2024 Annual Computer Security Applications Conference (ACSAC) | 979-8-3315-2088-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/ACSAC63791.2024.00096

%04

OOVBMPNQVUFS4FDVSJUZQQMIDBUJPOTPOGFSFODF4

TILE: Input Structure Optimization for Neural Networks to Accelerate Secure
Inference

Yizhou Feng
Department of Electrical and
Computer Engineering
Old Dominion University
Norfolk, VA, USA
Vfeng002 @ odu.edu

Hongyi Wu
Department of Electrical and
Computer Engineering
University of Arizona
Tucson, AZ, USA
mhwu@arizona.edu

Abstract—Machine Learning as a Service (MLaaS) is an in-
novative framework that enables a broad range of users to
capitalize on the powerful Artificial Intelligence (AI) tech-
nologies. Nevertheless, MLaaS raises a privacy concern for
both the client data and server model. To address this issue,
several Secure Inference (SI) frameworks for MLaaS have been
proposed in the literature that take advantage of Homomor-
phic Encryption (HE) operations. However, the computation
cost of these frameworks is still high, especially for real-
time applications. In this paper, we propose a novel system
called input structure optimization for neural networks (TILE)
to accelerate SI. The goal of TILE is to reduce both linear and
non-linear computation costs, as well as non-linear communi-
cation costs in MLaaS, while maintaining the model accuracy.
TILE defines two novel HE-friendly input structures: Internal
Tile and External Tile Structures, aimed at reducing the HE
operations for SI. We also develop a search mechanism to
identify optimal application locations for these input structures.
We apply TILE to widely used models such as VGG and
ResNet, and datasets including Cifar10 and Tiny-ImageNet.
The experimental results demonstrate that TILE effectively
reduces the computation time, with up to 51.57% reduction
for a state-of-the-art SI framework. Furthermore, TILE can
also be applied to models that have already been pruned to
significantly reduce the computation time, to further reduce
the overall computation time by 25.90%.

Index Terms—Input Structuring, Machine Learning as a Ser-
vice, Privacy-preserving Computation, Packed Homomorphic
Encryption

e *Corresponding Author

Qiao Zhang
College of Computer Science
Chonggqing University
Chonggqing, China
giaozhang @ cqu.edu.cn

Yifei Cai
Department of Electrical and
Computer Engineering
Old Dominion University
Norfolk, VA, USA
yeaiO0l @odu.edu

Chunsheng Xin*
Department of Electrical and
Computer Engineering
Old Dominion University
Norfolk, VA, USA
cxin@odu.edu

1. Introduction

Machine Learning as a Service (MLaaS) is a framework
that enables a broad range of users to access powerful
artificial intelligence (AI) models for numerous applications,
such as image classification [1], [2], facial recognition [3],
credit-risk assessment [4] and disease diagnosis for patients
[5], [6], [7]. In the MLaaS setting, a client sends its data
to a server, typically in a cloud, which runs its AI model
and returns the inference result to the client. However, the
privacy concern raises a great challenge, as the client data
can be sensitive, such as medical records of patients. For
example, several legislations prevent the exposure of certain
private data, such as the Health Insurance Portability and
Accountability Act (HIPAA) in the US, the General Data
Protection Regulation (GDPR) in the EU, and the Personal
Data Protection Act (PDPA) in Singapore. On the other
hand, the server also has a strong need to safeguard its
Al model, specifically the model parameters, to protect its
intellectual property, since training Al models usually needs
substantial investments in high-quality training data, hard-
ware, and algorithmic design. Exposure of these parameters
can result in adverse business competition implications.

To address the privacy concern of both client data and
server models, secure inference (SI) has been developed, that
keeps client data undisclosed to the server while concealing
server model parameters from clients. Prior works on SI
embed cryptographic primitives into computation processes
of Deep Learning (DL) models [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22].
Based on DL functionality, SI computations for an Al
model can be divided into linear and non-linear parts. For
linear computations such as convolution and dot product,

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

implementing them using Homomorphic Encryption (HE)
[23], [24] is preferable, as it supports linear operations di-
rectly over the ciphertext domain. Non-linear computations,
including ReLU, truncation, and max pooling, are usually
implemented using cryptographic primitives such as Garbled
Circuit (GC) [25], [26], Oblivious Transfer (OT) [27], [28],
[29], and Secret Sharing (SS) [30]. Combining both linear
and non-linear implementations ensures that the entire SI
framework can replicate the functionality of the original
DL model while ensuring efficient and privacy-preserved
execution. Nevertheless, even with the state-of-the-art SI
frameworks [15], [17], [13], [19], [18], the computational
overhead remains far from practical. This issue becomes
even more profound for deeper Al models with larger in-
puts. Additionally, another observation in [18] shows that
the computation overhead of state-of-the-art SI frameworks,
such as Gazelle [15], Gala [18], and CrypTFlow2 [13], is
primarily dominated by HE-based linear operations and OT-
based non-linear operations, respectively. The cost of these
operations relies on two key components: the complexity
of input data and the complexity of model parameters.
Reducing both parameter complexity and input data com-
plexity can enhance computational efficiency for SI. In the
literature, model pruning is a commonly used method to
reduce the parameter size of a given model. For example,
frameworks such as Hunter [31] and MOSAIC [32] have
been developed to conduct model pruning for SI. These
frameworks construct HE-friendly structures for model pa-
rameters in SI frameworks, which effectively reduce the
time required for SI. However, due to the limitations of
model pruning strategies and SI framework settings, these
solutions still incur high costs associated with Internal Perm
operations and their corresponding computations. Addition-
ally, there are no practical methodologies for reducing input
data complexity in SI. Therefore, a new approach is needed
to reduce input data complexity, which could enhance the
efficiency of SI.

In this paper, we propose a system callsed input structure
optimization for neural networks (TILE) to accelerate SI.
Our work began with a crucial observation that ReLU
layers in DL models often produce similar output values
due to their inherent property of nullifying negative val-
ues. Consequently, if the ReLU layer’s output values are
similar, the input values are likely to be similar as well.
By substituting these similar values with a single value,
such as an average, we can reduce input data complexity
and lower inference time for SI with minimal impact on
final predictions. Another critical observation is that the
later layers of a DL model have larger receptive fields that
focus less on input details [33], [34], [35], [36]. Therefore,
the slight approximation introduced by substituting multiple
ReLU output values with a single value does not signifi-
cantly impact the final predictions of a DL model. Motivated
by these observations, our first objective is to design a
HE-friendly input data structure to reduce subsequent HE-
based computations within the convolution layers and the
corresponding non-linear OT-based computations preceding
these layers.

Secondly, the computational overhead in HE-based cal-
culations primarily comes from the high computation com-
plexity of three fundamental HE operations: Addition (Add),
Multiplication (Mult), and Permutation (Perm). Our ex-
periments showed that the Perm operation has the high-
est time complexity compared to other HE operations, a
finding consistent with prior studies [31], [32], [18]. We
have also observed that Perm operations, along with the
associated Mult operations, predominantly contribute to the
computational overhead of a single convolution operation.
We refer to these Perm operations within this context as
“Internal Perm”. Consequently, our second objective focuses
on minimizing the number of Internal Perm operations (as
well as their associated Mult and Add operations) to reduce
the computation cost of SI.

To the best of our knowledge, TILE is the first work
that focuses on optimizing the input structure for SI com-
putation. Moreover, it is complemental with the existing
model compression techniques such as the model distilla-
tion [37] and the recent HE-friendly model pruning tech-
nology [32], and can further improve the performance of
the compressed/pruned models. To this end, TILE provides
a new dimension to improve SI frameworks and sheds lights
to further close the gap toward practical SI.

In summary, our contributions are as follows.

o We propose a system called input structure opti-
mization for neural networks (TILE) ! for SI. TILE
employs two efficient structures, Internal Tile and
External Tile, designed to be HE-friendly. These
structures effectively reduce the HE operations re-
quired for linear computation and the OT operations
required for corresponding non-linear computation,
thereby reducing the overall cost for SI.

e We construct a search mechanism for TILE, to iden-
tify optimal locations within a model to apply these
tile structures. Moreover, model reconstruction is
performed based on the search results obtained. This
refined model maintains the same level of accuracy
as the original model while reducing the computa-
tion time needed for SI.

o The experiments demonstrate that TILE efficiently
speeds up SI. TILE achieves a reduction of up to
45.81% in Internal Perm, 54.64% in Mult and Add
operations, and 32.29% corresponding ReLU oper-
ations, resulting in a 41.20% reduction in SI time
for state-of-the-art MLaaS frameworks. Even for a
pruned AI model that has already had more than
57.62% time reduction, TILE achieves an additional
reduction of up to 25.90% in SI time for state-of-
the-art frameworks.

The rest of the paper is organized as follows. In Section
2 we discuss the system model, cryptography tool, and
threat model adopted in our system. Section 3 elaborates on
the proposed system and gives the security and complexity

1. Our implementation is available at https:/github.com/yizhouf743/
TILE

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

analysis. Section 4 presents the performance evaluation.
Finally, we conclude the paper and discuss the future work
in Section 5.

2. Preliminaries

2.1. System Model

Our work focuses on deep Convolution Neural Networks
(CNNs), where the convolution operation predominantly
determines the linear computation cost. The computation of
convolution involves placing the kernel at each location of
the input data, followed by summing up the element-wise
products between the kernel values and the corresponding
input feature map data within the kernel window. Non-
linear computations in DL models usually employ the ReLU
activation function in modern CNNs such as VGG[34] and
ResNet[38], represented as f(x) = max{0, z}. Additionally,
the pooling operation, typically applied after convolution,
downsamples the output data. Our work aims to optimize
the SI computation efficiency of convolution operations that
accordingly reduces the associated non-linear operations. It
can be adopted in state-of-the-art SI frameworks such as
Gazelle[15] and CrypTFlow2[13], to speed up their infer-
ence.

2.2. Thread Model

We assume a semi-honest threat model that is widely
adopted in SI frameworks [39], [15], [17], [13], [18]. Specif-
ically, the two parties in TILE are non-colluding and follow
the protocols but may try to infer the other party’s data
from their received messages. For instance, the client may
try to infer the model parameter, such as values of kernels
and weight matrix. The server may try to figure out the
client’s private input. We perform security analysis for TILE
in Section 3.4.

2.3. Packed Homomorphic Encryption

Following state-of-the-art Secure Inference (SI) frame-
works [15], [13], [17], [18], our work utilizes the Packed
Homomorphic Encryption (PHE) scheme [24] rather than
the Fully Homomorphic Encryption (FHE) [40] scheme.
While FHE offers the advantage of supporting an unlim-
ited number of homomorphic operations on encrypted data
through bootstrapping, PHE has a great advantage on the
computational efficiency, thanks to its Single Instruction
Multiple Data (SIMD) method that enables parallel process-
ing of multiple data points within a single ciphertext. Our
work adopts the BFV scheme implementation for PHE, that
supports homomorphic Addition (Add, &), Multiplication
(Mult, ®), and Permutation (Perm) operations. For example,
let x and y be two plaintext vectors with m values each,
encrypted into two ciphertexts by the client using PHE
as [z]. and [y]., respectively. The Add operation outputs
ciphertext [z+y]. by element-wise addition of [z]. with [y]..

The Mult operation outputs ciphertext [z X y]. by element-
wise multiplication between [z]. and y. The Perm opera-
tion cyclically rotates the values of a ciphertext, such that
rotating [z]. results in another ciphertext where the value
at the i-th position moves to the first position. Meanwhile,
multiple Perm operations on the same ciphertext can be
reduced by performing one Perm Decomposition operation
with the same number of Hoisted Perm operations[15], thus
amortizing the total Perm time. It is worth noting that many
SI frameworks, such as [17], [15], [13], [18], primarily focus
on reducing the number of Perm operations (External Perm)
required to align the intermediate ciphertext. This approach
enables the client to obtain the convolution output in the
same data order as it would from the convolution operation
in plaintext while incurring minimal SI cost.

However, a significant computational cost remains as-
sociated with ciphertext Mult and Internal Perm operations
in convolution computations. These operations significantly
dominate the time required for SI. For example, when apply-
ing the CrypTFlow2 framework [13] to VGG16 with Tiny-
ImageNet, we find that Mult and Perm operations together
constitute up to 90.20% of the total computation time for a
single convolution layer. To further enhance the efficiency
of SI, TILE aims to minimize the computational complexity
of the Internal Perm operation and its associated Mult and
Add operations, thereby reducing the cost of SI.

3. System Overview of TILE

Central to TILE are two HE-friendly input data struc-
tures: Internal Tile and External Tile, which shape input fea-
ture maps to effectively reduce three HE operations (Mult,
Add, and Internal Perm) within convolution computations
and minimize the associated non-linear operations, while
preserving the model’s accuracy. Next, we describe the In-
ternal and External Tile structures and how they are applied
in the HE-based convolution computations.

3.1. Tile Structure for Convolution Computation

For a convolution layer, we denote the input data « has
C; channels, each with a size of uj, X u,,, while the plaintext
kernel k has C, channels, each with a size of C; X kj, X ky,.
Each ciphertext can store C), channels of the input data
u. The client encrypts input u as [u]., which is then sent
to the server. The server conducts convolution computation
between [u]. and its kernel k to obtain the encrypted output
[v]c, where v = k % u and “*” represent the convolution
operation.

3.1.1. Single Input and Single Output (SISO) Convo-
lution. In SI frameworks such as [15], [13], when C; =
C, = 1, it is called single input and single output (SISO)
convolution. The SISO convolution computation proceeds
by initially placing the kernel at each location within the
input. Subsequently, the process involves the summation
of element-wise products between the values of the kernel
and the corresponding elements of the input data within the

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

Convolution with Plaintext:

E Input u Output v '

: B4 @12 | Tus | P1a Kernel k z1 |22 | 23 | 2 E

E Ty Do |as | Tos fi] £ I fs 2 | 2 | zr | 28 !

. o31 | T30 | w33 | T34 * | Si | fs fo| = | laoden e '

. 41 | a2 | a3 | Taa frlfs fo Zis jzu] 25 | Zi6 :

h '

e]

@Convolution with Ciphertext

___ ,

E [u@)e ko) '

N E3%1 B 2 B e P A P |$1,1f5|11.2f5|101.3f5|)

: [ucle ey D ;

E |lzzles|oa .| [fs L fs [fs |- |a:1,2f6|1‘1,3f6|$1,4f6| - !

' [u(_g)e ® k(4 = E !

! |z2a]zaz]zas] -] | fs s fs] |E2,1f8|12,2fslzz,3fs|]

: [l k(s) o

Vlzee]zas]zad]] [l Sl fe -] |732,2f9|$2,3f9|w2,4f9| - '

\

' v]
h

5 7 e e e

___ |

@ Applying TILE
__ \
! |ﬂ?1,1|$1,1|$1,1|z1,1|®|f5+fﬁ+f8+f9|--<|---|- |:| 21 | | | | E

Figure 1: Toy example for computing the first convolution
output value in SISO

predefined kernel window. As a result, the i-th value of the
convolution output can be formally described as the inner
product of vectors constructed from the kernel centered
around the i-th position within the input.

Next we use a toy example in Figure 1, where C; =
C,=10C, =1, up = uy = 4, and k;, = k,, = 3, to
illustrate HE convolution computation and how the Internal
Tile structure can reduce the computation time. In plaintext,
the first value of the convolution output, denoted as z, is
computed as follows:

21 =x11f5 +T12f6 + 2,1 f38 + 222 f9. (1)

However, in SI frameworks based on PHE, the server’s com-
putation follows a different process. The server computes:
[v]c = ZiEL[u(i)]C ® k(i), where L = {0,71,74, 75}
represents the list of rotation steps. The server performs
multiplication between the plaintext kernels k), k(1)
k(—4), and k(_5) and the encrypted input [ug)]c, along with
its rotated ciphertexts [u(—1)]c, [u(—4)]e, and [u(—5)].
These results are then summed to produce the encrypted
convolution output [v]., with its first element representing
the encrypted value of z;, as illustrated in Figure 1.

An interesting observation is that the number of Perm,
Mult, and Add operations exhibits a linear relationship with
the number of terms in (1). Specifically, to obtain each term
in (1), it requires one Internal Perm (except for terms that
include the kernel value at the center of the kernel, such as
f5 in Figure 1), and a Mult operation, followed by an Add
operation (except the last term). For this example, it needs
total three Perm, four Mult, and three Add operations.

However, if the values within the input feature map are
similar, i.e., 11 = T12 & 21 ~ T22, then (1) can be

rewritten as follows.

z1=x11(fs + fo + fs + fo)

As a result, the Internal Perm, Mult, and Add operations
each is reduced by three. That is, it would need only one
Mult operation (Note that f5 + fs + fs + fo is done at the
plaintext domain).

Motivated by those observations, we partition the entire
input feature map into fixed-size structural units, called
Internal Tiles, with each unit representing an PxP block of
data. For example, Figure 3 illustrates the resulting input
feature map with 2x2 partitioning, denoted as u’. Within
each unit/tile, if the values are similar, then all values are
substituted with their corresponding mean value. We use
different colors to distinguish different units. For example,
in v, T1,1,%1,2,T2,1,%2,2 form a 2x2 tile, represented by
the yellow color, and they have the same value (the original
mean). Note that the individual values in a unit change their
locations after a ciphertext rotation. But the values in the
same unit can be still seen by their color.

Given that all pixels in a tile have the same
value, the Mult operations for rotated ciphertexts
[urayle, [ugnle [u—yle, and [u_ylc in Figure 2
can be absorbed into the Mult operations of other
ciphertexts, as illustrated in Figure 3. For example, consider
the computation of the sixth convolution output, denoted
as 26!

o =x11f1 Fxi2fo+T13f3 F 221 fa+202fs5
+ 223 f6 + 23,17 + 232 f8 + 3,3 fo.

In SI frameworks, the server needs to compute v =
sepltle ® k() for the rotation steps in the list L =

{-5,—-4,-3,—-1,0,+1,+3,4+4,+5} to obtain zs. This
computation involves 8 Internal Perm, 9 Mult and 8 Add
operations.

As illustrated in Figure 3, since in v/, Ti1 = Ti12 =
21 = X272, 1,3 = 23, and xr3,1 = 3,2, Z¢ Can be
rewritten as follow.

26 = (111 + 21202 + 22,1 2 + x2.2f5) + (1,3f3 + 22,3 f6)
+ (x3,1f7 + ®3,2fs) + 3,30
=wxoo(fr+ fo+ fa+ f5) +x1,3(fs+ fo) +x3,1(f7r + fs)
+ x3,3fo

In other words, the computation of terms
I1,1f17x1,2f27x?,lf47x2,3f6 and xg,gfg are absorbed into
the computation of other terms in the expression. As a result,
the HE operations corresponding to ciphertext [u(is)]c,
[u(s1)le, [u—1)le, and [u_g)]. are eliminated, including 4
operations each for Perm, Mult, and Add. Now, the server
can obtain zg by computing v = >,/ [ug;]e ® ki, for
the rotation steps ¢ in the list L' = {-—5,—3,0,+3,+5}.
This computation only involves 4 Internal Perm, 5 Mult,
and 4 Add operations. Recall that v represents the input of
the convolution layer as well as the output of the preceding
ReLU layer, denoted as v = f(Y). Here, ¥ = y;;
(0 < i < up,0 < j < wy) is the input of the ReLU
layer. If 11 =~ x12 = X21 = ¥22, the input values to

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

the preceding ReLU layer are likely similar as well, i.e.,
Yi,1 R Y12 R Y21 = Y2,2. This makes it possible to
eliminate non-linear computations for f(y1,2), f(y2,1), and
f(y2,2). Similarly, leveraging z1 3 ~ 223 and 31 ~ 32,
the computation of f(y23) and f(ys2) can eliminated.
Similar observations can also be found for other non-linear
computations, such as truncation and max pooling.

In the implementation, after applying the Internal Tile
structuring of input data, the client transmits the reshaped
data, reduced to % the size of the original data, to the
server for OT-based ReLU computation, since only one
pixel value from each tile is needed (other pixel values in
a tile are the same). The client share of the output from
this ReLU computation, which serves as the input for the
subsequent HE-based convolution computation, is also sent,
after encryption, to the server for further processing. To
ensure that the ReLU output size matches the required size
for the subsequent convolution layer input, each pixel in
the ReLU output is expanded into a block of (P, P) pixels,
each with the same value, based on the predefined tile
positions. The Internal Tile structuring reduces not only
the computation cost including HE operations and ReLU,
but also the communication cost, thereby accelerating the
SI computation. It is noteworthy that applying the Internal
Tile structure is different from the mean pooling operation
in CNN, as the Internal Tile structure retains the original
spatial structure while reducing the required HE operations,
and the substitution using a single value within each tile unit
preserves relationships between neighboring pixels, enabling
it to capture structural connections and prevent information
loss.

3.1.2. Multiple Input Multiple Output (MIMO) Con-
volution. Next we consider the general case of MIMO
convolution, where the number of input channels C; and/or
the number of output channels C, are greater than one. In
MIMO computation, we have C; input channels (each with
a size of u,, X up) convolved with C, filters (each with a size
of C; X fu X fr) to produce C, output channels (each with
the size of u,, X up). Under the state-of-the-art SI framework
introduced in [13], which is based on the Grouped Out-Rot
MIMO method, let us consider a scenario with the following
setting: C; = 8, C, = 4, and C,, = 4, where C,, represents
the number of input channels packed into one ciphertext. As
depicted in Figure 4, the client encodes eight input channels,
denoted as H; (1 < j < 8), into two ciphertexts: [u1]c, [usz]c.
These ciphertexts are then convolved with filters K = {k; ;}
(1 <7 <4,1 <5 <8)to generate an encrypted convolution
output, [V]., comprising four output channels: vy, va, v3, V4.

For example, the computation of the first output channel,
denoted as vy, is as follows:

v, = Hy % k171 + Hy % k’LQ + Hj * k1,3 + Hy %]{71’4
+ H5 * k1’5 + H5 * kl,(} + H7 * k177 + Hg * I{?Lg.
Here, each term is an individual convolution operation be-

tween one input channel and one kernel, using the SISO
method above.

In this example, excluding the computational cost within
individual convolution operations, the server computes

i=1

Vl]e = Z Perm(Z([ui]c ® B;;),j —1).

This process involves 8 Mult operations for the ciphertexts
[u1]e and [us]., each paired with a corresponding kernel
vector B; ;, along with 7 Add to combine their results,
as illustrated in Figure 4. Additionally, 3 Perm operations
are needed to ensure the elements in the three ciphertexts
resulting from the Mult operations are in the right order to be
added to obtain the convolution output, {v;} (1 < i < 4).
Here each unit to be permuted is the result of an SISO
convolution operation and hence the Perm operation is called
External Perm.

One observation is that if most values in a group of input
channels are similar, we can reduce the computation time.
For example, if the Hj is similar to Hg and H7 is similar to
Hs in [us], i.e., Hs &~ Hg and H7 = Hg, the convolution
computation for v; can be rewritten as follows:

v = H1 *]C171 + HQ * k’l’g + H3 * I{?173 + H4 *]{21’4
+ Hs * (k1,5 + k1,6) + Hr * (k1,7 + k1s).

Similarly, in the SI framework, the computation for [V]. can
be simplified as follows.

V). = i {Perm([uﬂc ® By, @ [uple ® By ;.5 — 1), ifj= .1 or3
o Perm([ui]e ® By,j,j — 1), otherwise

This optimization reduces the computation to 6 Mult
and 5 Add operations, as depicted in Figure 5. Moreover,
similar to our discussions with the Internal Tile structure,
the required number of OT-based ReLU computations for
the preceding ReLU layer can also be reduced by 25% given
that Hs ~ Hg and H; =~ Hg. As a result, the data size that
the client needs to transmit to the server is also reduced by
25%.

These group structural units within the input feature map
in MIMO convolution are referred to as “External Tile”.
This structure effectively minimizes the computational cost
of 1 x 1 Convolution layers. To apply this structure to
the HE-based convolution computation, the client initially
partitions the input channels into External Tile structures,
each containing M(0 < M < %) input channels. If
for a group of input channels, all feature pixels at the
same position among those input channels are similar, then
those input channels form an External Tile. Within each
tile, the input channels conduct element-wise averaging,
i.e., for each input channel, the value of a feature pixel
is substituted by the average value of the feature pixels at
the same position among all input channels in a tile. The
External Tile structure reduces the required Mult and Add
operations. Moreover, the computation and communication
costs in the preceding OT-based ReLU layer associated with
the redundant channels in an External Tile can be eliminated,
similarly as in the case of the Internal Tile structure.

The client transmits the reshaped data, reduced to ﬁ

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

Input u

Kernel k&

Output v

12 | T13 | T1a z1 | 22

il fh

z3 | 2

T2 | T23 | Tag 25

* fulfs

Z7 | 2

T30 | T3a | T34 210

Z11

bid

Tyo | Taa | Taa 214

215

@ SISO Computation

Figure 2: SISO convolution in [15],

[13]. The red dashed windows indicate

the operations to be eliminated by TILE in

Figure 3
Input u u'
Tl T2 | T13 | T14 Tl T2 T3 Tid
Applying Internal Tile
T2, [T22 | T23 | P24 T2, T22 T23 T4
T3, |32 | T33 [T34 T3 T32 T3z T34
T4y | Tap [Tas [Tas Tyl Tap Ta3 Tag
Tt P T P voorTTTT (2 ;S TTTTTTTeT '
H [ufys)le kiis) H [ufs)e k(i3 '
. '
2aa a1 @iz @ 0 0 0 0 H @ ®a3 @4 21 0 0 0 0 H
' '
W Zaa 11 @12 T ® 0 0 fi+fa 0 :®: T12 T13 Tig4 Tz ® 0 fs+ 1o 0 0 '
Uz 221 T2p 223 0 fitfo fi fi+fa ! V] z22 zas mas msn fat+fs fs fot+fs 0 !
Weoa 231 232 @ 0 0 fi+fa 0 ' V2 @5 w34 zan 0 fi+fe 0 0 '
e L ! e
L R L '
! [ufg)le ko) '
Wz zp @13 Tig fs + fo + fs + folfa+ f5 + fr + fs|fs + fo + fs + folfa+ f5 + fr + fs| *
1 '
221 22 @2y s ®f2+f3+fs+fsf1+fz+f4+fsf2+fa+fs+fﬁf1+fz+f4+f:- '
I '
HES fo +Fo+ Fs+ folfs + fs+ frt Folfs + fo + fs + folfa+ f5 + fr + s 1
HER fo+ f3+ fs + folfr + fo+ fa+ f|f2 + 3+ fs + folfr + fo+ fa+ S5 |
:]y . [u{_s)e K g :
' '
HE" ¥ 0 0 fi+fr 0 ! V22 Tas @as T3 0 fo+fo 0 0 !
224 731 332 sy ® 0 frtfs i fitfs :®: Typ Ty T3a T4l ® fs+fo fo fs+ fo 0 '
1 '
1| #8a mar za2 zas 0 0 fa+ fr 0 ' 1242 T4y Tag 11 0 fo+ fo 0 0 '
: T44 T11 Ti2 T3 0 0 0 0 | : Tip X1z Tia T 0 0 0 0 '
' '

Figure 3: SISO convolution applied with the Internal Tile structure (Pixels with the same color belong to the same tile)

of the size of the original data, to the server for OT-based
ReLU computation, since only one input channel’s data from
each tile is required (the data of other channels in a tile are
the same). Then, the client share of the ReLLU output, after
encryption, is sent to the server for further computation.
Since the output of ReLU computation usually serves as
the convolution input feature map of the subsequent layer,
the client replicates each output channel of the ReLU output
by a factor of M based on predefined tile positions, to match
the required input size for the subsequent convolution. This
entire process enhances feature sharing, optimizes the SI
efficiency, and retains essential information without com-
promising the correctness of the computation.

3.2. Tile Position Locator

In practice, blindly applying the aforementioned tile
structure to entire input feature maps can lead to the loss of
edge information and decrease model accuracy. The extent
of the loss of accuracy varies depending on the applied po-
sition and the model architecture. In deep neural networks,
convolution layers closer to the final output often capture
more abstract and high-level features, as pointed out by
multiple studies [33], [34], [35], [36]. These deep layers
have larger receptive fields and are less sensitive to input
details, which makes them more tolerant to information loss
without significantly affecting model behavior and accuracy.
In the context of pruned models, the sensitivity to input
details is also influenced by the number of input channels,
as discussed in [41]. The reduction of input channels leads
to decreased redundancy in the input data, which poses a

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

Input v

! '
! '
h
: Filter K '
' K, K, N Output V H
1 '
VR R Rz kg ks ke kg Rig !
Vo kea kap keg aulkas kag kar ks . '
\
: ksg ksp ksz kaa|kss kae kaz ksg H
Vlkas ki ks Raa ks kao kaz ks H
'
! '
|
'
\
'
R 1
@ MIMO Computation
K
' By g ko ks ® [
12 ;
k. k: k: k:
Bus ko ki bis ko © [[, {pem
ka1 Hy + ka5 Hs T
[uy
& !
2 Bot kis ks ksy kis @ | Hy He Hy Hs 1
AT fasHo ?
kos kag kay kas | D22 Kas ki ker kes @ | Hy He Hy Hs Perm
kss ksg ksr kas ® faofly + koo Ho
bas ke hur Byy kg5 kag kir ko Hs He H; Hyg 1
45 ki kaz kas -
o I
Boa ks ksg kiz ks & | Hs He Hy Hg lpﬂm =
kq3Hs + ky7Hy
@
Ve
Figure 4: MIMO convolution in [13]
fue
u N o B b ke ke ke © [
Applying External Tile ox e Fan Foe : Porm
e BE 0 Be ok ke ks ke O [H]
21 Koz kag k2 ;
ks kas kg K i
w | Ho ; ot e | b b ke © [|
s "z ki i kig kas : Perm
i3
i Bt ks ksa kas ko @ [[N [
K> B, (3]
kis ks kur ki ks + kg kas + ko Koz + ko kup + kag @ (ki + kas) HJ®
ka5 kag Koy kag |:>
Ess | ks | ke | Fss Ky + kas kas + kag kup + kug kar + ko ® (Fas 1 Fan)Hy) !
ka5 Kao Kar Kag By Perm
(ka5 + kag)He + kapH))
v I - |

Figure 5: MIMO convolution applied with the External Tile structure

challenge for effectively applying the tile structures.

Moreover, the sensitivity to tile structures differs across
various types of convolution layers. For instance, within
ResNet50’s residual block, 1 x 1 convolution layers pre-
dominantly perform dimensional reduction and expansion
before and after the 3 x 3 convolution layers, whereas
the 3 x 3 convolution layers focus on capturing spatial
information [42], [38]. Implementing tile structures on the
1 x 1 convolution layers reduces the information capacity
for the subsequent 3 x 3 convolution layers.

Therefore, it is important to find the optimal positions
to apply the tile structures. To this end, we develop a tile
position locator based on the OTO technique [43] to identify
optimal candidate channels for tiles. The key idea is to
compute a score for each input channel for a layer. Input
channels with scores below a threshold are identified as
candidates for applying the tile structures.

Algorithm 1 describes the tile position locator to identify
the optimal positions to apply a tile structure for a convolu-
tion layer. It first analyzes the SI cost for the Perm operation
to determine the tile structure type to be applied for the con-
volution layer. If the inference cost of the external perm is
higher than the internal perm, denoted as % < t“c(fi:ll)
the External Tile structure will be applied; othoerwise, the In-
ternal Tile structure will be used. Here, ¢, and t.x represent
the average time for an internal and external perm operation
in a convolution operation, respectively. C,, represents the
number of input channels that are packed into one ciphertext.

Next, the tile position locator identifies the optimal
positions to apply the tile structure. If the selected struc-
ture is the External Tile structure, the tile position locator
partitions the C; input channels sequentially into m distinct
groups, where m = g—n Each group is treated as though
it is encoded into one separate ciphertext. Subsequently,

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

the External Tile is applied to every group. If the selected
structure is the Internal Tile structure, the Internal Tile is
applied to every input channel. The tile position locator
then estimates the stochastic gradient, denoted as V f(W),
and computes the stochastic sub-gradient, g, defined as g =
Vf(W)+ A((W), and updates the model weights. The up-
dated weights W’ = {w] ;} (1 <4 < C;,1<j < C,x f?)
for the layer with the apphed tile structure are calculated
as W/ = W — [r x g for the subsequent iteration. Here,
A is the weighting coefficient for the sub-gradient ((W),
calculated using a mixed 1/l norm on W, as described
in [43]. W = {w;;} (1 <i<C;,1<j<C,xf?
represents the pre-trained weight of a layer in the original
model, where C,, and C; are the number of output and input
channels, respectively, and f represents the filter size. The
term [r denotes the pre-defined learning rate.

Let W,, = {w,,} (p € C, x f?) denote the n-th row
of W. ||[W,,||? provides an estimation of the importance for
the n-th input channel. The channel applicability score {s,, }
for the input channel n (1 < n < C;) is calculated using
the following equation:

Cox f2
Sn = HW E Z W, ;W),)

where lg is the logarithm function that is used to scale down
the value of the applicability score. Here, the inner product
between W and W' estimates the similarities between the
original model’s weights and the weights after applying
the tile structure to the input channel n. This measurement
assesses how closely the updated weights maintain the direc-
tional and magnitude characteristics of the original model’s
weights.

With these computed scores, the tile position locator can
effectively determine the optimal positions for applying the
tile structures. For example, if the tile position locator selects
the External Tile structure, it sums the applicability scores
sp of all input channels in group m, to get the group’s
applicability score, denoted as 7, =), ., sn. The tile
position locator then applies the External Tile to the m-
th group if v,, < e. If the tile position locator chooses the
Internal Tile structure, it applies the Internal Tile to the n-th
input channel if s,, <e.

Considering the functional differences between the 3 x 3
convolution layer and the 1 x 1 convolution layer, the tile
position locator adjusts the threshold for the 1 x 1 convolu-
tion layer as ¢’ = %C“ * ¢, which is then set as the new e.
Here, ¢ represents the pre-defined threshold for determining
whether a tile structure should be applied to a group of
input channels. « represents a control weight that adjusts
according to the layer’s position within the model, and %
acts as the dimension scaling factor for the 1 x 1 convolution
layer. The control weight « is calculated as o = eP*(Ah),
with 3 representing the decay coefficient and Ah indicating
the distance from the current layer to the final output.
This adaptive mechanism allows « to gradually reduce the
impact of the applied tile structures as the distance from

Algorithm 1: Tile Position Locator for a Convo-
lution Layer

Input: Pre-trained weight W for a convolution
layer
Output: Applicability Score S
1 Select the External Tile structure if

f'"c i< f“(f 1) , otherwise select the Internal Tile

2 if the selected structure is External Tile then
Partition the C; input channels sequentially into
C distinct groups
Apply External Tile on every group
else
\ Apply Internal Tile on every input channel
end
Compute a stochastic sub-gradient:
9=V (W) +A(W)

w

m =

® N & K

9 Update the layer weight: W/ =W —[r x g
10 for 1 <n < C; do
11 Estimate the applicability score for input

channel n: Coxf?
><
le(| jwoe 2521 W)

12 end
13 if this is a 1 X 1 convolution layer then

14 Compute the adjusted threshold: ¢’ = %CO % €
15 Set e =¢ '
16 if the selected structure is External Tile then
17 Estimate the channel applicability score for the

input channel group m: v, = >, ., Sn
18 Apply the External Tile structure to input

channel group m if v,,, < ¢
19 else

20 Apply the Internal Tile structure to input

channel n if s, <e€
21 end

the final output layer increases. Such adaptive adjustments
refine the input structuring process by considering the type,
parameters, and positioning of layers within the model.

At last, we can apply the tile position locator on each
convolution layer of a model to find optimal positions for
tiles and apply the tile structures at those layers. Next the
model is fine-tuned to recover its accuracy. We use the
Knowledge Distillation (KD) method [37] to guide this fine-
tuning process.

3.3. Convolution Protocol with Tile structure

We now present the process for evaluating convolu-
tion after applying the Tile structure. After the server and
client have predefined the Tile structure positions offline,
the server shares a list, I, with the client, indicating the
input channel positions where the Tile structure will be
applied in each convolution layer. The client pre-processes
its input v = {u;} (0 < ¢ < C;) by applying the Tile
structure to every input channel u; if ¢ € I. Then, the

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

client encrypts u as [u]., which is sent to the server. The
server modifies its kernel k£ based on the predefined Tile
structure type and position list / and conducts convolution
computation with [u]. to obtain the encrypted output [v],
where [v]. = [u]. x & © r. Here, r is a random vector
generated by the server. Finally, the server sends [v]. to
the client and outputs the random vectors r. The client then
decrypts [v]. and output v. Compared to CryptFlow2, TILE
modifies only the encoding method for the convolution input
and its corresponding kernel (as shown in Figures 3 and 5),
without altering CryptFlow2’s overall convolution computa-
tion logic. The security analysis of TILE is presented in the
following section.

3.4. Security Analysis

The primary goal of TILE is to eliminate HE operations
in convolution computations within the SI framework by
introducing two novel input structures, while preserving the
original computation logic. By determining the suitability of
each convolution layer in models such as VGG and ResNet,
TILE reduces the need for HE operations in convolutions
and minimizes associated OT-based non-linear operations,
like ReLU. TILE, like most SI platforms, does not aim to
completely obscure the network architecture but focuses on
ensuring the protection of critical model parameters, such
as weights, filter sizes, and stride within convolution layers,
as well as the client input data. Built on the underlying SI
framework such as CryptFlow2 [13], which has already been
proven secure under the semi-honest threat model, TILE
leverages the semantic security of the PHE algorithm [24]
to speed up linear computations in the underlying SI frame-
work, providing a comprehensive security approach.

Beyond the underlying SI framework, TILE does have
additional information exchange between the server and
client that could pose a risk of information leakage to both
the server and the client. First of all, from the client’s point
of view, the server knows the Tile structure positions. Hence,
one might think the server could infer that the elements in a
Tile structure of the input data from the client have similar
values, which could form a covert channel, raising a risk for
potential information leakage of the client input data to the
server. Nevertheless, it is important to note that in the infer-
ence phase, the TILE operation is inherently deterministic,
regardless of the actual pixel values of a given input data.
More specifically, for a given layer, the grouping of channels
or elements into a Tile structure is predetermined before
the inference phase. During inference, the server applies
the Tile structure to the input data or feature maps based
on these predefined Tile positions, regardless of the actual
input values. As a result, the server actually cannot infer the
values are similar, simply because those values are in a Tile.
In fact, for a specific input data, the actual values in a Tile
can be quite different.

Second, from the server’s point of view, the need to share
the predefined Tile structure positions with the client could
introduce a risk of information leakage of model parameters
to the client. Nevertheless, in practice, the possibility that the

client infers the model parameters, such as the convolution
filter values, based on the Tile structure and its predefined
positions is very low. Let us take the convolution filter values
as an example. To infer the filter values, the client would
need to know the output values of each convolution layer,
which is, however, rather challenging. First, as described
in Section 3.3, the server only sends the output share of
the convolution result v to the client, which is masked by
a random vector r by the server. Second, the server can
randomize the order of output channels in the previous
convolution, further preventing the client from associating
to specific outputs with corresponding inputs.

When these techniques are combined, the probability
that the client successfully infers the output of a convolution

layer is given by
1 1 1 Ci XUy XUp,
o (@) e

The first term is the probability that the client can success-
fully guess which d out of C; channels have been applied
with the Tile structure by the server. The second term
indicates the probability that the client successfully guesses
the order of the d channels. The last term is the probability
that the client successfully guess the ¢-bit mask for every
pixel value in each channel, where u,, and u;, are the height
and width of a channel.

As ¢,C; and d are generally large, this probability is a
negligible value. For instance, in a scenario where C; = 64,
d =8, ¢ =64, and u,, = up = 4, the success probability
Pryyccess = 2795588 which is significantly smaller than a
typical statistical security requirement of Prgyccess < 2740,
Consequently, the client would find it practically impossible
to infer the model parameters of the server.

P Tsuccess —

3.5. Complexity Analysis

We focus on the number of Internal Perm, Mult, and
Add operations as they dominate the computation of SI
frameworks. The underlying SI framework is assumed as
the state-of-the-art CrypTFlow2. With CrypTFlow2, for a
3 x 3 convolution layer using the Grouped Out-Rot MIMO,
applying the Internal Tile structure reduces the number of
Internal Perm operations from SC—Ci to % and the num-
9C,C0 1o 0=49CiCo 0 the

ber of Mult operations from
other hand, applying the External Tile structure maintains
the number of Internal Perm operations but reduces the
number of Mult operations from 9% % to 9(272‘9)0" . For a
1 x 1 convolution layer using the Grouped Out-Rot MIMO,
applying the External Tile structure reduces the number of
Mult operations from € to (272%0’0".

Table 1 illustrates the complexity of convolution com-
putations for CrypTFlow2 before and after applying TILE,
where s is the applying ratio for tile structures, n; is the
size of input data, C; is the number of input channels,
C, is the number of output channels, C,, is the number
of channels that can be packed into one ciphertext, and the
tile size for Internal Tile and group size for External Tile are

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

TABLE 1: Complexity Comparison of Convolution

Method Grouped Out-Rot MIMO[13]
Internal Perm [# Mult [# Add
Tile Type External Tile
Before TILE After TILE Before TILE After TILE Before TILE After TILE
1X1 Convolution 0 0 Céif" (2_2%?00 Co (g:;_l) (2_5)0?00 — %Z
3X3 Convolution SC—C;:' 8076;1' 9¢;Co 9(2;2?00 Co@zjcnifl) 9(2*286)‘76:1'00 _ %
Tile Type Internal Tile
Before TILE After TILE Before TILE After TILE Before TILE After TILE
- 3C; (8=4s)C; 9C,Cy (9—4s5)C;C, CTo(9C; —1) (9=45)C;Cy
3X3 Convolution o e o - - -

TABLE 2: Complexity Comparison of Non-Linear Compu-
tation

TABLE 3: Performance Results on Cifarl0 and Tiny-
ImageNet

TILE-Internal
- %)

TILE-External
(1—3)ni

#.Non-Linear Operation | CrypTFlow2
ReLU/Truncation n;

both assumed to be 2. Table 2 illustrates the computational
complexity associated with ReLU and truncation operations.
For both operations, applying the Internal Tile structure
reduces the number of operations from n; to (1 — 3f)n,;,
while applying the External Tile structure reduces it to

4. Evaluation

In this section, we evaluate TILE’s performance when
applying it to CrypTFlow2 [13], which is a state-of-the-art
SI framework. Note that TILE is also applicable to other
SI frameworks based on PHE, such as Gazelle[15], Delphi
[17], and Gala[18]. We use the Secure and Correct Inference
(SCD) library within EzPC [13], [44] 2 to implement the HE-
based privacy-preserving inference for convolution compu-
tation. We set the input bit-length to 37-bits and the scale
to 12. In our experiments, we utilize two widely used CNN
models, VGG16 and ResNet50, and evaluate them on two
mainstream datasets: Cifarl0 [2] and Tiny-ImageNet [45].
We use pretrained models sourced from [32]. The decay
coefficient in the TILE position locator is set to 0.1. Fine-
tuning of the models is performed using an SGD optimizer
with a weight decay of Se-4, momentum of 0.9, and an
initial learning rate of 0.01, which is reduced by a factor of
10 at epochs 30 and 45. The batch size is set to 64, and
the number of fine-tuning epochs is 60. We employ the KD
scheme in [37] to guide the fine-tuning process. For models
trained on Cifarl0, the KD temperature is set to 1, and for
models trained on Tiny-ImageNet, the KD temperature is set
to 4. We also conduct experiments to apply TILE to models
that have already been compressed, by either model pruning
or model distillation, and demonstrate that TILE can further
significantly improve their computation time.

All experiments are conducted on a Lambda Vector
workstation, which is equipped with an NVIDIA RTX
A6000 48GB GPU, an AMD Ryzen Thread ripper PRO
3995WX 64-Cores CPU, and 512GB RAM. The perfor-
mance metric considered in our work is the end-to-end

2. https://github.com/mpc-msri/EzPC/tree/master/SCI

Dataset Cifarl0 Tiny-ImageNet
Model VGG16 ResNet50
Operation Reduction
#. Internal Perm 1224/1672 1500/2768
26.79%. 45.81%]
#. Mult 282.422K/635.118K | 353.504K/779.39K
55.53%] 54.64%.
#. ReLU 568.32K/1.08M 7.50M/11.08M
49.20%.. 32.29%.
Model Accuracy
Baseline Acc 94.50% 66.07%
Our Acc 94.66% 66.10%

running time, which includes the time for data transmission
through networks with the bandwidth of 125 Mbps (Mo-
bile), 400 Mbps (WAN), and 3 Gbps (LAN), and the round-
trip latency of approximately 30 ms, 40 ms, and 0.3 ms,
respectively. These settings are based on the same network
configurations used in [13], [19] and real-world network
performance data reported by Ookla®. To simulate different
network conditions, we utilize the EMP Toolkit [46] along
with the Linux Traffic Control and employ 16 threads to
evaluate each model’s SI performance.

TILE Performance Compared with Baseline: In the en-
suing discussion, the original CrypTFlow2 performance is
assumed as the baseline. Tables 3 and 4 illustrate the perfor-
mance when applying TILE to CrypTFlow2. The data in the
table is in the form x/y, where x indicates the performance
after applying TILE and y indicates the performance of the
baseline. For instance, for VGG16 with Cifar10, the number
of Internal Perm is 1224/1672, which means after applying
TILE, there are 1224 Internal Perm operations, while before
applying TILE, there are 1672 Internal Perm operations.
The percentage in the table indicates the time reduction
percentage. We did not include the numbers for the Add
operation in our analysis, as its contribution to the overall
computational cost is negligible.

The performance gain of TILE stems from its capability
in identifying and eliminating Perm, Mult, and correspond-
ing non-linear operations. Experimental results have shown
that TILE performs very well on smaller models such as
VGGI16, largely due to the inherent redundancy in their
input feature maps, which allows significant input structure

3. https://www.speedtest.net/global-index/united-states

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

TABLE 4: End-to-End Computation Time on Cifar10 and
Tiny-ImageNet in Different Network Setting

TABLE 5: Performance Results for the Pruned Models

Dataset Cifarl0 Tiny-ImageNet
Dataset Cifar10 Model VGG16 ResNet50
Model VGG16 Cost Reduction 71.34% 57.62%
Network Mobile WAN LAN (by Prunning)
Total Time (s) | 193.29/37446 | 153.19/300.27 | 123.78/255.58 Operation Reduction
48.38% | 48.98% | S157% | #. Internal Perm 804/928 692/1160
' . 13.36%, 40.34%
e Tiny-Tmagettet #. Mult T46.65K/T71.73K | 124.94K/25692K
Network Mobile WAN LAN 14.60% SL.37%4
Total Time (s) | 1100.26/1610.81 | 527.58/800.15 | 267.84/455.43 #. ReLU/Truncation | 395.59K/597.38K 541M/7.51M
31.70% | 34.06% | 41.20% | 33.78%) 28.02%
Model Accuracy
Baseline Acc 94.41% 65.55%
Our Acc 94.47% 65.75%

optimization without compromising model accuracy. For
instance, applying TILE to VGG16 running on the Cifarl0
dataset resulted in significant operation reduction: a 26.79%
decrease in Internal Perms operations, a 55.53% decrease
in Mult operations, and a 49.20% decrease in ReLU oper-
ations. Such operation reduction translates into substantial
time savings—48.38% on the Mobile, 48.98% on WAN,
and 51.57% on LAN settings, respectively. TILE is also
effective in more complex models like ResNet50. For the
Tiny-ImageNet dataset, TILE achieves a 45.81% reduction
in Internal Perms operations, a 54.64% reduction in Mult
operations, and a 32.29% reduction in ReLU operations.
This efficiency gain results in time saving of 31.70% on
Mobile, 34.06% on WAN, and 41.20% on LAN settings,
respectively.

As shown in Tables 5 and 6, TILE remains effective
for pruned models that already have high computation cost
reduction by model pruning using the MOSAIC strategy
[32]. For example, a pruned ResNet50, which has already
achieved a 57.62% time reduction, still gets an additional
reduction of 40.34% Internal Perms, 51.37% Mult opera-
tions, and 28.02% ReLU operations. This leads to a time
reduction of 42.46% on Mobile, 36.05% on WAN, and
25.90% on LAN settings, respectively. The performance
gain of TILE is smaller when applied to a pruned VGG16
architecture on Cifar10. This is due to the small scale of the
input feature maps in the intermediate convolution layers;
thus the model needs more input feature map details in
those layers, thereby reducing the redundancy available for
TILE to exploit effectively. Nevertheless, TILE still manages
to reduce 13.36% Internal Perm operations, 14.60% Mult
operations, and 33.78% ReLU operations, achieving a time
saving of 24.61% on Mobile, 20.10% on WAN, and 19.96%
on LAN settings, respectively.

Similarly, TILE can be applied to models compressed
through model distillation to further enhance SI perfor-
mance. Due to the space limitation, the performance evalu-
ation results are presented in Appendix A.

Next, we examine the trade-off between the time saving
and accuracy loss. We apply the Tile structure to all input
channel in every convolution layer, to maximize the time
saving. Table 7 illustrates the time savings. For instance,
when applied to VGG16 on the Cifarl0 dataset, TILE
reduces the computation time by 55.97% on Mobile, 53.06%
on WAN, and 54.42% in LAN, which is a further time

TABLE 6: End-to-End Time Performance for the Pruned
Models

Dataset Cifar10
Model VGG16
Network Mobile WAN LAN
Overall Cost(s) 111.17/147.47 84.13/105.30 58.62/73.25
24.61% | 20.10% J 19.96% |
Dataset Tiny-ImageNet
Model ResNet50
Network Mobile WAN LAN
Overall Cost(s) 577.918/1004.33 282.04/441.00 144.37/194.83
42.46% | 36.05% J 25.90% |

saving compared with the ones in Table 4, but at the expense
of a 1.28% accuracy drop. For more complex models like
ResNet50, TILE achieves time reductions of 47.40% on
Mobile, 47.33% on WAN and 51.92% on LAN, which are a
significant further time saving compared with the ones in Ta-
ble 4, with just a 0.40% accuracy drop. For pruned models,
such as pruned ResNet50 on Tiny-Imagenet, TILE achieves
a 54.49% time reduction on Mobile, 47.39% on WAN, and
36.08% on LAN, which are also a significant time saving
compared with the results in Table 6, with a slightly higher
accuracy drop, 1.23%. Similarly, for pruned VGG16 on
Cifar10, TILE reduces time by 47.52% on Mobile, 42.09%
on WAN, 40.31% on LAN, which are also a significant time
saving compared with the results in Table 6, with a little
higher accuracy drop, 3.69%. These results demonstrate that
TILE can further reduce computational costs substantially,
if a slight model accuracy drop is acceptable.

TILE Layer-Wise Performance Breakdown: Figures 6
and 7 illustrate the layer-wise breakdown of performance for
the TILE-optimized model on the Mobile network setting.
In these figures, we illustrate the actual time cost of SI (rep-
resented as bars) for both the original model and the TILE-
optimized model in the CrypTFlow2 framework, along with
the corresponding time-saving ratio (shown as lines) for each
convolution layer within the models. In both tested models,
the first convolution layer usually interacts with the input
image directly and demonstrates a pronounced sensitivity to
TILE due to its minimal redundancy. Nevertheless, as the
computational cost associated with this convolution layer
constitutes a minor portion of the overall computational

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

TABLE 7: Performance Results for the Efficiency and Ac-
curacy Trade-off

Dataset Cifarl0 Tiny-ImageNet
Model VGGI16 Prunned VGG16 ResNet50 Prunned ResNet50
Accuracy | 93.22%/94.50% 90.72%/94.41% 65.67%166.07% 64.32%/65.55%
1.28% | 3.69% | 0.40% | 1.23% |
Network Overall Cost (s)
Mobile 164.87/374.46 77.39/147.47 847.27/1610.81 457.06/1004.33
55.97% | 47.52% | 47.40% | 54.49% |
WAN 140.96/300.27 60.98/105.30 421.42/800.15 232.01/441.00
53.06% | 42.09% | 47.33% | 47.39% |
LAN 116.51/255.58 43.72/73.25 219.00/455.48 124.53/194.83
54.42% | 40.31% | 51.92% | 36.08% |

time, we choose not to apply the tile structure to this layer.

In the case of the VGGI16 architecture on the CifarlQ
dataset, 10 out of 13 convolution layers achieve a time
reduction exceeding 34.03%, as illustrated in Figure 6(a).
Conversely, with the ResNet50 model on the Tiny-ImageNet
dataset, approximately 22 out of 49 convolution layers attain
a time reduction of more than 22.12%. Of these, 12 layers
achieve time reductions exceeding 41.48%, as demonstrated
in Figure 7(a).

When applying TILE to pruned models, TILE can fur-
ther enhance the pruned model’s efficiency on the Tiny-
ImageNet dataset, particularly within the later layers, as
illustrated in Figure 7(b). For more complex models like
pruned ResNet50, about 43% of layers achieve a time
reduction exceeding 21%, and 24% of these layers surpass a
reduction of 42%. On the other hand, when applying TILE
to the pruned VGG16 architecture on the Cifar10 dataset,
TILE shows less improvement, resulting in only a small
reduction in the overall inference time across all layers, as
depicted in Figure 6(b). In this case, only about 23% of the
convolution layers can achieve a reduction in time of up to
17%.

5. Conclusions and Future Directions

In this paper, we introduce an innovative input structure
optimization system known as TILE to effectively streamline
the computation process for SI frameworks. The outcome of
TILE is an optimized model that retains its accuracy while
achieving a reduction in HE operations. The application
of TILE was demonstrated on widely used architectures,
VGG16 and ResNet50, using well-known datasets such as
Cifar10 and Tiny-ImageNet. Our experiments show that
TILE efficiently reduces HE Perm, Mult, Add, and cor-
responding non-linear operations required for the original
model’s SI without compromising accuracy. Furthermore,
the synergistic application of TILE with HE-friendly model
pruning and model distillation led to additional reductions in
HE Perm, Mult, and Add operations within pruned Al mod-
els. TILE introduces a promising avenue for significantly
reducing the time required for SI. Its impact extends toward
enhancing the feasibility of SI in practical settings. As such,
TILE not only contributes to the current state of research
but also offers insights that could guide future investigations
in this domain.

TILE demonstrates strong generalizability across both
small and large CNN architectures, including popular mod-

els such as VGG16 and ResNet50. Given the structural con-
sistency of CNNs, TILE effectively optimizes input struc-
tures across different models. However, newer architectures
like EfficientNet [47], which employs compound scaling,
and Vision Transformers [48], which abandon convolu-
tion entirely, present unique structural characteristics. This
presents a valuable direction for future work, as adapting
TILE to these emerging architectures could reveal unique
optimization challenges and opportunities.

Acknowledgment

The authors would like to express their gratitude to the
anonymous shepherd and reviewers for their constructive
comments and also appreciate the lab members for their
assistance and collaboration on this work. The work of Q.
Zhang was supported in part by the National Natural Science
Foundation of China under Grant 62302067. The work of
H. Wu was supported in part by the NSF under Grant
0OAC-2320999, CNS-2120279, 11S-2236578, DGE-2336109,
CNS-2413009, and SaTC-2439013.

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in neural
information processing systems, vol. 25, 2012.

[2] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009. [Online]. Available: https:
/Iwww.cs.toronto.edu/~kriz/cifar.html

[3] E Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. IEEE CVPR,
2015, pp. 815-823.

[4] Q. Fan and J. Yang, “A denoising autoencoder approach for credit
risk analysis,” in Proc. ICCAI, 2018, pp. 62-65.

[S] R.Fakoor, F. Ladhak, A. Nazi, and M. Huber, “Using deep learning to
enhance cancer diagnosis and classification,” in Proc. ICML, vol. 28.
ACM New York, NY, USA, 2013, pp. 3937-3949.

[6] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi,
J. Shao, and M. Reyad, “Rafiki: Machine learning as an analytics
service system,” Proc. VLDB Endow., vol. 12, no. 2, p. 128-140, oct
2018. [Online]. Available: https://doi.org/10.14778/3282495.3282499

[71 H.S. Maghded, K. Z. Ghafoor, A. S. Sadiq, K. Curran, D. B. Rawat,
and K. Rabie, “A Novel Al-enabled Framework to Diagnose Coro-
navirus COVID-19 using Smartphone Embedded Sensors: Design
Study,” in Proc. IEEE IRI, 2020, pp. 180-187.

[8] D. Demmler, T. Schneider, and M. Zohner, “ABY-a framework
for efficient mixed-protocol secure two-party computation.” in Proc.
NDSS, 2015.

[9] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0:
Improved mixed-protocol secure two-party computation.” in Proc.
USENIX Security, 2021, pp. 2165-2182.

[10] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC, 2018, pp. 35-52.

[11] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. ICML. PMLR, 2016,
pp. 201-210.

[12] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in Proc. IEEE
S&P, 2020, pp. 336-353.

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

VGG16 on Cifar10

70 80.00%
50 70.00%
5 50 60.00%
2 50.00% o
8 40 =
S 40.00% &
@ 30 oo
1 30.00% £
=] 20 S
< 20.00% &
10 i i L L L i 10.00%

0] 0.00%
& ST WS TR S VY
Q' Q' Q- Y S) Q J S N g N N
-l < S & & & & & & S JQ) Q

S S (S

[= originel s TiLEsimplified —e—save Ratio |

Actual Cost (s)
bR e e
5 R B &

TS S S

Pruned VGG16 on Cifar10

i,

o> P P P QP OSSN >
&IOS PEY Y

&S

50.00%
45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%
5.00%

0.00%

Saving Ratio (%)

| mmmm Originial mssm TILE-simplified ~ —®-Save Ratio |

Figure 6: Layer-Wise Performance breakdown for Cifarl0 dataset on (a) VGG16, (b) Pruned VGG16 model.

ResNet50 on Tiny-ImageNet

Actual Cost (s)

«

0

70.00%

60.00%

o
S
1
g
®
)

Actual Cost (s)

LIPS ESH S

o

40.00% S
g
]
3000% 2
-
20.00% <

G 1T I 00 0T

. . . 0.00%

) > o O D> o N 3 © 8] > o A > I
St SIS I I ISP ES PP PP P PP PP PO PP I P I E I PP PP IS S S EFF
LR S e T T T e e T T T T e e
| — Origingl mmmm TILE-simplified —&-— Save Ratio ‘
(@)
Pruned ResNet50 on Tiny-ImageNet

60.00%

50.00%
20.00% &
Pt
30.00% &
®
£
20.00% 3
3

i I 10.00%

0.00%

9

PO P IO L &0
SPI PP L8
ST S S S S

O DD DD
P PSP PP
S S S S S S S S S S S
SIS ITIT IS¢

&

W
d &L
ST TSI FT ST S

KUYy

R AT I e AN 0‘3(\&“ PP PP P PR

SIS ST S

‘ m— Original s TILE-simplified —.—SaveRat\o‘

(b)

Figure 7: Layer-Wise Performance breakdown for Tiny-ImageNet dataset on (a) ResNet50, (b) Pruned ResNet50 model.

[13]

(14]

[15]

[16]

[17]

(18]

(19]

D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “Cryptflow2: Practical 2-party secure inference,” in
Proc. ACM CCS, 2020, pp. 325-342.

F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: A mixed-protocol machine learning framework for private
inference,” in Proc. ARES, 2020, pp. 1-10.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A
low latency framework for secure neural network inference,” in Proc.
USENIX Security, 2018, pp. 1651-1669.

P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE S&P, 2017, pp. 19-38.

P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: a cryptographic inference system for neural networks,” in
Proc. USENIX Security, 2020, pp. 27-30.

Q. Zhang, C. Xin, and H. Wu, “Gala: Greedy computation for linear
algebra in privacy-preserved neural networks,” in Proc. NDSS, 2021.

Z. Huang, W.-j. Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure {Two-Party} deep neural network inference,” in Proc. USENIX
Security, 2022, pp. 809-826.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-

work for machine learning applications,” in Proc. Asia CSS, 2018, pp.
707-721.

A. Patra and A. Suresh, “BLAZE: blazing fast privacy-preserving
machine learning,” in Proc. NDSS, 2020.

M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “{XONN}:{XNOR-based} oblivious deep neural net-
work inference,” in Proc. USENIX Security, 2019, pp. 1501-1518.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptol. ePrint Archive, 2012.

Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in Iwe-
based homomorphic encryption,” in Proc. PKC. Springer, 2013, pp.
1-13.

A. C. Yao, “Protocols for secure computations,” in Proc. FOCS.
IEEE, 1982, pp. 160-164.

M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proc. ACM CCS, 2012, pp. 784-796.

G. Brassard, C. Crépeau, and J.-M. Robert, “All-or-nothing disclosure
of secrets,” in Proc. Eurocrypt. Springer, 1986, pp. 234-238.

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

V. Kolesnikov and R. Kumaresan, “Improved ot extension for trans-
ferring short secrets,” in Proc. CRYPTO 2013. Springer, 2013, pp.
54-70.

E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and
P. Scholl, “Efficient two-round ot extension and silent non-interactive
secure computation,” in Proc. ACM CCS, 2019, pp. 291-308.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

Y. Cai, Q. Zhang, R. Ning, C. Xin, and H. Wu, “Hunter: He-friendly
structured pruning for efficient privacy-preserving deep learning,” in
Proc. ACM Asia CCS, 2022, pp. 931-945.

, “Mosaic: A prune-and-assemble approach for efficient model
pruning in privacy-preserving deep learning,” in Proc. ACM Asia
CCS, 2024, p. 1034-1048.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional networks,” in Proc. ECCV. Springer, 2014, pp. 818-833.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT

press, 2016.

S. Kundu, S. Lu, Y. Zhang, J. T. Liu, and P. A. Beerel, “Learning
to linearize deep neural networks for secure and efficient private
inference,” in Proc. ICLR, 2023.

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE CVPR, 2016, pp. 770-778.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proc. ACM SIGSAC,
2017, pp. 619-631.

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in

Proceedings of the forty-first annual ACM symposium on Theory of

computing, 2009, pp. 169-178.

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” Proc. NeurIPS, vol. 28,
2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. IEEE CVPR, 2015, pp. 1-9.

T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi,
S.Yi, and X. Tu, “Only train once: A one-shot neural network training
and pruning framework,” Proc. NeurIPS, vol. 34, pp. 19637-19 651,
2021.

N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
“Ezpc: Programmable and efficient secure two-party computation for
machine learning,” in 2019 IEEE European Symposium on Security
and Privacy (EuroS&P). 1EEE, 2019, pp. 496-511.

Computer Vision Lab at Stanford University, “Tiny imagenet
dataset,” 2015. [Online]. Available: http://cs23 1n.stanford.edu/

X. Wang, A. J. Malozemoff, and J. Katz, “EMP-toolkit: Efficient Mul-
tiParty computation toolkit,” https://github.com/emp-toolkit, 2016.

T. Mingxing and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” in ICML, vol. 97. PMLR, 2019,
pp. 6105-6114.

D. Alexey, B. Lucas, K. Alexander, W. Dirk, Z. Xiaohua, U. Thomas,
D. Mostafa, M. Matthias, H. Georg, G. Sylvain, U. Jakob, and H. Neil,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” in ICLR, 2021.

Appendix A.
Evaluation performance for TILE with Model
Distillation

Model distillation (MD) is a crucial model compression
technique that accelerates the inference process by reducing
model size. TILE can be applied to models compressed
through MD, allowing for seamless integration and further
performance improvements. In our experiments, we utilize
two widely used CNN models—VGG16 and ResNet50 as
teacher models, and VGG11 and ResNet18 as student mod-
els. The distillation process follows the method outlined
in [37], and the evaluations are conducted on two widely
adopted datasets: Cifarl0 [2] and Tiny-ImageNet [45].

In the ensuing discussion, the original CrypTFlow2 per-
formance for MD compressed model is assumed as the base-
line. As shown in Tables 8 and 9, TILE remains effective for
MD compressed models that already have high computation
cost reduction by reducing the model size. For example, an
MD-compressed ResNetl8, which has already achieved a
76.67% time reduction compared to ResNet50, still achieves
an additional reduction of 40.49% Internal Perms, 42.76%
Mult operations, and 48.53% ReLU operations, after ap-
plying TILE. This leads to a time reduction of 45.95% on
Mobile, 45.15% on WAN, and 47.10% on LAN settings,
with only a 0.67% accuracy drop. A similar outcome is ob-
served when applying TILE to an MD-compressed VGG11
architecture on Cifar10, where TILE reduces Internal Perm
operations by 19.75%, Mult operations by 68.83%, and
ReLU operations by 52.94%, leading to time savings of
47.52% on Mobile, 51.52% on WAN, and 51.57% on LAN
settings, with literally no accuracy loss.

TABLE 8: Performance Results for the MD Models

Dataset Cifar10 Tiny-ImageNet
MD Model VGGI11 ResNet18
Cost Reduction 36.25% 76.67%
(by MD)
Operation Reduction
#. Internal Perm 520/648 1552/2608
19.75% | 40.49% |
#. Mult 80.436K/258.036K | 262.186K/458.051K
68.83% | 42.76% |
#. ReLU 262.144K/557.056K 1.147M/2.23M
52.94% | 48.53% |
Model Accuracy
Baseline Acc 94.08% 66.17%
Our Acc 93.97% 65.50%

TABLE 9: End-to-End Time Performance for the MD Mod-
els

Dataset Cifar10
Model VGG11
Network Mobile WAN LAN
Total Time (s) 24.61/46.9 23.79/46.77 22.76/46.69
47.52% | 51.25% | 51.57% |
Dataset Tiny-ImageNet
Model ResNet18
Network Mobile WAN LAN
Total Time (s) | 214.260/396.396 | 111.075/202.515 | 56.734/107.257
45.95% | 45.15% | 47.10% |

Authorized licensed use limited to: University of Arizona. Downloaded on September 03,2025 at 20:59:00 UTC from IEEE Xplore. Restrictions apply.

