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1. Introduction

Suppose k is a number field and X/k is a nice curve (smooth, projective, and geomet-
rically integral). The density degree set δ(X/k) of X/k is the set of integers d for which 
the collection of closed points of degree d on X are Zariski dense. Since X is a curve, this 
is equivalent to asking that the degree d points be infinite, yet the definition in terms of 
Zariski density is natural for a variety of any dimension.

In this paper we are concerned with the most basic such piece of information: the
minimum density degree1 min(δ(X/k)) is the smallest positive integer in δ(X/k). There 
is also a geometric version of the minimal density degree that is stable under finite 
extensions of the ground field. Let ℘(X/k) be the union of δ(X/L) as L ranges over all 
finite extensions of k. The minimum potential density degree is min(℘(X/k)). For more 
on the structure of δ(X/k) and ℘(X/k) see [20]. Our motivating problem is:

Main Problem 1.1. Classify curves X with min(δ(X/k)) = d, and those with
min(℘(X/k)) = d.

Faltings’ theorem classifies curves X with min(℘(X/k)) = 1. Main Problem 1.1 can 
therefore be viewed as a generalization of this fundamental problem.

There are two natural geometric sources of Zariski dense degree d points: if X is a 
degree d cover of P 1 or an elliptic curve E of positive rank, then pulling back rational 
points on P 1 or E gives an infinite family of degree d (or less) points on X. Previous work 
on Main Problem 1.1 has focused on the geometric invariant min(℘). Harris–Silverman 
(for d = 2) and Abramovich–Harris (for d = 3) showed that the above two natural 
geometric sources of low degree points characterize when min(℘) takes the value 2 or 
3. More precisely, min(℘(X/k)) = 2 or 3 if and only if Xk̄ is a degree 2 or 3 cover of 
P 1 or an elliptic curve. Based on this evidence, Abramovich–Harris conjectured that 
the same should hold for all values of d. However, Debarre and Fahlaoui [3] showed 
that more obscure constructions of infinite families of degree d � 4 points exist by 
cleverly constructing certain curves on the symmetric square of an elliptic curve. A full 
classification for any larger values of d � 4 has remained stubbornly out of reach, and 
there have been essentially no classification results for the arithmetic invariant min(δ).

In the present paper we refocus on Main Problem 1.1, including the thornier arithmetic 
classification. As a result, we obtain the following new classification.

Theorem 1.2. Suppose X/k is a nice curve. Then the following statements hold:

(1) If min(δ(X/k)) = 2, then X is a double cover of P 1 or an elliptic curve of positive 
rank;

1 In previous work [17], the second author called this invariant the arithmetic degree of irrationality. We prefer 
to switch to terminology that better generalizes to higher dimensional X.
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(2) If min(δ(X/k)) = 3, then one of the following three cases holds:

(a) X is a triple cover of P 1 or an elliptic curve of positive rank;
(b) X is a smooth plane quartic with no rational points, positive rank Jacobian, 

and at least one cubic point;
(c) X is a genus 4 Debarre–Fahlaoui curve (see Section 5 for a precise definition);

(3) If min(℘(X/k)) = d � 3, then Xk̄ is a degree d cover of P 1 or an elliptic curve;
(4) If min(℘(X/k)) = d = 4, 5, then either Xk̄ is a Debarre-Fahlaoui curve, or Xk̄ is a 

degree d cover of P 1 or an elliptic curve.

Surprisingly, the seemingly clever construction by Debarre–Fahlaoui of counterex-
amples to the conjecture of Abramovich–Harris arises perfectly naturally from our 
perspective. The next open case is to classify curves of genus 11 with min(℘(X/k)) = 6, 
see Section 7.1. As can be seen from Case 2b of Theorem 1.2, there are certain arithmetic 
subtleties involved in the classification; some open questions concerning these subtleties 
are described in Section 7.2.

The classification in Theorem 1.2 is obtained from a systematic study of the possible 
infinite collections of degree d points. Our guiding philosophy is that when d is small 
compared to the genus of X, such infinite collections still occur for good geometric 
reasons. The first step in our analysis is thus to make this precise with the following 
genus bound, which reduces Main Problem 1.1 to finitely many genera for each value 
of d.

Theorem 1.3. Suppose X/k is a nice curve of genus g and min(δ(X/k)) = d. Let m :=
�d/2� − 1 and let ε := 3d − 1 − 6m < 6. Then one of the following holds:

(1) There exists a nonconstant morphism of curves φ : X → Y of degree at least 2 such 
that d = min(δ(Y/k)) · deg φ;

(2) The genus of X is bounded

g � max
(

d(d − 1)
2 + 1, 3m(m − 1) + mε

)
.

In case (1) there is a clear source of low degree points on X: they can be obtained as 
pullbacks of low degree point on Y under φ. There is a long history of genus bounds in 
problems related to Main Problem 1.1; see [18], [19], [2], [16]. Theorem 1.3 is indirectly 
claimed in [2] by combining [2, Lemma 3] with [2, Theorem 2]; however, the statement 
of [2, Lemma 3] has an error, and the proof of [2, Theorem 2] contains a gap. See the 
discussion in Section 1.1.

Following the ideas introduced by Abramovich and Harris, we study the geometry of 
curves with min(δ(X/k)) = d by studying the geometry of linear systems of the form |nD|
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for degree d points D. The Mordell–Lang conjecture ensures that these linear systems 
have positive dimension. An important step in proving Theorem 1.3 is Theorem 3.5, 
which states that unless case (1) holds, the linear systems |nD| are birational for most 
D and n � 2.

With birationality proved, we can investigate finer questions concerning the geometry 
of the linear systems |nD|. We do so by equipping these linear systems with a discrete-
geometric structure: there is an infinite family of multisecant planes within each of the 
projective spaces |nD|, which form an combinatorially interesting configuration. The 
presence of this additional structure allows us to prove the following finer classification 
of curves X with min(δ(X/k)) = d. To formally state this classification we require a 
notion of a sufficiently general degree d point D; this is rigorously defined in Section 2.

Theorem 1.4. Suppose X is a curve with min(δ(X/k)) = d. Let m := �d/2� − 1 and 
let ε := 3d − 1 − 6m < 6. Then for a sufficiently general degree d point D one of the 
following holds:

(1) dim |2D| = 1, and X is a degree d cover of an elliptic curve of positive rank;
(2) dim |2D| � 2, the associated map X → P |2D| is not birational onto its image, 

and there exists a covering of curves φ : X → Y of degree at least 2 such that 
d = min(δ(Y/k)) · deg φ;

(3) dim |2D| = 2, the associated map X → P 2 is birational onto its image, and X is 
one of the Debarre-Fahlaoui curves (see Section 5 for the precise definition);

(4) dim |2D| > 2, the associated map X → P |2D| is birational onto its image, and the 
genus g of X satisfies

g � max
(

(d − 1)(d − 2)
2 + 2, 3m(m − 1) + mε

)

The proof of Theorem 1.4 involves a detailed analysis of the configuration geometry 
in |3D|; it shows how the geometry of the linear systems |nD| naturally gives rise to the 
Debarre-Fahlaoui examples.

Remark 1.5. The results of [2] imply that the gonality of a curve with min(δ(X/k)) = d

is at most 2d; this fact was also independently observed by Frey [6]. One corollary of 
Theorem 1.4 is that the geometric gonality can equal 2d only for (geometric) degree d
covers of elliptic curves; and can equal 2d − 1 only for (geometrically) Debarre-Fahlaoui 
curves. See Remarks 3.4 and 5.9.

The method of examining multisecant configurations can be applied to study the low 
degree points on special families of curves. As a demonstration, in Section 6.1 we prove 
that projective curves of large genus have finitely many sufficiently low degree points. The 
statement of this estimate uses the Castelnuovo function π(d, r); we recall its definition 
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in Section 6.1. The number π(d, r) is an upper bound for the genus of a nondegenerate
degree d curve in P r. When r is fixed and d is growing, π(d, r) ∼ d2/(2r − 2).

Theorem 1.6. Suppose X ⊂ P r is an irreducible (possibly singular) curve of degree e and 
genus g. Suppose X has infinitely many points of degree d not contained in hyperplanes 
of P r. Then

g � π(e + 2d, 2r + 1).

There are many open questions concerning the geometry of curves with abundant low 
degree points, both of arithmetic and purely geometric nature. We survey these questions 
in Section 7.

1.1. Relation to previous work

The first results on low degree points were obtained by Hindry [8], who studied 
quadratic points on modular curves X0(p) and asked if in general a curve with infinitely 
many quadratic points is either hyperelliptic or bielliptic. Later, Faltings [5], and Vojta 
[18] used diophantine approximation techniques to describe low degree points on curves 
of small gonality. The strongest of these results was obtained by Vojta, who showed that 
a degree s cover of P 1 with infinitely many degree d points not contracted by the map 
to P 1 has genus at most s(d − 1) + 1 [19].

The resulting genus bound is sharp: if E is an elliptic curve of positive rank, then a 
(d, s)-curve on E×P 1 satisfies the conditions of the theorem and has genus g = s(d −1) +1. 
The general question of describing curves with minimum potential density degree d was 
first addressed in [9] in the case d = 2 and in [2] for d = 3. Based on these results, 
Abramovich and Harris proposed the following conjecture, which was soon disproved by 
Debarre and Fahlaoui.

Conjecture 1.7 ([2]; proved for d = 2 [9]; proved for d = 3 [2]; disproved for all d � 4
[3]). Suppose min(℘(X/k)) = d. Then Xk̄ has a degree d map to P 1 or an elliptic curve.

The presence of counterexamples makes it hard to analyze the minimum density degree 
for arbitrary curves; however, the methods used in [2] can still be applied to certain 
classes of special curves. For example, Debarre and Klassen [4] showed that a smooth 
plane curve X of degree d � 8 has minimum density degree d or d − 1 corresponding to 
the cases X(k) = ∅ and X(k) �= ∅ respectively. For a generalization to curves on other 
surfaces see [17].

A word of warning is warranted concerning the work of Abramovich and Harris [2]: 
as detailed in [3], the paper contains several errors (including in Lemma 3, Lemma 6, 
Lemma 8, and Corollary 1), which, while not severe enough to make the main results 
false, can be misleading. Some corrections are described in [3], however one of the main 
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results – [2, Theorem 2] – should be considered unproved. For this reason, we give full 
proofs of several simple lemmas appearing in [2] when we need them.

Other related work includes the study of integral points of low degree [13], generaliza-
tion of the work of Vojta to covers of curves [16], results on low degree points for curves 
on product surfaces [12].

1.2. Structure of the paper

In Section 2 we describe how the Mordell–Lang conjecture gives geometric restrictions 
on the curves with min(δ(X/k)) = d; this observation was also used in [9], [2].

In Section 3 we prove a key technical result: the birationality of the linear systems 
|nD| for n � 2 and for sufficiently general degree d points D on X. More precisely, we 
show that these linear systems are birational if there does not exist a cover φ : X → Y

of degree at least 2 with d = min(δ(Y/k)) · deg φ.
In Section 4 we enrich the linear systems |nD| with additional discrete-geometric 

structure of a configuration of multisecant subspaces to X. The main properties of this 
structure are summarized in Section 4.2. As an application, we prove Theorem 1.3.

In Section 5 we use subspace configurations to relate geometry of special linear systems 
to the construction of Debarre–Fahlaoui; in particular we prove most of Theorem 1.4.

In Section 6 we collect geometric corollaries of the results obtained so far. We prove 
Theorem 1.6, finish the proof of Theorem 1.4, and summarize what we know about curves 
with minimum density degree at most 5 to prove Theorem 1.2.

In Section 7 we collect some open questions on the geometry of curves with 
min(δ(X/k)) = d.

1.3. Notation

Throughout the paper k will denote a fixed number field and X/k will denote a nice 
curve. Let k̄ be an algebraic closure of k. We write X̄ = Xk̄ for the base-change of X
to k̄. By a degree d point on X we mean a closed point with residue field a degree d
extension of k. Write Symd X = Xd//Sd for the dth symmetric power of the curve X, 
and Picd

X for the degree d component of the Picard scheme of X/k. We write Picd X for 
the group of isomorphism classes of degree d line bundles on X/k. There is an inclusion 
Picd X ⊂ Picd

X(k) = Picd
X(k̄)Gal(k̄/k), which need not be an equality if X(k) = ∅.

We write WdX = W 0
d X for the image of the Abel–Jacobi map Symd X → Picd

X

sending an effective divisor of degree d to its linear equivalence class. This is a Brill–
Noether locus of Picd

X (see [1, Chapter IV §3] for more details on Brill–Noether loci). 
The fiber of the Abel–Jacobi map over a line bundle L ∈ Picd X is isomorphic to the
complete linear system |L| 
 PH0(X, L) of L. When dim |L| = r, such a linear system 
is called a gr

d. The minimal value of d for which X has a (k-rational) g1
d is called the

gonality of X, denoted gon(X).
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2. Corollaries of Mordell–Lang

In this section we collect some corollaries of the Mordell–Lang conjecture, now a 
theorem of Faltings [5, Theorem 1], for the structure of rational points on subvarieties 
of the Picard scheme of a curve over k.

Suppose that min(δ(X/k)) = d and that the gonality gon(X) is strictly greater than 
d. Since min(δ(X/k)) = d, the set Symd X(k) is infinite. Since gon(X) > d, the Abel–
Jacobi map Symd X(k) → Picd

X(k) is injective. Consequently, the rational points of the 
image WdX(k) are an infinite set. Since WdX is a subvariety of a torsor under an abelian 
variety, the Mordell Lang conjecture [5, Theorem 1] implies that there exists a translate 
A ⊂ WdX of a positive-dimensional abelian subvariety A0 ⊂ Pic0

X , such that A(k) is 
Zariski dense in A.

By the semicontinuity theorem, there is an open dense locus in A consisting of points 
for which the corresponding (isomorphism class of) line bundle [L] has the minimal 
achieved value of h0(X, L). (By virtue of the fact that A ⊂ W 0

d X, this minimal value 
is positive.) The fibers of Symd X → Picd

X are Severi–Brauer varieties of dimension 
h0(X, L) − 1. Since gon(X) > d, any fiber of Symd X → Picd

X having a rational point 
is necessarily a P 0

k . Since Symd X(k) �= ∅, the minimal achieved value of h0(X, L) must 
be 1. Hence there is an open dense locus U ⊂ A over which Symd X → Picd

X is an 
isomorphism. In the case dim A = 1, applying the curve-to-projective extension theorem 
to the map U → Symd X, we see that there is a canonical effective divisor associated 
to every point of A (and in particular U(k) = A(k)). Moreover, even when dim A > 1, 
resolving the indeterminacy of the inverse U → Symd X (in a similar manner to the 
proof the Lang–Nishimura lemma as in [15, Proposition A.6]) proves that U(k) = A(k).

Since we will focus on this setup for the majority of the paper, we codify it in the 
following:
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Setup 2.1. Let X be a nice curve with min(δ(X/k)) = d and gon(X) > d. Write A ⊂ WdX

for an associated positive-dimensional abelian translate and U ⊂ A for the open dense 
locus over which Symd X → Picd

X is an isomorphism.

Since the rational points of A are Zariski dense, any nonempty open in A also has 
Zariski dense rational points. By a general rational point of A, we mean a rational point 
in an open dense subvariety of A. By a general effective divisor D in A(k) = U(k), we 
mean a rational point in an open dense subvariety of U ⊂ A where there exists a unique 
effective divisor representing each isomorphism class of line bundle. A general effective 
divisor D in A(k) is a degree d point on X.

Consider the incidence correspondence

I := {(p, [D]) ∈ X × U : p ∈ D}. (1)

Then I necessarily dominates X via the first projection, and is a degree d cover of U
via the second projection. The dimension of I is therefore equal to the dimension of A. 
The (arithmetic) monodromy of this degree d cover is transitive, since a general effective 
divisor in U corresponds to a degree d point on X. In particular, we have that

a general pair of effective divisors in U have disjoint support. (2)

The following lemma shows that at the same time, there are many pairs of divisors in U
that share points on X.

Lemma 2.2. Suppose we are in Setup 2.1 and that if dim A = 1, then X is not a degree d
cover of A. Then for any open subset V ⊂ U and a general point P ∈ X(k̄) there exists 
a pair of distinct divisors D1, D2 ∈ V containing P .

Proof. Suppose to the contrary, that for some open V ⊂ U a general point P ∈ X is 
contained in a unique divisor from V . The rational map φ : X ��� V that sends a point 
P ∈ X to the unique divisor in V that contains P is dominant, and so dim A = 1. In 
this case, the map φ extends to a degree d covering X → A (by (2)). �
2.1. The abelian translate property

The abelian translate A is a torsor under an abelian variety A0 ⊂ Pic0
X . The group 

law on A0 has the following consequence, which we term the abelian translate property: 
for any three points L1, L2 and L3 of A, the line bundle L1 ⊗ L2 ⊗ L−1

3 is again a point 
of A. Moreover, on rational points, for effective divisors D1, D2 and D3 in U(k), the 
divisor D1 + D2 − D3 is again in U(k).

Fix an effective divisor D in U(k). The abelian translate property implies that for 
any n − 1 divisors D1, . . . , Dn−1 in U(k), there exists a nth divisor Dn in U(k) that is 
linearly equivalent to
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nD − D1 − · · · − Dn−1.

In the next section, we will prove that Setup 2.1 implies that the linear systems 
|O(nD)| for D a general effective divisor in A(k) are birational unless there is a natural 
geometric source of degree d points on X. We will then interpret the abelian translate 
property geometrically in terms of spans of divisors in |O(nD)|.

3. Birationality

The main result of this section is Theorem 3.5 which shows that in Setup 2.1, unless 
an infinite collection of degree d points on X is obtained by pullback from a lower genus 
curve, the linear system |2D| is birational for a general D ∈ A(k). In particular, this 
immediately implies that the genera of such curves are bounded by (d − 1)(2d − 1). 
These results are closely related to [2]. Our main Theorem 3.5 is similar to [2, Lemma 
3]; note, however, that the statement of [2, Lemma 3] has an error (the last formula of 
the statement is false), and more importantly the proof does not go through for curves 
which are degree d covers of pointless conics – the case that requires most work in our 
Theorem 3.5.

We will use the following version of de Franchis theorem due to Kani.

Theorem 3.1. Suppose k is a field of characteristic zero and X/k is a nice curve. Then

(1) There exist at most finitely many surjective morphisms X → Y to curves Y/k of 
genus at least 2;

(2) For any integer d there exists at most finitely many surjective morphisms X → C

of degree less than d to curves of genus 1, up to translations on the target.

Proof. See [10] Theorem 3 and [10] Corollary after Theorem 4. �
One way of obtaining infinitely many degree d points on X is via pullback from an 

elliptic curve of positive rank. The following lemma describes a situation in which this 
is the case.

Lemma 3.2. Assume that we are in Setup 2.1 and dim A = 1. Let D ∈ A be a general 
divisor. For every effective divisor E ∈ A, the divisor E′ := 2D − E belongs to A by the 
abelian translate property. Suppose that there exists a map

π : X → P 1

of degree 2d such that all E ∈ A are contracted to a point ψ(E) by π and further 
ψ(E) = ψ(E′). Then there exists a degree d map π′ : X → A factoring the map π = ψ◦π′.



10 B. Kadets, I. Vogt / Advances in Mathematics 460 (2025) 110021
Proof. The morphism ψ : A → P 1 that sends a divisor E ∈ A to the point π(E) evidently 
factors through the quotient by the involution sending E to 2D − E. By computing the 
ramification of ψ, we will show that ψ has degree 2 and is hence equal to this quotient 
map. As a result, the original map π factors X d:1−−→ A 

ψ−→ P 1, and X is a degree d cover 
of the elliptic curve A.

Since dim A = 1, we can extend an inverse of the Abel–Jacobi map to a regular map 
A → Symd X. Since the effective divisor corresponding to a general point of A is reduced, 
the union of the supports of all nonreduced divisors from A is finite. In particular, we 
may assume that D, and all of its translates D′ by the finitely many 2-torsion points of 
A0, are disjoint from this finite set. The points of D′ are ramification points of π, and 
in particular we have the equality of sets π−1(ψ(D′)) = supp D′. Since no nonreduced 
divisor intersects supp D′ = π−1(ψ(D′)), any divisor from A supported on the fiber 
π−1(ψ(D′)) is equal to D′. Therefore the map ψ : A → P 1 is totally ramified over the 
4 points of the form ψ(D′) satisfying 2D′ = 2D. Since A has genus 1 and ψ is totally 
ramified over at least 4 points, the Riemann–Hurwitz formula gives

0 = −2 deg ψ +
∑

P

(eP − 1) � −2 deg ψ + 4(deg ψ − 1) = 2 deg ψ − 4.

Therefore deg ψ = 2. This means that there are exactly two divisors from A supported 
on a general fiber of π. Recall the incidence correspondence I ⊂ X × U given by formula 
(1) that represents the relation “point belongs to a divisor”. Since we just saw that a 
general point of X belongs to a unique divisor from U , the correspondence I is a graph 
of a rational map π′ : X → A. The map π′ represents the association P 
→ (unique D ∈
A with P ∈ D) defined on an open dense subset of X, and gives the desired factorization 
π = ψ ◦ π′. �
Proposition 3.3. Suppose we are in Setup 2.1 and additionally that X is not a degree d
cover of an elliptic curve. Then for any divisor class D ∈ A(k) the linear system |2D| is 
basepoint free and dim |2D| � max(2, dim A).

Proof. By [2, Lemma 1], |2D| is basepoint free and dim |2D| � dim A. (Indeed, by the 
abelian translate property, for all E ∈ A, the class 2D − E is effective. The association 
E 
→ E + |2D − E| defines a (� dim A)-dimensional family of effective divisors in class 
2D. Since the divisors E ∈ U don’t have a shared point, the family of divisors of the 
form E ∪ [2D −E] do not have any common points either, and so |2D|is base point free.) 
This completes the proof when dim A > 1, so we assume for the remainder of the proof 
that dim A = 1.

Since dim |2D| is upper-semicontinuous, it suffices to prove the result for a general 
D ∈ A. Suppose that dim |2D| = 1, and let φ : X → P1 be the associated map. For 
every effective divisor E ∈ A, the divisor 2D − E belongs to A by the abelian translate 
property, and therefore is effective. Hence every divisor E ∈ A is supported on a fiber of 
φ and both E and 2D − E are supported on the same fiber. Therefore the assumptions 
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of Lemma 3.2 are satisfied, which is a contradiction since we assumed that X is not a 
degree d cover of an elliptic curve. �
Remark 3.4. Abramovich and Harris, and, independently, Frey [6], observed that the 
gonality of a curve with min(δ(X/k)) = d is at most 2d. An immediate corollary of 
Proposition 3.3 is that the geometric gonality of a curve with min(δ(X/k)) = d that is 
not a degree d cover of an elliptic curve is at most 2d − 1.

We now prove the main result of this section.

Theorem 3.5. Suppose that we are in Setup 2.1 and D ∈ U(k) is a general divisor. Then 
one of the following holds:

(1) there exists a covering of curves φ : X → Y of degree at least 2 with min(δ(Y/k)) =
d/ deg φ;

(2) the associated map X → Pdim |2D| is birational. (The basepoint free line bundle |2D|
is birationally very ample).

Proof. By Theorem 3.1, X has only finitely many nonconstant maps f1, ..., fN of degree 
at most d to curves of genus � 1 up to automorphisms of the base. Since D is general, 
we can assume that D does not intersect the preimage of the branch locus of any of the 
fi.

Suppose that case (2) does not hold, i.e., that the morphism X → P |2D| factors as 
X

f−→ Y ↪→ P |2D| with m := deg f � 2. Then we will show that case (1) holds. Note 
that it suffices to show that min(δ(Y/k)) � d/ deg φ, since X has finitely many points of 
degree less than d. Write f̃ : X → Ỹ for the map to the normalization of Y . Since the 
nondegenerate curve Y ⊂ P |2D| has degree at least dim |2D| � 2, the degree of f̃ is at 
most d.

First suppose that the genus of Ỹ is at least 1. By assumption, the divisor D has 
trivial intersection with the preimage of the branch locus of the map f̃ . Observe that for 
any curve C and any effective divisor Δ the following property holds: if for some positive 
k the linear system kΔ is base-point free and Φ : C → PN is the associated morphism, 
then we have the equality of sets Φ−1(Φ(Δ)) = Δ. Applying this to Δ = D and k = 2
gives f̃−1

(
f̃(D)

)
= D. Since D does not intersect the preimage of the branch locus, we 

have

d = #D = #f̃−1
(

f̃(D)
)

= m#f̃(D).

Hence the image of D in Ỹ is a point of degree equal to d/m. Since there are infinitely 
many choices of D and only finitely many choices for the morphism f̃ , by Theorem 3.1, 
there exists a map f̃ : X → Ỹ of degree m such that for infinitely many D ∈ Symd X(k)
the image f̃(D) has degree d/m, in which case (1) holds.
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Now consider the case that Ỹ has genus 0. Since a genus 0 curve has infinitely many 
quadratic points either (1) holds, or m = deg f̃ > d/2, and so deg Y = 2d/m < 4. If 
deg Y = 3 and the genus of Ỹ is zero, then Y has odd degree points, and thus Y = P 1; 
this implies that case (1) holds.

It therefore remains to consider the case deg Y = 2, dim |2D| = 2, Y is a smooth 
pointless conic and f is a covering of degree d. In this way, a general divisor D ∈ U

defines a map to a rational curve fD : X → YD; let U ′ ⊂ U be the open subset 
of divisors that define such maps. For every pair (D1, D2) ∈ U ′ × U ′ we get a map 
φD1,D2 = (fD1 , fD2) : X → YD1 × YD2 . Let ZD1,D2 denote its image. By semicontinuity, 
ZD1,D2 will have a constant bidegree (e1, e2) on an open dense subset of U ′ × U ′, and 
comparing the degrees of ZD1,D2 and ZD2,D1 we see that the bidegree is necessarily 
symmetric: e1 = e2 = e. To simplify notation, fix a general pair (D1, D2) ∈ U ′ × U ′ and 
write Y1 = YD1 , Y2 = YD2 , f1 = fD1 , f2 = fD2 , φ = φD1,D2 , and Z = ZD1,D2 . In what 
follows, we will show that e > 1, so that the map φ : X → Z has degree d/e � d/2, and 
that the images φ(E) of divisors E ∈ U(k) have low enough degree to force us to be in 
case (1).

Since the line bundles OX(D1) = f∗
1 OP1(1) and OX(D2) = f∗

2 OP1(1) are distinct, 
there does not exist an automorphism of P 1 bringing one to the other and thus Z cannot 
be a (1, 1)-divisor. Hence, the degree e of the projection from Z to Y1 and Y2 is at least 2. 
For a general divisor E ∈ U(k), the divisors 2Di −E are effective by the abelian translate 
property. Therefore fi(E) is contained in the hyperplane section of a (pointless) conic 
and hence deg f1(E) = deg f2(E) = 2, and so deg φ(E) � 4. Since the map f1 factors 
through φ and deg f1(E) = 2, the degree of φ(E) is either 2 or 4.

Case 1: deg φ(E) = 2 for infinitely many E ∈ U(k). Since deg(φ) � d/2, we are in 
evidently in case (1), unless d = 2 and the map φ is birational onto its image. However 
an integral (2, 2)-curve (which necessarily has geometric genus 0 or 1) with infinitely 
many degree 2 points is always a degree 2 cover of P 1, so we are again in case (1).

Case 2: deg φ(E) = 4 for general E ∈ U . In this case, we will show that e � 4, and 
hence we are in case (1) unless d = 4 and the map φ is birational onto its image. Consider 
a general E ∈ A and the divisors f2(E) and f2(2D1 − E) on Y2. Each one is a degree 
2 point on Y2, and as D1 varies the point f2(2D1 − E) will vary as well. Since D1, D2
are a general pair, we can assume that the divisors f2(E) and f2(2D1 − E) are disjoint 
for general E ∈ A, and hence the divisors φ(E), φ(2D1 − E) ∈ Z are necessarily disjoint 
degree 4 divisors. Since f1(E) = f1(2D1 − E), the projection of the degree 8 divisor 
φ(E) + φ(2D1 − E) to Y1 is supported on a degree 2 point f1(E). Therefore the degree 
e of the projection Z → Y1 is at least 4, and hence the degree of φ : X → Z is at most 
deg f1/4 = d/4. If φ is not birational onto its image, then since deg φ � d/4 and Z has 
infinitely many degree 4 points, case (1) holds.

It remains to consider the case when d = 4 and X is birational to a (4, 4) curve Z on 
Y1 × Y2. If Z is smooth, then X = Z and the projections onto Y1 and Y2 give the only 
two degree 4 maps from X̄ to P 1 [1, Chapter IV, Exercise F-2]. This is a contradiction, 
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since the infinite family of Di define distinct maps. Therefore Z is singular. Since Y1
is pointless, the singular locus of Z has to have cardinality 2 or � 4, for otherwise the 
projection of the singular locus would be a zero-cycle of odd degree on Y1. Therefore the 
genus of X is either 7 or at most 5. Since dim |2D| = 2, the Riemann–Roch theorem 
implies that g(X) = 7. Consider now the geometric curve X̄. By Mumford’s extension of 
Marten’s theorem (see [1, Chapter IV, Theorem 5.2]), since the curve X̄ has a positive-
dimensional family of g1

4 ’s, it is either hyperelliptic, trigonal, bielliptic, or a smooth 
plane quintic. Since g(X) = 7, it is not isomorphic to a smooth plane quintic. If X̄ is 
hyperelliptic, then X is a degree 2 cover of a conic, which has infinitely many degree 2
points, and we are in case (1). If X̄ is trigonal, then the associated (3, 4) map onto P 1×Y2
has to be birational onto its image (since 4 and 3 are relatively prime), contradicting 
g(X) = 7. Therefore X̄ is bielliptic, so there is a degree 2 covering φ : X̄ → C, for 
an elliptic curve C. Consider the composite map X̄ → C × Y2. Since X has genus 7, it 
cannot be birational to a (2, 4) curve (genus would be at most 5) on C ×Y2, therefore the 
morphism X̄ → Y2 factors through φ. Similarly, the morphism X̄ → Y1 factors through 
φ, contradicting the birationality of X → Z. �

Motivated by Theorem 3.5 we make the following definition.

Definition 3.6. Suppose X/k is a curve with min(δ(X/k)) = d. We say that X is d-
minimal if there does not exist a covering of curves π : X → Y of degree at least 2 such 
that min(δ(Y/k)) deg π = d.

The problem of understanding the minimum density degree is reduced, by Theo-
rem 3.5, to analyzing the geometry of d-minimal curves. Note that Theorem 3.5 already 
gives us some control over this geometry: since a d-minimal curve X has a birational 
embedding of degree 2d, the genus of X is bounded by (d − 1)(2d − 1). We will prove a 
stronger genus bound in Theorem 4.10 below.

In our analysis of d-minimal curves X we occasionally need to use hyperbolicity of X; 
the following lemma allows us to do so.

Lemma 3.7. Suppose X is a d-minimal curve with d � 2. Then the genus of X is at least 
3.

Proof. If X has genus zero, then it is isomorphic to a plane conic. If X(k) = ∅, then 
projection from a rational point on the plane defines a degree 2 map X → P 1 and 
min(δ(X/k)) = 2. If X(k) �= ∅, then X = P 1 and X is 1-minimal.

If X has genus 1 and infinitely many rational points, then X is 1-minimal. Otherwise, 
by Riemann–Roch, if D is a rational degree d � 2 divisor on X, then dim H0(X, O(D)) �
2, and so X is a degree d cover of P 1.

If X has genus 2, then min(δ(X/k)) ≥ 2 by Faltings’ Theorem. On the other hand, the 
canonical linear series exhibits that X is a degree 2 cover of P 1

k , for which min(δ(P 1/k)) =
1. �
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The birationality of |2D| on a d-minimal curve implies a classification of 2-minimal 
curves. The resulting theorem is an arithmetic strengthening of [9, Corollary 3], which 
proves that any curve with min(δ(C/k)) = 2 is a degree 2 cover of a genus 0 or 1 curve.

Theorem 3.8. There are no 2-minimal curves over any number field.

Proof. Suppose to the contrary that we are in Setup 2.1 and X is a 2-minimal curve. 
By Theorem 3.5, for a general divisor D ∈ A the linear system |2D| is birationally 
very ample. A nondegenerate degree 4 curve in Pn for n � 3 has genus at most 1. By 
Lemma 3.7 we can assume that for a general D the linear system 2D realizes X as a 
plane quartic YD ⊂ P 2.

If YD is smooth, then X = YD is a canonical genus 3 curve. In particular 2D = KX . 
Since D was general, we can assume 2D �= KX . If YD is singular, its geometric genus (the 
genus of X) is at most 2, so X cannot be d-minimal for any d ≥ 2 by Lemma 3.7. �
4. Subspace configurations

We will analyze the geometry of d-minimal curves by studying structures (“subspace 
configurations”) associated to the birational linear systems |nD|, where n � 2 is an 
integer and D is a degree d point on X. We first establish notation for and basic properties 
of these objects, building to a proof of Theorem 1.3. We summarize the discrete-geometric 
structure of these subspace configurations in Section 4.2.

From now on we use notation of Setup 2.1 and assume additionally that X is d-
minimal.

4.1. Geometric considerations

Given an abelian translate A ↪→ WdX, the tensor product map on line bundles gives 
a map

A × A × · · · × A︸ ︷︷ ︸
n

→ WndX,

whose image A(n) is (noncanonically) isomorphic to A (since we assumed A is a trivial 
torsor). Every divisor in A(n) is (geometrically) of the form nD for some D ∈ A. By 
Theorem 3.5 the linear system |nD|, for n � 2, is birationally very ample. By upper-
semicontinuity of dimensions of global sections, there is an open subset of D in A with 
the same (minimal) value of dim |nD|; we denote this minimal value by r(n) (so in fact 
A(n) ⊂ W

r(n)
nd X.)

Given any divisor D′ on X, there is an evaluation map

H0(X, nD) evD′−−−→ O(nD)D′ ,
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whose kernel is identified with the space of sections vanishing along D′. If we let D′

vary among the divisors parameterized by A, the dimension of kernel is an upper-
semicontinuous and achieves a generic value on an open subset of A. We write s(n)
for r(n) minus this generic dimension of h0(X, nD − D′) as D′ varies over the divisors 
parameterized by A.

The number s(n) has a geometric interpretation in terms of the map to projective 
space given by |nD|. We will write Span|nD|(D′) for the linear span of the images of the 
points of D′ under the map |nD|. Then Span|nD|(D′) is a projective space of dimension 
at most s(n). For D′ ∈ A general, Span|nD|(D′) has dimension exactly s(n). (When 
the linear system nD is unambiguous, we will implicitly write Span(D′).) The abelian 
translate property from Section 2.1 in this geometric language says that for any collection 
of n − 1 divisors D1, . . . , Dn−1 from A, there exists a divisor Dn such that their spans 
Span|nD|(D1), . . . , Span|nD|(Dn) in |nD| are contained in a common hyperplane.

Lemma 4.1. Let X be d-minimal. Suppose that D1 and D2 are general divisors from A
and that D is an independently general divisor from A.

• If n � 3, then X ∩ Span|nD| D1 = D1.
• If n = 2, then X ∩ Span|2D| D1 = D1 � (2D − D1).

In particular, D2 ∩ Span|nD| D1 = D1 ∩ D2.

Proof. First suppose that n � 3. Since D is general, the line bundle nD−D1 is basepoint 
free by Proposition 3.3. On the other hand, any point of (Span|nD| D1) ∩ D2 that is not 
a point of D1 would be a basepoint of nD − D1.

Now suppose n = 2. Since D1, D are a general pair, the space Span|2D| D1 is a hyper-
plane, for otherwise the projection from a codimension 2 space containing Span|2D| D1

is a degree d (or less) map from X to P 1. Since D1 + (2D − D1) = 2D, the hyperplane 
section X ∩ Span|2D| D1 equals D1 � (2D − D1). �

By definition, r(n) − r(n − 1) = s(n) + 1. The difference s(n) − s(n − 1) also has a 
geometric interpretation.

Lemma 4.2. We have s(n) − s(n − 1) = λ + 1, where λ = dim(Span|nD|(D1) ∩
Span|nD|(D2)), for general D1, D2 ∈ A.

Proof. Since D1 and D2 are general, we have D1 ∩ D2 = ∅ by (2), and so Lemma 4.1
guarantees that the projection of Span|nD| D2 from Span|nD| D1 is Span|nD−D1| D2. 
Since D, D1, D2 are general, we have s(n) = dim Span|nD| D2 and s(n − 1) =
dim Span|nD−D | D2. �
1
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We want to analyze the geometry of the configuration of Span D′ in |nD| for various 
n � 2. It will be convenient to project from a maximal subspace that is common to 
Span D′ for almost all D′; to formalize this we make the following definition.

Definition 4.3 (Definition/Notation). For a dense open subset W ⊂ A, let

V|nD|,W :=
⋂

D′∈W

Span|nD| D′.

Let V|nD| be the maximal subspace of the form V|nD|,W as W varies over dense opens 
in A. Explicitly, V|nD| = V|nD|,W for W the locus of D′ where Span D′ has the maximal 
dimension s(n).

Lemma 4.4. Suppose X is a d-minimal curve and D ∈ A(k) is a general divisor. Then 
the codimension of V = V|2D| in |2D| is at least 3.

Proof. Suppose that to the contrary the codimension of V is equal to 2. The projection 
from V defines a morphism πV : X → P 1 of degree at most 2d. Since for a general 
divisor D′, Span|2D| D′ is contained in a hyperplane and contains V , a general divisor 
D′ ∈ A is contracted to a point by πV . In particular the divisors from A vary in a 
one-dimensional family, and so dim A = 1. Moreover, since D′ and 2D − D′ belong to 
the same hyperplane, πV (D′) = πV (2D − D′). For general D′ ∈ A, the divisors D′ and 
2D − D′ don’t share points by (2), and so the degree of πV equals 2d. By Lemma 3.2
this implies that X is a degree d cover of the elliptic curve A, which contradicts our 
assumption of d-minimality. �

In Lemma 2.2 we showed that when X is d-minimal, a general point P on X is 
contained in at least two distinct divisors from A. It will be convenient for us to consider 
separately the case when a general point P in X is the intersection of exactly two divisors 
from A. We refer to this property as condition (†), formalized as follows:

For a general point P ∈ X there exists a pair of divisors F, F ′ ∈ A such that F ∩ F ′ = P (†)

We do not know of examples in which condition (†) fails for a d-minimal curve X. We 
have the following sufficient condition for (†):

Lemma 4.5. Suppose X is d-minimal and r(2) = 2. Suppose D ∈ A is general, x ∈ D

is a point, and D′ is a general divisor containing x. Then D ∩ D′ = {x}. In particular, 
condition (†) holds.

Proof. Choose a general divisor E disjoint from D and D′. The pair (x, D+E) is a general 
point of X × A(2). In particular, x is a smooth point on the image of X ⊂ |D + E| 
 P 2. 
The span of D in |D + E| is a line 
 that intersects the curve in D ∪ E. The span of D′
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is a line 
′ that does not equal 
 since D′ �⊂ D ∪ E. A pair of distinct lines shares exactly 
one point, and so D ∩ D′ ⊂ 
 ∩ 
′ = {x}. �

Under condition (†) the linear configuration of Span D′ in |nD| has interesting in-
cidence structure, as we show in Proposition 4.7. We first need to prove the following 
linear nondegeneracy property of D ⊂ Span D.

Lemma 4.6. Suppose n � 2 is an integer such that s(n) � d − 2. Let D ∈ A be a 
general divisor. Then for a general divisor D′ ∈ A and any point x ∈ D′ we have 
Span|nD|(D′ \ {x}) = Span|nD| D′.

Proof. Suppose that for a general divisor D′ there is a point x ∈ D′ such that the 
set D′ \ {x} is contained in a hyperplane inside Span D′. Choose a divisor D′ ∈ U(k)
such that the Galois group Gk acts transitively on D′ and the complement of a point 
x ∈ D′ belongs to a hyperplane H ⊂ Span D′. By transitivity of the Galois action, 
for every x ∈ D′ there exists a hyperplane Hx that contains D′ \ {x}. Choose points 
x1, ..., xs(n)+1 ∈ D′ that span Span D′. Since s(n) + 1 � d − 1 there is a point x ∈ D′

such that x �= xi. Then Hx would contain the points x1, ..., xs(n)+1, so Hx contains their 
span Span D′. This is a contradiction. �
Proposition 4.7. Suppose X is a d-minimal curve, condition (†) holds, and n � 2 is an 
integer. Suppose that for a general D′ ∈ A, we have dim Span|nD| D′ � d − 2. Then for 
a general pair of divisors D1, D2 ∈ A we have Span|nD| D1 ∩ Span|nD| D2 �= V|nD|.

Proof. If n = 2, D′ ∈ A is general, and Span|2D| D′ is not a hyperplane, then projection 
from Span|2D| D′ defines a morphism from X to a positive-dimensional projective space 
of degree at most d. Therefore Span|2D| D′ is a hyperplane, and so for a general pair 
D1, D2, we have that Span|2D| D1 ∩ Span|2D| D2 has codimension 2. Since V|2D| has 
codimension at least 3 by Lemma 4.4, the conclusion holds.

Assume for the remainder of the proof that n � 3. Consider the linear system (n −1)E
for a general E ∈ A and another general divisor F ∈ A. Choose a point x ∈ F and 
a divisor F ′ such that F ∩ F ′ = {x}; this is possible since (†) holds. Since F was 
general, F ′ is general as well (although the pair F, F ′ is not general). In particular 
dim Span|(n−1)E| F ′ = s(n − 1). Consider the linear system |(n − 1)E + F |. Since E and 
F are general, |(n − 1)E + F | = |nD| for a general D and F, D form a general pair. 
The points of F do not belong to V|nD| (for example, by Lemma 4.1). Therefore, both 
Span|nD| F and Span|nD| F ′ contain the point x, which is outside of V|nD|, so

Span|nD| F ∩ Span|nD| F ′ �= V|nD|.

We have F ∩ F ′ = x by construction. Considering the projection π from Span|nD| F , we 
have
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dim π(Span|nD| F ′) = dim Span|nD| F ′

− dim(Span|nD| F ∩ Span|nD| F ′) − 1

<s(n) − dim V|nD| − 1. (3)

On the other hand,

π(Span|nD| F ′) = π(Span|nD|(F ′
∖ {x})) (Lemma 4.6) (4)

= Span|nD−F | (F ′
∖ {x}) (Lemma 4.1)

= Span|(n−1)E| (F ′
∖ {x})

= Span|(n−1)E| F ′ (Lemma 4.6).

Combining (3) and (4) we see

s(n − 1) = dim Span|(n−1)E| F ′ < s(n) − dim V|nD| − 1.

Therefore, by Lemma 4.2, the intersection of a general pair of divisor spans is larger than 
V|nD|. �

We are now in the position to analyze the geometry of linear systems obtained by 
projecting |nD| from the subspace V|nD|. To do so we introduce the following definition.

Definition 4.8. Suppose n � 2 is an integer. We denote by |nD|′ the linear system 
obtained from |nD| by projection from V|nD|. Similarly, let r′(n) = dim |nD|′ and 
s′(n) = dim|nD|′ Span D′ for general D, D′ ∈ A.

Proposition 4.7 immediately implies:

Corollary 4.9. Suppose (†) holds. Then we have s′(n) � min(s(n − 1) + 1, d − 1).

Proof. Suppose s′(n) � d − 2. By Proposition 4.7, for general D1, D2 ∈ A the spaces 
Span|nD|′ D1, Span|nD|′ D2 share a point. Since D1, D2 are general, no point of D2 be-
longs to Span|nD|′ D1 by Lemma 4.1. Projecting from Span|nD|′ D1 we get

dim Span|nD|′ D2 � dim Span|nD−D1| D2 + 1.

Therefore s′(n) � s(n − 1) + 1. �
Theorem 4.10. Suppose that we are in Setup 2.1 and X is d-minimal. Suppose (†) holds. 
Then for a general divisor D ∈ A(k) and every number n � d we have

dim |nD| � dim |nD|′ � n(n + 1) − 1.
2
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Proof. By Lemma 4.4, we have r′(2) � 2 and s′(2) � 1. Combining s′(2) � 1 with 
Corollary 4.9, we have s(n) � s′(n) � min(d − 1, n − 1). Therefore for 2 < n � d,

r′(n) = (s′(n) + 1) + r(n − 1)

= (s′(n) + 1) + (s(n − 1) + 1) + · · · + (s(3) + 1) + r(2)

� n(n + 1)
2 − 1. �

Theorem 4.10 can be used to bound the genus of curves for which condition (†) holds. 
When (†) does not hold, we use the following lemma instead.

Lemma 4.11. Suppose we are in Setup 2.1 and X is d-minimal. Suppose r(2) � 3 and 
d � 4. Then r′(3) � 7.

Proof. Because X does not admit a degree d map to P 1, we have s(2) = r(2) − 1 � 2. 
We also have s′(3) � s(2), and r′(3) = s′(3) + r(2) + 1. Therefore the only case in which 
r′(3) = 6 is r(2) = 3, s′(3) = s(2) = 2.

By Lemma 2.2, for a general point P ∈ X there exists a pair of divisors D1, D2 ∈ U , 
D1 �= D2 both containing P . We can assume that both D1, D2 are general divisors. If 
condition (†) holds, then s′(3) > s(2) by Corollary 4.9, contradicting our calculation 
that s′(3) = s(2) = 2 above. We may therefore assume that D1 ∩ D2 contains at least 2
points, but that there exists some point y ∈ D2∖D1. Choose a general divisor D ∈ U . By 
Lemma 4.1, the point y is in Span|2D| D2 but not in Span|2D| D1. Therefore the planes 
Span|2D| D1 and Span|2D| D2 intersect along a line.

By Lemma 4.6 the intersection D1 ∩ D2 contains at most d − 2 points. Consider 
now the embedding of X into P 6 given by the linear system |2D + D2|′. Since D was 
general, the spans of D1 and D2 in this linear system have dimension s′(3) = 2. However 
Span|2D+D2|′ D1 and Span|2D+D2|′ D2 share at least 2 points, and therefore intersect 
along a line, again applying Lemma 4.1. Therefore the projection from Span|2D+D2|′ D2
maps all points of D1 ∖ D2 onto a single point in |2D|. Since D1 ∖ D2 contains at least 
2 points, this is a contradiction. �

A similar argument can be used to improve the estimate for the value of r(4); it will 
be useful in our considerations of low values of d.

Lemma 4.12. Suppose we are in Setup 2.1 and X is d-minimal, and d � 5 is odd. Suppose 
(†) does not hold. Then r′(4) � 12.

Proof. Since (†) does not hold, we have r(2) � 3 by Lemma 4.5. Because X does not 
admit a degree d map to P 1, we have s(2) = r(2) − 1. Furthermore, by considering 
projections from divisor spans, we see that s′(n) � s(2) for all n > 2, and that r′(4) �
r(2) + 2s(2) + 2. Combining these, if r(2) � 4, then r′(4) � 3r(2) � 12. It therefore 
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suffices to consider the case r(2) = 3. In this case r′(3) � 7 by Lemma 4.11, and so 
s(4) � s(3) � 3. Again considering projection, we have

r′(4) = s′(4) + 1 + r(3) � s(3) + 1 + r′(3) � 3 + 1 + 7 = 11.

Therefore the only way to have r′(4) < 12 is to have equality everywhere, and hence 
r(2) = 3, r(3) = r′(3) = 7, s(3) = s′(4) = 3, and r′(4) = 11.

Consider a general pair of divisors D, D1 ∈ A. Suppose D2 ∈ A is a divisor that shares 
points with D1. Note that D2 is a general divisor in A since D1 is general, and moreover, 
since (†) does not hold, we can assume that D1 ∩ D2 contains at least 2 points.

Consider the linear system |3D| = |3D|′ and the subspaces Span|3D| D1 and 
Span|3D| D2. By assumption these are both 3-dimensional. Since Span|3D| D1 and 
Span|3D| D2 have nontrivial intersection but do not coincide by Lemma 4.1, Lemma 4.6
implies that D1 \D2 contains at least 2 points. Suppose dim Span|3D| D1 ∩Span|3D| D2 =
2. Projecting from Span|3D| D2 we see that in the linear system |3D − D2|, the points 
of D1 \ D2 map to a single point. Since D1 and |3D − D2| is a general pair of divisors, 
this is a contradiction. Therefore dim Span|3D| D1 ∩ Span|3D| D2 = 1, and so all points 
of D1 ∩ D2 in |3D| belong to a single line.

Consider the linear system |3D + D2|′. Since D is general, 3D + D2 is a general 
point of A(4). By assumption the subspaces Span|3D+D2|′ D1 and Span|3D+D2|′ D2 are 
3-dimensional, distinct, and meet in at least 2 points. Therefore the projection of D1 \D2
from Span|3D+D2|′ D2 maps to a space of dimension at most 1 in |3D|. Thus for a general 
divisor D, the image of D1 in |3D| is contained in a pair of skew lines each containing at 
least 2 points (since D1\D2 and D1∩D2 both contain at least 2 points). A nondegenerate 
set S of d � 5 distinct points in P 3 is contained in at most one pair of skew lines with 
each line containing at least 2 points. Therefore the pair of lines Span|3D|(D1 \ D2) and 
Span|3D|(D1 ∩ D2) are preserved by the Galois action on D1, and, in particular, each 
line has to contain the same number of points of D1. This contradicts the assumption 
that d is odd. �

We now prove Theorem 1.3 from the introduction.

Theorem 4.13. Given an integer d, let m := �d/2� − 1 and let ε := 3d − 1 − 6m < 6. 
Suppose X is a d-minimal curve. If (†) holds, then the genus of X is bounded by

d(d − 1)/2 + 1.

If (†) does not hold, then the genus is at most

3m(m − 1) + mε.

Proof. If (†) holds, this follows from Theorem 4.10 for n = d and Castelnuovo’s genus 
bound (see [1, Chapter III, page 116] for the proof of the bound, and Section 6 Equation 
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(6) for the statement). Alternatively, since any nondegenerate special curve in P r has 
degree at least 2r, the linear system |dD| on X is nonspecial for d > 2 and the genus 
bound follows from Riemann–Roch.

If (†) does not hold, this is Castelnuovo’s bound for a degree 3d curve in P 7, which 
applies by Lemma 4.11. �

An immediate corollary of this bound is the theorem of Abramovich–Harris on degree 
3 points on curves.

Corollary 4.14. Suppose min(δ(X/k)) = 3. Then X̄ is a degree 3 cover of P 1 or an 
elliptic curve.

Proof. If X is not 3-minimal the conclusion holds, so we can assume X is 3-minimal. 
Then by Theorem 4.13 the genus of X is at most 4. The geometric gonality of a curve 
of genus g � 4 is at most 3. �

4.2. Summary of setup and notation

We give a brief summary of the basic structures and properties introduced in the 
previous section. We fix a d-minimal curve X, and let A ⊂ WdX be a corresponding 
abelian variety with dense k-points. For every D ∈ A and every integer n � 2 we consider 
the linear system |nD| and the corresponding projective embedding of X. Within the 
projective space P |nD|, we look at the linear spaces of the form Span|nD| E for all divisors 
E ∈ A. The resulting system of subspace configurations enjoys a number of unusual 
properties. We use V = V|nD| to denote the maximal subspace shared by all spaces 
Span|nD| E for a Zariski open family of E ∈ A. Projecting from V defines the linear 
system |nD|′ on X equipped with a similar family of linear spaces Span|nD|′ E. The 
basic properties of these structures are the following:

(1) The dimensions of |nD| and |nD|′ have fixed values r(n), r′(n) for a generic choice 
of D ∈ A;

(2) For general D, E the dimensions of Span|nD| E and Span|nD′| E have constant values 
s(n), s′(n);

(3) If (†) holds, and n is such that s(n) � d − 2, then for a general D and a general pair 
E1, E2 the subspaces Span|nD|′ E1 and Span|nD|′ E2 have nonempty intersection;

(4) The intersection of all subspaces Span|nD|′ E as E varies over any Zariski open subset 
in A is empty.

(5) (The abelian translate property) For any D ∈ A and any divisors E1, ..., En−1 ∈ A

there exists a divisor En ∈ A such that the subspaces Span|nD|′ Ei all belong to the 
same hyperplane;
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(6) For general D, E ∈ A the projection of X in |nD| from Span|nD| E is equivalent to 
the embedding given by |nD − E|; in particular we have the identities r(n) − s(n) =
r′(n) − s′(n) = r(n − 1) + 1.

The presence of these linear configurations allows us to give various restrictions on the 
geometry of the curve X. In the next section we will use this structure to identify the 
curves with r(2) = 2 with the curves constructed by Debarre and Fahlaoui [3].

5. Debarre–Fahlaoui curves

Let A be a positive rank elliptic curve over k. For all d � 4, Debarre and Fahlaoui give 
examples of d-minimal curves lying on the smooth surface Sym2 A. We first recall their 
construction, and then we show that any d-minimal curve with r(2) = 2 naturally arises 
in this way. This shows that the simplest class of d-minimal curves is the one provided 
by the Debarre–Fahlaoui construction.

We begin by recalling the setup from [3, Section 4.1]. The addition law on A induces 
a natural map π : Sym2 A → A. Let o ∈ A(k) be the origin, and let E be the unique 
nonsplit extension

0 → OA → E → OA(o) → 0.

Then the fibration Sym2 A π−→ A is isomorphic to PE → A. Let H denote the relative 
OPE (1). Then we have

Pic(Sym2 A) 
 π∗ Pic(A) ⊕ ZH.

We will write Fx for the divisor π∗OA(x); in terms of the moduli description of Sym2 A, 
this consists of all degree 2 effective divisors on A that sum to x under the group law. 
The divisors Fx for all x ∈ A are numerically equivalent, and we simply write F for this 
numerical class. Another natural divisor on Sym2 A, which we denote Hx consists of all 
effective divisors of degree 2 on A that contain x. The rational equivalence class of this 
divisor is Hx = H − Fo + Fx [3, Section 4.1 (ii)]. (In particular, Ho = H.) The numerical 
classes of divisors are spanned by H and F , with the following intersection relations:

H2 = 1, H · F = 1, F 2 = 0.

The canonical class K on Sym2 A has numerical class K = −2H + F . The Nef and 
effective cones both consist of all classes aH + bF where a � 0 and a + 2b � 0 [7, 
Chapter V, Proposition 2.21].

Definition 5.1. A Debarre–Fahlaoui curve is a geometrically integral curve on Sym2 A in 
numerical class
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(d + m)H − mF,

for some 1 � m � d.

This terminology comes from the fact that Debarre and Fahlaoui consider the case 
m = 1 in [3] to give counterexamples to the conjecture of Abramovich–Harris [2, page 
229]. Let us recall this construction.

Let X be a Debarre–Fahlaoui curve. The family of divisors Hx on Sym2 A restricts to a 
family of degree d effective divisors on X parameterized by A, since H ·((d +m)H−mF ) =
d. This family gives rise to an embedding

ψ : A ↪→ WdX.

This family of degree d divisors is not induced by a map X → A: if Hx · X contains the 
degree 2 effective divisor [x + x′], then so does Hx′ · X; as such these cannot be (the 
necessarily disjoint) fibers of a map.

Proposition 5.2 ([3, Propositions 5.7 and 5.14]). Let d � 4 and 1 � m � d be integers. 
Consider the numerical class (d + m)H − mF .

(1) If m < d/2, then for any nice curve X in this class, we have gon X̄ > d.
(2) If the class of X is very ample (e.g., if m = 1), then a general curve in this class 

admits no nontrivial maps of degree at most d to a non-isomorphic curve of genus 
at least 1.

In particular, under both of these assumptions, such a curve X is d-minimal.

We now turn to d-minimal curves with r(2) = 2. We will analyze the geometry of such 
curves by looking at the induced subspace configurations in |3D|′. We begin by showing, 
in Lemma 5.5, that this structure is a configuration of 2-planes in a 5-space; in other 
words r′(3) = 5 (which forces s′(3) = 2).

Lemma 5.3. Let Vi ⊂ Pn, i ∈ I be a collection of codimension 2 subspaces of Pn span-
ning all of Pn. Suppose that for any i, j ∈ I, the subspaces Vi, Vj belong to a common 
hyperplane. Then there is a codimension 3 subspace Λ that belongs to Vi for all i ∈ I.

Proof. Since Vi have codimension 2, if Vi, Vj are two distinct subspaces, then
dim Span(Vi, Vj) = n − 1, and so dim Vi ∩ Vj = n − 3. Choose a subspace Vk such 
that Vk does not belong to Span(Vi, Vj). Then dim Vk ∩ Span(Vi, Vj) = n − 3, and on the 
other hand Vk intersects each of Vi and Vj in a subspace of dimension n − 3. Therefore 
Vk contains Vi ∩ Vj . Finally take any subspace V�, 
 �= i, j, k. Then V� does not belong 
to Span(Vu, Vw) for some u, w ∈ {i, j, k} and by the previous argument V� contains 
Vu ∩ Vw = Vi ∩ Vj . Thus Λ = Vi ∩ Vj satisfies the conclusion of the lemma. �
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Lemma 5.4. Let X be a d-minimal curve with r(2) = 2. Suppose that P ∈ X is a general 
point, and D ∈ A is general. Then there exists a pair of distinct divisors D1, D2 from A
through P such that Span|3D|′ D1 and Span|3D|′ D2 span a hyperplane in |3D|′.

Proof. By Lemma 2.2 there exists a pair of distinct divisors D1, D2 through a general 
point of X, and moreover each Di individually is general in A. Choose such a pair. Recall 
that since r(2) = 2 and r′(3) −r(2) = s′(3) +1, the spaces Span|3D|′ Di have codimension 
3 in |3D|′. By Lemma 4.5, we may assume that D1 and D2 meet only at P .

Consider the divisor E ∈ A such that 3D − D1 = 2E; such E is a general point of A, 
and in particular |2E| is an embedding along each Di. Note that Span|3D|′(D1 +D2) has 
codimension either 1 or 2. If Span|3D|′(D1 + D2) has codimension 2, then the projection 
π from Span|3D|′ D1 sends the points of D2 ∖ D1 to the same point in |2E|. The set 
D2 ∖ D1 contains at least d − 1 points, contradicting the assumption that |2E| is an 
embedding along D2. �
Lemma 5.5. Suppose r(2) = 2. Then r′(3) = 5.

Proof. We will consider the configuration of divisor spans in |3D|′. Since r(2) = 2, 
we have s′(3) = r′(3) − r(2) − 1 = r′(3) − 3. Since two general divisor spans span a 
hyperplane by Lemma 5.4, their intersection has codimension 5. Furthermore, r′(3) � 5
by Lemma 4.5 and Theorem 4.10. Suppose r′(3) � 6.

Let E be a general divisor in A. Consider a general collection of divisors D1, . . . , DN

in A. The spaces Wi := Span Di ∩ Span E form a collection of distinct codimension 2
subspaces of Span E, any two of which span a hyperplane Span(Di +Dj) ∩Span E. For N
large enough, the intersection of all Wi is empty (since we are working in |3D|′). Thus by 
Lemma 5.3, there is a hyperplane Λ in Span E containing all Wi. Since N was arbitrarily 
large, for a general D′ ∈ A we have Span D′∩Span E ⊂ Λ. Being contained in Λ is a closed 
condition; therefore every divisor D′ for which the codimension of Span D′ ∩ Span E in 
Span E is 2 satisfies Span D′ ∩ Span E ⊂ Λ. This contradicts Lemma 5.4 applied to D, 
D1 = E and a point P of E outside Λ. �

We will relate curves with r(2) = 2 to Debarre–Fahlaoui curves as follows. If 
r′(3) = 5, then the resulting configuration of divisor spans in P 5 is a family of 2-planes, 
parametrized by A, pairwise sharing points. This will naturally gives rise to a rational 
map ψ : Sym2 A → P 5 sending a pair of divisors to the intersection of their spans. Since 
there are at least two divisors from A through every point on X we expect X to be in 
ψ(Sym2 A). In this way X “wants to be” a curve on Sym2 A.

To realize this idea, we first need to reduce to the case dim A = 1 (in Lemma 5.6) and 
establish a nondegeneracy property of our configuration (Lemma 5.7).

Lemma 5.6. Suppose that X is d-minimal and dim A > 1. Then r(2) > 2.
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Proof. By Proposition 3.3 we have r(2) � dim A. Thus it suffices to show that the case 
dim A = r(2) = 2 does not occur. We consider the cases d = 3 and d � 4 separately.

Suppose d � 4. Choose a general divisor D ∈ A and consider the rational map 
φ : A → (P 2)∨ that sends a divisor class E to the line Span|2D| E.

The set of 2d points on a general linear section of X ⊂ P 2 is thereby equipped 
with a nonempty collection of d-element subsets coming from A. But the monodromy 
of the linear section is the symmetric group (see, for example, [1, Lemma, Chapter III, 
page 111]), and so every d-element subset of a general linear section of X is a divisor 
from A. Therefore, for a general divisor E ∈ A, there exists another divisor E′ ∈ A

such that both E ∩ E′ and E′
∖ E consist of at least two points. Choose a general E

and consider the linear system |2D + E|′. By Lemma 5.5, we have dim |2D + E|′ = 5
and dim Span|2D+E|′ E = dim Span|2D+E|′ E′ = r′(3) − r(2) − 1 = 2. Since E and E′

share at least two points, the 2-planes Span|2D+E|′ E and Span|2D+E|′ E′ share a line 
. 
Therefore the projection of Span|2D+E|′ E′ from E is a single point. Therefore all the 
points of E′

∖ E are mapped to the same point under 2D, which is a contradiction.
Suppose now that d = 3. Consider the linear system |3D|′ and the associated embed-

ding of X in P 5. Consider a general point P ∈ X and a general pair of divisors DP , D′
P

through P . Such a pair does not share any points on X except for P by Lemma 4.5. By 
Lemma 5.4 we have

dim Span|3D|′ DP ∩ Span|3D|′ D′
P = 0.

Choose a pair of general points P, Q ∈ X. Since the pair is general, projection from 
the line 
 = PQ realizes X as a degree 7 curve in P 3. The projection from 
 maps 
the divisor spans that contain P or Q to lines in P 3. Since P, Q are a general pair 
of points, a general divisor DP containing P and a general divisor DQ containing Q

form a general pair of divisors (as P, Q vary), and so Span|3D|′ DP and Span|3D|′ DQ

intersect at a point. By the above description of generic intersections, we can choose 
an infinite collection of divisors D1

P , D2
P , . . . and D1

Q, D2
Q, . . . such that the projections 


i = π�(Span|3D|′ Di
P ) and 
′

i = π�(Span|3D|′ Di
Q) form two families of lines with lines in 

each family pairwise skew, and 
i ∩ 
′
j �= ∅ for all i, j. Such a pair of families is always 

contained in a smooth quadric. Since every line 
i, 
′
i contains points from π�(X), the 

curve π�(X) shares infinitely many points with the quadric, and so belongs to the quadric. 
Therefore projection from PQ realizes X as a degree 7, (e1, e2)-curve on the quadric. As 
(P, Q) varies, the value of (e1, e2) achieves a generic value on an open subset of Sym2 X; 
by monodromy, for this generic value e1 = e2. However, X has degree 7 = e1 + e2, 
contradiction. �
Lemma 5.7. Suppose we are in Setup 2.1, X is d-minimal, and r(2) = 2. Consider a 
general triple of divisors D, D1, D2 ∈ A and let D3 = 3D − D1 − D2. Then

⋂
Span|3D|′ Di = ∅.
i
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Proof. Suppose the spaces Span|3D|′ Di share a common point P . Consider a divisor 
E such that D, D1, D2, E is a general quadruple; then D1, D2, D3, 3D − E is a general 
quadruple as well and P does not belong to Span|3D|′ E. Consider the projection πE

from Span|3D|′ E. We have

πE(P ) ∈ πE(Span|3D|′ Di) = Span|3D−E| Di.

By the generality of the quadruple D1, D2, D3, 3D − E, the lines Span|3D−E| Di do not 
share a point, contradiction. �

We now prove the main result of this section.

Theorem 5.8. Suppose we are in Setup 2.1 and X is d-minimal. If r(2) = 2, then X is 
birational to a Debarre–Fahlaoui curve.

Proof. By Lemma 5.6, we have dim A = 1. By Lemma 5.5, we have r′(3) = 5. Let D
be a point of A(k) achieving these generic values, so that the linear systems |nD| are 
basepoint-free for n � 2, dim |2D| = 2, and dim |3D|′ = 5.

Write ϕ : X → P 5 for the morphism associated to |3D|′. We will now define a rational 
map from Sym2 A to P 5, whose image contains X in its closure. Since s′(3) = r′(3) −
r(2) − 1 = 2, a general divisor [D1] ∈ A has 2-dimensional span.

Given a general pair of divisors [D1], [D2] ∈ A, the spans Span|3D|′ D1, Span|3D|′ D2
belong to a common hyperplane (by the abelian translate property (5)). This means 
that for a general pair of divisors [D1], [D2] ∈ A, we must have dim Span|3D|′ D1 ∩
Span|3D|′ D2 � 0. Since by Lemma 5.4 there exists a pair of divisors with zero-
dimensional intersection of spans, by semicontinuity we have in general
dim Span|3D|′ D1 ∩ Span|3D|′ D2 = 0.

This yields a rational map

ψ : Sym2 A ��� P 5

(D1, D2) 
→ Span D1 ∩ Span D2.

If Span D1 ∩ Span D2 has dimension 1, then projecting from Span(D1 + D2) yields a 
(geometric) degree d map X → P 1; in particular, by Setup 2.1, the divisor [3D − D1 −
D2] ∈ A lies in a proper Zariski closed (dimension at most 0) locus. From this we observe

For general D1, there exist finitely many lines Σ in Span D1, such that for any P �∈ Σ,

if D2 �= D1 and P ∈ Span D1 ∩ Span D2, then P = Span D1 ∩ Span D2. (5)

If the divisors D1 and D2 share a point, then the intersection of Span D1 and Span D2
necessarily contains that point. The closure of the image of ψ contains the image of X
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under ϕ since by Lemma 5.4 for a general point P of X(k̄), there exist divisors D1 and 
D2 such that

Span D1 ∩ Span D2 = P.

Our goal is to show that a general point P ∈ X is contained in exactly two divisors. 
Once we do so, we will have a natural map X → Sym2 A, and we will then show via 
a simple argument that the image is indeed a Debarre–Fahlaoui curve. Fix a general 
divisor class D1. We first analyze the image of the morphism η : A → Span D1 that 
sends a divisor D2 to Span D2 ∩ Span D1. This map is nondegenerate by Lemma 5.4. We 
will show that it must be the inclusion of A as a plane cubic curve by considering several 
cases based on the possible degrees of the image of η.

Case 1: deg η(A) = 2. Consider divisors D2, D3 such that D1, D2, D3 form a general 
triple. Let P := Span D2 ∩ Span D1 and Q := Span D3 ∩ Span D1. Consider the divisor 
D4 := 3D − D2 − D3; since D1, D2, D3 are a general triple we can assume that D4 does 
not pass through P or Q.

On the other hand, Span(D2, D3) is a hyperplane that contains Span D4 and intersects 
Span D1 in the line PQ. Since PQ meets η(A) only at P and Q, this is a contradiction.

Case 2: deg η(A) � 3 and η multiple-to-one onto its image.
Choose a general line 
 in Span D1 that intersects the image of η in at least three 

smooth points P2, P3, P4. Through each of the points P2, P3, P4 passes at least two 
divisor-spans Span Di, Span D′

i, i = 2, 3, 4. Since the line 
 is general, the pair D1, D2 is 
a general pair of divisors in A × A. Hence, using the fact that η is nondegenerate, we 
can assume that the point where they meet is not in the finite set Σ guaranteed by (5)
on either Span D1 or Span D2. In particular

Span D1 ∩ Span D2 = Span D1 ∩ Span D′
2 = Span D2 ∩ Span D′

2 = P2.

By symmetry the same holds for i = 3 and i = 4.
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By Lemma 5.7 applied to the triple D, D1, Di we may choose D′
i �= 3D − D1 − Di. 

Since D1, D2 is general, for every possible D′
2 through P2, the divisor D2 − D′

2 is not a 
2-torsion point on A0, as we now explain. Equivalently, for a general D2, and each of the 
finitely many possible 2-torsion points T on A0 giving rise to D′

2 = D2 − T , a general 
divisor span Span D1 does not meet Span D2 ∩ Span D′

2, which is clear since the map η
associated to D2 is nondegenerate.

We may further assume that the 15 pairwise intersection points of Span Di, Span D′
j

do not belong to X (if i �= j then Di, D′
j are a general pair of divisors; if i = j, then Pi

is a general point on η(A) which contains only finitely many points of X).
Projection from 
 maps each Di and D′

i for i = 2, 3, 4 to a line. Since D′
i �= 3D −D1 −

Di, we have that Span(Di +D′
i), for i = 2, 3, 4, does not contain D1. Further, since 
 is a 

general line in Span(D1) through Pi, we also have that Span(Di + D′
i) does not contain 


. Since in addition Span Di and Span D′
i meet only at Pi, their images under projection 

from 
 are skew. Moreover, since Span Di ∩ Span D′
j is a point off of 
 for i �= j, any two 

such lines meet.
The only such configuration of a triple of pairs of skew lines π�(Span Di), π�(Span D′

i)
is the configuration of edges of a tetrahedron.

The triples of divisors corresponding to faces of the tetrahedron sum to 3D, since they 
are coplanar. Summing the faces containing a shared edge and subtracting the two faces 
containing the opposite edge, we get 2(Di −D′

i) = 0 for all i, contradicting the generality 
assumption D2 − D′

2 �∈ A[2].

Case 3: deg η(A) � 4 and η birational onto its image. We proceed as before by choosing 
a general line 
 ∈ Span D1 and analyzing the projection from 
. Let P2, ..., Pn, n � 5 be 
the points of 
 ∩ η(A). Since 
 is general there is a unique divisor-span Span Di through 
Pi. Projection from 
 maps the Span(Di) into a collection of lines in P 3 pairwise sharing 
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points. Since they cannot all belong to the same plane, by Lemma 5.3 they have to share 
a point P .

Consider two divisors Di, Dj for i, j > 2 and let Dij := 3D−Di −Dj be the remaining 
divisor contained in the hyperplane Span(Di, Dj). Since (D1, Di, Dj) is general, Dij �=
D1; equivalently, D1 is not contained in Span(Di, Dj). In particular Span(Di, Dj) ∩
Span D1 = 
, and so Span Dij ∩ Span(D1) ∈ 
. Thus Dij = Dk for some index k. 
Projecting the configuration of lines π�(Span(Di)) from P gives a configuration of n −1 �
4 points Q2, ..., Qn ∈ P 2 with the following two properties:

(1) for any two distinct points Qi, Qj there exists a point Qk, k �= i, j collinear with 
Qi, Qj ;

(2) no more than 3 of Qi are collinear.

Configurations of points satisfying Property (1) are known as Sylvester–Gallai config-
urations; see [11, Theorems 3.1 – 3.6] for classification results for small values of n. In 
particular, either n − 1 = 9 and the configuration is Hesse configuration (and the points 
are a base locus for a pencil of cubic curves) or n − 1 � 12.

We first show that for general choices of D1 and 
, the 2-plane Λ := π−1
� (P ) does not 

meet X. Indeed, suppose to the contrary that Λ meets X in λ points for a general choice 
of D1 and 
. Fixing D1 and varying 
, we obtain a map

(P 2)∨ ��� Symλ X.

If this map is nonconstant, then λ � d + 1 since X is d-minimal. Since Span D1 meets 
X in d points, none of which are on 
 = Λ ∩ Span D1, we must have that Span(D1, Λ)
meets X in at least 2d + 1 points. If D1 and 
 are defined over the ground field, then 
so is the unique point P , and hence so is the 3-plane Span(D1, Λ). Projection from this 
plane defines a degree at most d − 1 map to P 1, contradicting d-minimality.

We may therefore assume that the plane Λ meets X in points independent of 
. If it 
meets X in at least 2 distinct points in P 5, then their span meets Span D1 in a unique 
point, which does not lie on a general line 
. Hence Λ meets the image of X in P 5 in a 
unique point (possibly with multiplicity). Varying D1, and noting that a d-minimal curve 
cannot have genus at most 1, we see that this unique point must also be independent of 
D1. This is a contradiction, since a general pair of divisors D1, D2 can be chosen so that 
their span Span(D1, D2) misses any specific point.

Consider the projection πΛ : X → P 2, and suppose that it factors as X → Y →
Y ′ ⊂ P 2, where X → Y is a finite degree s morphism of smooth curves and Y → Y ′ is 
birational. The plane curve Y ′ has degree 3d/s and every one of the points Q2, ..., Qn is 
a singular point of multiplicity at least d/s. Moreover, the point Q1 := πΛ(Span D1)) is 
also a singular point of Y ′ of multiplicity at least d/s.

Suppose n − 1 = 9. Then the configuration of points Q2, ..., Q10 is a Hesse configu-
ration, in particular there is a pencil of cubics through Q2, ..., Q10. We may therefore 
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choose Q to be a cubic though Q2, ..., Q10 and Q1. The curve Y ′ is not a cubic, since it 
has at least 10 singular points, and so Y ′ ∩ Q is a finite scheme. However Q intersects 
Y ′ in at least 10 points of multiplicity d/s, thus the total multiplicity of the intersection 
is at least 10d/s > 9d/s = deg Q deg Y ′, contradiction.

Suppose n − 1 � 12. Then the geometric genus of Y ′ is at most

gY ′ � (3d/s − 1)(3d/s − 2)
2 − 13d/s(d/s − 1)

2 = 1 + 2d

s
− 2d2

s2 .

Since Y ′ has at least 13 singular points, the degree of Y ′ is at least 5, and so gY ′ < 0, 
contradiction.

Thus the map η : A → Span D1 is an isomorphism onto a plane cubic curve. This 
means that for every point P ∈ D1 there is exactly one divisor D2 �= D1, with [D2] ∈ A

that contains P . Since D1 was an arbitrary general divisor, we conclude that for a general 
point P ∈ X there exist exactly two divisors D1, D2 from A that contain P . Therefore 
we can define a birational morphism μ : X → Sym2 A that sends a point P ∈ X to 
the unique pair of divisors (D1, D2) ∈ Sym2 A that contain P . We claim that μ is the 
birational equivalence of X with a Debarre–Fahlaoui curve that we seek. To do this we 
need to identify the numerical class of μ(X) on Sym2 A.

For x ∈ A, recall that Hx is the set of all pairs of divisors in Sym2 A that contain x. 
Hence the intersection Hx ∩μ(X) is supported on the points μ(supp(x)). Since a general 
divisor x ∈ A is a degree d point (and hence a single monodromy orbit), Hx ∩ μ(X) is 
a multiple of μ(supp(x)). Consider a general point (x, x′) on μ(X). Since the divisors 
Hx, and Hx′ for x �= x′ intersect transversely at (x, x′) ∈ Sym2 A, the intersections 
Hx ∩ μ(X) and Hx′ ∩ μ(X) cannot both be nontransverse at (x, x′). Hence the generic 
intersection Hx ∩ μ(X) cannot consist of multiple points. In other words, for a general 
x ∈ A the intersection Hx ∩ μ(X) ⊂ Sym2 A is smooth and Hx ∩ μ(X) = μ(supp(x)), 
so [μ(X)] · H = d. Therefore, numerically, [μ(X)] = aH + (d − a)F . Since [μ(X)] is 
effective, by the description of the effective cone we have a � 0 and 2d − a � 0. The 
fibers of the addition map Sym2 A → A have numerical class F , and since X does not 
admit maps of degree less than d to A, we conclude that d < [μ(X)] · F = a. Thus 
[μ(X)] = (d + m)H − mF for some m between 1 and d as claimed. �

Remark 5.9. As observed in Remark 3.4, the geometric gonality of a curve with 
min(δ(X/k)) = d which is not a degree d cover of an elliptic curve is at most 2d − 1. 
Theorem 5.8 implies that if, in addition, such curves are not Debarre–Fahlaoui curves, 
then their geometric gonality is at most 2d − 2.
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6. Applications and extensions

6.1. Low degree points on projective curves

Our main strategy can be applied to study low degree points on “special” curves. 
The geometry of configurations of divisor spans as summarized in Section 4.2 can be 
used to estimate the dimensions of various linear systems from below. Combining this 
with Castelnuovo’s bound yields a bound on the genus of the curve. We now recall 
Castelnuovo’s theorem [1, Chapter III, page 116]. Given positive integers δ, n, write

δ − 1 = m(n − 1) + ε,

for integers m and 0 � ε < n − 1. Then the genus of a nondegenerate curve of degree δ
in Pn is bounded by

π(δ, n) = m(m − 1)
2 (n − 1) + mε. (6)

For fixed n and large δ, the genus bound π(δ, n) is roughly δ2/(2n − 2).

Theorem 6.1. Suppose X ⊂ P r is an irreducible (possibly singular) curve of degree e and 
genus g. Suppose X has infinitely many points of degree d not contained in hyperplanes 
of P r. Then

g � π(e + 2d, 2r + 1).

Proof. By the Mordell–Lang Conjecture, as explained in Section 2, for all but finitely 
many degree d points D on X, either D moves in a pencil, or the class of D in WdX

belongs to a translate of an abelian subvariety in Picd
X . In either of those cases, the class 

2D is basepoint-free.
Let [H] denote the divisor class corresponding to the embedding X ⊂ P r, choose 

a degree d point D for which 2D is basepoint-free and such that D is not contained 
in divisors from |H|. Consider the linear system |2D + H|. Since 2D is basepoint-free, 
for a divisor H ′ ∈ |H| we have X ∩ Span|2D+H| H ′ = H ′. Suppose the dimension of 
Span|2D+H| D is equal to s and choose a set S ⊂ D of size s +1 such that Span|2D+H| S =
Span|2D+H| D. If s < r, then there exists a divisor H ′ ∈ |H| that contains S. Then 
Span|2D+H| H ′ ⊃ Span|2D+H| S = Span|2D+H| D, and so the points of D are contained 
in X ∩ Span|2H+D| H ′ = H ′, contradicting our assumption. Therefore s � r. Since 
the projection from Span|2D+H| D maps to a space of dimension at least r, we have 
dim |2D + H| � 2r + 1. By Castelnuovo’s theorem applied to the embedding |2D + H|, 
the genus of X is at most π(e + 2d, 2r + 1). �
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6.2. Genus estimate for non-Debarre–Fahlaoui curves

The argument of Theorem 4.13 with the added assumption r(2) > 2 gives a better 
genus bound for curves that satisfy (†). Together Theorems 4.13, 5.8, 3.5 and 6.2 below 
yield Theorem 1.4 from the introduction.

Theorem 6.2. Suppose X is a d-minimal curve with r(2) > 2. Suppose that condition (†)
holds. Then the genus g of X satisfies

g � (d − 1)(d − 2)
2 + 2.

Proof. The argument is identical to the proof of Theorem 4.13. We have r(2) � 3, 
s(2) � 2 by assumption and s(n) � min(d −1, s(n −1) +1) by Proposition 4.7. Therefore 
for n � d − 1 we have

r(n) � (n + 1)(n + 2)
2 − 3.

By Castelnuovo’s theorem applied to the linear system |(d − 1)D| we get the desired 
genus bound. �
6.3. Classification results for low values of d

We now summarize what the main results say about curves with small minimum 
density degree.

Proposition 6.3. The following Table 1 summarizes the classification of curves X of genus 
g with small values of min(δ(X/k)) or min(℘(X/k)). We use the following shorthand:

• “covers”: a degree d cover of P 1 or a (positive rank) elliptic curve
• “DF”: a normalization of a Debarre–Fahaloui curve

Proof. If X is not d-minimal, then it is a cover of an s-minimal curve for some s | d. 
Since there are no 2-minimal curves by Theorem 3.8, and in our cases d � 5, we can 
assume that X is either d-minimal or a cover of a 1-minimal curve (i.e., P 1 or an elliptic 
curve of positive rank). From now on, we assume that X is d-minimal. If X is not a 
Debarre–Fahlaoui curve, but satisfies the condition (†), then by Theorem 6.2, the genus 
of X is at most (d − 1)(d − 2)/2 + 2. If (†) does not hold, then the genus bound from 
Theorem 4.13 applies. Finally, when d = 5 the genus of X is bounded by the Castelnuovo 
function π(20, 12) = 8 by Lemma 4.12.

Any curve of genus g has geometric gonality at most �(g + 3)/2� and gonality at most 
2g − 2. Combining this with the genus bounds described above gives the result. �
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Table 1
The classification of curves with small minimum density degree.

d 2 3 4 5
min(℘) = d covers covers covers + DF covers + DF
min(δ) = d covers covers + DF + g = 3 covers + DF + g = 4, 5 covers + DF + g = 5, 6, 7, 8

In the case d = 3 and g = 3, a 3-minimal curve X cannot be hyperelliptic, since any 
conic with a degree 3 point is isomorphic to P 1. Hence a 3-minimal curve X of genus 
3 is isomorphic to a smooth plane quartic. Since the gonality of a plane quartic is 3
if and only if it has a rational point, we see that X must be pointless. In this case, 
Sym3 X(k) = Pic3

X(k), and so the Jacobian of X must have positive rank. Conversely, 
any such curve with a single degree 3 point which is not a degree 3 cover of an elliptic 
curve (i.e., with simple Jacobian) is 3-minimal. Combining this with Proposition 6.3
proves Theorem 1.2.

7. Questions and problems

7.1. Geometric questions

All of the questions we consider have a geometric analogue, that applies to curves X
over any field k, and concerns the existence of abelian translates in WdX̄. The resulting 
geometric questions are usually slightly easier then the arithmetic ones.

Given a curve X over any field k, the union of all positive-dimensional abelian trans-
lates in WdX̄ is the Kawamata–Ueno locus Ueno(WdX̄). When k is a number field, the 
Mordell–Lang conjecture implies that

min(℘(X/k)) = min(gon(X̄), min(d : Ueno(WdX̄) �= ∅)).

However, this more general definition makes sense for complex curves. It is thus natural to 
define the locus Zd(g) of curves [X] ∈ Mg(C) with min(gon(X̄), min(d : Ueno(WdX̄) �=
∅)) = d. For d � �(g + 3)/2�, the locus Zd(g) is all of Mg(C). The general theory of 
Kawamata–Ueno loci [14, Theorem 1.2] implies that Zd(g) is the set of complex points 
a subvariety of Mg. For lower values of d it is interesting to study the ubiquity of curves 
in Zd(g).

Question 7.1. For d < �(g + 3)/2�, what is the codimension of Zd(g) in Mg?

A geometrically d-minimal curve X is a curve in Zd(g(X)) for which there does not 
exist a degree s � 2 covering of curves X → Y with Y ∈ Zd/s(g(Y )). The next specific 
case in which we don’t know the classification of geometrically d-minimal curves is d = 6
and g = 11.

Question 7.2. Do there exist geometrically 6-minimal curves of genus 11?
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Abramovich and Harris claimed [2][Theorem 2] that the genus of a geometrically d-
minimal curve is bounded by d(d −1)/2; however the proof presented there is incomplete. 
The key to obtaining this bound is the inequality s(n) � min(s(n − 1) + 1, d − 1), which 
we only prove in Corollary 4.9 under the assumption (†). It seems likely that the genus 
bound holds without additional assumptions.

Question 7.3. Do there exist geometrically d-minimal curves with genus larger than d(d −
1)/2?

In the geometric situation, it is natural to treat a = dim A as an extra parameter 
together with d and g. The key to the proof of the Main Theorem is Proposition 4.7
concerning the difference between the dimensions s(n) and s(n − 1) of divisor spans in 
|nD| and |(n − 1)D|. It seems likely that such a bound can be strengthened to depend 
on a.

Question 7.4. If dim A = a, is it true that when s(n) � d −2, we have s(n) −s(n −1) � a

for n � 3?

If Question 7.4 has a positive answer, then one can obtained significant improvements 
on the genus bound for d-minimal curves with a > 1. In particular it would imply that 
the a = 2-family constructed by Debarre and Fahlaoui [3] achieves the largest possible 
genus. Such an estimate is claimed in [2], but the proof has a gap (as remarked in [3]).

The problem of classifying curves in Zd(g) is interesting over any field k. The results 
of this paper use the assumption char k = 0 in a few places. For instance, Kani’s version 
of de Franchis theorem (Theorem 3.1) requires a separability assumption in positive 
characteristic, the classification of small Sylvester–Gallai configurations used in the proof 
of Theorem 5.8 is more complicated when char k = 2, 3, and the monodromy argument 
in Lemma 5.6 only works in characteristic zero.

Question 7.5. Do the geometric analogues of our main Theorems 4.13, 5.8 hold in positive 
characteristic?

7.2. Arithmetic questions

The smallest cases for which some questions are still left open concern d-minimal 
curves with d = 3 and g = 3, 4. In both of these cases we expect that 3-minimal curves 
exist. The case d = g = 3 is discussed in Problem 7.7. In the case d = 3, g = 4, 
Proposition 6.3 implies that such a curve is a Debarre–Fahlaoui curve of class 4H − F . 
However, a genus 4 curve X over k̄ generically admits two maps of degree 3 to P 1: the 
canonical embedding realizes X as a complete intersection of a quadric and a cubic, and 
projections from rulings on the quadric give a pair of g1

3’s. We expect that there exist 
Debarre–Fahlaoui curves in class 4H −F for which these two maps are Galois conjugate, 
and that such Debarre–Fahlaoui curves are 3-minimal.



B. Kadets, I. Vogt / Advances in Mathematics 460 (2025) 110021 35
It is in principle possible to verify this claim (if true) by exhibiting a specific curve on 
Sym2 A and checking that the unique quadric containing the canonical curve is nonsplit 
(and independently verifying that it is not a triple cover of an elliptic curve), but such 
a computation is nontrivial in practice. We thus leave this question as a problem.

Problem 7.6. Show that a general curve in numerical class 4H − F on Sym2 A is 3-
minimal.

There is another natural source of low degree points on curves of genus g, as we now 
describe. Consider a general (in a non-technical sense) genus g curve X over a number 
field equipped with a degree g point. The abelian variety Picg

X may have positive rank, 
at the same time it appears that there is no clear reason for X to have maps to other 
curves or low gonality. If this is the case, then Symg X, which is birational to Picg

X , will 
have an infinite family of rational points. While we expect such curves to be abundant, 
we do not know if examples can be proved to exist, and thus leave this as a problem.

Problem 7.7. Show that for every d � 3 there exists a d-minimal curve of genus d.

The problem for d = 3 (i.e., smooth plane quartics) is already interesting and should 
be computationally feasible.

Theorem 4.13 shows that, under condition (†), the genus of a d-minimal curve is 
bounded by d(d−1)

2 + 1; curiously, this number is exactly the (maximal) genus of a 
Debarre-Fahlaoui curve, and in Theorem 5.8 we explained this coincidence by identi-
fying curves with r(2) = 2 with Debarre–Fahlaoui curves. Question 7.4 predicts a similar 
situation for dim A = 2: the maximal genus for such a curve is d2/4 + 1, which is ex-
actly the genus of dim A = 2 examples constructed in [3]. We hope that this can also be 
explained in terms of geometry of configurations.

Question 7.8. Is it true that a d-minimal curve with dim A = 2 and r(2) = 3 is birational 
to one of the curves constructed in [3]?

It would be very interesting to obtain better results for special curves; in particular, 
we do not expect Theorem 6.1 to be close to optimal. One way to test optimality of such 
a genus bound is to compare it to known results in low dimension.

Problem 7.9. Suppose X is a curve equipped with a gr
e linear system. Show that for a 

certain function g(r, e, d) the following holds: if the genus of X is larger than g(r, e, d), 
and X has infinitely many points of degree d, then all but finitely many of those points 
are contained in the divisors from gr

e . Can the function g(r, e, d) be such that the value 
of g(1, e, d) implies Vojta’s estimate [19] for low degree covers of P 1, and the value of 
g(2, e, d) implies the Debarre–Klassen theorem [4] on smooth plane curves?
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