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Abstract—Designing power electronics for medium voltage
(MV) and applications, such as the Modular Multilevel Converter
(MMC) MVac-MVdc converter for Multi-Terminal (MT) MVdc
systems, requires a multidisciplinary approach to optimize a
highly intricate system. One of the main challenges in this field
is exploring various MMC implementations and evaluating them
through appropriate metrics to determine the most effective
approach. To address this challenge, this paper introduces a
Virtual Prototyping Process (VPP) for Power Electronic Building
Block (PEBB) based systems that leverages neural network-
trained coldplate surrogate models. These coldplate surrogate
model is useful in managing the complexity of a single thermal
interface point connected to multiple coldplate-cooled elements
within an MMC Sub-Module Drawer (SMD) to a system-
level thermal management system. This approach enables the
correlation of the intrinsic power capability of point of source
to point of load Power Trains as a function of coolant ap-
proach and thermal management system capability to facilitate
solutuion space exploration. This exploration is conducted in
an evolutionary environment (within the VPP) that balances
competing objectives like power density, efficiency, specific power
and specific cost. The shipboard Integrated Power and Energy
System (IPES) application is used as a use-case example.

Index Terms—Surrogate Model, Power Electronic Building
Block (PEBB), Neural Network, Cold Plate

I. INTRODUCTION

The modular architecture of the Modular Multilevel Con-
verter (MMC) is appealing for ac-dc conversion in Multi-
Terminal (MT) MVdc and HVdc systems because it allows
for scale-able solutions over a wide range of design variables,
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such as MVdc/HVdc voltage level, utilizing common compo-
nents, such as a Power Electronic Building Block (PEBB),
to achieve economies of scale. The PEBB may represent a
power conversion system-building component for equipment
manufacturers to contribute to a wide range of applications or
a point of new technology insertion to future developments.
For example, the Department of Energy and Office of Naval
Research have invested heavily in the development of PEBBs
utilizing 10kV rated SiC MOSFET multi-chip dual modules
[1], [2]. The value, or fitness, of a solution is often assessed in
terms of Measures of Performance (MOPs) that have meaning
at the building block level, such as power density (p, e.g.
AT{]‘QV ), specific power (v e.g. %), efficiency (1, %) reliability
and specific cost (o, e.g. %—VE). However, to ensure that these
MOPs are meaningful to the end-use application other factors
must be taken into account. A concrete example is the Multi-
Terminal (MT) MVdc service for the Integrated Power and
Energy System (IPES) for future naval ship electrification [3].
Real estate for power conversion hardware is constrained along
space/weight allocations for both the IPES and for freshwater
cooling thermal management, which must also service loads
and sources.

A Power Train, which provides a power conversion path
between points of MVac power generation interface and MVac
load usage is shown in Fig. 2. The MMC is a promising
topology for such a system, however, because of the amount of
power that must be processed through this path, a maximum
intrinsic power P,; must be achieved given the limitations
of the ship thermal management system. Solution space ex-
ploration is defined by a set of converter level design space
variables, xy C zg, where xy defines the ship system design

979-8-3503-5427-0/24/$31.00 ©2024 IEEE 1723

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on August 22,2025 at 20:00:38 UTC from IEEE Xplore. Restrictions apply.



space, including the inlet water temperature, 7’4 and mass flow
rate, mfr (in %‘7). Generally, as T4 Amfr are increased, P,;
increase, and as P,; increases, MOPs such as p, ~ and n will
increase.

The work of this paper follows the process defined by
a Model Based Systems Engineering (MBSE) Integration
Framework shown in Fig. 3 applied to the Power Train of
Fig 2, Full-Bridge (FB-MMC) based ac-dc converter and dc-
ac converters, utlizing the PEBB of [1], interfacing through a
common, inter-zonal 12kV MVdc bus. The ac-dc converter
utilizes conventional MMC PWM control and can arrest
current discharge if a MVdc short circuit fault occurs. Such an
approach requires an additional capacitor bank within the the
SMD, as shown in Fig. 1a. The dc-ac converter utilizes Single
Cycle Control (SCC), which does not require the additional
capacitor bank (Fig. 1b) [4].

This process centers around a VPP [5] that searches for a
P,;(Ta,mfr) that maintains active power semiconductors at
their maximum junction temperature for every combination of
Ta N mfr € xy, through use of a Non-dominated Sorting
Genetic Algorithm (NSGA-II). The VPP accounts for dimen-
sional and mass impacts on PEPDS building block design
and construction practicalities through cuboid allocations in
xyz space around the PEBB (P) and Inductor Assembly (IA),
shown in Fig. 1. These Drawer-level allocations are assigned
to the following functionalities: (1.) maintenance and vibration
travel space, ap,, (2.) basic or reinforced insulation clear-
ances, apq (3.) thermal management, apg, frame structure
and enclosures avp ¢, and busses and bus-interconnects ap..

The steps associated with Fig. 3, are summarized as follows:
(1.) Derivation of a thermal-physical (TP) equivalent model
of the coldplate; (2.) Incorporation of the TP into an electro-
thermal-physical (ETP) equivalent model of the full Power
Train with SMDs into VPP and extraction of coldplate solution
sets from the VPP outcomes; (3.) Development and training
of the coldplate surrogate models for the PEBB and inductor
assembly (IA) using neural networks; (4.) Validating of the
coldplate surrogate models in VPP. Development of SMD
metamodels that present ETP parameters, characteristics and
behavior of the SMDs that scale with zy against constraints
ry C rg (these metamodels represent only the solutions on
the Pareto front); (5.) Size, Weight, Area and Power versus
Coolant (SWAaP-C) studies where the SMDs are integrated
into a Power and Energy Corridor, described in [6], leading to
identification of thermal management solution support of P,;.
The focus of this paper is to provide the details on (2.)-(4.).

II. PEBB OVERVIEW

The novelty of this MBSE approach is that it maintains
traceability of all IPES level decisions through design space
variables, xy/, sub-sets of the ship system level design space
variables, xg, or technology insertion variables. Regarding
the latter, xy will include PEBB types, power conversion
topological implementations, control and thermal management
approaches, and protection philosophy (e.g. breaker-based vs.
breaker-less protection). The process is designed to enforce
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transparency between design space variable inputs (xy) and
performance measure outcomes (MOPs and TPMs).

The PEBB type used is the PEBB6000, utilizing 10kV
SiC MOSFETs in an H-bridge configuration. This PEBB
supports modular topologies like the FB-MMC for MVac-
MVdc power conversion, with MVdc-side current limiting
capability [1]. The PEBB data, refered to in Fig. 3 utilizes the
information from [1] and as a datasheet to develop a virtual
twin representation of the PEBBs in the context of the MVac-
MVdc and MVdc-MVac converters comprising the Power
Train, with the exception of the heat sink. Instead, the heat
sink of the design of [1] is replaced by indirect water-cooled
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coldplate, which means that power semiconductor modules are
mounted on the coldplate surface. The sub-module inductor
also has coldplates mounted on two coil and two core surfaces,
as will be described. All codlpates are mounted through high
thermal conductivity interfaces. This approach can ensure
predictable sink temperatures on all coldplate cooled surfaces.
It will be necessary for the coldplate coolant water to be
de-ionized so that they can float with respect to ground and
for clearance spaces to be maintained between coldplates and
Drawer chassis.

III. THERMAL ANALYSIS AND COLD-PLATE MODEL
A. Theory and Analysis

Liquid cooling systems effectively manage heat in power
electronic devices, critical for applications like industrial au-
tomation, electrical ships, electric vehicles, and renewable
energy. They excel in thermal management by removing heat
from high-temperature areas more effectively than air cooling,
despite being more complex and costly [7].

Fig. 4 shows a scheme of the cold plate design considered in
the present study. The plate geometry consists of a hexahedron
defined by the external lengths W, D, and H. The internal
pipe shape is defined by the diameter d, the spans S; (between
pipe center lines) and S (between pipe center lines and plate
edges), and also the bend radius . Regarding the modeling of
the cold plate, the flowchart in Fig. 5 demonstrates the various
processes carried out. Since values for W, D, H, R and d are
assumed, S7 and Sy are calculated by Eq. 1. However, if the
condition Sy > d/2 is not satisfied, the design is infeasible
as the pipe exceeds the area limits of the plate. In this case,

Top view

Fig. 4: Scheme for the cold plate and internal pipe.

the value of R is iteratively reduced to fit the pipe within the
plate. It is worth noting that water was selected as the fluid and
aluminum (UNS A91060) as the plate material. The relevant
properties of the selected material are listed in Tab. I while
water properties vary depending on the design. Therefore,
water properties were obtained through CoolProp, which is
a library that provides transport properties for a variety of
substances [8], and the computational environment MATLAB
[9] was applied to implement the modeling.
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Fig. 5: Flowchart for the cold plate modeling.

TABLE I: Plate material properties.

Feature Value
Density (pp) 2705 kg/m3
Allowable stress (S 4) 10.9 - 10% Pa
Molar mass 26.98 kg/kmol
Specific heat 935.6 J/kg- K
Thermal conductivity ~ 224.5 W/m - K
Roughness 0.03-1073 m

The pipe pressure loss (Ap) was calculated with Eq. 2,
where f is the Darcy friction factor, Koy and K;jgog are the
minor loss coefficient respectively for 90° and 180° pipe bends
[10], m is the mass flow rate and p is the fluid density. The
friction factor (f) was calculated through Eq. 3, where Re is
the number of Reynolds and the factors A and B are calculated
based on Re, d and roughness (¢) according to [11].

81?2
m2d4p

L
12

l
Ap = {fd + ngo Koo + n180K180:| )

—s|(3 : A+ B)™'P 3
f= ( Re) +(A+B) ©)

Notice that p, as well as the other fluid properties, depends
on the temperature and was taken as a constant at the average
temperature (15,4) given in Eq. 4. The inlet temperature (73)
was given and the outlet temperature (7;,) was calculated by
the energy balance in Eq. 5, where h; and h, are the specific

enthalpies at the pipe inlet and outlet, respectively.

7Ti—|—TO

Tavg 2

“

Q = ri(h, — hy), having h, = f(T,) and h; = f(T;) (5)

The maximum temperature over the plate was approached
by Eq. 6, where ¢ is the average heat flux over the hot face
of the plate, and ), is the thermal conductivity of the plate

material. The distance between the pipe bend and the corner of
the plate (r2) was calculated by Eq. 7, and the temperature at
the internal surface of the pipe (7s) was achieved through Eq.
8. In the latter equation, Q is the heat transfer rate crossing
the hot face of the plate, which is the same as reaching the
serpentine pipe, s is the pipe heat transfer area, and h is the
average internal convective coefficient acquired through Eq. 9.

_ 4’ (%)

Tooe = "5 g + T ©)

ry = [2(Sy + R)?%5 (7

Ts’ = % + T‘a'z)g (8)
Nu-k

h= 7 9

The symbol « stands for the thermal conductivity of the
fluid while Nu is the Nusselt number, which was computed
through convection correlations. Depending on the Prandtl and
Reynolds number values, as well as the flow regime (laminar
or turbulent), different formulations were applied to calculate
Nwu [12]. Then, the heat Resistance Sink to Ambient (RSA)
was calculated by Eq. 10.

T, - T
RSA — —maz — £ A
Q

(10)

The intrinsic power of each SMD is fundamentally con-
strained by the PEBB power semiconductor junction tem-
perature, making efficient heat dissipation from the devices
crucial for achieving maximum power output. As illustrated
in Fig. 6, the heat resistance of each device is modeled in
parallel with the heat resistance of its corresponding diode.
This configuration ensures that the thermal characteristics of
each component are accurately represented, allowing for a
comprehensive analysis of the thermal behavior within the
system. Each half-bridge configuration includes both upper
and lower branches, with their combined resistances ultimately
leading to the RSA (resistance to ambient) and ambient
temperature.

The PEBB employs two half-bridge structure (for each side
of the H-bridge) and utilizes two series cold plates to manage
heat dissipation. The cold plates are strategically positioned
to maximize heat transfer and minimize thermal resistance.
The intrinsic power is limited by the hot-spot temperature
of devices in the second cold plate which is fed by first
cold plate, highlighting the importance of effective thermal
management in the design. The thermal behavior of these de-
vices is critical, as excessive temperatures can lead to reduced
efficiency and potential failure. Fig. 6 shows PEBB thermal
circuit equivalent. Fig. 6 illustrates the PEBB Thermal Circuit
Equivalent. R;., is the junction-to-case thermal resistor for
the transistor, and R, is the junction-to-case thermal resistor
for the diode, which is zero for SiC MOSFETs and applicable
only when using IGBTs. In this figure T represents the surface
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temperature of PEBB, while T, is the temperature of each
device. The RSA represents the thermal resistance of sink to
ambient, which is the cold plate thermal resistance equivalent
and is calculated using Eq. 10. Based on Fig. 6, the thermal

Fig. 6: PEBB Thermal Circuit Equivalent.

rise in temperatures due to heat generated by the devices,
affecting the surface temperatures of PEBB and the cold plate,
is as follows:

Arjequ = Ploss_qu - Rjc_1,
Arjc au = Poss au - Rej b

Ach_U_maw = maX(Ach_qU7 Ach_dU)a

Ach_qL = F’loss_qL : ch_T7 (11)
Arje_ar, = PossaL - Rej b
Ach_L_maz = maX(Ach_qL7 Ach_dL)7
Ach_mam = maX(Ach_U_maza Ach_L_maa:)7
and as a result:
TS_qU_maz = 4 jmax_derated — Ploss_qU . ch_T
- (Ross_Module) : R037
TS_dU_max = ijax_derated - Ploss_dU : ch_T
- (-Ploss_Module) : R037
TS_U_maz = min<TS_qU_max7 TS_dU_max)7
12)
TS_qL_mam = 7ijax_derated - Ploss_qL : ch_T
- (Hoss_Module) : R057
TS_dL_maz = 71jmax_derated - Ploss_dL : ch_T
- (Hoss_Module) : R087
TS_L_maz = min(TS_qL_mazy TS_dL_maz)
so, the maximum temperature of PEBB surface is:
TS_max = min(TS_U_maX7 Ts_L_max) (13)

as a result:

ijax_check = Ach_ma:r + (-Ploss_Module) . Rcs +TS_maac (14)

(a) Cold Plates of Inductor As-
sembly

(b) Cold Plates of PEBB

Fig. 7: Arrangement of cold plates of inductor and PEBB

As the thermal condition limits the maximum intrinsic power
of the SMD, Eq. 15 in NSGA-II has been considered as a
thermal constraint to find the Pareto front of the design.

TJmax_derated + A,I‘max S TJmax_Check S TJmax_derated + AT‘max

(15)
The Tinax of SiC MOSFET is 175 °C, and a derating factor of
0.9 has been considered, s0 Timax_derated 18 155 °C. In addition,
in Eq. (15), ATywax = £5°C. Similarly, the inductor setup
includes four cold plates arranged in a Coil - Core - Coil -
Core configuration. Two of these cold plates are in contact
with the coil and winding, while the other two are in contact
with the cores. This arrangement ensures that heat is efficiently
dissipated from both the coil and the cores, maintaining
optimal operating temperatures throughout the inductor. The
intrinsic power of the drawer is determined by the hot-spot
temperatures in either the inductor or the PEBB, depending
on the respective losses of the PEBB and the inductor. This
interdependence between components underscores the com-
plexity of thermal management in high-power systems. Fig.7
shows the arrangement of cold plates of inductor assembly
and PEBB.

To summarize, efficient dissipation of heat thoroughly
through cold plates in both the PEBB and inductor is essential
for maximizing the intrinsic power output. The hot-spots
in these components serve as the primary limiting factors,
influenced by the heat resistances and arrangement of the
cold plates. By maintaining effective thermal management,
it is possible to enhance the performance and reliability of
the system, ensuring that it operates within safe temperature
limits. The use of cold plates and strategic thermal design are
critical elements in achieving optimal performance in high-
power electronic systems.

B. Cold-Plate Surrogate Model

Overview: Heat sinks are vital for dissipating heat in power
electronic systems, affecting junction temperatures, power
density, and overall reliability. Efficient design is crucial, and
surrogate models can enhance this process by approximating
complex thermal behaviors with less computational effort.

Process of Cold Plate Optimization: Optimization begins
by creating a dataset through high-fidelity simulations, varying
parameters like geometry, material properties, airflow, and
power dissipation. Theoretical cold plate analysis, detailed in
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Section 2, aids in generating this dataset, which trains a neural
network model for accurate thermal performance predictions.

Design space variables such as coolant approach, mass flow
rate and water temperature are explored, connecting them to
the intrincic power capability of the Power Train of Fig. 2. Ad-
ditionally, pipe diameter and cold plate dimensions for PEBB
and inductors serve as genes and intermediate variables in
the NSGA-II optimization algorithm. These variables balance
thermal resistance, pressure drop, and cooling efficiency to
identify optimal designs.

Neural Network (NN) models capture complex, nonlinear
relationships through interconnected layers of nodes (neurons)
processing inputs. The NN model is trained from data pro-
duced by the VPP, utilizing TP equivalent models for the
coldplate (Fig. 6). Training adjusts connection weights to
minimize prediction errors, handling large, multidimensional
datasets effectively. The trained model is integrated into an
optimization framework to find the best cold plate design,
aiming for high power density and efficiency. Objectives
include minimizing junction temperature and maximizing heat
dissipation, with validation through high-fidelity simulations.

Advantages of Using Neural Network Models for Cold
Plate Optimization: Neural network models excel in han-
dling nonlinear relationships between parameters and thermal
performance, creating accurate surrogate models essential for
reliable optimization. They manage large datasets with many
features, adapting to various cold plate and cooling technolo-
gies. Efficient in evaluating numerous configurations, these
models significantly reduce computational time and resources,
making the optimization process more cost-effective.

C. Neural Network Modeling for Cold Plate Design

Neural networks have significantly influenced engineering
by enabling the modeling of complex, nonlinear relationships
that traditional methods struggle to handle. They are widely
used in areas such as predictive maintenance, system optimiza-
tion, and real-time monitoring due to their ability to process
large datasets and identify intricate patterns.

Neural networks (NNs) have revolutionized electrical en-
gineering [13]-[18]. They optimize grid operations [15], fault
diagnosis [16], and stability assessment [17], [18], and enhance
signal processing [14], control systems [18] and controller
design for electrical power system [19].

In this study, a NN model was developed to simulate
the thermal behavior of a cold plate, specifically predicting
pressure drop and thermal resistance (RSA) from the cold
plate to ambient conditions. The model used input parameters
including mass flow rate, water temperature, cold plate di-
mensions, and tube diameter. Our approach started with data
pre-processing, focusing on standardizing input features and
target outputs through z-score normalization to improve model
training effectiveness. The dataset was then split into training
(80%) and testing (20%) subsets to evaluate how well the
model could generalize.

The NN architecture consisted of multiple fully connected
layers with Rectified Linear Units (ReLU) activation functions,

designed to capture the complex nonlinear dynamics in the
data. Training used the Adam optimizer with a customized
learning rate schedule to ensure efficient convergence, aided
by GPU acceleration for faster computations. Post-training
evaluation included calculating Mean Squared Error (MSE)
on the test dataset to measure prediction accuracy. Visual
comparisons between predicted and actual outputs further
validated the model’s performance. The trained model and
normalization parameters were saved for future analysis and
application.

In practical application, the trained NN model was em-
ployed to design optimized cold plates for both the inductor
and PEBB. This involved configuring four series-connected
cold plates for the inductor—two for the core and two for
the coil—as well as two series-connected cold plates for the
PEBB. This approach ensured efficient thermal management
by accurately predicting pressure drop and RSA under varying
operational conditions.

In Fig. 8, the inputs and outputs of the model are depicted.
Due to the use of series-connected cold plates, the output of
the first cold plate serves as the input to the next one.

IV. RESULTS

Fig. 8 illustrates the algorithm employed in this paper to
achieve and validate surrogate model of cold plate. The opti-
mization goal of this study extends to factors like power, power
density, and efficiency, guiding the decision-making process in
design selection. Furthermore, the study explores the Virtual
Prototyping Process (VPP) for thermal management, where
digital models of physical components are created. This en-
sures that the ship system’s thermal support capacity influences
power train ratings, rather than relying solely on individual
design exercises. This paper investigates the use of NSGAii
(Non-dominated Sorting Genetic Algorithm II) to discover
optimal designs. These designs are then employed to train the
NN model, serving as a surrogate for cold plate designs used
in both inductors and PEBBs, ultimately enhancing system
efficiency.

In thermal management, liquid coolant and cold plates are
crucial, particularly in PEBB and inductor applications. Cold
plates are arranged in series for PEBBs and inductors, enhanc-
ing cooling efficiency. NSGA-II constraints include evaluating
pressure drop in each branch and optimizing cold plate design.
Dynamic coolant flow rate adjustment is vital for optimizing
thermal performance. In the pursuit of scalable designs, the
study examines various design parameters within cold plate
design. Factors like mass flow rate, coolant water temperature,
and tube diameter are carefully considered to optimize thermal
performance and efficiency. This holistic approach ensures the
development of effective thermal management solutions while
paving the way for future advancements in the field. Since
the optimization objective in this study aims to achieve an
optimal system from multiple perspectives, the response of
the optimization algorithm will be in the form of a Pareto
solution set. The algorithm operates by exploring a wide
range of genes, including dimensions and specifications of

1728

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on August 22,2025 at 20:00:38 UTC from IEEE Xplore. Restrictions apply.



Xy VPP Validate using coldplate surrogate model
v (/nc/ud/'nkq
Heat Sin

Z

Tube
diameter
selection

table

PEBB or
NiPEBB Data

__________ Using Trained Model emememeaas
(.m) H

diameter of
cold plates
Combine Data e
e e Negr al A_Iethfzr K /Trained Neural Network
delp_Core2 ! g 0 (Inductor)
ercr__{ Inductor Cold NN_delp_Core2.mat F
Coﬁét I';Iiacges RSA Coll2 Plate NN_delp_Coil2.mat
Datg of CoreLoss NN_RSA_Core2.mat
Inductor o IA (.m) NN_RSA_Coil2.mat
mir P
mfr, Ty
—

Ploss_Module s
mit, Ty

Neural Network Training of PEBB inductor

Mass flow _
Coldplate Tube Diamet§r rate of PEBB Trained Neural
\ W, L of PEBB (.m) Network (PEBB)

NN_RSAN_PEBB.mat
NN_delP_PEBB.mat
NN_mfr_PEBB.mat

RSAN of PEBB
(.m)

Fig. 8: Flowchart of Process

0.35
-
£ 03
=
§0.25
< 0.2
0.15

9805

T

(a) Pareto Solution Set

'35

T30

T 25

T 20 7, [°C]

0_07””7 B 00
008 005 ggp -
mf [ke/sec]

002

(b) P,; vs Temperature and Mass Flow Rate

Fig. 9: Outputs from the Virtual Prototyping Process (VPP)

the inductor core and its windings, as well as air gaps, based
on the input power level and the characteristics of PEBB. It
selects the optimal inductor in a way that minimizes dead
space and maximizes power density. Furthermore, throughout
this process, the goal is to maximize output power while
maintaining efficiency at its highest level.

In this study, the design space variables of cold plates
consist of water temperature and mass flow rate, ranging
from 15 to 35 degrees Celsius and from 0.02 to 0.08 kg/sec,
respectively and the tube diameter is in t he range of [0.25 0.5]
inches as a gene. Fig. 9b shows power level variations with
temperature and mass flow rate. Increasing temperature lowers

power, while higher mass flow rates enhance it, as depicted
in the Pareto solution set in Fig. 9a. Each Pareto solution
maximizes a specific objective component. Temperature and
mass flow rate variations affect trends in maximum power,
power density, and efficiency, as seen in the displayed surfaces.
Fig. 10 compares outputs from the VPP with the NN-based
surrogate model of coldplate.

This analysis offers valuable insights into the surrogate
model’s performance and reliability in simulating the thermal
management system. Further evaluation will determine its
accuracy and effectiveness in capturing system dynamics.
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Fig. 10: VPP outputs vs. Surrogate Model outputs

V. CONCLUSIONS

This study presents a VPP integrating NN-based surro-
gate models for optimizing MMCs utilized in a shipboard
MT-MVdc IPES. By employing surrogate models, a non-
dominated Sorting Genetic Algorithm IT (NSGA-II), utilized
within the VPP, enabled the identification of Pareto-optimal
solutions, balancing power density, efficiency and intrinsic
power through output criteria, while maintaining a single point
of thermal interface to SMD building blocks of an MMC-based
system for two separate coldplate cooled components within
those SMDs, the PEBB and a sub-module inductor.

Future research can enhance NN accuracy, expand dynamic
operational capabilities, and integrate advanced controls to ex-
plore a wide range of PEBB-based power conversion strategies
within multi-converter systems.
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