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Summary
Neural coding has traditionally been examined through changes in firing rates and latencies 
in response to different stimuli1-5. However, populations of neurons can also exhibit transient 
bursts of spiking activity, wherein neurons fire in a specific temporal order or sequence6-8. 
The human brain may utilize these neuronal sequences within population bursts to efficiently 
represent information9-12, thereby complementing the well-known neural code based on spike rate 
or latency. Here, we examine this possibility by recording the spiking activity of populations of 
single units in the human anterior temporal lobe (ATL) as eight participants perform a visual 
categorization task. We find that population spiking activity organizes into bursts during the 
task. The temporal order of spiking across the activated units within each burst varies across 
stimulus categories, creating unique stereotypical sequences for individual categories as well as 
for individual exemplars within a category. The information conveyed by the temporal order of 
spiking activity is separable from and complements the information conveyed by the units’ spike 
rates or latencies following stimulus onset. Collectively, our data provide evidence that the human 
brain contains a complementary code based on the neuronal sequence within bursts of population 
spiking to represent information.

Introduction
Changes in firing rate and the spike latency following stimulus onset have traditionally 
been regarded as prominent and correlated neural coding schemes that support diverse 
behavioral and cognitive phenomena1-5. Previous studies have also suggested that stimuli 
can evoke a transient and coordinated burst of spiking among an assembly of neurons6,7. 
These bursts may reflect discrete packets of information6, serving as transient pulses to 
facilitate information transmission across neocortical networks13,14. While it is unclear how 
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the brain might use these bursts to convey information13,15, the temporal order of spiking 
activity within these bursts, or the neuronal sequence, could provide a complementary neural 
code. By leveraging the combinatorial power of relative spike timing to encode complex 
information using only sparse spiking activity, information coding based on neuronal 
sequences may improve the brain’s computational efficiency9-12. Despite this possibility, 
however, relatively little is known about how neuronal sequences within bursts of spiking 
contribute to human cognition.

Neuronal sequences within bursts of spiking across a population of neuronal units have 
long been observed in awake and behaving animals6,16,17. Because these bursts have a 
short temporal duration (e.g., 50-150ms), the sequences nested within them differ from the 
sequential neural activity evoked by time-evolving experiences, such as when an animal 
traverses different paths in an environment18, sniffs air with different odors19, coordinates 
different motor actions20, or views dynamically changing visual stimuli21. Prior research 
linking these neuronal sequences within population bursts to information coding has 
primarily relied on recordings from animal primary sensory cortices using basic stimulus 
features such as gratings with different orientations17 or tones with different frequencies6. It 
remains unclear how neuronal sequences within population bursts in association regions 
of the neocortex, particularly in the human brain, may contribute to the encoding of 
information across different levels of a representational hierarchy, a hallmark of higher-order 
cognition22.

Here, we examine sequences of neuronal firing within discrete spiking bursts across a 
population of neuronal units recorded from the human ATL as participants perform a 
visual categorization task. Based on the hypothesized role of neuronal sequences in coding 
information11, we predicted that the order of spikes from recorded neuronal units within 
population bursts should be sufficient for representing information across different visual 
categories and among exemplars within a chosen category. Moreover, if these neuronal 
sequences complement other neural codes, the information encoded by neuronal sequences 
to support visual categorization should be distinct from that encoded by spike rate or 
its correlated measures such as spike latency from stimulus onset1-5. Our data support 
this hypothesis, demonstrating that neuronal sequences within population bursts in the 
human ATL carry non-redundant information regarding the taxonomic categories as well 
as individual exemplars of visually presented images. These findings therefore suggest that 
neuronal sequences within bursts of population spiking may serve as a complementary 
neural code for representing information in the human brain.

Results
We recorded activity of populations of ATL neurons in 8 participants (36.25 ± 3.38 years 
old, 3 females, IQ: 86.50 ± 5.35; see Supplementary Table S1) as they performed a visual 
categorization task (Fig. 1a). In this task, participants view an image presented on the screen 
for 500 ms and provide a categorical judgment of the image from one of the four taxonomic 
categories (ANIMAL, OBJECT, PERSON, and PLACE; 951 ± 121 trials; Extended Data 
Fig. 1a) or from one of the four exemplars of a predefined category (i.e., four different US 
presidents within the PERSON category; 245 ± 29 of trials; Extended Data Fig. 1b). The 
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inclusion of both taxonomic and exemplar categorization allows us to determine whether 
neuronal sequences within bursts of spiking encode information across different levels of 
a representation hierarchy. To rule out the possibility that the recorded units only encode 
motor responses instead of the information content associated with the stimuli, a subset 
of participants also completed a set of control trials (66 ± 6 trials; Extended Data Fig. 
1c). During these control trials, participants indicate the direction of a low-contrast arrow 
presented on the screen from one of the four possible directions (UP, DOWN, LEFT, 
RIGHT). Participants performed these different types of trials in sequential blocks (arrows, 
taxonomic, and then president trials) while other experimental factors such as image order 
and stimulus categories were randomly intermixed within each block. As accuracy is 
emphasized over speed, participants’ performance is high with an average accuracy of 
95.9% ± 1.0% for taxonomic categorization (correct response time, RT = 1039 ms ± 70 ms), 
95.0% ± 1.7% for president/exemplar categorization (RT = 1100 ms ± 56 ms), and 91.7% ± 
3.0% for arrow direction categorization (RT = 1051 ms ± 70 ms; see Extended Data Fig. 1d).

We isolated a total of 2110 putative single units from 12 micro-electrode arrays23,24 (MEAs; 
Fig. 1b) across 18 recordings (117 ± 13 units per recording; see Extended Data Fig. 1e). 
In an example array, a population spike raster demonstrates bursts of coordinated spiking 
across many units in almost every trial (Fig. 1c). These bursts tend to last a brief duration 
of 50-150 ms and exhibit no discernible relation with stimulus onset or response time. 
Moreover, these bursts exhibit variability in the number of spiking units across categories 
and varying spike counts from each unit within a burst. For instance, when an OBJECT 
image is presented in the current example, more units are activated during a burst and more 
spikes are produced overall as compared with those elicited by other categories.

Closer inspection of these bursts of spiking, however, reveals that spiking across the 
individual units is not perfectly synchronized. Spiking across the population of units within 
each category instead arises in a stereotypical temporal order or sequence. To illustrate 
this, we sort the units participating in a burst by their temporal order averaged across two 
example bursts elicited by different images from the same category. We find that during 
the presentation of images from the same category, the order of spiking activity across 
the population of participating units appears mostly retained (upper panel, Fig. 1d). This 
within-category sequence consistency is in contrast with the inconsistency in sequence 
order across categories. For example, when we resort all the example bursts based on the 
average order of the example bursts associated with OBJECT images, the sequential spiking 
patterns for bursts associated with ANIMAL, PERSON, and PLACE images are no longer 
retained (lower panel, Fig. 1d), suggesting some category specificity in units’ spiking order. 
Combined, these observations suggest that bursts of population spiking activity may contain 
information about a visual image in various forms, for example, the number of spikes 
emitted by the set of units involved as well as the temporal order of spiking timing, or 
sequence9,10, of these activated units within a burst.

Decoding based on Neuronal Sequences

Based on these observations and the previous evidence that groups of neurons activated 
during bursts of spiking tend to fire in a temporal order6,25, we directly examined whether 
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the sequence of neuronal spiking within each burst could be used to decode information 
about the presented visual images. In each recording, we identified bursts of population 
spiking based on transient increases in the number of activated units. We compared these 
identified bursts in each individual recording with surrogate data generated from a random 
Poisson process to control for the false positive rate in burst detection (Extended Data Fig. 
2a-b). All 18 recordings that we retained for our analyses demonstrate at least 100 bursts 
throughout the experiment (2504 ± 590 bursts per recording; 0.99 ± 0.19 bursts/second). 
These bursts appear to coincide with high-frequency (80-120 Hz) oscillatory events known 
as ripples recorded through the same cortical micro-electrodes (Extended Data Fig. 2e)26.

To examine the order of neuronal sequences within these bursts, we assigned a rank to each 
unit based on the average spike time of each firing unit in that burst (Fig. 2a). Across units 
and bursts, the assigned rank for each unit is highly correlated with the spike latency from 
burst onset (τb, mean Spearman ρ = 0.76, range: 0.60 to 0.87), consistent with previous 
research that a unit’s mean or peak spiking time can serve as a proxy for the temporal 
order of unit activity within a sequence27,28. We therefore used the rank for each unit 
to determine whether the order of neuronal spiking within bursts can be used to decode 
stimulus information. Because the timing of a unit’s response may not always be relevant 
for information coding2,3, we restricted our analyses to only those units that spike with 
a reliable normalized rank within bursts in response to at least one image category. We 
refer to these as sequence-related units (52.6% ± 4.8% of the recorded units per recording; 
Extended Data Fig. 3a-b). Note that this unit selection step is omnibus, imposing minimal 
assumptions for the specific relation between a unit’s rank and the stimulus category. We 
then verified that neuronal sequences within a stimulus category are more similar than 
those across categories29 (Fig. 2b). We created independent template neuronal sequences 
for each category by randomly selecting 20% of the bursts that occurred during each 
stimulus category for each fold of the data and averaging the normalized ranks of the 
sequence-related units within those bursts. Template sequences extracted separately for each 
taxonomic category are more similar to each other within the same category as compared 
those across different categories (Fisher’s transformed Kendall’s τ for within- and across-
category similarity in mixed-effect modeling: 0.22 ± 0.02 vs. 0.17 ± 0.03, t(34) = 7.07, p = 
3.65e−08, requivalent = 0.77; Extended Data Fig. 3c).

To assess whether neuronal sequences within bursts can be used to decode information 
about the presented image, we used a template-matching approach30. Using a training 
set consisting of data from all but one burst, we constructed category-specific template 
sequences and predicted the category of the held-out test burst based on the template 
with the highest similarity between the training and test data (Fig. 2c). Accuracy of this 
leave-one-out classification for taxonomic categories at the burst level is significantly greater 
than chance across recordings (true vs. shuffled in mixed-effect modeling: 29.1% ± 0.70% 
vs. 25.0% ± 0.04%, t(34) = 6.09, p = 6.64e−07, requivalent = 0.72, Fig. 2d). Decoding accuracy 
based on sequence order depends on the selection of units. Including units with less reliable 
ranks decreases classification accuracy (Extended Data Fig. 3d). Decoding of arrow trials 
based on spiking order is at chance level across 12 available recordings, confirming that 
neuronal sequences are not simply encoding motor mapping of different directions (true 
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vs. shuffled in mixed-effect modeling: 24.0% ± 2.8% vs. 25.0% ± 0.9%: t(22) = −0.40, 
p = 0.69, requivalent = ‐0.09; Extended Data Fig. 3e). Classification accuracy when decoding 
individual exemplars within the PERSON category is also significantly greater than chance 
despite reduced trial counts (true vs. shuffled in mixed-effect modeling: 29.0% ± 1.5% vs 
24.7% ± 0.2%; t(34) = 3.03, p = 0.0046, requivalent = 0.46; Fig. 2d). Successful decoding of both 
taxonomic categories and the exemplars demonstrates that sequence coding within these 
spiking bursts occurs at multiple levels in the information representation hierarchy.

Consistent with prior research31, we find that cortical units also show reliable increases 
or decreases in spike rate for images of a given stimulus category (Fig. 3a-b). As such, 
high-level visual information can be decoded from the patterns of population spike rates 
using a linear classifier (Extended Data Fig. 4). The overall classification accuracy based 
on spike rates during task period (100-1400 ms following stimulus onset) is significantly 
greater than the chance level for both taxonomic categories (true vs. shuffled in mixed-effect 
modeling: 38.8% ± 3.3% vs. 26.3% ± 0.4%, t(34) = 4.45, p = 8.88e−05, requivalent = 0.61) and 
for exemplars within the PERSON category (33.1% ± 2.7% vs. 25.1% ± 0.3%, t(34) = 3.56, 
p = 0.0011, requivalent = 0.52; Fig. 3c), but not for the arrow trials (21.4% ± 1.6% vs. 24.4% 
± 0.7%: t(22) = −1.81, p = 0.083, requivalent = ‐0.36; Extended Data Fig. 3e). These results, 
therefore, confirm that information about the presented images can also be encoded by spike 
rates in the human ATL.

Spiking Order is Separable from Rate

Our data demonstrate that spiking neurons in the human ATL can represent information 
to support visual categorization using both the sequential order of a bursting population of 
neuronal units and the pattern of population spike rates. Previous research has demonstrated 
that units that respond with higher spike rates are also more likely to fire with a shorter 
spike latency following stimulus onset4,32. Thus, one possibility is that the observed 
neuronal sequences within spiking bursts may be simply attributed to the strength of spiking 
responses.

To examine this possibility, it is important to first clarify the distinction between different 
measures of spike timing, one related to the onset of the stimulus and the other related to 
the onset of the population burst. To clarify this distinction, we visualized separately the 
raster plot of individual units across all trials and the response of all units on individual trials 
in an example recording (Fig. 4a). In this example, while individual units may not display 
a clear spiking response time-locked to stimulus onset, the population of units can exhibit 
highly coordinated spiking activity, manifesting as spiking bursts. We therefore explicitly 
examined the latency of a unit’s first spike from stimulus onset, τo, and the latency of the 
first spike within a given burst, τb (Fig. 4b). Across all recorded units, the rank of each unit 
within a given spiking burst reflects the latency within the burst, τb (mean Spearman ρ = 
0.76, range: 0.60 to 0.87), rather than the latency from stimulus onset, τo (mean Spearman 
ρ = 0.06, range: 0.02 to 0.11; Extended Data Fig. 5a). Moreover, overall spike rate during 
both task and baseline periods are robustly anticorrelated with the latency from stimulus 
onset, τo (e.g., mean Spearman ρ between task period spike rate and τo = ‐0.43, range: −0.51 
to −0.33), consistent with previous findings4,5. However, this relation is markedly reduced 
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when examining the relation between spike rate and the units’ relative rank within a burst 
sequence (mean Spearman ρ between task period spike rate and unit rank = −0.09, range: 
−0.16 to −0.02; Extended Data Fig. 5b). We also investigated the changes in spike rate 
and spike latency following stimulus onset to more directly examine whether the neuronal 
sequences during population bursts are related to the known relation between the strength 
of spiking response and spike latency from stimulus onset4,32 (Extended Data Fig. 5c). We 
find that changes in spike rate are significantly correlated with latency from stimulus onset, 
τo, but not with the unit’s rank within population bursts (Extended Data Fig. 5d). These 
differences in the correlations suggest that a neuronal unit’s rank within population bursts is 
largely independent of its change in firing rate and spike latency from stimulus onset.

Closer examination of the known relation between spike rate and latency reveals that spike 
latency from stimulus onset, τo, in fact exhibits a systematic mean shift between different 
visual categories32,33 (Fig. 4c). However, the relative order of τo across units is preserved 
across categories. Across recordings, the population mean of τo across sequence-related units 
in each trial can therefore be used to decode visual information more so than the rank order 
of τo using a similar template-based classification approach (trial-level decoding accuracy 
using mean vs. order of τo across units in mixed-effect modeling: 29.0% ± 0.7% vs. 26.8% 
± 0.8%: t(34) = 2.85, p = 0.0074, requivalent = 0.44; Fig. 4d). In contrast, the ranks of these 
units within spiking bursts in the same trials capture stimulus category information through 
their relative order of spiking more so than the information captured through any shift of 
average rank within spiking bursts (trial-level decoding accuracy using mean vs. order of 
units’ ranks: 24.8% ± 0.7% vs. 29.7% ± 0.8%: t(34) = 5.64, p = 2.46e−6, requivalent = 0.70; 
also Extended Data Fig. 5e-f for using τb in replacement of spike rank). Comparing these 
two features of spike timing across units – the mean versus the relative order – we find a 
significant interaction effect on classification accuracy when we decode stimulus category 
using latency from stimulus onset (τo) versus the rank within spiking bursts in a mixed-effect 
model (t(68) = 5.50, p = 6.28e−7, requivalent = 0.55). This suggests a dissociation between these 
two aspects of spike timing – mean population latency shifts versus rank order of the 
constituent units – and how they may differentially contribute to information coding.

Although the relative rank of neuronal firing within spiking bursts appears separable from 
spike latency from stimulus onset, it remains possible that the overall burst timing itself is 
sufficient to distinguish different visual categories. We thus also examined the time to burst 
onset within a trial, τburst. Across categories and recordings, τburst exhibits a relatively uniform 
distribution through the trial (Fig. 4e). The timing of the first bursts following stimulus onset 
per trial therefore does not significantly distinguish between taxonomic categories (true vs. 
shuffled in mixed-effect modeling: 25.9% ± 0.6% vs 24.9% ± 0.2%, t(34) = 1.70, p = 0.10, 
requivalent = 0.28). Moreover, decoding accuracy based on the neuronal sequences is unaffected 
by the timing of the held-out test burst during the trial (early, middle, and late spiking bursts 
relative to the trial RT: F(2, 34) = 0.068, p = 0.93) or whether bursts occurred during image 
presentation or not (image on vs. off: t(34) = 1.25, p = 0.22, requivalent = 0.21; Extended Data 
Fig. 3f). Thus, the stimulus information conveyed by units’ spiking order within population 
bursts cannot be simply accounted for by burst timing13,15.
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Sequence and Rate are Non-redundant

What information might these population bursts and the rank of neuronal spiking contained 
therein represent? Given the possibility that neuronal sequences may represent a separate 
code from spike rate and latency following stimulus onset, we were motivated to explicitly 
examine whether the sequence-based code within population bursts and the rate-based code 
represent distinct or overlapping information.

We first examined whether stimulus information is captured by population spike rate 
regardless of whether or not that neuronal population exhibits a clear burst of spiking. 
If rate-based coding is separable from sequence-based coding within population bursts, 
then information content specific to an image category should be decoded from population 
spike rates both within and outside of bursts. Supporting this, classifiers trained and tested 
separately using population spike rates when a burst is detected and outside bursting periods 
both provide above-chance classification accuracy for taxonomic categories using either 
only the sequence-related units or all units (Extended Data Fig. 6a-b).

We next investigated whether the sequence of a set of spiking units within a burst still 
contains stimulus information even when their spike rates are relatively controlled across 
stimulus categories. If a set of units all fire at a similar rate within a burst across 
different categories but with systematically varying ranks, then sequence-based information 
should differ from rate-based information. To test this, for each recording, we selected 
five sequence-related units that participated in the most bursts for all four categories, and 
only considered bursts where all five participated. By selecting units and bursts in this 
manner, the spike counts of the selected units do not significantly differentiate stimuli across 
categories (Repeated-measures ANOVA: p′s > 0.05; Fig. 5a; see example raster plots in 
Extended Data Fig. 6c). Across recordings, sequence-based decoding accuracy in these rate-
controlled units remains significantly greater than chance (true vs. shuffled in mixed-effects 
modeling: 28.2% ± 1.5% vs 24.4% ± 0.5%, t(34) = 2.69, p = 0.011, requivalent = 0.42). Thus, 
even when spike rate is relatively controlled within a burst, the ranks of a set of units can 
still distinguish the presented stimulus categories.

We then directly examined how much information about the stimulus is conveyed by each 
unit’s spike rate and rank order within a sequence occurring during population bursts (see 
Fig. 5b and Extended Data Fig. 7). If a unit’s spike rate and rank order carry non-redundant 
information about a stimulus, then knowing both the rank of a unit and how many times it 
spikes within a burst should provide no less information about the stimulus than the sum 
of the information separately associated with the unit’s rank and spike count alone34-36. We 
formally estimated for each unit the information gain about the categorical information of 
a stimulus, s, when using its relative rank in spiking sequences alone, I(r; s), when using 
the spike count alone, I(c; s), and when using both, I(c, r; s). Consistent with our selection of 
sequence-related units, the rank order of units with reliable ranks for at least one stimulus 
category captures more information about the stimulus as compared with the less reliable, 
non-sequence-related units (Extended Data Fig. 8a). Both types of units, however, do not 
differ significantly in the amount of information captured by their spike counts within 
bursts (Extended Data Fig. 8b). Critically, the sum of information solely related to the rank 
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or spike count is smaller than the information gain when both rank and spike count are 
considered together – I(c; s) + I(r; s) < I(c, r; s) – in most recorded units (Extended Data Fig. 
8c). This interaction information, namely I(c, r; s) − I(c; s) − I(r; s), is significantly greater 
than 0 across recordings for sequence-related units (random-effect at the recording level: 
t(17) = 4.52, p = 3.01e−4, requivalent = 0.74, n = 18 recordings) and accounts for an average of 
about 43% of the total information conveyed by spike count and rank combined (Fig. 5b). 
Sequence-related units also show a significantly greater interaction information captured 
by spike count and rank as compared with non-sequence-related units (Extended Data Fig. 
8c). Together, these results suggest that information about a unit’s rank and spike count 
within a sequence synergistically provides non-redundant information to support visual 
categorization, particularly among units with a reliable sequence rank across bursts.

We next examined how non-redundant rank- and rate-based information may coexist within 
a sequence. Previous research suggests two possibilities: units sensitive to rate-based coding 
could spike either earlier10 or later6,37 in a neuronal sequence. To test these possibilities, we 
assessed the extent to which each unit’s relative rank is related to its spike rate decoding 
of category-specific information. Across recordings and stimulus categories, we observed 
that sequence-related units tend to contribute to the population rate code earlier in the 
neuronal sequence for a given stimulus category. However, such a pattern does not hold for 
non-sequence-related units (Extended Data Fig. 9).

The presence of two complementary neural codes raises the question as to the relative 
importance of spike rate and rank order in representing stimulus information. One possibility 
is that the benefit of information coding based on spike order may become more apparent 
as the number of neurons increases11,38. To examine this, for each recording session, we 
randomly selected subsets of sequence-related units (5-95%, in increments of 10%), and 
recomputed our decoding accuracies separately using spike rate across the task period and 
then spike sequence within population bursts. In both cases, decoding accuracy increases as 
we include more neuronal units (see Fig. 5c for an example and group average). Critically, 
although decoding accuracy is initially higher with fewer units when using spike rate 
compared to using spike sequence within bursts, decoding accuracy increases more rapidly 
when using spike sequences as the number of included units increases (also see Extended 
Data Fig. 10). These results suggest that rank-based coding may become more apparent as 
recordings from larger populations of neurons become available38.

Discussion
Our data demonstrate that populations of neurons in the human ATL exhibit discrete bursts 
of spiking activity organized into precise temporal sequences. These neuronal sequences 
convey higher-order visual information across a hierarchy of categories and exemplars as 
participants complete a visual categorization task. This sequence-based code complements 
and is not redundant with the conventional neural codes based on spike rate or latency 
following stimulus onset1-5. By leveraging the opportunity to examine spiking activity from 
a relatively large population of neurons in the awake human brain, these findings provide 
empirical support for early theoretical models positing the presence of complementary 
coding schemes in the human brain9,10,15.
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These results highlight the role of neuronal sequences in human cognition. While previous 
research based on animal models has identified similar physiological signatures in primary 
sensory cortices6,17, our data reveal a comparable coding principle in the human ATL, 
emphasizing the role of neuronal sequences in information coding across species. Notably, 
these neuronal sequences within spiking bursts occur on a compressed timescale (e.g, 
50-150 ms). Consequently, they differ fundamentally from sequential neuronal activity 
elicited by time-evolving environmental inputs18-21 and from sequences that occur over 
longer timescales39. These findings align more closely with the rapid replay of neuronal 
sequences in the context of memory, as previously reported in animal models40 and in the 
human neocortex25. Yet, in contrast to these prior studies in which the replay of neuronal 
sequences is explicitly linked with memory retrieval, our current task does not involve 
an explicit memory load25,40. These data thus suggest that neuronal sequences within 
population bursts may play a more general role in representing information in the human 
neocortex.

The neuronal sequences we identify occur within transient and discrete bursts of population 
spiking activity. These bursts, containing such sequences, represent discrete population 
events that appear to arise uniformly throughout a trial, regardless of stimulus category. 
Because we are recording from the higher-order association cortex, these bursts may differ 
from sensory-driven activity in lower-level regions. For instance, the detected bursts often 
coincide with cortical 80-120Hz ripples in the association cortex26, which may be related to 
information processing and communication in the human neocortex41-44. While it is possible 
that these bursts are related to eye movements and visual fixation on the target stimulus, the 
bursts’ distributed timing throughout the trial period, extending up to one second following 
stimulus onset, makes this unlikely. Moreover, such a gaze-dependent explanation would be 
inconsistent with the clear timing of stimulus-locked classification accuracy observed when 
analyzing the spike rate responses (Fig. 3b and Extended Data Fig. 4b-c). In addition, prior 
evidence has shown that even within sensory cortices, bursts of sequential neuronal activity 
in the absence of sensory stimulation may still contribute to information processing6,45. The 
spiking bursts we observe here may reflect similar internal processing of information, a 
question that requires further investigation (see also Supplementary Discussion).

Importantly, the neuronal sequences we observe during spiking bursts are not redundant 
with or simply a consequence of the spike rate response or spike latency following stimulus 
onset. Neural coding based on population spike rate and average latency following stimulus 
onset appears robust and independent of whether activity is examined within or outside 
these spiking bursts. Thus, the information conveyed by these conventional neural codes is 
dissociable from that captured by the relative rank of neuronal firing within spiking bursts. 
Conversely, sequence-based coding within the bursts remains robust even when controlling 
for spiking rate. Formally analyzing the information contained within these spiking bursts 
reveals greater information conveyed by the combination of spike count and relative rank of 
the units as compared with using either measure alone. Although fast neuronal sequences 
have been linked with memory replay of prior experiences25,40, the rank order of firing 
within these bursts are not simply recapitulating, or replaying, the order of spike latencies 
following stimulus onset. Thus, the neuronal sequences within these discrete spiking bursts 

Xie et al. Page 9

Nature. Author manuscript; available in PMC 2025 July 21.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



may represent a complementary and synergistic neural code, alongside spike rate, for high-
level visual representation in the human brain.

Why might the human brain employ multiple codes to represent information? One potential 
key advantage neuronal sequences, relative to a rate-based code, is their computational 
efficiency9-12. By using the temporal order of spiking rather than the number of spikes, 
sequences can capture complex information with relatively sparse spiking activity11. This 
contrasts with the coding scheme implemented in many contemporary advanced artificial 
intelligence systems11. One proposed mechanism for information coding based on neuronal 
sequences is that a series of spikes may progressively activate a set of synapses along an 
apical dendrite, modulating the activation level of a post-synaptic neuron depending on the 
spiking order of pre-synaptic neurons. This would position the dendrite as a focal site for 
neural computation11,46,47. The role of this neural code based on neuronal sequences may 
become more apparent as recording technologies improve our ability to capture spiking 
activity across larger populations of neurons38.

Previous studies have shown that neuronal sequences are often limited to a set of pre-
existing templates constrained by underlying neuronal connections that can bias the order 
of neuronal spiking in a novel environment or for a novel stimulus6. We similarly find a 
set of template sequences that encode information across a representation hierarchy. These 
template sequences rely on the activity of a subset of units that we label as sequence-related 
units, each exhibiting a relatively constrained rank position within each category. These 
templates may reflect pre-existing neuronal connections6,27, in which case every individual 
template sequence reflects initial stimulus-dependent activation of a different set of units 
which consequently leads to a stereotyped sequential activation of connected neurons. 
Alternatively, the template sequences may reflect connections formed during the experiment. 
Our data cannot distinguish these possibilities as participants had completed hundreds of 
practice trials before recording.

In sum, our data demonstrate that neuronal sequences within discrete bursts of spiking 
contribute to the representation of higher-level visual information in humans. Contemporary 
models often abstract away information contained within spike timing and instead rely 
on Poisson-based spike rates to capture the relationship between brain activity and 
behavior48-50. However, evidence has suggested that neuronal activity is not Poisson-
like51,52. For example, population spiking activity across a group of neurons can often 
manifest as bursts during a task or at rest7. Moreover, temporal features of spiking activity2, 
such as exact relative spike timing53, latency54, and synchrony55, may also contribute 
to information coding. Our data add to this literature by demonstrating that neuronal 
sequences within bursts of population spiking convey non-redundant information about 
visual categories and exemplars relative to spike rate. These findings underscore the broader 
role that the temporal order of spiking activity across a population of neurons can play in 
human cognition.
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Methods
Participants

Eight right-handed participants (36.25 ± 3.38 years old, 3 females, IQ: 86.50 ± 5.35; 
see Supplementary Table S1) with drug-resistant epilepsy underwent a surgical procedure 
for placement of intracranial electrodes for monitoring of potential epileptogenic regions 
using platinum electrode contacts (PMT Corporation, Chanhassen, MN, USA) implanted 
subdurally on the cortical surface and/or deep within the brain parenchyma (stereo EEG). 
Pre-surgical evaluations of each participant suggested a potential seizure onset zone in the 
temporal lobe areas. As such, in each participant, we placed two 64-channel microelectrode 
arrays (MEA; 3.2 mm × 3.2 mm, Cereplex SI; Blackrock Microsystems, NeuroPort Central 
Suite v 7.0.3.0, Salt Lake City, UT, USA) in the middle temporal gyrus of the ATL, 
approximately 1-2 cm apart from one another and approximately 2-4 cm from the temporal 
pole (Fig. 1b).The implant site was selected to fall within the expected resection area where 
no structural abnormalities were identified based on pre-operative MRI and visual inspection 
during the implant surgery. Of the eight participants, five received a surgical resection that 
included the tissue where the MEAs were implanted. For the remaining three participants, 
one received a surgical resection that involved regions posterior to the implanted MEA in 
the temporal lobe and had a noticeable improvement in their seizures following surgery. One 
had bi-temporal lobe seizures and received a Responsive Neurostimulator Device (RNS) in 
the bilateral hippocampi and subsequently had a significant improvement in their seizures 
following surgery. The third participant did not have seizure activity captured during the 
monitoring period to suggest a safe and effective surgical resection and did not experience 
any change in seizure frequency or cognitive functions (e.g., vision, language, or memory) 
following the removal of the monitoring electrodes. All participants consented to National 
Institutes of Health (NIH) IRB-approved research protocols (reference numbers 11-N-0051 
and 15-N-0081).

All participants successfully completed a visual categorization task outlined below (see Fig. 
1a and Extended Data Fig. 1a-c). However, not all implanted MEAs yielded sufficient 
single-unit data during the behavioral task within a given recording. Following the 
preprocessing and spike sorting procedures outlined in the following sections, we assessed 
for effective single-unit data in each experimental session and separately in each array 
implanted in each participant. We consider each array and each experimental session during 
which the participant completes the task as an independent sample. This is because the 
recorded units vary across arrays, and even within the same array, they tend to differ 
on subsequent days23,24. We refer to each session recorded by each array as a separate 
recording for subsequent analyses. Hence, if a participant performs the task once and if 
they have two arrays, this will generate data for two separate recordings for analysis. 
Similarly, if we examine the data from one array as the participant performs the task twice 
on two subsequent days, this will generate data for two separate recordings for analysis 
as well. For subsequent analyses, we required a recording to contain data from more than 
10 units in an array and more than 100 bursts during the visual categorization task (see 
Detecting Spiking Sequences and Sequence-based Decoding for details). Based on these 
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thresholds, we retained 18 recordings for further analyses, which reflect data recorded across 
8 participants and 12 physical arrays (see Extended Data Fig. 1e for details).

Visual Categorization Task

We asked participants to perform a visual categorization task to examine neuronal correlates 
of information processing across different levels of the representation hierarchy. The main 
component of the task involves presenting a single image on a laptop screen for 500 ms. 
Participants then try to categorize each image into one of four options indicated by text 
labels shown around the image (see Fig. 1a). Participants make their judgment by pressing 
one of four arrow keys corresponding to the available text labels. As accuracy is emphasized 
over response times, there is no time limit for the response. Once the participant makes a 
selection, the screen turns blank for 200 ms before the next image appears.

Based on the image content, the visual categorization task includes three major trial types. 
First, in trials designed to examine the representation of broader taxonomic categories, the 
image is chosen from and categorized into one of four taxonomic categories: ANIMAL, 
OBJECT, PERSON, and PLACE (Extended Data Fig. 1a). Each category includes a set of 
60 unique images. Second, in trials designed to examine the representation of individual 
exemplars (e.g, different individuals within the PERSON category), the image is chosen 
from one of four famous US presidents (John F. Kennedy, William J. Clinton, George 
W. Bush, and Donald J. Trump; Extended Data Fig. 1b). We selected 15 unique images 
to include in our image set for each president. Third, to rule out the possibility that 
the recorded neural signals reflect motor responses rather than the information content 
associated with the image, we included a set of arrow trials that all but a subset of 
participants had completed. During these control trials, participants indicate the direction of 
an arrow presented as an image from one of the four possible directions (UP, DOWN, LEFT, 
RIGHT; Extended Data Fig. 1c). We selected a set of 15 unique images for each direction to 
use in our image set for arrows. In each experimental session, the images we used for each 
trial type were randomly drawn from the respective image sets. All images across different 
trial types (taxonomic, presidents, or arrows) were cropped, resized, and phase-scrambled to 
gently blur individual features that could be used for categorization. We balanced the image 
set for luminance, contrast, and spatial frequency using the SHINE toolbox56. Each image 
covers approximately 50% of a 16-inch laptop screen centered over a gray background.

In a typical session, participants begin with 1 block of 20 arrow trials, and then complete 4 
blocks of 60 taxonomic trials and 1 block of 60 president trials, yielding a minimal 320 trials 
per run. Within each block, we presented images from that trial type in random order, with 
the requirement that the number of images from each category, president, or arrow direction 
is balanced within a block. Participants performed at least 1 practice run one to three days 
before their surgical implant to ensure good behavioral performance. As time permitted 
during intracranial recording, participants completed 1 to 4 runs per experimental session 
for 1 to 2 sessions, yielding a total of 951 ± 121, 245 ± 29, and 66 ± 6 trials on average 
for taxonomic, president, and arrow trials, respectively, with recording data (see Extended 
Data Fig. 1a-c for individual data). To motivate the participant, we provided feedback at the 
end of each block, indicating the number of correct responses (e.g., “51 of 60 correct”). To 
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estimate baseline neuronal activity for subsequent normalization, we also presented a noise 
image with scrambled pixels at the beginning and at the end of each block for 1000 ms. 
Participants passively viewed these noise images without any responses required.

Single-unit Recording and Analysis

We recorded and identified single units based on our previously reported approach23-25. In 
brief, each MEA is organized into an 8 × 8 grid of micro-electrodes, with each electrode 
spaced 400 μm apart and extending 1 mm into the cortical surface. We digitally recorded 
signals at 30 kHz using a Cerebus acquisition system (Blackrock Microsystems), with 16-bit 
precision and a range of ±8 mV. To extract single-unit spiking activity, we referenced the 
activity of each electrode of an array to the average of all electrodes on that array. We then 
bandpassed (0.3 to 3 kHz) time series of each channel, one at a time, into the Plexon Offline 
Sorter (Plexon, Inc.; TX) for manual spike sorting23,24. In this procedure, we converted 
the continuous-voltage time series into a population of voltage snippets (1.07 ms long, 30 
samples) that crossed a manually defined voltage threshold. We set an individual threshold 
for each channel such that random noise fluctuations in the signal would occasionally cross 
the threshold and be captured as a noise snippet. We projected each snippet into principal 
component space and manually drew a boundary around clusters of waveforms that were 
separable from each other and from noise throughout the duration of the experiment. In this 
manner, we identified a total of 2110 putative single units in the current dataset (117 ± 13 
units per recording).

As units recorded from different arrays or from different experimental sessions on 
subsequent days can exhibit variations, we treat each recording as a separate sample, but 
their dependency could not be fully excluded. To account for the multi-level data structure 
(see Statistics and Reproducibility), we therefore employ a mixed-effects modeling approach 
to assess the effects of interest, allowing for generalization across different recordings while 
accounting for variances at the participant, session, and array levels (see Extended Data 
Fig. 1e). We also quantified the quality of each identified unit by calculating signal-to-noise 
ratio (SNR) and a normalized isolation score (from 0 to 1) to capture the consistency of 
a unit’s waveform across spikes and how well a unit’s waveform can be separated from 
the waveforms of other units and noise snippets57 (see Extended Data Fig. 1f). Across 
participants, the mean SNR for all identified units is 1.98 ± 0.06 (median = 1.99) and the 
mean isolation score for all identified units is 0.94 ± 0.01 (median = 0.95). The average 
baseline spike rate across all units is 1.15 ± 0.27 Hz (median = 1.04 Hz, log spike rate≈ 
0). These metrics are on par with prior Blackrock Utah array data acquired under a similar 
recording settings across different tasks24,25.

Detecting Spike Sequences

When examining the population spike raster during the behavioral task, we observed several 
clear bursts of coordinated spiking activity in which groups of recorded units fire close 
in time (within ~50 to 150 ms; Fig. 1c). As groups of neurons that are active during 
bursts usually are not perfectly synchronized, we were motivated to investigate whether the 
neurons in a population fire in a specific temporal order and whether patterns of sequential 
spiking contain information about the presented stimulus.
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To do this, we first have to identify when bursts of spiking activity occur. We based the 
detection of these individual bursts on transient increases in the number of spiking units. 
Two parameters could influence the detection of such bursts: the Gaussian kernel size used 
to calculate the instantaneous spike rate (i.e., the smoothing factor) and the minimal number 
of units recruited within a burst (i.e., the prominence threshold). The ideal settings for 
these parameters depend on the number of recorded units and the spike rate of those units, 
both of which would be different for each recording. Therefore, no single set of parameter 
values would be able to reliably capture bursts that were evident during visual inspection. 
To identify bursts while minimizing false discovery, for each experimental session, we 
parametrically varied these factors to determine the reasonable detection thresholds to 
control for the false positive rate. For each recording, we generated a surrogate time series of 
spike times for each unit using a Poisson process governed by the firing rate of the unit in 
the original data (Extended Data Fig. 2a-b). We then selected the detection parameters such 
that, within each recording, the number of detected bursts in the real dataset was at least 
10 times greater than the number of bursts in the surrogate dataset with the same parameter 
settings, thus controlling for the false positive burst detection rate to be less than 10% 
(Extended Data Fig. 2c, g). Across recordings, these false-positive-controlled parameters 
only reside in a limited range in a broader parameter space, suggesting some homogeneity 
in bursting activity across participants/sessions/arrays (Extended Data Fig. 2d). For example, 
although burst activity may be correlated to the number of total units detected, it does not 
vary based on a unit’s spike rate or the number of trials tested (Extended Data Fig. 2f). 
Ultimately, we identified 18 recordings that contain at least 100 bursts during the taxonomic 
trials for subsequent analyses (mean = 2504 ± 590 bursts per recording; median = 1238 
bursts; range = 360 to 7559 bursts; burst rate = 0.99 ± 0.19 Hz).

After identifying each burst in each recording, we then extracted a normalized rank order of 
the units within that burst. Because spike time and order are highly correlated within a burst 
sequence58, the order information based on a unit’s mean or peak spiking time can serve as 
a proxy for the temporal order of unit activity within a sequence while minimizing potential 
measurement noise of spike timing at the single spike level9,28. We therefore estimated a 
unit’s spike rank within a burst based on the center of mass of the peak instantaneous rate 
for that unit in the burst27,28. We scaled these rank values from 0 for the earliest unit in 
the sequence to +1 for the latest unit in the sequence27. If a unit does not participate in a 
burst, it was not assigned a rank for that burst. We used these normalized rank values in our 
subsequent analyses.

Sequence-based Decoding

We developed classifiers to decode visual information content based on the sequence of 
spiking activity within each burst using a template-matching approach30,59. In brief, in a set 
of training data, we created templates of spike sequences averaged across bursts evoked by 
images within a given category (taxonomic categories, presidents, or arrows) and then used 
those templates to test the categorization of spiking sequences in an independent held-out set 
of bursts. Building a classifier in this manner required several key steps.
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First, we reasoned that a minimum requirement for burst sequences to code information 
would be that two or more units within the population have reliable ranks for the different 
image categories based on their average firing time within a burst. Units could have 
unreliable sequence positions for various reasons. For example, units with poor isolation 
during spike sorting could manifest as more variability in spike timing, and some units may 
not contribute to sequence coding at all. Units with unreliable sequence positions would 
likely reduce the sensitivity of a population sequence decoder. We therefore excluded these 
units from the category-specific templates used for classification. This feature selection 
step is analogous to using a regularization technique to suppress non-predictive weights in 
standard classifiers60.

To identify these reliable units, we created surrogate datasets for each session by randomly 
shuffling the ranks of the units contributing to each individual burst 2000 times. We 
identified units with reliable ranks separately for each taxonomic category by comparing 
the mean and standard deviation of ranks observed across all bursts from a given category 
to surrogate distributions of these values (see Extended Data Fig. 3a). We retained a unit 
as long as the mean or standard deviation of the observed normalized rank across bursts 
significantly deviate from the surrogate distribution in at least one taxonomic category 
(alpha = .05, two-tailed for mean-related tests and one-tailed for variance-related tests; see 
the right panel in Extended Data Fig. 3a). Because this unit selection step is omnibus and 
is separately applied to each category, it imposes minimal assumptions for the specific 
relationship between a unit’s rank and the stimulus categories. In the end, all 18 recordings 
we retained for subsequent classification analysis have at least 10 units across at least 100 
bursts meeting this requirement in taxonomic trials (mean ± s.e.m. = 67 ± 11 units; median = 
60; range 11-159 units). This set of sequence-related units accounts for 52.6% ± 4.8% total 
units recorded and sorted for taxonomic classification (see Extended Data Fig. 3b).

A second requirement for building a classifier capable of sequence-based decoding is that 
the independent templates from the same category have similar sequences, while templates 
from different categories have different sequences. To verify this, in each recording, we 
created five independent template sequences for each category by averaging the normalized 
ranks of 20% of the bursts randomly selected without replacement from trials in which a 
stimulus from that category was presented. Only units with reliable sequence positions were 
used in these template sequences. We then evaluated the similarity between any category 
template sequences by computing the rank-order correlation between them (Kendall’s τ). 
As illustrated in the data from an example recording (Fig. 2b), we ranked the average 
sequence order for a given category in one fold of data based on the sequence order evoked 
by images from the same category averaged across non-overlapping folds of data (hence, 
within-category sequence similarity) or based on the sequence order evoked by images from 
another category (hence, between-category sequence similarity). We calculated the average 
Fisher’s transformed Kendall’s τ as a measure for the similarity between any within- or 
between-category template sequences. We contrasted these similarity measures for within- 
and between- category template sequences, namely the difference between the diagonal and 
off-diagonal values of the similarity matrix after factoring out participant-, session-, and 
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array-level variances, to verify if this second requirement was satisfied (see Extended Data 
Fig. 3c).

Finally, having identified the reliable units with ranks that could be used to carry stimulus 
information, and having verified that the rank ordering of these units is consistent within 
categories and different across categories, we built our classifier. Using only the units with 
reliable ranks that spiked in at least 2 bursts per stimulus category and the bursts that 
contained spikes from at least two such units, we created a new template sequence for each 
category by averaging the normalized rank order of all bursts aggregated from a training set 
of all but one burst (i.e., leave-one-out validation). We then computed Kendall’s τ between 
the sequence of spiking activity within the held-out test burst and each category-specific 
template sequence. We decoded the category of the held-out test burst based on which 
category template sequence yielded the maximum value of Kendall’s τ (see Fig. 2c), leaving 
bursts that yielded ties for the maximum value unscored. Classification accuracy was defined 
as the mean decoding accuracy across all scored bursts. To determine an empirical chance 
for each recording, we contrasted the original classification accuracy with the average 
classification accuracy obtained by repeating the above procedure 200 times after shuffling 
the rank order of each burst and computing leave-one-out decoding of each shuffled burst 
against templates created from the remaining shuffled bursts (chance performance of ~25%). 
To test the generalizability and specificity of this sequence-based classification, we repeated 
similar analyses for president and arrow trials, with relaxed requirements on the number 
of bursts required for these analyses to accommodate the reduced number of trials in these 
conditions.

Rated-based Decoding

To examine if the population spike rate of the recorded units contains information about the 
category of the presented image, we constructed linear classifiers using the instantaneous 
spike rate (200 ms sliding window, with steps of 20 ms) of the population of units in each 
recording during the task. We quantified neural decoding based on the population spike rate 
as the prediction accuracy when the model was applied to a held-out dataset.

Before the decoding analysis, we first converted the spike rate in each time window to a 
z-transformed, baseline-corrected spike rate by subtracting the mean and dividing by the 
standard deviation of the square root spike counts during the baseline period when a noise 
image was presented on the screen61. We then used a linear logistic regression classifier 
model with early stopping62 to predict image category from population spiking activity. In 
this model, we used trials in which the participant correctly identified the image category, 
and implemented a 20-fold cross-validation procedure to estimate classification accuracy 
(see Extended Data Fig. 4a). Each held-out set consisted of approximately 5% of all trials 
uniformly distributed across the session. For each fold, we randomly selected one quarter of 
the training trials to be used as the early stopping test set. To avoid overfitting, we iteratively 
evaluated this test set to determine when to stop annealing the regression weights62. We 
repeated the random selection of early stopping trials 50 times per fold, and computed 
the average resultant weights for each fold before computing prediction accuracy on the 
held-out set. We separately performed this procedure using the instantaneous rate of the 
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units in each time window from −250 ms to 1750 ms following stimulus onset to visualize 
the time course of image category discriminability (see Extended Data Fig. 4b-c). In this 
case, the number of predictors used for classification at each time point is therefore equal 
to the number of units. Based on the same approach, we also built a single classifier that 
estimated overall classification accuracy for the entire response period aggregating multiple 
200ms windows of normalized instantaneous rate that spanned from 100 ms to 1400 ms 
following stimulus onset. In this case, the total number of predictors used for classification 
is therefore the number of neuronal units multiplied by the selected time windows. Here, we 
chose a wide time window (100 to 1400 ms) based on the aggregate distribution of response 
times to capture stimulus-related neural responses with minimal analytical assumption. Both 
separately for each time window and for the aggregated data across time windows, we 
obtained an empirical chance-level classification accuracy based on data trained and tested 
using shuffled trial labels. We used the same procedures to estimate the overall classification 
accuracy for taxonomic trials, president trials, and arrow trials separately. With higher trial 
counts for taxonomic trials, we also estimated classification accuracy separately for each 
individual category.

Unit Contribution to Rate-based Decoding

To determine the extent to which each unit contributes to the rate-based code at the 
population level for each taxonomic category irrespective of time, we quantified the 
relative contribution of each unit to overall population rate-based classification accuracy 
using a leave-one-out procedure63. Specifically, based on data from all task-relevant time 
windows (100 to 1400 ms after stimulus onset), we iteratively excluded one unit at a time 
and recomputed the overall classification performance, which was quantified as d′ in the 
decoding accuracy between true versus shuffled data across the 20 folds of classification 
(see Extended Data Fig. 9a). Excluding a unit, u, in this manner generates a measure of the 
relative contribution, Cr, of that unit to the overall classification accuracy:

Cr = d′all − d′all − u

where d′all is the overall classification performance using all units (true vs. shuffled data), 
and d′all − uis the classification performance after excluding that unit, u. The greater the Cr, 
the more decoding accuracy decreases after the exclusion of a unit, hence suggesting the 
importance of this unit to rate-based information coding. We normalized these contributions 
by scaling these values within each recording from 0 to 1:

Cr = Cr − Crmin
Crmax − Crmin

which generates an empirical, scaled contribution metric, Cr, in which 0 indicates the least 
and 1 indicates the most contribution of a unit’s spike rate to the overall classification 
performance at the population level. A similar leave-one-out approach, however, would not 
be appropriate for estimating a unit’s contribution to the sequence-based information code, 
since omitting a unit may affect not only the test sequence but also the template sequences 
obtained from the independent training data.
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Sequence- and Rate-based Information

To determine whether sequence- and rate-based codes represent distinct or overlapping 
information, we employed several methods to assess the relative independence of these 
codes for encoding stimulus information. We specifically focused on taxonomic trials, which 
constitute a greater number of trials per participant and thus offer a more robust evaluation 
of the relationship between sequence- and rate-based neural codes.

First, to test whether rate-based classification is robust both within and outside of bursts, 
we performed decoding analyses for taxonomic trials as outlined above based on data 
aggregated from task-related time windows where at least one burst was identified and 
separately from time windows in which no bursts were found (see Extended Data Fig. 6a). 
We examined whether classification accuracy is significantly greater than chance in both 
conditions, irrespective of whether or not populations of neurons exhibit a transient increase 
in bursting activity.

Second, to test whether sequence-based information is retained even when spike rates could 
not significantly distinguish different stimulus categories, we selected the top five sequence-
related units that had participated in the most bursts of the four taxonomic categories, and 
only considered the bursts when all five selected units participated. Selecting five units 
ensures that a reasonable number of bursts can be identified per recording, while also 
reducing the variability in the measure of rank-order similarity as compared with including 
only two or three data points. On average, the chosen bursts account for 10.2% ± 1.9% 
of total bursts across participants, in which the five selected units fire at least once within 
a burst in each one of the four categories. As these units participate in bursts in response 
to images from all categories, spike rates therefore are less discriminative across stimulus 
categories (see Fig. 5a for group average and Extended Data Fig. 6b for individual raster 
examples). Using the ranks of only these selected units, we then attempted to decode the 
visual categorical information using a similar sequence-based classifier as described above. 
Briefly, we considered the ~10% chosen bursts as the held-out test data and all the remaining 
~90% bursts as training data. As the selected units do not simultaneously participate in all 
of the training bursts, we took the mean of their normalized ranks across these training 
bursts to create category-specific templates using these five units. We then compared the 
ranks of these five selected units in the held-out test data with the category-specific template 
sequences constructed from the training set, and retained the category with the highest 
rank-order similarity as the decoded outcome (Fig. 5a). We then compared the overall 
decoding accuracy relative to the empirical chance level (~25 %) established by shuffled 
rank data of the test sequences 1000 times.

Third, to formally quantify the information content contained in spiking sequences, we 
examined how much information a unit’s spike count and its rank within a sequence 
contains about the presented images in the taxonomic trials. Spiking sequences could 
potentially contain information about a stimulus in several forms: the number of times 
that a unit spiked and the temporal order or rank of these spikes within a sequence9,10. The 
information content related to different stimuli, s, in an individual neuron’s spiking activity, 
x, can be calculated as follows:
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I(x; s) = ∑
x, s

P (x, s)log2(
P (x, s)
P (x)P (s) )

where x can be either the unit’s spike count, c, or its rank, r, within a sequence. Specifying x
would thus lead to formal quantification of information about the stimulus by knowing either 
a unit’s spike count or its rank within a sequence alone, namely I(c; s) or I(r; s), respectively. 
To empirically compute these conditional probabilities and estimates of information for 
each unit, we constructed a contingency table capturing the frequency of a unit’s rank 
across all identified sequences during the critical time window of the task after stimulus 
onset but before each trial-specific response time separately for each stimulus category 
(see an example in Extended Data Fig. 7). Because the spike count of a unit is sparse 
within a burst sequence, we binned the spike count data into 3 bins, namely 0, 1, and 
>1, corresponding to when a unit exhibits no spiking, spikes just once, and spikes more 
than once, respectively, within a burst sequence. We similarly grouped a unit’s rank within 
a sequence into 3 equally spaced bins, capturing the early, middle, and late time periods 
within each burst. When a unit did not participate in a sequence (count = 0), we assigned 
its rank in these cases to be equally distributed across different rank bins, rendering the 
mutual information between rank and stimulus strictly 0, namely Ic = 0(r; s) = 0. Considering 
that I(r; s) = Ic = 0(r; s) + Ic > 0(r; s), the amount of stimulus information by knowing a unit’s 
rank within a sequence is therefore only driven by the cases where a unit participates in a 
sequence with a least one spike.

A key issue in determining how much information is captured by either a unit’s rank or its 
spike count is how much more information about the stimulus is available by knowing both a 
unit’s count and rank within a sequence, namely I(c, r; s), beyond knowing only its count and 
rank alone34-36,

II(c; r; s) = I(c, r; s) − I(c; s) − I(r; s)

in which,

I(c, r; s) = ∑
c, r, s

P (c, r, s)log2(
P (c, r, s)
P (c, r)P (s) )

Here, the information gained about a stimulus by knowing both the count and rank of a unit 
within a sequence, namely II(c; r; s), reflects the interaction between different forms of a 
unit’s spiking activity and the presented stimulus34-36. If this information gain is positive, 
it indicates the presence of stimulus information that is only jointly represented by a unit’s 
count and rank, suggesting non-redundancy or synergy of these two types of coding schemes 
in predicting the information content of a stimulus. However, if this information is negative, 
then at least some information about the stimulus disclosed by a unit’s spike count and rank 
is redundant34-36. We quantified these metrics to examine the extent to which a unit’s count 
and rank within a sequence provided non-redundant information about the stimuli.
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Finally, as non-redundancy does not imply the lack of association between sequence- and 
rate-based information, we further investigate the relationship between a unit’s rank in 
category-specific spiking and its spiking rate response to separate categories. Using the 
binned rank data within a sequence as described above (i.e., early, middle, and late), 
we examined the extent to which a unit’s category-specific rank is related to its category-
specific relative contribution, Cr, to rate-based information, calculated as described above 
using a leave-one-out approach. This analysis may address whether units that carry more 
rate-based information spike earlier10 or later6 within a burst sequence. To achieve this, we 
used repeated-measures correlation64,65 to quantify these associations within participants.

Statistics and Reproducibility

We applied a linear mixed-effect modeling approach to take into account variance within and 
across participants, sessions, and arrays in statistical inference66. Within each participant, we 
considered the single-unit data collected across different MEAs or different experimental 
sessions as independent, given that units collected by the MEAs tend to vary across 
recording regions and sessions23,24. Across participants, we pooled the data together while 
factoring in the nested data structure within each participant. That is, for each outcome 
variable Y , we modeled its means across different comparison conditions (e.g., decoding 
accuracy with the true or shuffled condition labels) in the following linear mixed-effects 
model,

Y ∼ 1 + Condition + (1 ∣ Participant) + (1 ∣ Session) + (1 ∣ Array)
+ (1 ∣ Participant:Session:Array)

As we repeated the experiment with 8 participants across 13 sessions using different MEAs, 
we generated 18 recordings containing independent single-unit datasets (see Extended 
Data Fig. 1e). Notably, all 18 recordings exhibited above-chance decoding for taxonomic 
categories using neuronal sequences, while 17 out of 18 recordings showed above-chance 
decoding for taxonomic categories using spike rates. Regarding the decoding of exemplars 
within the PERSON category, 12 out of 18 recordings demonstrated above-chance decoding 
using neuronal sequences, and 14 out of 18 recordings showed above-chance decoding using 
population spike rates.

To evaluate these effects, we report the t statistic and degrees of freedom 
(df = #observations ‐ #parameters) for the effect across experimental conditions after 
partialling out across-participant variations using the fitlme function in Matlab (MathWorks, 
Naticks, MA). All p-values from these tests are two-tailed. For time-series data analyses, 
we correct for multiple comparisons using a cluster-based procedure with an alpha level 
set at .05. We estimate the size of these fixed effects based on an equivalent measure of 
correlational strength, namely requivalent67,68.

requivalent = t2

t2 + df
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Extended Data

Extended Data Figure 1. Behavioral task details, data structure in the current study, and unit 
quality metrics.
a, An example trial using images from the four predefined taxonomic categories (top panel) 
along with trial counts for each participant in each experimental session (bottom panel). b 
An example trial using images of four selected U.S. presidents (as PERSON exemplars) 
along with trial counts for each participant in each experimental session. c, An example trial 
using images representing four arrow directions along with trial counts for each participant 
in each experimental session. d, Average trial counts, accuracy, and response times for 
each trial type. e, Across 8 participants with recordings providing meaningful unit data, we 
identified 18 unique recordings from 13 experimental sessions across 12 physical arrays. As 
units recorded from different arrays or from different experimental sessions on subsequent 
days can exhibit variations, we treat each recording as a separate sample. In total, we 
identified 2110 putative single units across the 18 recordings. To account for the multi-level 
data structure in our statistical analysis, we employ a mixed-effects modeling approach to 
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assess the effects of interest, allowing for generalization across different recordings while 
accounting for variances at the participant, session, and array levels. f, We quantified the 
quality of each identified unit by calculating signal-to-noise ratio (SNR) and a normalized 
isolation score (from 0 to 1) to capture the consistency of a unit’s waveform across spikes 
and how well a unit’s waveform can be separated from the waveforms of other units and 
noise snippets 60. Across participants, the mean SNR for all identified units is 1.98 ± 0.06 
(median = 1.99) and the mean isolation score for all identified units is 0.94 ± 0.01 (median = 
0.95). The average spike rate is around 1 Hz (log spike rate around 0).

Extended Data Figure 2. Burst detection.
a, Spike data extracted from an example recording, along with the detected bursts, based 
on individual smoothing and thresholding parameters identified to ensure a false positive 
(FP) rate smaller than 0.1 as compared with surrogate data. The inter-burst intervals appear 
to be non-uniformly distributed. b, Surrogate spike data generated by a Poisson process 
to maintain the same average spike rate per unit over time, along with the detected bursts 
using the same smoothing and thresholding parameters. The inter-burst intervals in this 
surrogate data appear to be uniformly distributed. c, Systematic variation of the smoothing 
and thresholding parameters for each individual recording to identify the parameter set that 
results in a low FP rate, quantified as the ratio of detected bursts between the surrogate 
and the original data. d, The best parameter sets across recordings fall within a narrow 
range, indicating some homogeneity in bursting behavior across recordings. Color values 
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represent the number of recordings. e, Spiking bursts coincide with an increase in 80-120 
Hz ripple rate recorded from the same micro-electrodes, observable at the level of individual 
bursts (left) and across recordings (right). Error areas represent the s.e.m. f, The number of 
detected bursts tends to covary with the number of total available units (Spearman ρ = 0.75, 
p = 0.00030). However, it does not depend on the average spike rate (Spearman ρ = 0.25, p 
= 0.31) or the number of included trials (Spearman ρ = 0.02, p = 0.94). N = 18 recordings. 
Two-tailed uncorrected p-values were calculated based on Spearman rank-order correlation. 
g, Increasing the FP rate leads to more detected bursts. We maintained a FP rate of 0.1 in 
the current study. Each data point and connected line represent the results from an individual 
recording.

Extended Data Figure 3. Unit selection and evaluation of the sequence-based classifier.
a, To identify units that exhibit reliable ranks within bursts, we calculated the mean and 
standard deviation (σ) of a unit’s rank across all bursts. Conceptually, units involved in 
sequence-based coding should demonstrate a reliable mean rank (μrank) across bursts relative 
to shuffled data. Units involved in sequence-based coding but with a rank consistently in 
the middle of a sequence may not be distinguished from the null distribution but would 
exhibit small variance in their rank, σrank (left). Hence, we considered units showing either 
a reliable μrank pboostrap < .05 in either direction, two-tailed) or a small σrank (pboostrap 
< .05 in the predicted direction, one-tailed) in at least one stimulus category as sequence-
related units (right). b, The number of sequence-related units in each recording. Overall, 
sequence-related units account for 52.6% of all units. c, Across independent data folds, 
we assessed within-category sequence similarity relative to between-category sequences 
based on sequence-related units. Within-category sequence similarity is significantly greater 
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than between-category similarity across participants. d, Sequence-based decoding accuracy 
depends on unit selection. Including units with less reliable ranks decreases classification 
accuracy across recordings (true vs. shuffled trial labels in mixed-effect modeling: t(34) = 
1.84, p = 0.075). e, Using spiking data from a subset of participants who completed the 
arrow trials, we find that neither sequence-based nor rate-based classification could reliably 
differentiate arrow directions. f, Sequence-based classification accuracy is unaffected by 
the timing of the held-out bursts relative to a trial’s response time or to the stimulus 
presentation. Data are shown as the mean ± s.e.m., with results from individual recordings 
shown as dots and/or lines color-coded by participant. N = 18 recordings. Two-tailed 
uncorrected p-values were calculated using a linear mixed-effects model, accounting for 
participant-, session-, and array-level variances.

Extended Data Figure 4. Building a rate-based classifier and its performance over time.
a, For each trial type (taxonomic, presidents, or arrow), we built and tested a rate-based 
classifier using non-overlapping data as training and testing datasets. In each iteration, we 
used the training data to build the classifier using a one-vs-all logistic regression with early 
stopping. We then applied the training weights to the independent testing data to generate a 
prediction of the test stimulus label. If the predicted label is consistent with the test stimulus 
label, then the classification is considered accurate. We performed this analysis both using 
the data at each individual 200-ms time window of the task and using the aggregate spike 
rates data across all units within time windows from 100 to 1400 ms following stimulus 
onset. In the former case, the features used in the classifier are the population unit activity 
at a single time window with the feature length equivalent to the number of units. In the 
latter case, the features used are the population unit activity across time windows with 
the feature length equivalent to the number of units multiplied by the number of time 
windows. b, Across N = 18 recordings, a rate-based classifier can significantly decode 
category-specific information following stimulus onset for taxonomic categories with the 
classification accuracy peaking around the same time across stimulus categories. c, Overall 
classification accuracy for taxonomic categories is significantly higher than chance from 300 
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to 1120 ms after stimulus onset to (first cluster mean ± s.e.m.: 32.2% ± 2.0%; pcorrected 
< .05). The two recordings in which decoding accuracy exceeds 50% are from participant 
NIH086 in two separate sessions, capturing 167 and 212 units, respectively. Thin lines 
indicate individual recordings and thick line group average. Cluster-based two-tailed p 
values are corrected at the 0.05 level.

Extended Data Figure 5. Associations among spike timing measures.
a, A unit's spike rank within a burst is strongly correlated with spike latency from burst 
onset (τb, mean Spearman ρ = 0.76, range: 0.60 to 0.87), compared with spike latency 
from stimulus onset (τo, mean Spearman ρ = 0.06, range: 0.02 to 0.11). The former is 
over 10 times that for the latter, suggesting that rank-based measures better capture spike 
timing within bursts than from stimulus onset. b, Spike rates during both task and baseline 
periods are correlated with τo (e.g., mean Spearman ρ between task-period spike rate and 
τo = ‐0.43, range: −0.51 to −0.33). This relation is weaker between task-period spike rate 
and a unit’s spike timing within bursts (rate & rank, mean Spearman ρ = −0.09, range: 
−0.16 to −0.02; rate & τb, mean Spearman ρ = −0.24, range: −0.35 to −0.11). Single-unit 
measures are shown as dots following z-score normalization within each burst. c-d, Changes 
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in spike rate from baseline correlate significantly with τo, but not with spike rank within 
bursts or τb, indicating that information conveyed by rank or τb differs from that by 
spike rate changes. e, In an example recording, mean τo across units varies by stimulus 
category, while the relative order of τo remains consistent across categories. In contrast, 
τb values are not consistent across categories, suggesting potential for information coding. 
f, Mean τo across units provides more stimulus information than the relative order of τo. 
Conversely, the relative order of τb provides more information than mean τb. Solid blue and 
dashed bars indicate significant and non-significant classification accuracy relative to chance 
with Bonferroni correction (pcorrected < .05), respectively. Data are shown as the mean ± 
s.e.m., with individual data color-coded by participant. Two-tailed uncorrected p-values were 
calculated using a linear mixed-effects model.

Extended Data Figure 6. Additional analyses to distinguish rate- and sequence-based 
information.
a, To determine if rate-based information persists across bursting and non-bursting periods, 
logistic regression classifiers were trained and tested based on population spike rates 
aggregated separately for these periods. Bursting periods, where a group of units spiked 
closely in time, were identified by adjusting the smoothing and thresholding parameters 
of population spike rate calculation for each recording, controlling the false discovery rate 
(see Extended Data Fig. 2). Bursting and non-bursting spike raster plots were extracted 
by retaining spike data within and outside bursts, respectively. Instantaneous spike rates 
of the population of units in these raster plots were calculated (200 ms sliding window, 
90% overlap). For burst-only and burst-removed raster plots, all units and critical time 
windows within 100-1400 ms following stimulus onset in each trial were aggregated to 
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decode taxonomic categories, following the same approach as detailed in the Methods. b, 
Across recordings, population spike rate significantly distinguishes taxonomic categories 
better than chance using data either within or outside bursting periods, regardless of whether 
all units were included (mixed-effect model for burst-only: t(34) = 4.50, p = 0.000076; 
mixed-effect model for non-burst: t(34) = 2.93, p = 0.0060) or only sequence-related units 
(mixed-effect model for burst-only: t(34) = 3.84, p = 0.00051; mixed-effect model for 
non-burst: t(34) = 2.71, p = 0.011). Data are shown as the mean ± s.e.m., with individual 
recordings shown as dots and lines color-coded by participant. N=18 recordings. Two-tailed 
uncorrected p-values were calculated using a linear mixed-effects model, accounting for 
participant-, session-, and array-level variances. c. Example raster plots for the top five 
sequence-related units that spiked in bursts across all stimulus categories. These units do 
not significantly distinguish categories by overall spike rate, but relative rank still retains 
significant stimulus information(Fig. 5a).

Extended Data Figure 7. Quantifying stimulus information associated with spike count and rank 
in burst sequences.
a, In an example burst sequence, a single unit's spiking activity can be characterized by 
its spike count (e.g., no spike, spiking once, or multiple times) and its relative rank within 
the sequence (e.g., early 1/3, middle 1/3, or late 1/3). b, Across burst sequences elicited by 
images from the same stimulus category, the unit's counts and ranks can be summarized in 
a frequency table (left panel), which can be converted into empirical probabilities relative 
to all observed bursts (right panel). c, Similar frequency tables can be generated for stimuli 
from all categories for the example unit. Using these frequency and probability tables, the 
empirical mutual information (II) between spike activity and the presented stimuli can be 
quantified, either based on spike count or relative rank information. d-e, In the example, the 
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spike count information for the current unit contains more information about ANIMAL and 
PERSON categories. In contrast, spike rank information contains more information about 
the OBJECT category relative to other stimulus categories. This pattern suggests that spike 
count and rank of the same unit may contain complementary, non-redundant information, 
effectively capturing different aspects of stimulus categories. f, Formal information theory 
analysis confirms this prediction, showing that the combination of spike count and rank 
contains more stimulus information than the sum of the information provided by spike 
count and rank alone (highlighted in red). These findings suggest a synergistic relationship 
between spike count and rank in representing stimulus information.

Extended Data Figure 8. Stimulus information associated with spike count and/or relative rank 
within bursts for each recorded unit.
a, Sequence-related units show significantly greater stimulus information disclosed by a 
unit’s rank within a sequence, namely I(r; s) as compared with non-sequence-related units 
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(seq. vs. non-seq. in mixed-effect modeling of I(r; s): t(34) = 2.93, p = 0.0060). b, In 
contrast, stimulus information disclosed by spike count within a burst sequence, namely 
"($; &), is not significantly different between sequence-related and non-sequence-related 
units (seq. vs. non-seq. units in mixed-effect modeling of "($; &): t(34) = 1.99, p = 
0.055). c, We calculated the interaction information (II) to examine if knowing both the 
count and rank about a unit’s spiking within a sequence provides more information than 
knowing only the count or rank, namely I(c, r; s) − I(c; s) − I(r; s). If so, spike count and rank 
provide synergistic information about the stimulus (i.e., II > 0). Across all 2110 units in 18 
recordings, the majority of units (>95%) show a synergistic relation between spike count 
and rank within burst sequences. Furthermore, this synergistic relationship is significantly 
greater for sequence-related units as compared with non-sequence-related units (seq. vs. 
non-seq. units in mixed-effect modeling: t(34) = 3.84, p = 0.00051). Collectively, these data 
suggest that sequence-related and non-sequence-related units may be functionally different 
from one another. n.s. = not statistically significant. In the left panel of a-c, each red and 
blue dot represent results from sequence- and non-sequence-related units, respectively. In the 
right panel of a-c, data are shown as the mean ± s.e.m., with individual recordings shown as 
dots and lines color-coded by participant. N=18 recordings. Two-tailed uncorrected p-values 
were calculated using a linear mixed-effects model, accounting for participant-, session-, and 
array-level variances.

Extended Data Figure 9. Linking a unit’s contribution to population rate code and its rank 
within neuronal sequences.
a, We assessed each unit’s spike rate sensitivity to different categories by calculating 
the relative change in the decoding performance of a rate-based classifier when the unit 
is excluded. A decrease in performance upon exclusion indicates the unit's importance 
to the population rate code for that category. This allowed us to estimate each unit's 
relative contribution to population rate codes across taxonomic categories. For units within 
a burst, we categorized these contributions into three rank bins based on the order 
within category-specific template sequences. We then averaged these contributions across 
units and categories to explore the relationship between a unit's spiking timing and its 
sensitivity to visual categorical information. b, Across recordings and categories, units 
spiking earlier in a sequence contributed more to the population rate code, while later-
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spiking units contributed less. This relationship was confirmed by a significant repeated-
measures correlation (rwitℎin = − 0.43, t(52) = −3.45, p = 0.0011) between a unit’s rank in 
category-specific sequences and its contribution to the population rate code, controlling 
for participant-, session-, or array-level variances. Non-sequence-related units, which lack 
reliable ranks in stimulus categories, did not show a significant relationship (rwithin = − 0.049, 
t(52) = −0.35, p = 0.72). These findings suggest that sequence-related units with firing 
rate responses sensitive to stimulus information tend to activate earlier within a neuronal 
sequence. P values are reported as two-tailed without correction.

Extended Data Figure 10. Individual traces of classification accuracy for taxonomic categories 
as a function of included sequence-related units, separately for rate-based and sequence-based 
decoding.
a, The number of recorded neuronal units affects classification effect sizes. As the 
number of units increases, classification accuracies based on task-period spike rates and 
neuronal sequences during bursts both improve. Although classification accuracy based on 
task-period spike rates is generally higher, it appears to plateau as the number of units 
increases. In contrast, such a plateau is less clear for sequence-based decoding, indicating 
that with more recorded units, sequence-based information might continue to increase. This 
finding aligns with recent theories11 and data38 predicting that sequence-based coding could 
enhance coding efficiency. b, When data is averaged across recordings, normalizing the 
number of units as a percentage of total recorded units reveals similar trends. Error bars 
represent s.e.m., and the average number of units within each percentage bin is shown 
on the right y-axis. Since rate- and sequence-based classifications differ slightly in their 
analytical procedures, direct comparisons between them can be influenced by factors such as 
the number of iterations and optimization of decoding parameters. In this case, the differing 
slopes, rather than absolute magnitudes, of these classification outcomes suggest a potential 
variation in how these neural codes evolve as more neuronal units are included in the 
analysis.
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Figure 1. Spiking activity across multiple neuronal units during visual categorization in the 
human ATL.
a, Participants perform a visual categorization task in which they categorize the information 
content of a presented image into one of four options displayed on the screen. Categorization 
accuracy approaches ceiling within a time frame of approximately 1000 ms after stimulus 
onset. Each dot represents data from individual experimental sessions. b, During the task, 
we recorded single-unit spiking activity from MEAs placed in the middle temporal gyrus of 
the ATL. c, An example raster plot illustrates population spiking activity across multiple 
trials for a participant. Recorded units exhibit multiple bursts of activity, with several 
units activated close in time. Based on the number of units recruited to each burst (lower 
panel), we label the peaks of these bursts as red and yellow dots, representing the initial 
and subsequent bursts that occur after stimulus onset in each trial, respectively. Response 
timepoints are denoted by blue triangles. d, The initial burst within each trial, as depicted 
in c, is further analyzed in two ways: first, the units are sorted based on the average spiking 
order elicited by images from the same category (top panel, within-category), and then 
by the average spiking order of bursts associated with OBJECT images (bottom panel, 
across-category). Both sorting methods involve the same active units, but the sorting is 
determined by the relative order of only the overlapping units. The consistency of within-
category sequences stands in stark contrast to the inconsistency observed across categories. 
For illustration, the photographs shown in a and c are Open Domain images or those with 
a copyright waiver (see Supplementary Notes). These images are similar but not identical to 
those used in the experiment.
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Figure 2. Decoding stimulus information from neuronal sequences in population bursts.
a, We assigned the rank of each unit within each burst based on the unit’s average spike 
time in the burst. The normalized rank of each unit is highly correlated with the latency 
of the first spike from burst onset (τb). b, We identified units that exhibit a reliable rank 
across bursts in at least one taxonomic category (Extended Data Fig. 3a-b). Based on the 
retained units (e.g., 68 out of 152 in this example), we assessed the internal consistency of 
the order among these sequence-related units both within and across stimulus categories by 
sorting spiking sequences based on the units’ average ranks in different folds of the data 
(20% per fold). In this example, the average rank-order correlation (Kendall’s τ) across 
different data folds shown on top of each pair-wise comparison [mean ± s.e.m.] is generally 
higher within a category as compared with that across different categories (see Extended 
Data Fig. 3c for all recordings). N = 5 folds. The error bars represent s.e.m. across folds. c, 
A sequence-based classifier decodes stimulus information from a given spike sequence using 
category-specific templates trained on independent held-out data, separately for taxonomic 
and exemplar trials. d, In both cases, neuronal sequences carry a significant amount of 
information, allowing for the decoding of stimulus categories and exemplars above chance. 
Data are shown as the mean ± s.e.m., along with results from individual recordings shown 
as dots and lines color-coded by participant. N = 18 recordings. Two-tailed uncorrected 
p-values were calculated using a linear mixed-effects model, accounting for participant-, 
session-, and array-level variances. For illustration, the photographs in c are Open Domain 
images or those with a copyright waiver (see Supplementary Notes). These images are 
similar but not identical to those used in the experiment.
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Figure 3. Decoding stimulus information from population spike rate.
a, Individual units can exhibit increases or decreases in response to the presentation 
of stimuli from different visual categories as demonstrated in the example. b, Across 
multiple units, changes in population spike rate can therefore be used to decode category-
specific information from neural responses. The population spiking activity in one example 
recording captures category-specific information from the onset of the image, as revealed by 
the decoding outcomes of a linear logistic regression classifier (Extended Data Fig. 4a). c, 
Using the spike rate across units aggregated from a wide task-related time window (100 ms 
to 1400 ms), the aggregated population spike rate data can decode stimulus information 
across different levels of the representation hierarchy, with rate-based classification 
accuracies for both taxonomic and president trials significantly higher than chance. Data 
are shown as the mean ± s.e.m., along with results from individual recordings shown as dots 
and lines color-coded by participant. N = 18 recordings. Two-tailed uncorrected p-values 
were calculated using a linear mixed-effects model, accounting for participant-, session-, and 
array-level variances.

Xie et al. Page 37

Nature. Author manuscript; available in PMC 2025 July 21.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Figure 4. Spike latency and burst timing relative to stimulus onset do not capture sequence-based 
information within population bursts.
a, Spike raster plots from the example recording can be organized by single-unit spikes 
across trials (top) or population spikes within a trial (bottom). Although not every unit shows 
clear coordinated spike timing in conventional single-unit analysis, population activity can 
show temporally organized spike timing across units, manifested as bursts of population 
spiking. b, Spike timing can be assessed relative to burst onset (τb) and stimulus onset 
(τo). c, In this example, mean latency from stimulus onset, τo, differs between visual 
categories, while the relative order of τo across units remains consistent across caregories. In 
contrast, the relative rank of units within spiking bursts varies across categories, introducing 
variability for information coding. Data are shown as the mean ± s.e.m., along with results 
from individual units colored coded by category. d, Across trials, the average τo across units 
provides more meaningful information about visual categories than the relative order of τo. 
Conversely, the ranking of units within spiking bursts carries more stimulus information than 
the average rank. Solid blue bars and dashed bars indicate significant and non-significant 
classification accuracy relative to chance (25%) with Bonferroni correction (pcorrected < .05), 
respectively. e, Burst timing relative to stimulus onset, τburst, is evenly distributed throughout 
a trial (top left) and remains consistent across taxonomic categories (bottom left). The first 
τburst of a trial contains no decodable information for these visual categories (right). In d and 
e, data are shown as the mean ± s.e.m., along with results from individual recordings shown 
as dots and lines color-coded by participant. N = 18 recordings. Two-tailed uncorrected 
p-values were calculated using a linear mixed-effects model, accounting for participant-, 
session-, and array-level variances.
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Figure 5. Spike sequence within bursts and spike rate convey distinct information about visual 
categories.
a, For each recording, we selected the top five sequence-related units based on the number 
of bursts elicited by taxonomic stimuli, ensuring that all selected units participated in 
these bursts. After adjusting for the overall spiking frequency of these units, we found no 
statistically significant difference in spike counts across categories (see Extended Data Fig. 
6c for an example). Although these units exhibited similar spike rates during bursts, their 
ranks could still differentiate between categories, indicating a distinction between rate-based 
and sequence-based information. b, We calculated the stimulus (s) information conveyed 
by each unit’s spike count I(c; s), its relative rank I(r; s), and the combination of both 
I(c, r; s). Across recordings, sequence-related units demonstrated a significant synergistic 
relationship between spike count and rank, which was greater than that observed in non-
sequence-related units (Extended Data Fig. 8c). c, In the same set of sequence-related units, 
both rate-based classification during the task period and sequence-based classification within 
bursts improved in accuracy as more units were included. Stimulus information conveyed 
by spike rate exceeded that of sequence-based analysis when including only a few units in 
a resampling analysis. However, this difference reduced as the number of included units 
increased. These findings were consistent in the example recording (top) and across all 
18 recordings (middle), where the number of units in each recording was binned into 
percentiles (bottom, 5% to 95%; see Extended Data Fig. 10 for further discussion). Data 
are shown as the mean ± s.e.m., with results from individual recordings displayed as dots 
and lines color-coded by participant in a and b and as dots by decoding features in c. N = 
18 recordings. Two-tailed uncorrected p-values were calculated using a linear mixed-effects 
model, accounting for participant, session, and array-level variances.
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