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1 | INTRODUCTION affected by many of the same habitat variables, so the observed

abundances of one or more species can provide information on the
Informed management and conservation strategies depend on abundances of others. Identifying the relationships between spe-
knowledge of species abundances and the habitat conditions cies abundances might be useful to anticipate those at risk from
that they respond to (Bean et al., 2014). Multiple species can be competitors, disease or invasive species. We implement conditional
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prediction to integrate observable environmental variables with
information available from the abundances of other species to
improve predictions of distribution across space. To predict focal
species of interest conditioned on counts of incidental species, we
jointly fit the distribution of all species to measurable variation in
the environment. Residual covariance between species quantifies
co-abundance that is not explained by environmental variables in
the model; together, the fitted environmental variables and resid-
ual species covariance are the basis for prediction. This framework
applies the classic equations for the conditional multivariate nor-
mal distributions to ecological modelling to improve predictions
of species distributions. Using simulated data, where true species
abundances and the variables that explain those abundances are
known, as well as data from actual monitoring networks, we offer
guidance on how conditional prediction can sharpen our under-
standing of patterns in species abundance. We show that condi-
tional prediction requires residual covariance between species
and the potential benefit from conditioning depends on the noise
in the data and the type of data (e.g. presence-absence, discrete
counts, continuous abundance). We demonstrate the broad appli-
cability of conditional prediction to management contexts using
two examples from distinct ecological communities: fish and in-
vertebrate populations to inform harvesting practices and a nest
parasite (Brown-headed Cowbird) and its host species to improve
management.

Conditional prediction uses information from co-observed spe-
cies while accounting for uncertainty in observations. Because spe-
cies are recorded together as part of the same observations (e.g.
fish returns or bird point counts), models must allow for uncertainty
in the counts of all species (Tang et al., 2021). The counts for one
species cannot be used to directly predict counts for another (e.g.
Zhang et al. (2020)); doing so assumes that the counts of incidental
species have no observation error, and only the focal species counts

are random (Figure 1a). Modelling species as a joint response treats
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all species as random, with observation error, and accounts for co-
dependence between species (Figure 1b). The fitted joint model is
the basis for conditional prediction (Figure 1c).

The potential benefit of conditional prediction over traditional
prediction (i.e. predictions that are based solely on species-envi-
ronment relationships) comes from the residual covariance between
species. Because the number of variables that can be measured at
all sites is limited, these variables often explain small fractions of
the variation in species abundance data. Similarly, environmen-
tal variables in the model may not explain species interactions.
Therefore, the residual covariance matrix captures additional in-
formation. Conditional prediction uses residual covariance to add
unmeasured information about the environment to predictions
(Figure 1c). Whereas previous efforts are limited to species traits
(Seyednasrollah & Clark, 2020) or presence or absence of an inci-
dental species (Wilkinson et al., 2020), we use incidental species to
directly inform the abundances of others via residual covariance.

It is important to note that although residual covariance can
occur between species that directly interact, it does not quantify
the strength of competition, predation or mutualism (Blanchet
etal., 2020; Clark et al., 2017; Poggiato et al., 2021; Zurell et al., 2018)
For example, positive residual covariance does not reveal a mutual-
ism but rather indicates that a pair of species occur together beyond
what is explained in the model. Although residual covariance may
arise from species interactions, the residual covariance itself does
not identify or quantify the relationships between two species, that
is, whether they are parasite and host, predator and prey, competi-
tors or have no interaction at all (Clark et al., 2020).

Balancing the potential benefits of conditional prediction is its
sensitivity to noise in the data. Traditional prediction only depends
on observed counts indirectly: noisy observations are propagated
to parameter estimates, which integrate variation over a potentially
large number of observations. These parameter estimates are then

used for prediction. Prediction error is large if the sample size is
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FIGURE 1 (a) Using abundance of species y, to predict y, incorrectly assumes that the observation error ag only affects y,. Reversing
predictor and response species (predicting species y, from species y,) suffers the reverse problem. The model identifies the relationship
between the observed environment x and y,, #,. (b) A joint attribute model admits the observation errors in both and the unobserved
variables contribute to residual covariance . The relationships between the observed environment x and both y, and y,, , and g, are
identified. (c) Using the fitted joint model, conditional prediction for a new environment x* exploits information on unobserved variables
through the residual covariance X, ;. Predictive distributions are shown at bottom, where conditional prediction integrates over the posterior

distribution for parameters [B,E | X, Y],
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small and the residual variance is large (Tang et al., 2023). By con-
trast, when a prediction is conditioned on counts of other species
from a single location (i.e. a single observation), the raw count di-
rectly impacts prediction error. Thus, while conditioning adds infor-
mation from other species, it also introduces noise from observed
values in a way that traditional prediction does not. We examine
how noise affects the benefits of conditional prediction by simulat-
ing species data of different types that contain different amounts
of noise (Table 1). In presence-absence data, the lack of abundance
information (thousands are no different than one) may contribute
to uncertainty and therefore noise. Conversely, in continuous abun-
dance data, such as counts per effort, tree basal area, or population
density, abundances are continuous but with discrete zeroes. For
discrete counts, uncertainty can depend on the effort associated
with each observation, such as plot area, where high effort tends to
reduce noise.

In our first case study, we apply conditional prediction to moni-
toring of marine fish and invertebrate biomass in the Gulf of Maine.
The Gulf of Maine is a biologically rich and interconnected ecosystem
that supports a variety of fisheries. The region is also warming faster
than 96.2% of the world's oceans (Pershing et al., 2021), leading to
shifts in the geographic distribution of fish and invertebrate species.
These distribution shifts combined with overharvesting can lead to
population declines: Atlantic cod (Gadus morhua), for example, has
been depleted to less than 5% of historic biomass levels (Sguotti
et al., 2019). As species composition changes, managers must re-
examine historical quotas and fishing grounds. To protect cod popu-
lations, fisheries that target functionally similar species, such as the
haddock fishery, are required to close if too many cod are caught
as bycatch (H.R.2617, 117th Congress, 2022). The current rarity of
cod makes it difficult to estimate their distributions and abundances
using single-species assessments alone. Therefore, predictions con-
ditioned on functionally similar species (in terms of habitat use and
trophic level; e.g. demersal large-bodied consumers), which are likely
to co-occur with cod, as well as known prey from gut content stud-
ies could help manage this vulnerable stock. In this example, condi-
tioning fish and invertebrate species on each other improves both
in-sample and out-of-sample biomass predictions. We highlight the
improved predictions of Atlantic cod, whose management under cli-
mate change relies heavily on population assessments and distribu-
tion maps typically generated from relationships between cod and
environmental conditions alone (Pershing et al., 2015).

In a second case study, we use conditional prediction to un-
derstand relationships between the abundances of Brown-headed
Cowbirds (Molothrus ater), which are obligate nest parasites, and
their host species. Brown-headed Cowbirds rely on breeding birds
of other species to incubate their eggs and raise their young, often
at the expense of the host's own reproductive success (Lorenzana
& Sealy, 1999). Cowbirds have been reported to parasitize over
200 species (Friedmann, 1963), with varying effects on host pop-
ulations. Management of endangered species, such as Kirtland's
Warblers (Setophaga kirtlandii) and Least Bell's Vireos (Vireo bellii
pusillus), has involved population control of cowbirds to improve

reproductive success (Cooper et al., 2019; Mayfield, 1961). The fre-
quency of nest parasitism on a given host species depends on both
the relative abundances of host species in the community (Barber &
Martin, 1997) and the abundance of cowbirds (Cooper et al., 2019).
Therefore, monitoring the impact of cowbirds on host species pop-
ulation dynamics requires understanding the extent to which breed-
ing individuals of cowbirds and host species overlap at a fine spatial
scale. We fit a model with cowbirds and 16 of their frequent host
species and predict abundances of each species conditioned on
combinations of incidental species to evaluate the benefits of con-
ditional prediction. We then identify host species that are positively
associated with cowbird abundance as evidence that they may be at
risk of nest parasitism.

In both case studies demonstrated here, we expect covariance
between species from a variety of sources that suggest benefits
from conditioning. Unmeasured environmental conditions, such as
food supply, may result in residual covariance. For example, grass
seeds are a large part of the diets of both Brown-headed Cowbirds
and Chipping Sparrows (Spizella passerina). This food source is not
measured (and therefore cannot be used as a covariate in a joint
model), so the effects of food will show up as positive residual cova-
riance—both species may be more abundant where the unobserved
food resource is abundant. Therefore, an abundance of cowbirds
provides indirect evidence for the unobserved shared resource. A
variety of behaviours and species interactions may also produce re-
sidual covariance. Small-bodied pelagic fish species, such as Atlantic
herring (Clupea harengus), could be informed by their generalist
demersal predators (Ng et al., 2021). Cowbirds are generalist nest
parasites; their abundances might be associated with abundances of
their host species. Both fishes and birds can aggregate in multispe-
cies groups (Greenberg, 2001; Parrish et al., 2002), another source
of covariance. In addition to dependence between species abun-
dances, there can also be dependence in their observation errors.
The presence of a rare species can cause an observer to overlook or
undercount a common species (Scher & Clark, 2023). The many ways
that species can covary, beyond the variables that can be measured,
suggest potential improvement from conditional prediction.

We illustrate the potential utility of conditional prediction
using simulation and two applications. We use a Generalized Joint
Attribute Model (GJAM), which admits multiple data types, includ-
ing counts, continuous abundance, and composition data (Bachelot
etal., 2018; Clark et al., 2017; Wang et al., 2019), although the frame-
work we demonstrate can be applied broadly across joint Species
Distribution Models (SDMs). The gjam R package (Clark et al., 2017)
contains functions for conditional prediction; we demonstrate the
workflow in a tutorial (rpubs.com/clanescher/conditionalprediction).
Using simulated data, we examine the effect of data type and re-
sidual covariance on conditional prediction. Next, we evaluate ap-
plications to Atlantic cod management and management of species
parasitized by Brown-headed Cowbirds. Our applications focus on
species abundance (continuous biomass and discrete counts, re-
spectively), but the simulations show that the concepts can apply to
other data types, such as ordinal data (Schliep et al., 2018). Together,
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simulations and case studies provide guidance for the utility of con-
ditional prediction to inform conservation by improving predictions

and understanding species relationships.

2 | MATERIALS AND METHODS
2.1 | Model structure

Conditional prediction of one or more focal species extends traditional
Bayesian prediction to exploit information from incidental species that
are observed in the same set of observations (Figure 1b). Consider
a vector y; of observed abundances of S species for observations
i=1, ...,n. Residual covariance in these responses (i.e. after account-

ing for a model mean) is estimated as a S x S covariance matrix X,

y;=B'x +¢;
€, ~MVN(O,X)

(1)

where x; is a length-Q design vector of predictors, B is a Q x S matrix
of coefficients, and ¢; is a length-S random vector of residuals (Clark
et al., 2014; Ovaskainen et al., 2017; Poggiato et al., 2021; Pollock
et al., 2014). Traditional prediction combines the distribution of data in
egn:MVN with the posterior distribution of parameters to generate a
predictive multivariate normal (MVN) distribution for a response vec-
tor y* (see Appendix 1 in Supporting Information).

Conditional prediction builds on Bayesian prediction by translat-
ing residual covariance into a species coefficient matrix A, which al-
lows the observed incidental species to be treated as a supplemental
set of predictors. Without loss of generality, order the S species held
in response vector y; as the F focal species that we wish to condi-
tionally predict & = (1, ... ,F) followed by I incidental species that
we condition on . = (1, ..., ). In other words, y; = <y{i‘i,yfyyi>/, and
B = (B,B). The F x I species coefficient matrix A comes from the

residual covariance,
A=xl3,, ()

Building on traditional prediction, conditional prediction for the
focal species includes a supplement from the species coefficient ma-

trix, which scales residual variance in the remaining | species,

Uz = XBg 3)

Hgzi7 =XBg + R ;A (4)

The second term in Equation (4) adds information from the |
incidental species, which multiplies the n x| matrix of residuals
R; =Y, — u, These are the classic equations for the conditional
multivariate normal distributions and can be applied to any multi-
variate GLM.

We implement the conditional prediction framework using a gen-
eralized joint attribute model (GJAM) via the R package gjam (Clark
et al., 2017). The model has the form of Equation (1). The covariance
matrix X is a S x § covariance matrix, which is the basis for conditional
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prediction. GJAM can accommodate many types of response data;
here, we demonstrate its use with continuous (CON), continuous
abundance (CA), discrete abundance (DA) and presence-absence (PA).
GJAM uses censoring (see Appendix 1) to avoid the use of non-linear
transformation. Therefore, parameters can be interpreted on the same
scale as the data. GJAM incorporates effort to set the uncertainty for
each observation. In a GLM, effort can enter the model as an offset
or covariate. Sample R code to conduct simple conditional prediction
analyses using simulated and real data with GJAM can be found at
rpubs.com/clanescher/conditionalprediction. Here, conditional pre-
diction was implemented with the functions gjamConditionalPa-
rameters and gjamPredict in the GJAM package.

We compare traditional and conditional prediction by quantify-
ing the reduction in root mean squared prediction error (RMSPE) for
conditional prediction relative to traditional prediction. Predictions
of presence-absence data are evaluated with the Brier score rather
than RMSPE (Gneiting & Raftery, 2007). Positive values indicate im-
provement from conditioning.

2.2 | Simulation to understand model behaviour

Data were generated and analysed with the R package GJAM (Clark
et al., 2017). Each simulated dataset contained 10 species that vary
in their residual covariances with other species. For all species, there
are five predictors with n = 1000 observations. Data (X,Y) and pa-
rameters (B,X) were randomly generated with residual covariance
constrained to be positive definite.

To generate the data, we simulated 10 sets of continuous (CON)
response data in which there is residual covariance between all spe-
cies. We also simulated 10 sets of CON response data where there is
residual covariance between only two species, that is, for the eight
remaining species, all signal is captured by the covariates.

To allow comparisons across data types, we converted each
continuous data set to three additional data types: continuous
abundance (CA—negative values are zero), discrete abundance (DA—
rounding to the nearest nonnegative integer) and presence-absence
(PA—greater than zero or not; Table 1). Because these additional
data types are generated from the original continuous data, all data
types have the same residual covariance matrix and variance compo-

nent ratio. For more information, see Appendix 2.

TABLE 1 Datatypes examined in simulations.

Observed
Data type Abbreviation values Examples
Continuous CON (—o0, o) Body temperature
Continuous CA [0, ] Population density,
abundance biomass, basal
area, nutrient
concentration
Discrete DA {0,1,2,..} Counts
abundance
Presence-absence PA [0, 1] Species or binary trait
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We iteratively treated each simulated species as the focal
species and conditioned it on all other species in the model. We
aggregated percent improvement in RMSPE across species and
replicates. We then compared these metrics across data types
(CON, CA, DA, PA) and number of incidental species that have
residual covariance with the focal species. In simulated datasets
with residual covariance between all species, each focal species
had residual covariance with nine incidental species. In the sim-
ulated data sets with residual covariance between two species,
each focal species had residual covariance with one or zero inci-
dental species.

We considered simulation examples in which both covariates and
residual covariance could be meaningful because this is the situation
most relevant to application. Variable selection typically includes
predictor variables up to the point where added variables no longer
contribute meaningful variation. However, in ecological data, resid-
ual variance is still typically substantial.

2.3 | Fish community data

We used biomass data from the National Oceanic and Atmospheric
Administration (NOAA) Northeast Fishery Science Center (NEFSC)
U.S. NES bottom trawl survey, which collects data on over 250
fish and invertebrate species (Center, 2020). We used data from
the years 1998-2020, excluding years before 1998 due to many
missing values for chlorophyll. To account for the seasonal migra-
tions of many of the studied species, we modelled just the fall
seasons (September through December) and included only regions
that were consistently sampled in the fall. We modelled the fall
because it is the feeding season so we expect interspecific co-
occurrence to be more evident than during the breeding season
(Zemeckis et al., 2017). Data were downloaded using the trawldata
package in R (Batt, 2018). To reduce the influence of large outliers,
we use the square root of biomass (measured as species-specific
kg/tow) as the response variable.

We selected the 24 most common species, which were pres-
ent in at least 150 tows, and account for environmental variation
in the model using bottom and surface ocean temperature, bottom
salinity, depth, sediment size, chlorophyll A concentration (Chla)
and month. Depth, temperature and salinity were measured in situ
during trawl surveys, with missing values augmented using the data-
assimilative HYbrid Coordinate Ocean Model (HYCOM) daily and
then monthly data (Chassignet et al., 2007). Sediment size (grain size
in mm) was obtained from The Nature Conservancy's Northwest
Atlantic Marine Ecoregional Assessment (Greene et al., 2010).
Chla was obtained from the MODIS satellite (monthly rasters from
2003 to 2019) on a monthly time step (NASA Goddard Space Flight
Center, O. B. P. G. Ocean Ecology The Laboratory, 2018a), with
missing values filled using the SeaWIFS satellite (1998 to 2009)
(NASA Goddard Space Flight Center, O. B. P. G. Ocean Ecology The
Laboratory, 2018b). We examined the benefits of conditioning for in-
sample and out-of-sample predictions of each species. We focused

on predictions of Atlantic cod to help inform resource managers and

their decision-making.

2.4 | Bird community data

Bird abundance data came from the Breeding Bird Survey (BBS,
Pardieck et al., 2020) conducted between 2015 and 2020 in Bird
Conservation Regions 12, 22 and 23, that is, part of the Midwest
region of the United States, which contains the entire breeding
range of the Kirtland's Warbler. A BBS observation consists of 50
point counts of 3 min each along a preselected route, for a total
of 150min per observation. We selected 17 species to model:
Brown-headed Cowbird and 16 species whose nests it frequently
parasitizes (Friedmann, 1963). Environmental variation was rep-
resented by temperature and precipitation site means and an-
nual anomalies taken over the previous 12months (Thornton
et al.,, 2020), elevation (Hollister et al., 2021) and land cover
(National Land Cover Database Dewitz (2019)). Land cover was
included as the percent of seven land cover categories (developed,
forest, herbaceous, planted, shrub, water, wetlands) within 10km
of the BBS route.

We tested how the benefit of conditional prediction is related
to the number of incidental species conditioned on. We alternately
selected focal species, and we conditioned on groups of incidental
species ranging in size from one to 16 species. To determine whether
incidental species provide different benefits to prediction (i.e. some
incidental species improve predictions more than others), we pre-
dicted each focal species conditionally on different combinations
of incidental species. For each group size, we selected 10 random
combinations of incidental species to condition on (except the
group of 16 incidental species, for which there is only one possible
combination).

We also examined the species coefficient matrix A (Equation
(10) in Appendix 1) to understand relationships between species
abundances. The relationships quantified by the species coeffi-
cient matrix indicate the amount of information that the residual
abundance of each species adds to predictions of each of the oth-
ers. Specifically, we considered the information contributed by
cowbird abundance to predictions of host species, and the infor-
mation contributed by host species abundance to predictions of
cowbirds.

Because this was a modelling study, it did not require any ethical

approval.
3 | RESULTS
3.1 | Simulation

Simulations demonstrated that the benefit of conditional predic-
tion depends on residual covariance and data type. Improvement
from conditioning was greatest when there was residual covariance
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between the focal species and many incidental species (Figure 2a).
When there was no residual covariance with any incidental species,
conditional prediction was equivalent to traditional prediction for all
data types (Figure 2c). Data types that contain more information (e.g.
continuous [CON] and continuous abundance [CA]) benefited from
conditioning more than other data types. Discrete abundance (DA)
data generally benefited from conditioning, but the amount of im-
provement was more variable than for other data types (Figure 2a).
Conditioning caused little to no improvement for presence-absence
(PA) data, regardless of residual covariance. Within each replicate, all
data types are generated from the same residual covariance matrix,
data and parameters, so the variance component ratio is the same

across data types and does not impact comparisons of results across

Journal of Applied Ecology EEﬁ*EF??JW 1667

3.2 Conditionally predicting biomass of
overfished species

Conditioning on incidental fish species biomass improved in- and out-
of-sample prediction across species. Conditioning provided a similar
benefit to in- and out-of-sample predictions (Figure 3a), but there was
variation in the magnitude of improvement across species (Figure 3b).
For example, Atlantic cod was among the species that benefited most
from conditioning, with 20.4% and 17.9% improvement in RMSPE for
in-sample and out-of-sample predictions, respectively. Conversely,
conditioning offered little improvement for Summer Flounder (2.5%
and 2.8% change in- and out-of-sample, respectively). Species in

Figure 3b are ordered by abundance; there is no relationship between

data types. species abundance and the benefit gained from conditional prediction.
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FIGURE 3 The percent improvement in RMSPE for in-sample (filled) and out-of-sample (open) prediction across fish species (a) and for
each fish species (b). Species in b are ordered by abundance, with rare species on the left. In (a), the upper and lower hinges correspond to
the first and third quartiles; and the horizontal line represents the median.
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Conditioning predictions of Atlantic cod biomass on incidental
species biomass captured more local variation than traditional pre-
diction. Traditional prediction of Atlantic cod predicted values close
to the mean, resulting in overprediction in areas with low counts and
underprediction in areas with high counts (Figure 4b). Conditioning
revealed variation in biomass that more closely matched observed
values (Figure 4c). In our study area, conditional prediction severely
overpredicts biomass in one region that had zero observed cod bio-
mass. The overpredicted region is directly south of a region with
high observed cod biomass which conditional prediction estimates
accurately. The high biomass predicted in the southern region may

(a) Observed
46° N A

Atlantic cod
biomass (kg/km?2)

. 2000
1500

43° N A
1000
500
0

40° N A

74° W 70° W 66° W
(b) Error from traditional prediction
Difference in
biomass (kg/km?)

2000
l 1000
0
EZ _1000

FIGURE 4 Maps of Atlantic cod observed biomass per region

kg/km2 (a) and difference between observed biomass and
predicted biomass for traditional prediction (b) and conditional
prediction (c). Maps show data from 2012 (Center, 2020). Base from
Natural Earth 1:10,000,000-scale digital data.

result from a similar composition of incidental species in these two

regions.

3.3 | An obligate nest parasite and its hosts

Conditioning improved predictions of all bird species. Improvement in
RMSPE was greatest when conditioning on many species rather than
few (Figure 5). For most species, RMSPE improved by up to 8.3%-
24.0%. RMSPE for American Redstart (Setophaga ruticilla), however,
improved by only 2.4% even when conditioned on all incidental species.
Interestingly, for a given number of incidental species conditioned on,
the different combinations of incidental species caused little variation
in RMSPE improvement (Figure 5, shaded areas indicate one standard
error). As with the previous example, there is no clear pattern between a
species' abundance and the benefit it gains from conditioning.

Using the species coefficient matrix A, we examined the relation-
ships between species abundances and the improvement in condi-
tional prediction from each species. Conditional predictions of cowbird
abundance are informed primarily by residual abundance of three spe-
cies: Kirtland's Warbler and Yellow-breasted Chat (Icteria virens) indi-
cate fewer cowbirds, whereas Bell's Vireo (Vireo bellii) indicates more
cowbirds than expected (Figure 6). Using traditional prediction, our
model expects eight cowbirds at locations where Kirtland's Warblers
are observed; conditional prediction expects fewer than five cowbirds

at these locations, which is closer to the observed counts (Figure S1).
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FIGURE 5 Percentimprovement in RMSPE by conditioning

on incidental species for each bird species in the model. Each line
represents a focal species. Line colour indicates the percent of
observations in which the species was seen (rare species are blue;
common species are orange). The shaded areas show one standard error
from the mean. Note that there is no standard error when conditioning
on 16 species because there is only one combination of 16 species to
condition on. RMSPE, root mean squared prediction error.
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FIGURE 6 Species coefficients indicating the information gained
from host species abundance about cowbird abundance. Points
represent the mean estimate, and lines show one standard error
from the mean. Blue lines represent standard errors that do not
cross zero; grey lines are standard errors that do cross zero.

Our model expects 19-23 cowbirds where Bell's Vireos are observed
using traditional prediction, but 22-28 using conditional prediction,
also closer to the observed counts. The species coefficient matrix also
showed that conditioning on cowbird abundance does not substan-
tially improve predictions of each host species (Figure S2b). Although
the standard errors for the estimates of most coefficients do not cross
zero (Figure S2b, blue points), the magnitude of these coefficients is
much smaller than the coefficients representing improvement in pre-
dictions of cowbirds provided by hosts (Figure S2a).

4 | DISCUSSION

Conditioning on observations of jointly modelled incidental species
improved predictions across simulated data, continuous measures of
fish biomass and discrete bird counts in all cases except simulated pres-
ence-absence data. Conditioning improved RMSPE by between 5%
and 25% for most fish (Figure 3) and bird (Figure 5) species. The fish
case study demonstrated that conditioning can improve out-of-sample
predictions as much as in-sample predictions (Figure 3). From the bird
application, we found that improvement in RMSPE of the focal species
increases with the number of incidental species (Figure 5). Interestingly,
the identities of the species conditioned on did not substantially influ-
ence the amount of improvement from conditioning (Figure 5).

The improved accuracy of conditional predictions holds promise
for management and conservation efforts. Management of Atlantic
cod involves allocating quotas based on historic population levels
and assessing their spatial distribution using SDMs. Despite a long-
time push for ecosystem-based fisheries management that incorpo-
rates species dependencies and environmental influences, progress
towards ecosystem-based fisheries management in practice in the
northeastern United States has remained slow (but see Townsend
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et al. (2019)). We provide one example of how incorporating species
dependencies in spatially explicit models of cod biomass can benefit
conservation efforts. When allocating quota and assessing fishing
grounds, managers and fishers could draw information from both the
environment and other species. This information can be particularly
useful in cases of bycatch management, where the unintended catch
of arare or protected species, such as cod or sea turtles, can close an
otherwise sustainable fishery (Santora, 2003). Our maps of Atlantic
cod abundance, predicted conditionally on other species, can more
accurately identify areas where unintended catch of Atlantic cod is
likely, reducing the chances of future fisheries closures.

Predicting species conditionally on others can address many
practical conservation challenges. There is a strong incentive for
fishing ships to under-report bycatch species (Davies et al., 2009).
Conditioning predictions of bycatch on target species returns, which
are likely more accurate, might provide better estimates of bycatch
than what is reported (Zhang et al., 2020). Further, the analysis
demonstrated here can be developed into a tool to allow fishers to
make decisions in real time. Fishers can predict bycatch using in-
formation about the environment and conditioning on the individu-
als already caught during a particular fishing trip. Such a tool would
allow fishers to decide to move on before the bycatch of a rare spe-
cies closes a fishery for an entire season (Beutel et al., 2008).

In addition to improving predictions, the species coefficient matrix
can improve understanding of the relationships between species abun-
dances. This matrix is derived from the covariance matrix (Equation 10
in Appendix 1), but is asymmetric: coefficients indicate how the residual
abundance of species A informs prediction of the residual abundance of
species B and vice versa. The bird case study demonstrates this asym-
metry. Residual abundance of cowbirds contributed little information
to the prediction of host species (Figure S2b), whereas residual abun-
dance of three host species informed predictions of cowbird abundance
(Figure S2a). This asymmetry may be related to the degree of specializa-
tion by a species. For example, Kirtland's Warblers are extreme habitat
specialists, breeding only in young Jack Pine stands (Donner et al., 2008).
Their presence, therefore, indicates a very specific local habitat. By com-
parison, cowbirds are generalists, whose presence provides little specific
information about habitat conditions. It is important to note that the
species coefficient matrix asymmetry does not represent species inter-
actions. For example, Kirtland's Warblers do not depredate cowbirds,
even though the coefficient is negative, but rather where Kirtland's
Warblers are more abundant, cowbirds are less abundant.

The relationships between species abundances that are captured
by the species coefficient matrix can help inform management strate-
gies. The relationships between host species and cowbird abundance,
for example, indicate the amount that each host is potentially exposed
to cowbird parasitism. For 13 of 16 host species, there were weak re-
lationships between residual cowbird abundance and residual host spe-
cies abundance suggesting that these host species are not particularly
vulnerable to nest parasitism. Two cases where there are strong rela-
tionships between cowbirds and host species demonstrate how these
relationships can inform management. First, we found that where there
are Kirtland's Warblers there are fewer cowbirds than expected from the
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model covariates (Figure 6). This relationship is likely driven by manage-
ment programs that removed cowbirds from Kirtland's Warblers breeding
areas, including our study area. Interestingly, we identified this pattern
using data from 2015 to 2020, when cowbird trapping was reduced and
eliminated (Cooper et al., 2019). Our results support recent findings that
cowbird abundances have remained low in Kirtland's Warblers breed-
ing areas even after removal programs ended (Cooper et al., 2019). We
suggest that this analysis be repeated periodically using current data to
quickly determine whether cowbird abundances are increasing and re-
movals should resume. Conversely, our results indicated that where there
are Bell's Vireos, there are more cowbirds than expected from the model
covariates (Figure 6a). This result, combined with the fact that Bell's Vireo
nests are parasitized by cowbirds at high rates (up to 54% in our study
region, Mumford, 1952) suggests that Bell's Vireos may be at high risk
of nest parasitism and their reproductive success should be monitored.
Interestingly, the federally endangered Least Bell's Vireo subspecies,
which occurs in Southwestern California outside our study area, has been
managed with cowbird removals that have successfully reduced parasit-
ism and increased reproductive success (Kus & Whitfield, 2005).

There are limitations to the benefit of conditional prediction,
which are apparent in our simulations and case studies. First, the
type of response data influences the improvement that comes
from conditioning (Figure 2). Continuous and continuous abun-
dance data benefit most. In our simulations, conditioning provided
no benefit for presence-absence (PA) data. In PA data, all infor-
mation is collapsed into zeros and ones, so species abundances
(again, limited to (0, 1)) have limited information to offer about
others. This pattern likely extends across cases regardless of spe-
cies ecology and spatial scale. Second, residual covariance be-
tween species is required to improve predictions. There is more
improvement in predictions of a focal species when it has residual
covariance with many incidental species than with few species.
Finally, our case studies demonstrate that the benefits of condi-
tioning vary across focal species. Although conditioning leads to
almost a 25% improvement in RMSPE for many species, others
benefit less. We cannot decipher from our results why some spe-
cies benefit more than others. It is possible that traits of the focal
species, and whether they are similar to incidental species, influ-
ence the benefit from conditioning, but a trait-based assessment
could support understanding of these patterns.

The conditional prediction framework has broad application beyond
what is demonstrated here. Previous studies have shown the utility
of conditional prediction beyond species, to traits (Seyednasrollah &
Clark, 2020) and life stages (Qiu et al., 2021). The benefits of conditional
prediction to out-of-sample predictions (Figure 3) open various avenues
for applications. After fitting a model with data from an entire community
of interest, surveys of a subset of those species could be used to predict
the rest of the community. This framework could expand the utility of
partial surveys and reduce the necessity of conducting full-community
surveys. Conditional prediction could also aid in understanding the fu-
ture distributions of invasive or reintroduced species. A model fit with
data from a species' established region could be used to predict its future
distribution conditionally on the community in its expanded range.

Here, we demonstrate conditional prediction using a generalized
joint attribute model (GJAM), but the framework can be applied to a va-
riety of models and situations. Using the classic equations for the con-
ditional multivariate normal distributions as described here, conditional
prediction can be used with any multivariate GLM that produces a re-
sidual covariance matrix. Both frequentist and Bayesian multivariate
GLMs are suitable, regardless of the method of Bayesian approximation
(e.g. MCMC, INLA). Previous attempts at conditional prediction also
demonstrated that conditioning improves predictions, but those were
limited to predicting occurrence conditionally on occurrence based on
probability theory (Wilkinson et al., 2020). The equations presented
here make use of the residual covariance matrix to allow prediction of
abundance conditionally on residual abundance.

There are additional extensions of conditional prediction that may be
possible with further testing. Our examples condition on measured abun-
dance or occurrence of incidental species, but this framework can likely
be used to condition on predicted abundance or occurrence, allowing for
conditional prediction in regions where neither the focal species nor the
incidental species were sampled. Although we use data sets collected at
a single spatiotemporal scale, exploring whether a focal species can be
predicted at a higher spatial or temporal resolution than it was observed
by conditioning on an incidental species that was observed at a high reso-
lution could provide additional insight. While this was not explicitly tested
in our analysis, it is an exciting avenue for future research.

Through simulations and two applications to real data, we show
that conditional prediction can inform conservation and management
by improving accuracy of predictions and illuminating relationships be-
tween species abundances. Conditional prediction expands the utility
of ][SDMs by extracting information from the residual covariance matrix
to predict species conditionally on other species. Further, the species
coefficient matrix used for conditional prediction provides information
about relationships between species abundances. We present guide-
lines on how this framework should be applied across data types and
species abundance. Researchers can evaluate the suitability of condi-
tional prediction for their system by comparing RMSPE of traditional
predictions with RMSPE of conditional predictions, and by assessing

whether the species coefficient matrix holds reasonable values.
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SUPPORTING INFORMATION

Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Figure S1. Predicted abundance of Brown-headed Cowbird using
traditional prediction (red) and conditional prediction (yellow) at
all observations, observations where Bell's Vireo is present, and
observations where Kirtland's Warbler is present. Conditional
predictions tend to be closer than traditional predictions to the
observed counts.

Figure S2. Species coefficients indicating the information gained
from host species abundance about cowbird abundance (a) and
from cowbird abundance about host species abundance (b). Points
represent the mean estimate, and lines show one standard error
from the mean. Blue lines represent standard errors that do not
cross zero; grey lines are standard errors that do cross zero.
Appendix 1. Additional information about model structure, count
data and effort, and quantifying the conditional effect.

Appendix 2. Additional information about simulated data.
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