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Abstract—Designing power electronics for medium voltage
(MV) and applications, such as the Modular Multilevel Converter
(MMC) MVac-MVdc converter for Multi-Terminal (MT) MVdc
systems, requires a multidisciplinary approach to optimize a
highly intricate system. One of the main challenges in this field
is exploring various MMC implementations and evaluating them
through appropriate metrics to determine the most effective
approach. To address this challenge, this paper introduces a
Virtual Prototyping Process (VPP) for Power Electronic Building
Block (PEBB) based systems that leverages neural network-
trained coldplate surrogate models. These coldplate surrogate
model is useful in managing the complexity of a single thermal
interface point connected to multiple coldplate-cooled elements
within an MMC Sub-Module Drawer (SMD) to a system-
level thermal management system. This approach enables the
correlation of the intrinsic power capability of point of source
to point of load Power Trains as a function of coolant ap-
proach and thermal management system capability to facilitate
solutuion space exploration. This exploration is conducted in
an evolutionary environment (within the VPP) that balances
competing objectives like power density, efficiency, specific power
and specific cost. The shipboard Integrated Power and Energy
System (IPES) application is used as a use-case example.

Index Terms—Surrogate Model, Power Electronic Building
Block (PEBB), Neural Network, Cold Plate

I. INTRODUCTION

The modular architecture of the Modular Multilevel Con-

verter (MMC) is appealing for ac-dc conversion in Multi-

Terminal (MT) MVdc and HVdc systems because it allows

for scale-able solutions over a wide range of design variables,
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such as MVdc/HVdc voltage level, utilizing common compo-

nents, such as a Power Electronic Building Block (PEBB),

to achieve economies of scale. The PEBB may represent a

power conversion system-building component for equipment

manufacturers to contribute to a wide range of applications or

a point of new technology insertion to future developments.

For example, the Department of Energy and Office of Naval

Research have invested heavily in the development of PEBBs

utilizing 10kV rated SiC MOSFET multi-chip dual modules

[1], [2]. The value, or fitness, of a solution is often assessed in

terms of Measures of Performance (MOPs) that have meaning

at the building block level, such as power density (ρ, e.g.
MW
m3 ), specific power (γ e.g. kW

kg
), efficiency (η, %) reliability

and specific cost (σ, e.g. MW
USD

). However, to ensure that these

MOPs are meaningful to the end-use application other factors

must be taken into account. A concrete example is the Multi-

Terminal (MT) MVdc service for the Integrated Power and

Energy System (IPES) for future naval ship electrification [3].

Real estate for power conversion hardware is constrained along

space/weight allocations for both the IPES and for freshwater

cooling thermal management, which must also service loads

and sources.

A Power Train, which provides a power conversion path

between points of MVac power generation interface and MVac

load usage is shown in Fig. 2. The MMC is a promising

topology for such a system, however, because of the amount of

power that must be processed through this path, a maximum

intrinsic power Poi must be achieved given the limitations

of the ship thermal management system. Solution space ex-

ploration is defined by a set of converter level design space

variables, xV ⊆ xS , where xV defines the ship system design

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on August 22,2025 at 20:00:38 UTC from IEEE Xplore.  Restrictions apply. 



space, including the inlet water temperature, TA and mass flow

rate, mfr (in kg
s

). Generally, as TA ∧mfr are increased, Poi

increase, and as Poi increases, MOPs such as ρ, γ and η will

increase.

The work of this paper follows the process defined by

a Model Based Systems Engineering (MBSE) Integration

Framework shown in Fig. 3 applied to the Power Train of

Fig 2, Full-Bridge (FB-MMC) based ac-dc converter and dc-

ac converters, utlizing the PEBB of [1], interfacing through a

common, inter-zonal 12kV MVdc bus. The ac-dc converter

utilizes conventional MMC PWM control and can arrest

current discharge if a MVdc short circuit fault occurs. Such an

approach requires an additional capacitor bank within the the

SMD, as shown in Fig. 1a. The dc-ac converter utilizes Single

Cycle Control (SCC), which does not require the additional

capacitor bank (Fig. 1b) [4].

This process centers around a VPP [5] that searches for a

Poi(TA,mfr) that maintains active power semiconductors at

their maximum junction temperature for every combination of

TA ∧ mfr ∈ xV , through use of a Non-dominated Sorting

Genetic Algorithm (NSGA-II). The VPP accounts for dimen-

sional and mass impacts on PEPDS building block design

and construction practicalities through cuboid allocations in

xyz space around the PEBB (P) and Inductor Assembly (IA),

shown in Fig. 1. These Drawer-level allocations are assigned

to the following functionalities: (1.) maintenance and vibration

travel space, αDa, (2.) basic or reinforced insulation clear-

ances, αDd (3.) thermal management, αDð, frame structure

and enclosures αDf , and busses and bus-interconnects αDc.

The steps associated with Fig. 3, are summarized as follows:

(1.) Derivation of a thermal-physical (TP) equivalent model

of the coldplate; (2.) Incorporation of the TP into an electro-

thermal-physical (ETP) equivalent model of the full Power

Train with SMDs into VPP and extraction of coldplate solution

sets from the VPP outcomes; (3.) Development and training

of the coldplate surrogate models for the PEBB and inductor

assembly (IA) using neural networks; (4.) Validating of the

coldplate surrogate models in VPP. Development of SMD

metamodels that present ETP parameters, characteristics and

behavior of the SMDs that scale with xV against constraints

rV ⊆ rS (these metamodels represent only the solutions on

the Pareto front); (5.) Size, Weight, Area and Power versus

Coolant (SWAaP-C) studies where the SMDs are integrated

into a Power and Energy Corridor, described in [6], leading to

identification of thermal management solution support of Poi.

The focus of this paper is to provide the details on (2.)-(4.).

II. PEBB OVERVIEW

The novelty of this MBSE approach is that it maintains

traceability of all IPES level decisions through design space

variables, xV , sub-sets of the ship system level design space

variables, xS , or technology insertion variables. Regarding

the latter, xV will include PEBB types, power conversion

topological implementations, control and thermal management

approaches, and protection philosophy (e.g. breaker-based vs.

breaker-less protection). The process is designed to enforce

(a) SMD1 (b) SMD2

Fig. 1: Sub-Module Drawer circuits and their compilations

Fig. 2: MT-MVdc System

transparency between design space variable inputs (xV ) and

performance measure outcomes (MOPs and TPMs).

The PEBB type used is the PEBB6000, utilizing 10kV

SiC MOSFETs in an H-bridge configuration. This PEBB

supports modular topologies like the FB-MMC for MVac-

MVdc power conversion, with MVdc-side current limiting

capability [1]. The PEBB data, refered to in Fig. 3 utilizes the

information from [1] and as a datasheet to develop a virtual

twin representation of the PEBBs in the context of the MVac-

MVdc and MVdc-MVac converters comprising the Power

Train, with the exception of the heat sink. Instead, the heat

sink of the design of [1] is replaced by indirect water-cooled
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Fig. 3: Integration Framework

coldplate, which means that power semiconductor modules are

mounted on the coldplate surface. The sub-module inductor

also has coldplates mounted on two coil and two core surfaces,

as will be described. All codlpates are mounted through high

thermal conductivity interfaces. This approach can ensure

predictable sink temperatures on all coldplate cooled surfaces.

It will be necessary for the coldplate coolant water to be

de-ionized so that they can float with respect to ground and

for clearance spaces to be maintained between coldplates and

Drawer chassis.

III. THERMAL ANALYSIS AND COLD-PLATE MODEL

A. Theory and Analysis

Liquid cooling systems effectively manage heat in power

electronic devices, critical for applications like industrial au-

tomation, electrical ships, electric vehicles, and renewable

energy. They excel in thermal management by removing heat

from high-temperature areas more effectively than air cooling,

despite being more complex and costly [7].

Fig. 4 shows a scheme of the cold plate design considered in

the present study. The plate geometry consists of a hexahedron

defined by the external lengths W , D, and H . The internal

pipe shape is defined by the diameter d, the spans S1 (between

pipe center lines) and S2 (between pipe center lines and plate

edges), and also the bend radius R. Regarding the modeling of

the cold plate, the flowchart in Fig. 5 demonstrates the various

processes carried out. Since values for W , D, H , R and d are

assumed, S1 and S2 are calculated by Eq. 1. However, if the

condition S2 ≥ d/2 is not satisfied, the design is infeasible

as the pipe exceeds the area limits of the plate. In this case,

Fig. 4: Scheme for the cold plate and internal pipe.

the value of R is iteratively reduced to fit the pipe within the

plate. It is worth noting that water was selected as the fluid and

aluminum (UNS A91060) as the plate material. The relevant

properties of the selected material are listed in Tab. I while

water properties vary depending on the design. Therefore,

water properties were obtained through CoolProp, which is

a library that provides transport properties for a variety of

substances [8], and the computational environment MATLAB

[9] was applied to implement the modeling.

S1 = 2R

S2 =
D − 2S1

2

(1)
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Fig. 5: Flowchart for the cold plate modeling.

TABLE I: Plate material properties.

Feature Value

Density (ρp) 2705 kg/m3

Allowable stress (SA) 10.9 · 10
6 Pa

Molar mass 26.98 kg/kmol
Specific heat 935.6 J/kg ·K

Thermal conductivity 224.5 W/m ·K
Roughness 0.03 · 10

−3 m

The pipe pressure loss (∆p) was calculated with Eq. 2,

where f is the Darcy friction factor, K90 and K180 are the

minor loss coefficient respectively for 90◦ and 180◦ pipe bends

[10], ṁ is the mass flow rate and ρ is the fluid density. The

friction factor (f ) was calculated through Eq. 3, where Re is

the number of Reynolds and the factors A and B are calculated

based on Re, d and roughness (ε) according to [11].

∆p =

[

f
l

d
+ n90K90 + n180K180

]

8ṁ2

π2d4ρ
(2)

f = 8

[

(

8

Re

)12

+ (A+B)−1.5

]
1

12

(3)

Notice that ρ, as well as the other fluid properties, depends

on the temperature and was taken as a constant at the average

temperature (Tavg) given in Eq. 4. The inlet temperature (Ti)

was given and the outlet temperature (To) was calculated by

the energy balance in Eq. 5, where hi and ho are the specific

enthalpies at the pipe inlet and outlet, respectively.

Tavg =
Ti + To

2
(4)

Q̇ = ṁ(ho − hi), having ho = f(To) and hi = f(Ti) (5)

The maximum temperature over the plate was approached

by Eq. 6, where q̇ is the average heat flux over the hot face

of the plate, and κp is the thermal conductivity of the plate

material. The distance between the pipe bend and the corner of

the plate (r2) was calculated by Eq. 7, and the temperature at

the internal surface of the pipe (Ts) was achieved through Eq.

8. In the latter equation, Q̇ is the heat transfer rate crossing

the hot face of the plate, which is the same as reaching the

serpentine pipe, s is the pipe heat transfer area, and h is the

average internal convective coefficient acquired through Eq. 9.

Tmax =
q̇ · r2

2 ln
(

r2
R

)

2π · d · κp

+ Ts (6)

r2 = [2(S2 +R)2]0.5 (7)

Ts =
Q̇

h · s
+ Tavg (8)

h =
Nu · κ

d
(9)

The symbol κ stands for the thermal conductivity of the

fluid while Nu is the Nusselt number, which was computed

through convection correlations. Depending on the Prandtl and

Reynolds number values, as well as the flow regime (laminar

or turbulent), different formulations were applied to calculate

Nu [12]. Then, the heat Resistance Sink to Ambient (RSA)

was calculated by Eq. 10.

RSA =
Tmax − TA

Q̇
(10)

The intrinsic power of each SMD is fundamentally con-

strained by the PEBB power semiconductor junction tem-

perature, making efficient heat dissipation from the devices

crucial for achieving maximum power output. As illustrated

in Fig. 6, the heat resistance of each device is modeled in

parallel with the heat resistance of its corresponding diode.

This configuration ensures that the thermal characteristics of

each component are accurately represented, allowing for a

comprehensive analysis of the thermal behavior within the

system. Each half-bridge configuration includes both upper

and lower branches, with their combined resistances ultimately

leading to the RSA (resistance to ambient) and ambient

temperature.

The PEBB employs two half-bridge structure (for each side

of the H-bridge) and utilizes two series cold plates to manage

heat dissipation. The cold plates are strategically positioned

to maximize heat transfer and minimize thermal resistance.

The intrinsic power is limited by the hot-spot temperature

of devices in the second cold plate which is fed by first

cold plate, highlighting the importance of effective thermal

management in the design. The thermal behavior of these de-

vices is critical, as excessive temperatures can lead to reduced

efficiency and potential failure. Fig. 6 shows PEBB thermal

circuit equivalent. Fig. 6 illustrates the PEBB Thermal Circuit

Equivalent. RjcT is the junction-to-case thermal resistor for

the transistor, and RjcD is the junction-to-case thermal resistor

for the diode, which is zero for SiC MOSFETs and applicable

only when using IGBTs. In this figure Ts represents the surface
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temperature of PEBB, while Tc is the temperature of each

device. The RSA represents the thermal resistance of sink to

ambient, which is the cold plate thermal resistance equivalent

and is calculated using Eq. 10. Based on Fig. 6, the thermal

Fig. 6: PEBB Thermal Circuit Equivalent.

rise in temperatures due to heat generated by the devices,

affecting the surface temperatures of PEBB and the cold plate,

is as follows:

∆Tjc qU = Ploss qU ·Rjc T ,

∆Tjc dU = Ploss dU ·Rcj D,

∆Tjc U max = max(∆Tjc qU ,∆Tjc dU ),

∆Tjc qL = Ploss qL ·Rjc T ,

∆Tjc dL = Ploss dL ·Rcj D,

∆Tjc L max = max(∆Tjc qL,∆Tjc dL),

∆Tjc max = max(∆Tjc U max,∆Tjc L max),

(11)

and as a result:

TS qU max = Tjmax derated − Ploss qU ·Rjc T

− (Ploss Module) ·Rcs,

TS dU max = Tjmax derated − Ploss dU ·Rjc T

− (Ploss Module) ·Rcs,

TS U max = min(TS qU max, TS dU max),

TS qL max = Tjmax derated − Ploss qL ·Rjc T

− (Ploss Module) ·Rcs,

TS dL max = Tjmax derated − Ploss dL ·Rjc T

− (Ploss Module) ·Rcs,

TS L max = min(TS qL max, TS dL max)

(12)

so, the maximum temperature of PEBB surface is:

TS max = min(Ts U max, Ts L max) (13)

as a result:

Tjmax check = ∆Tjc max+(Ploss Module) ·Rcs+TS max (14)

(a) Cold Plates of Inductor As-
sembly

(b) Cold Plates of PEBB

Fig. 7: Arrangement of cold plates of inductor and PEBB

As the thermal condition limits the maximum intrinsic power

of the SMD, Eq. 15 in NSGA-II has been considered as a

thermal constraint to find the Pareto front of the design.

TJmax derated +∆Tmax ≤ TJmax Check ≤ TJmax derated +∆Tmax

(15)

The Tjmax of SiC MOSFET is 175 ◦C, and a derating factor of

0.9 has been considered, so Tjmax derated is 155 ◦C. In addition,

in Eq. (15), ∆Tmax = ±5 ◦C. Similarly, the inductor setup

includes four cold plates arranged in a Coil - Core - Coil -

Core configuration. Two of these cold plates are in contact

with the coil and winding, while the other two are in contact

with the cores. This arrangement ensures that heat is efficiently

dissipated from both the coil and the cores, maintaining

optimal operating temperatures throughout the inductor. The

intrinsic power of the drawer is determined by the hot-spot

temperatures in either the inductor or the PEBB, depending

on the respective losses of the PEBB and the inductor. This

interdependence between components underscores the com-

plexity of thermal management in high-power systems. Fig.7

shows the arrangement of cold plates of inductor assembly

and PEBB.

To summarize, efficient dissipation of heat thoroughly

through cold plates in both the PEBB and inductor is essential

for maximizing the intrinsic power output. The hot-spots

in these components serve as the primary limiting factors,

influenced by the heat resistances and arrangement of the

cold plates. By maintaining effective thermal management,

it is possible to enhance the performance and reliability of

the system, ensuring that it operates within safe temperature

limits. The use of cold plates and strategic thermal design are

critical elements in achieving optimal performance in high-

power electronic systems.

B. Cold-Plate Surrogate Model

Overview: Heat sinks are vital for dissipating heat in power

electronic systems, affecting junction temperatures, power

density, and overall reliability. Efficient design is crucial, and

surrogate models can enhance this process by approximating

complex thermal behaviors with less computational effort.

Process of Cold Plate Optimization: Optimization begins

by creating a dataset through high-fidelity simulations, varying

parameters like geometry, material properties, airflow, and

power dissipation. Theoretical cold plate analysis, detailed in
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Section 2, aids in generating this dataset, which trains a neural

network model for accurate thermal performance predictions.

Design space variables such as coolant approach, mass flow

rate and water temperature are explored, connecting them to

the intrincic power capability of the Power Train of Fig. 2. Ad-

ditionally, pipe diameter and cold plate dimensions for PEBB

and inductors serve as genes and intermediate variables in

the NSGA-II optimization algorithm. These variables balance

thermal resistance, pressure drop, and cooling efficiency to

identify optimal designs.

Neural Network (NN) models capture complex, nonlinear

relationships through interconnected layers of nodes (neurons)

processing inputs. The NN model is trained from data pro-

duced by the VPP, utilizing TP equivalent models for the

coldplate (Fig. 6). Training adjusts connection weights to

minimize prediction errors, handling large, multidimensional

datasets effectively. The trained model is integrated into an

optimization framework to find the best cold plate design,

aiming for high power density and efficiency. Objectives

include minimizing junction temperature and maximizing heat

dissipation, with validation through high-fidelity simulations.

Advantages of Using Neural Network Models for Cold

Plate Optimization: Neural network models excel in han-

dling nonlinear relationships between parameters and thermal

performance, creating accurate surrogate models essential for

reliable optimization. They manage large datasets with many

features, adapting to various cold plate and cooling technolo-

gies. Efficient in evaluating numerous configurations, these

models significantly reduce computational time and resources,

making the optimization process more cost-effective.

C. Neural Network Modeling for Cold Plate Design

Neural networks have significantly influenced engineering

by enabling the modeling of complex, nonlinear relationships

that traditional methods struggle to handle. They are widely

used in areas such as predictive maintenance, system optimiza-

tion, and real-time monitoring due to their ability to process

large datasets and identify intricate patterns.

Neural networks (NNs) have revolutionized electrical en-

gineering [13]–[18]. They optimize grid operations [15], fault

diagnosis [16], and stability assessment [17], [18], and enhance

signal processing [14], control systems [18] and controller

design for electrical power system [19].

In this study, a NN model was developed to simulate

the thermal behavior of a cold plate, specifically predicting

pressure drop and thermal resistance (RSA) from the cold

plate to ambient conditions. The model used input parameters

including mass flow rate, water temperature, cold plate di-

mensions, and tube diameter. Our approach started with data

pre-processing, focusing on standardizing input features and

target outputs through z-score normalization to improve model

training effectiveness. The dataset was then split into training

(80%) and testing (20%) subsets to evaluate how well the

model could generalize.

The NN architecture consisted of multiple fully connected

layers with Rectified Linear Units (ReLU) activation functions,

designed to capture the complex nonlinear dynamics in the

data. Training used the Adam optimizer with a customized

learning rate schedule to ensure efficient convergence, aided

by GPU acceleration for faster computations. Post-training

evaluation included calculating Mean Squared Error (MSE)

on the test dataset to measure prediction accuracy. Visual

comparisons between predicted and actual outputs further

validated the model’s performance. The trained model and

normalization parameters were saved for future analysis and

application.

In practical application, the trained NN model was em-

ployed to design optimized cold plates for both the inductor

and PEBB. This involved configuring four series-connected

cold plates for the inductor—two for the core and two for

the coil—as well as two series-connected cold plates for the

PEBB. This approach ensured efficient thermal management

by accurately predicting pressure drop and RSA under varying

operational conditions.

In Fig. 8, the inputs and outputs of the model are depicted.

Due to the use of series-connected cold plates, the output of

the first cold plate serves as the input to the next one.

IV. RESULTS

Fig. 8 illustrates the algorithm employed in this paper to

achieve and validate surrogate model of cold plate. The opti-

mization goal of this study extends to factors like power, power

density, and efficiency, guiding the decision-making process in

design selection. Furthermore, the study explores the Virtual

Prototyping Process (VPP) for thermal management, where

digital models of physical components are created. This en-

sures that the ship system’s thermal support capacity influences

power train ratings, rather than relying solely on individual

design exercises. This paper investigates the use of NSGAii

(Non-dominated Sorting Genetic Algorithm II) to discover

optimal designs. These designs are then employed to train the

NN model, serving as a surrogate for cold plate designs used

in both inductors and PEBBs, ultimately enhancing system

efficiency.

In thermal management, liquid coolant and cold plates are

crucial, particularly in PEBB and inductor applications. Cold

plates are arranged in series for PEBBs and inductors, enhanc-

ing cooling efficiency. NSGA-II constraints include evaluating

pressure drop in each branch and optimizing cold plate design.

Dynamic coolant flow rate adjustment is vital for optimizing

thermal performance. In the pursuit of scalable designs, the

study examines various design parameters within cold plate

design. Factors like mass flow rate, coolant water temperature,

and tube diameter are carefully considered to optimize thermal

performance and efficiency. This holistic approach ensures the

development of effective thermal management solutions while

paving the way for future advancements in the field. Since

the optimization objective in this study aims to achieve an

optimal system from multiple perspectives, the response of

the optimization algorithm will be in the form of a Pareto

solution set. The algorithm operates by exploring a wide

range of genes, including dimensions and specifications of
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Fig. 8: Flowchart of Process

(a) Pareto Solution Set

(b) Poi vs Temperature and Mass Flow Rate

Fig. 9: Outputs from the Virtual Prototyping Process (VPP)

the inductor core and its windings, as well as air gaps, based

on the input power level and the characteristics of PEBB. It

selects the optimal inductor in a way that minimizes dead

space and maximizes power density. Furthermore, throughout

this process, the goal is to maximize output power while

maintaining efficiency at its highest level.

In this study, the design space variables of cold plates

consist of water temperature and mass flow rate, ranging

from 15 to 35 degrees Celsius and from 0.02 to 0.08 kg/sec,

respectively and the tube diameter is in t he range of [0.25 0.5]

inches as a gene. Fig. 9b shows power level variations with

temperature and mass flow rate. Increasing temperature lowers

power, while higher mass flow rates enhance it, as depicted

in the Pareto solution set in Fig. 9a. Each Pareto solution

maximizes a specific objective component. Temperature and

mass flow rate variations affect trends in maximum power,

power density, and efficiency, as seen in the displayed surfaces.

Fig. 10 compares outputs from the VPP with the NN-based

surrogate model of coldplate.

This analysis offers valuable insights into the surrogate

model’s performance and reliability in simulating the thermal

management system. Further evaluation will determine its

accuracy and effectiveness in capturing system dynamics.
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Fig. 10: VPP outputs vs. Surrogate Model outputs

V. CONCLUSIONS

This study presents a VPP integrating NN-based surro-

gate models for optimizing MMCs utilized in a shipboard

MT-MVdc IPES. By employing surrogate models, a non-

dominated Sorting Genetic Algorithm II (NSGA-II), utilized

within the VPP, enabled the identification of Pareto-optimal

solutions, balancing power density, efficiency and intrinsic

power through output criteria, while maintaining a single point

of thermal interface to SMD building blocks of an MMC-based

system for two separate coldplate cooled components within

those SMDs, the PEBB and a sub-module inductor.

Future research can enhance NN accuracy, expand dynamic

operational capabilities, and integrate advanced controls to ex-

plore a wide range of PEBB-based power conversion strategies

within multi-converter systems.
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