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ABSTRACT

Crowd-sourced biodiversity data, such as those housed in the iNaturalist platform, are increasingly used to monitor species dis-
tributions. Such data represent unstructured biodiversity surveys that are generally comprised of incidental observations and do
not report variation in sampling effort. These discrepancies may yield data that is incongruent with data from structured surveys.
To assess whether mammalian iNaturalist data are reflective of data from traditional structured surveys, we calculated and com-
pared measures of mammalian species richness and species pool similarity using data from unstructured surveys (i.e., iNatural-
ist) and data from structured camera trap surveys and bat acoustic surveys. We found that data from structured and unstructured
surveys generally document similar mammalian species richness, but the two survey types document different species pools.
Human population density and proxies for species pool breadth were most strongly associated with discrepancies in datasets,
with data being most similar in areas of high human population density and lower species richness. Our analyses revealed that
dataset similarity varied across geography and community metric for most taxa, but that structured and unstructured surveys
produced consistently unreconcilable datasets for bats. These findings suggest that unstructured datasets like iNaturalist may
offer reliable data for some taxa and geographies, but that these data are not universally applicable to all research scenarios.

1 | Introduction

Robust datasets guide effective ecosystem management decisions,
while datasets of limited size and accuracy can lead to ineffec-
tive outcomes (Costello et al. 2013; Stephenson and Stengel 2020;
Weissgold 2024). Increased sample size can often mitigate this
shortcoming, but high-quality data collection can be logistically
and financially infeasible at the scale required by decision makers
(Dobson et al. 2020; Kindsvater et al. 2018; Troudet et al. 2018).

In response, practitioners often rely on existing datasets to in-
form their management actions (Dobson et al. 2020; Stephenson
and Stengel 2020). In the field of wildlife ecology, crowd-sourced
datasets (also called citizen science) of species observations are
especially valued since they provide information about species
distributions at no cost to the data users. Although such data
are inexpensive, they are often unstandardized, incomplete, and
biased toward particular taxa and geographies (Dimson and
Gillespie 2023; Dobson et al. 2020). Thus, decision makers must
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base their management on easily obtained but incomplete datasets
or on more robust datasets that are limited in geographic scope
and require substantial time, money, and effort to collect.

Structured survey methods are generally seen as the ‘gold stan-
dard’ since they follow clearly defined sampling protocols. Data
arising from structured surveys can be summarized as detec-
tion/non-detection data (also called “presence/absence data”)
indicating whether the target organism is observed during each
survey, with unobserved species resulting in putative absences.
On the other hand, unstructured data are considered “presence-
only” because there is no direct record of surveys that did not
produce detections of the species (Bayraktarov et al. 2019;
Foody 2011; Liet al. 2011; MacKenzie 2005a, 2005b). Statistically,
detection/non-detection data can be analyzed with models that
directly account for variation in the sampling process, such that
remaining variation in the observed data can be attributed to the
underlying ecological process. Conversely, models of presence-
only data depend on extra assumptions about sampling effort
(Foody 2011; Phillips et al. 2006). Presence-only data are often
comprised of incidental observations, and observers may elect
to report only select sightings (Jessup 2003; MacKenzie 2005a,
2005b). However, such variation in effort is unobserved and is
challenging to control for during analysis.

Despite the shortcomings of unstructured survey data, the sheer
abundance, low cost, low effort, and wide geographic range of
these data are particularly attractive to researchers (Dobson
et al. 2020; Lopez-Guillén et al. 2024; Wahlberg et al. 2023).
The iNaturalist platform in particular has enjoyed immense
popularity since its release in 2008 (Lopez-Guillén et al. 2024;
Martinez-Sagarra et al. 2022; Mesaglio and Callaghan 2021).
iNaturalist is an online platform with two mobile applications
(iNaturalist and Seek) that allow users to upload photographic
or audio evidence of organisms to the iNaturalist database of ob-
servations where, depending on user preferences, it may be inte-
grated into the Global Biodiversity Information Facility (GBIF;
Altrudi 2021). Given the ease of participating in data collection,
crowd-sourced data has become immensely abundant in recent
years. Indeed, the iNaturalist platform boasts over 2.9 million
users and data produced by iNaturalist has been used in over
4000 peer-reviewed publications, suggesting that the platform
plays a pivotal role in conservation science (Global Biodiversity
Information Facility 2024; Lépez-Guillén et al. 2024).

Although iNaturalist data continue to be widely used, they are
known to have taxonomic and spatial biases. Observations tend
to be disproportionately clustered around developed areas, trails,
and roads, offering limited insights into ecological communities
beyond the reach of basic human infrastructure (Backstrom
et al. 2024; Di Cecco et al. 2021; Dimson and Gillespie 2023;
Taraporevala et al. 2025). Within populated areas, data are
concentrated in affluent areas with abundant greenspace and
are not temporally consistent with observations from pas-
sive structured surveys (Carlen et al. 2024; Estien et al. 2024;
Taraporevala et al. 2025). Even where observations are abun-
dant, many observers use iNaturalist as either a means of iden-
tifying an unknown organism or as a personal species checklist,
leading to observer-specific variation in taxonomic sampling
effort (Goldstein and Stoudt 2025). In either case, observers typ-
ically only upload a single observation of a species, even if the

species is frequently encountered (Di Cecco et al. 2021). Finally,
observations tend to be biased toward large, charismatic spe-
cies that are approachable and easily photographed (Di Cecco
et al. 2021; Goldstein et al. 2024; Stoudt et al. 2022).

Given the biases present in iNaturalist data, it stands to reason that
these data do not consistently reflect the same biodiversity pat-
terns as data from structured surveys. Indeed, many studies have
explored the degree to which unstructured surveys like iNaturalist
produce datasets that resemble those produced by structured sur-
veys. Species richness estimates derived from unstructured surveys
generally resemble those derived from structured surveys for most
taxa at a coarse (i.e., 10,000-km? sampling grid) spatial scale (Daru
and Rodriguez 2023). At finer scales, iNaturalist data seemingly
correspond to structured survey data for species of bees (Apidae
family), dragonflies (Anisoptera infraorder), and damselflies
(Zygoptera suborder), but not for butterflies (Heteroneura clade;
Shirey et al. 2021; Chesshire et al. 2023; Bullion and Bahlai 2024).
Reptile observations on iNaturalist differ from structured survey
data (Forti et al. 2024), whereas the fidelity of amphibian records
remains largely unexplored (Oliver et al. 2025). iNaturalist records
of birds disproportionately report large-bodied and flocking birds,
but similarity between unstructured and structured datasets tends
to improve with increasing iNaturalist observations (Callaghan
et al. 2021; Jacobs and Zipf 2017). Mammal detections on iNatu-
ralist are comparable to structured surveys of deceased specimens
(i-e., roadkill; Périquet et al. 2018). However, data from structured
and unstructured surveys of live marine mammals differ (Viola
et al. 2024), and such an analysis of live terrestrial mammals has
not yet been undertaken.

In this study, we explored the factors contributing to the com-
parability of iNaturalist mammal observations and data from
structured mammal surveys across the contiguous United States
(US). Furthermore, we assessed if iNaturalist is an appropriate
alternative for structured surveys in the context of two commu-
nity metrics: similarity in species richness and similarity in spe-
cies pools. We hypothesized that the similarity of mammalian
communities reported by iNaturalist and structured surveys
would vary spatially due to ecological variables and differences
in survey effort. Specifically, we predicted that iNaturalist ob-
servations and data from structured surveys would yield sim-
ilar estimates of species richness and species pools and that
similarity between datasets would be positively associated with
the prevalence of protected lands and the ease of traversing the
landscape (i.e., less rugged landscapes), since humans are more
likely to access and document species in these areas (Mair and
Ruete 2016). We also predicted that similarity between datasets
would be positively associated with human population density,
but that the effect of humans diminishes in the most heavily
urbanized areas (i.e., the effect of human population density
is quadratic). Finally, we predicted that these metrics would be
most similar in areas with fewer species and where survey effort
is substantial, since both factors have the potential to produce
more complete datasets. If iNaturalist data accurately reflects
community composition, these data may offer reasonable in-
sight into community dynamics in regions where structured
surveys have not occurred. The prudent use of iNaturalist data
to understand mammalian communities may thus supplement
professional wildlife surveys and contribute to the efficient dis-
tribution of limited resources in conservation.
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2 | Methods
2.1 | Landscape Data

Previous research on the comparability of structured and un-
structured survey data was conducted at a global scale of
100x100km (Daru and Rodriguez 2023). We sought to use
a spatial scale finer than 10,000km?, but still large enough to
capture spatially coincident observations from structured and
unstructured surveys. We superimposed a 25x25km grid over
the contiguous US and removed any cell with >10% water.
We then measured the latitude and longitude of the center of
each remaining cell and summarized the human population
density, terrain ruggedness, and proportion of protected lands
(e.g., park, conservation area, wildlife refuge, etc.) within
each cell using the Gridded Population of the World dataset
(resolution =30 arc-seconds; NASA Socioeconomic Data and
Applications Center 2018), the Global Terrain Ruggedness data-
set (resolution =1-km?; Carter 2018), and the PAD-US dataset
(scale =1:24,000; United States Geological Survey 2024), respec-
tively. For human population and terrain ruggedness, we used
the mean value of the raster cells that overlapped the sampling
grid cell as the final value for each variable. For the proportion
of protected lands, we divided the area of protected land within
each cell by the cell's total area. All variables were assessed for
collinearity using Pearson's correlation coefficient (p <0.7) and
were z-scaled prior to analysis.

2.2 | Standardized Survey Data

Standardized survey data for terrestrial mammals were ob-
tained from the SNAPSHOT USA database from 2021 (Shamon
et al. 2024) and 2022 (Rooney et al. 2025) and were supple-
mented with other publicly available camera trapping projects
within the contiguous US hosted on the Wildlife Insights plat-
form (www.wildlifeinsights.org; see Data S1 for a list of proj-
ects used). While nuances exist between the protocols of these
surveys, each survey consisted of un-baited motion-activated
camera traps aimed at game trails that were active 24-h per
day throughout their sampling period. Photographs from each
camera were loaded into the Wildlife Insights online repository
and were identified to the lowest taxonomy possible. After re-
view, we excluded all observations of humans, livestock, and
any animal not able to be identified to species. Additionally, we
removed observations of terrestrial animals weighing less than
111.9 g—the weight of the Eastern chipmunk (Tamias striatus),
which is the smallest animal that is reliably captured within our
dataset (Kays et al. 2022; Wilman et al. 2014).

Bats (Chiroptera order) are not reliably detected or identifi-
able using camera traps. Instead, we downloaded standard-
ized bat survey data from NABat (www.nabatmonitoring.
org/). Specifically, we downloaded freely available bat data from
acoustic surveys, as well as from acoustic surveys that approved
our request for their embargoed data within 1 week of our re-
quest. A complete list of NABat projects that contributed data to
this analysis is available in Data S1. The NABat protocol uses a
generalized random-tessellation stratified grid (10x10 km grid
cells) across the US, and cells are selected to be sampled based
on a geographic representation and ability to access the land.

Within each NABat cell, surveyors conducted repeated acoustic
surveys (Loeb et al. 2015). Acoustic recorders were calibrated
prior to use, and bat calls were identified to species using special-
ized software (Data S1). Similar to the camera trap dataset, we
used structured bat survey data from the years 2021 and 2022.

Prior to analysis, all species names from structured surveys
were compared against species names listed in the iNaturalist
database. Because iNaturalist uses the most recent taxonomy
available, we settled all cases of conflicting taxonomy by renam-
ing species according to their current name in the iNaturalist
database.

2.3 | iNaturalist Data

We batch-exported data from iNaturalist.org in January 2023 by
filtering for mammals in North America from January 1, 2021, to
December 31, 2022. We then removed 14 duplicate observations
with matching observation identification numbers and all ob-
servations that were not research grade or were not identified to
species. Finally, we identified and removed observations based
on animal sign (e.g., scat, tracks, etc.) because these types of ob-
servations are more likely to be misidentified compared to direct
observations of animals (Morin et al. 2016; Spitzer et al. 2019).
To remove observations of sign, we excluded observations with
values in the ‘sign and song’ and ‘tracks’ columns, observations
annotated as tracks or scat, and observations within the North
American Animal Tracks Database, which is a project within
iNaturalist that contains observations that are signs (not just
tracks). For consistency between datasets, we removed all non-
Chiropteran species weighing <111.9g from the iNaturalist
dataset, and observations of humans and livestock were auto-
matically omitted since these species cannot achieve “research
grade” in iNaturalist.

2.4 | Controlling for Survey Effort

We measured survey effort using the number of observations
present in both the structured and unstructured datasets in
each grid cell. We assumed that datasets would be most similar
when they were derived from surveys of similar sampling inten-
sity, since disproportionately larger surveys are likely to capture
more varied species from sampling bias alone. We also assumed
that greater volumes of data would yield more similar datasets
since they would reflect more complete samples. To account for
the sampling intensity of either dataset and the similarity be-
tween sampling intensities, we derived a measure of composite
effort at grid cell i, ¢, based on the number of observations from
structured, e, and unstructured surveys, e,. Composite effort
was based on the total volume of data in each cell, v, moderated
by the proportional difference in the number of observations
between survey methods (Figure 1A). This yields larger values
when both survey methods contain many samples, moderate
values when only one method has many samples, and small val-
ues when both methods have few samples.

v, =e; Xe, €Y}
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(A) Survey Effort

N obs. from Method 2

low effort
high effort
low effort

(B) Species Richness

N obs. from Method 1 % h o, k

Method 1 yielded 2 more observations than % ( k
L Method 2. survey effort=41.14 ) -

(C) Species Pool

n=6 n=3

Method 1 observed 43% more species than
Method 2. Richness difference = 0.43

J

29% of species were observed by both
\_methods. Species pool dissimilarity = 0.71 )

FIGURE1 | Conceptual illustration of the calculation of (A) survey effort, (B) difference in species richness, and (C) difference in the observed
species pools, based on data from both survey methods in each grid cell. Animals detected in each survey method are depicted in blue or red, while

individuals detected using both survey methods are depicted in purple.

2.5 | Community Metrics

We calculated the difference in reported species richness at grid
cell i, N;, by subtracting the richness reported in structured data,
n,, from the richness reported in unstructured survey data, n,,
and dividing the difference by the total number of unique spe-
cies detected across both methods, n, (Figure 1B).

N, = ©)

This resulted in a metric whose value is zero if both survey
methods report the same number of species. Alternatively, the
metric is positive if unstructured surveys reported more species
but is negative if structured surveys reported more species.

Although species richness offers some insight into community
composition, it can yield misleading results since two completely
different species pools can produce identical richness values. We
used the Jaccard dissimilarity index to assess the similarity of the
species pools reported by each survey method for each grid cell
(Figure 1C). The Jaccard dissimilarity index considers if a species
is reported in both datasets and produces cell-specific values that
approach zero when species pools in each dataset are similar and
approach one when species pools are dissimilar. Thus, values closer
to zero indicate similarity between structured and unstructured
datasets across both metrics employed in this study. Jaccard indices
were calculated using the Vegan package (Oksanen et al. 2022).

To account for taxa-specific variation, we calculated each of
the previously described community metrics and survey effort

separately for the following orders: Artiodactyla, Carnivora,
Chiroptera, Lagomorpha, and Rodentia. While Cingulata
and Didelphimorphia were documented in both structured
and unstructured surveys, the paucity of species from these
orders within the US (n=1 species per order) prompted us to
exclude them from order-level analysis. Finally, we calculated
each community metric for Mammalia using data from all the
previously listed orders of mammals, including Cingulata and
Didelphimorphia, despite not being individually analyzed.

2.6 | Statistical Analysis

We fit a linear regression model to assess the relationship be-
tween landscape variables and the proportional difference in
species richness (Equation 4). Each model included latitude,
longitude, proportion of protected lands, landscape ruggedness,
and survey effort as linear terms. Each model also included
human population density as a quadratic term.

Vi=Bo+ X BuX; @)

We used beta regression to assess the relationship between our
variables and Jaccard dissimilarity, where the distribution's
shape parameters, alpha and beta, are derived from the estimated
output of the previously described linear regression model and a
separately estimated term, phi (Equations 5-8). Beta regression
is appropriate for data between zero and one, but not for data
equal to zero or one exactly; thus, we replaced Jaccard values
equal to zero with values of 0.001, and likewise replaced similar-
ity indices equal to one with values of 0.999.
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¥; ~ Beta(a;, ;) (5)
A= Ui X @ 6)
pi=(1-m)xo @
logit(u;) = fo + Y, B, ®

All models were fit in a Bayesian framework using the Nimble
package (de Valpine et al. 2017). Parameters representing the
effects of independent variables were assigned normal priors
with a mean of zero and standard deviation of 100. The param-
eters required by the probability distribution but not of ecolog-
ical significance (i.e., phi) were instead given uniform priors
constrained between zero and one hundred and zero and ten,
respectively. MCMC chains consisted of 100,000 iterations
with a burn-in period of 50,000 iterations. Gelman-Rubin sta-
tistics and trace plots were inspected for each chain to ensure
convergence. Likewise, posterior predictive plots were visually
inspected for each model to ensure goodness of fit. We con-
firmed that MCMC chains adequately mixed when Gelman-
Rubin statistics had a value <1, and trace plots showed chains
consistently folding over one another. Posterior predictive
plots indicated adequate model fit when datasets generated
using the fitted model generally matched the observed data-
set. Trace plots and posterior predictive plots are available in
Data S2.

2.7 | National Predictions

We used the estimated coefficients for each variable and the pre-
viously described sampling grid to forecast each dependent vari-
able across the contiguous US. We held survey effort at its mean
value across the sample grid since calculation of effort requires
standardized survey data, which is not available in all grid cells.
We then calculated the proportion of cells whose predicted com-
munity metric suggested that iNaturalist data would differ from
structured survey data by <15% if structured survey data had
existed in that grid cell.

3 | Results
3.1 | Survey Results

A total of 170 species were detected across 916 grid cells
(Figure 2). Species-specific summary statistics are available
in Data S3. On average, each order was observed across 155
(SD =41.35) grid cells. Across metrics, a value of zero indicates
that the two survey methods produce comparable datasets. For
species richness, negative values indicate that structured sur-
veys report greater species richness than unstructured surveys.
Likewise, if values are positive, unstructured surveys reported
greater species richness than structured surveys. Observed
species richness was most similar in Rodentia (mean=-0.01,
SD=0.21) and most dissimilar in Chiroptera (mean=-0.64,
SD=0.09). Observed species pools were most similar for
Lagomorpha (mean=0.43, SD=0.20) and were most dissimilar
for Mammalia (mean=0.91, SD=0.03). Summary statistics for
all analyzed taxa are available in Table 1.

3.2 | Species Richness

Intercept terms for Chiroptera, Carnivora, and Mammalia were
significantly negative, indicating that structured surveys report
greater species richness than unstructured surveys with all
other variables are held at their mean. Conversely, the intercept
term for Rodentia was positive, suggesting that unstructured
surveys report greater rodent species richness than structured
surveys with all other variables are held at their mean. Intercept
terms for Artiodactyla and Lagomorpha were not significantly
different from zero, suggesting that the two survey methods pro-
duce sufficiently similar estimates of species richness with all
other variables are held at their mean values.

Human population density had a significant positive rela-
tionship with differences in species richness for Rodentia,
Mammalia, Carnivora, Artiodactyla, and Lagomorpha.
Notably, the relationships for quadratic terms were not uni-
formly significant, suggesting a non-quadratic relationship
between human population density and species richness for

ﬁ 0 500 1,000 km
-

[l 10x10 km grid cell with both structured and unstructured survey data

FIGURE2 | Sampling grids that contained both structured and unstructured data for (A) Chiroptera and (B) all other mammal species.
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Summary statistics of observed data by taxa for each community metric.

TABLE 1

Proportional

N species

richness Jaccard
dissimilarity

N species detected N observations N observations

detected
(structured)

Grid cells

(iNaturalist) difference

(structured)

(unstructured)

sampled

Taxon

0.91 (0.03)

—0.20(0.23)
—0.16 (0.17)
~0.34(0.19)

73 (252)

605.43 (2174.00)

6.79 (5.72)

6.57 (3.90)
1.61 (0.96)
4.41 (2.03)

919

Mammalia

0.37 (0.19)

30.56 (67.12)

544.71 (867.01)

1.58 (1.01)

185

Artiodactyla

0.67 (0.08)

26.57 (51.82)

370.80 (940.82)

3.35(2.03)

191

Carnivora

0.86 (0.04)

—0.64 (0.09)

2.43 (3.69)
30.03 (66.17)
98.17 (271.51)

119.52 (304.01)

1.45 (0.97)
1.25 (0.58)
3.81 (2.26)

5.50 (2.52)
1.18 (0.56)
2.51 (1.39)

123

Chiroptera

0.43 (0.20)

0.04(0.12)

77.17 (171.17)

99

Lagomorpha

0.62 (0.10)

—0.01 (0.21)

634.16 (1085.80)

177

Rodentia

Note: Mean values per 25X 25-km grid cell are reported, with standard deviations listed in parentheses.

Artiodactyla and Lagomorpha. Longitude had a significant
positive relationship with differences in species richness
for Chiroptera and Mammalia, but Chiroptera was the only
taxon significantly associated with latitude. Landscape rug-
gedness had a positive relationship with differences in rich-
ness for Mammalia and Artiodactyla, while the proportion of
protected land had a positive relationship with differences in
richness for Mammalia and Rodentia. Survey effort was only
significantly associated with differences in species richness
for Chiroptera. Estimates for all parameters are available in
Data S3.

Results varied substantially when estimated model coefficients
were used to predict how species richness might differ between
structured and unstructured surveys across the US (Figure 3).
Nationally, species richness from unstructured surveys was
estimated to be within 15% of richness reported from struc-
tured surveys across 87% of the contiguous US for Lagomorpha
(mean=0.04, SD=0.12), while Rodentia (mean=-0.0004,
SD=0.21) and Artiodactyla (mean=-0.16, SD=0.18) pro-
duced comparable datasets in 57% and 51% of grid cells, respec-
tively. Mammalia (mean=-0.20, SD=0.23) species richness
was only comparable across 30% of grid cells, while Carnivora
(mean=-0.33, SD=0.19) was only below the 15% similarity
threshold for 6% of grid cells. Species richness for Chiroptera
(mean=-0.63, SD=0.09) was not predicted to be comparable
in any grid cell.

3.3 | Species Pool

For Chiroptera, Carnivora, and Mammalia, human population
density had a negative relationship with Jaccard dissimilar-
ity—suggesting that species pools reported by both methods
are likely to be more similar in areas of dense human popula-
tions. Notably, the quadratic relationship was only significant
for Mammalia, while the relationship between human popula-
tion density and species pool similarity was not quadratic for
Carnivora and Chiroptera. Longitude had a significant negative
association with species pool dissimilarity for Artiodactyla,
Chiroptera, and Mammalia, while latitude had a significant
positive association for Carnivora. Landscape ruggedness had
a significant positive association with species pool dissimilarity
for Lagomorpha, and proportion of protected land had a posi-
tive association for Mammalia. Survey effort had a negative
association with species pool dissimilarity for Chiroptera and
Mammalia. Intercept terms for this analysis do not have clear
ecological interpretations and are thus not addressed here but
are listed in Data S3.

Predicted Jaccard dissimilarity between structured and un-
structured datasets was uniformly low across the continental
US for most taxa. Across taxa, species pools were most similar
for Artiodactyla (mean=0.37, SD=0.19), with approximately
8% of grid cells producing comparable datasets. Less than 1% of
grid cells produced comparable species pools for Lagomorpha
(mean=0.43, SD=0.20). Rodentia (mean=0.62, SD=0.10),
Carnivora (mean=0.67, SD=0.08), Chiroptera (mean=0.86,
SD =0.04), and Mammalia (mean =0.91, SD =0.03) species pools
were predicted to be highly dissimilar and are not expected to
produce comparable datasets in any grid cell.
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FIGURE 3 | Predicted (dis)similarity of community metrics derived from iNaturalist and structured survey data across the contiguous US.
Predictions are calculated holding survey effort at its mean value. Enlarged maps are available in Data S4.

4 | Discussion

Our study found that data from structured and unstructured
surveys yielded similar measures of species richness across
the contiguous US but observed dissimilar species assem-
blages. Although relationships varied across taxa, human
population density was the predominant variable associated
with differences between the two datasets, followed by longi-
tude, which we used as a proxy for local species pool breadth.

Furthermore, the degree of similarity differed across taxa,
indicating that the optimal survey method depends on the
species being sampled. Taken together, these results suggest
that iNaturalist and structured surveys may offer compara-
ble data, but that the utility of these data depends on the taxa
being sampled, the location of the survey, and the community
metric being assessed. While structured surveys are typically
hailed as the ‘gold standard’ of ecological research, our study
suggests that data from iNaturalist can offer comparable data
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for some mammalian species, geographies, and community
metrics.

Human population density was significantly correlated with
discrepancies between structured and unstructured datasets for
many taxa. Unstructured surveys typically rely on incidental en-
counters between human observers and non-human organisms.
Thus, unstructured surveys are expected to produce more obser-
vations in areas where more humans are available to document
wildlife (Backstrom et al. 2024; Di Cecco et al. 2021; Dimson
and Gillespie 2023). While densely urban landscapes support a
multitude of potential wildlife observers, these same landscapes
deter many species (Aronson et al. 2016). As a result, we pre-
dicted that the effect of human population density reaches a
saturation point. We found evidence for a significant quadratic
effect of human population density on dataset similarity in only
33% of our models. In models assessing species richness, the
effect of humans was positive, which indicates that iNatural-
ist data from densely populated areas tend to report as many, if
not more, species than structured surveys from the same areas.
Furthermore, in cases where a non-linear relationship with
human population density was identified, quadratic coefficients
were positive, indicating that the effect of humans increases ex-
ponentially at higher population densities rather than becoming
saturated. Similarly, models assessing the similarity of species
pools found a negative relationship with human population den-
sity, demonstrating that high human population densities shift
metrics away from dissimilarity (y=1) and toward similarity
(y=0). In consequence, our analysis suggests that the two sur-
vey methods produce increasingly similar datasets in areas with
high human populations.

Geographic measures that coincide with species availability
were similarly associated with changes in dataset similarity.
Specifically, longitude tended to be significantly associated with
dataset similarity, but the direction of this relationship varied.
The effect of longitude was most pronounced for Chiroptera,
whose datasets tended to approach similarity in the relatively
species-poor and human-dominated eastern US (Ceballos and
Ehrlich 2006; Reid 1998). Although the effect of latitude on bio-
diversity is well documented (Kaufman and Willig 1998), the
effect of latitude was muted in comparison to the effect of longi-
tude. We used both latitude and longitude as proxies for species
richness within taxa (Kaufman and Willig 1998) and expected
greater disparities between datasets in regions with larger spe-
cies pools due to increased chances of collecting an incomplete
sample. While this relationship held for many taxa and metrics,
the variation in significance and direction of effect exemplifies
the nuanced suitability of either survey method across taxa and
geographies.

Contrary to our hypotheses, protected areas, landscape rugged-
ness, and survey effort had relatively little effect on the similar-
ity of datasets while in the presence of the other covariates in
the model. We had expected the abundance of protected areas to
increase similarity between datasets since both types of surveys
tend to be concentrated in protected areas as opposed to devel-
oped spaces (Carlen et al. 2024; Herrera et al. 2021). This rela-
tionship was not found to be widespread, however. Regardless
of taxa, we expected rugged landscapes would favor structured
surveys since iNaturalist observers tend to favor easily navigable

landscapes (Mair and Ruete 2016). Instead, we found that land-
scape ruggedness was associated with greater richness from
iNaturalist data compared to structured surveys for select taxa
but did not find significant relationships for most taxa and met-
rics. Finally, the effect of survey effort was inconsistent across
taxa and metrics. Our measure of survey effort should be inter-
preted as a control variable rather than a predictive variable,
as it considered the volume and evenness of observations from
both survey methods. We intended for this variable to account
for instances of uneven sample sizes between survey methods.
However, we instead found human population density to be a
stronger predictor of dataset similarity, presumably because
true effort in unstructured surveys is proportional to human
population density but is unaffected by the volume of data col-
lected by standardized surveys in the same region.

The degree to which iNaturalist data resembled structured
survey data varied substantially across taxa. iNaturalist users
disproportionately report large and charismatic species (Stoudt
et al. 2022) due to both observer preferences and logistical diffi-
culties that inhibit the reliable documentation of many species.
For instance, small-bodied animals can be difficult to see or
take diagnostic photographs for accurate species identification
(Barbato et al. 2021; Kays et al. 2022). We attempted to control
for this limitation by omitting all non-bat species too small to
be reliably documented by camera traps from our analysis. This
likely contributed to the high similarity in rodent species rich-
ness between the two datasets due to the lower effort required to
report similar samples from an artificially depauperate species
pool. However, filtering out small species did not preclude sub-
stantial differences in the species detected. Additionally, most
mammal species are nocturnal and thus become largely unde-
tectable to the average observer (Curti et al. 2024). Indeed, our
analysis found that observations of bats—which are both small
and nocturnal—have consistently low similarity between data-
sets. Bat data from iNaturalist may also contain patterns of vari-
ation and error not observed in other taxa since the iNaturalist
platform can identify bat species based on either photographic or
audio data, whereas other taxa are generally observed using pho-
tographic data only. Likewise, data from structured bat surveys
can also be prone to error from automated species identification
software, suggesting that discrepancies between structured and
unstructured bat survey data can be attributed to misidentifi-
cation as much as differences in survey effort or species detect-
ability (Fritsch and Bruckner 2014; Goodwin and Gillam 2021;
Solick et al. 2024). Furthermore, many non-bat mammal spe-
cies are difficult to identify using photographs alone (Barbato
et al. 2021; Kays et al. 2022; McMullin and Allen 2022). This is
especially true for rabbits and hares (Kays et al. 2022), which
potentially explains why Lagomorpha reported greater dissim-
ilarity in western regions where the Lagomorph species pool is
larger and misidentification is more likely. Understanding these
taxon-specific biases and limitations can guide the use and util-
ity of these data from unstructured surveys.

While structured and unstructured datasets have the capacity
to produce comparable data for select taxa, notable discrep-
ancies between datasets highlight that the suitability of either
dataset depends on one's objectives. Data from structured and
unstructured surveys may provide sufficiently similar insight if
species richness of non-bat mammals is the objective, but they
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report notably divergent species pools, which may not both be
suitable for the research objective. The realization that the two
survey methods document similar numbers of species but enu-
merate different species pools shows that neither method suffi-
ciently captures all species present. Thus, although structured
surveys have been hailed as the ‘gold standard’ in wildlife ecol-
ogy, our analysis reveals that structured surveys fail to docu-
ment many of the species that are documented in unstructured
surveys (Foody 2011). This disparity, coupled with the notable
geographic variation, demonstrates that the adequacy of either
survey method depends on the research question and study
area, precluding a one-size-fits-all approach (Taraporevala
et al. 2025).

Species conservation and management has the potential to
elicit immense social and environmental benefits but requires
accurate data to be carried out effectively (Costello et al. 2013;
Stephenson and Stengel 2020; Weissgold 2024). Our analysis
found that iNaturalist and structured surveys generally re-
port comparable species richness values for many mammals.
However, we caution against a complete reliance on either
survey method since both methods document species that are
missed by the other. These differences are especially apparent
for taxa that are difficult to observe or identify. Such limitations
can be overcome by only using datasets for taxa and geographies
in which both survey methods are anticipated to produce sim-
ilar data or by explicitly controlling for inherent differences in
data by using an integrated modeling approach (e.g., Schank
et al. 2017; Goldstein et al. 2025). Although no dataset is perfect,
our analysis suggests that iNaturalist can adequately supple-
ment data from structured wildlife surveys for select taxa and
geographies. The judicious use of these data can contribute to
the conservation and management efforts for species that are
faithfully documented in unstructured surveys, thereby allow-
ing sampling efforts to be reallocated to taxa and geographies
that require a more structured survey approach.

Author Contributions

Daniel J. Herrera: conceptualization (lead), data curation (lead), for-
mal analysis (lead), investigation (lead), methodology (lead), writing -
original draft (lead), writing - review and editing (lead). Christopher
M. Schalk: conceptualization (supporting), formal analysis (support-
ing), funding acquisition (lead), methodology (supporting), project ad-
ministration (supporting), writing - review and editing (supporting).
Alex J. Jensen: data curation (supporting), writing — review and edit-
ing (supporting). Benjamin R. Goldstein: data curation (supporting),
writing - review and editing (supporting). Brigit R. Rooney: data cu-
ration (supporting), writing - review and editing (supporting). Roland
Kays: data curation (supporting), methodology (supporting), writing
- review and editing (supporting). William J. McShea: data curation
(supporting), writing — review and editing (supporting). Michael V.
Cove: conceptualization (supporting), data curation (supporting), for-
mal analysis (supporting), funding acquisition (supporting), methodol-
ogy (supporting), project administration (supporting), writing — review
and editing (supporting).

Acknowledgments

We wish to thank the many contributors to iNaturalist, SNAPSHOT
USA, and NABat for their tireless documentation of wildlife and for
making these observations publicly available. This paper was written
and prepared in part by U.S. government employees on official time and

therefore is in the public domain and not subject to copyright. This re-
search was supported in part by the USDA Forest Service. The findings
and conclusions in this publication are those of the authors and should
not be construed to represent an official USDA, Forest Service, or U.S.
Government determination or policy.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data used in this analysis are publicly available via iNaturalist
(https://www.inaturalist.org/), Wildlife Insights (https://www.wildl
ifeinsights.org/), and NABat (https://www.nabatmonitoring.org/). The
filtering process for iNaturalist data is described within the methods
section, and the Wildlife Insights and NABat projects whose data con-
tributed to our analysis are listed in Data S1.

References

Altrudi, S. 2021. “Connecting to Nature Through Tech? The Case of the
iNaturalist App.” Convergence: The International Journal of Research
Into New Media Technologies 27: 124-141. https://doi.org/10.1177/13548
56520933064.

Aronson, M. F. J,, C. H. Nilon, C. A. Lepczyk, et al. 2016. “Hierarchical
Filters Determine Community Assembly of Urban Species Pools.”
Ecology 97: 2952-2963. https://doi.org/10.1002/ecy.1535.

Backstrom, L. J., C. T. Callaghan, N. P. Leseberg, C. Sanderson, R.
A. Fuller, and J. E. M. Watson. 2024. “Assessing Adequacy of Citizen
Science Datasets for Biodiversity Monitoring.” Ecology and Evolution
14: €10857. https://doi.org/10.1002/ece3.10857.

Barbato, D., A. Benocci, M. Guasconi, and G. Manganelli. 2021. “Light
and Shade of Citizen Science for Less Charismatic Invertebrate Groups:
Quality Assessment of iNaturalist Nonmarine Mollusc Observations in
Central Italy.” Journal of Molluscan Studies 87: eyab033. https://doi.org/
10.1093/mollus/eyab033.

Bayraktarov, E., G. Ehmke, J. O'Connor, et al. 2019. “Do Big
Unstructured Biodiversity Data Mean More Knowledge?” Frontiers in
Ecology and Evolution 6: 239. https://doi.org/10.3389/fevo.2018.00239.

Bullion, C. N., and C. A. Bahlai. 2024. “Data Gap or Biodiversity Gap?
Evaluating Apparent Spatial Biases in Community Science Observations
of Odonata in the East-Central United States.” PeerJ 12: e18115. https://
doi.org/10.7717/peerj.18115.

Callaghan, C. T., A. G. B. Poore, M. Hofmann, C. J. Roberts, and H.
M. Pereira. 2021. “Large-Bodied Birds Are Over-Represented in
Unstructured Citizen Science Data.” Scientific Reports 11: 19073.
https://doi.org/10.1038/s41598-021-98584-7.

Carlen, E. J., C. O. Estien, T. Caspi, et al. 2024. “A Framework for
Contextualizing Social-Ecological Biases in Contributory Science Data.”
People and Nature 6: 377-390. https://doi.org/10.1002/pan3.10592.

Carter, D. 2018. “Terrain Ruggedness and Land Cover: Improved Data
for Most Research Designs.” https://doi.org/10.7910/DVN/WXUZBN.

Ceballos, G., and P. R. Ehrlich. 2006. “Global Mammal Distributions,
Biodiversity Hotspots, and Conservation.” Proceedings. National
Academy of Sciences. United States of America 103: 19374-19379. https://
doi.org/10.1073/pnas.0609334103.

Chesshire, P. R., E. E. Fischer, N. J. Dowdy, et al. 2023. “Completeness
Analysis for Over 3000 United States Bee Species Identifies Persistent
Data Gap.” Ecography 2023: €06584. https://doi.org/10.1111/ecog.06584.

Costello, M. J., W. K. Michener, M. Gahegan, Z.-Q. Zhang, and P. E.
Bourne. 2013. “Biodiversity Data Should Be Published, Cited, and Peer
Reviewed.” Trends in Ecology and Evolution 28: 454-461. https://doi.
0rg/10.1016/j.tree.2013.05.002.

9o0f11

Tumoq ‘L *STOT ‘8SLLSYOT

:sdny wouy pap

IpUOD) pue SWIAY, Y 23§ "[STOT/60/€0] U0 AIeIqr autuQ AB[IAN “SALIRIQIT ANSIOATUN N £q GORTL'€299/2001 0 /10P/wOd" K[ A

:sdny)

10)/W0Y" KT

P!

AsudIT suowwoy) aaneary) a[qearidde ayy £q pauIoA0S are SAIIE Y asn Jo SN 10§ AIRIqIT SUI[UQ AS[IAN UO (SUODIpUC



Curti, J. N., M. Barton, R. G. Flores, et al. 2024. “Using Unstructured
Crowd-Sourced Data to Evaluate Urban Tolerance of Terrestrial Native
Animal Species Within a California Mega-City.” PLoS One 19: €0295476.
https://doi.org/10.1371/journal.pone.0295476.

Daru, B. H., and J. Rodriguez. 2023. “Mass Production of Unvouchered
Records Fails to Represent Global Biodiversity Patterns.” Nature Ecology
and Evolution 7: 816-831. https://doi.org/10.1038/s41559-023-02047-3.

de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D.
Temple Lang, and R. Bodik. 2017. “Programming With Models: Writing
Statistical Algorithms for General Model Structures With NIMBLE.”
Journal of Computational and Graphical Statistics 26: 403-413. https://
doi.org/10.1080/10618600.2016.1172487.

Di Cecco, G. J., V. Barve, M. W. Belitz, B. J. Stucky, R. P. Guralnick,
and A. H. Hurlbert. 2021. “Observing the Observers: How Participants
Contribute Data to iNaturalist and Implications for Biodiversity
Science.” Bioscience 71: 1179-1188. https://doi.org/10.1093/biosci/
biab093.

Dimson, M., and T. W. Gillespie. 2023. “Who, Where, When: Observer
Behavior Influences Spatial and Temporal Patterns of iNaturalist
Participation.” Applied Geography 153: 102916. https://doi.org/10.
1016/j.apgeog.2023.102916.

Dobson, A. D. M., E. J. Milner-Gulland, N. J. Aebischer, et al. 2020.
“Making Messy Data Work for Conservation.” One Earth 2: 455-465.
https://doi.org/10.1016/j.oneear.2020.04.012.

Estien, C., E. Carlen, and C. Schell. 2024. “Examining the Influence of
Sociodemographics, Residential Segregation, and Historical Redlining
on eBird and iNaturalist Data Disparities in Three U.S. Cities.” Ecology
and Society 29: art16. https://doi.org/10.5751/ES-15263-290316.

Foody, G. M. 2011. “Impacts of Imperfect Reference Data on the Apparent
Accuracy of Species Presence-Absence Models and Their Predictions:
Imperfect Reference Data.” Global Ecology and Biogeography 20: 498—
508. https://doi.org/10.1111/.1466-8238.2010.00605.X.

Forti, L. R.,J. L. C. Da Silva, E. A. Ferreira, and J. K. Szabo. 2024. “The
Implications of Estimating Rarity in Brazilian Reptiles From GBIF
Data Based on Contributions From Citizen Science Versus Research
Institutions.” Integrative Conservation 3: 112-126. https://doi.org/10.
1002/inc3.53.

Fritsch, G., and A. Bruckner. 2014. “Operator Bias in Software-Aided
Bat Call Identification.” Ecology and Evolution 4: 2703-2713. https://doi.
org/10.1002/ece3.1122.

Global Biodiversity Information Facility. 2024. “Resources Query: Peer-
Reviewed Literature [WWW Document].” https://www.gbif.org/resou
rce/search?contentType=literature&peerReview=true.

Goldstein, B. R., K. Pacifici, A. J. Jensen, et al. 2025. “Mammal Niches
Are Not Conserved Over Continental Scales.” https://doi.org/10.1101/
2025.01.17.633640.

Goldstein, B. R., and S. Stoudt. 2025. “Evidence of Novelty and
Specialization Behavior in Participatory Science Reporting.” Oikos
2025: €10938. https://doi.org/10.1111/0ik.10938.

Goldstein, B. R., S. Stoudt, J. M. Lewthwaite, V. Shirey, E. Mendoza, and
L. M. Guzman. 2024. “Logistical and Preference Bias in Participatory
Science Butterfly Data.” Frontiers in Ecology and the Environment 22:
€2783. https://doi.org/10.1002/fee.2783.

Goodwin, K. R., and E. H. Gillam. 2021. “Testing Accuracy and
Agreement Among Multiple Versions of Automated Bat Call
Classification Software.” Wildlife Society Bulletin 45: 690-705. https://
doi.org/10.1002/wsb.1235.

Herrera, D. J., S. M. Moore, D. T. T. Flockhart, W. J. McShea, and M. V.
Cove. 2021. “Thinking Outside the Park: Recommendations for Camera
Trapping Mammal Communities in the Urban Matrix.” Journal of
Urban Ecology 7: juaa036. https://doi.org/10.1093/jue/juaa036.

Jacobs, C., and A. Zipf. 2017. “Completeness of Citizen Science
Biodiversity Data From a Volunteered Geographic Information
Perspective.” Geo-Spatial Information Science 20: 3-13. https://doi.org/
10.1080/10095020.2017.1288424.

Jessup, D. A. 2003. “Opportunistic Research and Sampling Combined
With Fish and Wildlife Action Management Actions or Crisis Response.”
Institute for Laboratory Animal Research Journal 44: 277-285. https://
doi.org/10.1093/ilar.44.4.277.

Kaufman, D. M., and M. R. Willig. 1998. “Latitudinal Patterns of
Mammalian Species Richness in the New World: The Effects of
Sampling Method and Faunal Group.” Journal of Biogeography 25: 795-
805. https://doi.org/10.1046/j.1365-2699.1998.2540795.x.

Kays, R., M. Lasky, M. L. Allen, et al. 2022. “Which Mammals Can
Be Identified From Camera Traps and Crowdsourced Photographs?”
Journal of Mammalogy 103: 767-775. https://doi.org/10.1093/jmammal/
gyac021.

Kindsvater, H. K., N. K. Dulvy, C. Horswill, M.-J. Juan-Jorda, M.
Mangel, and J. Matthiopoulos. 2018. “Overcoming the Data Crisis in
Biodiversity Conservation.” Trends in Ecology and Evolution 33: 676
688. https://doi.org/10.1016/j.tree.2018.06.004.

Li, W., Q. Guo, and C. Elkan. 2011. “Can We Model the Probability of
Presence of Species Without Absence Data?” Ecography 34: 1096-1105.

Loeb, S. C., T. J. Rodhouse, L. E. Ellison, et al. 2015. “A Plan for the
North American Bat Monitoring Program (NABat).”

Lépez-Guillén, E., I. Herrera, B. Bensid, et al. 2024. “Strengths and
Challenges of Using iNaturalist in Plant Research With Focus on Data
Quality.” Diversity 16: 42. https://doi.org/10.3390/d16010042.

MacKenzie, D. I. 2005a. “What Are the Issues With Presence-Absence
Data for Wildlife Managers?” Journal of Wildlife Management 69:
849-860.

Mackenzie, D. 1. 2005b. “Was It There? Dealing With Imperfect
Detection for Species Presence/Absence Data.” Australian and New
Zealand Journal of Statistics 47: 65-74. https://doi.org/10.1111/j.1467-
842X.2005.00372.x.

Mair, L., and A. Ruete. 2016. “Explaining Spatial Variation in the
Recording Effort of Citizen Science Data Across Multiple Taxa.” PLoS
One 11: e0147796. https://doi.org/10.1371/journal.pone.0147796.

Martinez-Sagarra, G., F. Castilla, and F. Pando. 2022. “Seven Hundred
Projects in iNaturalist Spain: Performance and Lessons Learned.”
Sustainability 14: 11093. https://doi.org/10.3390/su141711093.

McMullin, R. T.,and J. L. Allen. 2022. “An Assessment of Data Accuracy
and Best Practice Recommendations for Observations of Lichens and
Other Taxonomically Difficult Taxa on iNaturalist.” Botany 100: 491-
497. https://doi.org/10.1139/cjb-2021-0160.

Mesaglio, T., and C. T. Callaghan. 2021. “An Overview of the History,
Current Contributions and Future Outlook of iNaturalist in Australia.”
Wildlife Research 48: 289-303. https://doi.org/10.1071/WR20154.

Morin, D. J., S. D. Higdon, J. L. Holub, et al. 2016. “Bias in Carnivore
Diet Analysis Resulting From Misclassification of Predator Scats Based
on Field Identification.” Wildlife Society Bulletin 40: 669-677. https://
doi.org/10.1002/wsb.723.

NASA Socioeconomic Data and Applications Center. 2018. “Gridded
Population of the World, Version 4 (GPWv4): Population Count, Revision
11.” https://doi.org/10.7927/H4JW8BXS5.

Oksanen, J., G. L. Simpson, F. G. Blanchet, et al. 2022. “Vegan:
Community Ecology Package.”

Oliver, P. M., A. Davie-Rieck, M. I. Ramdani, et al. 2025. “Can Citizen
Science Fill Knowledge Gaps for the World's Most Speciose and Poorly-
Known Insular Amphibian Fauna?” Pacific Conservation Biology 31:
PC24063. https://doi.org/10.1071/PC24063.

100f 11

Ecology and Evolution, 2025

Tumoq ‘L *STOT ‘8SLLSYOT

/:sdny woiy pap

IpUOD) pue SWIAY, Y 23§ "[STOT/60/€0] U0 AIeIqr autuQ AB[IAN “SALIRIQIT ANSIOATUN N £q GORTL'€299/2001 0 /10P/wOd" K[ A

:sdny)

10)/W0Y" KT

P!

AsudIT suowwoy) aaneary) a[qearidde ayy £q pauIoA0S are SAIIE Y asn Jo SN 10§ AIRIqIT SUI[UQ AS[IAN UO (SUODIpUC



Périquet, S., L. Roxburgh, A. Le Roux, and W. J. Collinson. 2018.
“Testing the Value of Citizen Science for Roadkill Studies: A Case Study
From South Africa.” Frontiers in Ecology and Evolution 6: 15. https://
doi.org/10.3389/fevo.2018.00015.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. “Maximum
Entropy Modeling of Species Geographic Distributions.” Ecological
Modelling  190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.
03.026.

Reid, W. V. 1998. “Biodiversity Hotspots.” Trends in Ecology and
Evolution 13: 275-280. https://doi.org/10.1016/S0169-5347(98)01363-9.

Rooney, B., R. Kays, M. V. Cove, et al. 2025. “SNAPSHOT USA 2019-
2023: The First Five Years of Data From a Coordinated Camera Trap
Survey of the United States.” Global Ecology and Biogeography 34:
€13941. https://doi.org/10.1111/geb.13941.

Schank, C. J., M. V. Cove, M. J. Kelly, et al. 2017. “Using a Novel Model
Approach to Assess the Distribution and Conservation Status of the
Endangered Baird's Tapir.” Diversity and Distributions 23: 1459-1471.
https://doi.org/10.1111/ddi.12631.

Shamon, H., R. Maor, M. V. Cove, et al. 2024. “SNAPSHOT USA 2021: A
Third Coordinated National Camera Trap Survey of the United States.”
Ecology 105: e4318. https://doi.org/10.1002/ecy.4318.

Shirey, V., M. W. Belitz, V. Barve, and R. Guralnick. 2021. “A Complete
Inventory of North American Butterfly Occurrence Data: Narrowing
Data Gaps, but Increasing Bias.” Ecography 44: 537-547. https://doi.org/
10.1111/ecog.05396.

Solick, D. I., B. H. Hopp, J. Chenger, and C. M. Newman. 2024.
“Automated Echolocation Classifiers Vary in Accuracy for Northeastern
U.S. Bat Species.” PLoS One 19: e0300664. https://doi.org/10.1371/journ
al.pone.0300664.

Spitzer, R., M. Churski, A. Felton, et al. 2019. “Doubting Dung: eDNA
Reveals High Rates of Misidentification in Diverse European Ungulate
Communities.” European Journal of Wildlife Research 65: 28. https://
doi.org/10.1007/s10344-019-1264-8.

Stephenson, P. J., and C. Stengel. 2020. “An Inventory of Biodiversity
Data Sources for Conservation Monitoring.” PLoS One 15: €0242923.
https://doi.org/10.1371/journal.pone.0242923.

Stoudt, S., B.R. Goldstein, and P. De Valpine. 2022. “Identifying Engaging
Bird Species and Traits With Community Science Observations.”
Proceedings of the National Academy of Sciences of the United States of
America 119: €2110156119. https://doi.org/10.1073/pnas.2110156119.

Taraporevala, N. F., J. P. Beckmann, and J. K. Young. 2025. “Citizen
Science Project on Urban Canids Provides Different Results From
Camera Traps but Generates Interest and Revenue.” Wildlife Biology:
€01382. https://doi.org/10.1002/wlb3.01382.

Troudet, J., R. Vignes-Lebbe, P. Grandcolas, and F. Legendre. 2018.
“The Increasing Disconnection of Primary Biodiversity Data From
Specimens: How Does It Happen and How to Handle It?” Systematic
Biology 67: 1110-1119. https://doi.org/10.1093/sysbio/syy044.

United States Geological Survey. 2024. “PAD-US.”

Viola, B., P. Puskic, S. Corney, et al. 2024. “A Quantitative Assessment
of Continuous Versus Structured Methods for the Detection of Marine
Mammals and Seabirds via Opportunistic Shipboard Surveys.” Scientific
Reports 14: 18796. https://doi.org/10.1038/s41598-024-68512-6.

Wahlberg, A. C., R. Antoniazzi, and C. M. Schalk. 2023. “Patterns
of the Introduction, Spread, and Impact of the Brown Widow Spider,
Latrodectus geometricus (Araneae: Theridiidae), in the Americas.”
Journal of Arachnology 51: 195-205. https://doi.org/10.1636/
JoA-S-22-022.

Weissgold, B. J. 2024. “US Wildlife Trade Data Lack Quality Control
Necessary for Accurate Scientific Interpretation and Policy Application.”
Conservation Letters 17: €13005. https://doi.org/10.1111/conl.13005.

Wilman, H., J. Belmaker, J. Simpson, C. de la Rosa, M. M. Rivadeneira,
and W. Jetz. 2014. “EltonTraits 1.0: Species-Level Foraging Attributes
of the World's Birds and Mammals.” Ecology 95: 2027. https://doi.org/
10.1890/13-1917.1.

Supporting Information

Additional supporting information can be found online in the
Supporting Information section.

11of 11

Tumoq ‘L *STOT ‘8SLLSYOT

/:sdny woiy pap

IpUOD) pue SWIAY, Y 23§ "[STOT/60/€0] U0 AIeIqr autuQ AB[IAN “SALIRIQIT ANSIOATUN N £q GORTL'€299/2001 0 /10P/wOd" K[ A

:sdny)

10)/W0Y" KT

P!

AsudIT suowwoy) aaneary) a[qearidde ayy £q pauIaA0S are SAOIIE Y asn Jo SN 10§ AIRIqIT AUI[UQ AS[IAN UO (SUODIpU



