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ABSTRACT: Electrochemical impedance spectroscopy (EIS) is
an important analytical technique for the understanding of
electrochemical systems. With the recent advent and burgeoning
deployment of machine learning (ML) in EIS analysis, a critical yet
hitherto unanswered question emerges: what is the appropriate
manner to preprocess the EIS data for ML-based analysis? While
the preprocessing of a model’s input data is known to be critical for
a successful deployment of the ML model, EIS is known to possess
multiple classical venues of data representation, and moreover, a
proper data normalization protocol for comparative EIS studies
remains elusive. Here, we report the methodology and the
outcomes that evaluate the efficacy of multiple data preprocessing
methods in an ML-based EIS analysis. Within our proof-of-concept parameter space, plotting the input training data’s impedance
magnitude (|Z|) against phase angle (φ) while individually normalizing each EIS curve yields the highest accuracy and robustness in
the correspondingly established residual neural network (ResNet) model. Rationalized by additional “importance” analysis of the
input data, such a data representation method extracts information and hidden features more effectively. While the Nyquist plot is
widely used in manual analysis, a different data representation of EIS data seems equally plausible for ML-based EIS analysis. Our
work offers a protocol for future researchers to decide on the proper preprocessing method for different ML applications in
electrochemistry on a case-by-case basis.

■ INTRODUCTION
Electrochemical impedance spectroscopy (EIS)1 is a powerful
technique for investigating material properties and analyzing
complicated reaction processes in electrochemical systems
including batteries,2−4 sensors,5−7 and catalysts.8−10 Exper-
imentally, EIS data are typically collected by monitoring the
sinusoidal current I(t) upon the application of a sinusoidal
voltage E(t) centered around the potential Es over a series of
frequencies f (Figure 1A).1 While impedance Z( f) is
straightforwardly calculated as the ratio between output signal
E(t) and input signal I(t) under certain Es,

1,11,12 additional
considerations have been devoted toward how to visualize
Z(Es, f) for human researchers in EIS analysis. Because Z(Es, f)
is generally a complex number with two degrees of freedom,
there are different venues to visually represent Z( f) under
certain Es with the Nyquist and Bode plots as the most
prominent ones1,11 (Figure 1B): The Nyquist plot displays
Z( f) under the Cartesian coordinate of Z′ = Re(Z) and −Z″ =
−Im(Z) as the horizontal and vertical axis, respectively, with f
component embedded in the plot; the Bode plots display
Z( f)’s amplitude |Z| and phase φ separately as a function as
log10( f), implicating the benefits of presenting Z(Es, f) in a
polar coordinate of |Z| and φ. While Nyquist plot is the most

common practice thanks to its straightforwardly distinctive
semicircle features for human researchers,1,13,14 the diversity of
data visualization in current EIS data analysis not only
illustrates Z(Es, f)’s complexity and information richness but
also showcases that each data representation method has its
own fundamental merits in a manual EIS analysis.
With the advent of artificial intelligence transforming every

corner of our society and research community, the issue of data
representation in EIS analysis for a machine learning (ML)
model warrants another reckoning if we consider the ML-
based analysis augmenting the human researchers in the future.
ML presents a promising solution for advancing mechanistic
analysis in electrochemical systems,15−19 leveraging ML’s
proficiency in uncovering hidden patterns and providing
data-driven insights with minimal human interference. Recent
advancements showcase ML’s capability in automatically
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analyzing EIS data, specifically for the classification and
parameter regression of equivalent circuit models.20−24 Yet
there is a dearth of discussion about the proper data
representation of EIS data for ML-based analysis, with the
seemingly ill-justified consensus of deploying Nyquist plot,
namely, the Cartesian coordinate of Z(Es, f), as the EIS input
format for ML models.20,22,23

The unique nature of ML architecture, which requires input
data normalized to unity for the model’s general applicability,
poses additional challenges for inputting EIS data into an ML
model. It is well documented that different normalization
strategies of input data will lead to different levels of
performance even for the same ML architecture.26 In the
context of EIS analysis, Z(Es, f)’s sensitivity toward Es alludes
that it is common to study Z(Es, f)’s dependence under
different Es values in a comparative analysis,1 which is
equivalently the decade-old reaction mechanism analysis

done by human researchers.27,28 Hence, it is critical to
properly normalize multiple Z( f) traces under various Es
values as the input data for ML-based comparative analysis.
Are we supposed to normalize Z(Es, f)? If so, how shall we
normalize a Z(Es, f) data set of various Es values (Figure 1C)?
To date, such a topic has not been investigated, at least not in
the public domain. Despite EIS’s significance in electro-
chemistry1,6,11 and the growing interest in ML-based EIS
analysis,20,22,23 the topic of Z(Es, f) preprocessing that includes
proper representation and normalization remains surprisingly
underexplored. It seems imprudent to ignore such a critical
issue in the context of developing a next-generation ML-based
EIS analysis.
We are intrigued by the scientific question of preprocessing

EIS data in an ML-based analysis and are blessed with suitable
expertise to inquire about this topic in a proof-of-concept
fashion. We have recently developed ML models based on

Figure 1. Data preprocessing of electrochemical impedance spectroscopy (EIS) in the world of machine learning (ML) and artificial intelligence
(AI). (A), Short summary of the experimental and mathematical foundation of the EIS technique. E(t) and I(t), sinusoidal electrochemical
potential and the measured electric current densities on electrodes, respectively; Es and Is, the steady-state electrochemical potential electric current
densities, respectively; f, oscillating frequency of E(t); Z, Z′, and Z″, electrochemical impedance Z(Es, f) as well as its real and complex component,
respectively; |Z| and φ, magnitude and phase angle of the Z(Es, f), respectively. (B), Two types of representation in a comparative study of Z(Es, f)
under different Es values: the Nyquist-like Cartesian coordinate of Z′ and −Z″ as the two axes; the Bode-like polar coordinate of |Z| and φ as the
two axes. (C), Three types of normalization in a comparative study of Z(Es, f) under different Es values: raw data with no normalization at all
(Method I), one normalization for each Z(Es, f) data point (Method II), and independent normalization at each Es value (Method III). (D), We
evaluate how the strategies of Z(Es, f) preprocessing, including both data representation and normalization, affect the classification accuracy by
residual neural network (ResNet), within the same 5-mechanism parameter space that was defined in our prior work of ResNet-based
voltammogram analysis.17 The ResNet model reported here analyzes preprocessed Z(Es, f) and yields the vector y = {yi} (i = 1 to 5), reflecting
mechanism’s propensity, among the 5 predefined mechanisms. (E), Summary of the average classification accuracies from ResNet based on
different Z(Es, f) preprocessing strategies. N = 8. Accuracy was reported when evaluated with test set (“Test accuracy” in Table S1). (F), The
“importance” analysis,25 analogous to the one conducted to ResNet-based voltammogram analysis,17 reveals differences in ResNet’s attention under
different preprocessing strategies, which correlates with the overall classification accuracies of the corresponding ResNet model. ResNet
architecture is adapted from ref 17 (CC BY 4.0).
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residual neural networks (ResNet)29 and Faster R-CNN
(regional convolutional neural network) architecture30 for
the mechanistic investigation of cyclic voltammograms.17,18 In
particular, an ML model based on ResNet17 has been trained
by simulated voltammograms to classify electrochemical
mechanisms among five of the most classic mechanisms in
electrochemistry textbooks,31 with an input data structure of
three-dimensional tensor of 6-scan single-redox voltammo-
grams ({v, i(E)}n, n = 1 to 6). One noticeable feature in our
study is the establishment of “importance” evaluation,25 which
illustrates where ResNet model prioritizes information
extraction and decision making, offering a glimpse into ML’s
innerworkings for a comparative study between human and
ML-based voltammogram analysis.17 Those technical tools are
duly applicable toward the inquiry of proper data preprocess-
ing in ML-based EIS analysis.
Here, we present the protocol and results of our proof-of-

concept inquiry into the proper preprocessing of EIS data in an
ML-based analysis�a factor not addressed in our previous CV
work where data representation concerns are minimal due to
its simple illustration as current vs potential. In contrast, EIS
data require complex representations and optimal normal-
ization techniques due to significant variations in impedance
amplitude across different potentials. Within the same 5-
mechanism parameter space that were defined in our prior
work of ResNet-based voltammogram analysis,17 we strive to
investigate how the classification performance of ResNet
model trained by simulated Z(Es, f) data will depend on the
preprocessing methods of Z(Es, f) in the training data (Figure
1D). Here, the preprocessing methods include both data
representation: Nyquist-type Cartesian coordinate of Z′ and
Z″ versus. Bode-type polar coordinate of |Z| and φ as well as
data normalization without any normalization (Method I), one
normalization for each Z(Es, f) data point (Method II), and
independent normalization at each Es value (Method III) for
14 Z( f) traces under different Es values (Figure 1). Among

different combinations of Z(Es, f)’s representation and
normalization methods, our results affirm the hypothesis that
preprocessing method strongly affects the classification
accuracy of the correspondingly trained ResNet model for
ML-based EIS analysis (Figure 1E). We found that
representing Z(Es, f) in the Bode-type polar coordinate of |Z|
and φ with normalization at each Es value (Method III) yields
the highest accuracy and robustness in the correspondingly
established ResNet model. An “importance” evaluation
protocol, similar to the one deployed for ML-based voltammo-
gram analysis,17 reveals correlational hints if not causal
rationales that help explain such differences in classification
performance (Figure 1F). Our work serves as a reminder of the
significance of proper data preprocessing for ML-based
electrochemical analysis. The best Z(Es, f) preprocessing
method reported here will at least serve as a starting point
for future ML-based EIS research. The reported protocol and
evaluation methodology toward optimal Z(Es, f) preprocessing
is generally applicable for a wide range of scenarios in ML-
based analysis in electrochemistry and beyond.

■ RESULTS AND DISCUSSION
Establishing a Simulated Z(Es, f) Data Set at Different

Es Values. We evaluate the strategy of Z(Es, f) preprocessing
based on the classification accuracy of a ResNet model trained
by the same Z(Es, f) data set following the corresponding
preprocessing method. This requires the establishment of a
Z(Es, f) data set upon which the ResNet is trained. As a proof
of concept, we decided to establish a Z(Es, f) data set
numerically simulated by finite-element method, following the
practice and mechanistic definitions reported in our previous
work of ResNet-based voltammogram analysis.17 While our
limited Z(Es, f) data set does not cover all of the possible
application scenarios of EIS analysis, our findings reported here
remain potentially applicable to a general ML model of EIS
analysis. Moreover, we believe our work offers a general

Figure 2. (A) Mechanism included in our ResNet models for EIS analysis. More detailed mathematical definitions of the mechanisms are available
in Supporting Information Note 3. (B−G) Confusion matrix, a commonly deployed performance evaluation tool that represents the accuracy of a
classification model, for the ML models trained by EIS data {Z(Es,i, f j)} under different preprocessing approaches. (B−D) Training data with polar
coordinate of |Z| and φ while normalizing {Z(Es,i, f j)} individually at each Es,i (Method III, (B)), one normalization for each {Z(Es,i, f j)} data point
(Method II, (C)), and no normalization at all (Method I, (D)). (E−G) Training data with Cartesian coordinate of Z′ and Z″ while normalization
{Z(Es,i, f j)} following Method III (E), Method II (F), and Method I (G). The medium ResNet model out of the 8 replicates for each preprocessing
method is presented. ResNet architecture is adapted from ref 17 (CC BY 4.0).
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protocol that evaluates methods of data preprocessing for
electrochemical research, despite our limited Z(Es, f) data set
from numerical simulation.
Our simulated Z(Es, f) data set includes five common

homogeneous electrochemical mechanisms in textbooks11,31-
(Figure 2A and original data in Figure S2): a reversible/quasi-
reversible single-electron transfer with a redox potential E0 and
the oxidation as the forward reaction direction (E mechanism/
step); an aforementioned E step followed by a homogeneous
reversible chemical reaction (C step) (EC mechanism); an E
step preceded by a reversible C step (CE mechanism); a
system of two E steps connected by an irreversible rate-limiting
irreversible C step with the second E step being more
thermodynamically facile than the first one (ECE mechanism);
and a net two-electron transfer that is similar to ECE yet the
second E step is replaced by a solution disproportionation
reaction (DISP1 mechanism). The construction of numerical
models of partial differential equations, boundary conditions,
and initial conditions follows the mechanisms’ definitions in
textbooks (see the Supporting Information).11,31 The param-
eters defining the reaction systems include but are not limited
to concentrations, interfacial charge transfer rate constant in
the E steps, and thermodynamic equilibrium constants of the C
steps. The constraints and sampling approaches of these
parameters follow our group’s previous work17 to ensure
physical realism and class diversity. Such practice ensures a
near-exhaustive sampling of each noted mechanism defined in
the textbook kinetic zone diagrams.11,31

For each electrochemical system whose reaction mecha-
nisms and parameters are numerically set following the
aforementioned defections, the Z values were numerically
simulated at 14 different Es values between −0.4 and +0.6 V
against the E step’s redox potential E0 with 50 or 100 mV
intervals. At each Es value, 500 f values, from 1 Hz to 100 kHz
with a mostly even logarithmical distribution, were simulated.
Each of the aforementioned 5 mechanisms include approx-
imately 5000 entries of Z(Es, f) = {Z(Es,i, f j)} (i = 1 to 14; j = 1
to 500), whose reaction parameters were randomly sampled for
a sufficient, balanced, and diverse training data set. The two-
dimensional formalism of Z(Es, f) allows for a comparative EIS
analysis of reaction mechanism at different Es values, as
researchers have done for decades,27,28 which provides rich
information toward mechanism classifications. Yet as exempli-
fied in Figure 2A, the Es-dependent Z( f) responses among the
5 noted mechanisms, plotted in both Cartesian and polar
coordinates, are difficult to visually differentiate, which calls for
an ML-based EIS analysis that effectively performs a numerical
fitting against all of the possible variations for each mechanism
as defined in the textbooks.15

Protocols of Data Preprocessing and ML Model
Training. Before being fed into the ResNet model for training
and testing, the simulated data set of {Z(Es,i, f j)} (i = 1 to 14; j
= 1 to 500) was preprocessed under a variety of protocols that
includes both representation and normalization. As noted
earlier (Figure 1B), the representation of Nyquist-like
Cartesian coordinate presents each Z(Es, f) data as a two-
dimensional matrix as {Z′j(Es,i), Z″j(Es,i)} (i = 1 to 14; j = 1 to
500), while the representation of Bode-like polar coordinate
presents each Z(Es, f) data as {φj(Es,i), |Z|j(Es,i)} (i = 1 to 14; j
= 1 to 500). Moreover, three different normalization protocols
are implemented after the selection of the representation
method (Figure 1C). There could be no normalization at all in
{Z(Es,i, f j)} and only the calculated values in the unit of ohms

directly from numerical simulation (Method I in Figure 1C).
Alternatively, a so-called “layer normalization” protocol32

conducts one normalization of {Z(Es,i, f j)} across all of the
Es,i values within the same single data point. Different channels,
i.e., Z( f) traces under different Es values are scaled together
using a common normalization factor calculated by the
maximum and minimum values among all of the channels
(Method II in Figure 1C). Last, the protocol termed as
“instance normalization”33 will individually normalize {Z(Es,i,
f j)} data for each Es,i value within the data point (Method III in
Figures 1C and S1A, see the Supporting Information). Here,
Method II (“layer normalization”) keeps the same relative
magnitude of Z(Es,i, f j) between different Es,i values as the
original data (Method I, no normalization), while Method III
(“instance normalization”) adjusts for variations of magnitude
across different Es,i values. All values are scaled into a specific
range between −1 and 1 for both normalization Methods II
and III. Afterward, the two-dimensional input matrix of {Z(Es,i,
f j)} (i = 1 to 14; j = 1 to 500) was transformed into a three-
dimensional tensor {n, y, m} (Figure S1B). In this tensor, n =
14 as it corresponds to the number of Es values; m = 500 as it
correlates to the number of f values; y = 3 with the channels
storing the Es values, as well as {Z′j (Es,i) Z″j(Es,i)} or {φj(Es,i),
|Z|j(Es,i)} for the Cartesian or polar coordinates, respectively.
A series of ML models based on ResNet architecture,29

more specifically ResNet with 18 residual learning layers
(hence ResNet-18), are trained and validated by the same
initial {Z(Es,i, f j)} data set yet preprocessed under different
combinations of data representation and normalization, largely
following the previously reported protocol for ResNet-based
analysis of cyclic voltammograms.17 We chose ResNet for EIS
analysis due to its ability to handle complex, high-dimensional
data. Its deep architecture with residual skip connections
prevents vanishing gradients, ensuring more efficient and
robust training than basic neural networks or convolutional
neural networks.29 In contrast, simpler linear models may
struggle with high dimensionality and nonlinear relationships
in EIS data. To mitigate the effects of randomness stemming
from data splitting and parameter initialization in the training
process, 8 replicates of ResNet models (n = 8) were trained
with about 3500 Z(Es, f) data points, randomly sampled for
every training process, for each mechanism through 1000-
epoch training. The size of 3500 Z(Es, f) data points for the
training set is chosen because the ResNet model’s accuracy,
under the representation of |Z| and φ, steadily increases with
increasing Z(Es, f) numbers in the training set before
plateauing beyond 3500, which indicates the model has
achieved a stable performance level, suggesting that further
increases in training set size may not yield significant
improvements in accuracy (Figure S2A). The ResNet model
is considered sufficiently trained after 1000 epochs because the
cross-entropy loss that surrogates the ResNet’s accuracy in the
training process has asymptotically approaching zero after
1000 epochs of training (Figure S2B). The trained ResNet
model yields an output vector y = {y1, y2, y3, y4, y5} (Figure
1D), in which each yi quantitatively represents the propensity
as a surrogate for the statistical probability associated with the
respective mechanisms of E, EC, CE, ECE, and DISP1 shown
in Figure 2A. The classification process designates the
mechanism with the largest y component as the most probable
one for the electrochemical system.

ML Model Performance is Affected by Data
Preprocessing Methods. The methods of data preprocess-
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ing significantly affect the resultant ResNet model’s accuracy of
mechanistic classification (Figures 1F and S2C and Table S1).
When tested against EIS data unseen before by the trained
models, the classification accuracy of ResNet model under a
certain preprocessing method (“Test accuracy” in Table S1),
averaged from 8 replicates to ensure sufficient statistical
validity (n = 8), ranges from 63.7 ± 10.8% (Cartesian
coordinate + Method I) to 89.2 ± 1.7% (polar coordinate +
Method III). Generally speaking, the accuracies of the ML
models trained with {Z(Es,i, f j)} data set under Cartesian
representation (63.7 to 71.8%) are lower than the ones under
polar representation (70.9 to 89.2%). For models with the
same EIS representation, the accuracies of trained models
gradually increase from Method I (63.7 and 70.9% for
Cartesian and polar coordinates, respectively, same below),
Method II (68.9 and 77.2%), to Method III (71.8 and 89.2%).
Within our defined space of electrochemical mechanisms and
the corresponding training set, the optimal data preprocessing
method involves representing {Z(Es,i, f j)} in the polar
coordinate of |Z| and φ and individually normalizing {Z(Es,i,
f j)} data for each Es,i value (Method III). These results affirm
our aforementioned hypothesis that data preprocessing is
critical toward ML-based EIS analysis. Moreover, our results
hint that the seemingly prevailing practice of representing EIS
data under the Nyquist plot hence the Cartesian coordi-
nate20,22,23 may not be optimal, in contrast to strong
preference of Nyquist plot in human-based EIS analysis.
Additional analysis of the accuracy difference among ResNet

models from different preprocessings of training data suggests
that the models of higher classification accuracy are better at
discerning the mechanisms that are also prone to be
misclassified based on human analysis. In machine learning,
it is common to deploy the plot of the confusion matrix as a
performance evaluation tool that represents the accuracy of a
classification model. For each of the preprocessing methods,
we plot the correspondingly trained ResNet model’s confusion
matrix from the medium model from the 8 replicates (Figure
2B−G), in which each row enlists the percentage of EIS data
simulated based on a designed mechanism (“true label” in
Figure 2B−G) that are classified into a specific mechanism
(“predicted label” in Figure 2B−G). The EC mechanism seems
to be the most difficult mechanism to classify, evident by the
marginal accuracy improvement for the EC mechanism across
all ResNet variants. Yet the difference in preprocessing strategy
has a significant influence on other mechanisms, most notably

for E and DISP1 mechanism and to a lesser extent for ECE
mechanism. Our observation that ResNet models are most
easily confused among E, EC, and DISP1, also observed in our
ML-based voltammogram analysis17,18 is consistent with the
results of human analysis that has been detailed in text-
books.11,31 Because these ResNet models are trained by the
same {Z(Es,i, f j)} data set and the only variable here is the
preprocessing strategy, such results suggest that different
preprocessing strategy affects ML model’s classification
capability unevenly across different mechanisms. In a similar
vein, our results hint that some additional mechanistic
information could be easier to uncover with a suitable
preprocessing strategy.
The significant dependence of ML model’s classification

accuracy on training data’s preprocessing strategy inspired us
to strive investigating the origin of such a dependence. As a
valuable tool in machine learning, the “importance” analysis
identifies the regions or features in the input data that have the
most significant influence on the model’s decision-making
process by visualizing the relative magnitudes of gradient
values of the model’s output with respect to the input data.25

Hence, in our case, we decided to use the “importance”
analysis to evaluate where the ResNet model is “looking” at
with the EIS data to provide a mechanistic classification in a
multipotential comparative analysis. As shown in Figure 3, the
gradient values were collectively normalized based on the
highest value achieved among all of the ResNet models and
plotted in the grayscale. Additionally, for easier visualization of
“importance” on each simulated spectrum with varying
magnitudes, all simulated spectra were individually normalized
and plotted on the Cartesian coordinate of Z′ and Z″ (Nyquist
plot), irrespective of the preprocessing methods used for the
input data. In principle, we could have flooded this report with
the results of “importance” analysis from our training data set
of ∼104 {Z(Es,i, and f j)} data points. Yet we have found a
prevailing trend based on our manual inspections of
“importance” analysis, with one example presented below
and a few additional ones in the Supporting Information. As
detailed below, such an “importance” analysis provides some
insights into the difference created by preprocessing
approaches for ML-based EIS analysis.
We found out that the preprocessing approach of the EIS

input data notably impacts the resultant ResNet model’s
capability of extracting mechanistically relevant information.
Figure 3 displays the example for a {Z(Es,i, f j)} data point

Figure 3. “Importance” analysis reveals ResNet’s “attention” when yielding mechanistic assignments. (A), One example of our EIS data simulated
based on the CE mechanism plotted with the Cartesian coordinate of Z′ and Z″ (the Nyquist plot). (B), Classification result, and the “importance”
analysis of ResNet model trained by EIS data with polar coordinate (|Z| and φ) and normalizing individually at each Es,i (Method III). (C)
Classification result and the “importance” analysis of ResNet model with polar coordinate and one normalization for each Z(Es, f) data point
(Method II). (D), Classification result, and the “importance” analysis of ResNet model with Cartesian coordinate and normalization via Method
III. All EIS data are represented in the Nyquist plot for illustration purposes despite differences in the deployed representation methods. Additional
examples can be found in the Supporting Information.
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simulated based on the CE mechanism. While the ML model
trained by EIS data represented by polar coordinate and
normalized via method III correctly classifies the mechanism as
CE as 100% propensity (Figure 3B), the models from other
preprocessing methods generate inaccurate classification: for
example, 82% propensity of DISP1 mechanism from the model
with representation of polar coordinate and normalization via
method II (Figure 3C), and 81% propensity of ECE
mechanism from the model with representation of Cartesian
coordinate and normalization via method III (Figure 3D).
Concurrent with such a discrepancy in classification/
accuracies, the “importance” analysis for those three models
reveals drastic differences. The model trained from representa-
tion of polar coordinate and normalized via method III (Figure
3B) displays a distribution of “importance” across both low-
and high-frequency regions, capturing information related to
both kinetics and mass transfer, with a particular emphasis on
the mass transfer-controlled low-frequency region. Conversely,
models with incorrect classification (Figure 3C,D) focus their
“importance” predominantly on the high-frequency region,
with little if any “importance” on the low-frequency part.
Similar conclusion could be drawn from other examples
(Supporting Information) that models of correct mechanistic
assignment tend to spread the “attention” across the whole
frequency domains that cover both (electro)chemical kinetics
and mass transport, while models of erroneous classification
usually fail to spread the model’s “attention” across a wide
range of frequencies, neglecting the critical low-frequency
information. The preprocessing of EIS data seems to strongly
affect the ResNet model’s ability to uncover features and
extract mechanistic information across a wide range of
frequencies, ensuring a balanced evaluation that encompasses
both (electro)chemical kinetics and mass transport. This
underscores the necessity of careful data preprocessing to
achieve enhanced mechanistic interpretation in EIS analysis.
The construction of the EIS-analyzing model based on

supporting vector classifier (SVC) models provides supple-
mentary evidence affirming the broader validity of our
conclusions on preprocessing methods (Figure S6). With the
same Method III normalization, the SVC model trained with
the {Z(Es,i, f j)} data set under polar representation achieves
82.4% test accuracy, compared to 66.8% under Cartesian
representation. As the corresponding confusion matrix shows
(Figure S6), the SVC model trained under polar representation
shows marginal accuracy improvements for 5 mechanisms,
notably for E (68 to 90%), ECE (68 to 82%), and DISP1 (48
to 70%), with slight enhancements for EC (67 to 73%) and CE
mechanisms (93 to 97%). Although SVC models’ perform-
ances were less satisfactory than ResNet models, the consistent
accuracy improvement with polar representation supports our
hypothesis on the critical role of data preprocessing in ML-
based EIS analysis, validating the general applicability of our
conclusions on preprocessing methods.
One note is that, while equivalent circuit model (ECM) is a

classical and widely used technique in EIS analysis, it may
oversimplify electrochemical processes by representing them
with discrete electrical components,1 potentially failing to
capture the complexity of underlying physico-electrochemical
phenomena, especially in cases with overlapping processes or
intricate reaction mechanisms. Therefore, a direct comparison
between our ML-based method and the ECM might not be
entirely appropriate.

■ CONCLUSIONS
In this work, we inquired into the proper preprocessing of EIS
data in an ML-based analysis, using the ResNet model and a
classification task of five mechanisms as a proof of concept.
Through a comprehensive evaluation of various preprocessing
methods, we demonstrate that plotting the input training data’s
impedance magnitude (|Z|) against phase angle (φ), along with
individual normalization of each EIS curve (Method III), yields
optimal accuracy in the established ML model. Suggested by
“importance” analysis, this preprocessing method effectively
extracts hidden features and hence information from the EIS
data. While the Nyquist plot remains a staple in manual
analysis, our findings suggest that an ML-based EIS analysis
may require an alternative data representation method. Our
work provides a valuable protocol for researchers to select
appropriate preprocessing methods tailored to specific ML
applications in electrochemistry.
While mechanism classification using EIS is less common

compared to techniques like CV, our study demonstrates that
EIS can be extended for detailed mechanistic analysis across a
range of potentials, aligning with its historical use in reaction
mechanism analysis for complex systems.27,28 Nearly two
decades ago, it was suggested that reaction mechanism analysis
could be efficiently performed using artificial neural networks
in a pattern recognition mode for future EIS development.34

Our model, leveraging ResNet and an enhanced data
preprocessing technique, shows promising potential for EIS
mechanistic interpretation. Although our current study focuses
on proof-of-concept classification of classical homogeneous
mechanisms, we foresee incorporating transfer learning and
regression algorithms in future work to get more (electro)-
chemical insights and extract quantitative parameters such as
the ionic conductivity of electrolytes. Our current work
presented here lays a foundation for further advancements of
our approach, enhancing its practical utility and making it
more versatile and useful for a wider range of applications.
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