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Abstract. Continual self-supervised learning (CSSL) learns a series of
tasks sequentially on the unlabeled data. Two main challenges of con-
tinual learning are catastrophic forgetting and task confusion. While
CSSL problem has been studied to address the catastrophic forgetting
challenge, little work has been done to address the task confusion as-
pect. In this work, we show through extensive experiments that self-
supervised learning (SSL) can make CSSL more susceptible to the task
confusion problem, particularly in less diverse settings of class incremen-
tal learning because different classes belonging to different tasks are not
trained concurrently. Motivated by this challenge, we present a novel
cross-model feature Mixup (CroMo-Mixup) framework that addresses
this issue through two key components: 1) Cross-Task data Mixup, which
mixes samples across tasks to enhance negative sample diversity; and 2)
Cross-Model feature Mixup, which learns similarities between embed-
dings obtained from current and old models of the mixed sample and
the original images, facilitating cross-task class contrast learning and old
knowledge retrieval. We evaluate the effectiveness of CroMo-Mixup to
improve both Task-ID prediction and average linear accuracy across all
tasks on three datasets, CIFAR10, CIFAR100, and tinyImageNet under
different class-incremental learning settings. We validate the compati-
bility of CroMo-Mixup on four state-of-the-art SSL objectives. Code is
available at https://github.com/ErumMushtaq/CroMo-Mixup.

Keywords: Cross-Model feature Mixup - Self-supervised Continual Learn-

ing - Cross-Task data Mixup

1 Introduction

Self-supervised learning (SSL) has advanced significantly in recent years, demon-
strating performance on par with supervised learning on diverse computer vision
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Fig. 1: Illustration of our proposed CroMo-Mixup framework. At the input, cross-task
mixed samples are generated by a convex interpolation of the current and old task
samples from the memory buffer. At the output, the model learns similarities between
the embeddings of the cross-task mixed sample and the original samples that were
mixed to create it. The embeddings of memory buffer samples come from the frozen
network saved from the old task (t-1), whereas mixed samples and current task sample
embeddings are attained from the network of the current task (t). In addition, model
learns current task via task-specific SSL loss and distills old knowledge on the current
task samples via a temporal projector-based distillation loss.

tasks, including image classification [36], segmentation [49], and object detec-
tion . However, many existing SSL works assume the availability of large,
unbiased datasets for model training, which may not always represent a realistic
scenario. Data often becomes available progressively in many real-world appli-
cations such as self-driving cars and conversational agents [28[30]. Given
the sequential nature of the data generation process of these real-world applica-
tions, it can be impractical to obtain human annotations on-the-fly. Therefore,
the exploration of SSL for continual learning holds significant importance.

Continual self-supervised learning (CSSL) refers to the machine learning set-
ting where the model learns tasks sequentially but without data labels. Under
continuous shifts in data distributions, deep learning models suffer from catas-
trophic forgetting; loss of prior tasks knowledge while learning the new tasks.
In general, CSSL has two well-explored setups, task-incremental learning (TIL)
and class-incremental learning (CIL). In both TIL and CIL, each task has a dis-
tinct set of classes. However, for TIL, task id is available at the inference time,
whereas, in CIL, evaluation is performed without knowing task-ids. Therefore,
CIL is known to be a more challenging setup of continual learning .

CSSL has gained research community attention recently, and various knowl-
edge distillation-based methods [6l[13] and exemplar-based algorithms
have been proposed to mitigate catastrophic forgetting. However, a recent study
22| on continual supervised learning has shown that catastrophic forgetting
makes supervised CIL prone to another challenge, named task confusion. In
task confusion, as the model learns the new tasks, it may forget the prior tasks
knowledge and therefore may fail to establish discriminative decision boundaries
between the classes of different tasks. Though they study various supervised CIL
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works to analyze task-confusion aspect of continual learning (CL), CSSL has not
been studied from the perspective of task-confusion before. Motivated by this
research gap, we study CSSL from the task-confusion aspect in CIL setups.

First, we hypothesize that the task confusion problem in contrastive SSL
methods arises primarily from the inability to train classes belonging to differ-
ent tasks concurrently. In supervised continual learning, cluster overlap can be a
result of forgetting whereas SSL may suffer from this problem even when forget-
ting effects are eliminated. To demonstrate this, we conduct experiments, pre-
sented in Section [3] to study only the task-confusion problem in SSL. Our study
shows that contrastive SSL baselines observe a significant drop (4% or more) in
both linear accuracy and task-id prediction when classes are separated across
tasks, even if tasks can be revisited frequently. This accuracy drop is compared
to the offline setting when classes are randomly sampled from the whole train-
ing dataset. The performance drop especially in task-id prediction highlights the
model confusion in predicting the task-ids correctly. However, within-task per-
formance remains equally good across both experiment settings. Interestingly,
we did not observe such accuracy drop in linear accuracy and task-id predic-
tion for the similar experiment settings of supervised learning, which hints that
without forgetting, supervised learning may not experience task confusion.

Given the above-mentioned observations, a straightforward solution can be
storing some samples and using them as a replay. However, the challenge is that
those limited old task samples might not be enough to create sufficient contrast
between classes of old and new tasks as we observed for the ER baseline [37]
in Table [2| and some other baselines in Table [Il Therefore, to integrate mem-
ory buffer samples effectively for contrastive learning, we propose Cross-Model
feature Mixup (CroMo-Mixup) framework that exploits a small memory buffer
and last task’s model. As shown in Fig. [} our proposed formulation consists
of two components, Cross-Task data Mixup and Cross-Model feature Mixup.
Cross-Task data Mixup generates cross-task class mixed samples via mixup data
augmentation [51] to enhance negative sample diversity. Cross-Model feature
Mixup formulation learns the similarities between the embeddings of the cross-
task mixed samples and the original samples that were mixed to create it. Instead
of following the traditional SSL approach of contrasting positives and negatives
only, it learns similarities between the original samples and their stochastic mix-
tures with another negative which can be more challenging. Note that in the
proposed formulation, we obtain the embeddings from cross-models, that is, the
old task data embedding from the old model and new task data embedding from
the new model. This formulation essentially enhances the remembrance of old
knowledge via cross-model knowledge retrieval, and learns better class bound-
aries by learning on diverse and challenging cross-task mixed samples.

Our key contributions in this work are as follows,

¢ First, we show the inherent challenges of self-supervised learning that could
impact CSSL. With extensive experiments on four SSL baselines, we show the
susceptibility of CSSL to the task confusion problem even under relatively
simpler setups where forgetting effects are mitigated.
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o We propose a novel cross-model feature mixup framework for CSSL. It cre-
ates stochastic mixtures of cross-task data samples that enhance the negative
sample diversity. To learn better cross-task class contrast on these samples,
we exploit cross-model feature mixup that learns similarities between the
cross-model embeddings of the cross-task mixed and original samples.

o We implement CroMo-Mixup framework with four SSL baselines, Corln-
fomax [36], Barlow-Twins [48], SInCLCR [8], and BYOL [14] to show its
compatibility with SSL. For all these baselines, CroMo-Mixup consistently
outperforms the state-of-the-art CSSL work, CaSSLe, on three datasets, CI-
FAR10, CIFAR100, and tinyImageNet. For the best-performing SSL base-
line, CroMo-Mixup outperforms CaSSLe by 4.2%, 5.8%, 1.5%, 5.2% accuracy
improvement on CIFAR100-Split5, CIFAR100-Split10, CIFAR10-Split2 and
tinyImageNet-Split10, respectively.

2 Preliminaries

2.1 Self-Supervised Learning

Self-supervised learning aims to learn data representations without the need for
explicit external labels. Given a dataset D = {z1, x2, ..., £x }, where x; represents
the i-th data sample in the dataset, and N is the total number of samples, the
objective of SSL is to learn an embedding function f : X — H. The embedding
function f maps an input space X to a feature space H such that samples coming
from the same class in the input space X are linearly separable in the embedding
space ‘H from other classes. The most common state-of-the-art SSL methods
adopt contrastive learning for this purpose and have shown comparable results
to supervised learning |8]. These methods use an additional projector network ¢
which is mostly an MLP [81[36}/48|. Initially, two different views of input z; are
obtained by applying multiple augmentations A such as cropping, rotation, color
distortion, and noise injection [8}[36}/48]. The augmented views are regarded as
positive pairs for each other. The first view x} = A;(x;) is fed to the encoder
and the projector to yield its representations 2} = g(f(z})); and the second view
2?2 = Ay(z;) is forwarded to the copy of f and g or the target network (e.g same
architecture with f and g but parametrized with exponential moving average of
parameters of f and g) to yield z2. Finally, an SSL loss Lggy, is applied between
the final features of two views:

argminE[ﬁSSL(zl,ZQ)}, (1)
[

k k

where z* = [2§, 25, ..., 2% ] and 6 represents the parameters of f and g func-
tions together. Some popular SSL loss functions are InfoNCE [8}17], MSE |14],
Cross-Correlation [48], Infomax |36]. The key objective of these algorithms is to
learn distortion-invariant visual representations, i.e., output similar embeddings
for the positive pairs, and dissimilar embeddings for the negative samples. We
provide further details of our baseline SSL. methods in the Appendix
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2.2 Problem Definition and Evaluation Setup

Continual Self-Supervised Learning We consider Continual Self-Supervised
Learning (CSSL) problem, where the main aim is to make neural network con-
tinually learn from new data over time without forgetting previously acquired
knowledge. Formally, let us consider a sequence of tasks 71,73, ..., 7r that an
SSL model encounters over time, where each task 7; is associated with a dis-
tinct data D; = {(x”,y”)}fv:tl having N; samples and only the corresponding
data D, is available during task 7;. The goal of CSSL is to optimize the model’s
performance across all tasks:

T
arg;ninZEwSSL(Z%aZ?)]a (2)

t=1

where zf = [2f,,2F,, .., Zf,zvt}- According to the data distribution across tasks,
CSSL can be broadly classified under two setups, Task Incremental Learning
(TIL) and and Class Incremental Learning (CIL). In both TIL and CIL, each
task has a distinct set of classes. Formally, let Y; be the set of classes in task t,
then it is satisfied that (Y; NYy) = 0 for all ¢ # ¢’. In both cases, new classes
occur over time while the data of the previous classes becomes unavailable.
However, for TIL, task id is available at the inference time, whereas, in CIL,
evaluation is performed without knowing task-ids. We focus on CIL setup as it
is often regarded a more challenging setup [22] due to the unavailability of task-
id at the inference time, where the model is expected to differentiate between
classes belonging to different tasks. We refer to Class Incremental Self-supervised
Learning as CSSL in the rest of this paper.

Evaluation of Class Incremental Self-Supervised Learning Following
the setup used in previous CSSL works [13], the performance of an SSL model is
measured with linear classification at the end of all tasks while the parameters
of encoder network f is frozen. The linear classifier is trained using the set of
encoded vectors {h; = f(Aun(z:))}Y, as inputs, where Aj;, is the test data
augmentations used in this process (Typically, the training data augmentations
A; and As are chosen to be harsher than the test data augmentations Ay,).
After the linear classifier training, the accuracy of the classification on the test
dataset is considered as SSL performance. To analyze the behaviour of CSSL
algorithms better, besides reporting the linear accuracy, we follow |22] to define
and evaluate two sub-problems of CIL in a probabilistic framework. We provide
the definition of the two sub-problems, Within-Task Prediction (WP) and Task-
ID Prediction (TP), as well as linear accuracy below.

Let Y; ; be the j'" class of t'" task, Y; be the set of all classes at t'" task and
X¢,; be the set of all images belong to Y; ;. Linear layer ¢ try to map f(zx € Xy ;)
to the Y; ;. Following this notation, the metrics are defined below:

— Linear Accuracy (LA) is the probability of an image that is correctly
classified into its class, i.e, both the task-ID and class within-the-task are
correctly classified. Mathematically, LA = P(¢(z € X, ;) =Y ;).
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— Task-ID Prediction (TP) is predicting the task ID. The probability of
the linear layer correctly maps an image into one of the classes that belong
to the same task of that image. Mathematically, TP = P(¢(z € X, ;) € V})

— Within-Task Prediction (WP) is predicting the class of an image given
the task-id. It is the probability of doing correct classification given that task-
id is correctly predicted. Mathematically, WP = P(¢(x € Xy ;) = Yy j|¢(z €
Xt,j) S Y;)

As it is obviously shown in 22|, LA = WP x TP.

3 Challenges of Class Incremental Self-Supervised
Learning

In this section, we explain the challenges of CSSL and their significance in CSSL
problem formulation.

3.1 Catastrophic Forgetting

Catastrophic forgetting is the most addressed issue in continual self-supervised
learning literature. It represents the significant loss of performance on previous
tasks upon learning new ones. Due to forgetting of the previous tasks, the model’s
within-task prediction performance on the previous tasks decreases substantially,
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Fig. 2: Demonstration of Catastrophic Forgetting and Task Confusion challenges in
a two-task based Continual Learning setup where each task contains three classes.
Figure (a) illustrates the linear separability of latent vectors of task 1 classes at the
end of task 1 training. Figures (b)-(e) represent the four cases after training on task 2.
Case (b) shows the desired case where all classes of both tasks are linearly separable.
Figure (c) illustrates the forgetting effect where task 2 classes are linearly separable but
task 1 classes are not. Figure (d) shows the task confusion problem, where the model
fails to draw distinctive decision boundaries between different task classes and may
have overlapping clusters. Figure (e) shows the effects of task confusion and forgetting
together, which is the problem in CSSL settings we want to solve.
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whereas it remains at a desirable level on the current task. Forgetting also de-
grades the task-id prediction performance as shown in Figure[2] The earlier CSSL
works exploited memory replay to address catastrophic forgetting [19]. The state-
of-the-art CSSL works have proposed self-supervised learning loss adaptation for
knowledge distillation [6}/13] and fine-tuning [44] to mitigate this problem. How-
ever, the current literature on CSSL does not pay due attention to task confusion
challenge that can hinder learning distinctive representations in the absence of
labels as explained below.

3.2 Task Confusion

Task confusion represents the model failure to establish distinctive decision
boundaries between different classes belonging to different tasks [20}/22]. Task
confusion is crucial in CIL because the task id is not present at the inference
time and its absence could result in the learner’s failure to accurately predict
the task id, leading to mis-classification of test images. In supervised continual
learning, task confusion arises as a result of forgetting which leads to the over-
lap of inter-task class embeddings clusters as shown in Figure [2] (subfigure (e)).
However, in this work, we show that contrastive learning-based SSL methods
can be susceptible to inter-task class separation problem even when forgetting
effects are eliminated such as shown in Figure [2[ (subfigure (d)). The model re-
members old samples and WP is good, however, the model struggles to identify
task-id correctly due to clusters overlap. This is because class-incremental setup
naturally leads to a lesser diversity of negative samples as old task data cannot
be visited with new task data to draw a contrast in the absence of labels. To
illustrate it further, we describe our hypothesis and experiment results below.
Our hypothesis is as follows,

The task confusion problem in Contrastive SSL methods arises pri-

marily from the inability to train the model with different classes

belonging to different tasks concurrently.
To study the hypothesis, we explore both self-supervised and supervised learning
in a fairly simple but representative class-incremental setup. Our experiment
setup is as follows: we follow a traditional CIL setup with a sequence of tasks
T, T2, ..., Tr that are mutually exclusive in classes. We consider the CIFAR100
dataset and split 100 classes across 10 tasks by assigning 10 classes per task.
Further, we assume that tasks change after each iteration (one gradient descent
step), i.e., mini-batches are sampled from different tasks at each iteration as
shown in Figure[3] To study the task confusion problem explicitly and remove the
forgetting effect, we assume that tasks can be revisited, i.e., task 2 follows task 1,
task 3 follows task 2, and so on. The repeatability of tasks ensures that the SSL
learner does not forget the previous knowledge while mutual exclusivity of classes
is also maintained across mini-batches naturally leading to the representative
CIL setting of lesser diversity across mini-batches. For simplicity, we refer to
this experimental setup, 10x10 class-incremental learning across mini-batches,
10x10 CIL-minibatch because the data is divided into 10 tasks where each task
contains 10 classes. To show how the performance of the methods changes in
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CIL-minibatch setting, we also do a training on the regular setting where we
sample uniformly random from the whole training data. We call this regular
training setting as 100x1 CIL-minibatches because there is 1 task containing all
100 classes. Lastly, we focus on the training accuracy of the methods because we
only care about the methods’ capability of creating linearly separable features
on the data they are trained on. We present our key results in Fig. 4l Our main
observations from the results of these experiments are:

— 1: The linear accuracy of all four representative self-supervised learning mod-
els drops significantly in 10x10 CIL mini-batch experiments as compared to
the 100x1 Joint-SSL case. The accuracy problem stems from the fact that
certain classes are not trained in the same mini-batch together. The lower
linear accuracy is reflected majorly in lower TP whereas WP remains good
overall. This hints that when trained in a lesser negative diversity setup such
as CIL, self-supervised learning suffers from the task confusion problem as
reflected in lower Task-ID prediction performance.

100x1 10x10
Randomly sample a minibatch from the whole training set Randomly sample a minibatch only from the current task
SO "r.
3
i u
] w

7'17373727'57%7'77?3737'10

' At each iteration, move to the next task

(a) (b)

Fig. 3: Depiction of 100x1 and 10x10 CIL-minibatch task confusion experiment setup
on the CIFAR100 dataset. Figure (a) represents the 100x1 case where a regular uniform
sampling is performed from all the samples containing all 100 classes. Figure (b) shows
the 10x10 setting where there are 10 tasks and each task contains only 10 classes.
Classes are mutually exclusive across tasks. For SSL training, a mini-batch is sampled
only from a single task at a time. After each iteration, mini-batch sampler moves to
the next task so that tasks can be revisited throughout the training.

I

Linear Accuras

Supervised Corinfomax Barlow Twins SImCLR BYOL Supervised Corinfomax Barlow Twins ~ SimCLR BYOL Supervised Corinfomax Barlow Twins SImCLR BYOL

(a) LA: 10x10 versus 100x1 (b) TP: 10x10 versus 100x1 (c) WP: 10x10 versus 100x1

Fig. 4: Training LA, WP, and TP performance of contrastive SSL methods, Corln-
fomax , Barlow-Twins , SimCLR , and BYOL , and supervised learning
on the CIFAR100 Dataset for 100x1 and 10x10 CIL-minibatch settings. Figure (a)
demonstrates that the 10x10 setting leads to a significant accuracy drop across all SSL
baselines as compared to the 100x1 setting. Figure (b) presents that the lower linear
accuracy is reflected in lower task-id prediction performance, demonstrating the task-
confusion problem. Figure (c) shows that the WP performance remains relatively good.
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— 2: In contrast to self-supervised learning, supervised learning exhibits no
change in accuracy and maintains linear separability of classes in the em-
bedding space for both 100x1 joint-SL and 10x10 test cases. This shows that
this challenge is unique to contrastive learning-based SSL methods and may
not affect supervised learning due to the presence of explicit class labels.

Overall, our experimental results in this section confirm our hypothesis, under-
lining the importance of addressing task confusion problem in CSSL. A data
incremental setting-based ablation study that further strengthens our hypothe-
sis can be found in Appendix Section [B!

4 Proposed Method

In CSSL, the main objective is to learn visual representations that remain infor-
mative about the old task data distributions while learning the new task such
that linear separability of all the classes from all the data distributions is max-
imized at the end of the CL Phase. Existing works have proposed supervised
learning solution adaptations to CSSL to address catastrophic forgetting such
as Distillation [6,|13|, and memory-replay [|34]. However, the CSSL representa-
tion continuity has not been studied from task confusion perspective before. As
we have shown in Section [3] task confusion is a major challenge for SSL. In
literature, it is well-known that SSL often requires large unsupervised datasets,
and larger mini-batches to ensure sufficient negative sample diversity from all
the classes to learn the linear separability of different classes in the embedding
space [8l/14,445]. However, under the CSSL problem setup, only a small amount of
data can be saved (as an exemplar), and this might not be sufficient to produce
the desired negative sample diversity even when used as a replay (as shown in
the results Section, e.g.,[6], ER [37], DER [3], EWC [24], LUMP [34]). Given these
challenges, we propose an exemplar-based approach that focuses on enhancing
the negative sample diversity under the limited memory buffer constraints.
Our proposed framework consists of two components: 1) Cross-Task Data
Mixup and 2) Cross-Model Feature Mixup which are described in detail below.

Cross-Task Data Mixup We generate cross-task mixed samples by exploit-
ing the well-known mixup data augmentation [51] for self-supervised learning.
Specifically, for z;, sampled from current task data distribution D;, we randomly
sample zq; from the memory buffer M that contains samples from the previous
task data distributions, and generate inter-task class mixed data sample @z, ;,
a convex interpolation of x;, and w4, as shown below,

Tizy; = Mg, + (1 = Ny, (3)

where A\ € Beta(a, a), and a € (0,00). Note that we use mixup for both views
of data samples, (z{,7) and (:r M, , M, ) which subsequently results in two

inter-task mixed data samples xmmi and 22

miz;;*
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Cross-Model Feature Mixup (CroMo-Mixup) For learning on the cross-
task mixed data samples, our proposed formulation is as follows,

ECTDMO(ZmiCEija’Zti72M]’) = )\'ESSL(zmizij 5 Ztl)'i‘(]-_)\) '£S'S'L(Zmimij 5 2/\/1]') (4)

where Lgsy, is the SSL loss for the considered SSL baseline. zpz,;, 2¢, are the
feature embeddings obtained from the current model for the z,,.,; and x;, data
samples, and z; feature embedding is obtained from the frozen old task model
for the x, data-point.

The proposed learning objective has three key features. For a given zy,, x a4,
and Tz, data samples, it treats the embeddings of the rest of the cross-task
mixed samples z,,i., the current task embeddings z;, and the old task embed-
dings Znq in the mini-batch as negatives for each other which enriches the neg-
ative sample diversity of overall learning, as compared to the traditional SSL
learning where we only have the old and new task’s data embeddings as nega-
tives for each other. Second, it encourages the learner to learn the similarities
between the cross-task mixed sample zy,.,; and the corresponding current task
sample z;; as well as the old task sample Z,4,. This soft distance learning helps in
improving the task-id prediction performance because learner learns to identify
the similarity of an image from a more challenging image, augmented as well
as mixed with a cross-task negative sample, than only an augmented version of
itself. Further, the proposed formulation exploits the old task data embeddings
from the old model Zy4, which promotes retrieval and preservation of the old
knowledge while learning new knowledge.

In addition to the learning objective |4l a general task-specific loss is also
employed Lggy, to learn the current task on the current task data distribution
D;. We also exploit distillation on the current task data distribution D; benefiting
from the old task model. Hence, the total objective becomes,

Liotar = Lssr(zt,,21) + C(Lssp(zt, h(zl)) + Lssp(Z, h(27))+

1 1 =1 2 2 22
ECroMO(Zmizij ) 2ty ZM_]») + ECroMO(Zmia:,;j ) 2ty ZMj)

(5)
where ( is a hyper-parameter for the distillation objective. Further, Lssz(2/,, 27,)
denotes a task specifc loss. h(.) represents an MLP Predictor that is employed
on zt2 and ztl to perform distillation as proposed in [13|. The embeddings Etli
and z7 are obtained from the old model for the inputs z;, and z7 .

It is worth mentioning that mixup [21}/23/27] has already been explored in
contrastive SSL works as a data augmentation scheme, however, here we exploit
it to formulate a CSSL problem and perform learning in a cross-task and cross-
model continual learning setting. Further, one baseline, LUMP [34], has used
the idea of mixup for CSSL, however, our proposed objective formulation is
different from theirs. Primarily, the formulation proposed in LUMP exploits
cross-task mixed samples such that it learns general-purpose features across
tasks to address forgetting. Whereas our objective function learns to identify
task-specific features at a granular level to address both task confusion and
forgetting problems in CSSL. LUMP minimizes the SSL loss over the mixed
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samples and their augmented versions, whereas CroMo-Mixup learns to find the
feature similarity between the original and cross-task mixed samples in the same
proportion in which they were mixed. This implicit feature learning ensures
that the model can identify different task samples at a granular level. Further,
CroMo-Mixup outperforms this baseline in CSSL settings as shown in Table

5 Related Works

Continual Self-Supervised Learning. The research community has recently
shown keen interest in CSSL problem |[6}/13/19/34] due to its applicability in
real-world scenarios. In this line of research, [34] is among the first works that
demonstrated the representation continuity of SSL in task-incremental learn-
ing settings. It proposed a cross-task data mixup approach and showed that its
method outperforms various supervised learning baselines in TIL settings. An-
other work [10], has explored CSSL for TIL settings where task confusion is not
a concern. Other works [19//31] have investigated the significance of simple mem-
ory replay to address catastrophic forgetting in CSSL. However, CaSSLe [13|
made significant progress. They proposed self-supervised learning loss function
adaptation via a temporal projector to perform distillation. Sy-Con [6], another
recent work, proposed a loss formulation that exploits current and old model em-
beddings of negative samples to enhance distillation regularization performance.
Nonetheless, CaSSLe remains state-of-the-art on most self-supervised learning
baselines. Due to space constraints, we present the literature review of SSL and
Continual Learning topics in the Appendix [A]

6 Experiments

6.1 Experiment Settings

Datasets We perform experiments on three datasets: CIFAR10 [25], a 10-class
dataset with 60,000 32x32 color images; CIFAR100 |25], a 100-class dataset with
60,000 32x32 color images; and TinylmageNet [26], a 200-class dataset with
100000 64x64 color images. For CIFAR10, we explore a 2 task setting where 5
classes are present per task. Following [13|, we experiment with a 5-task class-
incremental setting for CIFAR100. Further, we also include a more challenging
case with 10 tasks for CIFAR100 dataset. For tinylmageNet, we exploit a 10-task
setting where 20 classes are present per task. We provide further details for each
dataset setup in Appendix Section

Implementation Details We use ResNet-18 [18] as an encoder network for
CIFARI10 and CIFAR100 experiments, while we employ ResNet-50 [18] for Tiny-
ImageNet. We include BYOL [14], SimCLR [8|, CorInfoMax [36], and Barlow-
Twins [48] as representative SSL baselines in our work. We follow these works to
set up the hyper-parameters such as optimizer, learning rate, and schedulers. For
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Continual Learning experiments, we use 500 epochs/task for CIFAR10-Split2,
750 epochs/task for CIFAR100-Split5, 600 epochs for the first task, and 350
epochs for the rest of the task for CIFAR100-Split10. Likewise, for tinylma-
geNet, we use 500 epochs for the first task and 350 epochs for the rest of the
tasks. Further details of hyper-parameters tuning can be found in Appendix[D.1]

Evaluation Metrics Following the CSSL baseline 13|, we evaluate the model
at the end of CL training. To evaluate the model, we freeze the encoder and train
a linear classifier layer on the training dataset of each specific dataset. We report

the average linear accuracy on the test set of each specific dataset, which is cal-
culated as = Total # of Correct Classification of both Class and Task-ID Prediction Tasks " To
Total # of Test samples .
analyze the model performance against task confusion, we also report TP, which
is calculated as (Total # of Correct Clasmﬁcatlol? of Task-‘ID Prediction Task). For WP. we
Total # of test samples ’

Total # of Correct Classification of both Class and Task-ID Prediction TaskS)

Total # of Correct Classification of Task-ID Prediction Task .

report, (

6.2 Results

Average Linear Accuracy First, we evaluate CroMo-Mixup with Barlow-
Twins, SimCLR,, and BYOL on the CIFAR100-Split5. We compare the average
linear accuracy performance of CroMo-Mixup with CSSL baselines CaSSLe [13],
Sy-Con [6], and LUMP [34], and some replay-based methods from supervised
continual learning that can be adapted to CSSL such as EWC [24], ER [37],
DER [3] on CIFAR100-Splits dataset in Table [I| We also include CaSSLe+
baseline that exploits both knowledge distillation and memory buffer to make
a fair comparison with the state-of-the-art baseline, CaSSLe. Overall, CroMo-
Mixup outperforms all these baselines by achieving higher average linear accu-
racy across all three SSL baselines. Further, though we observe 1-2% accuracy
gain in CaSSLe+ as compared to CaSSLe, our proposed method outperforms
this SOTA baseline, CaSSLe+, by 4.2%, 3.2%, and 3.2% accuracy improvement
on Barlow-Twins, SimCLR, and BYOL, respectively. In Table |1, we reproduce
all baseline results except T marked which we take from CaSSLe paper [13].
Next, we draw a more detailed comparison between the proposed formula-
tion and state-of-the-art baseline, CaSSLe and its variant CaSSLe+. We perform

Table 1: Experimental results of CSSL baselines on CIFAR100-Split5

Barlow-Twins SimCLR BYOL

Method Avg. Linear Acc(%)|Avg. Linear Acc(%)|Avg. Linear Acc(%)
Offline 70.0 65.1 66.7
Fine-Tune 54.4 42.7 55.2
Ewct 56.7 53.6 56.4
ER 57.2 47.7 56.1
DER 55.3 50.7 54.8
LUMPT 57.8 52.3 56.4
Sy-Con 60.4 58.9 57.3
CaSSLe 60.6 57.6 56.9
CaSSLe+ 61.3 59.5 57.4

CroMo-Mixup 65.5(+4.2) 62.7(+3.2) 60.6(43.2)
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Table 2: Comparison of CroMo-Mixup with state-of-the-art CSSL method, CaSSLe on
CIFARI10-Split2, CIFAR100-Split5, CIFAR100-Split10 and tinyImageNet-Split20 using
average linear accuracy (LA), within-task prediction (WP) & Task-ID prediction (TP)

[ [ Barlow-Twins [ CorInfoMax [ SimCLR [ BYOL
[Methoa [LA(%) WP(%) TP(%)|LA(%) WP (%) TP(%)|LA(%) WP (%) TP(%)|LA(%) WP (%) TP(%)|
~|Offtine 91.65 - - 92.18 - - 90.35 R - 89.60 - -
% Fine-tune 82.67 90.12 91.73 81.71 91.25 89.55 80.97 90.54 89.43 84.16 94.43 89.12
U‘] ER 85.61 90.36 94.62 87.67 95.81 91.50 81.52 90.95 89.63 86.71 94.97 91.30
E CaSSLe 87.64 91.25 95.87 87.62 96.02 91.17 86.88 95.21 91.25 87.00 95.80 90.81
| CasSLet 86.81 90.30 95.91 | 87.58 95.51 91.70 | 87.52 95.54 91.61 | 87.81 96.01 91.49
E|CroMo-Mixup*| 87.56 92.11 94.69 | 86.00 93.54 91.96 | 84.18 92.70 90.81 | 89.27 96.28 92.72
© CroMo-Mixup 88.22 91.78 95.75 88.51 95.97 92.23 88.49 95.93 92.24 88.88 96.36 92.19
(+0.6) (-0.1) [(+0.8) (+0.7)|(+1.0) -  (+0.6)[(+1.5) - (+0.7)
o Offline 70.03 - - 70.76 - - 65.11 - - 66.73 - -
2| Fine-tune 54.40 85.19 63.86 | 56.68 86.32 65.66 | 42.65 78.17 54.56 | 55.19 86.23  64.00
S| ER 57.23 88.26 65.57 | 59.94 88.62 67.64 | 47.77 81.87 58.35 | 56.05 85.60 65.48
g CaSSLe 60.64 87.29 66.35 60.82 88.85 68.45 57.54 87.89 65.47 56.86 86.05 66.08
E CaSSLe+ 61.25 88.50 69.03 60.26 88.74 67.92 59.48 88.26 67.39 57.35 87.28 65.71
E CroMo-Mixup*| 63.94 91.40 69.88 62.32 88.46 70.39 59.15 87.66 67.48 59.60 88.11 67.64
T|CroMo-Mixup | 65.48 90.72 72.11 | 65.06 90.62 71.78 | 62.72 89.50 70.08 | 60.60 88.64 68.37
(+4.2) (+38.1)|(+4.2) (+8.3)|(+3.2) (+2.7)|(+8.3) - (+2.7)
o |Offline 70.03 - - 70.76 - - 65.11 - - 66.73 - -
E Fine-tune 51.12 92.01 55.56 50.66 91.58 55.32 39.02 86.61 45.04 49.63 92.23 53.81
;" ER 52.81 92.59 56.98 56.99 93.98 60.64 44.83 89.98 49.88 52.32 92.70 56.40
2| cassLe 56.59 93.93 60.25 | 56.35 93.95 59.98 | 53.60 93.39 57.38 | 52.77 93.22 56.61
=|CassLe+ 56.64 93.49 60.68 | 57.00 93.95 60.67 | 55.02 93.43 58.89 | 53.39 92.67 57.61
< |CroMo-Mixup*| 60.01 94.50 63.41 60.30 94.34 63.74 55.21 92.84 59.84 56.59 93.52 60.51
E CroMo-Mixup 62.48 95.10 65.70 61.66 94.91 64.97 58.84 94.66 62.18 56.97 93.35 61.03
(+5.8) (4+5.0)| (+4.7) (+4.8)|(+38.8) (+8.3)|[(+8.6) - (+3.4)
Sloffine 55.60 - - 55.20 - - 49.74 R - 47.58 - -
%Fine—t\me 39.90 77.00 51.82 | 41.14 78.12 52.66 | 36.72 75.09 48.90 | 37.15 76.10 48.82
Ue ER 40.14 77.07 52.08 41.44 78.22 52.98 37.96 70.08 50.56 37.78 76.17 49.60
§ CaSSLe 43.40 79.08 54.88 41.66 77.69 53.62 40.66 77.80 52.26 38.18 77.07 49.54
‘:’D CaSSLe+ 42.64 78.90 54.04 43.86 79.46 55.20 41.74 78.58 53.12 40.24 78.72 51.12
E CroMo-Mixup*| 45.70 80.54 56.74 46.74 81.32 57.48 41.02 78.43 52.30 43.19 79.45 54.36
'_'>> CroMo-Mixup 47.32 81.78 57.86 48.22 81.90 58.88 45.82 80.36 57.02 45.44 80.68 56.32
2 (+3.7) (+3.8)|(+4.4) (+3.6)|(+4.1) (+3.9)|(+5.2) (+4.2)

experiments across four CIL setups, three datasets, and four SSL baselines, rep-
resented in Table|2] We also include a memory replay based baseline ER to show
that a limited memory buffer may not be enough to ensure sufficient negative
sample diversity for optimal CSSL performance. For our proposed formulation,
we include two setups, ¢ = 0 shown as CroMo-Mixup* in Table[2] that uses cross-
model learning but does not exploit knowledge distillation, and ¢ = 1, shown
as CroMo-Mixup that exploits both cross-model learning as well as knowledge
distillation. On CIFAR10-Split2 dataset, we achieve the highest performance of
89.27% with CroMo-Mixup on the BYOL baseline that outperforms CaSSLe+
with 1.5% higher average linear accuracy. Next, for both CIFAR100-Split5 and
CIFAR100-Split100 datasets, CroMo-Mixup achieves the highest average linear
accuracy of 65.48% and 62.48%, respectively, on Barlow-Twins among all four
SSL baselines. It outperforms CaSSLe+ with 4.2% and 5.8% higher average
linear accuracy performance on CIFAR100-Splith and Split10, respectively. It
is worth noticing that even without distillation, CroMo-Mixup*(¢ = 0) case,
CroMo-Mixup outperforms CaSSLe+, which exploits both knowledge distilla-
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tion and memory buffer, with 2.7% and 3.4% higher linear accuracy performance.
On tinyImageNet-Split10, CroMo-Mixup on BYOL achieves a higher accuracy
of 45.44% outperforming CaSSLe+ with a 5.2% accuracy gain.

Task-ID Prediction To analyze performance against the task-confusion, we
also compare the Task-ID prediction performance of CroMo-Mixup with CaSSLe
and its variant CaSSLe+ across four CIL setups, three datasets, and four SSL
baselines in Table[2] We observe that CroMo-Mixup achieves better performance
in predicting task-ids as compared to CaSSLe and CaSSLe+ without compro-
mising on the WP performance on nearly all SSL baselines and all considered
dataset settings. The higher linear accuracy indicates the model performance
against catastrophic forgetting, whereas better task-id prediction performance
indicates the potential of CroMo-Mixup to maximize contrast between the classes
of different tasks in the absence of class labels and limited buffer size. We also
include further experiments such as an ablation study on different design com-
ponents, out-of-distribution performance comparison, and buffer size versus ac-
curacy analysis in Appendix [C

7 Conclusion

In this work, we study continual self-supervised learning (CSSL) from the task-
confusion aspect of continual learning. First, we highlight its significance in CSSL
problem which remained unexplored before in literature. Next, we propose a
CroMo-Mixup formulation that exploits cross-task data mixup and cross-model
feature mixup to enhance negative sample diversity and cross-task class contrast
under limited memory buffer constraint of continual learning. Our proposed
formulation outperforms the state-of-the-art CSSL works by achieving higher
performance average linear accuracy and task-id prediction performance.

8 Limitations

Our proposed approach is based on a limited memory buffer. Therefore, it may
not be applicable in scenarios where the user might want to delete all old samples
due to privacy issues. In such cases, there is a need to design effective methods
to address the task confusion challenge of the continual self-supervised learning
problem. Further, we assume the tasks are clearly separated following the current
literature [6,/13,34]. However, in realistic scenarios, the transitions across tasks
are mostly smoother. Therefore, this can be an important future work to explore.
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