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Efficient allocation of energy resources to key
physiological functions allows living organisms to
grow and thrive in diverse environments and adapt
to a wide range of perturbations. To quantitatively
understand how unicellular organisms utilize their
energy resources in response to changes in growth
environment, we introduce a theory of dynamic
energy allocation that describes cellular growth
dynamics by partitioning metabolizable energy into
key physiological functions: growth, division, cell
shape regulation, energy storage and loss through
dissipation. By optimizing the energy flux for
growth, we develop the equations governing the time
evolution of cell morphology and growth rate in
diverse environments. The resulting model accurately
captures experimentally observed dependencies of
bacterial cell size on growth rate, superlinear scaling
of metabolic rate with cell size and predicts nutrient-
dependent trade-offs between energy expended
for growth, division and shape maintenance. By
calibrating model parameters with experimental
data for the model organism Escherichia coli, our
model describes bacterial growth control in dynamic
conditions, particularly during nutrient shifts and
osmotic shocks. Integrating both the mechanical
properties of the cell and underlying biochemical
regulation, our model predicts the driving factors
behind a wide range of observed morphological and
growth phenomena with minimal added complexity.
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1. Introduction

Living organisms face the challenge of continuously investing energy to fuel growth, biome-
chanical activities and the maintenance of biomass. How energy uptake is allocated between the
synthesis of new biomass and maintenance of existing mass to promote organism growth and
reproduction is of central importance to ecology and evolution. Previous work has used energy
budget models to understand ontogenetic growth in animals [1-5], where some fraction of the
assimilated food is oxidized to sustain the total metabolic rate and the remaining fraction is
synthesized and stored as biomass. While energy budget models have provided a quantitative
and conceptual understanding of whole-organism growth in animals, how energy allocation
strategies are implemented in single-celled microorganisms, remains an open question [6,7].
Here, we present a biophysical theoretical framework for dynamic allocation of cellular energy
for key physiological tasks in bacteria, going beyond existing phenomenological models of
microbial metabolism [8,9]. Our theory quantifies how assimilated nutrient energy is dynami-
cally allocated for bacterial growth, division, dissipation and shape maintenance. We apply this
framework to study bacterial growth and morphogenesis in steady and dynamic environments.

Much work has been done in recent years to understand how bacteria adapt their growth
physiology in response to changes in nutrient environment [10]. Resource allocation models,
based on coarse-grained partitioning of the cellular proteome into a few functional components,
have provided a quantitative framework to predict how trade-offs between metabolic and gene
expression machinery of the cell regulate bacterial growth rate [11-15]. While these theories
are mostly focused on steady-state behaviours, recent studies have extended resource allocation
models to describe transitions between steady states [16-20]. Despite these advances, models
that only consider resource allocation of biochemical species are inadequate to describe physical
behaviours of the cell, in particular how cellular resources are used for the control of cell
shape, bioenergetics and mechanical activities. In addition, investigating perturbations from
steady-state requires adding more proteome sectors, which can quickly complicate the model
[20]. On the other hand, mechanical models of cell growth have been developed to describe cell
shape dynamics in growing bacterial cells [21,22], but they do not take into account biochemical
regulation and decision-making components of the cell. While each of the aforementioned
models function satisfactorily within their proposed scopes, they do not capture the interplay
between mechanical activity and biochemical regulation. To bridge this knowledge gap, we
introduce a new theoretical framework for bacterial growth and cell shape regulation based on
allocation of uptake energy for physical and biochemical processes, including growth, division,
storage and shape maintenance.

Through the optimization of energy flux for growth, we deduce the governing equations for
cell size, shape and division dynamics. Upon calibrating model parameters using experimental
data from the steady-state growth of the model organism Escherichia coli, we offer insights into
how cellular energy uptake is distributed among various physiological tasks under specific
nutrient conditions. Our theoretical framework aligns with multiple experimental observations,
yielding predictions that shed light on the underlying driving forces of these phenomena.
Our findings reveal a positive correlation between cell size and growth rate as a natural
outcome of energy flux optimization. Analysis of cellular metabolic rates yields a superlinear
scaling relationship between metabolic rate and bacterial cell size. Furthermore, our model
is adept at explaining complex transient behaviours observed in nutrient shift experiments
[17], where nutrients are added or removed during growth to study responses to dynamic
environments more similar to those found in nature. Fitting our model to nutrient shift data
[17,23], we find that overshoots and undershoots past the final steady-state growth rate stem
from disparate time-scales governing nutrient importation and changes in cell morphology.
Notably, we showcase the model’s flexibility in capturing the initial response to osmotic shocks
[24], where a change of the osmolarity of the growth medium perturbs the water content of
the cytoplasm, through manipulation of turgor pressure, highlighting its capability to predict
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energy reallocation under mechanical stress. Integrating the effects of both biochemical and
mechanical regulation of growth, our unified approach offers a modular framework with
broad applicability across organisms, offering a new perspective on the regulation of microbial
growth physiology.

2. Dynamic energy allocation theory

(a) Energy flux balance

The starting point of our theory is the condition of energy flux balance, such that the rate of
uptake of food energy, Ei,, is equal to the rate at which the consumed energy is used to fuel
cellular metabolic processes (Emet) plus the rate at which the accumulated energy is stored in
cellular biomass (Estored) [5],

dEi _ dEmet + dEstored
dt dr e

@.1)

For a growing and replicating bacterial cell, we assume that the metabolic energy, Emet, is used
for four major tasks: (i) Egowin energy used for cellular growth and biosynthesis; (ii) Eqiy,
energy expended for cell division; (iii) Emecn, mechanical energy expended for the maintenance
of cell shape, structure and size; and (iv) E4, the amount of energy lost due to dissipation. For
simplicity, we consider a non-motile cell and neglect energy due to locomotion. This simplifica-
tion is consistent with the non-motile strains of E. coli that we later use to calibrate the model. A
schematic depicting the coarse-grained energy partitioning scheme is shown in figure 1.

The coarse-grained energy components are functions of the state variables {g;(t)} that
represent the set of independent variables that describe the macroscopic state of the cell. For
a bacterial cell, these could be defined by cellular morphological parameters as well as the
abundance of proteins in a particular proteome sector. Having framed the central theoretical
concept of our model, we now turn to modelling the aforementioned components of cellular
energy.

(b) Modelling cellular energy components

Nutrient intake—Under the assumption that nutrient uptake occurs uniformly through the cell
surface [25], the total energy available to the cell from nutrient intake, Ej, is taken to be
proportional to the surface area S of the cell, such that Ej, = €S. Here, ¢ is proportional to the
surface concentration of nutrients, the surface density of transporters and net energy imported
per nutrient (benefit minus the cost of import). Note that, unlike the energy sectors that follow,
Ejy is a positive quantity rather than a cost. Both € and S can be time-dependent and will depend
on the bacterial species.

Stored energy—The stored energy in the cell is given by Egored =gV, where V is the cell
volume and g is the energy stored per unit volume of the biomass. Esred is a coarse-grained
representation of biochemical storage, including unmetabolized nutrients, amino acid precur-
sors, metabolic by-products, ATP concentration and enzymes produced for later use. While
approximating g to be a constant is sufficient to capture dynamics later in this work, there is
no biological reason that g cannot change over time, e.g. as the cell depletes nutrient reserves
under starvation conditions. The numerical value and the time-dependence of this parameter
may differ for various bacterial species and environments.

Turgor pressure—The energy due to turgor pressure is given by Epugor = —PV, where P is the
turgor pressure and V is the cell volume.
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Figure 1. Dynamic energy allocation theory. (a) A schematic depicting how a bacterial cell partition assimilated nutrient
energy into diverse cellular tasks. The energy utilized for growth, Eg,owth, is highlighted to indicate that it is optimized to
derive the governing equations of motion. (b) Energy allocation during cellular growth. The pie charts indicate fractions of
assimilated energy E;, utilized for each energy sector at growth rate = 0.9 h-1(i) and x = 2 h-1{ii).

Cell shape maintenance—The mechanical energy for maintaining the shape of the cell
envelope, Enedh, is given by the sum of the strain energy in the bacterial cell envelope (Estain),
and the bending energy required to maintain cell curvature (Ecury):

Emech = Ecurv + Estrain - (22)

For a rod-shaped bacterial cell approximated as a cylinder of length L and radius of cross-sec-
tion R, the curvature energy is given by
2

Ecury = %mRL(R™' - RY') (2.3)

where Ry is the preferred radius of cross section and x, is the bending rigidity. To compute
the strain energy in the cell envelope due to turgor pressure P, we assume that the rate of cell
growth is slower than mechanical relaxation, such that the cell envelope is always in mechanical
equilibrium. Treating each individual peptide cross-linker as a spring with stiffness k;, the strain

energy in the peptidoglycan cell wall can be expressed as Esyrain = %N oKsop(l— lp)*2mR, where N, A

is the number of glycan strands (with a layer of cross-linkers in-between each strand), p, is
the areal density of peptide cross-linkers, [ is the deformed length and [ is the undeformed
(rest) length of an individual cross-linker. Note that the cross-linkers all deform uniformly.
In mechanical equilibrium, balancing the forces from the cross-linker springs and the turgor
pressure yields the length deformation: [ - Iy = PR/(2ks0p). As a result, we can rewrite the strain
energy as:
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P°R®

Estrain = ngT( ik = /17-(R3L ’ (24)

sPp

where 1= Png/4kspp can be interpreted as the mechanical stress per unit circumference, and
Pg=N,/L is the line density of the glycan strands (assumed to be uniform). We note that
the scaling form for the strain energy in (2.4) agrees with previous calculations done using
thin shell elasticity theory for a rod-shaped bacterial cell [21]. Modelling geometries other
than cylindrical rods would require re-expressing these equations in terms of the appropriate
geometric variables.

Cell division—Bacterial cell division relies on a large protein complex called the divisome,
which orchestrates the assembly of the Z-ring around the mid-cell region [26]. The Z-ring is
composed of FtsZ filaments, capable of generating constrictive bending forces [27,28]. More-
over, the divisome triggers peptidoglycan synthesis and guides the formation of the septum
[29]. Previous work has demonstrated that FtsZ generates a small amount of mechanical force
that is insufficient to fully constrict the mid-cell [22,30,31]. Instead, the primary driving force
for cell constriction arises from cell wall synthesis at the septum [22,32,33]. Consequently,
we disregard the mechanical energy cost of Z-ring constriction and model the energy of cell
division as being driven by the synthesis of division proteins (e.g. FtsZ).

Defining X as the total abundance of division proteins, the energy for the synthesis of
division proteins can be written as:

Ediv = —,uX ; (25)

where p is the chemical potential for division protein synthesis. In most bacterial cells that
follow the adder mechanism for cell division control [10,34], cell division is triggered once a
threshold amount of division proteins is accumulated during the cell cycle [23,35-37]. Since
FtsZ abundance in the Z-ring reaches a fixed threshold prior to division [36], assume that the
threshold abundance of division proteins, Xy, is proportional to the cell diameter: X, =2mRy
[38], where y is the proportionality constant and R is the cell radius. Therefore, the energetic
cost of division during a cell cycle is = —2muyR.

Energy dissipation—Living cells can be considered as open thermodynamic systems that
dissipate energy as they grow and replicate [39]. For a growing bacterial cell, the rate of energy
dissipation (dEg4/dt) is a sum of energy dissipation rate due to mechanical (Dpmech) and chemical
components (Dchem):

% = Dimech + Dchem- (2.6)
In non-equilibrium thermodynamics, a commonly made assumption is that the energy
dissipation rate follows a quadratic relationship with the ‘rate’ of change in state variables [40—
42]. The dissipation rate of mechanical energy is thus taken to be proportional to the square of
the strain rate. Specifically, for a rod-shaped bacterial cell with length L and radius R, the strain
rates can be expressed as R/R and L/L where the dot denotes a time derivative. Consequently,
we formulate the mechanical dissipation rate as:

ol

where 7; and 7y are the viscosity parameters and Vj is the volume over which dissipation

1
Dinech = EVd s (27)

occurs. We take V; = hS, where h is the cell envelope thickness, and S = 2wRL is the surface area
of dissipation for a rod-shaped cell. Analogously, the dissipation rate of chemical variables of
the system can be assumed to follow a quadratic relationship with the square of the rate of
production of that chemical.
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1

Dchem = EV + contribution from other proteins, (2.8)

it

where £ is a constant and the contributions from other proteins will be discussed in §2f.
Therefore, the total dissipation rate due to cell envelope growth and division is:

m(%)sz(%)z X2 2.9)

+ 2>
2V
The above form for the total dissipation rate is consistent with thermodynamic principles since

dEq _ hS
dt 2

the resulting dissipative forces, —0E4/dq; are not symmetric under time-reversal.

Energy for growth—Cellular growth energy involves the energy required to synthesize
biomass and the surface area. Here, we do not directly define the growth energy, but instead
calculate it from the energy flux balance relation in equation (2.1). We can write the flux of
energy used for growth as:

Egrowth(ql‘/ ql) = E.'in - (Ediv + E-'cl + Emech + E.éfored) ’ (210)

where Egored = (8= P)V is the effective stored energy. In exponentially growing cells, Egrowth is
proportional to the growth rate x, which follows from the equations derived in §2d.

(c) Optimization principle

While equation (2.1) constitutes a general constraint for the cell, it is not sufficient to describe
the full dynamics of {g;(t)}. To derive the equations of motion, we impose a principle of power
optimization. In particular, for a growing bacterial cell, we hypothesize that the bacterium
maximizes the rate of energy (or power) utilized for growth:

Fgrowtn _ (2.11)
g; ’
where dot denotes time derivative. This implies that the dynamics of the system are determined
by the condition that the growth power, Egmwth, is a maximum with respect to ¢; where g;
represents the rate of change in the current state gy(t).

Maximizing the rate of energy utilized for growth is similar to the maximum power
principle often used in models of ecology and thermodynamics [43,44]. In the case of bacteria,
the rate of energy used for growth is proportional to the growth rate of the cell. The hypothesis
for maximizing the growth power is motivated by experimental observations that E. coli cells
evolve their metabolism towards a state that maximizes growth rate [45-48]. Furthermore,
previous work has shown that growth-rate maximization leads to the empirical growth laws
of bacterial cells [11,12,49,50]. It is important to note that the maximum growth power hypoth-
esis is only applicable for cells growing in medium to rich nutrient conditions. It may not
be applicable for bacteria under stress, such as under starvation, when cells may prioritize
maintenance over growth [51]. In addition, while differences in intra-species growth rate can
be driven by the suboptimal synthesis of proteins not utilized in the current growth conditions
[52], calibration of model parameters is strain-specific and the scope of our flux optimization
principle does not encompass longer-term evolution.

(d) Equations governing cell growth and shape dynamics

For a rod-shaped bacterial cell such as E. coli or Bacillus subtilis, the minimal set of state
variables required to describe its growth and division dynamics are the cell length L, radius R
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and division protein abundance X. Thus, q ={L, R, X}. Using equation (2.11), the condition for
optimizing growth power, we obtain:

OE growth

o /.- ., . . .
——— = _—(Ejn— - - Egiv— =0. 2.12
aqi aqz (Em Estored Emech Egiv Ed) 0 ( )

Since Ein, Egtored, Ediv and Emech are functions of g;s only, then Ein= Zi(bEm/aqi)qi, and similarly

for the rest. Therefore, the governing equations for the dynamics of g; are given by:

aEi _ aEétorecl + aEdiv + aEmech + aEd

—4 (2.13)
oq; oq; 0q; oq; aq;
As a first step, by optimizing Egrowth with respect to X, we can obtain:
dX _u.,
W = ?V = KPL P (2.14)

where we defined xp = TR*u/&, as the rate of division protein synthesis per unit length. Equation
(2.14) is identical to the model for volume-specific production of division proteins as considered
previously by several authors [15,23,35-37]. Using equations (2.10) and (2.11), we derive the
equations governing cell length and radius:

1dL _ oip U(R) _

ZE = ,ML(ZE 8 R T) =K, (215)
1dR , dU
Rdr F‘R(Z(E “&R) - d_R) ' (2.16)

where pu; = 1/2n:h, ug = 1/2ngh, U(R) = Emech(R, L)/TL, g' = g — P and « is the longitudinal growth
rate. From (2.16), we see that cells maintain a steady-state radius in a given growth condition to
minimize an effective potential E.i defined as:

Bt =~ / (2(s -gR)- j—g)dR =U-2R+gR*. (2.17)

With a fixed radius at steady-state, cell length increases exponentially as expected for rod-sha-
ped bacteria. Exponential growth is contingent on sufficient energy intake (per unit surface
area) ¢ such that x > 0. In other words, the energy flux into the cell must surpass the mechanical
energy costs and anticipated energy storage for the cell to grow. As seen in figure 24, in
nutrient-poor conditions, cells would need to decrease their stored energy density g (from
the value we will later extract from experimental data) to permit x > 0. Using equations (2.14)-
(2.16), we can simulate the dynamics of length, radius and protein abundance over multiple
generations of growth and division as shown in figure 2b,c. Division occurs once X reaches a
fixed threshold, as discussed earlier. Upon changes in growth rate, induced by changes in ¢, the
landscape for the effective potential changes such that cells find a new radius that minimizes
E.f as seen in figure 2d.

Before constraining the model parameters from experimental data, we can obtain some
general insights about the interdependence between cell size and growth. Increasing the
nutrient influx ¢ increases the growth rate x (2.15, figure 2b), as well as the division rate xp
(figure 2¢). As ¢ increases, we see that the steady-state value for cell radius R must increase to
compensate (figure 2d). Conversely, an increase in energy storage g (while keeping ¢ constant)
prompts a reduction in R. In simpler terms, a greater nutrient influx is associated with increased
cell width, while greater energy storage is linked to decreased width. As evident from equation
(2.15), the growth rate decreases with increasing mechanical energy. With an increase in either
the bending stiffness x, or the cell envelope stress 4, cell width would decrease as the energy
cost of maintaining a larger envelope is greater. Thus, without specifying the numerical values

!
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Figure 2. Single-cell growth dynamics in the energy allocation model. (a) Phase diagram showing regions of parameter
space permitting exponential growth. The dotted red line corresponds to the value g = 1.64 MPa determined from
experiment data, as discussed in §4. (b) Representative trajectories of cell length (using 2.15) for % = 0.9 h-1 (blue)
and % = 2 h-1 (red). Noise is included in the initial size of daughter cells and cell division ratio to illustrate model
stability. (c) Representative trajectories of division protein abundance (using 2.14) for % = 0.9 h-1 (blue) and % = 2 h-1
(red). (d) Effective potential energy landscapes (2.17) in nutrient-poor (x = 0.9 h-1, blue) and nutrient-rich environments
(x = 2 h-1, red). The minimum value of each curve corresponds to the steady-state radius.

for the parameters, cell width naturally increases with the growth rate in our model, consistent
with experimental data [53].

Unlike the control of cell width, the average cell length is set by the division protein
accumulation threshold, Xo, and the division protein production rate, xp. Integrating equations
(2.14), (2.15) across a cell cycle, we arrive at AL = Xok/xp, where AL is the length added over a
cell cycle. Thus, the added length AL increases with x. AL also increases as X, increases since the
cell needs to grow for longer to reach the threshold. Conversely, the increase in the production
rate xp leads to a decrease in AL.
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(e) Parameter determination

With the theoretical framework in place, we now turn to determining the model parameters
using available experimental data on the model organism E. coli. All the parameters discussed
in this section are listed in table 1 for ease of reference. These include mechanical, geometrical
and biochemical parameters of the cell. Figure 32 documents our procedure of parameter
determination.

Cell shape maintenance and turgor pressure—Several mechanical parameters such as the
bending rigidity x., cell-wall stiffness k; and turgor pressure P can be fixed from reported
measurements. From prior work, we estimate x.=0.03 MPa um3 [30], and assume that the
preferred radius of cross-section R is the same as the preferred radius of curvature for MreB
(200-400 nm [54]) which hold the circumferential structure of the cell wall. The parameter
A= Png/4kspp quantifies the mechanical stress on the cell envelope, which can be indirectly
estimated. Prior work on thicker Gram-positive cell walls has shown that k0, = 127 MPa [56] for
each layer, of which the Gram-negative E. coli has only one. The turgor pressure in E. coli cells is
P =0.3 MPa [57] and p, = 1000um-1 [56], leading to A = 0.18 MPa pm™,

Cell division—The chemical potential for division protein production can also be estimated
from available data. As discussed in §2b, to minimally model cell division mechanics we
consider the division protein FtsZ. Given that FtsZ contains 383 amino acids and consumes 4
ATP per added amino acid to a peptide chain [58], coupled with an energy output of 36 kJ
per mole of ATP, we deduce u =9.2 - 10° MPa- um3/FtsZ. Furthermore, there are approximately
3200 FtsZ molecules per cell [55]. Considering that 30% of the total FtsZ is present in the ring
[59], we can estimate the threshold abundance of FtsZ to be Xy =960. For E. coli cells with
radius R = 0.42um, we arrive at an approximate value of FtsZ abundance per unit circumference
y = 364 FtsZ /,tm_lp.

Intake, storage and dissipation— The model comes with several other unknown parameters that
may be dependent on the specific growth conditions. These include ¢ (energy intake per unit
area), g (stored energy density), u; (longitudinal mobility), uy (radial mobility) and «,, (division
protein synthesis rate). We can determine these parameters from given experimental conditions.
The first condition is that the radius measured under steady-state exponential growth [34], R*,
corresponds to the radius R that minimizes the effective potential in equation (2.17). Using this
condition, we obtain the energy intake per unit area &:

€=(g—P)R*+3/1R*2+E( 1_1 ) (2.18)

2 2\R? (RY
From experimental data on the steady-state exponential growth of bacterial cells [34], we have

the second experimental condition that L7YdL/dt = xp, where x; is the nutrient-specific growth
rate. Taken together with 2.15, we get:

2 “1 1\2 -1
Ur =1%o| — AR +2£—(g—P)R*—xC(R -Ry ) ) . (2.19)

To find the division protein synthesis rate x,, we integrate equations (2.14) and (2.15) with the
boundary condition that X = X = 2ntRy at the time of cell division. This yields,

2mRy
“p = TAL

x. (2.20)

Under fixed aspect ratio of E. coli cells [38], the above equation reduces to the condition of
balanced biosynthesis x, « x [36], i.e. division protein production rate is proportional to the
growth rate. Fits to experimental data for how steady-state cell radius (R*) and newborn length
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Figure 3. Calibration and inference of model parameters. (a) A schematic illustrating how the model parameters are
determined. (b) Dependence of steady-state cell radius on the nutrient-specific growth rate % for exponentially growing
E. coli in a variety of different nutrient conditions [34]. We fit the experimental data (open circles) using a linear model
R(x) = (0.1h - % + 0.195)um (solid line). () Measured values of newborn cell length L, of exponentially growing E. coli
in a variety of different nutrient conditions [34]. We fit the dependence of L, on growth rate using an exponential model
Ly(x) = 1.26pmexp (x - 0.33h). (d) Model-based inference of longitudinal mobility of the cell, u;, as a function of growth
rate, determined using equation (2.19). (e) Model-based inference of energy intake per unit area, ¢, as a function of growth
rate, determined using equation (2.18). (f) Model-based inference of the division protein production rate Xpasa function of
growth rate, determined using equation (2.20).

(Lo) change with growth rate are provided in figure 3b,c, which make predictions for how the
parameters yu;, € and x, change with growth rate (figure 3d).

Fitting parameters—The remaining two parameters up (radial mobility coefficient) and g
(stored energy density) are determined by fitting the model to experimental data on nutrient
shifts (see §4) using a least squares algorithm comparing the experimental and simulated
growth rate trajectories. uy controls how fast the cell radius adapts to a new steady-state value
when perturbed, but it does not influence the cell morphology or energies during steady-state
exponential growth. The value of u; depends on the type of perturbation, as seen later in §§4
and 5. While g also does not affect steady-state dynamics, it does affect the steady-state values
of Estored, and Egrowth. In §4, we discuss how g is extracted from nutrient downshift data. Note
that, unlike up, g does not change with x and thus does not depend on the nutrient-specific
growth rate.

(f) Scope of the model

Before discussing energy allocation principles and growth dynamics, we briefly discuss the
scope of our model and what we have not included explicitly in the model. A reader familiar
with cell division may note that FtsZ is not the only protein required for cell division. A more
complete representation of the energy put towards cell division would require estimating the
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Table 1. List of model parameters.

parameter value physical meaning source
1) varied steady-state growth rate initial
condition
RO .................... 03ymMreBradlusofcurvature ................................. [54] ..................
KC .................... oogMPaum3bendmgng|d|ty .............................................. [22] ..................
ksppmMPapeptldecrossl|nkerst|ffness ............................ [55] ..................
B T turgorpressure ................................................ [22] ..................
pgglycanlmedensny .......................................... [56] ..................
S 5103,,{menvelopeth|ckness .......................................... [22] ..................
y ..................... 364Ftsz/xm-‘d|V|S|onprotelnthreshold/length ................... [55] ..................
R*(01hx0+0195);1msteadystateradms .......................................... [34] ..................
L0126exp(033hk0um)newbornlength .............................................. [34] ..................
“ ..................... 9210*5Mpa,um3d|V|5|onprote|nchempotentlal ..................... R
S o18MPa/Mm3enveIopestress ................................................ e
77L1/2h,uLV|sc05|ty(|ength) ............................................. o
nR1/2h/,tRVISCOSIty(radIa|) .............................................. o
thSdlsmpatlonvqume .......................................... e
§ ...................... ,u/xpd|55|pat|onrateforprotelnproductlon ............ Py
Kp(220)d|V|S|onprotelnproductlonrate ...................... i
condition
yL(219)Iongltudmalmoblllty ...................................... o
condition
5(218)averageenergy|mport .................................... I
condition

synthesis cost (as discussed in §2e) for the entire divisome, as well as those associated with
DNA replication and maintenance metabolism that do not contribute directly towards cell
growth. Instead, what we depict here is a minimal model capable of capturing cell size control
through division. Crucially, we see that the dynamics resulting from growth flux optimization
for division proteins (2.14) is simply balanced biosynthesis [36], i.e. constant concentrations for
optimal exponential growth. The chosen example of FtsZ is illustrative of the behaviour of all
steady-state protein production; the other division proteins not mentioned explicitly likewise
adhere to balanced biosynthesis. While our numerical estimate is only for one type of protein,
capturing additional proteins does not change the qualitative trend of relative energy allocation
decreasing with growth rate, as depicted in figure 4b.

Similarly, the scope of our condition-dependent determination of intake energy (§2e) is not
the entire capacity of cellular metabolism. This is because equation (2.18) is only sensitive to
energy sectors that influence cell morphology (i.e. L and R). For a more comprehensive picture,
we can define the cost of whole-cell biosynthesis as Eotner = =) ; 14:X;, Where ; is the chemical

potential for synthesizing protein X;. Thus, the energy flux balance can be written as:
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Figure 4. Energy allocation trade-offs and metabolic scaling law. (a) Accumulated energy since birth as a function of time,
through two cycles of growth at % = 2 h-1. The intake energy (black line) is split among the various energy sectors, all of
which grow at a rate proportional to the L. (b) Energy in each sector, E;, normalized by the total intake energy, as a function
of growth rate. Egeu is calculated by subtracting all other energy sectors from Ej,. () Metabolic rate as a function of cell
volume, as defined in equation (2.1). Three curves are shown for different values of the stored energy density g, with the
green curve (g = 1.64 MPa) representing the scaling law observed experimentally (see §4). The scaling exponent is fit to
be approximately 1.56 for the experimentally determined value of g. Smaller values of g (red line) have a lower scaling
exponent while larger g (blue line) results in higher scaling exponents. (d)Metabolic scaling exponent as a function of g. The
scaling exponent 1.56 for the calibrated value of g = 1.64 MPa is marked with a solid green square.

Ei*n = E.'growth + Ediv + Ed + Emech + E;tored + Eother/ (221)

where Ej, can be interpreted as the complete intake energy of the cell, which is related to
Ein as Ei, = Ein — Eoher- As a result, both the growth energy (2.10) and the equations of motion
resulting from equation (2.11) remain unchanged.

Recent studies have incorporated aspects of energy flux modelling into proteome allocation
frameworks, allowing for a more detailed modelling of cellular metabolism [6] and phenotype
variability [7]. Explicitly modelling additional proteins of interest from Egher could extend our
minimal model to make predictions about such features of cell growth at the cost of tractability.
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While our model is calibrated on cells grown in various nutrient conditions, dependence of
cell morphology on growth rate differs when growth rate is controlled by modulating useless
protein expression [60]. Increasing useless protein expression would correspond to increasing
Eother (as these proteins would not be contributing to growth). For a fixed intake energy EL,
this would lead to a decrease in Egrowth and the resulting growth rate as expected. Furthermore,
holding the total amount of intake energy, E:, fixed while increasing Eother would result in

decreasing the intake energy available for growth processes, Ej,. This would in turn be expected
to decrease the radius as seen in equation (2.16) by decreasing €. Given that overexpression of
useless proteins increases cell size by increasing cell length at birth/division [61], our model
predicts that the surface-to-volume ratio would decrease in these conditions.

3. Energy allocation strategies and metabolic scaling law

(a) Trade-offs in energy allocation

After determining the model parameters in various growth conditions, we employ the model
to predict the evolution of cellular energies throughout the cell cycle and their dependence
on growth rate. As cells elongate, energy in each sector accumulates in proportion to cell size
(refer to §2b and §2d for definitions). Consequently, the energy of each sector E(t) increases
over the course of the cell cycle (figure 4a) and is then split equally among the daughter cells at
division. The rate at which energy accumulates in each sector, Ej, is directly proportional to L, as
the energies themselves are proportional to L, thereby ensuring that the allocation to different
sectors remains independent of the cell cycle. In other words, our model predicts no shifts in
energy densities (E;(t)/L(t)) in exponentially growing cells at steady-state.

In terms of the absolute values, all energies increase as a function of growth rate x, since cell
length and radius both increase with x. However, normalizing cell-cycle averaged accumulated
energy by the intake energy is more insightful, as it indicates how intake energy is allocated in
different sectors (figure 4b). We thus define energy fractions relative to the intake energy as:

& = JodtE(t)
fgthin(t) '

where i €{’growth’, ‘stored’, “‘mech’,’div’,’d’} and 7 is the cell cycle duration. As x increases,
we see a minimum of Epech at growth rate for cell radius R = Ry, with greater energy costs the

3.1)

further the cell deviates from that optimum growth rate (figure 4b). €4y decreases with growth
rate, as Egiy/Ein decreases with cell size («x 1/V, figure 4b). Notably, cells waste more energy
through dissipation (€4) during faster growth, given the nonlinear scaling of Eq with cell size.
The dissipation fraction predicts that the growth efficiency of E. coli, 1 — &g, ranges from around
85% at slower growth conditions to around 81% in fast growing conditions. One of the more
drastic changes is a decrease in Egored With growth rate (figure 4b), as cells utilize a greater
fraction of the overall intake energy during fast growth conditions. Together, the changes
in these sectors result in an increase in the growth energy fraction, Egowiny When cells are
exposed to more optimal growth conditions. These predicted changes in energy fractions with
growth rate are reminiscent of changes in proteome fractions with growth rate [11,12,62,63].
While the quantitative relation between proteome mass fractions and energy fractions is not
yet established, the proteome fraction of the proteins regulating cell growth, such as ribosomal
proteins, increases and then saturates with growth rate [63] similar to how the energy fraction
allocated to growth changes with growth rate.
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(b) Scaling of metabolic rate with cell size

The scaling of metabolic rate with organism size represents a fundamental characteristic trait of
living organisms. It has been shown previously that the metabolic rate of birds and mammals
follows a scaling law of three-fourth power relative to body size [64]. By contrast, microorgan-
isms like bacteria display superlinear scaling of metabolic rate with cell size [65]. The biophys-
ical origin of this superlinear scaling remains a mystery and to date, there is no mechanistic
model explaining this scaling relation. Our theory now enables us to directly compute the
metabolic rate, Ene, and investigate its scaling relations with cell size under various parameter
values. Crucially, as elaborated below, our findings indicate that the superlinear scaling of
metabolic rate with cell size naturally emerges from the increase in bacterial cell size with
growth rate.

Using the equation for metabolic rate as defined in equation (2.1), and substituting our
expressions for Ej, and Egioreq, We have:

dEmet
dt

=xV[2¢/R - (g - P)]. (3.2)

If ¢ and g were both independent of growth rate, one might expect the metabolic rate to

decrease with cell size, since the positive term scales like R However, ¢ is growth rate-depend-
ent and thus increases with cell size. Substituting the expression for ¢ in equation (2.18) into
equation (3.2), we get:

dEmet _

ar xV

g—P+3/1R+Kc(R2LRO - %)] 3.3)
Using this expression, we see that the metabolic rate scales approximately as a power of cell
volume (figure 4c). Since V(x) is concave (as L(x) is exponential, figure 3b—c), x(V) is sublinear
and contributes to the overall superlinear scaling. Conceptually, the parameter g plays a role
in determining this scaling as it controls both Egoeq and € (see equation 2.18). As shown in
figure 4d, smaller values of g correspond to higher scaling exponents and larger values of g
correspond to smaller scaling exponents. In other words, a greater amount of energy stored in
the cellular biomass naturally corresponds to a lower metabolic rate. Analytically, we see that
if g dominates equation (3.3), then the scaling exponent is less influenced by the terms that
have R dependence. At R = Ry, the g, 4, k. terms in (3.3) are approximately 1.64, 0.16 and 0 MPa,
respectively. Even when R deviates from R;, we see that g is an order of magnitude larger than
the second largest term.

Regardless of the parameter choices, our model always predicts superlinear scaling of
metabolic rate with cell size for bacteria. This is in contrast to animals [5] and other microorgan-
isms [65], which typically exhibit sublinear scaling. The key distinction that sets bacteria apart
is that growth rate increases with cell size. Independence of growth rate and cell size would
result in nearly linear scaling as g dominates the terms (3.3), whereas a decreasing cell size with
growth rate would instead result in sublinear scaling of metabolic rate with cell size.

Recent experimental findings have indicated that populations of E. coli can exhibit sub-
linear metabolic rate scaling during long-term evolution experiments [66]. Our model does
not account for inter-cellular interactions within the community (e.g. crowding and nutrient
access), as well the limitation of the DNA-to-protein ratio. In other words, as cell becomes
larger in these evolution experiments, the amount of DNA per cell does not change, which
is not captured in our model. In addition, as mentioned in §2c, our optimization principle
captures changes in phenotype rather than genotype. Our superlinear-scaling prediction is a
natural consequence of exponential growth and applicable to bacteria in general, as seen in
the aforementioned inter-species scaling [65], with the exact scaling exponent tuned by model
parameters.
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4. Dynamic response to nutrient shifts

With an understanding of cellular energy allocation strategies during steady-state exponential
growth, we turn to modelling cellular response to perturbations about steady-state. To this end,
we first inquired whether our model is capable of predicting growth rate dynamics in response
to rapid shifts in nutrient quality in the growth medium. The change in nutrient quality can
be simulated by dynamically changing the parameters ¢ (2.18) and y; (2.19), since they are
dependent on the nutrient-specific growth rate (see figure 3d,¢). As a simple way to represent
a gradual time-dependent response, we model nutrient-induced changes in € and y; as logistic

functions,
e &
&) =g+ e (4.1a)
_ ML, f~ ML,i
ul) = bt 75 i (4.1b)

where the subscript i corresponds to the initial value of the parameter and f corresponds to
the final value, 6 is the steepness of the function and f, is the time when the shift is applied.
As indicated in equations (2.15) and (2.16), the changes in € and y; gradually bring the growth
rate and cell size to the new steady state. The parameter up introduced in equation (2.16)
governs the rate at which the cell radius reaches the new equilibrium value after the shift,
while the undetermined parameter g controls the timescale over which the growth rate attains
the new steady-state value. Consequently, for a given nutrient shift, we have a total of four
undetermined parameters: 6, to, uz and g, all of which are determined through fitting the model
predictions for the growth rate to experimental data [17].

Figures 5 and 6 show the model predictions for cell size and growth rate dynamics during
nutrient upshifts and downshifts, respectively. The model is fitted to experimental data from
Erickson et al. [17], and the comparisons for growth rate dynamics during nutrient upshift and
downshift are presented in figures 52 and 6a, with corresponding predictions for cell radius
R(t) and energy intake &(f) shown in figures 50 and 6b. During nutrient upshift, the growth
rate changes gradually (figure 5a), and R(t) closely follows the trajectory of £(t) (figure 5b). By
contrast, during a nutrient downshift, the growth rate initially decreases sharply, undershoots
the new steady-state, and gradually rebounds to a new steady-state (figure 6a). Unlike the
upshift, £(t) quickly adjusts to its new value, while R takes hours to reach the new steady-state
(figure 5b). Our model suggests that the difference between upshift and downshift dynamics
is influenced by the timescale at which nutrient import (¢) stabilizes to the new steady-state
and whether or not there is a lag between ¢ and cell radius R. In a nutrient downshift, nutrient
removal (€) occurs much faster than growth, resulting in a temporal lag between ¢ and R (figure
6b). Conversely, during an upshift, while the new nutrients become available externally at a
similar timescale to the downshift, cells may need to upregulate nutrient import and protein
synthesis to fully utilize their richer environment. These processes are inherently connected to
cell growth and cell envelope synthesis, leading to no observed lag in € and R (figure 5b).

To examine how changes in model parameters impact the response to nutrient shifts, we
simulated single nutrient upshifts and downshifts with varying values of uy (figures 5c and 6¢)
and g (figures 54 and 6d). In upshift simulations, reducing py from the fitted value introduces
a lag between ¢(t) and R(t), causing &(t) to reach the new steady-state value before R(t). This
results in a trajectory with an overshoot in growth rate and an increased time needed to settle
into the new steady-state (figure 5c). Similarly, decreasing g from the fitted value also leads to a
growth rate overshoot (figure 54), while increasing g does not qualitatively alter the growth rate
trajectory and is essentially equivalent to delaying the time of the upshift. We note that growth
rate overshoots have been reported recently in microfluidic nutrient upshift experiments [23].
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Figure 5. Modelling response to nutrient upshifts. (@) Growth rate versus time for a representative nutrient upshift
experiment, with the experimental data shown in black solid circles and model fit shown by the solid black line. The sample
experimental data, taken from Erickson et al. [17], are for the E. coli strain NCM3722, grown in 20 mM succinate with a
co-utilized substrate of 0.2% glucose added/removed at ¢ = 0 for the upshift/downshift. Growth rate x is calculated by
integrating equation (2.15). The fitting parameters are 6 = 3.1 h-1, 1 = 100 MPa-1h-1m-1 and g = 1.64 MPa. The
white background indicates pre-shift and the grey region indicates post-shift environment. (b) Predicted trajectory of cell
radius R, and energy intake per unit area, €, as functions of time for the data shown in panel (a). (c) Predicted growth rate
dynamics during nutrient upshift for different values of up. (d) Predicted growth rate dynamics during nutrient upshift for
different values of g.

In nutrient downshift simulations, increasing (decreasing) uy decreases (increases) the time
required for the growth rate to attain the new steady state, without altering the amplitude of the
undershoot (figure 6¢). Conversely, smaller values of g result in a more pronounced undershoot
in the growth rate, while the time to reach the new steady state remains unaffected (figure 6d).
We observe that g is the sole parameter governing the depth of the growth rate undershoot in
response to nutrient downshifts, enabling us to deduce its value through model fitting to data.
Utilizing multiple nutrient downshift datasets from Erickson ef al. [17], we do not observe a
dependence of the fitted value of g on the initial and final growth rates. Fitting three datasets
yields g=1.58, g=1.61 and 1.73 MPa, which are not correlated with the magnitude of the
downshift or initial growth rate in the available data. This is not unexpected as g is a stored
energy density rather than the absolute stored energy, which is influenced by initial and final
growth rate-dependent cell size. Consequently, we used the average fitted value of g (= 1.64
MPa) for the majority of simulations in this paper.
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Figure 6. Modelling response to nutrient downshifts. (a) Growth rate versus time for a representative nutrient downshift
experiment, with the experimental data shown in black solid circles and model fit shown by the solid black line. The fitting
parameters are 6 = 10° h-1 (effectively a step function in &), ux = 0.32 MPa-th-1um-1and g = 1.58 MPa. (b) Predicted
time evolution of R and ¢ for the nutrient downshift data shown in panel (a). (c) Predicted growth rate dynamics during
nutrient upshift for different values of ux. (d) Predicted growth rate dynamics during nutrient upshift for different values of

8.

As growth rate and cell size change in response to a nutrient upshift, the cell’'s energy
allocation strategies follow the anticipated growth rate dependencies, as shown in figure 4.
However, this pattern does not hold for a downshift due to the disparate adaptation timescales
of R and ¢. The ¢ dependence is solely present in Ej,, resulting in a rapid reduction in intake
energy at t =0, while the other energy sectors remain unaffected as R has not yet changed.
Consequently, Egiv, Emechy Estored and Eq temporarily account for a larger fraction of Ej,. As a
result, there is a diminished fraction of Ej, available for growth compared with the steady-state
scenario, leading to the observed undershoot.

5. Adaptation to osmotic shocks

An advantage of the energy allocation theory is that it provides a unified framework to study
both mechanical and biochemical perturbations. Here, we employ the model equations to study
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cellular growth response to osmotic shocks. Hyperosmotic shocks, characterized by increases
in external osmolarity, result in an immediate reduction in cytoplasmic water content, lead-
ing to a decrease in growth rate and eventual plasmolysis for sufficiently prolonged shocks
[24]. Conversely, hypoosmotic shocks, involving a decrease in external osmolarity, lead to
an immediate increase in cytoplasmic water content and subsequent adaptation, with cells
ultimately relaxing their growth rate to a sustainable value closer to the prior steady-state
[24,67]. Changes in external osmolarity directly impact the turgor pressure term in the energy
function, consequently changing the strain energy Esain and the resulting equations of motion.
Therefore, given that pressure changes initially occur on a timescale shorter than cell growth,
we begin by examining the effects of rapid changes in turgor pressure on cellular growth and
shape.

(a) Hyperosmotic shocks

We first consider the case of a hyperosmotic shock, which is modelled as a step-function
decrease in turgor pressure from its initial value Py to a final value Py (figure 7a). This results in
a sharp decline in the growth rate, followed by a gradual recovery to a new steady-state value
below the pre-shock level (figure 7). The extent of recovery depends on the shock magnitude;
if the shock is mild, the growth rate fully returns to the pre-shock value (figure 7a,b). The
reduced pressure also drives a gradual reduction in cell size, with both cell length and radius
decreasing to a new steady-state value post-shock (figure 7c,d). The reduction in cell radius
facilitates growth rate recovery over time, given the negative feedback between x and R as
evident from equation (2.15). Moreover, the decreased radius reduces the length increment
during the cell cycle, as the threshold amount of division proteins Xj is proportional to the
cell radius. However, this reduced cell radius contradicts experimental data [68], where it is
observed that the cell radius eventually returns to its pre-shock value. Additionally, the growth
rate is observed to return to its pre-shock value even for substantial shock magnitudes [24].

To capture turgor pressure and cell shape recovery post-hyperosmotic shocks, we examined
a model of osmoregulation where turgor pressure relaxes back to its steady-state value Py
according to the equation:

d—}; = _Tlp(P_PO) , (5.1)
where 7, is the time constant for relaxation. This model draws inspiration from the fact that
bacterial cells possess a diverse set of osmoregulatory proteins that regulate turgor pressure
homeostasis [69]. If cells undergo osmoregulation during the adaptation to osmotic shocks [70],
both the radius and growth rate recover to their respective pre-shock values as P returns to Pj.

Additionally, if the timescale of radius changes (determined by UR') is sufficiently larger than
the timescale of osmoregulation, the period during which pressure has recovered but radius
has not corresponded to an overshoot in growth rate (figure 7b), consistent with experimental
observations [24]. Our model thus predicts that the overcorrection in growth rate following
hyperosmotic shocks is a result of the mismatched timescales of pressure and morphological
changes.

(b) Hypoosmotic shocks

In the case of hypoosmotic shocks, while small step function increases in pressure cause
increases in growth rate (figure 8a—d), there is no growth rate recovery as is seen for hyperos-
motic shocks. On the other hand, large pressure perturbations yield unexpected effects: cells
initially shrink rather than swell and can reach new steady-state growth rates that are negative.

This arises from the dominance of the P? term in strain energy over the turgor pressure energy
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Figure 7. Adaptation to hyperosmotic shocks. (a) Change in turgor pressure (AP = Py — Py) versus time plots under
a hyperosmotic shock. The white region indicates the pre-shock period and the grey region indicates the post-shock
environment. Osmoregulation is modelled here as an exponential relaxation of turgor pressure back to the pre-shock pressure

Py = 0.3 MPa with a decay constant rl‘ﬂ = 20 h-1. (b) Growth rate versus time plots of corresponding to the pressure

perturbations in panel (a). (c) Representative cell length trajectories corresponding to the pressure perturbations in panel (a).
(d) Cell radius versus time plots corresponding to the pressure perturbations in panel (a).

—PV for large values of the final turgor pressure P;. In other words, the cost of increased cell
size can outweigh the minimization of energy from relieving pressure in the model. Even when
pressure naturally relaxes due to volume changes and osmoregulation (figure 81), the observed
behaviour resembles that of a hyperosmotic shock, with an initial sharp decline in growth rate
and cell size followed by an overshoot in growth rate to the new steady-state (figure 8b—d). The
value of P; chosen for these simulations is large enough that the growth rate stabilizes to a
negative value, indicating an unstable state within our model where the cell would either die or
the optimal growth flux assumption is no longer valid.

To more realistically model cellular response to hypoosmotic shocks within our theoretical
framework, we need to consider potential changes in the mechanical properties of the cell wall.
Recent work has both measured and modelled the softening of the cell wall in response to
hyperosmotic shocks [68]. This prompts us to explore alterations in cellular strain energy under
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Figure 8. Adaptation to hypoosmotic shocks. (@) Change in turgor pressure (AP) versus time plots for a bacterial cell
under a hypoosmotic shock. The white region indicates the pre-shock period and the grey region indicates the post-shock
environment. Osmoregulation is modelled here as exponential decay of the post-shock turgor pressure back to the pre-shock

pressure Py = 0.3 MPa with a decay constant rlj = 400 h-1. Temporary stiffening of the cell envelope is also modelled as

exponential decay from the perturbed value A/P? = 0.23 MPa-1h-1 back to the pre-shock value with a decay constant 50
h-1. (b) Growth rate versus time plots corresponding to the pressure perturbations in panel (a). (c) Representative cell length
trajectories corresponding to the pressure perturbations in panel (a). (d) Cell radius versus time plots corresponding to the
pressure perturbations in panel (a).

hypoosmotic shocks, which is governed by the parameter 1 = Png/4kspp (see 2.4). In contrast to
hyperosmotic shocks, if the cell envelope stiffens under hypoosmotic shock (increased k) as it is
stretched beyond the usual regime, 1 would be expected to temporarily decrease. This decrease
in 4 could also result from a reduction in the glycan strand density (o,) as the cell temporarily
swells at a greater rate than the synthesis of glycan strands.

We thus dynamically increased cell-wall stiffness k; during a hypoosmotic shock, using the
same exponential relaxation form as in equation (5.1), with an independent decay constant. As
shown in figure 8a—d, incorporating such a temporary increase in stiffness k, simultaneously
with the increase in P results in the initial swelling of the cell as expected. This is followed
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by a relaxation of growth rate and cell sizes to a similar value as the pre-shock rate, with the
potential for an undershoot in growth rate depending on ug. The value of P, chosen for this
figure generates growth-rate trajectories that resemble the scale of the experimental data [24],
indicating that the pressures required for the osmoregulation model to match data would not
be stable growth conditions for non-osmoregulating cells. We thus predict that a temporary
stiffening of the cell wall is essential to capture the experimentally observed growth rate
dynamics [24] in response to a hypoosmotic shock. This prediction could be tested in future
experiments.

6. Discussion

All living organisms rely on energy assimilation and the efficient allocation of acquired
energy to perform various physiological tasks. While theoretical models connecting energy,
metabolism and growth have been developed for birds and mammals [1-5], understanding
energy allocation strategies in microorganisms has remained an open problem. In this paper,
we address this gap by developing a theoretical framework for energy allocation in growing
bacterial cells based on optimizing the rate of energy used for growth. We partition the use of
imported energy into cellular metabolism and energy storage, with the former further divided
into energy for growth, division, shape maintenance and dissipation. Optimizing the energy
flux to maximize growth results in equations of motion for cell size and protein production,
predicting an increase in cell size with growth rate. While most of the model parameters can
be directly estimated from published data on E. coli, a few are calibrated from experimental
conditions or are determined by fitting the model to perturbation experiments.

Analysing the energy dynamics throughout a cell cycle, we observe that the rate at which
each energy sector accumulates energy is directly proportional to cell size. Across various
growth environments, the fraction of energy utilized for mechanical tasks exhibits a minimum
at a preferred cell size, while growth energy and dissipation increase with nutrient quality,
trading off with stored energy and division. Notably, the fraction of energy allocated to growth
increases with growth rate, consistent with the observation that the ribosome mass fraction also
increases with growth rate [11].

An important implication of our theory is that it provides a rationale for the nonlinear
increase in metabolic rate with cell size in bacteria [65]. Without incorporating additional
regulatory mechanisms, our model predicts a superlinear scaling of metabolic rate with cell
size, with a tunable scaling exponent determined by changes in stored energy density g. This
superlinear metabolic scaling arises from the increase in cell size with growth rate. If cell size
were independent of growth rate, a linear scaling of metabolic rate with cell size would be
expected. Conversely, a decrease in growth rate with size would result in sublinear metabolic
scaling.

Given the dynamic formulation of our model, it is well suited to capture cellular behaviours
out of steady state, such as during nutrient shifts. We find that our postulate of growth energy
flux optimization is capable of capturing these transient dynamics. In nutrient upshifts, we find
that nutrient import and cell size both steadily increase together during the shift, whereas in
nutrient downshifts we can capture the observed undershoot in growth rate due to nutrient
importation decreasing on a faster timescale than cell size.

The predicted behaviours of our model for nutrient shifts align with proteome partitioning
models, where changes in growth rate are driven by shifts in proteome allocation, translation
rate and amino acid precursor levels [17,20,49]. A valuable comparison can be drawn between
the energy allocation framework and proteome allocation models. In the latter, dynamics of
proteome reallocation aim to maximize growth rate in the new environment, akin to our
model where energy reallocation is dictated by the maximization of energy flux for growth,
directly proportional to the growth rate. Although we do not explicitly model the allocation
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of ribosomal proteins that increases with nutrient quality, the increase in energy allocation
to growth could be interpreted as originating from an increased mass fraction of ribosomal
protein sector. Furthermore, the decrease in energy allocation to the division sector with growth
rate is consistent with a reduced allocation to the division protein sector in proteome-centric
models [20,37]. The increase in nutrient import with growth rate corresponds to an elevated
flux of amino acid precursors, resulting in a higher amino acid mass fraction during faster
growth. From a proteome theory perspective, the observed growth rate undershoots in nutrient
downshifts may be explained by a temporary undershoot in the amino acid mass fraction,
as precursors are depleted faster than they are imported. This interpretation aligns with our
model, where nutrient import decreases rapidly while cell size and associated energy costs lag
behind.

One of the advantages of using the energy-based model as opposed to a proteome parti-
tioning theory is that we can investigate the cellular response to mechanical perturbations
without adding any new components to the model. By perturbing the turgor pressure, we
can effectively capture the cellular response to hyperosmotic shocks with partial growth rate
recovery and capture complete recovery if osmoregulation is taken into account. We find that
osmoregulation is necessary to model hypoosmotic shocks, as well as changes to the mechan-
ical properties of the cell wall. Recent work has elucidated that Gram-positive cells employ
a feedback loop to sustain growth homeostasis following osmotic shocks [67]. As pressure
changes cause expansion or contraction of the cell wall, altering membrane tension, this tension
inversely influences precursor flux, thereby regulating growth rate to maintain homeostasis
between wall and membrane synthesis. Although our model inherently includes feedback
between mechanical stress, growth and cell size, we currently lack feedback between nutrient
import and mechanical stress in the cell envelope. To accurately model osmotic shock behaviour
in Gram-positive cells, it might be essential to integrate such a feedback system into our model.

Beyond addressing the cellular response to nutrient or osmotic stresses, our model holds the
potential to investigate various environmental perturbations, including temperature changes
[71] and stresses induced by antibiotics affecting cell growth and cell envelope properties [72—
75]. Permitting gradual adaptation of calibrated biophysical parameters to simulate changes in
genotype could allow for exploration of long-term behaviour. The theory is not constrained
by the shape of the cells [22] and the equations of motion can be easily developed for spher-
ical or curved bacteria as well as cells with non-uniform shapes. This adaptability enables
the application of the model to a diverse array of cell morphologies, such as flattened bac-
teria experiencing mechanical stress [76]. Moreover, recent experimental findings [77] reveal-
ing non-monotonic changes in ATP concentration between cell birth and division suggest a
promising avenue for refining our understanding of energy utilization throughout the cell cycle
by establishing connections between metabolic energy and ATP production.
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