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1  |  INTRODUC TION

Informed management and conservation strategies depend on 

knowledge of species abundances and the habitat conditions 

that they respond to (Bean et al., 2014). Multiple species can be 

affected by many of the same habitat variables, so the observed 

abundances of one or more species can provide information on the 

abundances of others. Identifying the relationships between spe-

cies abundances might be useful to anticipate those at risk from 

competitors, disease or invasive species. We implement conditional 
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Abstract
1. Many management and conservation contexts can benefit from understanding 

relationships between species abundances, which can be used to improve predic-

tions of species occurrence and abundance.

2. We present conditional prediction as a tool to capture information about spe-

cies abundances via residual covariance between species. From a fitted joint 

species distribution model, this framework produces a species coefficient ma-

trix that contains relationships between species abundances. The species coef-

ficients allow co- observed species to be treated as a second set of predictors 

supplementing covariates in the model to improve prediction. We use simulations 

to demonstrate the potential benefits and limitations of conditional prediction 

across data types and species covariance before applying conditional prediction 

to two management contexts with real data.

3. Simulations demonstrate that conditional prediction provides the largest benefits 
to continuous data and when there is residual covariance between many species.

4. In our first application, we show that conditioning on other species improves in- 

sample and out- of- sample predictions of fish and invertebrate species, includ-

ing Atlantic cod. In our second application, we show that the species coefficient 
matrix can be used to identify bird species at risk of nest parasitism by Brown- 

headed Cowbirds.
5. Synthesis and applications. We present guidelines for using conditional prediction, 

which can help understand relationships between species abundances, improve 

predictions and inform conservation in a variety of contexts.
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prediction to integrate observable environmental variables with 

information available from the abundances of other species to 

improve predictions of distribution across space. To predict focal 

species of interest conditioned on counts of incidental species, we 

jointly fit the distribution of all species to measurable variation in 

the environment. Residual covariance between species quantifies 
co- abundance that is not explained by environmental variables in 

the model; together, the fitted environmental variables and resid-

ual species covariance are the basis for prediction. This framework 

applies the classic equations for the conditional multivariate nor-
mal distributions to ecological modelling to improve predictions 

of species distributions. Using simulated data, where true species 
abundances and the variables that explain those abundances are 

known, as well as data from actual monitoring networks, we offer 

guidance on how conditional prediction can sharpen our under-

standing of patterns in species abundance. We show that condi-

tional prediction requires residual covariance between species 
and the potential benefit from conditioning depends on the noise 

in the data and the type of data (e.g. presence–absence, discrete 

counts, continuous abundance). We demonstrate the broad appli-

cability of conditional prediction to management contexts using 

two examples from distinct ecological communities: fish and in-

vertebrate populations to inform harvesting practices and a nest 

parasite (Brown- headed Cowbird) and its host species to improve 
management.

Conditional prediction uses information from co- observed spe-

cies while accounting for uncertainty in observations. Because spe-

cies are recorded together as part of the same observations (e.g. 

fish returns or bird point counts), models must allow for uncertainty 

in the counts of all species (Tang et al., 2021). The counts for one 

species cannot be used to directly predict counts for another (e.g. 

Zhang et al. (2020)); doing so assumes that the counts of incidental 

species have no observation error, and only the focal species counts 

are random (Figure 1a). Modelling species as a joint response treats 

all species as random, with observation error, and accounts for co- 

dependence between species (Figure 1b). The fitted joint model is 

the basis for conditional prediction (Figure 1c).

The potential benefit of conditional prediction over traditional 

prediction (i.e. predictions that are based solely on species–envi-

ronment relationships) comes from the residual covariance between 

species. Because the number of variables that can be measured at 

all sites is limited, these variables often explain small fractions of 

the variation in species abundance data. Similarly, environmen-

tal variables in the model may not explain species interactions. 

Therefore, the residual covariance matrix captures additional in-

formation. Conditional prediction uses residual covariance to add 
unmeasured information about the environment to predictions 

(Figure 1c). Whereas previous efforts are limited to species traits 

(Seyednasrollah & Clark, 2020) or presence or absence of an inci-

dental species (Wilkinson et al., 2020), we use incidental species to 

directly inform the abundances of others via residual covariance.

It is important to note that although residual covariance can 

occur between species that directly interact, it does not quantify 
the strength of competition, predation or mutualism (Blanchet 

et al., 2020; Clark et al., 2017; Poggiato et al., 2021; Zurell et al., 2018) 

For example, positive residual covariance does not reveal a mutual-

ism but rather indicates that a pair of species occur together beyond 

what is explained in the model. Although residual covariance may 
arise from species interactions, the residual covariance itself does 

not identify or quantify the relationships between two species, that 
is, whether they are parasite and host, predator and prey, competi-

tors or have no interaction at all (Clark et al., 2020).

Balancing the potential benefits of conditional prediction is its 

sensitivity to noise in the data. Traditional prediction only depends 

on observed counts indirectly: noisy observations are propagated 

to parameter estimates, which integrate variation over a potentially 

large number of observations. These parameter estimates are then 

used for prediction. Prediction error is large if the sample size is 

F I G U R E  1  (a) Using abundance of species y1 to predict y2 incorrectly assumes that the observation error �2
2
 only affects y2. Reversing 

predictor and response species (predicting species y1 from species y2) suffers the reverse problem. The model identifies the relationship 

between the observed environment x and y2, �2. (b) A joint attribute model admits the observation errors in both and the unobserved 
variables contribute to residual covariance �. The relationships between the observed environment x and both y1 and y2, �1 and �2 are 

identified. (c) Using the fitted joint model, conditional prediction for a new environment x∗ exploits information on unobserved variables 

through the residual covariance �2,1. Predictive distributions are shown at bottom, where conditional prediction integrates over the posterior 
distribution for parameters 
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small and the residual variance is large (Tang et al., 2023). By con-

trast, when a prediction is conditioned on counts of other species 

from a single location (i.e. a single observation), the raw count di-

rectly impacts prediction error. Thus, while conditioning adds infor-

mation from other species, it also introduces noise from observed 

values in a way that traditional prediction does not. We examine 

how noise affects the benefits of conditional prediction by simulat-

ing species data of different types that contain different amounts 

of noise (Table 1). In presence–absence data, the lack of abundance 

information (thousands are no different than one) may contribute 

to uncertainty and therefore noise. Conversely, in continuous abun-

dance data, such as counts per effort, tree basal area, or population 

density, abundances are continuous but with discrete zeroes. For 
discrete counts, uncertainty can depend on the effort associated 

with each observation, such as plot area, where high effort tends to 

reduce noise.

In our first case study, we apply conditional prediction to moni-

toring of marine fish and invertebrate biomass in the Gulf of Maine. 
The Gulf of Maine is a biologically rich and interconnected ecosystem 
that supports a variety of fisheries. The region is also warming faster 

than 96.2% of the world's oceans (Pershing et al., 2021), leading to 

shifts in the geographic distribution of fish and invertebrate species. 

These distribution shifts combined with overharvesting can lead to 

population declines: Atlantic cod (Gadus morhua), for example, has 

been depleted to less than 5% of historic biomass levels (Sguotti 
et al., 2019). As species composition changes, managers must re- 
examine historical quotas and fishing grounds. To protect cod popu-

lations, fisheries that target functionally similar species, such as the 

haddock fishery, are required to close if too many cod are caught 
as bycatch (H.R.2617, 117th Congress, 2022). The current rarity of 

cod makes it difficult to estimate their distributions and abundances 

using single- species assessments alone. Therefore, predictions con-

ditioned on functionally similar species (in terms of habitat use and 

trophic level; e.g. demersal large- bodied consumers), which are likely 

to co- occur with cod, as well as known prey from gut content stud-

ies could help manage this vulnerable stock. In this example, condi-

tioning fish and invertebrate species on each other improves both 

in- sample and out- of- sample biomass predictions. We highlight the 

improved predictions of Atlantic cod, whose management under cli-
mate change relies heavily on population assessments and distribu-

tion maps typically generated from relationships between cod and 

environmental conditions alone (Pershing et al., 2015).

In a second case study, we use conditional prediction to un-

derstand relationships between the abundances of Brown- headed 

Cowbirds (Molothrus ater), which are obligate nest parasites, and 

their host species. Brown- headed Cowbirds rely on breeding birds 
of other species to incubate their eggs and raise their young, often 

at the expense of the host's own reproductive success (Lorenzana 
& Sealy, 1999). Cowbirds have been reported to parasitize over 
200 species (Friedmann, 1963), with varying effects on host pop-

ulations. Management of endangered species, such as Kirtland's 
Warblers (Setophaga kirtlandii) and Least Bell's Vireos (Vireo bellii 

pusillus), has involved population control of cowbirds to improve 

reproductive success (Cooper et al., 2019; Mayfield, 1961). The fre-

quency of nest parasitism on a given host species depends on both 
the relative abundances of host species in the community (Barber & 
Martin, 1997) and the abundance of cowbirds (Cooper et al., 2019). 

Therefore, monitoring the impact of cowbirds on host species pop-

ulation dynamics requires understanding the extent to which breed-

ing individuals of cowbirds and host species overlap at a fine spatial 

scale. We fit a model with cowbirds and 16 of their frequent host 
species and predict abundances of each species conditioned on 

combinations of incidental species to evaluate the benefits of con-

ditional prediction. We then identify host species that are positively 

associated with cowbird abundance as evidence that they may be at 

risk of nest parasitism.

In both case studies demonstrated here, we expect covariance 

between species from a variety of sources that suggest benefits 

from conditioning. Unmeasured environmental conditions, such as 
food supply, may result in residual covariance. For example, grass 

seeds are a large part of the diets of both Brown- headed Cowbirds 
and Chipping Sparrows (Spizella passerina). This food source is not 

measured (and therefore cannot be used as a covariate in a joint 

model), so the effects of food will show up as positive residual cova-

riance—both species may be more abundant where the unobserved 

food resource is abundant. Therefore, an abundance of cowbirds 

provides indirect evidence for the unobserved shared resource. A 
variety of behaviours and species interactions may also produce re-

sidual covariance. Small- bodied pelagic fish species, such as Atlantic 
herring (Clupea harengus), could be informed by their generalist 

demersal predators (Ng et al., 2021). Cowbirds are generalist nest 
parasites; their abundances might be associated with abundances of 

their host species. Both fishes and birds can aggregate in multispe-

cies groups (Greenberg, 2001; Parrish et al., 2002), another source 

of covariance. In addition to dependence between species abun-

dances, there can also be dependence in their observation errors. 

The presence of a rare species can cause an observer to overlook or 

undercount a common species (Scher & Clark, 2023). The many ways 

that species can covary, beyond the variables that can be measured, 

suggest potential improvement from conditional prediction.

We illustrate the potential utility of conditional prediction 

using simulation and two applications. We use a Generalized Joint 
Attribute Model (GJAM), which admits multiple data types, includ-

ing counts, continuous abundance, and composition data (Bachelot 

et al., 2018; Clark et al., 2017; Wang et al., 2019), although the frame-

work we demonstrate can be applied broadly across joint Species 
Distribution Models (SDMs). The gjam R package (Clark et al., 2017) 

contains functions for conditional prediction; we demonstrate the 

workflow in a tutorial (rpubs. com/ clane scher/  condi tiona lpred iction). 

Using simulated data, we examine the effect of data type and re-

sidual covariance on conditional prediction. Next, we evaluate ap-

plications to Atlantic cod management and management of species 
parasitized by Brown- headed Cowbirds. Our applications focus on 
species abundance (continuous biomass and discrete counts, re-

spectively), but the simulations show that the concepts can apply to 

other data types, such as ordinal data (Schliep et al., 2018). Together, 
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simulations and case studies provide guidance for the utility of con-

ditional prediction to inform conservation by improving predictions 

and understanding species relationships.

2  |  MATERIAL S AND METHODS

2.1  |  Model structure

Conditional prediction of one or more focal species extends traditional 
Bayesian prediction to exploit information from incidental species that 

are observed in the same set of observations (Figure 1b). Consider 
a vector yi of observed abundances of S species for observations 

i = 1, … , n. Residual covariance in these responses (i.e. after account-

ing for a model mean) is estimated as a S × S covariance matrix �,

where xi is a length- Q design vector of predictors, B is a Q × S matrix 

of coefficients, and �i is a length- S random vector of residuals (Clark 
et al., 2014; Ovaskainen et al., 2017; Poggiato et al., 2021; Pollock 
et al., 2014). Traditional prediction combines the distribution of data in 

eqn:MVN with the posterior distribution of parameters to generate a 
predictive multivariate normal (MVN) distribution for a response vec-

tor y∗ (see Appendix 1 in Supporting Information).
Conditional prediction builds on Bayesian prediction by translat-

ing residual covariance into a species coefficient matrix A, which al-

lows the observed incidental species to be treated as a supplemental 

set of predictors. Without loss of generality, order the S species held 

in response vector yi as the F focal species that we wish to condi-

tionally predict ℱ = (1, … , F) followed by I  incidental species that 

we condition on ℐ = (1, … , I). In other words, yi =
(

y�
ℱ,i

, y�
ℐ,i

)�

, and 

B =

(

B
ℱ
,B

ℐ

)

. The F × I species coefficient matrix A comes from the 

residual covariance,

Building on traditional prediction, conditional prediction for the 

focal species includes a supplement from the species coefficient ma-

trix, which scales residual variance in the remaining I  species,

The second term in Equation (4) adds information from the I  

incidental species, which multiplies the n × I matrix of residuals 

R
ℐ
= Y

ℐ
− �

ℐ
. These are the classic equations for the conditional 

multivariate normal distributions and can be applied to any multi-

variate GLM.
We implement the conditional prediction framework using a gen-

eralized joint attribute model (GJAM) via the R package gjam (Clark 
et al., 2017). The model has the form of Equation (1). The covariance 

matrix Σ is a S × S covariance matrix, which is the basis for conditional 

prediction. GJAM can accommodate many types of response data; 
here, we demonstrate its use with continuous (CON), continuous 
abundance (CA), discrete abundance (DA) and presence- absence (PA). 
GJAM uses censoring (see Appendix 1) to avoid the use of non- linear 

transformation. Therefore, parameters can be interpreted on the same 

scale as the data. GJAM incorporates effort to set the uncertainty for 
each observation. In a GLM, effort can enter the model as an offset 
or covariate. Sample R code to conduct simple conditional prediction 
analyses using simulated and real data with GJAM can be found at 
rpubs. com/ clane scher/  condi tiona lpred iction. Here, conditional pre-

diction was implemented with the functions gjamConditionalPa-

rameters and gjamPredict in the GJAM package.
We compare traditional and conditional prediction by quantify-

ing the reduction in root mean squared prediction error (RMSPE) for 
conditional prediction relative to traditional prediction. Predictions 
of presence- absence data are evaluated with the Brier score rather 

than RMSPE (Gneiting & Raftery, 2007). Positive values indicate im-

provement from conditioning.

2.2  |  Simulation to understand model behaviour

Data were generated and analysed with the R package GJAM (Clark 
et al., 2017). Each simulated dataset contained 10 species that vary 
in their residual covariances with other species. For all species, there 

are five predictors with n = 1000 observations. Data (X,Y) and pa-

rameters (B,�) were randomly generated with residual covariance 

constrained to be positive definite.

To generate the data, we simulated 10 sets of continuous (CON) 
response data in which there is residual covariance between all spe-

cies. We also simulated 10 sets of CON response data where there is 
residual covariance between only two species, that is, for the eight 

remaining species, all signal is captured by the covariates.

To allow comparisons across data types, we converted each 

continuous data set to three additional data types: continuous 

abundance (CA—negative values are zero), discrete abundance (DA—
rounding to the nearest nonnegative integer) and presence–absence 

(PA—greater than zero or not; Table 1). Because these additional 

data types are generated from the original continuous data, all data 

types have the same residual covariance matrix and variance compo-

nent ratio. For more information, see Appendix 2.

(1)
yi =B

�
xi+�i

�i ∼MVN(0,Σ)

(2)A = Σ
−1

ℐ,ℐ
Σ
ℐ,ℱ

(3)�
ℱ

= XB
ℱ

(4)�
ℱ∣ℐ = XB

ℱ
+ R

ℐ
A

TA B L E  1  Data types examined in simulations.

Data type Abbreviation
Observed 
values Examples

Continuous CON (−∞, ∞) Body temperature

Continuous 
abundance

CA [0, ∞] Population density, 
biomass, basal 

area, nutrient 

concentration

Discrete 

abundance

DA {0, 1, 2, …} Counts

Presence- absence PA [0, 1] Species or binary trait
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We iteratively treated each simulated species as the focal 

species and conditioned it on all other species in the model. We 

aggregated percent improvement in RMSPE across species and 
replicates. We then compared these metrics across data types 

(CON, CA, DA, PA) and number of incidental species that have 
residual covariance with the focal species. In simulated datasets 

with residual covariance between all species, each focal species 

had residual covariance with nine incidental species. In the sim-

ulated data sets with residual covariance between two species, 

each focal species had residual covariance with one or zero inci-
dental species.

We considered simulation examples in which both covariates and 

residual covariance could be meaningful because this is the situation 

most relevant to application. Variable selection typically includes 

predictor variables up to the point where added variables no longer 

contribute meaningful variation. However, in ecological data, resid-

ual variance is still typically substantial.

2.3  |  Fish community data

We used biomass data from the National Oceanic and Atmospheric 
Administration (NOAA) Northeast Fishery Science Center (NEFSC) 
U.S. NES bottom trawl survey, which collects data on over 250 
fish and invertebrate species (Center, 2020). We used data from 

the years 1998–2020, excluding years before 1998 due to many 
missing values for chlorophyll. To account for the seasonal migra-

tions of many of the studied species, we modelled just the fall 

seasons (September through December) and included only regions 
that were consistently sampled in the fall. We modelled the fall 

because it is the feeding season so we expect interspecific co- 

occurrence to be more evident than during the breeding season 

(Zemeckis et al., 2017). Data were downloaded using the trawldata 

package in R (Batt, 2018). To reduce the influence of large outliers, 

we use the square root of biomass (measured as species- specific 
kg/tow) as the response variable.

We selected the 24 most common species, which were pres-

ent in at least 150 tows, and account for environmental variation 

in the model using bottom and surface ocean temperature, bottom 

salinity, depth, sediment size, chlorophyll A concentration (Chla) 
and month. Depth, temperature and salinity were measured in situ 

during trawl surveys, with missing values augmented using the data- 

assimilative HYbrid Coordinate Ocean Model (HYCOM) daily and 
then monthly data (Chassignet et al., 2007). Sediment size (grain size 
in mm) was obtained from The Nature Conservancy's Northwest 
Atlantic Marine Ecoregional Assessment (Greene et al., 2010). 

Chla was obtained from the MODIS satellite (monthly rasters from 
2003 to 2019) on a monthly time step (NASA Goddard Space Flight 
Center, O. B. P. G. Ocean Ecology The Laboratory, 2018a), with 

missing values filled using the SeaWIFS satellite (1998 to 2009) 
(NASA Goddard Space Flight Center, O. B. P. G. Ocean Ecology The 
Laboratory, 2018b). We examined the benefits of conditioning for in- 

sample and out- of- sample predictions of each species. We focused 

on predictions of Atlantic cod to help inform resource managers and 
their decision- making.

2.4  |  Bird community data

Bird abundance data came from the Breeding Bird Survey (BBS, 
Pardieck et al., 2020) conducted between 2015 and 2020 in Bird 

Conservation Regions 12, 22 and 23, that is, part of the Midwest 
region of the United States, which contains the entire breeding 
range of the Kirtland's Warbler. A BBS observation consists of 50 
point counts of 3 min each along a preselected route, for a total 

of 150 min per observation. We selected 17 species to model: 
Brown- headed Cowbird and 16 species whose nests it frequently 
parasitizes (Friedmann, 1963). Environmental variation was rep-

resented by temperature and precipitation site means and an-

nual anomalies taken over the previous 12 months (Thornton 
et al., 2020), elevation (Hollister et al., 2021) and land cover 

(National Land Cover Database Dewitz (2019)). Land cover was 
included as the percent of seven land cover categories (developed, 

forest, herbaceous, planted, shrub, water, wetlands) within 10 km 
of the BBS route.

We tested how the benefit of conditional prediction is related 

to the number of incidental species conditioned on. We alternately 

selected focal species, and we conditioned on groups of incidental 

species ranging in size from one to 16 species. To determine whether 
incidental species provide different benefits to prediction (i.e. some 

incidental species improve predictions more than others), we pre-

dicted each focal species conditionally on different combinations 

of incidental species. For each group size, we selected 10 random 
combinations of incidental species to condition on (except the 

group of 16 incidental species, for which there is only one possible 

combination).

We also examined the species coefficient matrix A (Equation 
(10) in Appendix 1) to understand relationships between species 

abundances. The relationships quantified by the species coeffi-
cient matrix indicate the amount of information that the residual 

abundance of each species adds to predictions of each of the oth-

ers. Specifically, we considered the information contributed by 
cowbird abundance to predictions of host species, and the infor-

mation contributed by host species abundance to predictions of 

cowbirds.

Because this was a modelling study, it did not require any ethical 
approval.

3  |  RESULTS

3.1  |  Simulation

Simulations demonstrated that the benefit of conditional predic-

tion depends on residual covariance and data type. Improvement 

from conditioning was greatest when there was residual covariance 
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between the focal species and many incidental species (Figure 2a). 

When there was no residual covariance with any incidental species, 

conditional prediction was equivalent to traditional prediction for all 
data types (Figure 2c). Data types that contain more information (e.g. 

continuous [CON] and continuous abundance [CA]) benefited from 
conditioning more than other data types. Discrete abundance (DA) 
data generally benefited from conditioning, but the amount of im-

provement was more variable than for other data types (Figure 2a). 

Conditioning caused little to no improvement for presence–absence 
(PA) data, regardless of residual covariance. Within each replicate, all 
data types are generated from the same residual covariance matrix, 

data and parameters, so the variance component ratio is the same 

across data types and does not impact comparisons of results across 

data types.

3.2  |  Conditionally predicting biomass of 
overfished species

Conditioning on incidental fish species biomass improved in-  and out- 
of- sample prediction across species. Conditioning provided a similar 
benefit to in-  and out- of- sample predictions (Figure 3a), but there was 

variation in the magnitude of improvement across species (Figure 3b). 

For example, Atlantic cod was among the species that benefited most 
from conditioning, with 20.4% and 17.9% improvement in RMSPE for 
in- sample and out- of- sample predictions, respectively. Conversely, 
conditioning offered little improvement for Summer Flounder (2.5% 
and 2.8% change in-  and out- of- sample, respectively). Species in 
Figure 3b are ordered by abundance; there is no relationship between 

species abundance and the benefit gained from conditional prediction.

F I G U R E  2  Percent improvement in RMSPE across data types for simulated data. Focal species are grouped by the number of incidental 
species with which they have residual covariance. From the models with residual covariance between all species, focal species have residual 

covariance with nine incidental species (a). From the models with residual covariance between only two species, focal species may have 

residual covariance with one incidental species (b) or zero incidental species (c). Data types shown are continuous (CON), continuous 
abundance (CA), discrete abundance (DA) and presence–absence (PA). The upper and lower hinges correspond to the first and third 
quartiles, and the horizontal line represents the median. Values more than 1.5 times the distance between the first and third quartiles 
beyond the hinges are considered outliers and plotted individually.

F I G U R E  3  The percent improvement in RMSPE for in- sample (filled) and out- of- sample (open) prediction across fish species (a) and for 
each fish species (b). Species in b are ordered by abundance, with rare species on the left. In (a), the upper and lower hinges correspond to 
the first and third quartiles; and the horizontal line represents the median.
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Conditioning predictions of Atlantic cod biomass on incidental 
species biomass captured more local variation than traditional pre-

diction. Traditional prediction of Atlantic cod predicted values close 
to the mean, resulting in overprediction in areas with low counts and 

underprediction in areas with high counts (Figure 4b). Conditioning 
revealed variation in biomass that more closely matched observed 

values (Figure 4c). In our study area, conditional prediction severely 

overpredicts biomass in one region that had zero observed cod bio-

mass. The overpredicted region is directly south of a region with 

high observed cod biomass which conditional prediction estimates 

accurately. The high biomass predicted in the southern region may 

result from a similar composition of incidental species in these two 

regions.

3.3  |  An obligate nest parasite and its hosts

Conditioning improved predictions of all bird species. Improvement in 
RMSPE was greatest when conditioning on many species rather than 
few (Figure 5). For most species, RMSPE improved by up to 8.3%–
24.0%. RMSPE for American Redstart (Setophaga ruticilla), however, 

improved by only 2.4% even when conditioned on all incidental species. 
Interestingly, for a given number of incidental species conditioned on, 

the different combinations of incidental species caused little variation 

in RMSPE improvement (Figure 5, shaded areas indicate one standard 

error). As with the previous example, there is no clear pattern between a 
species' abundance and the benefit it gains from conditioning.

Using the species coefficient matrix A, we examined the relation-

ships between species abundances and the improvement in condi-

tional prediction from each species. Conditional predictions of cowbird 
abundance are informed primarily by residual abundance of three spe-

cies: Kirtland's Warbler and Yellow- breasted Chat (Icteria virens) indi-

cate fewer cowbirds, whereas Bell's Vireo (Vireo bellii) indicates more 

cowbirds than expected (Figure 6). Using traditional prediction, our 
model expects eight cowbirds at locations where Kirtland's Warblers 
are observed; conditional prediction expects fewer than five cowbirds 

at these locations, which is closer to the observed counts (Figure S1). 

F I G U R E  4  Maps of Atlantic cod observed biomass per region 
(

kg∕km2
)

 (a) and difference between observed biomass and 

predicted biomass for traditional prediction (b) and conditional 

prediction (c). Maps show data from 2012 (Center, 2020). Base from 

Natural Earth 1:10,000,000- scale digital data.

F I G U R E  5  Percent improvement in RMSPE by conditioning 
on incidental species for each bird species in the model. Each line 
represents a focal species. Line colour indicates the percent of 
observations in which the species was seen (rare species are blue; 

common species are orange). The shaded areas show one standard error 

from the mean. Note that there is no standard error when conditioning 

on 16 species because there is only one combination of 16 species to 

condition on. RMSPE, root mean squared prediction error.
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Our model expects 19–23 cowbirds where Bell's Vireos are observed 
using traditional prediction, but 22–28 using conditional prediction, 
also closer to the observed counts. The species coefficient matrix also 

showed that conditioning on cowbird abundance does not substan-

tially improve predictions of each host species (Figure S2b). Although 
the standard errors for the estimates of most coefficients do not cross 

zero (Figure S2b, blue points), the magnitude of these coefficients is 

much smaller than the coefficients representing improvement in pre-

dictions of cowbirds provided by hosts (Figure S2a).

4  |  DISCUSSION

Conditioning on observations of jointly modelled incidental species 
improved predictions across simulated data, continuous measures of 

fish biomass and discrete bird counts in all cases except simulated pres-

ence–absence data. Conditioning improved RMSPE by between 5% 
and 25% for most fish (Figure 3) and bird (Figure 5) species. The fish 

case study demonstrated that conditioning can improve out- of- sample 

predictions as much as in- sample predictions (Figure 3). From the bird 

application, we found that improvement in RMSPE of the focal species 
increases with the number of incidental species (Figure 5). Interestingly, 

the identities of the species conditioned on did not substantially influ-

ence the amount of improvement from conditioning (Figure 5).

The improved accuracy of conditional predictions holds promise 

for management and conservation efforts. Management of Atlantic 
cod involves allocating quotas based on historic population levels 
and assessing their spatial distribution using SDMs. Despite a long-

time push for ecosystem- based fisheries management that incorpo-

rates species dependencies and environmental influences, progress 

towards ecosystem- based fisheries management in practice in the 

northeastern United States has remained slow (but see Townsend 

et al. (2019)). We provide one example of how incorporating species 

dependencies in spatially explicit models of cod biomass can benefit 

conservation efforts. When allocating quota and assessing fishing 
grounds, managers and fishers could draw information from both the 

environment and other species. This information can be particularly 

useful in cases of bycatch management, where the unintended catch 

of a rare or protected species, such as cod or sea turtles, can close an 

otherwise sustainable fishery (Santora, 2003). Our maps of Atlantic 
cod abundance, predicted conditionally on other species, can more 

accurately identify areas where unintended catch of Atlantic cod is 
likely, reducing the chances of future fisheries closures.

Predicting species conditionally on others can address many 
practical conservation challenges. There is a strong incentive for 

fishing ships to under- report bycatch species (Davies et al., 2009). 

Conditioning predictions of bycatch on target species returns, which 
are likely more accurate, might provide better estimates of bycatch 

than what is reported (Zhang et al., 2020). Further, the analysis 

demonstrated here can be developed into a tool to allow fishers to 

make decisions in real time. Fishers can predict bycatch using in-

formation about the environment and conditioning on the individu-

als already caught during a particular fishing trip. Such a tool would 
allow fishers to decide to move on before the bycatch of a rare spe-

cies closes a fishery for an entire season (Beutel et al., 2008).

In addition to improving predictions, the species coefficient matrix 

can improve understanding of the relationships between species abun-

dances. This matrix is derived from the covariance matrix (Equation 10 
in Appendix 1), but is asymmetric: coefficients indicate how the residual 

abundance of species A informs prediction of the residual abundance of 
species B and vice versa. The bird case study demonstrates this asym-

metry. Residual abundance of cowbirds contributed little information 

to the prediction of host species (Figure S2b), whereas residual abun-

dance of three host species informed predictions of cowbird abundance 

(Figure S2a). This asymmetry may be related to the degree of specializa-

tion by a species. For example, Kirtland's Warblers are extreme habitat 
specialists, breeding only in young Jack Pine stands (Donner et al., 2008). 

Their presence, therefore, indicates a very specific local habitat. By com-

parison, cowbirds are generalists, whose presence provides little specific 

information about habitat conditions. It is important to note that the 

species coefficient matrix asymmetry does not represent species inter-

actions. For example, Kirtland's Warblers do not depredate cowbirds, 
even though the coefficient is negative, but rather where Kirtland's 
Warblers are more abundant, cowbirds are less abundant.

The relationships between species abundances that are captured 

by the species coefficient matrix can help inform management strate-

gies. The relationships between host species and cowbird abundance, 

for example, indicate the amount that each host is potentially exposed 

to cowbird parasitism. For 13 of 16 host species, there were weak re-

lationships between residual cowbird abundance and residual host spe-

cies abundance suggesting that these host species are not particularly 

vulnerable to nest parasitism. Two cases where there are strong rela-

tionships between cowbirds and host species demonstrate how these 

relationships can inform management. First, we found that where there 

are Kirtland's Warblers there are fewer cowbirds than expected from the 

F I G U R E  6  Species coefficients indicating the information gained 
from host species abundance about cowbird abundance. Points 
represent the mean estimate, and lines show one standard error 

from the mean. Blue lines represent standard errors that do not 

cross zero; grey lines are standard errors that do cross zero.
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model covariates (Figure 6). This relationship is likely driven by manage-

ment programs that removed cowbirds from Kirtland's Warblers breeding 
areas, including our study area. Interestingly, we identified this pattern 

using data from 2015 to 2020, when cowbird trapping was reduced and 

eliminated (Cooper et al., 2019). Our results support recent findings that 

cowbird abundances have remained low in Kirtland's Warblers breed-

ing areas even after removal programs ended (Cooper et al., 2019). We 

suggest that this analysis be repeated periodically using current data to 

quickly determine whether cowbird abundances are increasing and re-

movals should resume. Conversely, our results indicated that where there 
are Bell's Vireos, there are more cowbirds than expected from the model 
covariates (Figure 6a). This result, combined with the fact that Bell's Vireo 
nests are parasitized by cowbirds at high rates (up to 54% in our study 
region, Mumford, 1952) suggests that Bell's Vireos may be at high risk 
of nest parasitism and their reproductive success should be monitored. 

Interestingly, the federally endangered Least Bell's Vireo subspecies, 
which occurs in Southwestern California outside our study area, has been 
managed with cowbird removals that have successfully reduced parasit-

ism and increased reproductive success (Kus & Whitfield, 2005).

There are limitations to the benefit of conditional prediction, 

which are apparent in our simulations and case studies. First, the 

type of response data influences the improvement that comes 

from conditioning (Figure 2). Continuous and continuous abun-

dance data benefit most. In our simulations, conditioning provided 

no benefit for presence–absence (PA) data. In PA data, all infor-
mation is collapsed into zeros and ones, so species abundances 
(again, limited to (0, 1)) have limited information to offer about 

others. This pattern likely extends across cases regardless of spe-

cies ecology and spatial scale. Second, residual covariance be-

tween species is required to improve predictions. There is more 
improvement in predictions of a focal species when it has residual 

covariance with many incidental species than with few species. 

Finally, our case studies demonstrate that the benefits of condi-

tioning vary across focal species. Although conditioning leads to 
almost a 25% improvement in RMSPE for many species, others 
benefit less. We cannot decipher from our results why some spe-

cies benefit more than others. It is possible that traits of the focal 

species, and whether they are similar to incidental species, influ-

ence the benefit from conditioning, but a trait- based assessment 

could support understanding of these patterns.

The conditional prediction framework has broad application beyond 

what is demonstrated here. Previous studies have shown the utility 
of conditional prediction beyond species, to traits (Seyednasrollah & 
Clark, 2020) and life stages (Qiu et al., 2021). The benefits of conditional 

prediction to out- of- sample predictions (Figure 3) open various avenues 

for applications. After fitting a model with data from an entire community 
of interest, surveys of a subset of those species could be used to predict 

the rest of the community. This framework could expand the utility of 

partial surveys and reduce the necessity of conducting full- community 

surveys. Conditional prediction could also aid in understanding the fu-

ture distributions of invasive or reintroduced species. A model fit with 
data from a species' established region could be used to predict its future 
distribution conditionally on the community in its expanded range.

Here, we demonstrate conditional prediction using a generalized 
joint attribute model (GJAM), but the framework can be applied to a va-

riety of models and situations. Using the classic equations for the con-

ditional multivariate normal distributions as described here, conditional 

prediction can be used with any multivariate GLM that produces a re-

sidual covariance matrix. Both frequentist and Bayesian multivariate 
GLMs are suitable, regardless of the method of Bayesian approximation 
(e.g. MCMC, INLA). Previous attempts at conditional prediction also 
demonstrated that conditioning improves predictions, but those were 

limited to predicting occurrence conditionally on occurrence based on 

probability theory (Wilkinson et al., 2020). The equations presented 
here make use of the residual covariance matrix to allow prediction of 

abundance conditionally on residual abundance.

There are additional extensions of conditional prediction that may be 

possible with further testing. Our examples condition on measured abun-

dance or occurrence of incidental species, but this framework can likely 

be used to condition on predicted abundance or occurrence, allowing for 

conditional prediction in regions where neither the focal species nor the 

incidental species were sampled. Although we use data sets collected at 
a single spatiotemporal scale, exploring whether a focal species can be 

predicted at a higher spatial or temporal resolution than it was observed 

by conditioning on an incidental species that was observed at a high reso-

lution could provide additional insight. While this was not explicitly tested 

in our analysis, it is an exciting avenue for future research.

Through simulations and two applications to real data, we show 

that conditional prediction can inform conservation and management 

by improving accuracy of predictions and illuminating relationships be-

tween species abundances. Conditional prediction expands the utility 
of jSDMs by extracting information from the residual covariance matrix 
to predict species conditionally on other species. Further, the species 

coefficient matrix used for conditional prediction provides information 

about relationships between species abundances. We present guide-

lines on how this framework should be applied across data types and 

species abundance. Researchers can evaluate the suitability of condi-

tional prediction for their system by comparing RMSPE of traditional 
predictions with RMSPE of conditional predictions, and by assessing 
whether the species coefficient matrix holds reasonable values.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Predicted abundance of Brown- headed Cowbird using 
traditional prediction (red) and conditional prediction (yellow) at 

all observations, observations where Bell's Vireo is present, and 
observations where Kirtland's Warbler is present. Conditional 
predictions tend to be closer than traditional predictions to the 

observed counts.

Figure S2. Species coefficients indicating the information gained 
from host species abundance about cowbird abundance (a) and 

from cowbird abundance about host species abundance (b). Points 
represent the mean estimate, and lines show one standard error 

from the mean. Blue lines represent standard errors that do not 

cross zero; grey lines are standard errors that do cross zero.
Appendix 1. Additional information about model structure, count 
data and effort, and quantifying the conditional effect.
Appendix 2. Additional information about simulated data.
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