |v|2+#(x) f0‖L∞
x,v
, (1.11)

where C = C(!) only depends on the domain !, 0 < δ < 1 and A is given as in
(1.6).

Remark 2 To prove Theorem 1, we introduce and compute the norms of f (t, x, v) at
time t = kT0 with k ∈ N (see (3.38)). Further, the time interval T0 depends only on
the domain ! (see Propositions 18 and 21). Therefore, the constant C only depends
on the domain !.

Theorem 3 proves the decay of the exponential moment on the fluctuation.

Theorem 3 Assume all conditions in Theorem 1. For all t ≥ 0 and 0 ≤ 2θ < θ + = 1
2 ,

sup
t≥0

‖eθ +(|v|2+2#(x)) f (t)‖L∞
x,v

" ‖eθ +(|v|2+2#(x)) f0‖L∞
x,v
. (1.12)

sup
x∈!̄

∫

R3
eθ(|v|2+2#(x))| f (t, x, v)|dv "θ 〈t〉7−A. (1.13)

Remark 4 The decay rate and the potential have a close relation. When the gravity is
constant (for example: #(x) = gx3), then the system has an exponential decay [5,
6]. On the other hand, when the domain is bounded and the potential is zero, the decay
rate is polynomial depending on the spatial dimension. This is due to the fact that low
velocities stay in the system for a long time. About this direction, we refer to [1, 2, 4,
7] and the references therein.

Difficulties and Ideas. Throughout this paper, we use the fundamental idea where for
each velocity obtained from the diffusive reflection boundary condition, we compute
how the velocity transfers through space under the kinetic operator. This idea is realized
by the stochastic cycles.

The characteristics of (1.1) are determined by the Hamilton ODEs

{
d
ds X(s; t, x, v) = V (s; t, x, v),
d
ds V (s; t, x, v) = −∇#(X(s; t, x, v)), (1.14)
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for −∞ < s, t < ∞ with (X(t; t, x, v), V (t; t, x, v)) = (x, v).

Definition 5 (Stochastic Cycles)
Consider (X , V ) solving (1.14), which is the characteristics of the Vlasov equations

(1.1). Define the backward exit time tb and the forward exit time tf ,

tb(x, v):= sup{s ≥ 0 : X(t − ( ; t, x, v) ∈ !, ∀( ∈ [0, s)}, xb(x, v):=X(t − tb(x, v); t, x, v),
tf (x, v):= sup{s ≥ 0 : X(t + ( ; t, x, v) ∈ !, ∀( ∈ [0, s)}, xf (x, v):=X(t + tf (x, v); t, x, v).

(1.15)

We define the stochastic cycles:

t1(t, x, v) = t − tb(x, v), x1(x, v) = xb(x, v) = X(t1, t, x, v), vb(x, v) = V (t1, t, x, v),

tk (t, x, v, v1, ..., vk−1) = tk−1 − tb(x
k−1, vk−1), tkb = tk+1

f = tk − tk+1,

xk (t, x, v, v1, ..., vk−1) = X(tk ; tk−1, xk−1, vk−1), vkb = V (tk+1; tk , xk , vk ),
(1.16)

where we define v j ∈ V j :={v j ∈ R3 : n(x j ) · v j > 0} with the measure d) j =
d) j (x j ) on V j which is given by

d) j :=µ(x j+1, v
j
b){n(x j ) · v j }dv j . (1.17)

Here, n(x) is the outward normal at x ∈ ∂!. To clarify the notation, in the rest of
this paper,we let the superscript of x, v, t, vb, xb, tb (e.g.,xi , t ib) denote the notation in
the stochastic cycles; we include absolute brackets or parentheses or angle brackets to
denote the power of these terms (e.g., (tb)2, 〈t ib〉4).

Given (t, x, v) ∈ R+ ! ! ! R3, suppose that (X(s; t, x, v), V (s; t, x, v)) solves
(1.14), the backward exit time tb stands for the longest backward time, for which the
characteristic X(s; t, x, v) stays in the domain !. And xb = X(t − tb; t, x, v) is the
boundary position when s = t − tb. Similarly, the forward exit time tf is the longest
forward time, for which the characteristic X(s; t, x, v) stays in the domain !, and
xf = X(t + tf ; t, x, v) is the boundary position when s = t + tf . Moreover, since
the field #(x) is timely independent, this leads that both tb and tf are also timely
independent.

Now we explain a major difficulty in the presence of logarithmic potential. Com-
pared to the constant potential considered in [5], the backward exit time tb and the
forward exit time tf have much weaker control. Indeed,we can derive that, for any
(x, v) ∈ γ−,

a
1
2 |v3|2

√
1 − a− 1

2 |v3|2 " tb(x, v) " a
1
2 |v3|2 ,

using the conservation of mass on the characteristic line crucially. This control shows
that the backward exit time tb is comparable to a

1
2 |v3|2 when n(x) · v - 1. The crucial
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observation is that the Maxwellian µ(x, v) = 1
2π e

− |v|2
2 has a polynomial control on

tb (or tf for (x, v) ∈ γ+) depending on A = [ 1
ln(a) ]. Therefore, we are able to control

the sum of infinite Maxwellian terms produced by the periodic domain (see Lemma
13).

The proof of dynamical stability on the fluctuations f (t, x, v), which solves (1.1),
(1.2), and (1.8), is based on a lower boundwith the unreachable defect (see Proposition
17) as follows:

f (NT0, x, v) ≥ m(x, v)
{ ∫∫

!!R3
f ((N − 1)T0, x, v)dvdx

−
∫∫

!!R3
1
tf (x,v)≥ T0

4
f ((N − 1)T0, x, v)dvdx

}
,

where m(x, v) is defined in (3.32). This is also considered as the Doeblin condition
where f (t, x, v) is bounded below by the part of the mass of molecules in previous
stochastic cycles. We refer to [3], which includes a systematic exposition of Doeblin-
type arguments.

Next we control the unreachable defect (see Lemma 15). Since the forward exit
time under Vlasov operator can be controlled as follows:

∂

∂t
tf (t, x, v)+ v · ∂

∂x
tf (t, x, v) − ∇#(x) · ∂

∂v
tf (t, x, v) = −1,

any weight function ϕ(tf ) satisfies (v ·∇x − ∇#(x) ·∇v)ϕ(tf ) = −ϕ+(tf ). Moreover,
we consider the weight function ϕ : [0,∞) → R to satisfy that for any ( ≥ 0,
ϕ(( ) ≥ 0, ϕ+ ≥ 0, and

∫ ∞

1
( 3−Aϕ(( )d( < ∞. (1.18)

It is worth to compare to the constant gravity case [5] whenwe allow
∫ ∞
1 e− 1

2 ( 2ϕ(( )d(
< ∞ and then the system has an exponential decay. This weaker weight in ( restricts
the range of ϕ and consequently deduces a polynomial decay.

Suppose f solves (1.1) and (1.2), there exists C > 0 independent of t∗, t , such that
for all 0 ≤ t∗ ≤ t ,

‖ϕ(tf ) f (t)‖L1
x,v

+
∫ t

t∗
‖ϕ+(tf ) f ‖L1

x,v
ds +

∫ t

t∗
|ϕ(tf ) f |L1

γ+
ds

≤ ‖ϕ(tf ) f (t∗)‖L1
x,v

+ C(t − t∗ + 1)‖ f (t∗)‖L1
x,v

+ 1
4

∫ t

t∗
| f |L1

γ+
ds.

We remark that the exponent 3 − A in (1.18) is determined from the initial condition
‖e 1

2 |v|2+#(x) f0‖L∞
x,v

< ∞ and polynomial control between µ(x, v) and tf for (x, v) ∈
γ+. Furthermore, this exponent will restrict the decay rate of Theorem 3. Then we
introduce two norms |||·|||2 and |||·|||4 as
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||| f |||i :=‖ f ‖L1
x,v

+ 4mT0

ϕi−1

(
3T0
4

)‖ϕi−1(tf ) f ‖L1
x,v

+ 4emT0

T0ϕi−1

(
3T0
4

)‖ϕi (tf ) f ‖L1
x,v
,

where four polynomial weights ϕ1,ϕ2,ϕ3,ϕ4 are defined in (3.39). We derive the
polynomial decay in L1 after using an energy estimate on these norms.

At last, to conclude a pointwise bound on the exponential moment, we intro-
duce several weight functions +(t) and w+(x, v). Then we control the bound on
+(t)w+(x, v) f (t, x, v) via stochastic cycles expansions and polynomial decay on the
fluctuations proved before. This allows us to conclude the decay of the exponential
moment.

Structural of the paper. For the rest of the paper, we collect some basic preliminaries
in Sect. 2. Then in Sect. 3, we study the weighted L1-estimates and prove Theorem 1.
Finally in Sect. 4, we show an L∞-estimate of moments in Theorem 3.

2 Background

We first list some properties for (1.14), the characteristics of (1.1).

Lemma 6 [5] For any g(t, x, v) and (X , V ) solving (1.14), we have

∫

γ+

∫ t−

0
g(t, X(t, t + s, x, v), V (t, t + s, x, v))|n(x) · v|dsdvdSx =

∫∫

!!R3
g(t, y, v)dydv, (2.1)

∫

γ−

∫ t+

0
g(t, X(t, t − s, x, v), V (t, t − s, x, v))|n(x) · v|dsdvdSx =

∫∫

!!R3
g(t, y, v)dydv, (2.2)

∫

γ±
g(t, x∓(x, v), v∓(x, v))|n(x) · v|dvdSx =

∫

γ∓
g(t, y, v)|n(y) · v|dvdSy . (2.3)

Here, for the sake of simplicity, we have abused the notations temporarily: t− =
tb, x− = xb and t+ = tf , x+ = xf .

The following Lemma will let us derive the stochastic cycles.

Lemma 7 [5]
Suppose F(x, v) solves (1.1) and (1.2). Consider (X , V ) solving (1.14) with 0 ≤

t∗ ≤ t , then for k ≥ 1,

F(x, v) = 1t1<t∗F(X(t∗; t, x, v), V (t∗; t, x, v))

+µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j
{
1t i+1<t∗≤t i F(X(t∗; t i , xi , vi ), V (t∗; t i , xi , vi ))

}
d,i
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+µ(x1, vb)
∫
∏k

j=1 V j

1tk≥t∗F(x
k, vk)d,k, (2.4)

where d,i := d)i
µ(xi+1,vib)

d)i−1 · · · d)1, with d) j = µ(x j+1, v
j
b){n(x j ) · v j }dv j in

(1.17), and v
j
b = vb(x j , v j ) defined in (1.16).

Proof The proof follows from a similar argument, Lemma 2 in [5]. 12

Lemma 8 Consider (X , V ) solving (1.14), then for x ∈ ∂! and v ∈ V:={v ∈ R3 :
n(x) · v > 0},

|vb| = |v|.

where vb = vb(x, v) defined in (1.16).

Proof The proof follows from a similar argument, Lemma 3 in [5]. Since (X , V ) solves
(1.14) with v ∈ V , we compute the following derivative:

d
ds

( |V (s; t, x, v)|2
2

+ #(X(s; t, x, v))
)

= V (s; t, x, v) · dV
ds

+ ∇# · dX
ds

= −V (s; t, x, v) · ∇#(X(s; t, x, v))
+ ∇# · V (s; t, x, v) = 0.

(2.5)

Recall that (X(t; t, x, v), V (t; t, x, v)) = (x, v), (X(t−tb; t, x, v), V (t−tb; t, x, v))
= (xb, vb). By taking s = t − tb and s = t , we obtain

|v|2/2+ #(x) = |vb|2/2+ #(xb).

Since #(x)|x3=0 = loga(1+ x3)|x3=0 ≡ 0 and x, xb ∈ ∂!, we have

#(x) = #(xb) = 0,

which implies |vb| = |v|. 12

Remark 9 We compute that µ(x, v) = 1
2π e

− |v|2
2 is radial, that is, µ(x, v1) = µ(x, v2)

if |v1| = |v2|. From the Lemma 8, we obtain µ(x j+1, v
j
b) = µ(x j+1, v j ) where

v
j
b = vb(x j , v j ). Therefore, in the rest of the paper, we write d) j as

d) j = µ(x j+1, v j ){n(x j ) · v j }dv j ,

where v j ∈ V j :={v j ∈ R3 : n(x j ) · v j > 0} and (X , V ) solves (1.14).
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Now we consider the change of variables v ∈ {v ∈ R3 : n(x) · v > 0} 4→
(xb(x, v), tb(x, v)) ∈ ∂! !R+. Since the domain is periodic, this is a local bijective
mapping. For fixed x, tb and xb, we introduce the set of velocities {vm,n}withm, n ∈ Z
such that

vm,n ∈ {vm,n ∈ R3 : n(x) · vm,n > 0} 4→ (xb, tb):=(xb + (m, n, 0), tb)

= (xb, tb) ∈ ∂! ! R+. (2.6)

Proposition 10 Consider (X , V ) solving (1.14),

• For fixed x ∈ ∂!, and m, n ∈ Z, we introduce the following map:

v ∈ {v ∈ R3 : n(x) · v > 0} 4→ (xb, tb)

:=(xb(x, v)+ (m, n, 0), tb(x, v)) ∈ ∂! ! R+. (2.7)

Then the map (2.7) is locally bijective and has the change of variable formula as

(tb)−2(1+ |v3|tb)−1dtbdSxb " dv " (tb)−2dtbdSxb . (2.8)

• Similarly we have a locally bijective map:

v ∈ {v ∈ R3 : n(x) · v < 0} 4→ (xf , tf ):=(xf (x, v)+ (m, n, 0), tf (x, v)) ∈ ∂! ! R+,

with

(tf )−2(1+ |v3|tf )−1dtfdSxf " dv " (tf )−2dtfdSxf . (2.9)

Proof We just need to show (2.8), since (2.9) can be deduced after changing the
backward variables into forward variables. For the sake of simplicity, we have abused
the notations temporarily:

xb:=x1 = (x11 , x
1
2 , x

1
3) = (x1‖ , x

1
3), v = (v1, v2, v3) = (v‖, v3),

vb = (vb,1, vb,2, vb,3), tb = tb(x, v).

Recall #(x) = loga(1+ x3), then we get ∇# = (0, 0, 1
(1+x3) ln(a)

) with 1
ln(a) > 1.

Now we compute the determinant of the Jacobian matrix. Fixing x, t and following
the characteristics trajectory, we deduce

x1 +
∫ t

t−tb
V (s; t, x, v)ds + (m, n, 0) = x, (2.10)

vb +
∫ t

t−tb
−∇#(X(s; t, x, v))ds = v. (2.11)
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Inputting (2.11) into (2.10), we have

x11 + tbv1 + m = x1,

x12 + tbv2 + n = x2.
(2.12)

From (2.11), we obtain tb = tb(v3) and

∂tb
∂v

= (0, 0,
∂tb
∂v3

), and
∂x1‖
∂v

=
(

−tb 0 −v1
∂tb
∂v3

0 −tb −v2
∂tb
∂v3

)

.

Therefore, we get

det
(∂x1‖

∂v
,
∂tb
∂v

)
= (tb)2 ! ∂tb

∂v
. (2.13)

Now recall (1.14),

d
ds

V3(s; t, x, v) = − 1
(1+ X3(s; t, x, v)) ln(a)

. (2.14)

Thus, we obtain

1+ X3(s; t, x, v) = a
1
2 (v

2
3−V 2

3 (s;t,x,v)), (2.15)

and

|vb,3| = |v3|. (2.16)

Inputting (2.15) into (2.14), we derive

d
ds

V3(s; t, x, v) = − 1

a− 1
2 (v

2
3−V 2

3 (s;t,x,v)) ln(a)
,

and thus

a− 1
2 V

2
3 (s;t,x,v)dV3(s; t, x, v) = −a− 1

2 v
2
3

ln(a)
ds. (2.17)

Note that v3 = V3(t; t, x, v) and vb,3 = V3(t − tb; t, x, v). Taking the integration
toward time s ∈ [t − tb, t] on (2.17), we get

∫ v3

vb,3

a− 1
2 V

2
3 (s;t,x,v)dV3(s; t, x, v) =

∫ t

t−tb
−a− 1

2 v
2
3

ln(a)
ds = −a− 1

2 v
2
3

ln(a)
tb.

From Lemma 8, vb,3 = −v3 > 0. Further, since a− 1
2 V

2
is an even function, we have
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∫ v3

vb,3
a− 1

2 V
2
3 (s;t,x,v)dV3(s; t, x, v) = −2

∫ |v3|

0
a− 1

2 V
2
3 (s;t,x,v)dV3(s; t, x, v) = −a− 1

2 v
2
3

ln(a)
tb.

(2.18)

We estimate the following integration:

∫ |v3|

0
a− 1

2 y
2
dy ≤

∫ ∞

0
a− 1

2 y
2
dy "

√
1

ln(a)
.

On the other hand,

∫ |v3|

0
a− 1

2 y
2
dy #

√∫ π
2

0

∫ v3

0
a− 1

2 r
2
rdrdθ #

√
1 − a− 1

2 v
2
3

ln(a)
.

From (2.18), we get

tb = 2 ln(a)a
1
2 v

2
3

∫ |v3|

0
a− 1

2 V
2
3 (s;t,x,v)dV3(s; t, x, v). (2.19)

Then

2 ln(a)√
ln(a)

a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 " tb " 2 ln(a)√

ln(a)
a

1
2 v

2
3 .

Since a is fixed, for simplicity we rewrite the above as

a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 " tb " a

1
2 v

2
3 . (2.20)

Note that for 0 ≤ |v3| 6 1, we use the Taylor expansion on a− 1
2 v

2
3 , and obtain

tb # a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 #

√
1 − a− 1

2 v
2
3 # |v3|. (2.21)

Next, we take the derivative d
dv3

on (2.19) and write dtb
dv3

as

dtb
dv3

= −2 ln(a)+ v3tb < 0.

Thus, we derive that

1+ |v3|a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 "

∣∣∣
dtb
dv3

∣∣∣ " 1+ |v3|a
1
2 v

2
3 . (2.22)
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Since a is a fixed constant, we can write

1+ |v3|a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 "

∣∣∣
dtb
dv3

∣∣∣ " 1+ |v3|tb.

Inputting (2.20), (2.22) into (2.13), we get the following:

∣∣∣ det
(∂x1‖

∂v
,
∂tb
∂v

)∣∣∣ = (tb)2 !
∣∣∣
∂tb
∂v

∣∣∣ # (tb)2 !
(
1+ |v3|a

1
2 v

2
3

√
1 − a− 1

2 v
2
3

)
# (tb)2,

and

∣∣∣ det
(∂x1‖

∂v
,

∂tb
∂v3

)∣∣∣ = (tb)2 !
∣∣∣
∂tb
∂v

∣∣∣ " (tb)2 !
(
1+ |v3|tb

)

Therefore, we conclude

1
(tb)2(1+ |v3|tb)

"
∣∣∣ det

(∂x1‖
∂v

,
∂tb
∂v

)∣∣∣
−1

" 1
(tb)2

,

and we conclude (2.8). 12

The following lemma is a consequence of Proposition 10.

Lemma 11 Consider (X , V ) solving (1.14),

• For x ∈ ∂! and v ∈ V:={v ∈ R3 : n(x) · v > 0}, we consider the map (2.7) with
m, n ∈ Z, then

|v3| = |vb,3| " tb(x, v). (2.23)

• Similarly for x ∈ ∂! and v ∈ {v ∈ R3 : n(x) · v < 0}, we consider the map (2.9)
with m, n ∈ Z, then

|v3| = |vf,3| " tf (x, v). (2.24)

Proof We just need to show (2.23), since (2.24) can be deduced after changing the
backward variables into forward variables. Similar to Proposition 10, we have abused
the notations temporarily:

v = (v1, v2, v3), vb = (vb,1, vb,2, vb,3), tb = tb(x, v).

The first equality |v3| = |vb,3| follows from (2.16).
Next, from (2.20) we have

a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 " tb.
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Since a > 1 is fixed, then for |v3| > 0,

tb
|v3|

# a
1
2 v

2
3

√
1 − a− 1

2 v
2
3

|v3|
> 0. (2.25)

Moreover, there exists sufficiently large n > 1 such that for any |v3| ≥ n,

a− 1
2 v

2
3 ≤ 1

2
. (2.26)

Using the Taylor expansion on a
1
2 v

2
3 , we obtain

a
1
2 v

2
3 # v23 ≥ |v3|. (2.27)

From (2.26), (2.27), we derive that for any |v3| ≥ n,

tb # a
1
2 v

2
3

√
1 − a− 1

2 v
2
3 # 1√

2
|v3|. (2.28)

On the other hand, from (2.21) for 0 ≤ |v3| 6 1, we have

tb # |v3|. (2.29)

Together with (2.25), (2.28) and (2.29), we conclude (2.23). 12

Remark 12 We can apply Proposition 10 on v j ∈ V j 4→ (x j+1, t jb ) := (xb(x j , v j ),

tb(x j , v j )), and this is also a local bijective mapping. For fixed t jb and x j+1, we
introduce the set of velocities {vm,n

j } with m, n ∈ Z such that

vm,n
j ∈ V j 4→ (x j+1 + (m, n, 0), t jb ) = (x j+1, t jb ) ∈ ∂! ! [0, t j ], (2.30)

with the change of variable formula as

dvm,n
j " |t jb |−2dt jbdSx j+1 . (2.31)

Because of the periodic domain, we will gain an infinite sum of Maxwellian terms
as the integrand after the change of variable in Remark 12. In the following lemma,
we do an estimate on this infinite sum.

Lemma 13 Consider (X , V ) solving (1.14) with xi−1 ∈ ∂!, for t i−2
b ≥ 1,

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b) " |t i−2
b |4−A. (2.32)
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For 0 ≤ t i−2
b < 1,

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b) "
∑

|m|<2,|n|<2

µ(xi−1, vm,n
i−2,b)+ e

− 1
2(ti−2

b )2 , (2.33)

where vm,n
i−2,b = vb(xi−1, vm,n

i−2), which was defined in (1.16) and (2.6).

Proof Here, for the sake of simplicity, we have abused the notations temporarily:

xi = (xi1, x
i
2, x

i
3) = (xi‖, x

i
3), v

m,n
i,b = (vm,n

i,b1 , v
m,n
i,b2 , v

m,n
i,b3) = (vm,n

i,b‖ , v
m,n
i,b3).

To estimate vm,n
i−2,b‖ , we recall (2.12) and get

|vm,n
i−2,b1 | =

|xi−1
1 + m − xi−2

1 |
t i−2
b

, |vm,n
i−2,b2 | =

|xi−1
2 + n − xi−2

2 |
t i−2
b

. (2.34)

Now we split the length of t i−2
b into two cases:

Case 1: t i−2
b ≥ 1. From (2.34), for |m| ≥ (t i−2

b )2, we bound

|xi−1
1 + m − xi−2

1 |
t i−2
b

# |m|
2t i−2

b

.

Similarly, for |n| ≥ (t i−2
b )2, we bound

|xi−1
2 + n − xi−2

2 |
t i−2
b

# |n|
2t i−2

b

.

For |m| < (t i−2
b )2, we bound |vm,n

i−2,b1 | ≥ 0, and for |n| < (t i−2
b )2, we bound

|vm,n
i−2,b2 | ≥ 0. In order to derive (2.32), we divide {vm,n

i−2,b}m,n∈Z into four parts.

(a) For |m| < (t i−2
b )2 and |n| < (t i−2

b )2, we bound a
1
2 |v

m,n
i−2,b3

|2 # t i−2
b in (2.20).

Therefore, we have

∑

|m|<(t i−2
b )2,|n|<(t i−2

b )2

µ(xi−1, vm,n
i−2,b) " (t i−2

b )4e− 1
2 |v

m,n
i−2,b|2 " (t i−2

b )4(t i−2
b )−A

= |t i−2
b |4−A. (2.35)
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(b) For |m| < (t i−2
b )2 and |n| ≥ (t i−2

b )2, we bound |vm,n
i−2,b2 | # |n|

2t i−2
b

. Thus, we have

∑

|m|<(t i−2
b )2,|n|≥(t i−2

b )2

µ(xi−1, vm,n
i−2,b) "

∑

|m|<(t i−2
b )2

µ(xi−1, (0,
|n|

2t i−2
b

, vm,n
i−2,b3))

" (t i−2
b )2(t i−2

b )−A
∞∑

n=0

µ(xi−1,
|n|

2t i−2
b

)

≤ (t i−2
b )2(t i−2

b )−A(1 − e
− 1

8(ti−2
b )2 )−1

" (t i−2
b )4(t i−2

b )−A = |t i−2
b |4−A,

(2.36)

where the last inequality holds from the Taylor expansion.
(c) For |m| ≥ (t i−2

b )2 and |n| < (t i−2
b )2 case, we bound |vm,n

i−2,b1 | # |m|
2t i−2
b

. Similar as

in (2.36), we get

∑

|m|≥(t i−2
b )2,|n|<(t i−2

b )2

µ(xi−1, vm,n
i−2,b) " |t i−2

b |4−A. (2.37)

(d) For |m| ≥ (t i−2
b )2 and |n| ≥ (t i−2

b )2, we use two lower bounds |vm,n
i−2,b2 | # |n|

2t i−2
b

,

|vm,n
i−2,b1 | # |m|

2t i−2
b

. Then, we derive that

∑

|m|≥(t i−2
b )2,|n|≥(t i−2

b )2

µ(xi−1, vm,n
i−2,b)

"
∞∑

m,n=0

µ

(

xi−1,

(
|m|
2t i−2

b

,
|n|

2t i−2
b

, vm,n
i−2,b3

))

" (t i−2
b )−A

∞∑

n=0

µ(xi−1,
|n|

2t i−2
b

)(1 − e
− 1

8(ti−2
b )2 )−1

" (t i−2
b )−A(1 − e

− 1
8(ti−2

b )2 )−2 " (t i−2
b )4(t i−2

b )−A = |t i−2
b |4−A.

(2.38)

From (2.35), (2.36), (2.37) and (2.38), we conclude that for t i−2
b ≥ 1,

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b) " |t i−2
b |4−A.
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Case 2: 0 ≤ t i−2
b < 1. In this case t i−2

b is small, for |m| ≥ 2 and |n| ≥ 2, we bound
(2.34) as

|xi−1
1 + m − xi−2

1 |
t i−2
b

# |m|
2t i−2

b

,
|xi−1

2 + n − xi−2
2 |

t i−2
b

# |n|
2t i−2

b

.

For |m| < 2, we bound |vm,n
i−2,b1 | ≥ 0, and for |n| < 2, we bound |vm,n

i−2,b2 | ≥ 0. To
obtain (2.33), we again divide {vm,n

i−2,b}m,n∈Z into four parts.

(a) For |m| < 2 and |n| < 2, we keep the following five terms summation:

∑

|m|<2,|n|<2

µ(xi−1, vm,n
i−2,b). (2.39)

(b) For |m| < 2 and |n| ≥ 2, we bound |vm,n
i−2,b2 | # |n|

2t i−2
b

. Thus, we have

∑

|m|<2,|n|≥2

µ(xi−1, vm,n
i−2,b) "

∑

|m|<2,|n|≥2

µ(xi−1, (0,
|n|

2t i−2
b

, vm,n
i−2,b3))

"
∞∑

n=2

µ(xi−1,
|n|

2t i−2
b

) "
∞∑

n=2

e
− n2

8(t i−2
b )2

≤ e
− 1

2(ti−2
b )2 (1 − e

− 1
8(t i−2

b )2 )−1 " e
− 1

2(ti−2
b )2 ,

(2.40)

where the last inequality holds from 0 ≤ t i−2
b < 1.

(c) For |m| ≥ 2 and |n| < 2 case, we bound |vm,n
i−2,b1 | # |m|

2t i−2
b

. Similar as in (2.40),

we get

∑

|m|≥2,|n|<2

µ(xi−1, vm,n
i−2,b) " e

− 1
2(ti−2

b )2 . (2.41)

(d) For |m| ≥ 2 and |n| ≥ 2, we bound |vm,n
i−2,b2 | # |n|

2t i−2
b

, |vm,n
i−2,b1 | # |m|

2t i−2
b

and we

derive

∑

|m|≥2,|n|≥2

µ(xi−1, vm,n
i−2,b) "

∞∑

m,n=2

µ

(

xi−1,

(
|m|
2t i−2

b

,
|n|

2t i−2
b

, vm,n
i−2,b3

))

"
∞∑

n=2

µ(xi−1,
|n|

2t i−2
b

)e
− 1

2(ti−2
b )2 " e

− 1
2(ti−2

b )2 .

(2.42)
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From (2.39), (2.40), (2.41) and (2.42), we conclude that for 0 ≤ t i−2
b < 1,

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b) "
∑

|m|<2,|n|<2

µ(xi−1, vm,n
i−2,b)+ e

− 1
2(ti−2

b )2 ,

so we prove (2.32) and (2.33). 12

3 Weighted L1-Estimates

The main purpose of this section is to prove Theorem 1, in which we do L1-estimates
on fluctuations. Then we show the existence and uniqueness of the stationary solution.

3.1 f(t, x, v) via Stochastic Cycles

The main purpose of this section is to show Lemma 15, where we control
‖ϕ(tf ) f (t)‖L1

x,v
under someweight function s ϕ. To prove Lemma 15, we first express

f (t, x, v) with the stochastic cycles in Lemma 14, then we do some energy estimates
in Lemma 16.

Lemma 14 For any integer k ≥ 2, suppose f (t, x, v) solves (1.1) and (1.2), and
t∗ ≤ t , then we have

f (t, x, v) = 1t1<t∗ f (t∗, X(t∗; t, x, v), V (t∗; t, x, v)) (3.1)

+ µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j

{
1t i+1<t∗≤t i f (t∗, X(t∗; t i , xi , vi ), V (t∗; t i , xi , vi ))

}
d,i

(3.2)

+ µ(x1, vb)
∫
∏k

j=1 V j

1tk≥t∗ f (t
k , xk , vk)d,k , (3.3)

whered,i := d)i
µ(xi+1,vi )

d)i−1 · · · d)1, withd) j = µ(x j+1, v j ){n(x j )·v j }dv j in (1.17).
Here, (X , V ) solves (1.14).

Proof We can obtain this Lemma by following Lemma 7 and Remark 9. 12

Lemma 15 Given a function ϕ : [0,∞) → R, suppose ϕ satisfies that for any ( ≥ 0,
ϕ(( ) ≥ 0, ϕ+ ≥ 0, and

∫ ∞

1
( 3−Aϕ(( )d( < ∞. (3.4)
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Suppose f solves (1.1) and (1.2), there exists C > 0 independent of t∗, t , such that
for all 0 ≤ t∗ ≤ t ,

‖ϕ(tf ) f (t)‖L1
x,v

+
∫ t

t∗
‖ϕ+(tf ) f ‖L1

x,v
ds +

∫ t

t∗
|ϕ(tf ) f |L1

γ+
ds

≤ ‖ϕ(tf ) f (t∗)‖L1
x,v

+ C(t − t∗ + 1)‖ f (t∗)‖L1
x,v

+ 1
4

∫ t

t∗
| f |L1

γ+
ds.

(3.5)

For the proof of Lemma 15, we shall start it from the energy estimate, Lemma 16.

Lemma 16 [5] Suppose f solves (1.1) and (1.2), then for 0 ≤ t∗ ≤ t with 0 < δ <

min(1, t − t∗),

‖ f (t)‖L1
x,v

≤ ‖ f (t∗)‖L1
x,v
, (3.6)

∫ t

t∗
| f (s)|L1

γ+
ds ≤

⌈ t − t∗
δ

⌉
‖ f (t∗)‖L1

x,v
+ O(δ2)

∫ t

t∗
| f (s)|L1

γ+
ds, (3.7)

and if f0 is non-negative, so is f (t, x, v) for all (t, x, v) ∈ R+ ! ! ! R3.

Proof Since f (t, x, v) solves (1.1) and (1.2) in the L1 sense, according to [2, Lemma
2], | f (t, x, v)| is also a solution to (1.1) and (1.2).

From (1.1) and (1.2), taking integration on | f (t, x, v)| over (t∗, t) ! ! ! R3, we
derive that

‖ f (t)‖L1
x,v

+
∫ t

t∗

∫

γ+
| f |ds −

∫ t

t∗

∫

γ−
| f |ds = ‖ f (t∗)‖L1

x,v
.

Due to the choice of µ(x, v) in (1.2), for ∀t ≥ 0,

∫

γ−
| f (t, x, v)||n(x) · v|dSxdv =

∣∣∣
∫

γ+
f (t, x, v){n(x) · v}dSxdv

∣∣∣.

Therefore, we have

∫ t

t∗

∫

γ+
| f |ds −

∫ t

t∗

∫

γ−
| f |ds

=
∫ t

t∗

∫

γ+
| f |ds −

∫ t

t∗

∣∣∣
∫

γ+
f
∣∣∣ds ≥

∫ t

t∗

∫

γ+
| f |ds −

∫ t

t∗

∫

γ+
| f |ds = 0,

therefore we prove (3.6).
Next wework on (3.7). For δ ∈ (0, t−t∗) and (x, v) ∈ γ+, we split the time interval

[t∗, t] into some subintervals as follows:

[t∗, t∗ + δ], [t∗ + δ, t∗ + 2δ], . . . , [t∗ + 7 t − t∗ − δ

δ
8δ, t].
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Since f is invariant along the characteristic, we backward f (s, x, v) into a new time
depending on s and tb(x, v). Then we do estimates on different cases.

| f (s, x, v)|

≤
7 t−t∗−δ

δ 8∑

k=1

1{t∗+kδ≤s≤t∗+(k+1)δ, δ<tb(x,v)}| f (t∗ + kδ, X(t∗ + kδ, s, x, v), V (t∗ + kδ, s, x, v))|
︸ ︷︷ ︸

(3.8)1
+ 1{t∗+δ≤s, δ≥tb(x,v)}| f (s − tb(x, v), xb(x, v), vb(x, v))|

︸ ︷︷ ︸
(3.8)2

+ 1{s−t∗<δ, s−t∗<tb(x,v)}| f (t∗, X(t∗, s, x, v), V (t∗, s, x, v))|
︸ ︷︷ ︸

(3.8)3
+ 1{tb(x,v)≤s−t∗<δ}| f (s − tb(x, v), xb(x, v), vb(x, v))|︸ ︷︷ ︸

(3.8)4

, (3.8)

where s ∈ [t∗, t].
Firstwedo estimate on (3.8)1. From (2.1), (3.6) and t∗+δ ≤ s ≤ t with δ < tb(x, v),

∫ t

t∗

∫

γ+
(3.8)1ds

≤
7 t−t∗−δ

δ 8∑

k=1

∫

γ+
∫ t∗+kδ+tb(x,v)

t∗+kδ
| f (t∗+kδ, X(t∗ + kδ, s, x, v), V (t∗+kδ, s, x, v))|ds{n(x)· v}dSxdv

≤
7 t−t∗−δ

δ 8∑

k=1

‖ f (t∗ + kδ)‖L1
x,v

≤
⌈ t − t∗ − δ

δ

⌉
! ‖ f (t∗)‖L1

x,v
. (3.9)

Now we consider (3.8)2. For y = xb(x, v) and s ∈ [t∗, t], we have

1δ≥tb(x,v) = 1δ≥tf (y,vb). (3.10)

From Lemma 11, for (x, v) ∈ γ+ and v3 " tb(x, v) < δ < 1, we get

1|v3|!δ ≥ 1{δ>tb(x,v).
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Thus, we compute that

∫

n(x)·v>0
1δ>tb(x,v)µ(xb, v)|n(x) · v|dv

"
∫

|v3|!δ
µ(xb, v)|n(x) · v|dv

≤
∫

|v3|!δ
e− v23

2 |v3|dv3 " Cδ2.

(3.11)

From (2.3), (3.10) and using the Fubini’s theorem, we derive

∫ t

t∗

∫

γ+
(3.8)2ds =

∫

γ+

∫ t

t∗+δ
1δ≥tb(x,v)| f (s − tb(x, v), xb, vb)|ds{n(x) · v}dSxdv

≤
∫

∂!

∫

n(y)·v<0
1δ>tf (y,v)

∫ t

t∗
| f (s, y, v)|ds|n(y) · v|dSydv

≤
∫

∂!

( ∫

n(y)·v<0
1δ>tf (y,v)µ(y, v)|n(y) · v|dv

)

︸ ︷︷ ︸
(3.12)∗∫ t

t∗

∫

n(y)·v1>0
| f (s, y, v1)|{n(y) · v1}dv1dsdSy . (3.12)

From (3.11), we derive

(3.12) ≤ O(δ2)

∫ t

t∗

∫

γ+
| f |ds.

From (2.1) and s < t∗ + tb(x, v), we have

∫ t

t∗

∫

γ+
(3.8)3ds ≤

∫ t∗+tb(x,v)

t∗

∫

γ+
(3.8)3ds ≤ ‖ f (t∗)‖L1

x,v
.

Again setting y = xb(x, v) and s ∈ [t∗, t], we have

1{tb(x,v)≤s−t∗<δ} ≤ 1δ≥tf (y,vb). (3.13)

From (2.3), (3.13) and using the Fubini’s theorem, we derive

∫ t

t∗

∫

γ+
(3.8)4ds =

∫

γ+

∫ t∗+δ

t∗+tb(x,v)
1δ≥tb(x,v)| f (s −tb(x, v), xb, vb)|ds{n(x) · v}dSxdv

≤
∫

∂!

∫

n(y)·v<0
1δ>tf (y,v)

∫ t∗+δ

t∗
| f (s, y, v)|ds|n(y) · v|dSydv
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≤
∫

∂!

( ∫

n(y)·v<0
1δ>tf (y,v)µ(y, v)|n(y) · v|dv

)

︸ ︷︷ ︸
(3.14)∗

∫ t∗+δ

t∗

∫

γ+
| f |ds.

(3.14)

Then we conclude (3.14) ≤ O(δ2)
∫ t
t∗

∫
γ+ | f |ds, therefore we prove (3.7).

To prove the positivity property, we write

f− = | f | − f
2

.

Since both f (t, x, v) and | f (t, x, v)| are solutions to (1.1) and (1.2), it is clear that
f− also solves (1.1) and (1.2). From (3.6) and the assumption f0 ≥ 0, we have

‖ f−(t)‖L1
x,v

=
∥∥ | f |(t) − f (t)

2

∥∥
L1
x,v

=
∥∥∥
(
| f | − f

)
(t)

2

∥∥∥
L1
x,v

≤
∥∥ | f0| − f0

2

∥∥
L1
x,v

= 0,

(3.15)

then we conclude f−(t, x, v) = 0 on ! ! R3. 12
Now we are ready to prove Lemma 15, which will be used frequently in this paper.

Proof of Lemma 15 Consider
(
s, X(s; t, x, v), V (s; t, x, v)

)
solving (1.14), we now

compute the forward exit time tf (x, v) under this characteristics. Recall that tf is
timely independent because of the timely independent field #(x).

−1 = d
ds

tf (X(s; t, x, v), V (s; t, x, v))

= ∂

∂X
tf (X , V ) · d

ds
X + ∂

∂V
tf (X , V ) · d

ds
V ,

By setting s = t , we have

∂

∂x
tf (x, v) · v +

∂

∂v
tf (x, v) · −∇#(x) = −1.

On the other hand, since f (t, x, v) solves (1.1) and (1.2), then | f (t, x, v)| also solves
(1.1) and (1.2), that is, [∂t+v ·∇x −∇#·∇v]| f | = 0. Then, in the sense of distribution

[∂t + v · ∇x − ∇# · ∇v]
(
ϕ(tf )| f |

)
= ϕ+(tf )[∂t + v · ∇x

−∇# · ∇v](tf )| f | = −ϕ+(tf )| f |. (3.16)

From (1.1), (3.16), ϕ(( ) ≥ 0, ϕ+ ≥ 0 and taking integration over (t∗, t)! ! !R3, we
derive

‖ϕ(tf ) f (t)‖L1
x,v

+
∫ t

t∗
‖ϕ+(tf ) f (s)‖L1

x,v
ds +

∫ t

t∗

∫

γ+
ϕ(tf )| f |ds (3.17)
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≤ ‖ϕ(tf ) f (t∗)‖L1
x,v

+
∫ t

t∗

∫

∂!

∫

n(x)·v<0
ϕ(tf )| f ||n(x) · v|dvdSxds

= ‖ϕ(tf ) f (t∗)‖L1
x,v

+
∫ t

t∗

∫

∂!

∫

n(x)·v<0
ϕ(tf )µ(x, v)|n(x) · v|dvdSxds

!
∫

n(x)·v1>0
| f (s, x, v1)|{n(x) · v1}dv1. (3.18)

We remark that from Definition 5, tf (x, v) = 0 for any (x, v) ∈ γ+. Thus, the third
integration in (3.17) follows

∫ t

t∗

∫

γ+
ϕ(tf )| f |ds =

∫ t

t∗

∫

γ+
ϕ(0)| f |ds. (3.19)

Now we prove the following claim: If (3.4) holds, then

sup
x∈∂!

∫

n(x)·v<0
ϕ(tf )(x, v)µ(x, v)|n(x) · v|dv " 1. (3.20)

We split
∫
n(x)·v<0 ϕ(tf )(x, v)µ(x, v)|n(x) · v|dv into two parts:

∫

n(x)·v<0
1tf≤1 ϕ(tf )µ(x, v)|n(x) · v|dv and

∫

n(x)·v<0
1tf>1 ϕ(tf )µ(x, v)|n(x) · v|dv.

For tf ≤ 1, since x ∈ ∂! and n(x) · v < 0, we consider xf (x, v), vf (x, v) and get
tb(xf , vf ) = tf (x, v). Using Lemma 11, we have

|v3| = |vf,3| " tb(xf , vf ),

and thus

|v3| " tf (x, v) ≤ 1.

Combining with ϕ+ ≥ 0, we bound

∫

n(x)·v<0
1tf≤1 ϕ(tf )µ(x, v)|n(x) · v|dv " ϕ(1)

∫

R3
e−|v|2/2dv " 1. (3.21)

For tf > 1, applying (2.9) inProposition10 andLemma13, togetherwith |n(x)·v| "
tf (x, v) from Lemma 11, we obtain

∫

n(x)·v<0
ϕ(tf )µ(x, v)|n(x) · v|dv "

∫

∂!

∫ ∞

1
ϕ(tf )

∑

m,n∈Z
µ(xf , vf )

|tf |
|tf |2

dtfdSxf .

(3.22)
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From Lemma 13 and (3.4), we derive that

(3.22) "
∫ ∞

1

ϕ(tf )
|tf |

|tf |4−Adtf "
∫ ∞

1
ϕ(tf )|tf |3−Adtf " 1.

Combining the above bound with (3.21), we prove (3.20). Then picking sufficiently
small δ in (3.7) and using (3.20), we conclude (3.5), through, for C > 1,

(3.18) "
∫ t

t∗

∫

γ+
| f (s, x, v1)|{n(x1) · v1}dv1dSxds

≤ C(t − t∗ + 1)‖ f (t∗)‖L1
x,v

+ 1
4

∫ t

t∗
| f (s)|L1(γ+).

12

3.2 Lower Boundwith the Unreachable Defect

In this section, we prove Proposition 17 to obtain a lower bound with the unreachable
defect. It is the key to control the fluctuations.

Proposition 17 Suppose f solves (1.1) and (1.2). Assume f0(x, v) ≥ 0. For any
T0 - 1 and N ∈ N+, there exists m(x, v) ≥ 0, which only depends on ! and T0 (see
(3.32) for the precise form), such that

f (NT0, x, v) ≥ m(x, v)
{ ∫∫

!!R3
f ((N − 1)T0, x, v)dvdx

−
∫∫

!!R3
1
tf (x,v)≥ T0

4
f ((N − 1)T0, x, v)dvdx

}
. (3.23)

Proof Step 1. From (3.15) the assumption f0(x, v) ≥ 0, we have f (t, x, v) ≥ 0.
From (3.1)–(3.3) and setting t = NT0, t∗ = (N − 1)T0, k = 2, we can derive that

f (NT0, x, v) ≥ 1
tb(x,v)≤ T0

4
µ(x1, vb)

∫

V1

∫

V2

1t2≥(N−1)T0 f (t
2, x2, v2){n(x2) · v2}dv2d)1. (3.24)

Now we apply Proposition 10 on v1 ∈ V1 with (2.7) and (2.8). In order to have the
bijective mapping with (2.7), we restrict the range of v1b as

V1,b:={v1b ∈ R3 : x2 +
∫ t

t−tb

(
vb +

∫ s

t−tb
−∇#(X(α; t1, x1, v1))dα

)
ds = x1}.

(3.25)

This implies all characteristic trajectories X(α; t1, x1, v1) between x1 and x2 under
v1b ∈ V1,b don’t cross the periodic boundary.
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Therefore, using the change of variables v1 ∈ V1 4→ (x2, t1b) ∈ ∂! ! R+ for
v1b ∈ V1,b in (2.8), together with Fubini’s theorem, we derive

(3.24) # 1
tb(x,v)≤ T0

4
µ(x1, vb)

∫ T0−tb(x,v)

0

∫

∂!

n(x1) · v1
(t1b)

2(1+ |v13 |t1b)
µ(x2, v1b)

︸ ︷︷ ︸
(3.26)∗

!
∫

n(x2)·v2>0
f (t2, x2, v2){n(x2) · v2}dv2dSx2dt1b,

(3.26)

where t2 = NT0 − tb(x, v) − t1b and n(x1) · v1 = v13.

Step 2. In order to bound the integrand of the first line in (3.26), we will further
restrict integration regimes. Note that x1 = xb(x, v) is given, x2 is free variable and
t2 ≥ (N − 1)T0.

Now we restrict the integral regimes of the variable t1b as

TT0 :=
{
t1b ∈ [0,∞) : T0 − tb(x, v) − min

(
tb(x2, v2),

T0
4

)
≤ t1b ≤ T0 − tb(x, v)

}
.

(3.27)

As a consequence of (3.27) and tb(x, v) ≤ T0
4 in (3.26), we will derive (3.28) and

(3.29),

T0
2

≤ T0 − tb(x, v) − T0
4

≤ t1b ≤ T0. (3.28)

Secondly, we prove (3.29). Note that if t1b ∈ TT0 , we have

(N − 1)T0 ≤ t2 = NT0 − tb(x, v) − t1b ≤ (N − 1)T0 +min{tb(x2, v2),
T0
4
}.

This implies that, for y∗ = X((N − 1)T0; t2, x2, v2) and v∗ = V ((N −
1)T0; t2, x2, v2), we have

tf (y∗, v∗) = t2 − (N − 1)T0 = T0 − tb(x, v) − t1b ∈
[
0,

T0
4

]
, (3.29)

where we use tf (y∗, v∗) ≤ tb(x2, v2) since x2 = xf (y∗, v∗).

Step 3. For (3.26), we apply the restriction of integral regimes in (3.25) and (3.27).
Note that

n(x1) · v1
(t1b)

2(1+ |v13 |t1b)
= |v13 |

(t1b)
2 + |v13 |(t1b)3

≥ 1

|t1b |3
.
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Using T0
2 ≤ t1b ≤ T0 in (3.28), we have

(3.26)∗ # 1

|t1b |3
µ(x2, v1b) =

1

|t1b |3
µ
(
|n(x2) · v1b|

)
µ
( |x2 − x1|

|t1b |
)

# 1

|t1b |3
µ(|v13 |)µ

(
√
2

|t1b |
)

# 1
(T0)3

e− 1
2 |v13 |2e

− 4
T 20

# 1
(T0)3

(t1b)
−(A+1) ≥ (T0)−4−A,

where the second last inequality follows from T0 - 1, (2.20) andA ≤ 1
ln(a) < A+1.

Finally, we get

(3.26) ≥ 1
tb(x,v)≤ T0

4
(T0)−4−Aµ(x1, vb)

∫

∂!
dSx2

∫

n(x2)·v2>0
dv2{n(x2) · v2}

!
∫

TT0
dt1b f (NT0 − tb(x, v) − t1b, x

2, v2)

# 1
tb(x,v)≤ T0

4
(T0)−4−Aµ(x1, vb)

∫

∂!
dSx2

∫

n(x2)·v2>0
dv2{n(x2) · v2}

!
∫ T0−tb(x,v)

T0−tb(x,v)−min
(
tb(x2,v2),

T0
4

) dt1b f (NT0 − tb(x, v) − t1b, x
2, v2). (3.30)

Now we focus on the integrand of (3.30). Recall (3.27), we have

(NT0 − tb(x, v) − t1b) − (N − 1)T0 = T0 − tb(x, v) − t1b ∈
[
0,min

(
tb(x2, v2),

T0
4

)]
.

Now setting y∗ = X((N − 1)T0; t2, x2, v2), v∗ = V ((N − 1)T0; t2, x2, v2) and
α = T0 − tb(x, v) − t1b , we have

(3.30) =
∫ min

(
tb(x2,v2),

T0
4

)

0
f
(
(N − 1)T0, y∗, v∗

)
dα. (3.31)

From (3.29), we have tf (y∗, v∗) ∈
[
0, T0

4

]
. Now applying (2.1), we conclude that

(3.26) ≥ 1
tb(x,v)≤ T0

4
(T0)−4−Aµ(x1, vb)

∫∫

!!R3
1
tf (y,v)∈[0, T04 ] f ((N − 1)T0, y, v)dvdy.

We conclude (3.23) by setting

m(x, v):=1
tb(x,v)≤ T0

4
(T0)−4−Aµ(x1, vb). (3.32)

12
An immediate consequence of Proposition 17. follows.
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Proposition 18 Suppose f solves (1.1), (1.2) and satisfies (1.10). Then for all T0 - 1
and N ∈ N+,

‖ f (NT0)‖L1
x,v

≤ (1 − ‖m‖L1
x,v
)‖ f ((N − 1)T0)‖L1

x,v

+2‖m‖L1
x,v

‖1
tf≥ T0

4
f ((N − 1)T0)‖L1

x,v
. (3.33)

Moreover, there exists T0 = T0(!), such that

‖m‖L1
x,v
:=mT0 " (T0)−3−A|∂!| < 1. (3.34)

Proof We decompose

f ((N − 1)T0, x, v) = fN−1,+(x, v) − fN−1,−(x, v),

where

fN−1,+(x, v) = 1 f ((N−1)T0,x,v)≥0 f
(
(N − 1)T0, x, v

)
,

fN−1,−(x, v) = 1 f ((N−1)T0,x,v)<0| f
(
(N − 1)T0, x, v

)
|.

Let f±(s, x, v) solve (1.1) for s ∈ [(N−1)T0, NT0]with the initial data fN−1,+ and
fN−1,− at s = (N − 1)T0, respectively. Now we apply Proposition 17 on f±(t, x, v)
and conclude (3.23) for f = f+ and f = f−,respectively. We also note that

∫∫

!!R3
f ((N − 1)T0, x, v)dxdv =

∫∫

!!R3
fN−1,+(x, v)dxdv

−
∫∫

!!R3
fN−1,−(x, v)dxdv = 0.

This implies

∫∫

!!R3
fN−1,±(x, v)dxdv = 1

2

∫∫

!!R3
| f ((N − 1)T0, x, v)|dxdv. (3.35)

From (3.23),

fN−1,±(x, v) ≥ m(x, v)
∫∫

fN−1,±(x, v)dxdv

−m(x, v)
∫∫

!!R3
1
tf (x,v)≥ T0

4
fN−1,±(x, v)dxdv

Using (3.35), we have

fN−1,±(x, v) ≥ m(x, v)
(1
2
‖ f ((N − 1)T0)‖L1

x,v
− ‖1

tf≥ T0
4
f ((N − 1)T0)‖L1

x,v

)

︸ ︷︷ ︸
l(x,v)

.
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(3.36)

Then we deduce

| f (NT0, x, v)| = | fN−1,+(x, v) − fN−1,−(x, v)+ l(x, v) − l(x, v)|
≤ | fN−1,+(x, v) − l(x, v)| + | fN−1,−(x, v) − l(x, v)|.

From (3.36),

| f (NT0, x, v)| ≤ fN−1,+(x, v)+ fN−1,−(x, v) − 2l(x, v). (3.37)

Note that fN−1,+(NT0, x, v)+ fN−1,−(NT0, x, v) solves (1.1) with the initial datum

fN−1,+ + fN−1,− =
∣∣ f

(
(N − 1)T0, x, v

)∣∣.

Using (3.35), (3.37) and taking the integration on (3.36) over ! ! R3, we derive

‖ f (NT0)‖L1
x,v

≤
∫∫

!!R3
fN−1,+(x, v)dxdv

+
∫∫

!!R3
fN−1,−(x, v)dxdv −

∫∫

!!R3
2l(x, v)dxdv

= (1 − ‖m‖L1
x,v
)‖ f ((N − 1)T0)‖L1

x,v

+ 2‖m‖L1
x,v

‖1
tf≥ T0

4
f ((N − 1)T0)‖L1

x,v
,

therefore we prove (3.33).
To derive (3.34), it suffices to bound ‖1

tb(x,v)≤ T0
4
µ(x1, vb)‖L1

x,v
. From Lemma 6,

Lemma 8, and tb(X(t − s, t, x, v), V (t − s, t, x, v)) = tb(x, v) − s, we have

‖1
tb(x,v)≤ T0

4
µ(x1, vb)‖L1

x,v

=
∫

γ+

∫ tb(x,v)

max{0,tb(x,v)− T0
4 }

µ(x1, v){n(x) · v}dsdvdSx

"
∫

γ+

(
1
tb(x,v)≤ T0

4

∫ tb(x,v)

0
ds + 1

tb(x,v)≥ T0
4

∫ tb(x,v)

tb(x,v)− T0
4

ds
)
e− 1

2 |v|2{n(x) · v}dvdSx

≤ T0
4

∫

∂!
dSx

∫

n(x)·v>0
e− 1

2 |v|2{n(x) · v}dv " T0|∂!|.

Combining the above bound with (3.32), we conclude (3.34). 12

Remark 19 Throughout this paper, we consider ! = T2 ! R+ and |∂!| = 1. Thus,
any T0 > 1 satisfies (3.34). In general, T0 depends heavily on |∂!|, otherwisemT0 > 1
and it leads to a negative estimate for L1 in (3.33).
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3.3 Proof ofWeighted L1-Estimates

In this section, we prove Theorem 1. We start with establishing the uniform estimates
of the following energies:

||| f |||i :=‖ f ‖L1
x,v

+ 4mT0

ϕi−1

(
3T0
4

)‖ϕi−1(tf ) f ‖L1
x,v

+ 4emT0

T0ϕi−1

(
3T0
4

)‖ϕi (tf ) f ‖L1
x,v
,

(3.38)

where ‖m‖L1
x,v
:=mT0 (see (3.34)) and ϕi ’s defined in (3.39) with i = 2, 4.

Here we first introduce the weight functions ϕi ’s.

Definition 20 For 0 < δ < 1, we set

ϕ1(( ):=(e ln(e + 1))−1(e + ( ) ln(e + ln(e + ( )),

ϕ2(( ):=(e2 ln(e + 1))−1(e + ( )2 ln(e + ln(e + ( )),

ϕ3(( ):=e5−A(( + e)A−5( ln(( + e)
)−(1+δ)

,

ϕ4(( ):=e4−A(( + e)A−4( ln(( + e)
)−(1+δ)

.

(3.39)

First, ϕi satisfies (3.4) for i = 1, 2, 3, 4: for example, for i = 4,

∫ ∞

1
( 3−Aϕ4(( )d( =

∫ ∞

1
( 3−Ae4−A(( + e)A−4( ln(( + e)

)−(1+δ)d(

"
∫ ∞

1

1
(( + e)(ln(( + e))1+δ

ds < ∞.

Second, ϕi satisfies

ϕi (0) = 1, for i = 1, 2, 3, 4. (3.40)

Finally, we have

ϕ+
2(( ) ≥ (e2 ln(e + 1))−12(e + ( ) ln(e + ln(e + ( )) ≥ 2e−1ϕ1(( ), ϕ+

1(( ) ≥ 0,

ϕ+
4(( ) =

(
A − 4 − 1+ δ

ln(( + e)

)
e4−A(( + e)A−5( ln(( + e)

)−(1+δ) ≥ ϕ3(( ), ϕ+
3(( ) ≥ 0.

(3.41)

Proposition 21 Choose T0 > 20, such that for the constant C in (3.5),

4C(e + 3T0)
(
ϕi

(3T0
4

))−1
≤ 1

2
, for i = 1, 3. (3.42)
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For any N ∈ N+, and i = 2, 4,

‖ f (NT0)‖L1
x,v

+ 4mT0

ϕi−1

(
3T0
4

)
{
2‖ϕi−1(tf ) f (NT0)‖L1

x,v
+ e

T0
‖ϕi (tf ) f (NT0)‖L1

x,v

}

≤ (3.43)∗ ! ‖ f ((N − 1)T0)‖L1
x,v

+ 4mT0

ϕi−1

(
3T0
4

)
{3
4
‖ϕi−1(tf ) f ((N − 1)T0)‖L1

x,v
+ e

T0
‖ϕi (tf ) f ((N − 1)T0)‖L1

x,v

}
,

(3.43)

where (3.43)∗:=1 − mT0

{

1 − 4C(e+3T0)

ϕi−1

(
3T0
4

)

}

, with mT0 defined in (3.34).

Proof As key steps, we apply Lemma 15 on f (t, x, v) solving (1.1) and (1.2) with
ϕi ’s in (3.39). Using ϕi (0) = 1 for i = 1, 2, 3, 4 in (3.40), together with (3.19), we
get for i = 1, 2, 3, 4,

∫ t

t∗

∫

γ+
ϕi (tf )| f |ds =

∫ t

t∗

∫

γ+
| f |ds.

Thus, we derive that, for (N − 1)T0 ≤ t∗ ≤ NT0 and i = 2, 4,

‖ϕi−1(tf ) f (NT0)‖L1
x,v

+ 3
4

∫ NT0

t∗
| f |L1

γ+
ds ≤ ‖ϕi−1(tf ) f (t∗)‖L1

x,v

+CT0‖ f (t∗)‖L1
x,v
, (3.44)

and

‖ϕi (tf ) f (NT0)‖L1
x,v

+
∫ NT0

(N−1)T0
{‖ϕ+

i (tf ) f ‖L1
x,v

+ 3
4
| f |L1

γ+
}ds

≤ ‖ϕi (tf ) f ((N − 1)T0)‖L1
x,v

+ CT0‖ f ((N − 1)T0)‖L1
x,v
,

(3.45)

where we set t∗ = (N − 1)T0 in (3.45).
From (3.6), (3.41) and (3.44), we derive that, for i = 2, 4,

∫ NT0

(N−1)T0
‖ϕ+

i (tf ) f ‖L1
x,v

≥
∫ NT0

(N−1)T0
2e−1‖ϕi−1(tf ) f (t∗)‖L1

x,v
dt∗

≥ 2e−1T0‖ϕi−1(tf ) f (NT0)‖L1
x,v

− 2e−1C(T0)2‖ f ((N − 1)T0)‖L1
x,v
.

(3.46)
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Applying (3.46) on (3.45), we conclude that, for i = 2, 4,

‖ϕi (tf ) f (NT0)‖L1
x,v

+ 2e−1T0‖ϕi−1(tf ) f (NT0)‖L1
x,v

+ 3
4

∫ NT0

(N−1)T0
| f |L1

γ+

≤ ‖ϕi (tf ) f ((N − 1)T0)‖L1
x,v

+ CT0(1+ 2e−1T0)‖ f ((N − 1)T0)‖L1
x,v
.

(3.47)

Note that from (3.41), we have, for i = 2, 4,

1
tf≥ 3T0

4
≤

(
ϕi−1

(
3T0
4

) )−1
ϕi−1(tf ), (3.48)

Now we combine (3.33) with (3.44)–(3.48) and mT0 in (3.34) with |∂!| = 1, and
obtain

‖ f (NT0)‖L1
x,v

≤ (1 − mT0)‖ f ((N − 1)T0)‖L1
x,v

+ 2mT0

ϕi−1

(
3T0
4

)‖ϕi−1(tf ) f ((N − 1)T0)‖L1
x,v
. (3.49)

For i = 2, 4 and T0 - 1 in (3.42), considering (3.49) + 4mT0

ϕi−1

(
3T0
4

)
{ 1
4 (3.44)

|t∗=(N−1)T0 + e
T0

(3.47)
}
, then we conclude (3.43). 12

Now we are well equipped to prove Theorem 1.

Proof of Theorem 1 Fix T0 in (3.42) and recall norms of |||·|||2 and |||·|||4 in (3.38). From
(3.43), for i = 2, 4,

||| f (NT0)|||i ≤ ||| f ((N − 1)T0)|||i ≤ · · · ≤ ||| f (0)|||i , for all N ∈ N+. (3.50)

Step 1. Under direct computation, we obtain

d
d(

(ϕ2(( )

ϕ4(( )

)
" (1+ δ) ln(e + ln(e + ( )) − (A − 6) ln(e + ln(e + ( ))(ln(( + e))δ

(ln(( + e))−1(( + e)A−5
,

(3.51)

which shows that the function ϕ2(( )/ϕ4(( ) is decreasing when ( - 1. Thus, we can
choose M - 1 satisfying (3.55) and (3.60), such that

ϕ2(tf ) = 1tf≥Mϕ2(tf )+ 1tf<Mϕ2(tf )

≤ 1tf≥M
ϕ2(M)

ϕ4(M)
ϕ4(tf )+ 1tf<MMϕ1(tf ),

(3.52)

where we use ϕ2(( ) = e+(
( ϕ1(( ) and e+(

( < M for M - 1.
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Applying (3.50) for i = 4 and (3.52) with M - 1, we obtain for 1 ≤ N ∈ N+,

1
M

‖ϕ2(tf ) f ((N − 1)T0)‖L1
x,v

≤ 1
M

ϕ2(M)

ϕ4(M)
‖ϕ4(tf ) f ((N − 1)T0)‖L1

x,v
+ ‖ϕ1(tf ) f ((N − 1)T0)‖L1

x,v

≤ 1
M

ϕ2(M)

ϕ4(M)

T0ϕ3

(
3T0
4

)

4emT0
||| f (0)|||4 + ‖ϕ1(tf ) f ((N − 1)T0)‖L1

x,v
.

(3.53)

After inputting (3.53) into (3.43) for i = 2, we derive that

||| f (NT0)|||2 ≤ (3.54)∗ ! ||| f ((N − 1)T0)|||2 +
1
M

ϕ2(M)

ϕ4(M)

ϕ3

(
3T0
4

)

ϕ1

(
3T0
4

) ||| f (0)|||4,

(3.54)

with (3.54)∗:=max
{
(1 − mT0{1 − 4C(e+3T0)

ϕ1

(
3T0
4

) }), ( 34 + e
T0
), (1 − 1

M )
}
.

Step 2. Using T0 > 20 in (3.42), we have 3
4 + e

T0
< 1. Thus, tentatively we make

an assumption, which will be justified later behind (3.60),

(
1+ 1

M

)−1
≥ max

{(
1 − mT0{1 − 4C(e + 3T0)

ϕ1

(
3T0
4

) }
)
,
(3
4
+ e

T0

)
,
(
1 − 1

M

)}
.

(3.55)

For any t ≥ 0, we choose N∗ ∈ N such that t ∈ [N∗T0, (N∗ + 1)T0]. From (3.54) and
(3.55), we derive, for all 1 ≤ N ≤ N∗ + 1,

||| f (NT0)|||2 ≤
(
1+ 1

M

)−1
||| f ((N − 1)T0)|||2 +R, (3.56)

where R:= 1
M

ϕ2(M)
ϕ4(M)

ϕ3

(
3T0
4

)

ϕ1

(
3T0
4

) ||| f (0)|||4.
From (3.5) and 0 ≤ N∗T0 ≤ t , there exists a constant C > 0, such that

‖ϕ(tf ) f (t)‖L1
x,v

≤ ‖ϕ(tf ) f (N∗T0)‖L1
x,v

+ CT0‖ f (N∗T0)‖L1
x,v
. (3.57)

Now applying (3.57) first and using (3.56) successively, we conclude that

||| f (t)|||2 "T0 ||| f (N∗T0)|||2 ≤
(
1+ 1

M

)−1
||| f ((N∗ − 1)T0)|||2 +R

≤
(
1+ 1

M

)−2
||| f ((N∗ − 2)T0)|||2 +

(
1+ 1

M

)−1
R+R
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≤ · · · ≤
(
1+ 1

M

)−N∗ ||| f (0)|||2 + (1+ M)R. (3.58)

From N∗T0 ≤ t ≤ (N∗ + 1)T0 and 1 ≤ 1+M
M ≤ 2, we get

(
1+ 1

M

)−N∗ "
(
(1+ 1

M
)−M) N∗+1

M " e− N∗+1
2M ≤ e− t

2T0M ,

(1+ M)R ≤ 2
ϕ2(M)

ϕ4(M)

ϕ3

(
3T0
4

)

ϕ1

(
3T0
4

) ||| f (0)|||4.

Then we have

‖ f ‖L1
x,v

≤ ||| f (t)|||2 ≤ (3.58) " max
{
e− t

2T0M , ϕ2(M)/ϕ4(M)
}

!
{||| f (0)|||2 + ||| f (0)|||4

}
. (3.59)

Step 3. To make |e− t
2T0M − ϕ2(M)/ϕ4(M)| 6 1 as t → ∞, we set M as follows:

M = t
[
2T0 ln(10+ tA−6)

]−1
, (3.60)

so that

max
{
e− t

2T0M , ϕ2(M)/ϕ4(M)
}

"T0 (ln〈t〉)A−6− δ
2 〈t〉6−A. (3.61)

Clearly such a choice assures our precondition (3.55) for t - 1.
Now we claim that

||| f (0)|||2 + ||| f (0)|||4 " ‖e 1
2 |v|2+#(x) f0‖L∞

x,v
. (3.62)

Note that it suffices to check that ‖ϕ4(tf ) f0‖L1
x,v

" ‖e 1
2 |v|2+#(x) f0‖L∞

x,v
.

Assume ‖e 1
2 |v|2+#(x) f0‖L∞

x,v
< ∞, from (2.1), (2.20), #(x)|x∈∂! = 0 and A =

[ 1
ln(a) ], then we derive

∫∫

!!R3
|ϕ4(tf ) f0(y, w)|dydw "

∫

γ+

∫ t−

0
(tb(x, v))

A−4e−
1
2 |v|2−#(x)|n(x) · v|dsdvdSx

=
∫

γ+

∫ t−

0
(tb(x, v))

A−4e−
|v|2
2 |n(x) · v|dsdvdSx

"
∫

γ+

(
a
1
2 v

2
3
)A−3e−

|v|2
2 |v3|dvdSx

"
∫

v3<0
a−|v3|2dv3 < ∞,

(3.63)

and this concludes the claim. Finally, together with (3.59), (3.61) and (3.62), we prove
(1.11). 12
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4 Estimates on Exponential Moments

Now we are able to show the asymptotic behavior of the exponential moments. The
main purpose of this section is to prove Theorem 3.

4.1 Some Preparation on Exponential Moments

To estimate the exponential moments, we include two weight functions: (i) a time-
dependent weight function +(t), and (ii) a time-independent weight functionw+(x, v),
which is constant along the characteristic trajectory (1.14). Then we consider the
stochastic cycle representation of +(t)w+(x, v) f (t, x, v).

Lemma 22 Suppose f (t, x, v) solves (1.1) and (1.2) with 0 = t∗ ≤ t . Consider a time-
dependent function +(t) and a time-independent function w+(x, v), which is constant
along the characteristic (1.14). Then for k ≥ 1,

+(t)w+(x, v) f (t, x, v) = 1t1<0 +(t)w+(X(0; t, x, v), V (0; t, x, v)) f (0, X , V ) (4.1)

+ w+µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j

{
1t i+1<0≤t i +(0)w

+(X(0; t i , xi , vi ), V (0; t i , xi , vi ))

f (0, X , V )
}
d,̃i (4.2)

+ w+µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j

10≤t i

{ ∫ t i

max(0,t i+1)
++(s)w+(X(s; t i , xi , vi ), V (s; t i , xi , vi ))

! f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))ds
}
d,̃i (4.3)

+ w+µ(x1, vb)
∫
∏k

j=1 V j

1tk≥0 +(tk)w+ f (tk, xk , vk)d,̃k, (4.4)

where d,̃i := d)i
µ(xi+1,vi )w+(xi ,vi )d)i−1 · · · d)1, with d) j = µ(x j+1, v j ){n(x j ) ·v j }dv j .

Here, (X , V ) solves (1.14).

Proof Following Lemma 7 and Remark 9, we obtain this Lemma. 12

We start with a simple case when w+(x, v) ≡ 1. Applying Lemma 22, we derive
the stochastic cycle representation of +(t) f (t, x, v) as follows.

+(t) f (t, x, v) = 1t1<0 +(t) f (0, X(0; t, x, v), V (0; t, x, v)) (4.5)

+ µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j

{
1t i+1<0≤t i +(0) f (0, X(0; t i , xi , vi ), V (0; t i , xi , vi ))

}
d,̃i

(4.6)

+ µ(x1, vb)
k−1∑

i=1

∫
∏i

j=1 V j

10≤t i

{ ∫ t i

max(0,t i+1)
++(s) f (s, X(s; t i , xi , vi ),
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V (s; t i , xi , vi ))ds
}
d,̃i (4.7)

+ µ(x1, vb)
∫
∏k

j=1 V j

1tk≥0 +(tk) f (tk, xk , vk)d,̃k, (4.8)

where d,̃i = d)i
µ(xi+1,vi )

d)i−1 · · · d)1, with d) j = µ(x j+1, v j ){n(x j ) · v j }dv j , and
(X , V ) solves (1.14).

Here, we put emphasis on (4.7) and (4.8) since (4.5) and (4.6) can be controlled by
Theorem 1 and initial condition, which will be shown in the proof of Theorem 3.

To estimate (4.7), for j = i − 2, i − 1, we apply Proposition 10 on V j , together
with t jb # |n(x j ) · v j | in Lemma 11, then we obtain for j = i − 2, i − 1,

d) j = µ(x j+1, v j ){n(x j ) · v j }dv j

" µ(x j+1, v j ){n(x j ) · v j }(t jb )−2dtbdSxb " µ(x j+1, v j )
1

t jb
dt jbdSxb .

Then we derive

∫

Vi−2

d)i−2

∫

Vi−1

d)i−1

∫

Vi

1t i+1<0≤t i

∫ t i

0
++(s) f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi )){n(xi ) · vi }dsdvi

"
∫ t i−2

0
dt i−1
b

∫

∂!

dSxi−1

t i−2
b

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

∫ t i−2−t i−1
b

0
dt i−2
b

∫

∂!

dSxi

t i−1
b

∑

m,n∈Z
µ(xi , vm,n

i−1,b)

!
∫

Vi

1t i+1<0≤t i

∫ t i

0
++(s)| f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))|ds{n(xi ) · vi }dvi

︸ ︷︷ ︸
(4.9)∗

,

(4.9)

with t i−1 = t i−2 − t i−2
b , t i = t i−1 − t i−1

b and vm,n
i−1,b = vb(xi , v

m,n
i−1), vm,n

i−2,b =
vb(xi−1, vm,n

i−2).

Now we can control (4.7) via the following lemma:

Lemma 23 Suppose f (t, x, v) solves (1.1), (1.2) and (X , V ) solves (1.14), for 0 ≤
t i ≤ t and i = 3, · · · , k − 1,

∫
∏i

j=1 V j

1t i+1<0≤t i

∫ t i

0
++(s) f (s, X(s; t i , xi , vi ),

V (s; t i , xi , vi ))dsd,̃i "
∫ t

0
‖++(s) f (s)‖L1

x,v
ds. (4.10)
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where d,̃i = d)i
µ(xi+1,vi )

d)i−1 · · · d)1, with d) j = µ(x j+1, v j ){n(x j ) · v j }dv j , and
(X , V ) solves (1.14).

Proof Step 1. For (4.10), it suffices to prove this upper bound for i = 2, ..., k − 1,

∫
∏i−1

j=1 V j

∫

Vi

1t i+1<0≤t i

∫ t i

0
++(s)| f (s, X(s; t i , xi , vi ),

V (s; t i , xi , vi ))|ds{n(xi ) · vi }dvid)i−1 · · · d)1. (4.11)

Applying Prop osition 10 as in (4.9), we bound the above integration as

(4.11) "
∫

V1

d)1 · · ·
∫

Vi−3

d)i−3

∫ t i−2

0
dt i−1

b

∫ t i−2−t i−1
b

0
dt i−2

b

∫

∂!
dSxi

!
(∫

∂!

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

|t i−2
b |

!

∑

m,n∈Z
µ(xi , vm,n

i−1,b)

|t i−1
b |

dSxi−1

)

︸ ︷︷ ︸
(4.12)∗

!(4.9)∗.
(4.12)

Step 2. We claim that

(4.12)∗ " 1t i−1
b ≤t i−2

b
〈t i−2
b 〉4−A + 1t i−1

b ≥t i−2
b

〈t i−1
b 〉4−A. (4.13)

In order to prove this claim, we split into the following two cases:
Case 1: t i−1

b ≤ t i−2
b . Using (2.32) and (2.33) in Lemma 13, we bound

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

|t i−2
b |

" 1t i−2
b ≤1

1

|t i−2
b |

+ 1t i−2
b ≥1

1

|t i−2
b |A−4

, (4.14)

Replacing i with i + 1 in (2.32) and (2.33), we bound

∑

m,n∈Z
µ(xi , vm,n

i−1,b)

|t i−1
b |

"
∑

|a|<2,|b|<2

1t i−1
b ≤1

1

|t i−1
b |

µ
(
xi ,

|xi + (a, b) − xi−1|
|t i−1
b |

)

︸ ︷︷ ︸
(4.15)1

+ 1t i−1
b ≤1

1

|t i−1
b |

e
− 1

2(ti−1
b )2

︸ ︷︷ ︸
(4.15)2

+ 1t i−1
b ≥1|t i−1

b |4−A

︸ ︷︷ ︸
(4.15)3

.

(4.15)
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For (4.15)1, we employ a change of variables, for xi ∈ ∂!, |a| < 2, |b| < 2 and
0 < t i−1

b ≤ 1,

xi−1 ∈ ∂! 4→ z:= 1

t i−1
b

(xi−1 + (a, b) − xi ) ∈ Sa,b
xi ,t i−1

b
,

where the image Sa,b
xi ,t i−1

b
of the map is a two-dimensional smooth plane. Using the

local chart of ∂!, we have dSxi−1 " |t i−1
b |2dSz . From this change of variables and

(4.14), we conclude that

1t i−1
b ≤t i−2

b

∫

∂!

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

|t i−2
b |

! (4.15)1 dSxi−1

" 1t i−1
b ≤t i−2

b
(4.14) !

∑

|a|<2,|b|<2

∫

Sa,b

xi ,ti−1
b

1t i−1
b ≤1e

− 1
2 |z|2 |t i−1

b |dSz

" 1t i−1
b ≤t i−2

b

{
1t i−2

b ≤1
1

|t i−2
b |

+ 1t i−2
b ≥1

1

|t i−2
b |A−4

}
1t i−1

b ≤1|t i−1
b |

" 1t i−1
b ≤t i−2

b

{
1t i−2

b ≤1
|t i−1
b |

|t i−2
b |

+ 1t i−2
b ≥1

1

|t i−2
b |A−4

}
" 1t i−2

b ≤1 + 1t i−2
b ≥1

1

|t i−2
b |A−4

.

(4.16)

For (4.15)2, since e
− 1

2t2 " t2 for 0 < t ≤ 1, then we have

1t i−1
b ≤t i−2

b

∫

∂!

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

|t i−2
b |

! (4.15)2 dSxi−1

" 1t i−1
b ≤t i−2

b
(4.14) ! 1t i−1

b ≤1
1

|t i−1
b |

e
− 1

2(ti−1
b )2

∫

∂!
dSxi−1

" 1t i−1
b ≤t i−2

b

{
1t i−2

b ≤1
1

|t i−2
b |

+ 1t i−2
b ≥1

1

|t i−2
b |A−4

}
1t i−1

b ≤1|t i−1
b |

≤ 1t i−1
b ≤t i−2

b

|t i−1
b |

|t i−2
b |

1t i−2
b ≤1 + 1t i−2

b ≥1
1

|t i−2
b |A−4

≤ 1t i−2
b ≤1 + 1t i−2

b ≥1
1

|t i−2
b |A−4

.

(4.17)
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For (4.15)3, from 1t i−1
b ≥1|t i−1

b |4−A " 1t i−1
b ≥1, we derive

1t i−1
b ≤t i−2

b

∫

∂!

∑

m,n∈Z
µ(xi−1, vm,n

i−2,b)

|t i−2
b |

! (4.15)3 dSxi−1

" 1t i−1
b ≤t i−2

b
(4.14) ! 1t i−1

b >1|t i−1
b |4−A

∫

∂!
dSxi−1

" 1t i−1
b ≤t i−2

b

{
1t i−2

b ≤1
1

|t i−2
b |

+ 1t i−2
b ≥1

1

|t i−2
b |A−4

}
1t i−1

b ≥1

" 1t i−2
b ≥1

1

|t i−2
b |A−4

.

(4.18)

Collecting estimate from (4.16)–(4.18), we deduce that

1t i−1
b ≤t i−2

b
(4.12)∗ " 1t i−2

b ≤1 + 1t i−2
b ≥1|t i−2

b |4−A. (4.19)

Case 2: t i−1
b ≥ t i−2

b . We change the role of i −1 and i −2 and follow the argument
of the previous case. We employ a change of variables, for xi−1 ∈ ∂! |a| < 2, |b| < 2
and 0 < t i−2

b ≤ 1,

xi−2 ∈ ∂! 4→ z:= 1

t i−2
b

(xi−2 − xi−1) ∈ Sxi−1,t i−2
b

, (4.20)

with dSa,bxi−2 " |t i−2
b |2dSz . Then we can conclude that

1t i−1
b ≥t i−2

b
(4.12)∗ " 1t i−1

b ≤1 + 1t i−1
b ≥1|t i−1

b |4−A. (4.21)

Therefore, we show (4.13).

Step 3. Now we apply (4.13) on (4.12). Then we have

(4.11) "
∫

V1

d)1 · · ·
∫

Vi−3

d)i−3

∫ t i−2

0

dt i−1
b

〈t i−1
b 〉A−4

∫ min{t i−2−t i−1
b ,t i−1

b }

0
dt i−2

b

∫

∂!
dSxi ! (4.9)∗ (4.22)

+
∫

V1

d)1 · · ·
∫

Vi−3

d)i−3

∫ t i−2

0

dt i−2
b

〈t i−2
b 〉A−4

∫ min{t i−2−t i−2
b ,t i−2

b }

0
dt i−1

b

∫

∂!
dSxi ! (4.9)∗. (4.23)

For (4.22), we employ the change of variables

(xi , t i−2
b , vi ) 4→ (y, w) = (X(s; t i−2 − t i−2

b − t i−1
b , xi , vi ),
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V (s; t i−2 − t i−2
b − t i−1

b , xi , vi )) ∈ ! ! R3,

and we have |n(xi ) · vi |dSxi dt i−2
b dvi " dydw from (2.1). From 0 ≤ t i ≤ t and

A ≥ 8, we bound (4.22) as

(4.22) ≤
∫

V1

d)1 · · ·
∫

Vi−3

d)i−3

∫ t i−2

0
dt i−1

b 〈t i−1
b 〉4−A

!
∫ t i

0
++(s)

∫∫

!!R3
| f (s, y, w)|dydwds

"
∫ t

0
‖++(s) f (s)‖L1

x,v
ds.

A bound of (4.23) can be derived similarly, by using the change of variables

(xi , t i−1
b , vi ) 4→ (y, w) = (X(s; t i−2 − t i−2

b − t i−1
b , xi , vi ),

V (s; ti−2 − t i−2
b − t i−1

b , xi , vi )) ∈ ! ! R3,

with |n(xi ) · vi |dSxi dt i−1
b dvi " dydw. 12

Next, we control (4.8) by establishing the following estimate:

Lemma 24 Consider (X , V ) solving (1.14), there exists C = C(!) > 0 (see (4.28)
for the precise choice), such that

if k ≥ Ct, then sup
(x,v)∈!̄!R3

( ∫
∏k−1

j=1 V j

1tk (t,x,v,v1,··· ,vk−1)≥0 d)1 · · · d)k−1

)
" e−t ,

(4.24)

where d) j = µ(x j+1, v j ){n(x j ) · v j }dv j in (1.17).

Proof From (3.11), we have

∫

n(x)·v>0
1δ>tb(x,v)µ(xb, v)|n(x) · v|dv " Cδ2.

Thus we define Vδ
i :={vi ∈ Vi : |n(xi ) · vi | < δ} and derive that

∫

Vδ
j

d) j ≤ Cδ2.

On the other hand, since tb(xi , vi ) # |n(xi ) · vi |, we derive that for vi ∈ Vi\Vδ
i ,

tb(xi , vi ) ≥ C!δ.
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If tk(t, x, v1, · · · , vk−1) ≥ 0,we conclude such vi ∈ Vi\Vδ
i can exist atmost [ t

C!δ ]+1

times. Denote the combination
(
M
N

)
= M(M−1)···(M−N+1)

N (N−1)···1 = M !
N !(M−N )! for M, N ∈

N and M ≥ N . From 0 < δ 6 1, we have
∫
∏k−1

j=1 V j

1tk (t,x,v1,··· ,vk−1)≥0 d)k−1 · · · d)1

≤
[ t
C!δ ]+1∑

m=0

(
k
m

) ( ∫

Vδ
i

d)i
)k−m ≤ (Cδ2)

k−[ t
C!δ ]

[ t
C!δ ]+1∑

m=0

(
k
m

)

︸ ︷︷ ︸
(4.25)∗

.
(4.25)

Recall the Stirling’s formula,

√
2πkk+

1
2 e−k ≤ k! ≤ kk+

1
2 e−k+1. (4.26)

Using (1+ 1
a−1 )

a−1 ≤ e and (4.26), we have for a ∈ N+ and a ≥ 2,

(
k
k
a

)
= k!

(k − k
a )! ka !

≤
(

a

a − 1

) a
a−1 k

a
k
a

√
a2

k(a − 1)

= 1√
k

(
a

1
a
( a

a − 1

) a
a−1

)k
√

a2

a − 1
≤ 1√

k
(ea)4

k
a

√
a2

a − 1
,

where the last inequality follows from a
a−1 ≤ 2. Hence, we derive that

[ ka ]∑

i=1

(
k
i

)
≤ k

a

(
k
k
a

)
≤ e

2π

√
k
a
(ea)4

k
a . (4.27)

Now we estimate (4.25)∗. For fixed 0 < δ 6 1 which is independent of t , we
choose

a ∈ N+ such that (δ2aea)
1

C!δ ≤ e−2, and set k:=a

4

([ t
C!δ

]
+ 1

)
. (4.28)

Using (4.27), we have

(4.25)∗ "
√[ t

C!δ

]
+ 1

(
e

k
[ t
C!δ ] + 1

)[ t
C!δ ]+1

"
√[ t

C!δ

]
+ 1(ea)[

t
C!δ ]+1

.

Hence, we bound (4.25) by

(δ2aea)[
t

C!δ ]+1
√[ t

C!δ

]
+ 1 " e−t . 12
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4.2 Estimates on Exponential Moments

Now we are ready to prove Theorem 3. First, we set

w(x, v):=eθ(|v|2+2#(x)) and w+(x, v):=eθ +(|v|2+2#(x)), (4.29)

where 0 ≤ 2θ < θ + = 1
2 . Suppose (X , V ) solves (1.14). From (2.5), we have

d
ds

(
|V (s; t, x, v)|2/2+ #(X(s; t, x, v))

)
= 0.

This indicates that both w(x, v) and w+(x, v) are constant along the the characteristic
(1.14).

Proof of Theorem 3 We start to prove (1.12), and pick +(t) = t + 1 to utilize the
L1-decay of Theorem 1. Then we work on the stochastic cycle representation of
+(t)w+(x, v) f (t, x, v) in (4.1)–(4.4).

For the contribution of (4.1), note that t1 < 0, and bothw+ and f are constant along
the characteristic trajectory. Thus, we deduce that

w+(x, v) f (t, x, v) = w+(X(0; t, x, v), V (0; t, x, v)) f (0, X(0; t, x, v),
V (0; t, x, v)) ≤ ‖w+ f (0)‖L∞

x,v
.

(4.30)

Nowwebound the contributionof (4.2). Since |n(x)·v| " w+(x, v) = 1
2π µ

−1(x, v),
we derive

1
+(t)

|(4.2)| " k
+(t)

(
sup
i

∫
∏k

j=1 V j

1t i+1<0≤t i d,̃i

)
+(0)‖w+ f (0)‖L∞

x,v

" k
+(t)

(∫

n(x j )·v j>0

|n(x j ) · v j |
w+(x j , v j )

dv j
)

‖w+ f (0)‖L∞
x,v

" k
+(t)

‖w+ f (0)‖L∞
x,v
.

(4.31)

Applying Lemma 23 and Theorem 1, we bound the contribution of (4.3).
Since |n(x) · v| " w+(x, v) = 1

2π µ
−1(x, v) and ++ = 1, together with

w+(xi , vi ) = w+(X(s; t i , xi , vi ), V (s; t i , xi , vi )) for max(0, t i+1) ≤ s ≤ t i and
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d,̃i := d)i
µ(xi+1,vi )w+(xi ,vi )d)i−1 · · · d)1, we have

1
+(t)

|(4.3)| " k
+(t)

sup
i

∫
∏i

j=1 V j

10≤t i

∫ t i

max(0,t i+1)
w+(X(s; t i , xi , vi ), V (s; t i , xi , vi ))

! f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))dsd,̃i

= k
+(t)

sup
i

∫
∏i

j=1 V j

10≤t i

!
∫ t i

max(0,t i+1)
f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))ds

d)i
µ(xi+1, vi )

d)i−1 · · · d)1

" k
+(t)

∫ t

0
‖ f (s)‖L1

x,v
ds " k

+(t)
! ‖w+ f (0)‖L∞

x,v
.

(4.32)

Lastly we bound the contribution of (4.4). From Lemma 24, we get

1
+(t)

|(4.4)| " +(tk)
+(t)

sup
(x,v)∈!̄!R3

( ∫
∏k−1

j=1 V j

1tk (t,x,v,v1,··· ,vk−1)≥0d)1 · · · d)k−1

)

‖w+ f (tk)‖L∞
x,v

" e−t sup
t≥s≥0

‖w+ f (s)‖L∞
x,v
.

(4.33)

Collecting estimates from (4.30)–(4.33) and using k " t , we derive

(1 − e−t ) sup
t≥0

‖w+ f (t)‖L∞
x,v

" (1+ k
+(t)

) ! ‖w+ f (0)‖L∞
x,v
. (4.34)

Therefore, we prove (1.12).

Next, we prove (1.13). To show the decay of exponential moments and again utilize
the L1-decay, we set a new weight function

+(t):=(ln〈t〉)6−A〈t〉A−5. (4.35)

Clearly we have ++(t) " (ln〈t〉)6−A〈t〉A−6 for t - 1.

Step 1. From Lemma 14, we derive the form of
∫
R3 w(x, v)| f (t, x, v)|dv. First we

split |v| ≥ t/2 and t1 ≤ 3t/4 case to get (4.36) and (4.37). Next, for t1 ≥ 3t/4 case,
we follow along the stochastic cycles twice with k = 2, t∗ = t/2, and obtain (4.38)
and (4.39).

∫

R3
w(x, v)| f (t, x, v)|dv ≤

∫

|v|≥t/2
w(x, v)| f (t, x, v)|dv (4.36)
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+
∫

|v|≤t/2
1t1≤3t/4w(x, v)| f (3t/4, X(3t/4; t, x, v), V (3t/4; t, x, v))|dv (4.37)

+
∫

R3
1t1≥3t/4w(x, v)µ(x1, vb)

∫
∏2

j=1 V j

1t2<t/2<t1w(x1, v1)| f (t1, x1, v1)|d,2
1dv

(4.38)

+
∫

R3
1t1≥3t/4w(x, v)µ(x1, vb)

∣∣∣
∫
∏2

j=1 V j

1t2≥t/2w(x2, v2) f (t2, x2, v2)d,2
2

∣∣∣dv,

(4.39)

where d,2
1 = d)2 d)1

µ(x2,v1)w(x1,v1) and d,2
2 = d)2

µ(x3,v2)w(x2,v2)d)1.

For (4.36), from the L∞-boundedness, #(x)|x∈!̄ ≥ 0, and 0 < w < w+, we derive
that

∫

|v|≥t/2
w(x, v)| f (t, x, v)|dv ≤

∫

|v|≥t/2

w(x, v)
w+(x, v)

dv‖w+ f (0)‖L∞
x,v

≤
∫

|v|≥t/2
e−(θ +−θ)|v|2dv‖w+ f (0)‖L∞

x,v

" 1
(θ + − θ)3/2

e− (θ +−θ)t2
4 ‖w+ f (0)‖L∞

x,v
.

(4.40)

For (4.37), from t1 ≤ 3t/4 and Lemma 8, we have for t1 ≤ s ≤ t ,

tb(x, v) = t − t1 ≥ t/4,
|V (s; t, x, v)|2

2
+ #(X(s; t, x, v)) = |vb|2

2
. (4.41)

On the other hand, using (2.20), we get

tb(x, v) " a
1
2 v

2
b,3(x,v). (4.42)

Then, from the L∞-boundedness, (4.41) and (4.42), we deduce that

(4.37) "
∫

|v|≤t/2

w(x, v)
w+(X(3t/4; t, x, v), V (3t/4; t, x, v))dv‖w

+ f (0)‖L∞
x,v

≤
∫

|v|≤t/2
e(θ−θ +)|vb(x,v)|2dv‖w+ f (0)‖L∞

x,v

≤
∫

|v|≤t/2
e− 1

4 |vb(x,v)|2dv‖w+ f (0)‖L∞
x,v

≤
∫

|v3|≤t/2
|tb(x, v)|−

A
2 dv3‖w+ f (0)‖L∞

x,v
" 〈t〉1−A

2 ‖w+ f (0)‖L∞
x,v
.

(4.43)

Next, we bound
∫
R3 w(x, v)µ(x1, vb)dv shown in (4.38) and (4.39). Note that from

(4.41), we have

µ−1(x1, vb) = 2πw+(x, v).
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Thus, we derive
∫

R3
w(x, v)µ(x1, vb)dv =

∫

R3

w(x, v)
2πw+(x, v)

dv "θ 1. (4.44)

For (4.38), since
∫
V2

d)2 is bounded and from (4.44), we have

(4.38) "
∫

V1

1{t2<t/2<t1}| f (t1, x1, v1)|{n(x1) · v1}dv1. (4.45)

From t1 ≥ 3t/4, t2 < t/2 and (2.20), we have

tb(x1, v1) = t1 − t2 ≥ t/4, a
1
2 (v

1
3)

2 # tb(x1, v1). (4.46)

Then, from the L∞-boundedness and 0 < n(x1) · v1 " e.|v1|2 < w+(x1, v1) for
0 < . 6 1/2, we derive

(4.45) "
∫

V1

n(x1) · v1
w+(x1, v1)

dv1‖w+ f (0)‖L∞
x,v

"
∫

v13≤0
e(.−θ +)|v13 |2dv13‖w+ f (0)‖L∞

x,v

"
∫

v13≤0
e− θ +

2 |v13 |2e(.−
θ +
2 )|v13 |2dv13‖w+ f (0)‖L∞

x,v

"
∫

v13≤0

(
tb(x1, v1)

)−A
2 e(.−

θ +
2 )|v13 |2dv13‖w+ f (0)‖L∞

x,v

" 〈t〉−A
2

∫

v13≤0
e(.−

θ +
2 )|v13 |2dv13‖w+ f (0)‖L∞

x,v
" 〈t〉−A

2 ‖w+ f (0)‖L∞
x,v
.

(4.47)

Step 2. Now we only need to bound (4.39). Since
∫
R3 w(x, v)µ(x1, vb)dv "θ 1,

and
∫
V1

d)1 is bounded, it suffices to prove the decay of

sup
v∈R3,v1∈V1

∣∣∣
∫

V2

1t2≥t/2 f (t
2, x2, v2){n(x2) · v2}dv2

∣∣∣. (4.48)

Here we define g(t, x, v):=+(t)w(x, v) f (t, x, v) and note that

1
+(t2)

∫

V2

1t2≥t/2
|n(x2) · v2|
w(x2, v2)

g(t2, x2, v2)dv2

=
∫

V2

1t2≥t/2 f (t
2, x2, v2){n(x2) · v2}dv2.

Therefore, it suffices to show the decay of
∣∣ 1
+(t2)

∫
V2

1t2≥t/2
|n(x2)·v2|
w(x2,v2) g(t

2, x2, v2)dv2
∣∣.
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Applying Lemma 22withw(x, v) = eθ(|v|2+2#(x)) and +(t) in (4.35), and choosing
k ≥ Ct as in Lemma 24, we obtain the following stochastic cycle representation of
g(t2, x2, v2) = +(t2)w(x2, v2) f (t2, x2, v2):

g(t2, x2, v2)

= 1t3<0+(0)w(x2, v2) f (0, X(0; t2, x2, v2), V (0; t2, x2, v2)) (4.49)

+ w(x2, v2)
∫ t2

max(0,t3)
++(s) f (s, X(s; t2, x2, v2), V (s; t2, x2, v2))ds (4.50)

+ wµ(x3, v2b)
k−1∑

i=3∫
∏i

j=3 V j

{
1t i+1<0≤t i +(0)w(xi , vi )

! f (0, X(0; t i , xi , vi ), V (0; t i , xi , vi ))
}
d,̃i (4.51)

+ wµ(x3, v2b)
k−1∑

i=3
∫
∏i

j=3 V j

10≤t i

{ ∫ t i

max(0,t i+1)
++(s)w(xi , vi )

! f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))ds
}
d,̃i (4.52)

+ wµ(x3, v2b)
∫
∏k

j=3 V j

1tk≥0 g(t
k, xk, vk)d,̃k, (4.53)

where d,̃i := d)i
µ(xi+1,vi )w(xi ,vi )d)i−1 · · · d)3 with 3 ≤ i ≤ k. Here, we regard t2, x2, v2

as free parameters and from Lemma 8, we have µ(x3, v2b) = µ(x3, v2).

Step 3. Next we estimate the contribution of (4.49)–(4.53) in 1
+(t2)

∫
V2

|n(x2)·v2|
w(x2,v2)

g(t2, x2, v2)dv2 term by term.
We start with the contribution of (4.49). From t2 ≥ t/2 and t3 ≤ 0, we have

‖w(x2, v2) f (t2, x2, v2)‖L∞
x,v

≤ ‖w(x, v) f (0, x, v)‖L∞
x,v
.

From the L∞-boundedness and 0 < n(x2) ·v2 " w(x2, v2) < w+(x2, v2), we deduce
that

1
+(t2)

∫

V2

|n(x2) · v2|
w(x2, v2)

|(4.49)|dv2 " 1
+(t2)

∫

V2

|n(x2) · v2|
w(x2, v2)

+(0)dv2 ! ‖w f (0)‖L∞
x,v

" 1
+(t)

+(0)‖w f (0)‖L∞
x,v

" 1
+(t)

‖w+ f (0)‖L∞
x,v
.

(4.54)
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Now we bound the contribution of (4.50). Recall Theorem 1 with ++(t) "
(ln〈t〉)6−A〈t〉A−6 for t - 1, and Lemma 23, we get

1
+(t2)

∫

V2

|n(x2) · v2|
w(x2, v2)

|(4.50)|dv2 " 1
+(t)

∫ t

0
‖++(s) f (s)‖L1

x,v
ds

" 1
+(t)

∫ t

0
‖(ln〈s〉)6−A〈s〉A−6 f (s)‖L1

x,v
ds

" t
+(t)

! ‖w+ f (0)‖L∞
x,v
.

(4.55)

Next, we bound the contribution of (4.51). From t i+1 < 0 ≤ t i , we have

‖w(xi , vi ) f (t i , xi , vi )‖L∞
x,v

≤ ‖w(x, v) f (0, x, v)‖L∞
x,v
.

From the L∞-boundedness and 0 < n(x2) · v2 " w(x2, v2) < w+(x2, v2)
= 1

2π µ
−1(x3, v2), we derive

1
+(t2)

∫

R3

|n(x2) · v2|
w(x2, v2)

|(4.51)|dv2

" k
+(t)

(
sup
i

∫
∏i

j=3 V j

1t i+1<0≤t i d,̃i

)
+(0)‖w f (0)‖L∞

x,v

" k
+(t)

(∫

n(xi )·vi>0

|n(xi ) · vi |
w(xi , vi )

dvi
)

‖w f (0)‖L∞
x,v

" k
+(t)

‖w+ f (0)‖L∞
x,v
.

(4.56)

Again using Lemma 23 and Theorem 1, we bound the contribution of (4.52). From
0 < n(x2) · v2 " w(x2, v2) ≤ µ−1(x3, v2) and ++(t) " (ln〈t〉)6−A〈t〉A−6 for t - 1,
we have

1
+(t2)

∫

R3

|n(x2) · v2|
w(x2, v2)

|(4.52)|dv2

" k
+(t)

! sup
i

∫
∏i

j=3 V j

10≤t i

∫ t i

max(0,t i+1)
w(xi , vi )++(s)

f (s, X(s; t i , xi , vi ), V (s; t i , xi , vi ))dsd,̃i

" k
+(t)

∫ t

0
‖++(s) f (s)‖L1

x,v
ds " k

+(t)

∫ t

0
‖(ln〈s〉)6−A〈s〉A−6 f (s)‖L1

x,v
ds

" kt
+(t)

! ‖w+ f (0)‖L∞
x,v
.

(4.57)
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Lastly we bound the contribution of (4.53). Applying Lemma 24 with k ≥ Ct , we
get

1
+(t2)

∫

R3

|n(x2) · v2|
w(x2, v2)

|(4.53)|dv2

" +(tk)
+(t2)

sup
(x,v)∈!̄!R3

( ∫
∏k−1

j=3 V j

1tk (t2,x2,v2,··· ,vk−1)≥0d)3 · · · d)k−1

)
sup
tk≥0

‖w f (tk)‖L∞
x,v

" e−t sup
tk≥0

‖w+ f (tk)‖L∞
x,v

" e−t‖w+ f (0)‖L∞
x,v
.

(4.58)

Collecting estimates from (4.54)–(4.58) and using k " t , we derive

∣∣ 1
+(t2)

∫

V2

1t2≥t/2
|n(x2) · v2|
w(x2, v2)

g(t2, x2, v2)dv2
∣∣

" max{ 1
+(t)

,
(k + 1)t

+(t)
, e−t } ! ‖w+ f (0)‖L∞

x,v
" 〈t〉2

+(t)
! ‖w+ f (0)‖L∞

x,v
.

(4.59)

Using +(t) = (ln〈t〉)6−A〈t〉A−5, 0 < w(x, v) < µ−1(x, v) and (4.59), we conclude

(4.39) " 〈t〉2
+(t)

" 〈t〉A−7.

From the above estimate, together with (4.40), (4.43) and (4.47), we prove (1.13). 12
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