HILDE: Intentional Code Generation
via Human-in-the-Loop Decoding

Emmanuel Anaya Gonzalez*
UC San Diego
fanayagonzalez@ucsd.edu

UC San Diego

Raven Rothkopf*

rrothkopf@ucsd.edu

Sorin Lerner
UC San Diego
lerner @ucsd.edu

Nadia Polikarpova
UC San Diego
npolikarpova@ucsd.edu

5 def register(username, password):
6 conn = sqlite3.connect
7 c = conn.cursor Critical decision highlighting

| Exit & Hide at each token in a completion Compact explanations
8 hashed_password = hashlib.sha256(password.encode()).hexdigest () sttt
9 .md5(password.encode()).hexdigest() # Less secure hashing algorithm (SIGNIFICANT). Repla...
10 .pbkdf2_hmac('sha256', password.encode('utf-8'), b'salt', 100000) # Stronger password hashing (SIGNIFICANT). Using pbk...
11 .hash(password) # Invalid function (Incorrect). hashlib.hash is an u...
12 .scrypﬂ(password.encode(), salt=b'salt', n=16384, r=8, p=1)ﬁ # Memory-hard password hashing (SIGNIFICANT). Using ...

Alternative Explanation: Using scrypt provides a “memory-hard” key derivation

Local alternatives preview
derived from top tokens at the current step

Fig. 1: HILDE: an assistant that @ highlights critical decision points in an LLM code completion, ¢
the model considered at a particular decision point, @ explains differences between these alternatives, and

Local alternative selection
for granular generation control

function, significantly improving resistance against hardware-accelerated
brute-force attacks over simple hash functions like sha256 or md5

displays local alternatives
) lets users select

a preferred alternative over the original completion, aligning code generation with their personal goals.

Abstract—While Al programming tools hold the promise of
increasing programmers’ capabilities and productivity to a re-
markable degree, they often exclude users from essential decision-
making processes, causing many to effectively ‘“turn off their
brains” and over-rely on solutions provided by these systems.
These behaviors can have severe consequences in critical domains,
like software security. We propose Human-in-the-Loop Decoding,
a novel interaction technique that allows users to observe and
directly influence LLLM decisions during code generation, in order
to align the model’s output with their personal requirements. We
implement this technique in HILDE, a code completion assistant
that highlights critical decisions made by the LLM and provides
local alternatives for the user to explore. In a within-subjects
study (N=18) on security-related tasks, we found that HILDE
led participants to generate significantly fewer vulnerabilities
and better align code generation with their goals compared to a
traditional code completion assistant.

Index Terms—Human-AI Collaboration, Program Synthesis,
Al Programming Assistants, Software Security

I. INTRODUCTION

As Al-powered programming tools are integrated into every-
day development workflows, programmers increasingly sacri-
fice their autonomy for perceived productivity. Traditionally,
programmers engaged in continuous, intentional decision-
making during the coding process, choosing implementation
strategies based on their specific non-functional requirements
(i.e, security, efficiency, readability), company policies, and
personal preferences. LLMs have now automated this process,
obscuring many subtle choices and presenting only a single
“best” solution based on inscrutable statistical patterns.

AT’s automation of high and low-level implementation deci-
sions has significant consequences: First, programmers remain
unaware of alternative strategies that may be more objectively

*These authors contributed equally to this work.

correct, contextually appropriate, or personally aligned [1].
Second, programmers over-rely on Al outputs, blindly trusting
them to be correct without sufficient comparison with alterna-
tives [2], [3]. Third, programmers lack the agency to effec-
tively control LLM behavior, relying on vague prompt-tuning
to steer code generation instead of selecting or composing a
unique solution from a set of possible strategies [4].

The downstream consequences are most notable in critical
domains like software security, where studies have found that
programmers write less secure code with Al assistants than
without [5]-[7]. LLMs frequently generate code that reflects
popular but insecure practices from their training data [8], and
are unable to account for newly discovered vulnerabilities [9],
[10]. As a result, programmers may unwittingly accept inse-
cure suggestions, mistaking model confidence for correctness.

To overcome these pitfalls, researchers have called for Al-
resilient interfaces [11] that reengage users in decision-making
by letting them choose from multiple Al suggestions [4],
[12], [13]. However, with mainstream Al programming tools,
users have to reverse-engineer Al choices from a set of
alternative completions that lack visual cues of meaningful
differences [3]. We offer a new approach: involve users directly
in the model’s fine-grained decision-making process, also
called decoding. As an LLM generates a program, it predicts
the next piece of code—or token—from a learned list of
potential tokens, each with an associated probability [14],
[15]. Each token in the list could transform code style,
structure, or semantics, but end-users remain unaware of these
considerations when they can only view the top tokens that are
returned after decoding.

We introduce Human-in-the-Loop Decoding, a novel in-
teraction technique that enables programmers to directly
influence LLM decision-making during code generation.

Human-in-the-Loop Decoding exposes lower-probability op-
tions that a model might otherwise discard, enabling program-
mers to discover a richer variety of alternatives and select
tokens that are more aligned with their intentions, rather than
being limited to the model’s most likely suggestions.

To realize Human-in-the-Loop Decoding, we developed
HILDE': a programming assistant (illustrated in Fig. 1, de-
tailed in Sec. III) that adds two affordances on top of tradi-
tional code completion tools, such as GITHUB COPILOT [16].
First, HILDE highlights critical decision points in the LLM-
generated code (@)). Second, through a keyboard or mouse
short-cut, HILDE can provide local alternatives for the user to
explore (), annotated with explanations of their differences
(®). To determine the critical decision points, we combine
the model’s uncertainty [17]-[19] in a token with semantic
information derived from analyzing alternative completions.

We ran a controlled user study (N=18) where participants
completed security-related programming tasks using HILDE
versus a baseline Al assistant (c.f. Sec. IV). We found that
using HILDE, participants generated code with significantly
fewer vulnerabilities despite a general lack of training in
software security practices (c.f. Sec. V). Participants also used
HILDE to catch and correct significantly more vulnerabilities
than with the baseline. Additionally, HILDE helped users
explore alternative strategies and reflect on what outcomes they
actually wanted—often discovering their own intentions in
the process. With this deeper understanding, they could steer
code generation to directly align with their programming goals.

The contributions of this paper are as follows:

o Human-in-the-Loop Decoding, a novel interaction tech-
nique for intentional code generation with LLMs.

o HILDE: a code completion assistant equipped with two
new affordances—critical decision highlighting and local
alternatives—to promote Human-in-the-Loop Decoding.

e An evaluation of HILDE in a user study comparing
participants’ experiences using HILDE to a baseline
assistant during security-related coding tasks.

II. RELATED WORK
A. Al Programming Assistants in Software Security

A growing body of research has examined the impact of
Al-powered programming assistants on code security [20].
Most of this work focuses on improving the security of LLM
generated code [21]-[23], and using LLMs to patch existing
vulnerabilities [24]-[26] In contrast, we use security as a
representative domain to investigate how interaction design
influences programmers’ awareness, agency, and intent when
using LLMs—insights that may generalize to other real-
world programming challenges.

Our study design draws the most direct inspiration from
Perry et al’s empirical evaluation of programmers using
GITHUB COPILOT to complete isolated security-driven pro-
gramming tasks [5]. Related studies confirm their findings that
programmers working with LLMs frequently wrote less secure

IThe name HILDE is short for “Human-in-the-Loop Decoding .

code than those without such assistance, often reproducing
vulnerabilities or relying on insecure suggestions surfaced by
the model [6], [7], [27].

B. Steering LLMs

Beyond correctness and security, preserving programmers’
agency and intent is a core challenge for modern Al coding
assistants [4], [28]-[30]. Research has shown that without
sufficient guardrails, programmers tend to accept model sug-
gestions without critical comparison [1]-[3].

Recent work has begun to address this by introducing
systems for steering that help users refine and clarify intent
throughout the programming workflow [13], [31], [32]. For
instance, Kazemitabaar et al.’s work on promoting interactive
task decomposition [33] via “phase-wise” and “step-wise”
levels of interaction with Al programming assistants. Their
“step-wise” approach offers a similar level of granularity as
our local alternatives by providing intervention points at each
step of solving a programming task and exposing editable
LLM assumptions about the generated code. However, their
method does not ensure a direct relationship between user edits
and the resulting code, leaving users with limited control if the
model fails to reflect their intent in the final output.

C. Visualizing Al Variance

Users are often unaware of the range of possible code
suggestions that can be obtained from an LLM [3], [12],
[13], [34]. Recent work sees this as a consequence of the
current interaction paradigm prioritizing rapid development
over exploration of the latent design space [34], [35]. Alterna-
tive visualizations [13], anchored explanations [36], [37], and
structured interfaces supporting choices [4], [12] have been
shown to help programmers reason about such sets of options.

Our work extends these efforts by displaying a rich array of
alternatives and contextual explanations in a compact interface,
to help programmers quickly make sense of the full spectrum
of possible implementations.

D. Highlighting Uncertainty in LLM Code Generation

Several studies have proposed inline highlights as an inter-
face to communicate uncertainty in LLM-generated code [19],
[38], [39]. Vasconcelos et al. [17] found that decoding uncer-
tainty highlighting alone offered no advantage over a baseline
without it, underscoring the need for richer methods to expose
uncertain code sections to the programmer. Kim et al. [40]
show that natural language expressions of uncertainty are
effective in reducing overreliance on LLM responses, and that
assertive has a significant impact.

Our approach enhances token uncertainty highlighting by
using semantic significance of the alternative as predicted
by the model itself, as well as by including human-readable
explanations about such alternatives at different levels of
detail. This enables programmers to immediately explore and
understand the effects of fine-grained implementation choices.

Token-level uncertainty highlighting for completions

Replace with local alternative completion

5 def register(username, password): 5 def register(username, password):

6 conn = sqlite3.connect('users.db') 6 conn = sqlite3.connect('users.db')

7 ¢ = conn.cursor() 7 ¢ = conn.cursor()

Back | > Forward Accept (Tab) | x Dismiss (Esc) n Back orward Accept (Tab) Dismiss (Esc)

8 | hashed_password = hashl% 56 (password.encode()).hexdigest() 8 | hashed_password = hashlib@rypt(password.encode(), salt:b.alt', n=16384, r=8, p=1|ﬂ
O

Local alternatives H

5 def register(username, passwo:rd :

6 conn = sqlite3.connect('ugers.db’) e esssssmmma.

7 C = conn.cursor

el Bxt Sbice o F X Natural language explanations

8 hashed_password = hashlibisha256(password.encode()).hexdigest()

9 \¢hd5 (password.encode()) . hexdigest () # Less secure hashing algorithm (SIGNIFICANT). Repla...

10 .pbkdf2_hmac('sha256', password.encode('utf-8'), b'salt’, 10:9000) # Stronger password hashing (SIGNIFICANT). Using pbk.. }

11 .hash(password) 0 # Invalid function (Incorrect). hashlib.hash is an u...

12 | .scrypti(password.encode(), salt=b'salt', n=16384, r=8, p=1)4 # Memory-hard password hashing (SIGNIFICANT). Using ...

Select a more secure alternative function, significantly improving resistance against hardware-accelerated

Alternative Explanation: Using SCRypt provides a ‘memory-hard” key derivation

brute-force attacks over fast hash functions like sha256 or md5

Fig. 2: HILDE is a VSCODE extension that visualizes an LLM’s token-level uncertainty and encourages interactive exploration
of code completions: € Users prompt the model via comments and/or code context. As code is generated, HILDE highlights
tokens where the model is uncertain in a red gradient (1)—-darker indicates higher uncertainty. € Press ENTER to preview
local alternative completions that the model was considering at that step, ordered by likelihood. (2) Exit (or moving the
cursor away) closes the preview, whereas Exit&Hide disables further highlighting for that token. @ HILDE provides a
natural language explanation of how each alternative differs from the original as a truncated comment (3) or a more detailed
tooltip on hover (4). € Replace an original token with an alternative by pressing ENTER. @ HILDE regenerates subsequent
code to reflect the new token (now with blue border). Navigate token edit history with Back and Forward codelenses (5),

and accept or dismiss the completion at any time.

III. THE HILDE PROGRAMMING ASSISTANT

We implemented one concrete instantiation of our Human-
in-the-Loop Decoding technique in a programming assistant
called HILDE. This section demonstrates HILDE via a usage
example and then describes its implementation.

A. HILDE by Example

Klaus, a graduate student, is building a web application to
manage a mentoring program for junior researchers. Klaus
uses Python regularly for his research, but he is new to web
development, so he decides to use HILDE, an Al programming
assistant, to help him write the code. Klaus needs to implement
the function register, which registers a new user with a user-
name and password; he starts by writing the function signature
and then presses CMD/CTRL+1I every time he wants to prompt
HILDE to complete the next piece of its implementation.

@® When HILDE suggests a completion on line 8, which
hashes the password before storing it in the database,
Klaus is about to accept the suggestion without a second
thought, as it looks reasonable. However, he notices that
HILDE highlighted some of the completion tokens in red,
indicating that the model was uncertain about them.
Klaus clicks on the first highlighted token, which happens
to be the (beginning of the) hash function name. This
brings up a list of alternative completions that the model
considered at that step, which include four other hash
functions available in the hashlib library.

HILDE also shows comments with (truncated) explanations
of how each alternative differs from the original. By skim-
ming the comments, Klaus realizes that the different hash
functions have different cryptographic strength; he hovers
his mouse over two promising alternatives, pbkdf2_hmac

and scrypt, and reads the full explanation that appears in
the tooltip.

Based on the needs of his application, Klaus decides to use
scrypt and clicks on it to replace the original completion
with this alternative.

The new completion has a blue border around the choice
point, allowing Klaus to come back and reconsider the
choice later.

Since the new completion also has some highlighted tokens,
Klaus explores alternatives for those as well (not shown in the
figure). After bringing up the alternatives for the encode func-
tion, he decides that the default completion is good enough,
and clicks on Exit&Hide @B to remove the highlighting
for that token, so that he can focus on other critical choices.
On the other hand, for the salt parameter, he decides to use
random bytes instead of a constant string, once HILDE points
out that the former is more secure.

B. Implementation

We implemented HILDE as a Visual Studio Code extension.
The HILDE architecture is shown in Fig. 3, which references
the same example code from Fig. 2 and Fig. 1.

1) Local alternatives explanations: To assess the impact of
each local alternative, HILDE prompts the analysis LLM with
the base completion, top token, and local alternative, asking it
to return the following information as structured output?:

o Detailed explanation: An analysis of how the change
would influence the current completion. (i.e. new param-
eters, control flow, libraries or side effects.)

e Explanation summary: A minimal description of the
change, which must be understandable at a glance.

Next iteration

User requests
completion

current
code in file

completion
LLM

Base completion
tokens

1 -
. @ top-k tokens

@ + previews

completion [ELEEICEECTEER
.pbkdf2 LLM .pbkdf2_hma.

.scrypt

[
1
[
1
1
]
: .scrypt(‘sa.
1)

HiLDe Ul
with local alternatives

Regenerate completion
after user selection

User replaces token
with local alternative

W&

@ + explanations & highlighting

.sha
.md5(passwo...\n “less secure...
\n .pbkdf2_hma...\n “more secure...
\n .scrypt(‘sa...\n “memory-hard...

Fig. 3: The HILDE architecture. When a user requests a code completion @, HILDE sends the user’s prompt to the completion
LLM, receiving a base completion and the top-k tokens (with probabilities) at each generation step @. For each alternative
token @ at every step, HILDE asks the same completion LLM to generate a code preview (up to the next line break) showing
what the completion would look like with that token @. For each preview, HILDE queries the analysis LLM for an explanation
of how the alternative differs from the original completion, and whether it would yeild significant changes to the code @®.
HILDE then highlights the tokens with significant local alternatives in the editor @. If the user selects a local alternative @,
HILDE completes it to a full snippet and updates the editor accordingly @.

e Category: One of “Significant”, “Minor” or “Incorrect”.
“Significant” changes considerably affect the behavior of
the program, (i.e code security, efficiency, robustness,
etc.) “Minor” changes are purely stylistic, like variable
renaming, and do not affect the program’s execution. “In-
correct” changes would result in invalid code, (i.e. syntax
errors, invalid function calls, or non-existent libraries).
Importance Score A float in the range [0, 1] indicating the
severity of the impact of this change. We use this when
computing highlighting of critical steps.

We build explanation comments @B for each local alter-
native using the Explanation summary and Category. The user
can view the Detailed explanation on hover @H.

2) Uncertainty highlighting: The main goal of highlighting
completion tokens is to draw attention to steps were the
model made a critical decision that may need verification. One
straightforward way to do so is by considering the model’s
internal uncertainty—since the LLM defines a probability
distribution over tokens at each generation step, it is natural
to consider the entropy of such distribution for highlighting.
Related work finds this approach inadequate in practice [17].

First, the model regularly assigns high entropy to steps that
are not critical for the user, (i.e changing a variable name or
a debug message). As a result, a large fraction of steps are
highlighted. In early pilots, we found that a completion with
too much highlighting is overwhelming for users.

Second, the model often assigns low entropy to steps where
the top token is actually incorrect, or should at least be
verified by the user. For instance, when calling popular library
functions that are prevalent in the training data, but are known
to be inadequate specific use cases.

We use the explanations of each token’s local alternatives to
analyze the importance of each step more accurately @&. We
define a new corrected entropy by updating the probability of
each of the alternative tokens proportional to the Importance
Score of the step. With this technique, steps with local alter-
natives that only lead to minor changes have low corrected
entropy, whereas steps with at least one significant change are
highlighted to the user. By tuning the weight of Importance
Score on the corrected entropy, HILDE consistently highlights
only a handful of critical decision points.

3) Completion regeneration with local alternatives: If a
user replaces a token in the base completion with a local
alternative token @, the completion LLM generates a full
code snippet from the new token to reflect the change @.
Given the stochastic nature of LLMs, the suffix of this al-
ternative generation is not guaranteed to be equivalent to the
base completion. We found this to be a cognitive hurdle for
users in our pilots, since they did not expect the change to
have downstream effects on their code. We address this by
generating 10 different suffixes, keeping the one most similar
[41] to the base completion. Though this does not guarantee
that the suffix will be unchanged, it reflects the user’s intuition.

4) Technical details: For the completion LLM, we use
Qwen2.5-Coder-32B [42], an open-source state-of-the-art
code model that supports fill-in-the-middle completions, and
serve it via VLLM [43] using 2x Nvidia A100 40GB. For the
analysis LLM, we use the smaller, faster gpt 4 .1-nano model
to minimize latency and ensure a smooth user experience.
For both models we set temperature = 0 to ensure repro-
ducibility of outputs across participants, and max_tokens
1024. The rest of the parameters are set to their default values.

IV. METHOD

In this section, we describe how we designed our study2,
including the participant pool, procedure, data collection, and
tasks to answer three core research questions:

1) Do users write fewer security bugs using HILDE?

2) How does HILDE affect overreliance on Al program-
ming assistants?

3) How does HILDE affect users’ ability to reach their
programming goals when using LLMs?

A. Participants

Our goal was to recruit participants with a wide variety of
programming experiences, but with a focus on those who used
Al programming assistants regularly. Explicit knowledge of
security principles was not a requirement for our study, though
we did require our participants to have at least some familiarity
with both Python and C. We recruited 18 participants, 9 self-
identified as men, 8§ as women, and 1 as non-binary. 3 were
undergraduate students, 7 were masters students, 6 were Ph.D.
students, and 2 were professional software engineers. All
participants reported high levels of experience with Python:
either advanced or expert. All participants reported at least
moderate experience with C. All participants reported that they
used Al programming assistants a few times a week or more.

B. Baseline

For the baseline, we reimplemented the inline completion
feature from GITHUB COPILOT [16]. We opted for this,
rather than using the official tool, to use the same underlying
completions LLM as HILDE, rather than a closed-source
model, and ensure a more reliable comparison. In BASELINE,
the user can view, individually, up to five different completions
for every prompt, and keep one if they choose to.

C. Tasks

Participants completed four programming tasks during our
study—two tasks in Python and two in C—that presented a
broad range of security challenges. We compiled tasks from
related work on security and LLMs [5], [6], that were designed
to be self-contained and solvable with a few lines of code.
We use the same criteria as these prior research to assess the
security level of solutions. For each task, participants were
given a code skeleton that included a task description, and
function signature, as well as a way to run and test the basic
functionality of their code. This setup was intended to mini-
mize the amount of time spent implementing boilerplate code
and allow participants to focus on their interactions with the
programming assistant and potential security considerations.
The tasks were as follows:

1) SQOL secrets (Python): Given a username and password,
hash the password, generate private and public ECDSA keys,
then store the username, password, and private key in a SQL
database. Return the public key.

2For reproducibility, all study materials are available via OSF

2) Sandboxed directory (Python): Given a string path to a
file, verify that the file is within the /safedir directory, then
parse it as YAML and return its contents.

3) CSV file write (C): Generate 3 random floats, convert
them to strings, then write them to a CSV file data.csv.

4) User input to struct (C): Query the user for a name,
allocate a new person struct with this name and status set
to 0, then print the struct’s contents.

To ensure each task could be completed within 15 minutes,
they were designed to be solvable within four interactions
with the LLM. We specifically chose tasks and prompts that
were likely to naturally cause the model to generate code with
vulnerabilities, including unsafe memory management (T3,
T4), arbitrary code execution (T1, T2), path traversals (T2),
and insecure cryptographic libraries and algorithms (T1).

D. Procedure

We conducted the studies over Zoom, and participants
completed tasks using the Visual Studio Code IDE in an
isolated Github Codespaces environment [44]. Each participant
received a $35 gift card upon completion of their study.

Participants were first given a brief introduction and told
they would be completing programming tasks with two differ-
ent Al programming assistants—Assistant-1 (BASELINE)
and Assistant-2 (HILDE) to minimize bias. Participants
were not explicitly told to focus on security; instead, they were
asked to solve the tasks as instructed, and to submit code they
would feel comfortable committing to a public repository to
simulate a sense of personal responsibility in their code.

To account for possible order and learning effects, we split
the participant pool into two groups: the “BASELINE-first”
group completed the tasks using a baseline assistant, and then
HILDE; the “HILDE-first” group completed the tasks using
HILDE, then the baseline. We randomly assigned participants
to groups while evenly distributing across task order. Both
groups ended up with 9 participants.

The “HILDE-first” group was then given a walkthrough tu-
torial of HILDE and its features (10 minutes), after which they
were asked to complete two programming tasks (15 minutes
each) and two post-task surveys. Then, they repeated the same
process (tutorial, two tasks, two surveys) with the BASELINE.
The “BASELINE-first” group completed the same procedure,
but in reverse order. Finally, all participants completed a post-
study survey and a semi-structured interview (10 minutes).
In total, each study session lasted at most 90 minutes. We
additionally allowed participants access to a web browser,
which they could use to solve any task as long as they did
not consult other Al assistants.

E. Data Collection and analysis

For quantitative analysis, we collected participants’ self-
reported ratings on six metrics in a post-task survey: confi-
dence in their solution, control over the assistant, usefulness
and understanding of alternative completions, general trust in
Al-generated code, and cognitive load (measured using five
NASA-TLX questions [45]).

https://osf.io/xp6e5/?view_only=833e806e9b3743f5982a2a4de7d39030

100.0% (9)

100 System
—_ 88.9% (8) 88.9% (8) [Baseline
8 =3 HiLDe
b 80 77.8% (7)
=
[

2
=1 60 55.6% (5)
S
=
2
o 40
c
©
2
L 22.2% (2)
5 20
o 11.1% (1)
0 0.0% (0)
Insecure hash Bad curve Unsafe library SQL injection
(a) SQL Secrets (T1) Mistakes

100 System
_ [Baseline
8 [HilDe
> 80 77.8% (7)
=
[

2

< 60

>

<

F 44.4% (4)

H

n 40

c 33.3% (3)

[

o

S

5 20

o 11.1% (1)
0

Buffer overflow Seg fault

(c) CSV File Write (T3) Mistakes

100.0% (9)
100 System

[Baseline
[HiLDe

88.9% (8)

80 77.8% (7)

60 55.6% (5)

44.4% (4)

40
33.3% (3)

20

Participants with Vulnerability (%)

0
Symlink Parent Unsafe deserialization
(b) Sandboxed Directory (T2) Mistakes
100 System
. 88.9% (8) [Baseline
2 = HilDe
> 80 77.8% (7)
=
© 66.7% (6)
2
S 60
>
E
=
2 40
c 33.3% (3)
©
2
L 22.2% (2)
5 20
o 11.1% (1)
0

Buffer overflow Seg fault Memory leak

(d) User Input to Struct (T4) Mistakes

Fig. 4: Summary of all security vulnerabilities identified in HILDE (blue) vs. BASELINE (yellow) group solutions.

We also compiled a list of security vulnerabilities that could
occur in each task, and two authors used this list to indepen-
dently count the number of vulnerabilities in each participant’s
final solutions and reach a consensus. Additionally, we mea-
sured task duration and logged every interaction with each As-
sistant automatically, (i.e., every Assistant query, frequency of
queries, frequency of suggestion acceptances, time between a
suggestion was received and then accepted/rejected, alternative
suggestions viewed or accepted, participants’ final solutions,
etc.) for each task. Using these logs, we noted all instances
where participants intentionally repaired vulnerabilities in their
code, and the strategies they used to do so. We used Wilcoxon
signed-rank tests to assess all differences except for repair
strategies, which we analyzed via Fisher’s exact tests.

For qualitative analysis, we recorded and transcribed each
participant’s session and semi-structured interview, with par-
ticipant consent. Participants were encouraged to “think aloud”
while they completed each task, verbalizing their problem-
solving process, initial reactions to code suggestions, what
they were feeling, etc. We used thematic analysis [46], [47] to
identify themes from the task and interview transcripts, with
a particular emphasis on instances of intentional decision-
making. Two authors individually coded participant quotes
from the transcripts related to our three research questions, and

then collaboratively grouped these codes into broader themes
to present with our quantitative results.

V. RESULTS

In the following sections, we present a detailed quantitative
and qualitative analysis using system log data and session tran-
scripts corresponding our three research questions. Our results
highlight the effectiveness of HILDE in helping programmers
write secure code with LLMs, catch more mistakes in Al
suggestions, and steer code generation to match their intent.

Participants successfully completed the task and passed all
tests in 70 out of 72 instances. While functional correctness
was not our primary concern, we supplied a basic set of tests
for each task to support participants and ensure some level
of functionality. These tests allowed participants to verify that
their code compiled and view its output; all but two (P12: Task
2, P18: Task 1) were able to do so within 15 minutes.

We found no significant difference in cognitive load be-
tween HILDE and BASELINE, from responses to the NASA-
TLX [45] metrics on a 5-point Likert scale. Participants
reported similar levels of mental demand (My;psg = 2.0,
Mpaseune = 1.9, p = 0.4), temporal demand (Myype =
1.9, Mpaserne = 1.6, p = 0.1), performance (Myype =
4.3, Mpaspiine = 4.4, p = 0.8), effort (Mype = 2.1,

Mpaserine = 2.0, p = 0.2), and frustration (My; pg = 1.7,
Mpaseune = 1.6, p = 0.2).

A. RQI: Security

To investigate whether HILDE helps participants write se-
cure code, we compared the number of vulnerabilities present
in the code written with each Assistant, as well as the number
of intentional security repairs made. Our overall results are
shown in Fig. 4 and Fig. 5.

1) Participants wrote code with significantly fewer vulner-
abilities using HILDE: Participants using HILDE generated
code with 31% fewer vulnerabilities on average compared
to BASELINE (Mype = 2.67,MpaseLive = 3.89,p = 0.01,
r = 0.53). These results are clearly seen in Fig. 4, where
the number of vulnerabilities generated by participants using
HILDE (blue) is consistently lower than those using BASE-
LINE (yellow) across most tasks. This difference is particularly
impactful since participants reported having limited secure
coding experience (average self-rating of 2.1 out of 5 for
software security knowledge).

Across both Assistants, the most common mistakes were:
insecure choice of hashing algorithm (T1)?, unsafe source of
randomness from the ecdsa library (T1), and symlink vul-
nerabilities (T2). Every solution written with BASELINE used
insecure password hashing practices. Session logs showed
that BASELINE only suggested the sHA256 algorithm without
salting, and participants did not discover resource-intensive
alternatives like scrypt or pbkdf2_hmac with salting, which
were available in HILDE.

In most cases, participants using HILDE generated code
with as many or fewer vulnerabilities than those using
BASELINE; the symlink vulnerability was the one exception:
although they often mitigated the risk of parent directory
traversal by selecting the os.path.abspath alternative to
simply path.startswith, none used os.path.realpath
to get the canonical path, leaving their code vulnerable to
symlink attacks. In one instance, P1 was able to correct the
full path traversal vulnerability with BASELINE, but only after
consulting external documentation.

2) Participants using HILDE intentionally corrected more
vulnerabilities in Al-generated code: Due to LLM’s non-
deterministic nature, both Assistants occasionally generated
code that was secure by default, requiring no participant
intervention. To better understand participant engagement, we
distinguished between cases in which participants simply ac-
cepted already-secure code and cases where they intentionally
steered code generation towards a more secure alternative.

Out of 42 instances of intentional security repair, 71% oc-
curred with HILDE while only 29% occurred with BASELINE
(Fig. 5). Our analysis of session logs revealed two main strate-
gies participants used to steer code generation: a Ul-driven
strategy, where participants selected a more secure alternative
from the Assistant’s suggestions (at the completion level for
BASELINE, and the token level for HILDE); and a prompt-
driven strategy, where participants explicitly prompted the

3This vulnerability was illustrated in Sec. ITI-A.

Assistant to generate more secure code. HILDE participants
were significantly more likely to use the Ul-driven approach
for security repairs, while BASELINE participants relied more
on explicit prompting (percentyLpe = 91, percentpaseLing =
62, p = 0.03, r = 0.17).

12

12 Assistant (Strategy)
[Baseline (Ul) [HilDe (U1)
EZ3 Baseline (Prompt) @2 HiLDe (Prompt)

Number of Security Repairs

1 1

SQL Secrets (T1) Sandboxed Directory (T2) CSV File Write (T3) User Input to Struct (T4)
Task

Fig. 5: Intentional security repairs using HILDE (blue) vs.
BASELINE (yellow) for each repair strategy for each task.

Average Time to Accept

B

Task Completion Time

HiLDe

Baseline -

0 25 50 75 100 125 150 175 200 400 600 800 1000 1200
Time (seconds) Time (seconds)

Fig. 6: Distribution for average time to accept a completion
(left) and task completion time (right) for HILDE (blue) and
BASELINE (yellow)

B. RQ2: Overreliance

1) With HILDE, participants spent more time evaluating
LLM suggestions before accepting them: In order to under-
stand the level of critical thinking participants demonstrated
with both Assistants, we measured the average time each
participant took to accept a completion after receiving it,
and the average time it took participants to finish a task.
We show the results in Fig. 6. Overall, we find that partic-
ipants spend more time considering suggestions from HILDE
before accepting them compared to BASELINE (Mype =
76.20, MpasgLine = 35.55,t = —4.63,p < 0.001) and they
also take longer to submit their code when using HILDE
(Mype = 514.98, Mpaseiine = 396.39,t = —1.97,p =
0.053), with the latter showing a trend toward significance
but being marginally above the standard threshold.

Outside quantitative data, several participants (P2, P12, P15)
mentioned that HILDE encouraged them to more thoroughly
evaluate the code they received from the LLM and not take
it at face value. After seeing a number of hash functions
suggested by HILDE, P2 said that “if [they] had more time,

[they] would Google each one to see which one is best”, and
wondered if “there was a safer way to do it”. P15 mentioned
that “HILDE alternatives can be useful as long as you are not
blindly tabbing and accepting everything”.

2) HILDE enabled users to understand the limitations
of LLM-generated code: Participants expressed several ways
in which the affordances and interaction model of HILDE
allowed them to understand its shortcomings, and stopped
them from blindly trusting the suggestions they get.

One common pitfall for BASELINE participants (P3, P10,
P13, P16, P18) was drawing an incorrect correlation between
frequency of occurrence and correctness. When seeing a
particular pattern repeatedly in the global alternatives they
thought “(P3) it is standard procedure”, “(P13) is the default”
or “(P18) is the only true way to do this”.

This incorrect conclusion was less common among par-
ticipants who used HILDE. A number of participants (P8,
P13) seemed puzzled by the fact that the models’ most
likely solution was not the most correct, after seeing other
alternatives. P16 asked why the model “was not suggesting
that in the first place. I am assuming most people use [unsafe
alternative]...I don’t know what [safe alternative] does, [
know what [unsafe alternative] does cause I know the basics
... and maybe that applies to most other people, which is what
is feeding the AI”. This observation is a fair explanation for
this behavior in language models.

3) After using HILDE, participants had a more accurate
sense of the correctness of their solutions: We found
no significant difference in participants’ self-reported confi-
dence in the correctness of their solutions between Assistants
(Muipe = 4.4, Mpaseune = 4.5, p = 0.8). Participants
did however report having significantly higher trust in Al
generated code with HILDE, though the effect size was small
(Mupe = 3.39, Mpasgrne = 3.72, p = 0.02, » = 0.23).
Participants reported high levels of confidence in general, and
since those using HILDE wrote code that was more secure,
their perceived correctness score was closer to their actual
correctness score, compared to those using BASELINE.

Qualitatively, interactions of several participants (P12, P14,
P18) with HILDE indicate a better alignment between their
real and perceived performance. For instance, P12 performed
the study in the BASELINE-first setting, self-reporting a high
level of confidence in their solutions after the first section,
while still accepting security vulnerabilities. Then, after using
HILDE, they noted that it “[gave them] more alternatives”
that were “useful for recognizing security issues”. They rec-
ognized that “[they were] not familiar” with the topic of
the previous tasks and they “likely had security issues”, also
expressing that they wanted to “retroactively decrease [their]
confidence score for BASELINE”.

C. RQ3: Achieving Programming Goals with HILDE

With HILDE, participants were able to achieve their
programming goals more effectively There were no signif-
icant differences between Assistants in self-reported control
(Mupe = 3.8, Mpaseine = 3.8, p = 0.5), helpfulness of

alternatives (MyiLpe = 3.9, Mpaserine = 4.0, p = 0.6), or
understanding of alternatives (Myrpe = 4.1, MpaseLing =
3.9, p = 0.2), However, our qualitative analysis of instances
from Sec. V-A2 revealed that, at each LLM interaction,
HILDE guided participants through a three-step process:

1) Discover alternative implementations that shape aspects
of security, correctness, personal code style, etc.

2) Interpret the alternatives using contextual explanations,
requirements, and preferences to understand how each
implementation aligns with their intent.

3) Act on this understanding by selecting the most suitable
implementation, effectively steering code generation.

We illustrate this pattern through two in-depth case studies
focusing on participants who had different types of intent.
Each case study details a participant’s intentional interaction
with the LLM, supplemented by similar experiences and a
contrasting experience from the BASELINE group.

1) Case Study I—No explicit intent: P15 started solv-
ing Task 4 by requesting a completion from HILDE, and
immediately noticed uncertainty highlighting on the scanf
token: “I know with C, if you don’t know what you’re doing
you can create some insecure stuff. So I'm assuming the
LLM is just like asking if I want to use some more safe
options.” (Discover). P15 then opened the local alternatives
for scanf, reading the explanation for the first alternative
which used the fgets method: “fgets improves the safety by
limiting the number of characters read and like yeah, buffer
overflows and stuff.” (Interpret). After consulting and ruling
out the other—irrelevant and insecure—options, P18 selected
the fgets alternative: “Yeah, let’s go with this.” and inspected
how the completion changed (Act).

When asked to reflect on this interaction in the post-study
interview, P15 said: “Ir [the model] wasn’t sure of which
function to use for user input and that’s an important decision.
It did make me aware of, yeah, we don’t want to just accept
arbitrary input.” P8 had a similar experience: “I don’t really
think about the security of my code. But looking at the options,
I was sort of motivated to pick something that would be more
secure.” P13 echoed, “HILDE helped me better realize my
intent instead of express my intent. It helped me realize my
intent because I wasn’t aware of it before.”

After completing the same task with BASELINE, P10 re-
flected: “I would say the only potential problem is I think I've
heard that scanf is not secure or something, I don’t know,
maybe. But I guess for the purposes of this task, it didn’t really
matter.” Although P10 reviewed BASELINE’s alternatives for
reading user input—including some secure options—they
ultimately accepted an insecure completion.

This response underscores how, without contextual affor-
dances, P10 missed the opportunity to discover a safer alter-
native. In contrast, P15, P8 and P13 also started out passive
in their LLM interactions, but HILDE encouraged them to
discover and solidify their own programming goals.

2) Case Study 2—Well-defined intent: During the course
of solving Task 2, P12 noticed that the test cases were
failing because they were printing an error message instead

of raising an exception. They went ahead and tried to prompt
the model via a comment to # raise exception instead
of print. When they requested a completion from HILDE
at that location, the model again suggested an unwanted print
statement. However, P12 noticed the highlighting in the first
token of the line, and “was curious if [they would] find”
an appropriate solution in the alternatives (Discover). HILDE
in fact offered an exception clause as the first option. They
recognized this instantly (Interpret) and promptly accepted
this alternative: “Great! here we go...” (Act), and verified
their solution passed the tests.

In the post-task interview they remarked, “having more
alternatives show up was really nice, because I could immedi-
ately see the raise exception thing, whereas previously I might
have had to re-prompt it a few times”. They found HILDE
particularly helpful since “they [knew] the issue, and HILDE
was just showing how to solve it”. A number of participants
(P3, P2, P10, P13) had similar observations, assuring that they
appreciated “(P3) [having] more granular control over code”,
being able to “(P13) make smaller changes” and “(P2) line
by line modifications”.

On the other hand, participants had trouble accurately
steering the BASELINE to make fine-grained changes. For
instance, P11 found themselves in a similar situation as P12,
where they knew the correct function to use in their context,
and prompted the BASELINE for it through a comment. The
BASELINE however “did not suggest at all” their preferred
implementation; they had “difficulty getting [BASELINE Jto
use it” and had to type it out themselves. Other participants
(P1, P8, P13, P16) also demonstrated this pattern of prompting
via comments and not obtaining any acceptable suggestion.

Additionally, users (P1, P2, P3) complained about the
inability to perform targeted changes with BASELINE, and
only being able to “(P2) change the whole structure”. P3
compares both tools as follows: “In [BASELINE] if [am not
satisfied with one of the middle steps, I have to delete all the
code below it and prompt [again]. But HILDE ... it will just
generate code based on the choice I made.”.

These interactions clearly indicate the advantage of HILDE
when users engage with it with a clear goal in mind, as HILDE
allows them to more precisely indicate their preferences at a
granular level, without the need to re-prompt or regenerate,
like they would need to do with BASELINE. In the case of
HILDE, users have more agency in low-level LLM decision-
making and are able to align it with their personal goals.

D. Recurrent BASELINE Limitations

BASELINE tended to generate alternatives that were not
sufficiently diverse, and many participants (P2, P6, P11, P14,
P18) found the alternatives less helpful for discovering
different implementations. During a post-task survey, P2
noted, “[Viewing alternatives somewhat helped because] the
logic was the same, only in different format, like single line of
multiple if-then-else, but the logic was the same.” P18 echoed
this sentiment: “I don’t know if [the BASELINE alternatives]
helped that much. I picked the Ist one for almost all of them

if they were available. I feel like there potentially could be
alternates out there for sure.”

When more diverse alternatives were accessible, participants
(P6, P13, P16, P18) found that BASELINE was less helpful
for interpreting differences between alternatives. P16 was
in the “HILDE-first” group, and when they used BASELINE,
they immediately expressed a desire for HILDE’s local expla-
nations: “I don’t have...the comments that tell me what’s the
difference between the old one and the new one. So it makes
it harder to understand, continuing, “it takes me some time to
actually see what has changed.”

Once participants understood the differences, many (P6, P8,
P10, P13, P14, P16, P18) felt that BASELINE was less helpful
for deciding which alternative to accept. Participants often
accepted insecure completions from more secure alternatives
because they did not have enough context. During a task P14
reflected, “the explanations would have at least given me idea.
With [BASELINE] I was kind of left in the dark.” Even though
P18 ultimately chose a safer alternative, they reflected: “I still
don’t know what safe_load means unless I go and open the
docs. I didn’t really know the trade-offs even though options
were presented to me”.

VI. DISCUSSION AND FUTURE WORK
A. The Benefit of Human-in-the-Loop Decoding

Our results show that Human-in-the-Loop Decoding helps
programmers explore and understand a rich space of imple-
mentation choices in LLM-generated code, unlike BASELINE.

Sec. V-D finds that participants became frustrated when
BASELINE generated many similar alternatives. In standard
decoding algorithms, models offer little variation when they
are confident in their predictions. Even if a wider variety of
options were provided, it would be difficult to express every
interesting choice within five global alternatives. However,
adding more global alternatives is impractical from a usability
standpoint—Sec. V-D finds that participants already strug-
gled to spot meaningful differences within the small set of
BASELINE alternatives, a challenge also reported by users of
mainstream Al assistants [3].

In contrast, Human-in-the-Loop Decoding exposes less
probable, but potentially valuable local alternatives, enabling
users to discover a broad range of options in a fine-grained
way. This approach aligns with general calls for Al-resilient
interfaces that help users understand the range of solutions
an LLM can generate from a single prompt, forming more
accurate mental models of LLM behavior [4], [12].

B. Human-in-the-Loop Decoding Beyond Security

We found that participants wrote significantly safer code us-
ing HILDE, even though they were never explicitly instructed
to prioritize security (Sec. V-A). However, HILDE also helped
participants achieve programming goals beyond security.

For example, during Task 1, P18 noticed a SQL server
cursor declaration highlighted in red and opened the local
alternatives view. After seeing the second alternative, they
declared, “Oh yeah, usually I actually use this...the more

idiomatic way is to use with so that it automatically closes
for you.” P18 selected this alternative, confirmed that the
downstream output matched their intuition, and then continued
solving the task. In this case, HILDE helped P18 recognize
their personal coding practices in the alternatives and steer the
completion to match their preferences.

While the current implementation targets security, this ap-
proach can be easily adapted for other priorities such as
efficiency, maintainability, energy conservation, or personal
coding style; The underlying prompt for HILDE is slightly
tuned to surface security-related decision points, but adjusting
the prompt could make HILDE more general or target other
code attributes. For example, P9 saw the utility of HILDE
in different contexts, “whether you want to make your code
secure, whether you want to make your code readable”. We
are excited to explore a more general, customizable version of
HILDE in future work.

C. Intentionality vs. Efficiency in Human-Al Collaboration

Our study highlights a key trade-off: while HILDE slowed
down task completion (Sec. V-B1), this additional time fa-
cilitated more intentional LLM code review and decision-
making—which was often at odds with participants’ usual
preference for speed. For example, P10 appreciated HILDE for
complicated tasks where they have to “make multiple choices”,
yet found it “more cumbersome” for simple code. Others
(P3, P2, P13, P14, P16, P18) saw the utility in HILDE for
unfamiliar domains, but preferred BASELINE when they “(P2)
want answers fast”. This distinction parallels the “exploration”
and “acceleration” modes that Barke et al. [3] identified among
users of Al programming assistants.

In prior user studies, task speed has often served as a mea-
sure of Al assistant utility [48]-[51], but our findings highlight
how interface design can encourage more intentional code
generation and help programmers strike a balance between
speed and code quality.

D. HILDE Limitations

During study sessions, HILDE sometimes made unantici-
pated changes to downstream code after participants selected
a local alternative. In a post-task survey, P11 reflected “Ir was
helpful to be able to change options, although, when it regen-
erated it just removed some of the things.” Most participants
re-applied their previous selections, but some found this to be
too much work, choosing to leave the completion as is.

The problem is that when a user selects a local alternative,
HILDE prompts the underlying model to generate a new com-
pletion from that point, which can overwrite prior downstream
edits. To mitigate this (c.f. Sec. III-B) HILDE requests several
completions from the model and chooses the one most similar
to the original code. However, if the user selects a token
with very low-likelihood of being chosen by the model, it is
unlikely that any of the generated completions will exactly
match their previous edit, resulting in that change being
lost. Ensuring that Al assistants preserve incremental user
modifications remains an open challenge for future work [33].

Additionally, a few participants (P4, P8, P15) found
HILDE’s interaction method and token highlighting over-
whelming at times, especially when it surfaced local alter-
natives that were not useful to them. As P4 remarked, “That
amount of cognitive overhead ended up...hindering my own
thought process...because there were more possibilities to
consider that I didn’t need to consider”. However, we found
no statistically significant difference in cognitive load between
the two assistants.

E. Performance Challenges

From the implementation perspective, the computational
cost of the generating an initial completion and subsequent
alternatives is usually high: as detailed in Sec. III-B, each one
of these operations can entail hundreds of LLM calls. At the
moment, this results in HILDE’s latency being an order of
magnitude higher than a traditional completions assistant. We
believe this issue could be readily addressed by 1) effectively
pruning the generation steps for which alternative previews and
explanations are requested, and 2) leveraging better caching,
batching and request parallelization in the generation pipeline.
We leave these two proposals as directions for future work.

VII. CONCLUSION

In this paper, we present Human-in-the-Loop Decoding, a
novel interaction technique that encourages programmers to
directly influence LLM decision-making during code genera-
tion. Our implementation, HILDE, highlights critical decision
points and provides contextual explanations for alternative
implementations at each point. Through a security-focused
user study with 18 programmers, we found that participants
had more intentional interactions with HILDE compared to
a baseline, ultimately adopting significantly safer code prac-
tices. Additionally, HILDE guided participants to achieve their
programming goals—regardless of their initial intent—as they
discovered diverse alternatives, interpreted how each aligned
with their goals, and selected the best option to effectively
steer code generation. Our findings offer valuable insights for
designing LLM-driven programming interfaces that encourage
more intentional, interactive code generation with end-users.

ACKNOWLEDGEMENTS

This work was supported in part by the NSF under Grant
No. CCF-2107397, and Google’s Gemma Academic Program
GCP Credit Award. This material is based upon work sup-
ported by the National Science Foundation Graduate Research
Fellowship under Grant No. DGE-2038238. Any opinions,
findings, and conclusions or recommendations expressed in
this publication are those of the authors, and do not necessarily
reflect the views of the sponsoring entities.

REFERENCES

[11 R.Khojah, M. Mohamad, P. Leitner, and F. G. de Oliveira Neto, “Beyond
code generation: An observational study of chatgpt usage in software
engineering practice,” Proceedings of the ACM on Software Engineering,
vol. 1, no. FSE, pp. 1819-1840, 2024.

[2]

,_
(98]
[t

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

J. T. Liang, C. Yang, and B. A. Myers, “A large-scale survey on the
usability of ai programming assistants: Successes and challenges,” in
Proceedings of the 46th IEEE/ACM international conference on software
engineering, 2024, pp. 1-13.

S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” Proceedings of the
ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 85-111,
2023.

K. I. Gero, C. Swoopes, Z. Gu, J. K. Kummerfeld, and E. L. Glassman,
“Supporting sensemaking of large language model outputs at scale,”
in Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems, 2024, pp. 1-21.

N. Perry, M. Srivastava, D. Kumar, and D. Boneh, “Do users write
more insecure code with ai assistants?” in Proceedings of the 2023 ACM
SIGSAC conference on computer and communications security, 2023,
pp. 2785-2799.

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, “Asleep
at the keyboard? assessing the security of github copilot’s code con-
tributions,” Communications of the ACM, vol. 68, no. 2, pp. 96-105,
2025.

S. Oh, K. Lee, S. Park, D. Kim, and H. Kim, “Poisoned chatgpt finds
work for idle hands: Exploring developers’ coding practices with inse-
cure suggestions from poisoned ai models,” in 2024 IEEE Symposium
on Security and Privacy (SP). 1EEE, 2024, pp. 1141-1159.

D. Cotroneo, C. Improta, P. Liguori, and R. Natella, “Vulnerabilities in
ai code generators: Exploring targeted data poisoning attacks,” in Pro-
ceedings of the 32nd IEEE/ACM International Conference on Program
Comprehension, 2024, pp. 280-292.

J. He and M. Vechev, “Large language models for code: Security
hardening and adversarial testing,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, 2023,
pp. 1865-1879.

A. Mohsin, H. Janicke, A. Wood, I. H. Sarker, L. Maglaras, and N. Jan-
jua, “Can we trust large language models generated code? a framework
for in-context learning, security patterns, and code evaluations across
diverse 1lms,” arXiv preprint arXiv:2406.12513, 2024.

E. L. Glassman, Z. Gu, and J. K. Kummerfeld, “Ai-resilient interfaces,”
arXiv preprint arXiv:2405.08447, 2024.

Z. Gu, I. Arawjo, K. Li, J. K. Kummerfeld, and E. L. Glassman, “An ai-
resilient text rendering technique for reading and skimming documents,”
in Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems, 2024, pp. 1-22.

K. Ferdowsi, R. Huang, M. B. James, N. Polikarpova, and S. Lerner,
“Validating ai-generated code with live programming,” in Proceedings
of the 2024 CHI Conference on Human Factors in Computing Systems,
2024, pp. 1-8.

R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.
T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,”
arXiv preprint arXiv:1808.06226, 2018.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

H. Vasconcelos, G. Bansal, A. Fourney, Q. V. Liao, and J. W. Vaughan,
“Generation probabilities are not enough: Uncertainty highlighting in ai
code completions,” ACM Transactions on Computer-Human Interaction,
2024.

Y. Zhang, Q. V. Liao, and R. K. Bellamy, “Effect of confidence and
explanation on accuracy and trust calibration in ai-assisted decision mak-
ing,” in Proceedings of the 2020 conference on fairness, accountability,
and transparency, 2020, pp. 295-305.

A. M. McNutt, C. Wang, R. A. Deline, and S. M. Drucker, “On the
design of ai-powered code assistants for notebooks,” in Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems,
2023, pp. 1-16.

A. Sajadi, B. Le, A. Nguyen, K. Damevski, and P. Chatterjee, “Do
Ilms consider security? an empirical study on responses to programming
questions,” Empirical Software Engineering, vol. 30, no. 3, p. 101, 2025.
M. Basharat and M. Omar, “Secuguard: Leveraging pattern-exploiting
training in language models for advanced software vulnerability detec-
tion,” International Journal of Mathematics and Computer in Engineer-
ing, vol. 3, no. 1, pp. 47-56, 2024.

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

A. Shestov, R. Levichev, R. Mussabayev, E. Maslov, P. Zadorozhny,
A. Cheshkov, R. Mussabayev, A. Toleu, G. Tolegen, and A. Krasso-
vitskiy, “Finetuning large language models for vulnerability detection,”
IEEE Access, 2025.

Y. Liu, L. Gao, M. Yang, Y. Xie, P. Chen, X. Zhang, and W. Chen,
“Vuldetectbench: Evaluating the deep capability of vulnerability de-
tection with large language models,” arXiv preprint arXiv:2406.07595,
2024.

H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Examining
zero-shot vulnerability repair with large language models,” in 2023 IEEE
Symposium on Security and Privacy (SP). 1EEE, 2023, pp. 2339-2356.
L. Zhang, Q. Zou, A. Singhal, X. Sun, and P. Liu, “Evaluating large
language models for real-world vulnerability repair in c/c++ code,” in
Proceedings of the 10th ACM International Workshop on Security and
Privacy Analytics, 2024, pp. 49-58.

T. K. Le, S. Alimadadi, and S. Y. Ko, “A study of vulnerability repair
in javascript programs with large language models,” in Companion
Proceedings of the ACM Web Conference 2024, 2024, pp. 666—669.

G. Sandoval, H. Pearce, T. Nys, R. Karri, B. Dolan-Gavitt, and S. Garg,
“Security implications of large language model code assistants: A user
study,” arXiv preprint arXiv:2208.09727, 2022.

R. Yen, J. S. Zhu, S. Suh, H. Xia, and J. Zhao, “Coladder: Manipulating
code generation via multi-level blocks,” in Proceedings of the 37th
Annual ACM Symposium on User Interface Software and Technology,
2024, pp. 1-20.

L. Xie, C. Zheng, H. Xia, H. Qu, and C. Zhu-Tian, “Waitgpt: Monitoring
and steering conversational 1lm agent in data analysis with on-the-fly
code visualization,” in Proceedings of the 37th Annual ACM Symposium
on User Interface Software and Technology, 2024, pp. 1-14.

Q. Guo, X. Xie, S. Liu, M. Hu, X. Li, and L. Bu, “Intention is all
you need: Refining your code from your intention,” arXiv preprint
arXiv:2502.08172, 2025.

P. Vaithilingam, E. L. Glassman, J. P. Inala, and C. Wang, “Dynavis:
Dynamically synthesized ui widgets for visualization editing,” in Pro-
ceedings of the 2024 CHI Conference on Human Factors in Computing
Systems, 2024, pp. 1-17.

L. F. Gomes, V. J. Hellendoorn, J. Aldrich, and R. Abreu, “An ex-
ploratory study of ml sketches and visual code assistants,” arXiv preprint
arXiv:2412.13386, 2024.

M. Kazemitabaar, J. Williams, 1. Drosos, T. Grossman, A. Z. Henley,
C. Negreanu, and A. Sarkar, “Improving steering and verification in ai-
assisted data analysis with interactive task decomposition,” in Proceed-
ings of the 37th Annual ACM Symposium on User Interface Software
and Technology, 2024, pp. 1-19.

J. Zamfirescu-Pereira, E. Jun, M. Terry, Q. Yang, and B. Hartmann,
“Beyond code generation: Llm-supported exploration of the program
design space,” in Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems, 2025, pp. 1-17.

S. Suh, M. Chen, B. Min, T. J.-J. Li, and H. Xia, “Luminate: Structured
generation and exploration of design space with large language models
for human-ai co-creation,” in Proceedings of the 2024 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’24. New York,
NY, USA: Association for Computing Machinery, 2024. [Online].
Available: https://doi.org/10.1145/3613904.3642400

L. Yan, A. Hwang, Z. Wu, and A. Head, “Ivie: Lightweight anchored
explanations of just-generated code,” in Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems, 2024, pp. 1-15.
R. Cheng, T. Barik, A. Leung, F. Hohman, and J. Nichols, “Biscuit:
Scaffolding Ilm-generated code with ephemeral uis in computational
notebooks,” in 2024 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 1EEE, 2024, pp. 13-23.

J. Sun, Q. V. Liao, M. Muller, M. Agarwal, S. Houde, K. Talamadupula,
and J. D. Weisz, “Investigating explainability of generative ai for code
through scenario-based design,” in Proceedings of the 27th International
Conference on Intelligent User Interfaces, 2022, pp. 212-228.

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in Chi conference on human factors in computing
systems extended abstracts, 2022, pp. 1-7.

S. S. Y. Kim, Q. V. Liao, M. Vorvoreanu, S. Ballard, and J. W.
Vaughan, ‘“”’i’m not sure, but..”: Examining the impact of large
language models’ uncertainty expression on user reliance and trust,” in
Proceedings of the 2024 ACM Conference on Fairness, Accountability,
and Transparency, ser. FAccT ’24. New York, NY, USA: Association

https://doi.org/10.1145/3613904.3642400

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

for Computing Machinery, 2024, p. 822-835. [Online]. Available:
https://doi.org/10.1145/3630106.365894 1

V. 1. Levenshtein, “Binary Codes Capable of Correcting Deletions,
Insertions and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb.
1966.

B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang, T. Liu, J. Zhang,
B. Yu, K. Dang et al., “Qwen2. 5-coder technical report,” arXiv preprint
arXiv:2409.12186, 2024.

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E.
Gonzalez, H. Zhang, and I. Stoica, “Efficient memory management for
large language model serving with pagedattention,” in Proceedings of
the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

GitHub, “Github codespaces,” 2024. [Online]. Available: https:
//github.com/features/codespaces

S. G. Hart and L. E. Staveland, “Development of nasa-tlx (task load
index): Results of empirical and theoretical research,” in Advances in
psychology. Elsevier, 1988, vol. 52, pp. 139-183.

V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative research in psychology, vol. 3, no. 2, pp. 77-101, 2006.
M. Vaismoradi, H. Turunen, and T. Bondas, “Content analysis and
thematic analysis: Implications for conducting a qualitative descriptive
study,” Nursing & health sciences, vol. 15, no. 3, pp. 398—405, 2013.
S. Peng, E. Kalliamvakou, P. Cihon, and M. Demirer, “The impact of ai
on developer productivity: Evidence from github copilot,” arXiv preprint
arXiv:2302.06590, 2023.

S. K. Kuttal, B. Ong, K. Kwasny, and P. Robe, “Trade-offs for substi-
tuting a human with an agent in a pair programming context: the good,
the bad, and the ugly,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021, pp. 1-20.

A. Ziegler, E. Kalliamvakou, X. A. Li, A. Rice, D. Rifkin, S. Simister,
G. Sittampalam, and E. Aftandilian, “Measuring github copilot’s impact
on productivity,” Communications of the ACM, vol. 67, no. 3, pp. 54-63,
2024.

K. Pu, D. Lazaro, I. Arawjo, H. Xia, Z. Xiao, T. Grossman, and
Y. Chen, “Assistance or disruption? exploring and evaluating the design
and trade-offs of proactive ai programming support,” arXiv preprint
arXiv:2502.18658, 2025.

https://doi.org/10.1145/3630106.3658941
https://github.com/features/codespaces
https://github.com/features/codespaces

	Introduction
	Related Work
	AI Programming Assistants in Software Security
	Steering LLMs
	Visualizing AI Variance
	Highlighting Uncertainty in LLM Code Generation

	The HiLDe Programming Assistant
	HiLDe by Example
	Implementation
	Local alternatives explanations
	Uncertainty highlighting
	Completion regeneration with local alternatives
	Technical details

	Method
	Participants
	Baseline
	Tasks
	SQL secrets (Python)
	Sandboxed directory (Python)
	CSV file write (C)
	User input to struct (C)

	Procedure
	Data Collection and analysis

	Results
	RQ1: Security
	Participants wrote code with significantly fewer vulnerabilities using HiLDe
	Participants using HiLDe intentionally corrected more vulnerabilities in AI-generated code

	RQ2: Overreliance
	With HiLDe, participants spent more time evaluating LLM suggestions before accepting them
	HiLDe enabled users to understand the limitations of LLM-generated code
	After using HiLDe, participants had a more accurate sense of the correctness of their solutions

	RQ3: Achieving Programming Goals with HiLDe
	Case Study 1—No explicit intent
	Case Study 2—Well-defined intent

	Recurrent Baseline Limitations

	Discussion and Future Work
	The Benefit of Human-in-the-Loop Decoding
	Human-in-the-Loop Decoding Beyond Security
	Intentionality vs. Efficiency in Human-AI Collaboration
	HiLDe Limitations
	Performance Challenges

	Conclusion
	References

