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1. Introduction

Suppose k is a number field and X/k is a nice curve (smooth, projective, and geomet-
rically integral). The density degree set §(X/k) of X/k is the set of integers d for which
the collection of closed points of degree d on X are Zariski dense. Since X is a curve, this
is equivalent to asking that the degree d points be infinite, yet the definition in terms of
Zariski density is natural for a variety of any dimension.

In this paper we are concerned with the most basic such piece of information: the
minimum density degree’ min(§(X/k)) is the smallest positive integer in §(X/k). There
is also a geometric version of the minimal density degree that is stable under finite
extensions of the ground field. Let o(X/k) be the union of 6(X/L) as L ranges over all
finite extensions of k. The minimum potential density degree is min(p(X/k)). For more
on the structure of §(X/k) and p(X/k) see [20]. Our motivating problem is:

Main Problem 1.1. Classify curves X with min(6(X/k)) = d, and those with
min(p(X/k)) = d.

Faltings’ theorem classifies curves X with min(p(X/k)) = 1. Main Problem 1.1 can
therefore be viewed as a generalization of this fundamental problem.

There are two natural geometric sources of Zariski dense degree d points: if X is a
degree d cover of P! or an elliptic curve E of positive rank, then pulling back rational
points on P! or E gives an infinite family of degree d (or less) points on X. Previous work
on Main Problem 1.1 has focused on the geometric invariant min(gp). Harris—Silverman
(for d = 2) and Abramovich-Harris (for d = 3) showed that the above two natural
geometric sources of low degree points characterize when min(p) takes the value 2 or
3. More precisely, min(p(X/k)) = 2 or 3 if and only if X; is a degree 2 or 3 cover of
P! or an elliptic curve. Based on this evidence, Abramovich-Harris conjectured that
the same should hold for all values of d. However, Debarre and Fahlaoui [3] showed
that more obscure constructions of infinite families of degree d > 4 points exist by
cleverly constructing certain curves on the symmetric square of an elliptic curve. A full
classification for any larger values of d > 4 has remained stubbornly out of reach, and
there have been essentially no classification results for the arithmetic invariant min(J).

In the present paper we refocus on Main Problem 1.1, including the thornier arithmetic
classification. As a result, we obtain the following new classification.

Theorem 1.2. Suppose X/k is a nice curve. Then the following statements hold:

(1) If min(6(X/k)) = 2, then X is a double cover of P! or an elliptic curve of positive
rank;

1 In previous work [17], the second author called this invariant the arithmetic degree of irrationality. We prefer
to switch to terminology that better generalizes to higher dimensional X.
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(2) If min(6(X/k)) = 3, then one of the following three cases holds:

(a) X is a triple cover of P! or an elliptic curve of positive rank;

(b) X is a smooth plane quartic with no rational points, positive rank Jacobian,
and at least one cubic point;

(¢c) X is a genus 4 Debarre—Fahlaoui curve (see Section 5 for a precise definition);

(3) If min(p(X/k)) = d < 3, then Xy, is a degree d cover of P or an elliptic curve;
(4) If min(p(X/k)) = d = 4,5, then either X is a Debarre-Fahlaoui curve, or Xi is a

degree d cover of P! or an elliptic curve.

Surprisingly, the seemingly clever construction by Debarre-Fahlaoui of counterex-
amples to the conjecture of Abramovich-Harris arises perfectly naturally from our
perspective. The next open case is to classify curves of genus 11 with min(p(X/k)) = 6,
see Section 7.1. As can be seen from Case 2b of Theorem 1.2, there are certain arithmetic
subtleties involved in the classification; some open questions concerning these subtleties
are described in Section 7.2.

The classification in Theorem 1.2 is obtained from a systematic study of the possible
infinite collections of degree d points. Our guiding philosophy is that when d is small
compared to the genus of X, such infinite collections still occur for good geometric
reasons. The first step in our analysis is thus to make this precise with the following

genus bound, which reduces Main Problem 1.1 to finitely many genera for each value
of d.

Theorem 1.3. Suppose X/k is a nice curve of genus g and min(§(X/k)) = d. Let m :=
[d/2] — 1 and let e :=3d — 1 — 6m < 6. Then one of the following holds:

(1) There exists a nonconstant morphism of curves ¢: X —'Y of degree at least 2 such
that d = min(6(Y/k)) - deg ¢;
(2) The genus of X is bounded

d(d-1)

<
g max( >

+1, 3m(m —1) —l—ms) .

In case (1) there is a clear source of low degree points on X: they can be obtained as
pullbacks of low degree point on Y under ¢. There is a long history of genus bounds in
problems related to Main Problem 1.1; see [18], [19], [2], [16]. Theorem 1.3 is indirectly
claimed in [2] by combining [2, Lemma 3] with [2, Theorem 2]; however, the statement
of [2, Lemma 3] has an error, and the proof of [2, Theorem 2| contains a gap. See the
discussion in Section 1.1.

Following the ideas introduced by Abramovich and Harris, we study the geometry of
curves with min(é(X/k)) = d by studying the geometry of linear systems of the form |nD)|
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for degree d points D. The Mordell-Lang conjecture ensures that these linear systems
have positive dimension. An important step in proving Theorem 1.3 is Theorem 3.5,
which states that unless case (1) holds, the linear systems |nD| are birational for most
D and n > 2.

With birationality proved, we can investigate finer questions concerning the geometry
of the linear systems |[nD|. We do so by equipping these linear systems with a discrete-
geometric structure: there is an infinite family of multisecant planes within each of the
projective spaces |nD|, which form an combinatorially interesting configuration. The
presence of this additional structure allows us to prove the following finer classification
of curves X with min(6(X/k)) = d. To formally state this classification we require a
notion of a sufficiently general degree d point D; this is rigorously defined in Section 2.

Theorem 1.4. Suppose X is a curve with min(6(X/k)) = d. Let m := [d/2] — 1 and
let € :=3d —1—6m < 6. Then for a sufficiently general degree d point D one of the
following holds:

(1) dim |2D| =1, and X is a degree d cover of an elliptic curve of positive rank;

(2) dim[2D| > 2, the associated map X — PPl is not birational onto its image,
and there exists a covering of curves ¢: X — Y of degree at least 2 such that
d = min(d6(Y/k)) - deg ¢;

(3) dim |2D| = 2, the associated map X — P2 is birational onto its image, and X is
one of the Debarre-Fahlaoui curves (see Section 5 for the precise definition);

(4) dim [2D| > 2, the associated map X — PPl is birational onto its image, and the
genus g of X satisfies

(d—1)(d-2)

ggmax( +2, Sm(ml)erE)

The proof of Theorem 1.4 involves a detailed analysis of the configuration geometry
in |3D|; it shows how the geometry of the linear systems |nD| naturally gives rise to the
Debarre-Fahlaoui examples.

Remark 1.5. The results of [2] imply that the gonality of a curve with min(6(X/k)) =d
is at most 2d; this fact was also independently observed by Frey [6]. One corollary of
Theorem 1.4 is that the geometric gonality can equal 2d only for (geometric) degree d
covers of elliptic curves; and can equal 2d — 1 only for (geometrically) Debarre-Fahlaoui
curves. See Remarks 3.4 and 5.9.

The method of examining multisecant configurations can be applied to study the low
degree points on special families of curves. As a demonstration, in Section 6.1 we prove
that projective curves of large genus have finitely many sufficiently low degree points. The
statement of this estimate uses the Castelnuovo function 7(d, r); we recall its definition
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in Section 6.1. The number 7(d,r) is an upper bound for the genus of a nondegenerate
degree d curve in P". When 7 is fixed and d is growing, 7(d,r) ~ d?/(2r — 2).

Theorem 1.6. Suppose X C P” is an irreducible (possibly singular) curve of degree e and

genus g. Suppose X has infinitely many points of degree d not contained in hyperplanes
of P". Then

g <m(e+2d,2r+1).

There are many open questions concerning the geometry of curves with abundant low
degree points, both of arithmetic and purely geometric nature. We survey these questions
in Section 7.

1.1. Relation to previous work

The first results on low degree points were obtained by Hindry [8], who studied
quadratic points on modular curves Xy(p) and asked if in general a curve with infinitely
many quadratic points is either hyperelliptic or bielliptic. Later, Faltings [5], and Vojta
[18] used diophantine approximation techniques to describe low degree points on curves
of small gonality. The strongest of these results was obtained by Vojta, who showed that
a degree s cover of P! with infinitely many degree d points not contracted by the map
to P! has genus at most s(d — 1) + 1 [19].

The resulting genus bound is sharp: if E is an elliptic curve of positive rank, then a
(d, s)-curve on E'x P! satisfies the conditions of the theorem and has genus g = s(d—1)+1.
The general question of describing curves with minimum potential density degree d was
first addressed in [9] in the case d = 2 and in [2] for d = 3. Based on these results,
Abramovich and Harris proposed the following conjecture, which was soon disproved by
Debarre and Fahlaoui.

Conjecture 1.7 ([2]; proved for d = 2 [9]; proved for d = 3 [2]; disproved for all d > 4
[3]). Suppose min(p(X/k)) = d. Then X} has a degree d map to P! or an elliptic curve.

The presence of counterexamples makes it hard to analyze the minimum density degree
for arbitrary curves; however, the methods used in [2] can still be applied to certain
classes of special curves. For example, Debarre and Klassen [4] showed that a smooth
plane curve X of degree d > 8 has minimum density degree d or d — 1 corresponding to
the cases X (k) = 0 and X (k) # 0 respectively. For a generalization to curves on other
surfaces see [17].

A word of warning is warranted concerning the work of Abramovich and Harris [2]:
as detailed in [3], the paper contains several errors (including in Lemma 3, Lemma 6,
Lemma 8, and Corollary 1), which, while not severe enough to make the main results
false, can be misleading. Some corrections are described in [3], however one of the main
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results — [2, Theorem 2] — should be considered unproved. For this reason, we give full
proofs of several simple lemmas appearing in [2] when we need them.

Other related work includes the study of integral points of low degree [13], generaliza-
tion of the work of Vojta to covers of curves [16], results on low degree points for curves
on product surfaces [12].

1.2. Structure of the paper

In Section 2 we describe how the Mordell-Lang conjecture gives geometric restrictions
on the curves with min(6(X/k)) = d; this observation was also used in [9], [2].

In Section 3 we prove a key technical result: the birationality of the linear systems
|[nD| for n > 2 and for sufficiently general degree d points D on X. More precisely, we
show that these linear systems are birational if there does not exist a cover ¢: X — Y
of degree at least 2 with d = min(§(Y/k)) - deg ¢.

In Section 4 we enrich the linear systems |nD| with additional discrete-geometric
structure of a configuration of multisecant subspaces to X. The main properties of this
structure are summarized in Section 4.2. As an application, we prove Theorem 1.3.

In Section 5 we use subspace configurations to relate geometry of special linear systems
to the construction of Debarre-Fahlaoui; in particular we prove most of Theorem 1.4.

In Section 6 we collect geometric corollaries of the results obtained so far. We prove
Theorem 1.6, finish the proof of Theorem 1.4, and summarize what we know about curves
with minimum density degree at most 5 to prove Theorem 1.2.

In Section 7 we collect some open questions on the geometry of curves with
min(§(X/k)) = d.

1.8. Notation

Throughout the paper k will denote a fixed number field and X/k will denote a nice
curve. Let k be an algebraic closure of k. We write X = X i for the base-change of X
to k. By a degree d point on X we mean a closed point with residue field a degree d
extension of k. Write Syde = X?%)8; for the dth symmetric power of the curve X,
and Pic% for the degree d component of the Picard scheme of X/k. We write Pic? X for
the group of isomorphism classes of degree d line bundles on X/k. There is an inclusion
Pic? X c Pick (k) = Pic% (k)©2!*/k) | which need not be an equality if X (k) = 0.

We write Wy X = WJX for the image of the Abel-Jacobi map Syde — Pic‘;{
sending an effective divisor of degree d to its linear equivalence class. This is a Brill-
Noether locus of Pic% (see [, Chapter IV §3] for more details on Brill-Noether loci).
The fiber of the Abel-Jacobi map over a line bundle L € Pic? X is isomorphic to the
complete linear system |L| ~ PH%(X, L) of L. When dim |L| = r, such a linear system
is called a g¢. The minimal value of d for which X has a (k-rational) g} is called the
gonality of X, denoted gon(X).
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2. Corollaries of Mordell-Lang

In this section we collect some corollaries of the Mordell-Lang conjecture, now a
theorem of Faltings [5, Theorem 1], for the structure of rational points on subvarieties
of the Picard scheme of a curve over k.

Suppose that min(6(X/k)) = d and that the gonality gon(X) is strictly greater than
d. Since min(§(X/k)) = d, the set Sym? X (k) is infinite. Since gon(X) > d, the Abel-
Jacobi map Sym? X (k) — Picg((k) is injective. Consequently, the rational points of the
image W4 X (k) are an infinite set. Since W4 X is a subvariety of a torsor under an abelian
variety, the Mordell Lang conjecture [5, Theorem 1] implies that there exists a translate
A C WyX of a positive-dimensional abelian subvariety A° C Pic%, such that A(k) is
Zariski dense in A.

By the semicontinuity theorem, there is an open dense locus in A consisting of points
for which the corresponding (isomorphism class of) line bundle [L] has the minimal
achieved value of h(X, L). (By virtue of the fact that A € W9X, this minimal value
is positive.) The fibers of Sym? X — Pic% are Severi Brauer varieties of dimension
RO(X, L) — 1. Since gon(X) > d, any fiber of Sym? X — Pic% having a rational point
is necessarily a PY. Since Sym? X (k) # 0, the minimal achieved value of h%(X, L) must
be 1. Hence there is an open dense locus U C A over which Syde — Pich is an
isomorphism. In the case dim A = 1, applying the curve-to-projective extension theorem
to the map U — Syde , we see that there is a canonical effective divisor associated
to every point of A (and in particular U(k) = A(k)). Moreover, even when dim A > 1,
resolving the indeterminacy of the inverse U — Syde (in a similar manner to the
proof the Lang—Nishimura lemma as in [15, Proposition A.6]) proves that U(k) = A(k).

Since we will focus on this setup for the majority of the paper, we codify it in the
following:
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Setup 2.1. Let X be a nice curve with min(§(X/k)) = d and gon(X) > d. Write A C WX
for an associated positive-dimensional abelian translate and U C A for the open dense
locus over which Symd X — PiCdX is an isomorphism.

Since the rational points of A are Zariski dense, any nonempty open in A also has
Zariski dense rational points. By a general rational point of A, we mean a rational point
in an open dense subvariety of A. By a general effective divisor D in A(k) = U(k), we
mean a rational point in an open dense subvariety of U C A where there exists a unique
effective divisor representing each isomorphism class of line bundle. A general effective
divisor D in A(k) is a degree d point on X.

Consider the incidence correspondence

I'={(p,[D]) e X xU :pe D}. (1)

Then I necessarily dominates X via the first projection, and is a degree d cover of U
via the second projection. The dimension of I is therefore equal to the dimension of A.
The (arithmetic) monodromy of this degree d cover is transitive, since a general effective
divisor in U corresponds to a degree d point on X. In particular, we have that

a general pair of effective divisors in U have disjoint support. (2)

The following lemma shows that at the same time, there are many pairs of divisors in U
that share points on X.

Lemma 2.2. Suppose we are in Setup 2.1 and that if dim A = 1, then X is not a degree d

cover of A. Then for any open subset V C U and a general point P € X (k) there exists
a pair of distinct divisors Dy, Dy € V' containing P.

Proof. Suppose to the contrary, that for some open V' C U a general point P € X is
contained in a unique divisor from V. The rational map ¢ : X --» V that sends a point
P € X to the unique divisor in V that contains P is dominant, and so dimA = 1. In
this case, the map ¢ extends to a degree d covering X — A (by (2)). O

2.1. The abelian translate property

The abelian translate A is a torsor under an abelian variety A° C Picg(. The group
law on A° has the following consequence, which we term the abelian translate property:
for any three points L1, Lo and L3 of A, the line bundle L1 ® Lo ® Lgl is again a point
of A. Moreover, on rational points, for effective divisors Dy, Dy and D3 in U(k), the
divisor Dy + Dy — D3 is again in U(k).

Fix an effective divisor D in U(k). The abelian translate property implies that for
any n — 1 divisors Dy,..., D,_1 in U(k), there exists a nth divisor D,, in U(k) that is
linearly equivalent to
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nD—Dy—---—Dy_;.

In the next section, we will prove that Setup 2.1 implies that the linear systems
|O(nD)| for D a general effective divisor in A(k) are birational unless there is a natural
geometric source of degree d points on X. We will then interpret the abelian translate
property geometrically in terms of spans of divisors in |O(nD)|.

3. Birationality

The main result of this section is Theorem 3.5 which shows that in Setup 2.1, unless
an infinite collection of degree d points on X is obtained by pullback from a lower genus
curve, the linear system |2D)| is birational for a general D € A(k). In particular, this
immediately implies that the genera of such curves are bounded by (d — 1)(2d — 1).
These results are closely related to [2]. Our main Theorem 3.5 is similar to [2, Lemma
3]; note, however, that the statement of [2, Lemma 3] has an error (the last formula of
the statement is false), and more importantly the proof does not go through for curves
which are degree d covers of pointless conics — the case that requires most work in our
Theorem 3.5.

We will use the following version of de Franchis theorem due to Kani.

Theorem 3.1. Suppose k is a field of characteristic zero and X/k is a nice curve. Then

(1) There exist at most finitely many surjective morphisms X — Y to curves Y/k of
genus at least 2;

(2) For any integer d there exists at most finitely many surjective morphisms X — C
of degree less than d to curves of genus 1, up to translations on the target.

Proof. See [10] Theorem 3 and [10] Corollary after Theorem 4. O

One way of obtaining infinitely many degree d points on X is via pullback from an
elliptic curve of positive rank. The following lemma describes a situation in which this
is the case.

Lemma 3.2. Assume that we are in Setup 2.1 and dim A = 1. Let D € A be a general

divisor. For every effective divisor E € A, the divisor E' := 2D — E belongs to A by the
abelian translate property. Suppose that there exists a map

7 X — P!

of degree 2d such that all E € A are contracted to a point (E) by m and further
Y(E) =(E"). Then there exists a degree d map 7' : X — A factoring the map m = on’.
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Proof. The morphism 1: A — P! that sends a divisor E € A to the point 7(E) evidently
factors through the quotient by the involution sending E to 2D — E. By computing the
ramification of 1, we will show that ¢ has degree 2 and is hence equal to this quotient
map. As a result, the original map 7 factors X LINyRN P!, and X is a degree d cover
of the elliptic curve A.

Since dim A = 1, we can extend an inverse of the Abel-Jacobi map to a regular map
A— Symd X. Since the effective divisor corresponding to a general point of A is reduced,
the union of the supports of all nonreduced divisors from A is finite. In particular, we
may assume that D, and all of its translates D’ by the finitely many 2-torsion points of
A" are disjoint from this finite set. The points of D’ are ramification points of 7, and
in particular we have the equality of sets 7—1(¢(D’)) = supp D’. Since no nonreduced
divisor intersects supp D’ = 7~ 1(3(D’)), any divisor from A supported on the fiber
7= Y(y(D")) is equal to D’. Therefore the map 1: A — P! is totally ramified over the
4 points of the form ¢ (D’) satisfying 2D’ = 2D. Since A has genus 1 and v is totally
ramified over at least 4 points, the Riemann—-Hurwitz formula gives

0=—2degp+ Y (ep—1) > —2degt) + 4(degy) — 1) = 2degt) — 4.
P

Therefore degy = 2. This means that there are exactly two divisors from A supported
on a general fiber of 7. Recall the incidence correspondence I C X x U given by formula
(1) that represents the relation “point belongs to a divisor”. Since we just saw that a
general point of X belongs to a unique divisor from U, the correspondence [ is a graph
of a rational map 7’ : X — A. The map 7’ represents the association P + (unique D €
A with P € D) defined on an open dense subset of X, and gives the desired factorization
Tr=tvon. O

Proposition 3.3. Suppose we are in Setup 2.1 and additionally that X is not a degree d
cover of an elliptic curve. Then for any divisor class D € A(k) the linear system |2D)| is
basepoint free and dim |2D| > max(2, dim A).

Proof. By [2, Lemma 1], |2D| is basepoint free and dim |2D| > dim A. (Indeed, by the
abelian translate property, for all E € A, the class 2D — F is effective. The association
E — E +|2D — E| defines a (> dim A)-dimensional family of effective divisors in class
2D. Since the divisors £ € U don’t have a shared point, the family of divisors of the
form FU[2D — E] do not have any common points either, and so [2D]is base point free.)
This completes the proof when dim A > 1, so we assume for the remainder of the proof
that dim A = 1.

Since dim |2D] is upper-semicontinuous, it suffices to prove the result for a general
D € A. Suppose that dim|2D| = 1, and let ¢ : X — P! be the associated map. For
every effective divisor F € A, the divisor 2D — F belongs to A by the abelian translate
property, and therefore is effective. Hence every divisor E € A is supported on a fiber of
¢ and both F and 2D — E are supported on the same fiber. Therefore the assumptions
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of Lemma 3.2 are satisfied, which is a contradiction since we assumed that X is not a
degree d cover of an elliptic curve. 0O

Remark 3.4. Abramovich and Harris, and, independently, Frey [6], observed that the
gonality of a curve with min(6(X/k)) = d is at most 2d. An immediate corollary of
Proposition 3.3 is that the geometric gonality of a curve with min(§(X/k)) = d that is
not a degree d cover of an elliptic curve is at most 2d — 1.

We now prove the main result of this section.

Theorem 3.5. Suppose that we are in Setup 2.1 and D € U(k) is a general divisor. Then
one of the following holds:

(1) there exists a covering of curves ¢: X —'Y of degree at least 2 with min(§(Y/k)) =
d/ deg ¢;

(2) the associated map X — PI™I2P1 s birational. (The basepoint free line bundle |2D)|
is birationally very ample).

Proof. By Theorem 3.1, X has only finitely many nonconstant maps f1, ..., fy of degree
at most d to curves of genus > 1 up to automorphisms of the base. Since D is general,
we can assume that D does not intersect the preimage of the branch locus of any of the
fi-

Suppose that case (2) does not hold, i.e., that the morphism X — PI2PI factors as
X Ly < PRI with m = deg f > 2. Then we will show that case (1) holds. Note
that it suffices to show that min(é6(Y/k)) < d/ deg ¢, since X has finitely many points of
degree less than d. Write j?: X — Y for the map to the normalization of Y. Since the
nondegenerate curve Y C PI?Pl has degree at least dim |2D] > 2, the degree of fis at
most d.

First suppose that the genus of Y is at least 1. By assumption, the divisor D has
trivial intersection with the preimage of the branch locus of the map ]? Observe that for
any curve C' and any effective divisor A the following property holds: if for some positive
k the linear system kA is base-point free and ® : C' — P is the associated morphism,
then we have the equality of sets ®~1(®(A)) = A. Applying this to A = D and k = 2
gives f_l (f(D)) = D. Since D does not intersect the preimage of the branch locus, we
have

d=#D = #] (J(D)) = m# (D).

Hence the image of D in Y is a point of degree equal to d/m. Since there are infinitely
many choices of D and only finitely many choices for the morphism f, by Theorem 3.1,
there exists a map f : X — Y of degree m such that for infinitely many D € Sym® X (k)

the image f(D) has degree d/m, in which case (1) holds.
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Now consider the case that Y has genus 0. Since a genus 0 curve has infinitely many
quadratic points either (1) holds, or m = deg}v > d/2, and so degY = 2d/m < 4. If
degY = 3 and the genus of Y is zero, then Y has odd degree points, and thus Y = P!;
this implies that case (1) holds.

It therefore remains to consider the case degY = 2, dim|2D| = 2, Y is a smooth
pointless conic and f is a covering of degree d. In this way, a general divisor D € U
defines a map to a rational curve fp : X — Yp; let U’ C U be the open subset
of divisors that define such maps. For every pair (D, D) € U’ x U’ we get a map
¢p,. D, = (fDys [D,) : X = Yp, xYp,. Let Zp, p, denote its image. By semicontinuity,
Zp,.p, will have a constant bidegree (e, e2) on an open dense subset of U’ x U’, and
comparing the degrees of Zp, p, and Zp, p, we see that the bidegree is necessarily
symmetric: e; = es = e. To simplify notation, fix a general pair (D, Dy) € U’ x U’ and
write Y1 = YDl, Yz = YDzv f1 = fD17 fg = sz, d) = ¢D1,D27 and Z = ZDI’D,‘,. In what
follows, we will show that e > 1, so that the map ¢: X — Z has degree d/e < d/2, and
that the images ¢(FE) of divisors E € U(k) have low enough degree to force us to be in
case (1).

Since the line bundles Ox (D7) = f{Op1(1) and Ox(D2) = f5Op1(1) are distinct,
there does not exist an automorphism of P! bringing one to the other and thus Z cannot
be a (1, 1)-divisor. Hence, the degree e of the projection from Z to Y7 and Y5 is at least 2.
For a general divisor E € U(k), the divisors 2D; — E are effective by the abelian translate
property. Therefore f;(FE) is contained in the hyperplane section of a (pointless) conic
and hence deg f1(F) = deg f2(F) = 2, and so deg ¢(E) < 4. Since the map f; factors
through ¢ and deg f1(F) = 2, the degree of ¢(F) is either 2 or 4.

Case 1: deg ¢(E) = 2 for infinitely many E € U (k). Since deg(¢) < d/2, we are in
evidently in case (1), unless d = 2 and the map ¢ is birational onto its image. However
an integral (2,2)-curve (which necessarily has geometric genus 0 or 1) with infinitely
many degree 2 points is always a degree 2 cover of P!, so we are again in case (1).

Case 2: deg ¢(FE) = 4 for general E € U. In this case, we will show that e > 4, and
hence we are in case (1) unless d = 4 and the map ¢ is birational onto its image. Consider
a general £ € A and the divisors fo(E) and f2(2D; — E) on Y,. Each one is a degree
2 point on Ys, and as D varies the point fo(2D; — E) will vary as well. Since Dy, Dy
are a general pair, we can assume that the divisors fa2(E) and f2(2D; — E) are disjoint
for general F € A, and hence the divisors ¢(F), p(2D1 — E) € Z are necessarily disjoint
degree 4 divisors. Since fi1(E) = f1(2D; — E), the projection of the degree 8 divisor
d(E) + ¢(2Dy — E) to Y; is supported on a degree 2 point f1(FE). Therefore the degree
e of the projection Z — Y7 is at least 4, and hence the degree of ¢ : X — Z is at most
deg f1/4 = d/4. If ¢ is not birational onto its image, then since deg ¢ < d/4 and Z has
infinitely many degree 4 points, case (1) holds.

It remains to consider the case when d = 4 and X is birational to a (4,4) curve Z on
Y1 x Ys. If Z is smooth, then X = Z and the projections onto Y; and Y5 give the only
two degree 4 maps from X to P! [1, Chapter IV, Exercise F-2]. This is a contradiction,
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since the infinite family of D; define distinct maps. Therefore Z is singular. Since Y;
is pointless, the singular locus of Z has to have cardinality 2 or > 4, for otherwise the
projection of the singular locus would be a zero-cycle of odd degree on Y;. Therefore the
genus of X is either 7 or at most 5. Since dim |2D| = 2, the Riemann-Roch theorem
implies that g(X) = 7. Consider now the geometric curve X. By Mumford’s extension of
Marten’s theorem (see [1, Chapter IV, Theorem 5.2]), since the curve X has a positive-
dimensional family of g}’s, it is either hyperelliptic, trigonal, bielliptic, or a smooth
plane quintic. Since g(X) = 7, it is not isomorphic to a smooth plane quintic. If X is
hyperelliptic, then X is a degree 2 cover of a conic, which has infinitely many degree 2
points, and we are in case (1). If X is trigonal, then the associated (3,4) map onto P! x Y,
has to be birational onto its image (since 4 and 3 are relatively prime), contradicting
g(X) = 7. Therefore X is bielliptic, so there is a degree 2 covering ¢ : X — C, for
an elliptic curve C. Consider the composite map X — C' x Ys. Since X has genus 7, it
cannot be birational to a (2,4) curve (genus would be at most 5) on C' x Y, therefore the
morphism X — Y5 factors through ¢. Similarly, the morphism X — Y; factors through
¢, contradicting the birationality of X — Z. O

Motivated by Theorem 3.5 we make the following definition.

Definition 3.6. Suppose X/k is a curve with min(6(X/k)) = d. We say that X is d-
minimal if there does not exist a covering of curves 7 : X — Y of degree at least 2 such
that min(6(Y/k)) degm = d.

The problem of understanding the minimum density degree is reduced, by Theo-
rem 3.5, to analyzing the geometry of d-minimal curves. Note that Theorem 3.5 already
gives us some control over this geometry: since a d-minimal curve X has a birational
embedding of degree 2d, the genus of X is bounded by (d — 1)(2d — 1). We will prove a
stronger genus bound in Theorem 4.10 below.

In our analysis of d-minimal curves X we occasionally need to use hyperbolicity of X;
the following lemma allows us to do so.

Lemma 3.7. Suppose X is a d-minimal curve with d > 2. Then the genus of X is at least
3.

Proof. If X has genus zero, then it is isomorphic to a plane conic. If X (k) = @, then
projection from a rational point on the plane defines a degree 2 map X — P! and
min(§(X/k)) = 2. If X(k) # 0, then X = P! and X is 1-minimal.

If X has genus 1 and infinitely many rational points, then X is 1-minimal. Otherwise,
by Riemann-Roch, if D is a rational degree d > 2 divisor on X, then dim H°(X, O(D)) >
2, and so X is a degree d cover of P!,

If X has genus 2, then min(6(X/k)) > 2 by Faltings’ Theorem. On the other hand, the
canonical linear series exhibits that X is a degree 2 cover of P}, for which min(§(P*!/k)) =
1. O
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The birationality of |2D| on a d-minimal curve implies a classification of 2-minimal
curves. The resulting theorem is an arithmetic strengthening of [9, Corollary 3], which
proves that any curve with min(6(C/k)) = 2 is a degree 2 cover of a genus 0 or 1 curve.

Theorem 3.8. There are no 2-minimal curves over any number field.

Proof. Suppose to the contrary that we are in Setup 2.1 and X is a 2-minimal curve.
By Theorem 3.5, for a general divisor D € A the linear system |2D| is birationally
very ample. A nondegenerate degree 4 curve in P” for n > 3 has genus at most 1. By
Lemma 3.7 we can assume that for a general D the linear system 2D realizes X as a
plane quartic Yp C P2.

If Yp is smooth, then X = Y is a canonical genus 3 curve. In particular 2D = K.
Since D was general, we can assume 2D # Kx. If Y, is singular, its geometric genus (the
genus of X) is at most 2, so X cannot be d-minimal for any d > 2 by Lemma 3.7. O

4. Subspace configurations

We will analyze the geometry of d-minimal curves by studying structures (“subspace
configurations”) associated to the birational linear systems |nD|, where n > 2 is an
integer and D is a degree d point on X . We first establish notation for and basic properties
of these objects, building to a proof of Theorem 1.3. We summarize the discrete-geometric
structure of these subspace configurations in Section 4.2.

From now on we use notation of Setup 2.1 and assume additionally that X is d-
minimal.

4.1. Geometric considerations

Given an abelian translate A < W, X, the tensor product map on line bundles gives
a map

AXAX---xA— WX,
—_— —

n

whose image A is (noncanonically) isomorphic to A (since we assumed A is a trivial
torsor). Every divisor in A(™ is (geometrically) of the form nD for some D € A. By
Theorem 3.5 the linear system |[nD], for n > 2, is birationally very ample. By upper-
semicontinuity of dimensions of global sections, there is an open subset of D in A with
the same (minimal) value of dim |nD|; we denote this minimal value by r(n) (so in fact
A c Wit x )

Given any divisor D’ on X, there is an evaluation map

H(X,nD) =25 O(nD)p,
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whose kernel is identified with the space of sections vanishing along D’. If we let D’
vary among the divisors parameterized by A, the dimension of kernel is an upper-
semicontinuous and achieves a generic value on an open subset of A. We write s(n)
for 7(n) minus this generic dimension of h%(X,nD — D') as D’ varies over the divisors
parameterized by A.

The number s(n) has a geometric interpretation in terms of the map to projective
space given by [nD|. We will write Span,,,(D’) for the linear span of the images of the
points of D’ under the map [nD|. Then Span,,,p|(D’) is a projective space of dimension
at most s(n). For D" € A general, Span,,p (D’) has dimension exactly s(n). (When
the linear system nD is unambiguous, we will implicitly write Span(D’).) The abelian
translate property from Section 2.1 in this geometric language says that for any collection
of n — 1 divisors Dy,...,D,_1 from A, there exists a divisor D,, such that their spans
Span,,, p|(D1), - .-, Spany,, p|(Dx) in [nD| are contained in a common hyperplane.

Lemma 4.1. Let X be d-minimal. Suppose that D1 and Dy are general divisors from A
and that D is an independently general divisor from A.

e Ifn >3, then X N Spany,p| D1 = Dy.
o Ifn =2, then X NSpany,p D1 = D1 U (2D — Dy).

In particular, Do N Spaan‘ Di =D1NDs.

Proof. First suppose that n > 3. Since D is general, the line bundle nD — D is basepoint
free by Proposition 3.3. On the other hand, any point of (Spany,,p| D1) N D2 that is not
a point of D; would be a basepoint of nD — D7.

Now suppose n = 2. Since Dy, D are a general pair, the space Span‘2D| D, is a hyper-
plane, for otherwise the projection from a codimension 2 space containing Spanp p| D1
is a degree d (or less) map from X to PL. Since Dy + (2D — D;) = 2D, the hyperplane
section X N Spanyp| D1 equals Dy U (2D — Dy). O

By definition, r(n) — r(n — 1) = s(n) + 1. The difference s(n) — s(n — 1) also has a
geometric interpretation.

Lemma 4.2. We have s(n) — s(n — 1) = A + 1, where A = dim(Span,p|(D1) N
Span,,, p|(D2)), for general D1, D2 € A.

Proof. Since D; and Dy are general, we have D1 N Dy = () by (2), and so Lemma 4.1
guarantees that the projection of Span,p D2 from Span,p Dy is Spanj,p_p,| Da.
Since D, D1,Dy are general, we have s(n) = dimSpan,p D2 and s(n — 1) =
dim Spanj,p_p,| D2. O
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We want to analyze the geometry of the configuration of Span D" in [nD| for various
n > 2. It will be convenient to project from a maximal subspace that is common to
Span D’ for almost all D’; to formalize this we make the following definition.

Definition 4.3 (Definition/Notation). For a dense open subset W C A, let

‘/‘TLDl,W = ﬂ SpanlnDI D/.
D'eWw

Let Vj,p| be the maximal subspace of the form V|,p| w as W varies over dense opens
in A. Explicitly, Vj,p| = Vinp|,w for W the locus of D’ where Span D has the maximal
dimension s(n).

Lemma 4.4. Suppose X is a d-minimal curve and D € A(k) is a general divisor. Then
the codimension of V- = Viap| in [2D| is at least 3.

Proof. Suppose that to the contrary the codimension of V' is equal to 2. The projection
from V defines a morphism 7y : X — P! of degree at most 2d. Since for a general
divisor D', Span‘2 D D’ is contained in a hyperplane and contains V, a general divisor
D’ € A is contracted to a point by my. In particular the divisors from A vary in a
one-dimensional family, and so dim A = 1. Moreover, since D’ and 2D — D’ belong to
the same hyperplane, my (D) = 7y (2D — D’). For general D’ € A, the divisors D’ and
2D — D’ don’t share points by (2), and so the degree of my equals 2d. By Lemma 3.2
this implies that X is a degree d cover of the elliptic curve A, which contradicts our
assumption of d-minimality. O

In Lemma 2.2 we showed that when X is d-minimal, a general point P on X is
contained in at least two distinct divisors from A. It will be convenient for us to consider
separately the case when a general point P in X is the intersection of exactly two divisors
from A. We refer to this property as condition (1), formalized as follows:

For a general point P € X there exists a pair of divisors F, ' € A such that FNF' =P (%)

We do not know of examples in which condition (}) fails for a d-minimal curve X. We
have the following sufficient condition for (}):

Lemma 4.5. Suppose X is d-minimal and r(2) = 2. Suppose D € A is general, © € D
is a point, and D' is a general divisor containing x. Then D N D' = {x}. In particular,
condition (1) holds.

Proof. Choose a general divisor E disjoint from D and D’. The pair (z, D+FE) is a general
point of X x A®) . In particular, z is a smooth point on the image of X C |D + E| ~ P2.
The span of D in |D + E| is a line £ that intersects the curve in D U E. The span of D’
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is a line £’ that does not equal £ since D’ ¢ DUE. A pair of distinct lines shares exactly
one point, and so DND' cént ={z}. O

Under condition (f) the linear configuration of Span D’ in [nD| has interesting in-
cidence structure, as we show in Proposition 4.7. We first need to prove the following
linear nondegeneracy property of D C Span D.

Lemma 4.6. Suppose n > 2 is an integer such that s(n) < d — 2. Let D € A be a
general divisor. Then for a general divisor D' € A and any point x € D' we have

Span\nD\(D/ \ {IE}) - Span|nD\ D'

Proof. Suppose that for a general divisor D’ there is a point z € D’ such that the
set D'\ {x} is contained in a hyperplane inside Span D’. Choose a divisor D’ € U(k)
such that the Galois group G}, acts transitively on D’ and the complement of a point
x € D' belongs to a hyperplane H C Span D’. By transitivity of the Galois action,
for every x € D’ there exists a hyperplane H, that contains D’ \ {z}. Choose points
L1, . Tg(n)+1 € D' that span Span D’. Since s(n) + 1 < d — 1 there is a point z € D’
such that x # x;. Then H, would contain the points x1, ..., Xs(5)41, 50 H, contains their
span Span D’. This is a contradiction. O

Proposition 4.7. Suppose X is a d-minimal curve, condition (1) holds, and n > 2 is an
integer. Suppose that for a general D' € A, we have dim Span,,, p| D' < d—-2. Then for
a general pair of divisors D1, Dy € A we have Span|nD| DN Spanlnm Dy # Viup)-

Proof. If n =2, D’ € A is general, and Spany;p| D’ is not a hyperplane, then projection
from Spany, p, D’ defines a morphism from X to a positive-dimensional projective space
of degree at most d. Therefore Span,p D’ is a hyperplane, and so for a general pair
Dy, Dy, we have that Spanjyp D1 N Spanjyp| D2 has codimension 2. Since Viap| has
codimension at least 3 by Lemma 4.4, the conclusion holds.

Assume for the remainder of the proof that n > 3. Consider the linear system (n—1)F
for a general E € A and another general divisor F' € A. Choose a point z € F and
a divisor F’ such that F N F' = {z}; this is possible since (1) holds. Since F was
general, F is general as well (although the pair F,F’ is not general). In particular
dim Span(,,_1y g £ = s(n — 1). Consider the linear system |(n —1)E + F|. Since £ and
F are general, |(n — 1)E + F| = |nD| for a general D and F,D form a general pair.
The points of ' do not belong to V|,,p| (for example, by Lemma 4.1). Therefore, both
Spany, p| I and Span,,, p| F' contain the point x, which is outside of V|, p|, so

Spany,,p| F' N Span,,p| F' # Viup)-

We have F'N F' = z by construction. Considering the projection 7 from Span,, p| F, we
have
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dim 7(Spany,, p| F') = dim Span,,, | F’
_ dlm(Spa’n\nD| FnN Span‘nDl F’) —1

<s(n) —dimV},p| — 1. (3)
On the other hand,
7(Spany,, p| F') = m(Span,,p|(F' ~ {z})) (Lemma 4.6) (4)
= Span,p_p| (F' ~ {z}) (Lemma 4.1)
= Span(,_1yp (F' ~ {z})
= Span(,_1)g F’ (Lemma 4.6).

Combining (3) and (4) we see
s(n — 1) = dim Span(,, 1)z F' < 5(n) — dim Vj,p| — 1.

Therefore, by Lemma 4.2, the intersection of a general pair of divisor spans is larger than
‘/|nD| .0

We are now in the position to analyze the geometry of linear systems obtained by
projecting |[nD| from the subspace Vinp|- To do so we introduce the following definition.

Definition 4.8. Suppose n > 2 is an integer. We denote by |[nD|" the linear system
obtained from [nD| by projection from V,p. Similarly, let +'(n) = dim[nD|" and
s'(n) = dimy, p| Span D’ for general D, D" € A.

Proposition 4.7 immediately implies:
Corollary 4.9. Suppose (1) holds. Then we have s'(n) > min(s(n —1) +1,d — 1).

Proof. Suppose s'(n) < d — 2. By Proposition 4.7, for general Di, Dy € A the spaces
Spany, p» D1, Spany,, p;» D2 share a point. Since Dy, D are general, no point of Dy be-
longs to Span,,, p;; D1 by Lemma 4.1. Projecting from Span,,,p, D1 we get

dim Spaanl/ D2 2 dim SpanlnD_Dl‘ DQ + 1.
Therefore s'(n) > s(n—1)+1. O

Theorem 4.10. Suppose that we are in Setup 2.1 and X is d-minimal. Suppose () holds.
Then for a general divisor D € A(k) and every number n < d we have

n(n+1)

dim [nD| > dim |[nD|" > 5

-1
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Proof. By Lemma 4.4, we have r/(2) > 2 and s'(2) > 1. Combining s'(2) > 1 with
Corollary 4.9, we have s(n) > s'(n) = min(d — 1,n — 1). Therefore for 2 < n < d,

Theorem 4.10 can be used to bound the genus of curves for which condition (f) holds.
When (1) does not hold, we use the following lemma instead.

Lemma 4.11. Suppose we are in Setup 2.1 and X is d-minimal. Suppose r(2) > 3 and
d>4. Thenv'(3) > 7.

Proof. Because X does not admit a degree d map to P!, we have s(2) = 7(2) — 1 > 2.
We also have s'(3) > s(2), and r'(3) = s'(3) +r(2) 4+ 1. Therefore the only case in which
r'(3)=61isr(2) =3, s'(3) =s(2) =2.

By Lemma 2.2, for a general point P € X there exists a pair of divisors Dy, Dy € U,
Dy # D5 both containing P. We can assume that both D, Dy are general divisors. If
condition (1) holds, then s'(3) > s(2) by Corollary 4.9, contradicting our calculation
that s'(3) = s(2) = 2 above. We may therefore assume that D; N Dy contains at least 2
points, but that there exists some point y € Do~ D;. Choose a general divisor D € U. By
Lemma 4.1, the point y is in Spanj;p| D2 but not in Span|yp| D1. Therefore the planes
Spanjyp| D1 and Spanjyp| Do intersect along a line.

By Lemma 4.6 the intersection D; N Dy contains at most d — 2 points. Consider
now the embedding of X into P® given by the linear system |2D + Ds|". Since D was
general, the spans of Dy and D5 in this linear system have dimension s'(3) = 2. However
Spanjsp p, D1 and Spanp,py p,r D2 share at least 2 points, and therefore intersect
along a line, again applying Lemma 4.1. Therefore the projection from Spanj,p, p, D2
maps all points of D; \ D3 onto a single point in |2D|. Since Dy \ Dy contains at least
2 points, this is a contradiction. O

A similar argument can be used to improve the estimate for the value of r(4); it will
be useful in our considerations of low values of d.

Lemma 4.12. Suppose we are in Setup 2.1 and X is d-minimal, and d > 5 is odd. Suppose
(t) does not hold. Then r'(4) > 12.

Proof. Since (f) does not hold, we have r(2) > 3 by Lemma 4.5. Because X does not
admit a degree d map to P!, we have s(2) = 7(2) — 1. Furthermore, by considering
projections from divisor spans, we see that s'(n) > s(2) for all n > 2, and that r'(4) >
r(2) + 2s(2) + 2. Combining these, if r(2) > 4, then 7/(4) > 3r(2) > 12. It therefore
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suffices to consider the case r(2) = 3. In this case #'(3) > 7 by Lemma 4.11, and so
s(4) = s(3) > 3. Again considering projection, we have

P(4) =5 (4) +1+7(3) = s(3)+ 1+ (3) =3+1+7=1L

Therefore the only way to have r'(4) < 12 is to have equality everywhere, and hence
r(2)=3,r8)=1"(3) =17, s(3) = s'(4) =3, and 7' (4) = 11.

Consider a general pair of divisors D, Dy € A. Suppose Do € A is a divisor that shares
points with D;. Note that D5 is a general divisor in A since D is general, and moreover,
since (f) does not hold, we can assume that D; N Dy contains at least 2 points.

Consider the linear system [3D| = [3D|" and the subspaces Spanjzp D1 and
Spanjzp| D2. By assumption these are both 3-dimensional. Since Spanjzp Dy and
Spanjzp| D2 have nontrivial intersection but do not coincide by Lemma 4.1, Lemma 4.6
implies that D; \ Dy contains at least 2 points. Suppose dim Span‘ sp| D1 ﬁSpan| sp| D2 =
2. Projecting from Spanyzp| D2 we see that in the linear system |[3D — Dy, the points
of D1\ Dy map to a single point. Since Dy and |[3D — Ds| is a general pair of divisors,
this is a contradiction. Therefore dim Span3p| D1 N Spangp D2 = 1, and so all points
of D1 N Dy in |3D| belong to a single line.

Consider the linear system |3D + Ds|’. Since D is general, 3D + Dy is a general
point of A®. By assumption the subspaces Spanspy p, D1 and Spansp, p,r D2 are
3-dimensional, distinct, and meet in at least 2 points. Therefore the projection of D;\ Dy
from Span 3 p,s D2 maps to a space of dimension at most 1 in [3D|. Thus for a general
divisor D, the image of Dy in |3D] is contained in a pair of skew lines each containing at
least 2 points (since Dq\ D2 and Dy NDy both contain at least 2 points). A nondegenerate
set S of d > 5 distinct points in P3 is contained in at most one pair of skew lines with
each line containing at least 2 points. Therefore the pair of lines Spansp| (D1 \ D2) and
Span‘3D|(D1 N Dy) are preserved by the Galois action on D;, and, in particular, each
line has to contain the same number of points of D;. This contradicts the assumption
that d is odd. O

We now prove Theorem 1.3 from the introduction.

Theorem 4.13. Given an integer d, let m = [d/2] — 1 and let ¢ := 3d — 1 — 6m < 6.
Suppose X is a d-minimal curve. If (1) holds, then the genus of X is bounded by

d(d—1)/2+1.
If (1) does not hold, then the genus is at most
3m(m — 1) + me.

Proof. If (1) holds, this follows from Theorem 4.10 for n = d and Castelnuovo’s genus
bound (see [1, Chapter III, page 116] for the proof of the bound, and Section 6 Equation
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(6) for the statement). Alternatively, since any nondegenerate special curve in P" has
degree at least 2r, the linear system |dD| on X is nonspecial for d > 2 and the genus
bound follows from Riemann—Roch.

If (1) does not hold, this is Castelnuovo’s bound for a degree 3d curve in P7, which
applies by Lemma 4.11. O

An immediate corollary of this bound is the theorem of Abramovich-Harris on degree
3 points on curves.

Corollary 4.14. Suppose min(5(X/k)) = 3. Then X is a degree 3 cover of P! or an
elliptic curve.

Proof. If X is not 3-minimal the conclusion holds, so we can assume X is 3-minimal.
Then by Theorem 4.13 the genus of X is at most 4. The geometric gonality of a curve
of genus g < 4 is at most 3. O

4.2. Summary of setup and notation

We give a brief summary of the basic structures and properties introduced in the
previous section. We fix a d-minimal curve X, and let A C Wy X be a corresponding
abelian variety with dense k-points. For every D € A and every integer n > 2 we consider
the linear system |[nD| and the corresponding projective embedding of X. Within the
projective space PI"Pl we look at the linear spaces of the form Span,,, p E for all divisors
E € A. The resulting system of subspace configurations enjoys a number of unusual
properties. We use V' = V|, p| to denote the maximal subspace shared by all spaces
Span,,p| E for a Zariski open family of E € A. Projecting from V' defines the linear
system [nD|" on X equipped with a similar family of linear spaces Spany,p. E. The
basic properties of these structures are the following;:

(1) The dimensions of [nD| and [nD|" have fixed values r(n),r'(n) for a generic choice
of D € A;

(2) For general D, E the dimensions of Span,, | £ and Span,, /| E' have constant values
s(n),s'(n);

(3) If (1) holds, and n is such that s(n) < d — 2, then for a general D and a general pair
E\, E5 the subspaces Spany, p|, E1 and Span,,, p, E2 have nonempty intersection;

(4) The intersection of all subspaces Span‘n pp I as E varies over any Zariski open subset
in A is empty.

(5) (The abelian translate property) For any D € A and any divisors Ey,...,E,—1 € A
there exists a divisor E,, € A such that the subspaces Span‘n p|r Ei all belong to the
same hyperplane;
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(6) For general D, I € A the projection of X in [nD| from Span,,p| E is equivalent to
the embedding given by |nD — E|; in particular we have the identities r(n) — s(n) =
r'(n) —s'(n)=r(n—-1)+ 1.

The presence of these linear configurations allows us to give various restrictions on the
geometry of the curve X. In the next section we will use this structure to identify the
curves with r7(2) = 2 with the curves constructed by Debarre and Fahlaoui [3].

5. Debarre—Fahlaoui curves

Let A be a positive rank elliptic curve over k. For all d > 4, Debarre and Fahlaoui give
examples of d-minimal curves lying on the smooth surface Sym? A. We first recall their
construction, and then we show that any d-minimal curve with r(2) = 2 naturally arises
in this way. This shows that the simplest class of d-minimal curves is the one provided
by the Debarre—Fahlaoui construction.

We begin by recalling the setup from [3, Section 4.1]. The addition law on A induces
a natural map m: Sym?A — A. Let o0 € A(k) be the origin, and let & be the unique
nonsplit extension

0= 04— & — O4s0) = 0.

Then the fibration Sym* A = A is isomorphic to P& — A. Let H denote the relative
Ope(1). Then we have

Pic(Sym? A) ~ 7* Pic(A) @ ZH.

We will write F, for the divisor 7*O4(x); in terms of the moduli description of Sym? A,
this consists of all degree 2 effective divisors on A that sum to z under the group law.
The divisors F), for all x € A are numerically equivalent, and we simply write F' for this
numerical class. Another natural divisor on Sym? A, which we denote H, consists of all
effective divisors of degree 2 on A that contain x. The rational equivalence class of this
divisor is H, = H — F, + F, [3, Section 4.1 (ii)]. (In particular, H, = H.) The numerical
classes of divisors are spanned by H and F', with the following intersection relations:

H? =1, H-F=1, F? =0.
The canonical class K on Sym? A has numerical class K = —2H + F. The Nef and
effective cones both consist of all classes aH + bF where a > 0 and a +2b > 0 [7,

Chapter V, Proposition 2.21].

Definition 5.1. A Debarre—Fahlaoui curve is a geometrically integral curve on Sym? A in
numerical class
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(d+m)H — mF,
for some 1 < m < d.

This terminology comes from the fact that Debarre and Fahlaoui consider the case
m =1 in [3] to give counterexamples to the conjecture of Abramovich-Harris [2, page
229]. Let us recall this construction.

Let X be a Debarre-Fahlaoui curve. The family of divisors H, on Sym? A restricts to a
family of degree d effective divisors on X parameterized by A, since H-((d+m)H—mF) =
d. This family gives rise to an embedding

¢: A WaX.

This family of degree d divisors is not induced by a map X — A: if H, - X contains the
degree 2 effective divisor [z 4 2’|, then so does H,: - X; as such these cannot be (the
necessarily disjoint) fibers of a map.

Proposition 5.2 (/3, Propositions 5.7 and 5.14]). Let d > 4 and 1 < m < d be integers.
Consider the numerical class (d +m)H — mF.

(1) If m < d/2, then for any nice curve X in this class, we have gon X > d.

(2) If the class of X is very ample (e.g., if m = 1), then a general curve in this class
admits no nontrivial maps of degree at most d to a non-isomorphic curve of genus
at least 1.

In particular, under both of these assumptions, such a curve X is d-minimal.

We now turn to d-minimal curves with r(2) = 2. We will analyze the geometry of such
curves by looking at the induced subspace configurations in [3D|’. We begin by showing,
in Lemma 5.5, that this structure is a configuration of 2-planes in a 5-space; in other
words r’(3) = 5 (which forces §'(3) = 2).

Lemma 5.3. Let V; C P™,i € I be a collection of codimension 2 subspaces of P™ span-
ning all of P™. Suppose that for any i,j € I, the subspaces Vi,V belong to a common
hyperplane. Then there is a codimension 3 subspace A that belongs to V; for alli € I.

Proof. Since V; have codimension 2, if V;,V; are two distinct subspaces, then
dim Span(V;,V;) = n — 1, and so dimV; N V; = n — 3. Choose a subspace Vj, such
that Vi, does not belong to Span(V;, V;). Then dim Vi, NSpan(V;, V;) = n— 3, and on the
other hand V}, intersects each of V; and Vj in a subspace of dimension n — 3. Therefore
Vi contains V; N'V;. Finally take any subspace Vi, £ # i, j, k. Then V; does not belong
to Span(V,,V,,) for some w,w € {i,j,k} and by the previous argument V; contains

VunVy =V;NV;. Thus A = V; N'V; satisfies the conclusion of the lemma. O
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Lemma 5.4. Let X be a d-minimal curve with r(2) = 2. Suppose that P € X is a general
point, and D € A is general. Then there exists a pair of distinct divisors Dy, Do from A
through P such that Spanjsp, D1 and Span 3 p. Do span a hyperplane in |3D|'.

Proof. By Lemma 2.2 there exists a pair of distinct divisors D;, Do through a general
point of X, and moreover each D; individually is general in A. Choose such a pair. Recall
that since r(2) = 2 and 7'(3) —7(2) = s'(3) +1, the spaces Spanj;p, D; have codimension
3 in |3D|". By Lemma 4.5, we may assume that D; and Dy meet only at P.

Consider the divisor E € A such that 3D — D; = 2FE; such FE is a general point of A,
and in particular [2E] is an embedding along each D;. Note that Spanj;p|, (D1 + D2) has
codimension either 1 or 2. If Span3p. (D1 + D2) has codimension 2, then the projection
m from Spanj;p;, D1 sends the points of Dy \ Dy to the same point in [2E]|. The set
Dy \ D; contains at least d — 1 points, contradicting the assumption that |2E| is an
embedding along D;. O

Lemma 5.5. Suppose r(2) = 2. Then r'(3) = 5.

Proof. We will consider the configuration of divisor spans in [3D|". Since r(2) = 2,
we have §'(3) = r'(3) — r(2) — 1 = r/(3) — 3. Since two general divisor spans span a
hyperplane by Lemma 5.4, their intersection has codimension 5. Furthermore, 7/(3) > 5
by Lemma 4.5 and Theorem 4.10. Suppose 7'(3) > 6.

Let E be a general divisor in A. Consider a general collection of divisors D1, ..., Dy
in A. The spaces W; := Span D; N Span E form a collection of distinct codimension 2
subspaces of Span E, any two of which span a hyperplane Span(D;+D;)NSpan E. For N
large enough, the intersection of all W; is empty (since we are working in [3D|"). Thus by
Lemma 5.3, there is a hyperplane A in Span F containing all W;. Since N was arbitrarily
large, for a general D’ € A we have Span D'NSpan E C A. Being contained in A is a closed
condition; therefore every divisor D’ for which the codimension of Span D’ N Span E' in
Span F is 2 satisfies Span D’ N Span F C A. This contradicts Lemma 5.4 applied to D,
D; = FE and a point P of E outside A. O

We will relate curves with 7(2) = 2 to Debarre-Fahlaoui curves as follows. If
'(3) = 5, then the resulting configuration of divisor spans in P® is a family of 2-planes,
parametrized by A, pairwise sharing points. This will naturally gives rise to a rational
map ¥: Sym? A — P5 sending a pair of divisors to the intersection of their spans. Since
there are at least two divisors from A through every point on X we expect X to be in
w(Sym2 A). In this way X “wants to be” a curve on Sym? A.

To realize this idea, we first need to reduce to the case dim A = 1 (in Lemma 5.6) and
establish a nondegeneracy property of our configuration (Lemma 5.7).

Lemma 5.6. Suppose that X is d-minimal and dim A > 1. Then r(2) > 2.
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Proof. By Proposition 3.3 we have r(2) > dim A. Thus it suffices to show that the case
dim A = r(2) = 2 does not occur. We consider the cases d = 3 and d > 4 separately.

Suppose d > 4. Choose a general divisor D € A and consider the rational map
¢ : A — (P?)V that sends a divisor class E to the line Spanj,p| E.

The set of 2d points on a general linear section of X C P? is thereby equipped
with a nonempty collection of d-element subsets coming from A. But the monodromy
of the linear section is the symmetric group (see, for example, [1, Lemma, Chapter 111,
page 111]), and so every d-element subset of a general linear section of X is a divisor
from A. Therefore, for a general divisor F € A, there exists another divisor £’ € A
such that both E N E’ and E' \ E consist of at least two points. Choose a general FE
and consider the linear system |2D + E|’. By Lemma 5.5, we have dim |2D 4+ E|' = 5
and dim Spanjyp gy £ = dimSpanypy gy B = 1'(3) = 7(2) — 1 = 2. Since E and E
share at least two points, the 2-planes Spanyp, g, E and Span|sp g £ share a line £.
Therefore the projection of Spanj,p, g E’ from E is a single point. Therefore all the
points of E/ \\ E are mapped to the same point under 2D, which is a contradiction.

Suppose now that d = 3. Consider the linear system |3D|" and the associated embed-
ding of X in P5. Consider a general point P € X and a general pair of divisors Dp, D
through P. Such a pair does not share any points on X except for P by Lemma 4.5. By
Lemma 5.4 we have

dim Span 3, Dp N Span 3, Dp = 0.

Choose a pair of general points P,Q € X. Since the pair is general, projection from
the line ¢ = PQ realizes X as a degree 7 curve in P3. The projection from ¢ maps
the divisor spans that contain P or @ to lines in P3. Since P,Q are a general pair
of points, a general divisor Dp containing P and a general divisor Dg containing @
form a general pair of divisors (as P,Q vary), and so Spanzp; Dp and Spanjsp; Dg
intersect at a point. By the above description of generic intersections, we can choose
an infinite collection of divisors D]lg, D%, ... and Dé, Dé, ... such that the projections
{; = my(Spanjzp D) and ¢ = m(Span 3, Dgy) form two families of lines with lines in
each family pairwise skew, and ¢; N E; = () for all i, 7. Such a pair of families is always
contained in a smooth quadric. Since every line ¢;,¢; contains points from 7,(X), the
curve 7p(X) shares infinitely many points with the quadric, and so belongs to the quadric.
Therefore projection from PQ) realizes X as a degree 7, (e1, e3)-curve on the quadric. As
(P, Q) varies, the value of (ey, es) achieves a generic value on an open subset of Sym? X;
by monodromy, for this generic value e; = e;. However, X has degree 7 = e; + es,
contradiction. O

Lemma 5.7. Suppose we are in Setup 2.1, X is d-minimal, and r(2) = 2. Consider a
general triple of divisors D, Dy, Do € A and let D3 = 3D — D1 — Dy. Then

ﬂSpan‘SDl, D; = 0.
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Proof. Suppose the spaces Spansp, D; share a common point P. Consider a divisor
E such that D, Dy, Dy, E is a general quadruple; then Dy, Do, D3, 3D — E is a general
quadruple as well and P does not belong to Spansp £. Consider the projection 7p
from Span3p, E. We have

By the generality of the quadruple Dy, D2, D3,3D — E, the lines Span3p_ g D; do not
share a point, contradiction. O

We now prove the main result of this section.

Theorem 5.8. Suppose we are in Setup 2.1 and X is d-minimal. If r(2) = 2, then X is
birational to a Debarre—Fahlaoui curve.

Proof. By Lemma 5.6, we have dim A = 1. By Lemma 5.5, we have r/(3) = 5. Let D
be a point of A(k) achieving these generic values, so that the linear systems |nD| are
basepoint-free for n > 2, dim |2D| = 2, and dim |3D|" = 5.

Write p: X — P® for the morphism associated to [3D|". We will now define a rational
map from Sym? A to P®, whose image contains X in its closure. Since s'(3) = 7/(3) —
r(2) — 1 = 2, a general divisor [D;] € A has 2-dimensional span.

Given a general pair of divisors [D1],[Ds] € A, the spans Span3p, D1, Spanjspr Do
belong to a common hyperplane (by the abelian translate property (5)). This means
that for a general pair of divisors [D1],[D2] € A, we must have dim Spanjsp; D1 N
Span‘3D|/D2 > 0. Since by Lemma 5.4 there exists a pair of divisors with zero-
dimensional intersection of spans, by semicontinuity we have in general
dim Spangpy D1 N Spanjgpy Da = 0.

This yields a rational map

¥: Sym? A --» P°
(D1, D2) — Span Dq N Span Ds.
If Span D; N Span Dy has dimension 1, then projecting from Span(D; + Ds) yields a

(geometric) degree d map X — P1; in particular, by Setup 2.1, the divisor [3D — D; —
D5] € Alies in a proper Zariski closed (dimension at most 0) locus. From this we observe

For general Dy, there exist finitely many lines ¥ in Span D1, such that for any P ¢ X,
if Dy # Dy and P € Span D N Span Dy, then P = Span Dy N Span Ds.  (5)

If the divisors D and Dy share a point, then the intersection of Span D, and Span D»
necessarily contains that point. The closure of the image of i contains the image of X
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under ¢ since by Lemma 5.4 for a general point P of X (I%), there exist divisors Dy and
D5 such that

Span Dy N Span Dy = P.

Our goal is to show that a general point P € X is contained in ezactly two divisors.
Once we do so, we will have a natural map X — Sym? A, and we will then show via
a simple argument that the image is indeed a Debarre-Fahlaoui curve. Fix a general
divisor class D;. We first analyze the image of the morphism 7 : A — Span D; that
sends a divisor Dy to Span Do N Span D;. This map is nondegenerate by Lemma 5.4. We
will show that it must be the inclusion of A as a plane cubic curve by considering several
cases based on the possible degrees of the image of 7.

Case 1: degn(A) = 2. Consider divisors Da, D3 such that D;, Dy, D3 form a general
triple. Let P := Span Dy N Span D7 and @) := Span D3 N Span D;. Consider the divisor
Dy :=3D — Dy — Dg3; since Dy, Do, D3 are a general triple we can assume that D, does
not pass through P or Q.

On the other hand, Span(Ds, D3) is a hyperplane that contains Span D4 and intersects
Span Dy in the line PQ. Since PQ meets n(A) only at P and @, this is a contradiction.

Case 2: degn(A) > 3 and 1 multiple-to-one onto its image.

Choose a general line ¢ in Span D; that intersects the image of 1 in at least three
smooth points P, P3, Py. Through each of the points P, P53, Py, passes at least two
divisor-spans Span D;, Span D}, i = 2, 3,4. Since the line £ is general, the pair Dy, D5 is
a general pair of divisors in A x A. Hence, using the fact that n is nondegenerate, we
can assume that the point where they meet is not in the finite set ¥ guaranteed by (5)
on either Span D; or Span Ds. In particular

Span Dy N Span Dy = Span D; N Span Dy = Span Dy N Span D = P,.

By symmetry the same holds for ¢ = 3 and i = 4.
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By Lemma 5.7 applied to the triple D, Dy, D; we may choose D} # 3D — Dy — D;.
Since Dy, D5 is general, for every possible D) through P, the divisor Dy — D) is not a
2-torsion point on A%, as we now explain. Equivalently, for a general D, and each of the
finitely many possible 2-torsion points T on A° giving rise to D) = Dy — T, a general
divisor span Span D; does not meet Span Dy N Span DY, which is clear since the map n
associated to D is nondegenerate.

We may further assume that the 15 pairwise intersection points of Span D;, Span D;-
do not belong to X (if i # j then D;, D} are a general pair of divisors; if i = j, then P;
is a general point on n(A) which contains only finitely many points of X).

Projection from ¢ maps each D; and D; for i = 2,3, 4 to a line. Since D} # 3D —D; —
D;, we have that Span(D; + D}), for i = 2, 3,4, does not contain D;. Further, since ¢ is a
general line in Span(D;) through P;, we also have that Span(D; + D}) does not contain
¢. Since in addition Span D; and Span D] meet only at P;, their images under projection
from £ are skew. Moreover, since Span D; N Span D; is a point off of £ for i # j, any two
such lines meet.

The only such configuration of a triple of pairs of skew lines 7y(Span D,), 7 (Span D))
is the configuration of edges of a tetrahedron.

The triples of divisors corresponding to faces of the tetrahedron sum to 3D, since they
are coplanar. Summing the faces containing a shared edge and subtracting the two faces
containing the opposite edge, we get 2(D; — D) = 0 for all ¢, contradicting the generality
assumption Dy — D} & A[2].

Case 3: deg 7(A) > 4 and 7 birational onto its image. We proceed as before by choosing
a general line ¢ € Span D; and analyzing the projection from £. Let Ps, ..., P,, n > 5 be
the points of £ N n(A). Since £ is general there is a unique divisor-span Span D; through
P;. Projection from ¢ maps the Span(D;) into a collection of lines in P3 pairwise sharing
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points. Since they cannot all belong to the same plane, by Lemma 5.3 they have to share
a point P.

Consider two divisors D;, D; for 4,7 > 2 and let D;; := 3D —D; — D; be the remaining
divisor contained in the hyperplane Span(D;, D;). Since (D1, D;, D;) is general, D;; #
Dy; equivalently, Dy is not contained in Span(D;, D;). In particular Span(D;, D;) N
Span Dy = ¢, and so SpanD;; N Span(D;) € ¢. Thus D;; = Dy, for some index k.
Projecting the configuration of lines 7¢(Span(D;)) from P gives a configuration of n—1 >
4 points Qo, ..., @, € P? with the following two properties:

(1) for any two distinct points @Q;, Q; there exists a point Qg, k # i, collinear with
Qi, Qj;

(2) no more than 3 of Q; are collinear.

Configurations of points satisfying Property (1) are known as Sylvester—Gallai config-
urations; see [11, Theorems 3.1 — 3.6] for classification results for small values of n. In
particular, either n — 1 = 9 and the configuration is Hesse configuration (and the points
are a base locus for a pencil of cubic curves) or n — 1 > 12.

We first show that for general choices of Dy and ¢, the 2-plane A := 7, ' (P) does not
meet X. Indeed, suppose to the contrary that A meets X in \ points for a general choice
of D; and /. Fixing D, and varying ¢, we obtain a map

(P2)Y --» Sym™ X.

If this map is nonconstant, then A > d + 1 since X is d-minimal. Since Span D; meets
X in d points, none of which are on ¢ = A N Span Dy, we must have that Span(D1, A)
meets X in at least 2d + 1 points. If D; and ¢ are defined over the ground field, then
so is the unique point P, and hence so is the 3-plane Span(D;, A). Projection from this
plane defines a degree at most d — 1 map to P!, contradicting d-minimality.

We may therefore assume that the plane A meets X in points independent of £. If it
meets X in at least 2 distinct points in P°, then their span meets Span D; in a unique
point, which does not lie on a general line ¢. Hence A meets the image of X in P° in a
unique point (possibly with multiplicity). Varying D1, and noting that a d-minimal curve
cannot have genus at most 1, we see that this unique point must also be independent of
D;. This is a contradiction, since a general pair of divisors D;, Do can be chosen so that
their span Span(D;, Ds) misses any specific point.

Consider the projection 7a: X — P2, and suppose that it factors as X — Y —
Y’ C P2, where X — Y is a finite degree s morphism of smooth curves and Y — Y is
birational. The plane curve Y’ has degree 3d/s and every one of the points Qs, ..., @y, is
a singular point of multiplicity at least d/s. Moreover, the point Q1 := 7 (Span D1)) is
also a singular point of Y’ of multiplicity at least d/s.

Suppose n — 1 = 9. Then the configuration of points Qs,...,Q1¢ is a Hesse configu-
ration, in particular there is a pencil of cubics through Qs, ..., Q19. We may therefore
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choose @ to be a cubic though Qs, ..., Q19 and Q. The curve Y’ is not a cubic, since it
has at least 10 singular points, and so Y’ N Q is a finite scheme. However @ intersects
Y” in at least 10 points of multiplicity d/s, thus the total multiplicity of the intersection
is at least 10d/s > 9d/s = deg Q degY”, contradiction.

Suppose n — 1 > 12. Then the geometric genus of Y’ is at most

(3d/s —1)(3d/s —2) 13d/s(d/s -1) _ +2(_l B 2d_2
2 2 s 52’

gy <

Since Y’ has at least 13 singular points, the degree of Y is at least 5, and so gy < 0,
contradiction.

Thus the map n: A — Span D; is an isomorphism onto a plane cubic curve. This
means that for every point P € Dy there is exactly one divisor Dy # D1, with [Ds] € A
that contains P. Since D; was an arbitrary general divisor, we conclude that for a general
point P € X there exist exactly two divisors Dy, Do from A that contain P. Therefore
we can define a birational morphism p: X — Sym? A that sends a point P € X to
the unique pair of divisors (D1, Ds) € Sym? A that contain P. We claim that p is the
birational equivalence of X with a Debarre-Fahlaoui curve that we seek. To do this we
need to identify the numerical class of x(X) on Sym? A.

For x € A, recall that H, is the set of all pairs of divisors in Sym?® A that contain x.
Hence the intersection H, N u(X) is supported on the points u(supp(z)). Since a general
divisor z € A is a degree d point (and hence a single monodromy orbit), H, N u(X) is
a multiple of u(supp(z)). Consider a general point (z,z’) on p(X). Since the divisors
H,, and H, for x # z’ intersect transversely at (z,2’) € Sym? A, the intersections
H, Nu(X) and Hy N p(X) cannot both be nontransverse at (x,z’). Hence the generic
intersection H, N u(X) cannot consist of multiple points. In other words, for a general
x € A the intersection H, N u(X) C Sym® A is smooth and H, N u(X) = u(supp(z)),
so [u(X)] - H = d. Therefore, numerically, [u(X)] = aH + (d — a)F. Since [u(X)] is
effective, by the description of the effective cone we have a > 0 and 2d — a > 0. The
fibers of the addition map Sym? A — A have numerical class F, and since X does not
admit maps of degree less than d to A, we conclude that d < [u(X)] - F = a. Thus
[4(X)] = (d+ m)H — mF for some m between 1 and d as claimed. O

Remark 5.9. As observed in Remark 3.4, the geometric gonality of a curve with
min(é6(X/k)) = d which is not a degree d cover of an elliptic curve is at most 2d — 1.
Theorem 5.8 implies that if, in addition, such curves are not Debarre-Fahlaoui curves,
then their geometric gonality is at most 2d — 2.
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6. Applications and extensions
6.1. Low degree points on projective curves

Our main strategy can be applied to study low degree points on “special” curves.
The geometry of configurations of divisor spans as summarized in Section 4.2 can be
used to estimate the dimensions of various linear systems from below. Combining this
with Castelnuovo’s bound yields a bound on the genus of the curve. We now recall
Castelnuovo’s theorem [1, Chapter III, page 116]. Given positive integers 4, n, write

0—1=m(n—-1)+c¢,

for integers m and 0 < € < n — 1. Then the genus of a nondegenerate curve of degree &
in P™ is bounded by

m(m — 1)

w(d,n) = (n—1)+ me. (6)

For fixed n and large d, the genus bound 7(d,n) is roughly §2/(2n — 2).

Theorem 6.1. Suppose X C P” is an irreducible (possibly singular) curve of degree e and
genus g. Suppose X has infinitely many points of degree d not contained in hyperplanes
of P". Then

g < w(e+2d,2r+1).

Proof. By the Mordell-Lang Conjecture, as explained in Section 2, for all but finitely
many degree d points D on X, either D moves in a pencil, or the class of D in WX
belongs to a translate of an abelian subvariety in Picg(. In either of those cases, the class
2D is basepoint-free.

Let [H] denote the divisor class corresponding to the embedding X C P7, choose
a degree d point D for which 2D is basepoint-free and such that D is not contained
in divisors from |H|. Consider the linear system |2D + H|. Since 2D is basepoint-free,
for a divisor H' € |H| we have X N Span,p, g H' = H'. Suppose the dimension of
Spanjyp gy D is equal to s and choose a set S C D of size s+1 such that Spanjyp g S =
Spanjopy g D. If s < r, then there exists a divisor H' € |H| that contains S. Then
Spanjsp g H > Spanjsp g S = Spanjyp, gy D, and so the points of D are contained
in X N Spanjyp p| H' = H’, contradicting our assumption. Therefore s > r. Since
the projection from Span|2 p+r| D maps to a space of dimension at least r, we have
dim 2D + H| > 2r + 1. By Castelnuovo’s theorem applied to the embedding [2D + H|,
the genus of X is at most w(e 4+ 2d,2r +1). O
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6.2. Genus estimate for non-Debarre—Fahlaoui curves

The argument of Theorem 4.13 with the added assumption r(2) > 2 gives a better
genus bound for curves that satisfy (1). Together Theorems 4.13, 5.8, 3.5 and 6.2 below
yield Theorem 1.4 from the introduction.

Theorem 6.2. Suppose X is a d-minimal curve with r(2) > 2. Suppose that condition (T)
holds. Then the genus g of X satisfies

(d—1)(d-2)

2.
9 +

g <
Proof. The argument is identical to the proof of Theorem 4.13. We have r(2) > 3,
s(2) > 2 by assumption and s(n) > min(d—1, s(n—1)+1) by Proposition 4.7. Therefore
for n < d — 1 we have

r(n) = (p+1)n+2) 1)2(n +2) _ 3.

By Castelnuovo’s theorem applied to the linear system |(d — 1)D| we get the desired
genus bound. O

6.3. Classification results for low values of d

We now summarize what the main results say about curves with small minimum
density degree.

Proposition 6.3. The following Table 1 summarizes the classification of curves X of genus
g with small values of min(§(X/k)) or min(p(X/k)). We use the following shorthand:

e “covers”: a degree d cover of P! or a (positive rank) elliptic curve
e “DF”: a normalization of a Debarre—Fahaloui curve

Proof. If X is not d-minimal, then it is a cover of an s-minimal curve for some s | d.
Since there are no 2-minimal curves by Theorem 3.8, and in our cases d < 5, we can
assume that X is either d-minimal or a cover of a 1-minimal curve (i.e., P! or an elliptic
curve of positive rank). From now on, we assume that X is d-minimal. If X is not a
Debarre-Fahlaoui curve, but satisfies the condition (1), then by Theorem 6.2, the genus
of X is at most (d — 1)(d — 2)/2 + 2. If (f) does not hold, then the genus bound from
Theorem 4.13 applies. Finally, when d = 5 the genus of X is bounded by the Castelnuovo
function (20, 12) = 8 by Lemma 4.12.

Any curve of genus g has geometric gonality at most | (g+ 3)/2] and gonality at most
2g — 2. Combining this with the genus bounds described above gives the result. O
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Table 1
The classification of curves with small minimum density degree.
d 2 3 4 5
min(p) =d  covers  covers covers + DF covers + DF

min(é) =d covers covers + DF + g=3 covers + DF + g =4,5 covers + DF + ¢ =5,6,7,8

In the case d = 3 and g = 3, a 3-minimal curve X cannot be hyperelliptic, since any
conic with a degree 3 point is isomorphic to P'. Hence a 3-minimal curve X of genus
3 is isomorphic to a smooth plane quartic. Since the gonality of a plane quartic is 3
if and only if it has a rational point, we see that X must be pointless. In this case,
Sym® X (k) = Pic% (k), and so the Jacobian of X must have positive rank. Conversely,
any such curve with a single degree 3 point which is not a degree 3 cover of an elliptic
curve (i.e., with simple Jacobian) is 3-minimal. Combining this with Proposition 6.3
proves Theorem 1.2.

7. Questions and problems
7.1. Geometric questions

All of the questions we consider have a geometric analogue, that applies to curves X
over any field k, and concerns the existence of abelian translates in W;X. The resulting
geometric questions are usually slightly easier then the arithmetic ones.

Given a curve X over any field k, the union of all positive-dimensional abelian trans-
lates in WX is the Kawamata—Ueno locus Ueno(W;X). When k is a number field, the
Mordell-Lang conjecture implies that

min(p(X/k)) = min(gon(X), min(d : Ueno(WyX) # 0)).

However, this more general definition makes sense for complex curves. It is thus natural to
define the locus Z4(g) of curves [X] € M,(C) with min(gon(X), min(d : Ueno(WyX) #
0)) = d. For d > |(g + 3)/2], the locus Z4(g) is all of M,(C). The general theory of
Kawamata—Ueno loci [14, Theorem 1.2] implies that Z;(g) is the set of complex points
a subvariety of M. For lower values of d it is interesting to study the ubiquity of curves
in Zy(g).

Question 7.1. For d < | (g + 3)/2], what is the codimension of Z;(g) in M,?

A geometrically d-minimal curve X is a curve in Zg(g(X)) for which there does not
exist a degree s > 2 covering of curves X — Y with Y € Zy,,(g(Y’)). The next specific
case in which we don’t know the classification of geometrically d-minimal curves is d = 6
and g = 11.

Question 7.2. Do there exist geometrically 6-minimal curves of genus 117
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Abramovich and Harris claimed [2][Theorem 2] that the genus of a geometrically d-
minimal curve is bounded by d(d—1)/2; however the proof presented there is incomplete.
The key to obtaining this bound is the inequality s(n) > min(s(n — 1) +1,d — 1), which
we only prove in Corollary 4.9 under the assumption (}). It seems likely that the genus
bound holds without additional assumptions.

Question 7.3. Do there exist geometrically d-minimal curves with genus larger than d(d—
1)/27

In the geometric situation, it is natural to treat a = dim A as an extra parameter
together with d and g. The key to the proof of the Main Theorem is Proposition 4.7
concerning the difference between the dimensions s(n) and s(n — 1) of divisor spans in
|[nD| and |(n — 1)D|. It seems likely that such a bound can be strengthened to depend
on a.

Question 7.4. If dim A = a, is it true that when s(n) < d—2, we have s(n)—s(n—1) > a
for n > 37

If Question 7.4 has a positive answer, then one can obtained significant improvements
on the genus bound for d-minimal curves with a > 1. In particular it would imply that
the a = 2-family constructed by Debarre and Fahlaoui [3] achieves the largest possible
genus. Such an estimate is claimed in [2], but the proof has a gap (as remarked in [3]).

The problem of classifying curves in Z4(g) is interesting over any field k. The results
of this paper use the assumption char k = 0 in a few places. For instance, Kani’s version
of de Franchis theorem (Theorem 3.1) requires a separability assumption in positive
characteristic, the classification of small Sylvester—Gallai configurations used in the proof
of Theorem 5.8 is more complicated when char k = 2,3, and the monodromy argument
in Lemma 5.6 only works in characteristic zero.

Question 7.5. Do the geometric analogues of our main Theorems 4.13, 5.8 hold in positive
characteristic?

7.2. Arithmetic questions

The smallest cases for which some questions are still left open concern d-minimal
curves with d = 3 and g = 3,4. In both of these cases we expect that 3-minimal curves
exist. The case d = g = 3 is discussed in Problem 7.7. In the case d = 3,9 = 4,
Proposition 6.3 implies that such a curve is a Debarre-Fahlaoui curve of class 4H — F'.
However, a genus 4 curve X over k generically admits two maps of degree 3 to P!: the
canonical embedding realizes X as a complete intersection of a quadric and a cubic, and
projections from rulings on the quadric give a pair of gi’s. We expect that there exist
Debarre-Fahlaoui curves in class 4H — F for which these two maps are Galois conjugate,
and that such Debarre-Fahlaoui curves are 3-minimal.
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It is in principle possible to verify this claim (if true) by exhibiting a specific curve on
Sym? A and checking that the unique quadric containing the canonical curve is nonsplit
(and independently verifying that it is not a triple cover of an elliptic curve), but such
a computation is nontrivial in practice. We thus leave this question as a problem.

Problem 7.6. Show that a general curve in numerical class 4H — F on Sym? A is 3-
minimal.

There is another natural source of low degree points on curves of genus g, as we now
describe. Consider a general (in a non-technical sense) genus g curve X over a number
field equipped with a degree g point. The abelian variety Pic% may have positive rank,
at the same time it appears that there is no clear reason for X to have maps to other
curves or low gonality. If this is the case, then Sym? X, which is birational to Pic%, will
have an infinite family of rational points. While we expect such curves to be abundant,
we do not know if examples can be proved to exist, and thus leave this as a problem.

Problem 7.7. Show that for every d > 3 there exists a d-minimal curve of genus d.

The problem for d = 3 (i.e., smooth plane quartics) is already interesting and should
be computationally feasible.

Theorem 4.13 shows that, under condition (), the genus of a d-minimal curve is
bounded by @ + 1; curiously, this number is exactly the (maximal) genus of a
Debarre-Fahlaoui curve, and in Theorem 5.8 we explained this coincidence by identi-
fying curves with r(2) = 2 with Debarre—Fahlaoui curves. Question 7.4 predicts a similar
situation for dim A = 2: the maximal genus for such a curve is d?/4 + 1, which is ex-
actly the genus of dim A = 2 examples constructed in [3]. We hope that this can also be
explained in terms of geometry of configurations.

Question 7.8. Is it true that a d-minimal curve with dim A = 2 and r(2) = 3 is birational
to one of the curves constructed in [3]?

It would be very interesting to obtain better results for special curves; in particular,
we do not expect Theorem 6.1 to be close to optimal. One way to test optimality of such
a genus bound is to compare it to known results in low dimension.

Problem 7.9. Suppose X is a curve equipped with a g/ linear system. Show that for a
certain function g(r, e, d) the following holds: if the genus of X is larger than g(r, e, d),
and X has infinitely many points of degree d, then all but finitely many of those points
are contained in the divisors from g7. Can the function g(r, e, d) be such that the value
of g(1,e,d) implies Vojta’s estimate [19] for low degree covers of P!, and the value of
9(2,e,d) implies the Debarre-Klassen theorem [4] on smooth plane curves?
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