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Abstract. The central question of knot theory is that of distinguishing links up to isotopy. The first

polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928).
Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture

(1962) that the absolute values of the coefficients of the Alexander polynomial ∆L(t) of an alternating link

L are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for
two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsváth and Szabó

(2003) for the case of genus 2 alternating knots, among others.

We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate
generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we

obtain that the absolute values of the coefficients of ∆L(t), where L is a special alternating link, form a

log-concave sequence with no internal zeros. In particular, they are unimodal.

1. Introduction

The central question of knot theory is that of distinguishing links up to isotopy. Knot invariants are
devised for this purpose. The Alexander polynomial ∆L(t), associated to an oriented link L, was the first
polynomial knot invariant, discovered in the 1920s [Ale28]. The key property of the Alexander polynomial
is that if oriented links L1 and L2 are isotopic, then ∆L1(t) = ∆L2(t) up to multiplication by ±tk for some
integer k.

The coefficients of ∆L(t) for an arbitrary link L are palindromic. In 1962, Fox [Fox62] conjectured that
for alternating links, the absolute values of the coefficients of Alexander polynomials are unimodal. For
alternating links L, [Cro59, Mur58a, Mur58b] show that the Alexander polynomial can be normalized so
that ∆L(−t) ∈ Z≥0[t] and that its sequence of coefficients contains no internal zeros. With this normalization,
we can write Fox’s conjecture as:

Conjecture 1.1. [Fox62] Let L be an alternating link. Then the coefficients of ∆L(−t) form a unimodal
sequence.

The conjecture remains open in general, although some special cases have been settled by Hartley [Har79]
for two-bridge knots, Murasugi [Mur85] for a family of alternating algebraic links, and Ozsváth and Szabó
[OSz03] for the case of genus 2 alternating knots, among others. That Fox’s conjecture holds for genus 2
alternating knots was also confirmed by Jong [Jon09]. At the 2018 ICM, June Huh highlighted this sequence
as one of “the most interesting sequences that are conjectured to be log-concave” [Huh18]. Huh was referring
to Stoimenow’s [Sto05] strengthening of Fox’s conjecture from unimodality to log-concavity.

In this paper, we show:

Theorem 1.2. The coefficients of the Alexander polynomial ∆L(−t) of a special alternating link L form a
log-concave sequence with no internal zeros. In particular, they are unimodal, proving Fox’s conjecture in
this case.

Inspired by Crowell’s combinatorial model for the Alexander polynomial of alternating links [Cro59], we
study a homogeneous multivariate polynomial which we term the M -polynomial (because its support is
M -convex). This polynomial previously appeared in the works of Kálmán [Ká13] and Juhász, Kálmán, and
Rasmussen [JKR12]. We discovered the M -polynomial via Crowell’s construction. We prove that the M -
polynomial specializes to ∆L(−t) for special alternating links L. We also prove that the M -polynomial is
denormalized Lorentzian, opening the door to use the powerful theory of Lorentzian polynomials developed
by Brändén and Huh [BH20]. Lorentzian polynomials were independently developed by Anari, Liu, Oveis
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Gharan and Vinzant [AGV21, ALGV19, ALGV18] under the name of completely log-concave polynomials.
Relying on the theory of Lorentzian polynomials, we prove that the coefficients of the Alexander polynomial
∆L(−t) of a special alternating link L form a log-concave sequence with no internal zeros.

Roadmap of the paper. In Section 2, we review the necessary background for the paper. In Section
3, we show that the M -polynomial arises naturally from Crowell’s model of the Alexander polynomial of
alternating links. In Section 4, we prove Theorem 1.2.

2. Background

In this section, we collect the most important results and notions used in our paper: (1) Crowell’s model
for the Alexander polynomial of alternating links; (2) the construction of special alternating links from planar
bipartite graphs; (3) background on M -convex sets; (4) background on the theory of Lorentzian polynomials.

2.1. Crowell’s model. We will use the following combinatorial model for the Alexander polynomial of
alternating links due to Crowell [Cro59]. Recall that a link is alternating if it has an alternating diagram.

Let G(L) be the planar graph obtained by flattening the crossings of an alternating diagram of L; the
crossings of L are the vertices of G(L) while the arcs between the crossings are the edges of G(L). Note that
G(L) is a planar 4-regular 2-face colorable graph. Next, we assign directions to the edges of G(L) – but not
those coming from the orientation of the link – as well as weights in the following way:

becomes
1

−t

On the left, we see the orientation of the link L in an overcrossing, and on the right, we see how the edges

of G(L) are directed and weighted. Denote by
−−−→
G(L) the oriented weighted graph obtained from G(L) in this

fashion. Let var(e) be the weight −t or 1 assigned to the edge e ∈ E(
−−−→
G(L)). See Figure 1 for a full example.

Theorem 2.1 ([Cro59] Theorem 2.12). Given an alternating diagram of the link L, fix an arbitrary vertex

r ∈ V (
−−−→
G(L)). Denote by A(L, r) the set of arborescences of

−−−→
G(L) rooted at r. The Alexander polynomial of

L is:

∆L(t) =
∑

T∈A(L,r)

∏
e∈E(T )

var(e).

Recall that an arborescence rooted at r is a spanning tree in which there is a unique directed path to
any vertex from the root r.

2.2. Special alternating links. We follow the construction presented by Juhász, Kálmán, Rasmussen
[JKR12] and Kálmán, Murakami [KM17], associating a positive special alternating link LG to a planar
bipartite graph G. Let M(G) be the medial graph of G: the vertices of M(G) are the edges of G, and two
vertices of M(G) are connected by an edge if the edges of G that they come from are consecutive in the
boundary of a face of G. We think of a particular planar drawing of M(G) here: the midpoints of the edges
of the planar drawing of G are the vertices of M(G). Thinking of M(G) as a flattening of a link, there
are two ways to choose under and overcrossings at each vertex of M(G) to make it into an alternating link
LG. We select the over and undercrossings and orient LG so that each crossing is positive. This procedure
yields a positive special alternating link. Moreover, any positive special alternating link arises from such a
construction. Figure 1 shows an example of this construction.

If the link associated to the planar bipartite graph G as above is instead oriented so that every crossing
is negative, we obtain a negative special alternating link and denote it Lneg

G . All special alternating links are
either positive or negative.
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Figure 1. A planar bipartite graph along with its associated positive special alternating

link LG. On the right, we show
−−−−→
G(LG), oriented and weighted as in Crowell’s model.

2.3. M-convex sets. Let N = {0, 1, 2, . . .}, and denote by ei the ith standard basis vector of Nn. A subset
J ⊆ Nn is called M-convex if for any index i and any α, β ∈ J whose ith coordinates satisfy αi > βi, there
is an index j satisfying

αj < βj , α− ei + ej ∈ J, and β − ej + ei ∈ J.

A wealth of information on M -convex sets can be found in [Mur03]. We emphasize here that the sum of the
coordinates of the integer points in an M -convex set J is a fixed constant. We also provide below a point of
view through generalized permutahedra.

Convex hulls of M-convex sets are well-studied integer polytopes called generalized permutahedra. The
name generalized permutahedron was coined by Postnikov [Pos09] since, as we explain below, we can see these
polytopes as generalizing the standard permutahedron Πn. Generalized permutahedra have been studied
since the 1970s in the combinatorial optimization literature under various names such as base polytopes
and polymatroids (see [Fra11, Sch03]). The standard permutahedron Πn ⊂ Rn is the convex hull of all
permutations of the vector (1, 2, . . . , n). Note that Πn lies in the hyperplane x1+x2+ · · ·+xn =

(
n+1
2

)
. The

edge directions of Πn are all in root directions ei − ej for i, j ∈ [n]. A generalized permutahedron can be
defined as a polytope with all edge directions parallel to ei − ej for i, j ∈ [n]. All integer points of an integer
generalized permutahedron in Rn, which are exactly the points in an M-convex set (possibly translated in
order to lie in Nn), lie in a hyperplane x1 + x2 + · · ·+ xn = c for some constant c ∈ Z.

M-convex sets, or equivalently, integer points of integer generalized permutahedra, play a fundamental
role in the theory of Lorentzian polynomials. The latter theory is the first comprehensive tool for proving log-
concavity results, introduced in the seminal work of Brändén and Huh [BH20]. All Lorentzian polynomials
have supports that are M-convex. Recall that the support of a polynomial f ∈ R[x1, . . . , xn] is the set
supp(f) ⊆ Nn of all tuples (α1, . . . , αn) such that the monomial xα1

1 · · ·xαn
n has nonzero coefficient in f .

We define Lorentzian polynomials in Section 2.4. Here we consider a particular M -convex set that will
be relevant for us in Section 4.1.

A matroid is a discrete structure inspired by the properties of bases in linear algebra. The M in M -
convex comes from the word matroid. We do not need to know the definition of matroid here, and for
those interested, we defer to [Oxl11, Sch03]. We will, however, introduce the base polytope of a graphic
matroid. The latter polytope is also often referred to as a graphic matroid polytope and is a generalized
permutahedron. Given a connected graph G = (V,E), the base polytope of the graphic matroid of G is the
convex hull of the indicator vectors χT of spanning trees T of G. An indicator vector χT of T is a 0, 1 vector
in RE such that its eth coordinate is 1 if the edge e is in T and 0 otherwise. Thus, we see that all integer
points of the base polytope of the graphic matroid of G are vertices and 0, 1 vectors.

The integer point enumerator of a polytope P ⊂ Rn is the n-variable polynomial
∑

(α1,...,αn)∈P∩Zn

x1
α1 · · ·xn

αn .

We will be working with the integer point enumerator of the base polytope of the graphic matroid in Section
4.1. Theorem 2.3 below, when applied to graphic matroids, could be stated as: the normalization of an
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integer point enumerator of a base polytope of graphic matroids is Lorentzian. Since the integer points of
the base polytopes of graphic matroids are all 0, 1, the normalization becomes trivial, and so we can say that
the integer point enumerator of a base polytope of a graphic matroid is Lorentzian. We re-explain this and
exploit it further in Section 4.1.

2.4. Lorentzian polynomials. Let Hd
n be the space of degree d homogeneous polynomials with real coeffi-

cients in the n variables x1, . . . , xn. Denote by ∂
∂xi

f the partial derivative of f relative to xi. The Hessian

of a homogeneous quadratic polynomial f ∈ H2
n is the symmetric n × n matrix H = (Hij)i,j∈[n] defined by

Hij =
∂

∂xi

∂
∂xj

f . The set Ld
n of Lorentzian polynomials with degree d in n variables is defined as follows.

Set L1
n ⊆ H1

n to be the set of all linear polynomials with nonnegative coefficients. Let L2
n ⊆ H2

n be the subset
of quadratic polynomials with nonnegative coefficients whose Hessians have at most one positive eigenvalue
and which have M-convex support. For d > 2, define Ld

n ⊆ Hd
n recursively by

Ld
n =

{
f ∈ Md

n :
∂

∂xi
f ∈ Ld−1

n for all i

}
where Md

n ⊆ Hd
n is the set of polynomials with nonnegative coefficients whose supports are M-convex.

Since f ∈ Md
n implies ∂

∂xi
f ∈ Md−1

n , we have

Ld
n =

{
f ∈ Md

n :
∂

∂xi1

∂

∂xi2

· · · ∂

∂xid−2

f ∈ L2
n for all i1, i2, . . . , id−2 ∈ [n]

}
.

The normalization operator N on R[x1, . . . , xn] is defined by:

N(xα) =
xα

α!
,

where for a vector α = (α1, . . . , αn) of nonnegative integers, we write α! to mean
∏n

i=1 αi!.

A polynomial f ∈ Hd
n is a denormalized Lorentzian polynomial in n variables if N(f) ∈ Ld

n.

We collect here four results that we will utilize in this paper:

Theorem 2.2 ([BH20, Theorem 2.10]). If f ∈ Ld
n is a Lorentzian polynomial in n variables and A is an

n × m matrix with nonnegative entries, then f(Av) ∈ Ld
m is a Lorentzian polynomial in the m variables

v = (v1, . . . , vm).

Theorem 2.3 ([BH20, Theorem 3.10]). Let J be an M -convex set. Then the polynomial fJ = N(
∑

α∈J xα)
is a Lorentzian polynomial.

Proposition 2.4 ([BH20, Proposition 4.4]). If f(x) =
∑

α cαx
α is a homogeneous polynomial on n variables

so that N(f) is Lorentzian, then for any α ∈ Nn and any i, j ∈ [n], the inequality

c2α ≥ cα+ei−ejcα−ei+ej

holds.

Lemma 2.5. [BLP22, Lemma 4.8] If f(x1, x2, x3, . . . , xn) ∈ R≥0[x1, . . . , xn] is a denormalized Lorentzian
polynomial, then f(x1, x1, x3, x4, . . . , xn), generated by specializing to x2 = x1, is also a denormalized
Lorentzian polynomial.

3. A multivariate generalization of Crowell’s Alexander polynomial

Theorem 2.1 reveals the possibility of a multivariate generalization of the Alexander polynomial: instead
of assigning weights −t and 1 to the edges, we can assign a different weight/variable to each of the edges of
−−−→
G(L). Our goal is to make a Lorentzian generalization of the Alexander polynomial in such a way that the
(denormalized) Lorentzian property carries over to the homogenized Alexander polynomial ∆LG

(−t) for any
planar bipartite graph G. This, in turn, would imply the log-concavity of the coefficients of ∆LG

(−t).

Assigning all different variables to the edges of
−−−→
G(L) does not give us an M -convex support, needed for

the Lorentzian property; however, a different approach does. We note that for special alternating links L,

the oriented graph
−−−→
G(L) is an alternating dimap: a planar Eulerian digraph oriented so that the edges
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around each vertex are directed alternately into and out of that vertex. Moreover, we prove a particularly

special distribution of the weights −t and 1 with respect to the regions of
−−−→
G(L) in Lemma 3.1 below.

Recall that any alternating dimap D is two face colorable. The edges surrounding faces in one color class
are clockwise oriented cycles, and the edges surrounding the other faces are counterclockwise oriented cycles.
Throughout this paper, we will use the terms “faces” and “regions” of a dimap D interchangeably.

Lemma 3.1. Let G be a planar bipartite graph. Recall that
−−−−→
G(LG) is the alternating dimap obtained by

flattening the crossings of LG with the orientation and edge labeling given by Crowell as in Theorem 2.1.

Suppose R is the set of all regions of
−−−−→
G(LG) whose boundaries are clockwise oriented cycles. Then, R is

either precisely the set of regions associated to vertices of G or the set of regions associated to vertices in its
planar dual G∗. Furthermore, the boundary of every face in R is either labeled with a 1 on every edge or
with a −t on every edge.

Proof. Using the fact that LG is alternating and has only positive crossings, the edges incident to any fixed

vertex v of
−−−−→
G(LG) will be oriented and labeled as shown.

becomes
1 −t

1

−t

F1

F2

F3

F4

Following along the bottom strand, the next crossing (and the corresponding vertex in
−−−−→
G(LG)) will have the

following form.

becomes
1 −t

−t

1

F3 F1

F2 F4

1 −t

1

Repeating this for the crossing to the right of the previous one and all the other crossings on the boundary
of the region F1, we see that F1 is bounded by a clockwise oriented cycle in which every edge is labeled with
−t. Similarly, we can show that F2 is bounded by a clockwise oriented cycle in which every edge is labeled
with 1.
In particular, observe that F1, F2 ∈ R and F3, F4 /∈ R. Since this pattern is the same at any vertex of

−−−−→
G(LG),

all regions in R will have either the labeling of F1 (with all −t’s) or the labeling of F2 (with all 1’s).

Furthermore, R and R′, the set of faces not in R, will form a proper 2-coloring of the faces of
−−−−→
G(LG). By

construction, one of the sets R or R′ will be the regions corresponding to the vertices of G, and the other
will be the regions corresponding to the vertices of G∗. □

See Figure 2 for a full example of the edge labeling on a positive special alternating link.

Remark 3.2. If Lneg
G is any negative special oriented link, then Lemma 3.1 holds with “clockwise” replaced

by “counterclockwise.”

In light of Lemma 3.1, we consider the following generalization of the Alexander polynomial ∆LG
(−t).

We define a multivariate polynomial for all alternating dimaps D and show that when we take D =
−−−−→
G(LG)

and specialize this polynomial, we get ∆LG
(−t).

Definition 3.3. Denote the set of clockwise oriented regions of the alternating dimap D by R(D). Let
R(D) = {R1, . . . , Rk}. Each edge e ∈ E(D) belongs to the boundary of exactly one region in R(D). Assign
a variable var(e) = xi to each edge e where e is in the boundary of Ri, i ∈ [k]. See Figure 3 for an example.
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1

1

1

1

-t -t-t -t

Figure 2. A positive special alternating link L on the left and the associated dimap
−−−→
G(L)

with orientations and labeling from Crowell’s model on the right. Note that in this example,

the set R of clockwise oriented regions includes the exterior of
−−−→
G(L).

Figure 3. The left shows the graph
−−−−→
G(LG) for the positive special alternating link con-

structed in Figure 1 with edge variables as in Definition 3.3. The right shows an arbores-
cence rooted at r and the monomial associated to it.

Definition 3.4. Let D be an alternating dimap, and define var(e), e ∈ E(D), as in Definition 3.3. Fix a
vertex r ∈ V (D). Define

(1) MD,r(x1, . . . , xk) =
∑
A

∏
e∈E(A)

var(e)

where the sum is over all arborescences A of D rooted at r.

We call the multivariate polynomial MD,r the M-polynomial of the dimap D, as we devised it so that
its support would be M -convex. We will prove this and other important properties in Section 4. We will
also see that MD,r(x1, . . . , xk) does not depend on the choice of root r but only on the dimap D (Theorem
4.1), and for this reason, we denote it simply by MD(x) for the rest of this section. The polynomial we term
the M -polynomial appeared as a determinant in works by Juhász, Kálmán, and Rasmussen [JKR12] and by
Kálmán [Ká13] with a different, but closely related, prelude.

Theorem 3.5. Let G be a planar bipartite graph, and assign
−−−−→
G(LG) the orientation and labeling from

Crowell’s model as described in Section 2. Let R(
−−−−→
G(LG))1 = {R1, . . . , Rl} and R(

−−−−→
G(LG))2 = {Rl+1, . . . , Rk}

be the clockwise oriented regions of
−−−−→
G(LG) labeled with −t’s and 1’s respectively. Then,
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(2) ∆LG
(−t) = M−−−−→

G(LG)
(t, . . . , t, 1, . . . , 1)

where we set x1 = · · · = xl = t and xl+1 = · · · = xk = 1 in the M -polynomial M−−−−→
G(LG)

.

Similarly,

(3) Homogq(∆LG
(−t)) = M−−−−→

G(LG)
(t, . . . , t, q, . . . , q),

where Homogq(∆LG
(−t)) denotes the q-homogenization of ∆LG

(−t) and we set x1 = · · · = xl = t and
xl+1 = · · · = xk = q in the M -polynomial M−−−−→

G(LG)
.

Proof. This is an immediate corollary of Theorem 2.1, Lemma 3.1, and Definition 3.4. □

Remark 3.6. For any digraph D, let the transpose of D, denoted DT , be the digraph obtained from D
by reversing the orientation of each edge. By Remark 3.2, M−−−−−→

G(Lneg
G )

T (x1, . . . , xk) specializes to ∆Lneg
G
(−t) for

any negative special alternating link Lneg
G in the same way as above.

The specialization taken on the right-hand side of (3) has a discrete geometric meaning. Given any

polynomial M(x1, . . . , xk) =
∑

(p1,...,pk)∈Zk cp1,...,pk

∏k
i=1 x

pi

i ∈ Z[x1, . . . , xk], we can equivalently represent

it as a labeled lattice Zk of the polynomial M(x1, . . . , xk): for each point (p1, . . . , pk) ∈ Zk label it by the

coefficient cp1,...,pk
of

∏k
i=1 x

pi

i in M(x1, . . . , xk). All but finitely many points in the labeled lattice Zk of
M(x1, . . . , xk) are labeled by 0, and the convex hull of the integer points with nonzero labels is called the
Newton polytope of M(x1, . . . , xk).

Let

(4) M̃(t, q) = M(t, . . . , t, q, . . . , q)

where we set x1 = · · · = xl = t and xl+1 = · · · = xk = q inM(x1, . . . , xk). In particular, Homogq(∆LG
(−t)) =

M̃−−−−→
G(LG)

(t, q) by (3). We can readily interpret the coefficients of M̃(t, q) as follows.

Lemma 3.7. The coefficient of tmqn in M̃(t, q), for any fixed m,n ∈ Z≥0, is equal to the sum of the labels
– in the labeled lattice Zk of M(x1, . . . , xk) – of the integer points in the intersection of the Newton polytope
of M(x1, . . . , xk) with the hyperplanes p1 + · · ·+ pl = m and pl+1 + · · ·+ pk = n.

Proof. By definition, the coefficient of tmqn in M̃(t, q), for any fixed m,n ∈ Z≥0, is equal to the sum

of the coefficients of the monomials
∏k

i=1 x
pi

i of M(x1, . . . , xk) whose exponents lie in the hyperplanes
p1 + · · ·+ pl = m and pl+1 + · · ·+ pk = n. □

Corollary 3.8. If the support of M(x1, . . . , xk) is an M -convex set, then the sequence of coefficients of

M̃(t, q) is equal to the sum of the labels – in the labeled lattice Zk of M(x1, . . . , xk) – of the integer points in
the intersection of the Newton polytope of M(x1, . . . , xk) with parallel hyperplanes of the form p1+· · ·+pl = c,
c ∈ Z≥0.

Proof. Since the support of M(x1, . . . , xk) is M -convex, the sum p1 + · · · + pk is constant on the support
of M(x1, . . . , xk) (the latter is true for any M -convex set as noted in Section 2.3). As such, the statement
follows from Lemma 3.7. □

In the next section, we show that theM -polynomial of any alternating dimapD is denormalized Lorentzian.
Using Theorem 3.5, this will imply that the sequence of coefficients of ∆L(−t) is log-concave with no internal
zeros when L is a special alternating link. Corollary 3.8 will afford us a geometric viewpoint as well.

4. The M-polynomial and the homogenized Alexander polynomial ∆LG
(−t) are

denormalized Lorentzian

The goal of this section is to prove that the M -polynomial of any alternating dimap D is denormalized
Lorentzian:

Theorem 4.1. For any alternating dimap D, the polynomial MD(x) = MD,r(x) is independent of the choice
of root r ∈ D. Moreover, MD(x) is denormalized Lorentzian.
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In the special case of
−−−→
G(L) where L is a special alternating link, Theorems 3.5 and 4.1 and Lemma 2.5

will imply that the homogenized Alexander polynomial Homogq(∆LG
(−t)) is also denormalized Lorentzian.

We now study the support and coefficients of the M -polynomial in order to prove Theorem 4.1. Lemmas
4.3 and 4.6 were first discovered by Kálmán [Ká13] and presented as part of his beautiful proof of [Ká13,
Theorem 10.1]. We include their proofs here for completeness. For Lemma 4.3, we present our proof which
is closely related to Kálmán’s. For Lemma 4.6, we present his original proof, adapted to our conventions.

4.1. The support of the M-polynomial. We relate the support of the M -polynomial to the integer points
of the base polytope of a graphic matroid as defined in Section 2.3; we recall the necessary definitions here.
Let T (D) be the set of all spanning trees of the alternating dimap D (spanning trees here are considered
without orientation). We will let gD be the integer point enumerator, defined below, of the base polytope of
the graphic matroid of D considered without orientation. If we let R1, . . . , Rk of D be the regions bounded
by the clockwise oriented cycles C1, . . . , Ck and denote the edges of Ci by ei,1, . . . , ei,|Ci|, i ∈ [k], then:

gD(x1,1, . . . , xn,|Ck|) =
∑

T∈T (D)

∏
ei,j∈E(T )

xi,j .

Theorem 2.3 implies that N(gD(x)) is Lorentzian since the integer points of a matroid base polytope
form an M -convex set. Moreover, since all integer points of a matroid base polytope are 0, 1, we have that
N(gD(x)) = gD(x). Thus, gD(x) itself is Lorentzian. Next, we specialize gD(x) in a way that preserves the
Lorentzian property:

fD(x1, . . . , xk) =
∑

T∈T (D)

k∏
i=1

x
ai(T )
i ,

where ai(T ) is the number of edges of T belonging to the cycle Ci, i ∈ [k].

Lemma 4.2. Given an alternating dimap D, the polynomial fD is Lorentzian. In particular, fD has M -
convex support.

Proof. The polynomial gD is the exponential generating function of the graphic matroid of D (where we
consider D without its orientation). Thus, by Theorem 2.3, the polynomial gD is Lorentzian. The polynomial
fD is obtained from gD by a nonnegative linear change of variable, so fD is also Lorentzian by Theorem 2.2.
Since fD is Lorentzian, it must have M -convex support. □

Next, we show that for any r ∈ D, supp(fD(x1, . . . , xk)) = supp(MD,r(x1, . . . , xk)). To do this, we need
the following auxiliary lemma:

Lemma 4.3. [Ká13, see proof of Theorem 10.1]. Let D be an alternating dimap. Denote the cycles surround-
ing the clockwise oriented regions by C1, . . . , Ck. Let T be any spanning tree in D, and fix any r ∈ V (D).
Let ai(T ) be the number of edges of T in the cycle Ci. Then, there exists an arborescence A, rooted at r,
such that ai(A) = ai(T ) for all i ∈ [k].

Proof. Define a subset V ′(T ) ⊂ V (T ) = V (G) as follows. Let r ∈ V ′(T ) if and only if T contains no edges
with final vertex r. For any vertex v ̸= r, there is a unique (undirected) path from r to v in T . Let ev be
the unique edge on this path with v as an endpoint. Then v ∈ V ′(T ) if and only if all other vertices along
this path from r to v in T are in V ′(T ) and ev is the only edge in T with final vertex v. We will refer to
V ′(T ) as the good vertices of T .

If V ′(T ) is nonempty, fix a vertex v1 such that v1 /∈ V ′(T ) but all other vertices on the unique path
between v1 and r in T are good. By construction, there exists some edge e1 ̸= ev1 in T with final vertex v1.
If V ′(T ) is empty, define v1 = r, and fix an edge e1 with final vertex r.

Note that e1 is in the cycle Ci for a unique i. Let V1 ⊂ V (T ) be the set of all vertices such that their
unique path to r in T passes through e1.

Observe that both V1∩V (Ci) and (V (T )−V1)∩V (Ci) are non-empty (since v1 is not in V1 but the initial
vertex of e1 is). Since Ci is an oriented cycle, we can find an edge e2 of Ci with final vertex in V1 and initial
vertex not in V1. By construction, e2 is not in the tree T . Set T1 = (V (T ), (E(T )− {e1}) ∪ {e2}).
By construction, T1 has the following properties:

(1) T1 is a spanning tree of G
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(2) ai(T1) = ai(T ) for all i ∈ [n]
(3) V ′(T1) ⊃ V ′(T )

If v1 /∈ V ′(T1), then T1 must still contain an edge other than ev1
with final vertex v1, and we can perform

the same procedure as above to remove and replace this edge. Otherwise, we select a new vertex v2 /∈ V ′(T1)
such that all other vertices along its unique path to r are good and repeat the process. This procedure will
terminate when all the vertices of our tree are good, i.e. when we have an arborescence. □

Corollary 4.4. For any r ∈ V , supp(fD(x1, . . . , xk)) = supp(MD,r(x1, . . . , xk)). In particular,
supp(MD,r(x1, . . . , xk)) is M -convex.

Proof. This is an immediate consequence of Lemmas 4.2 and 4.3 and the definitions of fD and MD,r. □

Corollary 4.5. The support of MD,r(x1, . . . , xn) is M -convex and independent of the choice of root r.

Proof. Follows from Corollary 4.4. □

4.2. The coefficients of the M-polynomial. In this section, we see that for any choice of root r in an
alternating dimap D, the polynomial MD,r(x) has all 0 and 1 coefficients. In particular, since the support of
MD,r(x) is independent of the choice of root r by Corollary 4.5, the polynomial MD,r(x) is also independent
of the root r, and we are justified in denoting it by MD(x).

Lemma 4.6. [Ká13, see proof of Theorem 10.1]. Let D be an alternating dimap. Denote the cycles sur-
rounding the clockwise oriented regions by C1, . . . , Cn. For any spanning tree T of D, let ai(T ) denote the
number of edges of T in the cycle Ci. Then, for a fixed vertex r of D and a fixed sequence {s1, . . . , sn}, there
exists at most one arboresccence T rooted at r such that ai(T ) = si for all i.

Proof. Suppose we have two such arborescences T1 and T2. Since these trees are distinct, there must exist
some edge e1 = (v0, v1) which is in T1 but not T2. Without loss of generality, suppose C1 is the cycle
containing e1. Observe that since v1 has an edge pointing towards it in T1, it cannot be equal to the root r.
This implies that T2 must also have some unique edge f1 ̸= e1 which is directed into v1 and that f1 is not
in T1. Let C2 be the cycle containing f1. Since a2(T1) = a2(T2), there must exist some edge e2 in C2 which
is in T1 but not T2. We will denote the final vertex of e2 by v2.

Repeating this process, we obtain a sequence of edges e1, f1, e2, f2, . . . and a sequence of cycles C1, C2, . . .
such that for all i,

(1) ei is in T1 but not T2

(2) fi is in T2 but not T1

(3) ei and fi−1 are in Ci

(4) ei and fi share the same final vertex vi

Let k be the smallest index such that Ck = Cj for some j < k. The interiors of the cycles Cj , . . . , Ck−1 now
form a cycle, as shown in the example below.

Cj

Cj+1

Ck−1

vk−1
.

vk−2
.

.vj .vj+1

ek−1

fk−1

ej
fj

In particular, D can be divided into two subgraphs, the portion inside this cycle and the portion outside
it, which share only the vertices vj , . . . , vk−1. Let D1 and D2 respectively denote these subgraphs. Since
Cj , . . . , Ck−1 are all clockwise oriented cycles, all of ej , . . . , ek−1 will be directed out of one subgraph and
all of fj , . . . , fk−1 out of the other. Suppose without loss of generality that the edges ej , . . . , ek−1 point into
vj , . . . , vk−1 from D1.
Each of D1 and D2 must contain at least one vertex besides vj , . . . , vk−1 (otherwise, {ej , . . . , ek−1} or
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{fj , . . . , fk−1} would form a cycle, contradicting the fact that they are edges of trees). Since vj , . . . , vk−1

are all the final vertices of some edges of T1 and T2, none of them will equal the root r. We can, thus,
conclude that r is in precisely one of D1 or D2. There is, however, no directed path in T1 into a vertex
in V (D1) − {vj , . . . , vk−1} from a vertex in V (D2) − {vj , . . . , vk−1} because the only edges of T1 which
are directed into {vj , . . . , vk−1} are {ej , . . . , ek−1}, all of which point away from D1. Similarly, there is no
directed path in T2 into a vertex in V (D2) − {vj , . . . , vk−1} from a vertex in V (D1) − {vj , . . . , vk−1}. This
gives a contradiction. □

Next, we prove Theorem 4.1.

Proof of Theorem 4.1. By Corollary 4.5, the support of MD,r(x) is M -convex and independent of the choice
of root r. It follows from Lemma 4.6 that all coefficients of MD,r(x) are 1 on its support. Thus, MD,r(x) is
independent of the choice of r, and we may denote it by MD(x). By Theorem 2.3, we conclude that MD(x)
is denormalized Lorentzian. □

Corollary 4.7. The sequence of coefficients of M̃D(t, q) is the number of integer points in the intersection
of the Newton polytope of MD(x1, . . . , xk) with parallel hyperplanes of the form p1 + · · ·+ pl = c, c ∈ Z≥0.

Proof. By the proof of Theorem 4.1, all coefficients of MD are 1 and its support is M -convex. Thus, applying
Corollary 3.8 yields the result. □

It follows from Theorem 3.5 and Corollary 4.7 that in the special case where D =
−−−−→
G(LG), we can interpret

the coefficients of the Alexander polynomial of ∆L(−t) for a special alternating link L as the integer point
counts in a series of parallel hyperplanes intersecting a generalized permutahedron. Such an interpretation is
closely related to the work of Li and Postnikov on slicing zonotopes [LP13]. Moreover, Kálmán’s work [Ká13]
implies that the support of MD is a trimmed generalized permutahedron [Pos09, Definition 11.2] dependent
on the dimap D.

4.3. Log-concavity of the coefficients of ∆LG
(−t). From Theorems 3.5 and 4.1 and Lemma 2.5, we

readily obtain:

Theorem 1.2. The coefficients of the Alexander polynomial ∆L(−t) of a special alternating link L form a
log-concave sequence with no internal zeros. In particular, they are unimodal, proving Fox’s conjecture in
this case.

Proof. If L is a positive special alternating link, then by Theorems 3.5 and 4.1 and Lemma 2.5, we conclude
that Homogq(∆L(−t)) is denormalized Lorentzian. Therefore, N(Homogq(∆L(−t))) is Lorentzian. By
Proposition 2.4, this implies that the coefficients of Homogq(∆L(−t)), which are the same as those of ∆L(−t),
are log-concave with no internal zeros.

The case where L is a negative special alternating link follows from Remarks 3.2 and 3.6. □
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