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ABSTRACT. The central question of knot theory is that of distinguishing links up to isotopy. The first
polynomial invariant of links devised to help answer this question was the Alexander polynomial (1928).
Almost a century after its introduction, it still presents us with tantalizing questions, such as Fox’s conjecture
(1962) that the absolute values of the coefficients of the Alexander polynomial Ay, (t) of an alternating link
L are unimodal. Fox’s conjecture remains open in general with special cases settled by Hartley (1979) for
two-bridge knots, by Murasugi (1985) for a family of alternating algebraic links, and by Ozsvéath and Szabé
(2003) for the case of genus 2 alternating knots, among others.

We settle Fox’s conjecture for special alternating links. We do so by proving that a certain multivariate
generalization of the Alexander polynomial of special alternating links is Lorentzian. As a consequence, we
obtain that the absolute values of the coefficients of Ay (t), where L is a special alternating link, form a
log-concave sequence with no internal zeros. In particular, they are unimodal.

1. INTRODUCTION

The central question of knot theory is that of distinguishing links up to isotopy. Knot invariants are
devised for this purpose. The Alexander polynomial Ay (t), associated to an oriented link L, was the first
polynomial knot invariant, discovered in the 1920s [Ale28]. The key property of the Alexander polynomial
is that if oriented links L; and Ly are isotopic, then Az, (t) = Az, (t) up to multiplication by +t* for some
integer k.

The coefficients of Ap(t) for an arbitrary link L are palindromic. In 1962, Fox [Fox62] conjectured that
for alternating links, the absolute values of the coefficients of Alexander polynomials are unimodal. For
alternating links L, [Cro59, Mur58a, Mur58b] show that the Alexander polynomial can be normalized so
that Ap(—t) € Z>¢[t] and that its sequence of coefficients contains no internal zeros. With this normalization,
we can write Fox’s conjecture as:

Conjecture 1.1. [Fox62] Let L be an alternating link. Then the coefficients of Ar(—t) form a unimodal
sequence.

The conjecture remains open in general, although some special cases have been settled by Hartley [Har79]
for two-bridge knots, Murasugi [Mur85] for a family of alternating algebraic links, and Ozsvath and Szabd
[0Sz03] for the case of genus 2 alternating knots, among others. That Fox’s conjecture holds for genus 2
alternating knots was also confirmed by Jong [Jon09]. At the 2018 ICM, June Huh highlighted this sequence
as one of “the most interesting sequences that are conjectured to be log-concave” [Huh18]. Huh was referring
to Stoimenow’s [Sto05] strengthening of Fox’s conjecture from unimodality to log-concavity.

In this paper, we show:

Theorem 1.2. The coefficients of the Alexzander polynomial Ay (—t) of a special alternating link L form a
log-concave sequence with no internal zeros. In particular, they are unimodal, proving Fox’s conjecture in
this case.

Inspired by Crowell’s combinatorial model for the Alexander polynomial of alternating links [Cro59], we
study a homogeneous multivariate polynomial which we term the M-polynomial (because its support is
M-convex). This polynomial previously appeared in the works of Kalmén [K&13] and Juhdsz, Kédlmdn, and
Rasmussen [JKR12]. We discovered the M-polynomial via Crowell’s construction. We prove that the M-
polynomial specializes to Ay (—t) for special alternating links L. We also prove that the M-polynomial is
denormalized Lorentzian, opening the door to use the powerful theory of Lorentzian polynomials developed
by Bréandén and Huh [BH20]. Lorentzian polynomials were independently developed by Anari, Liu, Oveis
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Gharan and Vinzant [AGV21, ALGV19, ALGV18] under the name of completely log-concave polynomials.
Relying on the theory of Lorentzian polynomials, we prove that the coefficients of the Alexander polynomial
Ap(—t) of a special alternating link L form a log-concave sequence with no internal zeros.

Roadmap of the paper. In Section 2, we review the necessary background for the paper. In Section
3, we show that the M-polynomial arises naturally from Crowell’s model of the Alexander polynomial of
alternating links. In Section 4, we prove Theorem 1.2.

2. BACKGROUND

In this section, we collect the most important results and notions used in our paper: (1) Crowell’s model
for the Alexander polynomial of alternating links; (2) the construction of special alternating links from planar
bipartite graphs; (3) background on M-convex sets; (4) background on the theory of Lorentzian polynomials.

2.1. Crowell’s model. We will use the following combinatorial model for the Alexander polynomial of
alternating links due to Crowell [Cro59]. Recall that a link is alternating if it has an alternating diagram.

Let G(L) be the planar graph obtained by flattening the crossings of an alternating diagram of L; the
crossings of L are the vertices of G(L) while the arcs between the crossings are the edges of G(L). Note that
G(L) is a planar 4-regular 2-face colorable graph. Next, we assign directions to the edges of G(L) — but not
those coming from the orientation of the link — as well as weights in the following way:

1
‘ becomes

‘ =

On the left, we see the orientation of the link L in an overcrossing, and on the right, we see how the edges
of G(L) are directed and weighted. Denote by G (L) the oriented weighted graph obtained from G(L) in this
fashion. Let var(e) be the weight —t or 1 assigned to the edge e € E(G(L)). See Figure 1 for a full example.

Theorem 2.1 ([Cro59] Theorem 2.12). Given an alternating diagram of the link L, fiz an arbitrary vertex

r € V(G(L)). Denote by A(L,r) the set of arborescences of G(L) rooted at r. The Alezander polynomial of
L is:

ApL(t) = Z H var(e).
)

TeA(L,r) ecE(T

Recall that an arborescence rooted at r is a spanning tree in which there is a unique directed path to
any vertex from the root r.

2.2. Special alternating links. We follow the construction presented by Juhdsz, Kdlman, Rasmussen
[JKR12] and Kalman, Murakami [KM17], associating a positive special alternating link Lg to a planar
bipartite graph G. Let M(G) be the medial graph of G: the vertices of M(G) are the edges of G, and two
vertices of M(G) are connected by an edge if the edges of G that they come from are consecutive in the
boundary of a face of G. We think of a particular planar drawing of M (G) here: the midpoints of the edges
of the planar drawing of G are the vertices of M(G). Thinking of M(G) as a flattening of a link, there
are two ways to choose under and overcrossings at each vertex of M(G) to make it into an alternating link
L¢. We select the over and undercrossings and orient L so that each crossing is positive. This procedure
yields a positive special alternating link. Moreover, any positive special alternating link arises from such a
construction. Figure 1 shows an example of this construction.

If the link associated to the planar bipartite graph G as above is instead oriented so that every crossing
is negative, we obtain a negative special alternating link and denote it L ®. All special alternating links are
either positive or negative.
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FIGURE 1. A planar bipartite graph along with its associated positive special alternating
link Lg. On the right, we show G(Lg), oriented and weighted as in Crowell’s model.

2.3. M-convex sets. Let N ={0,1,2,...}, and denote by e; the ith standard basis vector of N*. A subset
J C N" is called M-convex if for any index i and any «, 8 € J whose ith coordinates satisfy a; > 3;, there
is an index j satisfying

a; <Bj, a—e+e;€J, and B—e;+e € J

A wealth of information on M-convex sets can be found in [Mur03]. We emphasize here that the sum of the
coordinates of the integer points in an M-convex set J is a fixed constant. We also provide below a point of
view through generalized permutahedra.

Convex hulls of M-convex sets are well-studied integer polytopes called generalized permutahedra. The
name generalized permutahedron was coined by Postnikov [Pos09] since, as we explain below, we can see these
polytopes as generalizing the standard permutahedron II,. Generalized permutahedra have been studied
since the 1970s in the combinatorial optimization literature under various names such as base polytopes
and polymatroids (see [Frall, Sch03]). The standard permutahedron II,, C R™ is the convex hull of all
permutations of the vector (1,2,...,n). Note that II,, lies in the hyperplane 1 +zo+--- 4z, = (”;rl) The
edge directions of II,, are all in root directions e; — e; for 4,5 € [n]. A generalized permutahedron can be
defined as a polytope with all edge directions parallel to e; —e; for 4,5 € [n]. All integer points of an integer
generalized permutahedron in R™, which are exactly the points in an M-convex set (possibly translated in
order to lie in N™), lie in a hyperplane 1 + x5 + - - - + &, = ¢ for some constant ¢ € Z.

M-convex sets, or equivalently, integer points of integer generalized permutahedra, play a fundamental
role in the theory of Lorentzian polynomials. The latter theory is the first comprehensive tool for proving log-
concavity results, introduced in the seminal work of Brandén and Huh [BH20]. All Lorentzian polynomials
have supports that are M-convex. Recall that the support of a polynomial f € R[z1,...,z,] is the set
supp(f) € N™ of all tuples (aq,...,ay) such that the monomial 27" - - - 2% has nonzero coefficient in f.

We define Lorentzian polynomials in Section 2.4. Here we consider a particular M-convex set that will
be relevant for us in Section 4.1.

A matroid is a discrete structure inspired by the properties of bases in linear algebra. The M in M-
convex comes from the word matroid. We do not need to know the definition of matroid here, and for
those interested, we defer to [OxI11, Sch03]. We will, however, introduce the base polytope of a graphic
matroid. The latter polytope is also often referred to as a graphic matroid polytope and is a generalized
permutahedron. Given a connected graph G = (V, E), the base polytope of the graphic matroid of G is the
convex hull of the indicator vectors xr of spanning trees 7" of G. An indicator vector x of T is a 0,1 vector
in R¥ such that its et? coordinate is 1 if the edge e is in 7" and 0 otherwise. Thus, we see that all integer

points of the base polytope of the graphic matroid of G are vertices and 0,1 vectors.

a1 Qn

The integer point enumerator of a polytope P C R is the n-variable polynomial Z 1% xy
(a1,...,an)EPNZ™
We will be working with the integer point enumerator of the base polytope of the graphic matroid in Section

4.1. Theorem 2.3 below, when applied to graphic matroids, could be stated as: the normalization of an
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integer point enumerator of a base polytope of graphic matroids is Lorentzian. Since the integer points of
the base polytopes of graphic matroids are all 0, 1, the normalization becomes trivial, and so we can say that
the integer point enumerator of a base polytope of a graphic matroid is Lorentzian. We re-explain this and
exploit it further in Section 4.1.

2.4. Lorentzian polynomials. Let HZ be the space of degree d homogeneous polynomials with real coeffi-
cients in the n variables z1,...,z,. Denote by 6%,- f the partial derivative of f relative to z;. The Hessian
of a homogeneous quadratic polynomial f € H2 is the symmetric n x n matrix H = (Hij)i,jem defined by
H;; = a%ia%j f. The set L? of Lorentzian polynomials with degree d in n variables is defined as follows.
Set LL C H} to be the set of all linear polynomials with nonnegative coefficients. Let L2 C H2 be the subset
of quadratic polynomials with nonnegative coefficients whose Hessians have at most one positive eigenvalue
and which have M-convex support. For d > 2, define L¢ C H? recursively by

0
658@‘
where M? C H? is the set of polynomials with nonnegative coefficients whose supports are M-convex.

Since f € M? implies % f € M1 we have

Lg:{feMg: ferdit foralli}

o 0 0
Ld={feMd: € L2 for all iy,49,...,i4-2 € [n] }.
n {f n a$i1 a$i2 axid72f n 1 2 d—2 [ }
The normalization operator N on R[z1,...,z,] is defined by:
X(X
N(Xa) = a,
where for a vector & = (a1, ..., a,) of nonnegative integers, we write a! to mean []\, a;!.

A polynomial f € H? is a denormalized Lorentzian polynomial in n variables if N(f) € L¢.

We collect here four results that we will utilize in this paper:

Theorem 2.2 ([BH20, Theorem 2.10]). If f € L¢ is a Lorentzian polynomial in n variables and A is an
n X m matriz with nonnegative entries, then f(Av) € L& is a Lorentzian polynomial in the m variables
v = (V1 Um)-

Theorem 2.3 ([BH20, Theorem 3.10]). Let J be an M-convex set. Then the polynomial f; = N3, c;Xx*)
is a Lorentzian polynomial.

Proposition 2.4 ([BH20, Proposition 4.4]). If f(x) =), caX® is a homogeneous polynomial on n variables
so that N(f) is Lorentzian, then for any a € N™ and any i,j € [n], the inequality

2
Coq = Cate;—e;Ca—e;te;

holds.
Lemma 2.5. [BLP22, Lemma 4.8] If f(x1,%2,23,...,%n) € R>o[z1,..., 2] is a denormalized Lorentzian
polynomial, then f(x1,x1,%3,%4,...,%,), generated by specializing to xo = x1, is also a denormalized

Lorentzian polynomial.

3. A MULTIVARIATE GENERALIZATION OF CROWELL'S ALEXANDER POLYNOMIAL

Theorem 2.1 reveals the possibility of a multivariate generalization of the Alexander polynomial: instead
of assigning weights —t and 1 to the edges, we can assign a different weight /variable to each of the edges of
G(L). Our goal is to make a Lorentzian generalization of the Alexander polynomial in such a way that the
(denormalized) Lorentzian property carries over to the homogenized Alexander polynomial Ay, (—t) for any
planar bipartite graph G. This, in turn, would imply the log-concavity of the coefficients of Ay, (—t).

Assigning all different variables to the edges of G(L) does not give us an M-convex support, needed for
the Lorentzian property; however, a different approach does. We note that for special alternating links L,

the oriented graph G(L) is an alternating dimap: a planar Eulerian digraph oriented so that the edges
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around each vertex are directed alternately into and out of that vertex. Moreover, we prove a particularly
special distribution of the weights —t and 1 with respect to the regions of G(L) in Lemma 3.1 below.
Recall that any alternating dimap D is two face colorable. The edges surrounding faces in one color class

are clockwise oriented cycles, and the edges surrounding the other faces are counterclockwise oriented cycles.
Throughout this paper, we will use the terms “faces” and “regions” of a dimap D interchangeably.

Lemma 3.1. Let G be a planar bipartite graph. Recall that Q(LG; is the alternating dimap obtained by
flattening the crossings of Lg with the orientation and edge labeling given by Crowell as in Theorem 2.1.

Suppose R is the set of all regions of G(Lg) whose boundaries are clockwise oriented cycles. Then, R is
either precisely the set of regions associated to vertices of G or the set of regions associated to vertices in its
planar dual G*. Furthermore, the boundary of every face in R is either labeled with a 1 on every edge or
with a —t on every edge.

Proof. Using the fact that Lq is alternating and has only positive crossings, the edges incident to any fixed
vertex v of G(L¢) will be oriented and labeled as shown.

T becomes
_

Following along the bottom strand, the next crossing (and the corresponding vertex in G(L¢ i) will have the
following form.

1

Iy Fy
- D
Fs |7" R
becomes
«—|— —_—

1 —t

Repeating this for the crossing to the right of the previous one and all the other crossings on the boundary
of the region F, we see that I is bounded by a clockwise oriented cycle in which every edge is labeled with
—t. Similarly, we can show that Fy is bounded by a clockwise oriented cycle in which every edge is labeled
with 1.

In particular, observe that Fy, F5 € R and F3, Fy ¢ R. Since this pattern is the same at any vertex of G(L¢),
all regions in R will have either the labeling of F; (with all —t’s) or the labeling of F» (with all 1’s).

Furthermore, R and R/, the set of faces not in R, will form a proper 2-coloring of the faces of G(Lg). By
construction, one of the sets R or R’ will be the regions corresponding to the vertices of G, and the other
will be the regions corresponding to the vertices of G*. |

See Figure 2 for a full example of the edge labeling on a positive special alternating link.

Remark 3.2. If L™ is any negative special oriented link, then Lemma 3.1 holds with “clockwise” replaced
by “counterclockwise.”

In light of Lemma 3.1, we consider the following generalization of the Alexander polynomial Ay, (—t).
We define a multivariate polynomial for all alternating dimaps D and show that when we take D = G(Lg
and specialize this polynomial, we get Ap (—t).

Definition 3.3. Denote the set of clockwise oriented regions of the alternating dimap D by R(D). Let
R(D) =A{R1,...,Ri}. Each edge e € E(D) belongs to the boundary of exactly one region in R(D). Assign
a variable var(e) = x; to each edge e where e is in the boundary of R;, i € [k]. See Figure 3 for an example.
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FIGURE 2. A positive special alternating link L on the left and the associated dimap G(L
with orientations and labeling from Crowell’s model on the right. Note that in this example,

the set R of clockwise oriented regions includes the exterior of G(L).

[lecna) var(e) = @ 3wswaze

F1GURE 3. The left shows the graph Q(LG; for the positive special alternating link con-
structed in Figure 1 with edge variables as in Definition 3.3. The right shows an arbores-
cence rooted at r and the monomial associated to it.

Definition 3.4. Let D be an alternating dimap, and define var(e), e € E(D), as in Definition 3.3. Fiz a
vertex r € V(D). Define

(1) Mp(z1,...,%%) :Z H var(e)
A ecE(A)
where the sum is over all arborescences A of D rooted at r.

We call the multivariate polynomial Mp , the M-polynomial of the dimap D, as we devised it so that
its support would be M-convex. We will prove this and other important properties in Section 4. We will
also see that Mp ,(z1,...,x) does not depend on the choice of root r but only on the dimap D (Theorem
4.1), and for this reason, we denote it simply by Mp(x) for the rest of this section. The polynomial we term

the M-polynomial appeared as a determinant in works by Juhdsz, Kélmén, and Rasmussen [JKR12] and by
Kélmén [K413] with a different, but closely related, prelude.

Theorem 3.5. Let G be a planar bipartite graph, and assign Q(LG; the orientation and labeling from
Crowell’s model as described in Section 2. Let R(G(Lg))1 = {Ru1,..., R} and R(G(L¢ ))2 ={Ri41,...,Ri}
be the clockwise oriented regions of G(Lg) labeled with —t’s and 1’s respectively. Then,
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2) Apg(—t) = Myt 1,00, 1)

where we set x1 =---=x; =t and xj41 = --- = T, = 1 in the M-polynomial MQ(TGS
Similarly,
(3) Homog, (AL, (—1)) :Mm(t,...,t,q,...,q),
where Homog, (Ar,(—t)) denotes the q-homogenization of Ap.(—t) and we set x; = --- = x; = t and
Ti41 =+ =T = q n the M-polynomial MQ(TGS
Proof. This is an immediate corollary of Theorem 2.1, Lemma 3.1, and Definition 3.4. (|

Remark 3.6. For any digraph D, let the transpose of D, denoted DT, be the digraph obtained from D

by reversing the orientation of each edge. By Remark 3.2, MWT(Q, ..., x)) specializes to ALgeg(ft) for
G

any negative special alternating link L&Y in the same way as above.

The specialization taken on the right-hand side of (3) has a discrete geometric meaning. Given any
polynomial M (21,...,2k) = 320, piyez Coivr Hle P e Z]xy, ..., x], we can equivalently represent
it as a labeled lattice Z* of the polynomial M (x1,...,z}): for each point (p1,...,px) € Z* label it by the
coefficient ¢, . ,, of Hle 2" in M(z1,...,25). All but finitely many points in the labeled lattice Z* of

M(z1,...,xy) are labeled by 0, and the convex hull of the integer points with nonzero labels is called the
Newton polytope of M(x1,...,xx).
Let
(4) M(t,q) = M(t,....t.q,....q)
whereweset zy = - - =x; =tand x;y; = - - = 25 = ¢in M(21,...,xx). In particular, Homogq(ALG(—t)) =

M- o (t,q) by (3). We can readily interpret the coefficients of M (t,q) as follows.

Lemma 3.7. The coefficient of t™q™ in M(t,q), for any fized m,n € Z>q, is equal to the sum of the labels
—in the labeled lattice 7% of M(x1,...,xx) — of the integer points in the intersection of the Newton polytope
of M(x1,...,x) with the hyperplanes p1 +---+p,=m and pjy1 + -+ + pr = n.

Proof. By definition, the coefficient of ¢t™¢™ in ]/\\4/(15,(1)7 for any fixed m,n € Zs, is equal to the sum
of the coefficients of the monomials Hle ¥ of M(z1,...,z1) whose exponents lie in the hyperplanes
pr+---+p=mand p41+ -+ pr =n. ]

Corollary 3.8. If the support of M(x1,...,xk) is an M-convex set, then the sequence of coefficients of
M(t,q) is equal to the sum of the labels — in the labeled lattice ZF of M (x1,...,x1) — of the integer points in
the intersection of the Newton polytope of M (x1, ..., x) with parallel hyperplanes of the form p1+---+p; = c,
cec Zzo.

Proof. Since the support of M(xy,...,xx) is M-convex, the sum p; + - -+ + pi is constant on the support
of M(x1,...,x1) (the latter is true for any M-convex set as noted in Section 2.3). As such, the statement
follows from Lemma 3.7. O

In the next section, we show that the M-polynomial of any alternating dimap D is denormalized Lorentzian.
Using Theorem 3.5, this will imply that the sequence of coefficients of A, (—t) is log-concave with no internal
zeros when L is a special alternating link. Corollary 3.8 will afford us a geometric viewpoint as well.

4. THE M-POLYNOMIAL AND THE HOMOGENIZED ALEXANDER POLYNOMIAL Ay (—t) ARE
DENORMALIZED LORENTZIAN

The goal of this section is to prove that the M-polynomial of any alternating dimap D is denormalized
Lorentzian:

Theorem 4.1. For any alternating dimap D, the polynomial Mp(x) = Mp (%) is independent of the choice
of root r € D. Moreover, Mp(x) is denormalized Lorentzian.
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In the special case of g(L; where L is a special alternating link, Theorems 3.5 and 4.1 and Lemma 2.5
will imply that the homogenized Alexander polynomial Homog,(Ar(—t)) is also denormalized Lorentzian.

We now study the support and coefficients of the M-polynomial in order to prove Theorem 4.1. Lemmas
4.3 and 4.6 were first discovered by Kélmén [K413] and presented as part of his beautiful proof of [K413,
Theorem 10.1]. We include their proofs here for completeness. For Lemma 4.3, we present our proof which
is closely related to Kélmén’s. For Lemma 4.6, we present his original proof, adapted to our conventions.

4.1. The support of the M-polynomial. We relate the support of the M-polynomial to the integer points
of the base polytope of a graphic matroid as defined in Section 2.3; we recall the necessary definitions here.
Let T(D) be the set of all spanning trees of the alternating dimap D (spanning trees here are considered
without orientation). We will let gp be the integer point enumerator, defined below, of the base polytope of
the graphic matroid of D considered without orientation. If we let Ry,..., Ry of D be the regions bounded
by the clockwise oriented cycles C1, ..., Cy and denote the edges of C; by e;1,...,€;¢,), © € [k], then:

9D($1,15-~-axn,|()k|) = Z H mzv]

TET (D) e; ;€E(T)

Theorem 2.3 implies that N(gp(x)) is Lorentzian since the integer points of a matroid base polytope
form an M-convex set. Moreover, since all integer points of a matroid base polytope are 0,1, we have that
N(gp(x)) = gp(x). Thus, gp(x) itself is Lorentzian. Next, we specialize gp(x) in a way that preserves the
Lorentzian property:

k
folxy, ... x) = Z Ha:?"(T),

TeT(D)i=1
where a;(T') is the number of edges of T belonging to the cycle C;, i € [k].

Lemma 4.2. Given an alternating dimap D, the polynomial fp is Lorentzian. In particular, fp has M-
convex support.

Proof. The polynomial gp is the exponential generating function of the graphic matroid of D (where we
consider D without its orientation). Thus, by Theorem 2.3, the polynomial gp is Lorentzian. The polynomial
fp is obtained from gp by a nonnegative linear change of variable, so fp is also Lorentzian by Theorem 2.2.
Since fp is Lorentzian, it must have M-convex support. O

Next, we show that for any r € D, supp(fp(x1,...,2x)) = supp(Mp r(x1,...,2%)). To do this, we need
the following auxiliary lemma:

Lemma 4.3. [K413, see proof of Theorem 10.1]. Let D be an alternating dimap. Denote the cycles surround-
ing the clockwise oriented regions by Cy,...,Ck. Let T be any spanning tree in D, and fix any r € V(D).
Let a;(T) be the number of edges of T in the cycle C;. Then, there exists an arborescence A, rooted at T,
such that a;(A) = a;(T) for all i € [K].

Proof. Define a subset V'(T) C V(T) = V(G) as follows. Let r € V'(T) if and only if T' contains no edges
with final vertex r. For any vertex v # r, there is a unique (undirected) path from r to v in T. Let e, be
the unique edge on this path with v as an endpoint. Then v € V’/(T) if and only if all other vertices along
this path from r to v in T are in V'(T') and e, is the only edge in T" with final vertex v. We will refer to
V'/(T) as the good vertices of T.

If V/(T) is nonempty, fix a vertex v, such that vy ¢ V/(T) but all other vertices on the unique path
between v, and r in T" are good. By construction, there exists some edge e; # e,, in T" with final vertex v;.
If V'(T) is empty, define v; = r, and fix an edge e; with final vertex r.

Note that e; is in the cycle C; for a unique . Let V3 C V(T) be the set of all vertices such that their
unique path to r in T passes through e;.

Observe that both Vi NV (C;) and (V(T') — V1) NV(C;) are non-empty (since v; is not in V; but the initial
vertex of e is). Since C; is an oriented cycle, we can find an edge ey of C; with final vertex in V7 and initial
vertex not in V3. By construction, es is not in the tree T. Set Ty = (V/(T'), (E(T) — {e1}) U {e2}).

By construction, 77 has the following properties:

(1) Ty is a spanning tree of G
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(2) a;(T1) = a;(T) for all i € [n]

(3) V(1) > VI(T)
If v; ¢ V/(T1), then T} must still contain an edge other than e,, with final vertex v, and we can perform
the same procedure as above to remove and replace this edge. Otherwise, we select a new vertex vo ¢ V'(T})
such that all other vertices along its unique path to r are good and repeat the process. This procedure will
terminate when all the vertices of our tree are good, i.e. when we have an arborescence. O

Corollary 4.4. For anyr € V, supp(fp(z1,...,x%)) = supp(Mp . (z1,...,xk)). In particular,
supp(Mp (21, ..., x)) is M-convez.

Proof. This is an immediate consequence of Lemmas 4.2 and 4.3 and the definitions of fp and Mp ,. ([l
Corollary 4.5. The support of Mp (x1,...,2,) is M-convex and independent of the choice of root r.
Proof. Follows from Corollary 4.4. |

4.2. The coefficients of the M-polynomial. In this section, we see that for any choice of root r in an
alternating dimap D, the polynomial Mp ,(x) has all 0 and 1 coefficients. In particular, since the support of
Mp (x) is independent of the choice of root r by Corollary 4.5, the polynomial Mp ,(x) is also independent
of the root r, and we are justified in denoting it by Mp(x).

Lemma 4.6. [Kal3, see proof of Theorem 10.1]. Let D be an alternating dimap. Denote the cycles sur-
rounding the clockwise oriented regions by C1,...,Cy. For any spanning tree T of D, let a;(T) denote the
number of edges of T in the cycle C;. Then, for a fized vertex r of D and a fized sequence {s1,..., sy}, there
exists at most one arboresccence T rooted at v such that a;(T) = s; for all i.

Proof. Suppose we have two such arborescences 77 and T». Since these trees are distinct, there must exist
some edge e; = (vg,v1) which is in 77 but not Tp. Without loss of generality, suppose C; is the cycle
containing e;. Observe that since v, has an edge pointing towards it in 77, it cannot be equal to the root r.
This implies that T5 must also have some unique edge fi; # e; which is directed into vy and that f; is not
in T;. Let Cy be the cycle containing f1. Since as(T1) = a(T»), there must exist some edge es in Cy which
is in 77 but not T5. We will denote the final vertex of es by vs.
Repeating this process, we obtain a sequence of edges eq, f1, €2, f2, ... and a sequence of cycles Cy, Co, . ..

such that for all 4,

(1) e; is in T1 but not Th

(2) fl is in T2 but not T1

(3) e; and f;—1 are in C;

(4) e; and f; share the same final vertex v;
Let k be the smallest index such that C = C; for some j < k. The interiors of the cycles Cj, ..., Cr_1 now
form a cycle, as shown in the example below.

Vj41
.

Uj Cj+1

Cj

Jr—1
Uk_{
C

Cr_1 k—1

UVg—2

In particular, D can be divided into two subgraphs, the portion inside this cycle and the portion outside
it, which share only the vertices v;,...,vx—1. Let D; and D respectively denote these subgraphs. Since
Cj,...,Cr_1 are all clockwise oriented cycles, all of e;,...,ex—1 will be directed out of one subgraph and
all of f;,..., fu—1 out of the other. Suppose without loss of generality that the edges e;, ..., er—1 point into
Vj, ..., Vp—1 from Dy.

Each of D; and D, must contain at least one vertex besides vj,...,v5—1 (otherwise, {e;,...,ex_1} or
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{fj -, fe—1} would form a cycle, contradicting the fact that they are edges of trees). Since vj,...,v5_1
are all the final vertices of some edges of T7 and 75, none of them will equal the root r. We can, thus,
conclude that r is in precisely one of Dy or Ds. There is, however, no directed path in 73 into a vertex
in V(D1) — {vj,...,v5-1} from a vertex in V(Ds) — {vj,...,vp_1} because the only edges of 77 which

are directed into {vj,...,vp—1} are {e;,...,ex—1}, all of which point away from D;. Similarly, there is no
directed path in T into a vertex in V(D) — {vj,...,v5_1} from a vertex in V(D1) — {vj,...,vp—1}. This
gives a contradiction. O

Next, we prove Theorem 4.1.

Proof of Theorem 4.1. By Corollary 4.5, the support of Mp ,(x) is M-convex and independent of the choice
of root r. It follows from Lemma 4.6 that all coefficients of Mp ,(x) are 1 on its support. Thus, Mp ,(x) is
independent of the choice of r, and we may denote it by Mp(x). By Theorem 2.3, we conclude that Mp(x)
is denormalized Lorentzian. ]

Corollary 4.7. The sequence of coefficients of J\%(t, q) is the number of integer points in the intersection
of the Newton polytope of Mp(z1,...,x) with parallel hyperplanes of the form p1 +---+p, = ¢, ¢ € Z>p.

Proof. By the proof of Theorem 4.1, all coefficients of Mp are 1 and its support is M-convex. Thus, applying
Corollary 3.8 yields the result. O

It follows from Theorem 3.5 and Corollary 4.7 that in the special case where D = G(L¢ ), we can interpret
the coefficients of the Alexander polynomial of A (—t) for a special alternating link L as the integer point
counts in a series of parallel hyperplanes intersecting a generalized permutahedron. Such an interpretation is
closely related to the work of Li and Postnikov on slicing zonotopes [LP13]. Moreover, Kalman’s work [K413]
implies that the support of Mp is a trimmed generalized permutahedron [Pos09, Definition 11.2] dependent
on the dimap D.

4.3. Log-concavity of the coefficients of A (—t). From Theorems 3.5 and 4.1 and Lemma 2.5, we
readily obtain:

Theorem 1.2. The coefficients of the Alexander polynomial A (—t) of a special alternating link L form a
log-concave sequence with no internal zeros. In particular, they are unimodal, proving Fox’s conjecture in
this case.

Proof. If L is a positive special alternating link, then by Theorems 3.5 and 4.1 and Lemma 2.5, we conclude
that Homog, (A (—t)) is denormalized Lorentzian. Therefore, N(Homog,(Af(—t))) is Lorentzian. By
Proposition 2.4, this implies that the coefficients of Homog, (A (—t)), which are the same as those of A (—t),
are log-concave with no internal zeros.

The case where L is a negative special alternating link follows from Remarks 3.2 and 3.6. ]
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