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ABSTRACT

Crowd- sourced biodiversity data, such as those housed in the iNaturalist platform, are increasingly used to monitor species dis-

tributions. Such data represent unstructured biodiversity surveys that are generally comprised of incidental observations and do 

not report variation in sampling effort. These discrepancies may yield data that is incongruent with data from structured surveys. 

To assess whether mammalian iNaturalist data are reflective of data from traditional structured surveys, we calculated and com-

pared measures of mammalian species richness and species pool similarity using data from unstructured surveys (i.e., iNatural-

ist) and data from structured camera trap surveys and bat acoustic surveys. We found that data from structured and unstructured 

surveys generally document similar mammalian species richness, but the two survey types document different species pools. 

Human population density and proxies for species pool breadth were most strongly associated with discrepancies in datasets, 

with data being most similar in areas of high human population density and lower species richness. Our analyses revealed that 

dataset similarity varied across geography and community metric for most taxa, but that structured and unstructured surveys 

produced consistently unreconcilable datasets for bats. These findings suggest that unstructured datasets like iNaturalist may 

offer reliable data for some taxa and geographies, but that these data are not universally applicable to all research scenarios.

1   |   Introduction

Robust datasets guide effective ecosystem management decisions, 

while datasets of limited size and accuracy can lead to ineffec-

tive outcomes (Costello et al. 2013; Stephenson and Stengel 2020; 

Weissgold  2024). Increased sample size can often mitigate this 

shortcoming, but high- quality data collection can be logistically 

and financially infeasible at the scale required by decision makers 

(Dobson et al. 2020; Kindsvater et al. 2018; Troudet et al. 2018). 

In response, practitioners often rely on existing datasets to in-

form their management actions (Dobson et al. 2020; Stephenson 

and Stengel 2020). In the field of wildlife ecology, crowd- sourced 

datasets (also called citizen science) of species observations are 

especially valued since they provide information about species 

distributions at no cost to the data users. Although such data 

are inexpensive, they are often unstandardized, incomplete, and 

biased toward particular taxa and geographies (Dimson and 

Gillespie 2023; Dobson et al. 2020). Thus, decision makers must 
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base their management on easily obtained but incomplete datasets 

or on more robust datasets that are limited in geographic scope 

and require substantial time, money, and effort to collect.

Structured survey methods are generally seen as the ‘gold stan-

dard’ since they follow clearly defined sampling protocols. Data 

arising from structured surveys can be summarized as detec-

tion/non- detection data (also called “presence/absence data”) 

indicating whether the target organism is observed during each 

survey, with unobserved species resulting in putative absences. 

On the other hand, unstructured data are considered “presence- 

only” because there is no direct record of surveys that did not 

produce detections of the species (Bayraktarov et  al.  2019; 

Foody 2011; Li et al. 2011; MacKenzie 2005a, 2005b). Statistically, 

detection/non- detection data can be analyzed with models that 

directly account for variation in the sampling process, such that 

remaining variation in the observed data can be attributed to the 

underlying ecological process. Conversely, models of presence- 

only data depend on extra assumptions about sampling effort 

(Foody 2011; Phillips et al. 2006). Presence- only data are often 

comprised of incidental observations, and observers may elect 

to report only select sightings (Jessup 2003; MacKenzie 2005a, 

2005b). However, such variation in effort is unobserved and is 

challenging to control for during analysis.

Despite the shortcomings of unstructured survey data, the sheer 

abundance, low cost, low effort, and wide geographic range of 

these data are particularly attractive to researchers (Dobson 

et  al.  2020; López- Guillén et  al.  2024; Wahlberg et  al.  2023). 

The iNaturalist platform in particular has enjoyed immense 

popularity since its release in 2008 (López- Guillén et al. 2024; 

Martínez- Sagarra et  al.  2022; Mesaglio and Callaghan  2021). 

iNaturalist is an online platform with two mobile applications 

(iNaturalist and Seek) that allow users to upload photographic 

or audio evidence of organisms to the iNaturalist database of ob-

servations where, depending on user preferences, it may be inte-

grated into the Global Biodiversity Information Facility (GBIF; 

Altrudi 2021). Given the ease of participating in data collection, 

crowd- sourced data has become immensely abundant in recent 

years. Indeed, the iNaturalist platform boasts over 2.9 million 

users and data produced by iNaturalist has been used in over 

4000 peer- reviewed publications, suggesting that the platform 

plays a pivotal role in conservation science (Global Biodiversity 

Information Facility 2024; López- Guillén et al. 2024).

Although iNaturalist data continue to be widely used, they are 

known to have taxonomic and spatial biases. Observations tend 

to be disproportionately clustered around developed areas, trails, 

and roads, offering limited insights into ecological communities 

beyond the reach of basic human infrastructure (Backstrom 

et  al.  2024; Di Cecco et  al.  2021; Dimson and Gillespie  2023; 

Taraporevala et  al.  2025). Within populated areas, data are 

concentrated in affluent areas with abundant greenspace and 

are not temporally consistent with observations from pas-

sive structured surveys (Carlen et  al.  2024; Estien et  al.  2024; 

Taraporevala et  al.  2025). Even where observations are abun-

dant, many observers use iNaturalist as either a means of iden-

tifying an unknown organism or as a personal species checklist, 

leading to observer- specific variation in taxonomic sampling 

effort (Goldstein and Stoudt 2025). In either case, observers typ-

ically only upload a single observation of a species, even if the 

species is frequently encountered (Di Cecco et al. 2021). Finally, 

observations tend to be biased toward large, charismatic spe-

cies that are approachable and easily photographed (Di Cecco 

et al. 2021; Goldstein et al. 2024; Stoudt et al. 2022).

Given the biases present in iNaturalist data, it stands to reason that 

these data do not consistently reflect the same biodiversity pat-

terns as data from structured surveys. Indeed, many studies have 

explored the degree to which unstructured surveys like iNaturalist 

produce datasets that resemble those produced by structured sur-

veys. Species richness estimates derived from unstructured surveys 

generally resemble those derived from structured surveys for most 

taxa at a coarse (i.e., 10,000- km2 sampling grid) spatial scale (Daru 

and Rodriguez 2023). At finer scales, iNaturalist data seemingly 

correspond to structured survey data for species of bees (Apidae 

family), dragonflies (Anisoptera infraorder), and damselflies 

(Zygoptera suborder), but not for butterflies (Heteroneura clade; 

Shirey et al. 2021; Chesshire et al. 2023; Bullion and Bahlai 2024). 

Reptile observations on iNaturalist differ from structured survey 

data (Forti et al. 2024), whereas the fidelity of amphibian records 

remains largely unexplored (Oliver et al. 2025). iNaturalist records 

of birds disproportionately report large- bodied and flocking birds, 

but similarity between unstructured and structured datasets tends 

to improve with increasing iNaturalist observations (Callaghan 

et al. 2021; Jacobs and Zipf 2017). Mammal detections on iNatu-

ralist are comparable to structured surveys of deceased specimens 

(i.e., roadkill; Périquet et al. 2018). However, data from structured 

and unstructured surveys of live marine mammals differ (Viola 

et al. 2024), and such an analysis of live terrestrial mammals has 

not yet been undertaken.

In this study, we explored the factors contributing to the com-

parability of iNaturalist mammal observations and data from 

structured mammal surveys across the contiguous United States 

(US). Furthermore, we assessed if iNaturalist is an appropriate 

alternative for structured surveys in the context of two commu-

nity metrics: similarity in species richness and similarity in spe-

cies pools. We hypothesized that the similarity of mammalian 

communities reported by iNaturalist and structured surveys 

would vary spatially due to ecological variables and differences 

in survey effort. Specifically, we predicted that iNaturalist ob-

servations and data from structured surveys would yield sim-

ilar estimates of species richness and species pools and that 

similarity between datasets would be positively associated with 

the prevalence of protected lands and the ease of traversing the 

landscape (i.e., less rugged landscapes), since humans are more 

likely to access and document species in these areas (Mair and 

Ruete 2016). We also predicted that similarity between datasets 

would be positively associated with human population density, 

but that the effect of humans diminishes in the most heavily 

urbanized areas (i.e., the effect of human population density 

is quadratic). Finally, we predicted that these metrics would be 

most similar in areas with fewer species and where survey effort 

is substantial, since both factors have the potential to produce 

more complete datasets. If iNaturalist data accurately reflects 

community composition, these data may offer reasonable in-

sight into community dynamics in regions where structured 

surveys have not occurred. The prudent use of iNaturalist data 

to understand mammalian communities may thus supplement 

professional wildlife surveys and contribute to the efficient dis-

tribution of limited resources in conservation.
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2   |   Methods

2.1   |   Landscape Data

Previous research on the comparability of structured and un-

structured survey data was conducted at a global scale of 

100 × 100 km (Daru and Rodriguez  2023). We sought to use 

a spatial scale finer than 10,000 km2, but still large enough to 

capture spatially coincident observations from structured and 

unstructured surveys. We superimposed a 25 × 25 km grid over 

the contiguous US and removed any cell with > 10% water. 

We then measured the latitude and longitude of the center of 

each remaining cell and summarized the human population 

density, terrain ruggedness, and proportion of protected lands 

(e.g., park, conservation area, wildlife refuge, etc.) within 

each cell using the Gridded Population of the World dataset 

(resolution = 30 arc- seconds; NASA Socioeconomic Data and 

Applications Center 2018), the Global Terrain Ruggedness data-

set (resolution = 1- km2; Carter  2018), and the PAD- US dataset 

(scale = 1:24,000; United States Geological Survey 2024), respec-

tively. For human population and terrain ruggedness, we used 

the mean value of the raster cells that overlapped the sampling 

grid cell as the final value for each variable. For the proportion 

of protected lands, we divided the area of protected land within 

each cell by the cell's total area. All variables were assessed for 

collinearity using Pearson's correlation coefficient (p ≤ 0.7) and 

were z- scaled prior to analysis.

2.2   |   Standardized Survey Data

Standardized survey data for terrestrial mammals were ob-

tained from the SNAPSHOT USA database from 2021 (Shamon 

et  al.  2024) and 2022 (Rooney et  al.  2025) and were supple-

mented with other publicly available camera trapping projects 

within the contiguous US hosted on the Wildlife Insights plat-

form (www. wildl ifein sights. org; see Data  S1 for a list of proj-

ects used). While nuances exist between the protocols of these 

surveys, each survey consisted of un- baited motion- activated 

camera traps aimed at game trails that were active 24- h per 

day throughout their sampling period. Photographs from each 

camera were loaded into the Wildlife Insights online repository 

and were identified to the lowest taxonomy possible. After re-

view, we excluded all observations of humans, livestock, and 

any animal not able to be identified to species. Additionally, we 

removed observations of terrestrial animals weighing less than 

111.9 g—the weight of the Eastern chipmunk (Tamias striatus), 

which is the smallest animal that is reliably captured within our 

dataset (Kays et al. 2022; Wilman et al. 2014).

Bats (Chiroptera order) are not reliably detected or identifi-

able using camera traps. Instead, we downloaded standard-

ized bat survey data from NABat (www. nabat monit oring. 

org/ ). Specifically, we downloaded freely available bat data from 

acoustic surveys, as well as from acoustic surveys that approved 

our request for their embargoed data within 1 week of our re-

quest. A complete list of NABat projects that contributed data to 

this analysis is available in Data S1. The NABat protocol uses a 

generalized random- tessellation stratified grid (10 × 10 km grid 

cells) across the US, and cells are selected to be sampled based 

on a geographic representation and ability to access the land. 

Within each NABat cell, surveyors conducted repeated acoustic 

surveys (Loeb et  al.  2015). Acoustic recorders were calibrated 

prior to use, and bat calls were identified to species using special-

ized software (Data S1). Similar to the camera trap dataset, we 

used structured bat survey data from the years 2021 and 2022.

Prior to analysis, all species names from structured surveys 

were compared against species names listed in the iNaturalist 

database. Because iNaturalist uses the most recent taxonomy 

available, we settled all cases of conflicting taxonomy by renam-

ing species according to their current name in the iNaturalist 

database.

2.3   |   iNaturalist Data

We batch- exported data from iNatu ralist. org in January 2023 by 

filtering for mammals in North America from January 1, 2021, to 

December 31, 2022. We then removed 14 duplicate observations 

with matching observation identification numbers and all ob-

servations that were not research grade or were not identified to 

species. Finally, we identified and removed observations based 

on animal sign (e.g., scat, tracks, etc.) because these types of ob-

servations are more likely to be misidentified compared to direct 

observations of animals (Morin et al. 2016; Spitzer et al. 2019). 

To remove observations of sign, we excluded observations with 

values in the ‘sign and song’ and ‘tracks’ columns, observations 

annotated as tracks or scat, and observations within the North 

American Animal Tracks Database, which is a project within 

iNaturalist that contains observations that are signs (not just 

tracks). For consistency between datasets, we removed all non- 

Chiropteran species weighing < 111.9 g from the iNaturalist 

dataset, and observations of humans and livestock were auto-

matically omitted since these species cannot achieve “research 

grade” in iNaturalist.

2.4   |   Controlling for Survey Effort

We measured survey effort using the number of observations 

present in both the structured and unstructured datasets in 

each grid cell. We assumed that datasets would be most similar 

when they were derived from surveys of similar sampling inten-

sity, since disproportionately larger surveys are likely to capture 

more varied species from sampling bias alone. We also assumed 

that greater volumes of data would yield more similar datasets 

since they would reflect more complete samples. To account for 

the sampling intensity of either dataset and the similarity be-

tween sampling intensities, we derived a measure of composite 

effort at grid cell i, ei, based on the number of observations from 

structured, es, and unstructured surveys, eu. Composite effort 

was based on the total volume of data in each cell, vi, moderated 

by the proportional difference in the number of observations 

between survey methods (Figure 1A). This yields larger values 

when both survey methods contain many samples, moderate 

values when only one method has many samples, and small val-

ues when both methods have few samples.

(1)vi = es × eu

(2)ei = vi ×

(

1 −
||es − eu

||
es + eu

)
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2.5   |   Community Metrics

We calculated the difference in reported species richness at grid 

cell i, Ni, by subtracting the richness reported in structured data, 

ns, from the richness reported in unstructured survey data, nu, 

and dividing the difference by the total number of unique spe-

cies detected across both methods, nt (Figure 1B).

This resulted in a metric whose value is zero if both survey 

methods report the same number of species. Alternatively, the 

metric is positive if unstructured surveys reported more species 

but is negative if structured surveys reported more species.

Although species richness offers some insight into community 

composition, it can yield misleading results since two completely 

different species pools can produce identical richness values. We 

used the Jaccard dissimilarity index to assess the similarity of the 

species pools reported by each survey method for each grid cell 

(Figure 1C). The Jaccard dissimilarity index considers if a species 

is reported in both datasets and produces cell- specific values that 

approach zero when species pools in each dataset are similar and 

approach one when species pools are dissimilar. Thus, values closer 

to zero indicate similarity between structured and unstructured 

datasets across both metrics employed in this study. Jaccard indices 

were calculated using the Vegan package (Oksanen et al. 2022).

To account for taxa- specific variation, we calculated each of 

the previously described community metrics and survey effort 

separately for the following orders: Artiodactyla, Carnivora, 

Chiroptera, Lagomorpha, and Rodentia. While Cingulata 

and Didelphimorphia were documented in both structured 

and unstructured surveys, the paucity of species from these 

orders within the US (n = 1 species per order) prompted us to 

exclude them from order- level analysis. Finally, we calculated 

each community metric for Mammalia using data from all the 

previously listed orders of mammals, including Cingulata and 

Didelphimorphia, despite not being individually analyzed.

2.6   |   Statistical Analysis

We fit a linear regression model to assess the relationship be-

tween landscape variables and the proportional difference in 

species richness (Equation  4). Each model included latitude, 

longitude, proportion of protected lands, landscape ruggedness, 

and survey effort as linear terms. Each model also included 

human population density as a quadratic term.

We used beta regression to assess the relationship between our 

variables and Jaccard dissimilarity, where the distribution's 

shape parameters, alpha and beta, are derived from the estimated 

output of the previously described linear regression model and a 

separately estimated term, phi (Equations 5–8). Beta regression 

is appropriate for data between zero and one, but not for data 

equal to zero or one exactly; thus, we replaced Jaccard values 

equal to zero with values of 0.001, and likewise replaced similar-

ity indices equal to one with values of 0.999.

(3)Ni =
nu − ns
nt

(4)yi = �0 +
∑

�nxi

FIGURE 1    |    Conceptual illustration of the calculation of (A) survey effort, (B) difference in species richness, and (C) difference in the observed 

species pools, based on data from both survey methods in each grid cell. Animals detected in each survey method are depicted in blue or red, while 

individuals detected using both survey methods are depicted in purple.

(B) Species Richness

Method 1 observed 43% more species than 

Method 2. Richness di erence = 0.43

(A) Survey E ort

Method 1 yielded 2 more observations than 

Method 2. survey e ort = 41.14 

N obs. from Method 1

2
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N

low e ort

high e ort

low e ort

n = 6 n = 3 25 x 25 km cell

(C) Species Pool

29% of species were observed by both 

methods. Species pool dissimilarity = 0.71

n = 6 n = 3
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All models were fit in a Bayesian framework using the Nimble 

package (de Valpine et al. 2017). Parameters representing the 

effects of independent variables were assigned normal priors 

with a mean of zero and standard deviation of 100. The param-

eters required by the probability distribution but not of ecolog-

ical significance (i.e., phi) were instead given uniform priors 

constrained between zero and one hundred and zero and ten, 

respectively. MCMC chains consisted of 100,000 iterations 

with a burn- in period of 50,000 iterations. Gelman- Rubin sta-

tistics and trace plots were inspected for each chain to ensure 

convergence. Likewise, posterior predictive plots were visually 

inspected for each model to ensure goodness of fit. We con-

firmed that MCMC chains adequately mixed when Gelman- 

Rubin statistics had a value ≤ 1, and trace plots showed chains 

consistently folding over one another. Posterior predictive 

plots indicated adequate model fit when datasets generated 

using the fitted model generally matched the observed data-

set. Trace plots and posterior predictive plots are available in 

Data S2.

2.7   |   National Predictions

We used the estimated coefficients for each variable and the pre-

viously described sampling grid to forecast each dependent vari-

able across the contiguous US. We held survey effort at its mean 

value across the sample grid since calculation of effort requires 

standardized survey data, which is not available in all grid cells. 

We then calculated the proportion of cells whose predicted com-

munity metric suggested that iNaturalist data would differ from 

structured survey data by ≤ 15% if structured survey data had 

existed in that grid cell.

3   |   Results

3.1   |   Survey Results

A total of 170 species were detected across 916 grid cells 

(Figure  2). Species- specific summary statistics are available 

in Data  S3. On average, each order was observed across 155 

(SD = 41.35) grid cells. Across metrics, a value of zero indicates 

that the two survey methods produce comparable datasets. For 

species richness, negative values indicate that structured sur-

veys report greater species richness than unstructured surveys. 

Likewise, if values are positive, unstructured surveys reported 

greater species richness than structured surveys. Observed 

species richness was most similar in Rodentia (mean = −0.01, 

SD = 0.21) and most dissimilar in Chiroptera (mean = −0.64, 

SD = 0.09). Observed species pools were most similar for 

Lagomorpha (mean = 0.43, SD = 0.20) and were most dissimilar 

for Mammalia (mean = 0.91, SD = 0.03). Summary statistics for 

all analyzed taxa are available in Table 1.

3.2   |   Species Richness

Intercept terms for Chiroptera, Carnivora, and Mammalia were 

significantly negative, indicating that structured surveys report 

greater species richness than unstructured surveys with all 

other variables are held at their mean. Conversely, the intercept 

term for Rodentia was positive, suggesting that unstructured 

surveys report greater rodent species richness than structured 

surveys with all other variables are held at their mean. Intercept 

terms for Artiodactyla and Lagomorpha were not significantly 

different from zero, suggesting that the two survey methods pro-

duce sufficiently similar estimates of species richness with all 

other variables are held at their mean values.

Human population density had a significant positive rela-

tionship with differences in species richness for Rodentia, 

Mammalia, Carnivora, Artiodactyla, and Lagomorpha. 

Notably, the relationships for quadratic terms were not uni-

formly significant, suggesting a non- quadratic relationship 

between human population density and species richness for 

(5)yi ∼ Beta
(

�i, � i
)

(6)�i = �i × �

(7)� i =
(

1 − �i
)

× �

(8)logit
(

�i
)

= �0 +
∑

�nxi

FIGURE 2    |    Sampling grids that contained both structured and unstructured data for (A) Chiroptera and (B) all other mammal species.

A. B.

0 500  1,000 km
N

10x10 km grid cell with both structured and unstructured survey data
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Artiodactyla and Lagomorpha. Longitude had a significant 

positive relationship with differences in species richness 

for Chiroptera and Mammalia, but Chiroptera was the only 

taxon significantly associated with latitude. Landscape rug-

gedness had a positive relationship with differences in rich-

ness for Mammalia and Artiodactyla, while the proportion of 

protected land had a positive relationship with differences in 

richness for Mammalia and Rodentia. Survey effort was only 

significantly associated with differences in species richness 

for Chiroptera. Estimates for all parameters are available in 

Data S3.

Results varied substantially when estimated model coefficients 

were used to predict how species richness might differ between 

structured and unstructured surveys across the US (Figure 3). 

Nationally, species richness from unstructured surveys was 

estimated to be within 15% of richness reported from struc-

tured surveys across 87% of the contiguous US for Lagomorpha 

(mean = 0.04, SD = 0.12), while Rodentia (mean = −0.0004, 

SD = 0.21) and Artiodactyla (mean = −0.16, SD = 0.18) pro-

duced comparable datasets in 57% and 51% of grid cells, respec-

tively. Mammalia (mean = −0.20, SD = 0.23) species richness 

was only comparable across 30% of grid cells, while Carnivora 

(mean = −0.33, SD = 0.19) was only below the 15% similarity 

threshold for 6% of grid cells. Species richness for Chiroptera 

(mean = −0.63, SD = 0.09) was not predicted to be comparable 

in any grid cell.

3.3   |   Species Pool

For Chiroptera, Carnivora, and Mammalia, human population 

density had a negative relationship with Jaccard dissimilar-

ity—suggesting that species pools reported by both methods 

are likely to be more similar in areas of dense human popula-

tions. Notably, the quadratic relationship was only significant 

for Mammalia, while the relationship between human popula-

tion density and species pool similarity was not quadratic for 

Carnivora and Chiroptera. Longitude had a significant negative 

association with species pool dissimilarity for Artiodactyla, 

Chiroptera, and Mammalia, while latitude had a significant 

positive association for Carnivora. Landscape ruggedness had 

a significant positive association with species pool dissimilarity 

for Lagomorpha, and proportion of protected land had a posi-

tive association for Mammalia. Survey effort had a negative 

association with species pool dissimilarity for Chiroptera and 

Mammalia. Intercept terms for this analysis do not have clear 

ecological interpretations and are thus not addressed here but 

are listed in Data S3.

Predicted Jaccard dissimilarity between structured and un-

structured datasets was uniformly low across the continental 

US for most taxa. Across taxa, species pools were most similar 

for Artiodactyla (mean = 0.37, SD = 0.19), with approximately 

8% of grid cells producing comparable datasets. Less than 1% of 

grid cells produced comparable species pools for Lagomorpha 

(mean = 0.43, SD = 0.20). Rodentia (mean = 0.62, SD = 0.10), 

Carnivora (mean = 0.67, SD = 0.08), Chiroptera (mean = 0.86, 

SD = 0.04), and Mammalia (mean = 0.91, SD = 0.03) species pools 

were predicted to be highly dissimilar and are not expected to 

produce comparable datasets in any grid cell.T
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4   |   Discussion

Our study found that data from structured and unstructured 

surveys yielded similar measures of species richness across 

the contiguous US but observed dissimilar species assem-

blages. Although relationships varied across taxa, human 

population density was the predominant variable associated 

with differences between the two datasets, followed by longi-

tude, which we used as a proxy for local species pool breadth. 

Furthermore, the degree of similarity differed across taxa, 

indicating that the optimal survey method depends on the 

species being sampled. Taken together, these results suggest 

that iNaturalist and structured surveys may offer compara-

ble data, but that the utility of these data depends on the taxa 

being sampled, the location of the survey, and the community 

metric being assessed. While structured surveys are typically 

hailed as the ‘gold standard’ of ecological research, our study 

suggests that data from iNaturalist can offer comparable data 

FIGURE 3    |    Predicted (dis)similarity of community metrics derived from iNaturalist and structured survey data across the contiguous US. 

Predictions are calculated holding survey effort at its mean value. Enlarged maps are available in Data S4.
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for some mammalian species, geographies, and community 

metrics.

Human population density was significantly correlated with 

discrepancies between structured and unstructured datasets for 

many taxa. Unstructured surveys typically rely on incidental en-

counters between human observers and non- human organisms. 

Thus, unstructured surveys are expected to produce more obser-

vations in areas where more humans are available to document 

wildlife (Backstrom et  al.  2024; Di Cecco et  al.  2021; Dimson 

and Gillespie 2023). While densely urban landscapes support a 

multitude of potential wildlife observers, these same landscapes 

deter many species (Aronson et al. 2016). As a result, we pre-

dicted that the effect of human population density reaches a 

saturation point. We found evidence for a significant quadratic 

effect of human population density on dataset similarity in only 

33% of our models. In models assessing species richness, the 

effect of humans was positive, which indicates that iNatural-

ist data from densely populated areas tend to report as many, if 

not more, species than structured surveys from the same areas. 

Furthermore, in cases where a non- linear relationship with 

human population density was identified, quadratic coefficients 

were positive, indicating that the effect of humans increases ex-

ponentially at higher population densities rather than becoming 

saturated. Similarly, models assessing the similarity of species 

pools found a negative relationship with human population den-

sity, demonstrating that high human population densities shift 

metrics away from dissimilarity (y = 1) and toward similarity 

(y = 0). In consequence, our analysis suggests that the two sur-

vey methods produce increasingly similar datasets in areas with 

high human populations.

Geographic measures that coincide with species availability 

were similarly associated with changes in dataset similarity. 

Specifically, longitude tended to be significantly associated with 

dataset similarity, but the direction of this relationship varied. 

The effect of longitude was most pronounced for Chiroptera, 

whose datasets tended to approach similarity in the relatively 

species- poor and human- dominated eastern US (Ceballos and 

Ehrlich 2006; Reid 1998). Although the effect of latitude on bio-

diversity is well documented (Kaufman and Willig  1998), the 

effect of latitude was muted in comparison to the effect of longi-

tude. We used both latitude and longitude as proxies for species 

richness within taxa (Kaufman and Willig 1998) and expected 

greater disparities between datasets in regions with larger spe-

cies pools due to increased chances of collecting an incomplete 

sample. While this relationship held for many taxa and metrics, 

the variation in significance and direction of effect exemplifies 

the nuanced suitability of either survey method across taxa and 

geographies.

Contrary to our hypotheses, protected areas, landscape rugged-

ness, and survey effort had relatively little effect on the similar-

ity of datasets while in the presence of the other covariates in 

the model. We had expected the abundance of protected areas to 

increase similarity between datasets since both types of surveys 

tend to be concentrated in protected areas as opposed to devel-

oped spaces (Carlen et al. 2024; Herrera et al. 2021). This rela-

tionship was not found to be widespread, however. Regardless 

of taxa, we expected rugged landscapes would favor structured 

surveys since iNaturalist observers tend to favor easily navigable 

landscapes (Mair and Ruete 2016). Instead, we found that land-

scape ruggedness was associated with greater richness from 

iNaturalist data compared to structured surveys for select taxa 

but did not find significant relationships for most taxa and met-

rics. Finally, the effect of survey effort was inconsistent across 

taxa and metrics. Our measure of survey effort should be inter-

preted as a control variable rather than a predictive variable, 

as it considered the volume and evenness of observations from 

both survey methods. We intended for this variable to account 

for instances of uneven sample sizes between survey methods. 

However, we instead found human population density to be a 

stronger predictor of dataset similarity, presumably because 

true effort in unstructured surveys is proportional to human 

population density but is unaffected by the volume of data col-

lected by standardized surveys in the same region.

The degree to which iNaturalist data resembled structured 

survey data varied substantially across taxa. iNaturalist users 

disproportionately report large and charismatic species (Stoudt 

et al. 2022) due to both observer preferences and logistical diffi-

culties that inhibit the reliable documentation of many species. 

For instance, small- bodied animals can be difficult to see or 

take diagnostic photographs for accurate species identification 

(Barbato et al. 2021; Kays et al. 2022). We attempted to control 

for this limitation by omitting all non- bat species too small to 

be reliably documented by camera traps from our analysis. This 

likely contributed to the high similarity in rodent species rich-

ness between the two datasets due to the lower effort required to 

report similar samples from an artificially depauperate species 

pool. However, filtering out small species did not preclude sub-

stantial differences in the species detected. Additionally, most 

mammal species are nocturnal and thus become largely unde-

tectable to the average observer (Curti et al. 2024). Indeed, our 

analysis found that observations of bats—which are both small 

and nocturnal—have consistently low similarity between data-

sets. Bat data from iNaturalist may also contain patterns of vari-

ation and error not observed in other taxa since the iNaturalist 

platform can identify bat species based on either photographic or 

audio data, whereas other taxa are generally observed using pho-

tographic data only. Likewise, data from structured bat surveys 

can also be prone to error from automated species identification 

software, suggesting that discrepancies between structured and 

unstructured bat survey data can be attributed to misidentifi-

cation as much as differences in survey effort or species detect-

ability (Fritsch and Bruckner 2014; Goodwin and Gillam 2021; 

Solick et  al.  2024). Furthermore, many non- bat mammal spe-

cies are difficult to identify using photographs alone (Barbato 

et al. 2021; Kays et al. 2022; McMullin and Allen 2022). This is 

especially true for rabbits and hares (Kays et  al.  2022), which 

potentially explains why Lagomorpha reported greater dissim-

ilarity in western regions where the Lagomorph species pool is 

larger and misidentification is more likely. Understanding these 

taxon- specific biases and limitations can guide the use and util-

ity of these data from unstructured surveys.

While structured and unstructured datasets have the capacity 

to produce comparable data for select taxa, notable discrep-

ancies between datasets highlight that the suitability of either 

dataset depends on one's objectives. Data from structured and 

unstructured surveys may provide sufficiently similar insight if 

species richness of non- bat mammals is the objective, but they 
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report notably divergent species pools, which may not both be 

suitable for the research objective. The realization that the two 

survey methods document similar numbers of species but enu-

merate different species pools shows that neither method suffi-

ciently captures all species present. Thus, although structured 

surveys have been hailed as the ‘gold standard’ in wildlife ecol-

ogy, our analysis reveals that structured surveys fail to docu-

ment many of the species that are documented in unstructured 

surveys (Foody 2011). This disparity, coupled with the notable 

geographic variation, demonstrates that the adequacy of either 

survey method depends on the research question and study 

area, precluding a one- size- fits- all approach (Taraporevala 

et al. 2025).

Species conservation and management has the potential to 

elicit immense social and environmental benefits but requires 

accurate data to be carried out effectively (Costello et al. 2013; 

Stephenson and Stengel  2020; Weissgold  2024). Our analysis 

found that iNaturalist and structured surveys generally re-

port comparable species richness values for many mammals. 

However, we caution against a complete reliance on either 

survey method since both methods document species that are 

missed by the other. These differences are especially apparent 

for taxa that are difficult to observe or identify. Such limitations 

can be overcome by only using datasets for taxa and geographies 

in which both survey methods are anticipated to produce sim-

ilar data or by explicitly controlling for inherent differences in 

data by using an integrated modeling approach (e.g., Schank 

et al. 2017; Goldstein et al. 2025). Although no dataset is perfect, 

our analysis suggests that iNaturalist can adequately supple-

ment data from structured wildlife surveys for select taxa and 

geographies. The judicious use of these data can contribute to 

the conservation and management efforts for species that are 

faithfully documented in unstructured surveys, thereby allow-

ing sampling efforts to be reallocated to taxa and geographies 

that require a more structured survey approach.
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Supporting Information section.     
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