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Abstract

For B ⊆ F
m

q , the n-th affine extremal number of B is the maximum cardinality of a set A ⊆ F
n

q with

no subset which is affinely isomorphic to B. Furstenberg and Katznelson proved that for any B ⊆ F
m

q , the

n-th affine extremal number of B is o(qn) as n → ∞. By counting affine homomorphisms between subsets

of Fn

q , we derive new bounds and give new proofs of some previously known bounds for certain affine

extremal numbers. At the same time, we establish corresponding supersaturation results. We connect

these bounds to certain Ramsey-type numbers in vector spaces over finite fields. For s, t ≥ 1, let Rq(s, t)

denote the minimum n such that in every red-blue coloring of the one-dimensional subspaces of Fn

q , there

is either a red s-dimensional subspace or a blue t-dimensional subspace of Fn

q . The existence of these

numbers is a special case of a well-known theorem of Graham, Leeb, Rothschild. We improve the best

known upper bounds on R2(2, t), R3(2, t), R2(t, t), and R3(t, t).

1 Introduction

We consider bounds for Ramsey-type and Turán-type problems in the setting of vector spaces over finite

fields. In this paper, we use [ Vt ] to denote the collection of all t-dimensional linear subspaces of a vector

space V . The following theorem is a special case of a classical theorem of Graham, Leeb, and Rothschild [17],

which establishes the existence of the Ramsey numbers we consider.

Theorem 1.1 (Graham, Leeb, Rothschild). Let Fq be any finite field. For any positive integers t1, . . . , tk,

there exists a minimum n =: Rq(t1, . . . , tk) such that for every k-coloring f :
[

F
n
q

1

]

→ [k] of the 1-dimensional

linear subspaces of Fn
q , there exist i ∈ [k] and a linear subspace U ¦ F

n
q of dimension ti, such that [ U1 ] is

monochromatic in color i.

In the case t1 = · · · = tk = t, we write Rq(t1, . . . , tk) = Rq(t; k). The bounds for Rq(t1, . . . , tk) implied by

early proofs of Theorem 1.1 (see [17], [30]) are quite large due to repeated use of the Hales-Jewett Theorem

[19]. In the case q = 2, the problem can be reduced to the disjoint unions problem for finite sets, considered

by Taylor [31], which gives the following bound.
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Theorem 1.2 (Taylor). The number R2(t; k) is at most a tower of height 2k(t− 1) of the form

R2(t; k) f k3
k
. .

.
3

.

For comparison, lower bounds for R2(t; k) attained from applying the techniques from [2] such as the

Lovász Local Lemma to a uniform random coloring are only on the order of Ω
(

2t

t log2 k
)

.

We improve the bound of Theorem 1.2 by bringing the height of the tower down to (k − 1)(t− 1) + o(t),

and we prove a corresponding bound over F3.

Theorem 1.3. There exists a constant C0 ≈ 13.901 such that for Ã2 = 2 and Ã3 = C0, the following

holds for q ∈ {2, 3}. For any k g 2 and any tk g · · · g t1 g 2, Rq(t1, . . . , tk) is at most a tower of height
∑k−1

i=1 (ti − 1) + 1 of the form

Rq(t1, . . . , tk) f Ã
Ã

. .
.
σ
3tk
q

q

q .

More recently, Nelson and Nomoto [23] considered the off-diagonal version of this problem over F2 with

two colors while investigating Ç-boundedness of certain classes of binary matroids, and they proved the

following bound.

Theorem 1.4 (Nelson, Nomoto). For every t g 2,

R2(2, t) f (t+ 1)2t.

In this case, standard probabilistic arguments give a lower bound for R2(2, t) which is only linear in t.

Specifially, the Lovász Local Lemma gives R2(2, t) g (2− o(1))t as t → ∞, and more generally,

Rq(s, t) g

(

qs − q

(q − 1)(s− 1)
− o(1)

)

t as t → ∞

for fixed q and s. Nelson and Nomoto asked if a subexponential upper bound is possible. While the answer to

that question remains to be seen, we provide the following exponential improvement for R2(2, t) and similarly

give the first exponential upper bound for R3(2, t).

Theorem 1.5. There exists a constant C0 ≈ 13.901 such that as t → ∞,

R2(2, t) = O
(

t6t/4
)

;

R3(2, t) = O
(

tCt
0

)

.

These improved bounds come from some simple observations about affine extremal numbers and their

supersaturation properties, which are analogous to bipartite Turán numbers in graph theory. The n-th affine

extremal number of a family B of affine configurations {Bi ¦ F
mi
q }i∈I , denoted exaff(n,B), is the maximum

size of a subset A ¦ F
n
q with no affine copy of any Bi (see Section 2 for a more complete definition). The

asymptotic study of affine extremal numbers dates back at least to the following theorem of Furstenberg and

Katznelson [13].
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Theorem 1.6 (Furstenberg, Katznelson). Let Fq be any finite field. For any t g 0,

exaff(n,F
t
q) = o(qn) as n → ∞.

Since any B-free set is Ft
q-free for some t, Theorem 1.6 says that affine extremal numbers are always o(qn).

Furstenberg and Katznelson went on to prove a density version of the Hales-Jewett Theorem [14], from which

Theorem 1.6 is immediate. Alternative proofs of these results can be found in [25] and [24], respectively.

The projective version of this problem is even older, beginning with the following result of Bose and

Burton [6].

Theorem 1.7 (Bose, Burton). Let Fq be a finite field, and let t g 1. Let A be a subset of
[

F
n
q

1

]

for which

there is no linear t-dimensional subspace U ¦ F
n
q with [ U1 ] ¦ A. Then

|A| f
qn − qn−t+1

q − 1
,

with equality if and only if A =
[

F
n
q

1

]

\ [W1 ] for some linear (n− t+ 1)-dimensional linear subspace W ¦ F
n
q .

Remark. It is sometimes convenient to identify a set A ¦
[

F
n
q

1

]

of projective points with a set A ¦ F
n
q \ {0}

of vectors, given by

A =
⋃

ℓ∈A

ℓ \ {0}.

We call a set A of this form projectively determined. Similarly, we can identify any k-coloring of
[

F
n
q

1

]

with a

projectively determined k-coloring of Fn
q \ {0}, meaning that each color class is a projectively determined set

of vectors. Moving forward, we will work from the perspective of projectively determined sets and colorings

whenever we discuss results of a projective nature, such as Theorems 1.3, 1.5, and 1.7.

The problem of determining projective extremal numbers asymptotically for general projective configura-

tions over Fq was almost entirely solved by Geelen and Nelson [15], who proved a theorem analogous to the

Erdős-Stone-Simonivits Theorem for graphs. Their theorem gives precise asymptotics for the extremal number

of any projective configuration, except for those which exclude a linear hyperplane, which are usually called

“affine”. Up to a constant factor, the projective extremal numbers of these “affine” projective configurations

reduce to affine extremal numbers of the type discussed in this paper. Therefore, what can be said of their

projective extremal numbers is that they are degenerate by Theorem 1.6, which is far from an asymptotic

determination, similar to the case of extremal numbers of bipartite graphs.

It is unknown in general (see [16], Open Problem 32) whether the o(qn) bound in Theorem 1.6 can be

taken to be of the form O
(

(q1−¶)n
)

for some ¶ = ¶(q, t) > 0. However, for q = 2 and q = 3, we have the

following respective results of Bonin and Qin [5], and of Fox and Pham [11].

Theorem 1.8 (Bonin, Qin). There exists an absolute constant c such that for every t g 1, every subset of

F
n
2 of size at least (21−c2−t

)n contains an affine t-space.

Theorem 1.9 (Fox, Pham). There exist absolute constants c and C0, with C0 ≈ 13.901 such that for every

t g 1, every subset of Fn
3 of size at least

(

31−cC−t
0

)n

contains an affine t-space.
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The proof of Theorem 1.8 is entirely self-contained and is no more than a page. Theorem 1.9, on the other

hand, is the culmination of several breakthroughs related to the Cap Set Problem, starting with the advances

in polynomial methods from Croot, Lev, and Pach [8] and the subsequent proof of the Cap Set Theorem

by Ellenberg and Gijswijt [9], which says that exaff(n,F
1
3) f (31−¶)n for some ¶ > 0. Fox and Lovász [10]

then used this result to give improved bounds on Green’s Arithmetic Triangle Removal Lemma [18]. Fox and

Pham observed that this improvement implies a supersaturation version of the Cap Set Theorem, from which

they derived Theorem 1.9, which is a multidimensional extension of the Cap Set Theorem. It is unknown

whether the constant C0 given in the theorem is tight, as probabilistic lower bounds for exaff(n,F
t
3) are on

the order of
(

31−3−(1+o(1))t
)n

[11].

The argument of Fox and Pham over F3 is essentially the same as Bonin and Qin’s proof over F2. The

key ingredient to both is supersaturation of affine lines, which is trivial over F2 and highly non-trivial over

F3. We include this argument here in a more general form in Section 4. We also give a new proof of these

results which additionally asserts a strong form of supersaturation, giving a quantitative improvement to a

supersaturation result of Gijswijt [16] for certain affine configurations.

Our supersaturation results arise naturally from counting affine homomorphisms which are maps preserving

affine configurations. (See Section 2 for details of the notation and terminology used here). We use homaff(B,A)

to denote the number of affine homomorphisms B → A. We say that an affine configuration B ¦ F
m
q is

C-weakly Sidorenko if, for any A ¦ F
n
q of density ³,

homaff(B,A) g ³CN rankaff (B),

where N := qn. By taking A to be a p-random subset of Fn
q for some fixed p ∈ (0, 1), we see that B cannot

be C-weakly Sidorenko for C < |B|. In the case that B is C-weakly Sidorenko with C = |B|, we simply say

that B is Sidorenko; that is, B is Sidorenko if

homaff(B,A) g ³|B|N rankaff (B)

for any A ¦ F
n
q of density ³, with N := qn.

The notion of Sidorenko affine configurations originates from Saad and Wolf [26], who gave an equivalent

definition in the language of linear forms. They proved that an affine configuration {x1, . . . , xk} with a single

relation
∑k

i=1 ¼ixi = 0 is Sidorenko whenever the coefficients ¼i can be partitioned into zero-sum pairs. They

conjectured that these are the only affine configurations with a single relation which are Sidorenko. Fox,

Pham, and Zhao showed that the conjecture is true in spirit, but in reality the correct statement is that

{x1, . . . , xk} with a single relation
∑k

i=1 ¼ixi = 0 is Sidorenko if and only if the nonzero coefficients ¼i can

be partitioned into zero-sum pairs [12]. In particular, these results tell us that for each k g 2, the circuit of

length 2k over F2, which we define to be the affine configuration C2k := {0, e1, . . . , e2k−2,
∑2k−2

i=1 ei} ¦ F
2k−2
2 ,

where e1, . . . , e2k−2 are the standard basis vectors in F
2k−2
2 , is Sidorenko. We also have trivially that F1

2 is

Sidorenko, as is any affinely independent affine configuration over any finite field. It is unknown whether

there exist affine configurations over F2 which are not Sidorenko. Over F3, Fox and Pham [11] pointed out

that a result of Fox and Lovász [10] implies that for C0 ≈ 13.901, for any affine configuration A ¦ F
n
3 of size

³N , where N := 3n, there are at least ³C0N2 triples in A3 of the form (x, x+ d, x+ 2d). In other words, F1
3
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is C0-weakly Sidorenko. It is unclear whether or not F1
3 is C-weakly Sidorenko for some C < C0. What we

can say is that known lower bounds on exaff(n,F
1
3) by Tyrell [32] imply that F1

3 is not C-weakly Sidorenko

for any C < 4.63. We summarize these for future reference in the following lemma.

Lemma 1.10. Let Ã2 := 2 and Ã3 := C0 ≈ 13.901 as in Theorem 1.9.

(a) F
1
2 is Ã2-weakly Sidorenko and hence Sidorenko.

(b) For each k g 2, C2k ¦ F
2k−2
2 is Sidorenko.

(c) F
1
3 is Ã3-weakly Sidorenko.

We make the following simple observation which allows us to construct new weakly Sidorenko affine

configurations from old ones, which we prove in Section 3.

Theorem 1.11. Suppose that B1 ¦ F
m1
q is C1-weakly Sidorenko and B2 ¦ F

m2
q is C2-weakly Sidorenko.

Then B1 ×B2 is C1C2-weakly Sidorenko. In particular, if B1 and B2 are both Sidorenko, then so is B1 ×B2.

Recently, some attention has been given to classifying Sidorenko affine configurations, usually motivated

by Ramsey multiplicity problems in additive settings. In addition to the work of [26] and [12] already

mentioned, Kamčev, Liebenau, and Morrison proved that affine configurations admitting a certain type of

tree-like structure are Sidorenko [21]. They additionally gave a necessary condition for an affine configuration

to be Sidorenko, which always holds trivially over F2. Altman defined a local weakening of the Sidorenko

property and described a particular family of affine configurations (none over F2) which are not Sidorenko [3].

See [4], [7], [20], [22], [33], and [34] for further work in the area.

We now give a vector space analogue of Sidorenko’s Conjecture [29] on graph homomorphisms, which

says that for any bipartite graph H on v vertices with e edges, and any graph G with N vertices and ³N2/2

edges, the number of homomorphisms from H to G is at least ³eNv.

Conjecture 1.12. Every affine configuration over F2 is Sidorenko.

It is not hard to check that F1
q is not Sidorenko for any q > 2, so the conjecture only makes sense over

F2. We also note that for q ∈ {2, 3}, every affine configuration is C-weakly Sidorenko for some C. Indeed, if

B ¦ F
n
q has affine rank r, then we can embed B into F

r−1
q , which is Ãr−1

q -weakly Sidorenko by Lemma 1.10

and Theorem 1.11, with Ãq as in Lemma 1.10. It follows that B is Ãr−1
q -weakly Sidorenko as well. We ask if

the same holds for general q.

Question 1.13. Is every affine configuration over any finite field C-weakly Sidorenko for some C?

By Theorem 1.11, this is equivalent to asking if for every prime power q, there exists Ãq such that F1
q is

Ãq-weakly Sidorenko.

2 Preliminaries

The objects we consider are subsets of finite-dimensional vector spaces over a fixed finite field Fq. Such a

subset A ¦ F
n
q has linear structure as well as affine structure, which we define precisely below. Depending on

which type of structure we are considering, we call A a linear configuration or an affine configuration.
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A linear relation onA = {x1, . . . , xk} ¦ F
n
q is an equation of the form

∑k
i=1 ¼ixi = 0, where ¼1, . . . , ¼k ∈ Fq.

If, in addition, we have
∑k

i=1 ¼i = 0, then the relation is called affine. The relation is trivial if each ¼i = 0.

If A has no nontrivial affine relations, then A is called affinely independent. A maximal affinely independent

subset of A is called an affine basis for A. The size of any affine basis for A is an invariant of A, called its

affine rank, which we denote by rankaff(A).

Given two configurations A ¦ F
n
q and B ¦ F

m
q , a function φ : B → A is an affine homomorphism if

φ preserves affine relations; that is, for any ¼1, . . . , ¼k ∈ Fq and x1, . . . , xk ∈ B with
∑k

i=1 ¼i = 0 and
∑k

i=1 ¼ixi = 0, we have
∑k

i=1 ¼iφ (xi) = 0. Equivalently, φ is an affine homomorphism if φ extends to an

affine map F
m
q → F

n
q . We say that a homomorphism φ : B → A is an isomorphism if φ is bijective and φ−1 is

a homomorphism. If B = A, we call φ an automorphism of B, the set of which we denote by Autaff(B). The

affine isomorphism class of A ¦ F
n
q is called its affine structure. A homomorphism φ which is an isomorphism

onto its image is called non-degenerate, which means that φ is injective and preserves relations as well as

non-relations.

Each of the affine notions above has a naturally-defined linear counterpart by considering linear relations

instead of affine relations. In particular, the linear structure of A ¦ F
n
q is its linear isomorphism class, which

characterizes the linear relations and non-relations among elements of A. We denote the linear rank of A by

rank(A).

We say that A ¦ F
n
q contains an affine copy of B ¦ F

m
q if there is a non-degenerate affine homomorphism

B → A. If B = {Bi}i∈I is a family of affine configurations Bi ¦ F
mi
q , we say that A is B-free if A contains no

affine copy of any Bi. The largest size exaff(n,B) of an affine B-free subset of Fn
q is called the n-th affine

extremal number of B. If B = {B}, we write exaff(n, {B}) = exaff(n,B).

For A ¦ F
n
q and B ¦ F

m
q , define the product of A and B to be the set

A×B := {(x, y) ∈ F
n+m
q : x ∈ A, y ∈ B}.

The affine and linear structures of A×B are determined by the respective affine and linear structures of A

and B.

For A ¦ F
n
q , define the direction set of A to be the set

A→ := {d ∈ F
n
q : there exists x ∈ F

n
q such that x+ ¼d ∈ A for all ¼ ∈ Fq}.

Note that for q = 2, A→ is just the sumset A+A = {x+ y : x, y ∈ A}. Also note that the linear structure of

A→ is entirely determined by the affine structure of A since, for any x ∈ F
n
q , the translate A + x has the

same direction set as A does, and any linear isomorphism applied to A will also preserve the linear structure

of A→. Additionally, it should be clear from the definitions that for any A ¦ F
n
q , B ¦ F

m
q , we have

(A×B)→ = A→ ×B→.

We define a few more linear and affine invariants. For nonempty A ¦ F
n
q , let É(A) denote the dimension

of the largest linear subspace of Fn
q contained in A ∪ {0}. Define É→(A) := É(A→), which is determined by

the affine structure of A. Let Éaff(A) denote the dimension of the largest affine subspace of Fn
q contained in
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Figure 1: Example showing the product of configurations A ¦ F
3
2 and B ¦ F

2
2.

A. We also have

É(A) f Éaff(A) f É→(A)

since any linear subspace is an affine subspace, and the direction set of any affine subspace is a linear subspace

of the same dimension. The following proposition shows that these invariants interact well with the product

operation. Part (b) will be especially useful for our purposes.

Proposition 2.1. Let A ¦ F
n
q and B ¦ F

m
q be nonempty. Then we have the following.

(a) If 0 ∈ A and 0 ∈ B, then É(A×B) = É(A) + É(B).

(b) É→(A×B) = É→(A) + É→(B).

(c) Éaff(A×B) = Éaff(A) + Éaff(B).

(d) If 0 ∈ A and 0 ∈ B, then rank(A×B) = rank(A) + rank(B).

(e) rankaff(A×B) = rankaff(A) + rankaff(B)− 1.

Proof. We first prove (a). Let k = É(A) and ℓ = É(B). Since A contains a linear copy of Fk
q and B contains

a linear copy of Fℓ
q, A×B contains a linear copy of Fk

q × F
ℓ
q = F

k+ℓ
q . Thus É(A×B) g k + ℓ.

Conversely, suppose that W is a linear subspace in A × B with basis {(x1, y1), . . . , (xt, yt)}, with t =

É(A × B). Then span{x1, . . . , xt} ¦ A and span{y1, . . . , yt} ¦ B, which means that rank{x1, . . . , xt} f k

and rank{y1, . . . , yt} f ℓ. Now W is contained in the f k + ℓ dimensional subspace of Fn+m
q spanned by
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(x1, 0), . . . , (xt, 0), (0, y1), . . . , (0, yt), so

É(A×B) = dimW f k + ℓ.

Part (b) now follows. Since 0 ∈ A→ and 0 ∈ B→, we have by part (a) that

É((A×B)→) = É(A→ ×B→) = É(A→) + É(B→).

Now we prove (c). First, let U be an affine space in A of dimension Éaff(A), and let W be an affine space

in B of dimension Éaff(B). Let x ∈ U and y ∈ W . By translating A by −x and B by −y, we may assume

that 0 ∈ A and that Éaff(A) = É(A), and also that 0 ∈ B and that Éaff(B) = É(B). Now by part (a),

Éaff(A×B) g É(A×B) = É(A) + É(B) = Éaff(A) + Éaff(B).

Conversely, let V be an affine space in A×B of dimension Éaff(A×B), and let z′ = (x′, y′) ∈ V . Then

x′ ∈ A and y′ ∈ B, so by translating A by −x′ and B by −y′, we can assume that 0 ∈ A, that 0 ∈ B, and

that V is a linear space in A×B. Thus by part (a),

Éaff(A×B) = É(A×B) = É(A) + É(B) f Éaff(A) + Éaff(B).

For part (d), note that, given a linear basis {x1, . . . , xk} for A and a linear basis {y1, . . . , yℓ} for B, the

set {(x1, 0), . . . , (xk, 0), (0, y1), . . . , (0, yℓ)} is a linear basis for A×B.

Finally, we consider part (e). By translating, we can assume 0 ∈ A and 0 ∈ B, which implies 0 ∈ A×B

as well. Then rank(A) = rankaff(A)− 1, since for any linear basis {x1, . . . , xk} for A, it is easily seen that

{x1, . . . , xk, 0} is an affine basis for A. Similarly, we have rank(B) = rankaff(B) − 1, and rank(A × B) =

rankaff(A×B)− 1. Now by part (d), we have

rankaff(A×B) = rank(A×B) + 1

= rank(A) + rank(B) + 1

= rankaff(A)− 1 + rankaff(B)− 1 + 1

= rankaff(A) + rankaff(B)− 1.

3 Homomorphic Supersaturation

We first prove a simple lemma that shows that the number of degenerate affine homomorphisms B → A is

small compared to the total number of affine homomorphisms B → A.

Lemma 3.1. Let B ¦ F
m
q and A ¦ F

n
q be affine configurations, with B nonempty. Write r = rankaff(B) g 1,

N = qn, and |A| = ³N . Then the number of degenerate affine homomorphisms B → A is less than (q³N)r−1.

Proof. If {x0, . . . , xr−1} is an affine basis for B, then an affine homomorphism f : B → A is degenerate iff

{f(x0), . . . , f(xr−1)} ¦ A is affinely dependent. There are (qr−1 − 1)/(q− 1) < qr−1 possible nontrivial affine

relations among the r elements f(x0), . . . , f(xr−1), up to scaling, each of the form
∑r−1

i=0 ¼if(xi) = 0, with
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∑r−1
i=0 ¼i = 0 and some ¼i ̸= 0. Once such a relation is established, then the entire function f is determined

by the values it takes on {x0, . . . , xr−1} \ {xi}, so there are at most (³N)r−1 such f ’s with the given relation.

Altogether, this gives the desired count.

We now show that the property of B being C-weakly Sidorenko immediately gives an upper bound on the

extremal number of B, and that affine configurations larger than the given bound have supersaturation of

affine copies of B. In particular, when B is Sidorenko, we have the strongest possible form of supersaturation of

copies of B for affine configurations A ¦ F
n
q above a certain threshold, namely the same number asymptotically

as a p-random subset of Fn
q with p = |A|/qn.

Lemma 3.2. Let B ¦ F
m
q be C-weakly Sidorenko, with rankaff(B) =: r g 1. Then for every n,

exaff(n,B) < qn−(n−r+1)/(C−r+1).

Moreover, if A ¦ F
n
q with |A| = Dq(1−1/(C−r+1))n for some D > 0, then A contains more than

(

1−
qr−1

DC−r+1

)

³CNr

|Autaff(B)|

subsets affinely isomorphic to B, where N = qn and |A| = ³N .

Proof. We prove the supersaturation result first. If A ¦ F
n
q has |A| = Dq(1−1/(C−r+1))n, then by Lemma 3.1,

the number of degenerate affine homomorphisms B → A is less than

(q³N)r−1 =
qr−1

DC−r+1
³CNr.

Since B is C-weakly Sidorenko, we have more than

(

1−
qr−1

DC−r+1

)

³CNr

non-degenerate affine homomorphisms B → A. For each subset B′ ¦ A which is affinely isomorphic to B,

there are exactly |Autaff(B)| non-degenerate affine homomorphisms mapping B onto B′, so we must have

more than
(

1−
qr−1

DC−r+1

)

³CNr

|Autaff(B)|

such subsets.

In particular, if

|A| g qn−(n−r+1)/(C−r+1),

then
qr−1

DC−r+1
f 1,

so A must contain an affine copy of B, giving our desired bound on exaff(n,B).

We now show that the property of being weakly Sidorenko is preserved under taking products.
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Proof of Theorem 1.11. Let A ¦ F
n
q be an affine configuration with density ³, and let N = qn. Fix respective

affine bases {x0, . . . , xr1−1} and {y0, . . . , yr2−1} for B1 and B2. For u = (u1, . . . , ur1−1) ∈ (Fn
q )

r1−1, we use

spanB1
(u) to denote the set

{

r1−1
∑

i=1

¼iui ∈ F
n
q : x0 +

r1−1
∑

i=1

¼i(xi − x0) ∈ B1

}

.

We similarly define

spanB2
(v) :=

{

r2−1
∑

i=1

¼ivi ∈ F
n
q : y0 +

r2−1
∑

i=1

¼i(yi − y0) ∈ B2

}

for v = (v1, . . . , vr2−1) ∈ (Fn
q )

r2−1, and we further define

Av := {z ∈ F
n
q : z + spanB2

(v) ¦ A}.

Note that

homaff(B1, A) = #
{

(z,u) ∈ F
n
q × (Fn

q )
r1−1 : z + spanB1

(u) ¦ A
}

;

homaff(B2, A) = #
{

(z,v) ∈ F
n
q × (Fn

q )
r2−1 : z + spanB2

(v) ¦ A
}

.

We can thus express homaff(B1 ×B2, A) as

homaff(B1 ×B2, A) = #
{

(z,u,v) ∈ F
n
q × (Fn

q )
r1−1 × (Fn

q )
r2−1 : z + spanB1

(u) + spanB2
(v) ¦ A

}

= #
{

(z,u,v) ∈ F
n
q × (Fn

q )
r1−1 × (Fn

q )
r2−1 : z + spanB1

(u) ¦ Av

}

=
∑

v∈(Fn
q )

r2−1

#
{

(z,u) ∈ F
n
q × (Fn

q )
r1−1 : z + spanB1

(u) ¦ Av

}

=
∑

v∈(Fn
q )

r2−1

homaff(B1, Av).

Since B1 is C1-weakly Sidorenko, this is at least

∑

v∈(Fn
q )

r2−1

(

|Av|

N

)C1

Nr1 = Nr1−C1

∑

v∈(Fn
q )

r2−1

|Av|
C1

g Nr1−C1Nr2−1





1

Nr2−1

∑

v∈(Fn
q )

r2−1

|Av|





C1

10



by Jensen’s inequality. Since B2 is C2-weakly Sidorenko, and
∑

v∈(Fn
q )

r2−1 |Av| = homaff(B2, A), we have

homaff(B1 ×B2, A) g Nr1−C1Nr2−1

(

1

Nr2−1
homaff(B2, A)

)C1

g Nr1−C1Nr2−1
(

³C2N
)C1

= ³C1C2Nr1+r2−1.

By Proposition 2.1, rankaff(B1×B2) = r1+r2−1, so this is our desired bound, and the proof is complete.

4 Unified Proofs of Theorem 1.8 and Theorem 1.9

The following is the same argument used in [5] and [11], but stated in our language in a unified and generalized

way. For an affine configuration B and a family F of affine configurations, we use B ×F to denote the family

{B × F : F ∈ F}.

Lemma 4.1. Let B ¦ F
m
q with r := rankaff(B) g 1, and let F be any family of affine configurations.

Let n g r g 1, N = qn, and exaff(n,B × F) = ³N , and let c(B, n, ³) denote the minimum number of

non-degenerate affine homomorphisms B → A for an affine configuration A ¦ F
n
q of density ³. Then

c(B, n, ³) f qr−1Nr−1exaff(n− r + 1,F).

Proof. Let A ¦ F
n
q be affine (B × F)-free with density ³. Let S be the set of non-degenerate affine

homomorphisms B → A, which has size at least c(B, n, ³) by assumption. Fix an affine basis {x0, . . . , xr−1}

for B. For each f ∈ S and for each 1 f i f r − 1, define ui(f) := f(xi)− f(x0), and define

u(f) := (u1(f), . . . , ur−1(f)).

Note that the components of u(f) are linearly independent elements of F
n
q since f is non-degenerate.

For each ordered (r − 1)-tuple u = (u1, . . . , ur−1) ∈ (Fn
q )

r−1 with linearly independent components, let

Su = {f ∈ S : u(f) = u}. By the Pigeonhole Principle, there exists some u = (u1, . . . , ur−1) with

|Su| g
c(B, n, ³)

Nr−1
.

Now we choose a linear subspace Wu ¦ F
n
q of codimension r− 1 with F

n
q = Wu · span{u1, . . . , ur−1}. We

take W
(1)
u , . . . ,W

(qr−1)
u to be the distinct translates of Wu, and for each 1 f j f qr−1, we define

S(j)
u

= {f ∈ Su : f(x0) ∈ W (j)
u

}.

Again, by the Pigeonhole Principle, there exists some j with

|S(j)
u

| g
c(B, n, ³)

qr−1Nr−1
.

11



We now define

A(j)
u

=
{

f(x0) : f ∈ S(j)
u

}

¦ W (j)
u

.

Note that the map S
(j)
u → A

(j)
u given by f 7→ f(x0) is a bijection with inverse

y 7→

[

f(xi) =

{

y if i = 0

y + ui otherwise

]

.

In particular,

|A(j)
u

| g
c(B, n, ³)

qr−1Nr−1
.

On the other hand, if we have an affine copy F ′ of some member F ∈ F in A
(j)
u , then

G :=
{

f(x) : x ∈ B, f ∈ S(j)
u

, f(x0) ∈ F ′
}

is an affine copy of B × F ∈ B ×F in A, contrary to assumption. Thus A
(j)
u ¦ W

(j)
u is F-free, so we have

c(B, n, ³)

qr−1Nr−1
f |A(j)

u
| f exaff(n− r + 1,F).

We now apply Lemma 4.1 iteratively to recover the results of Bonin-Qin and Fox-Pham.

Proof of Theorem 1.8 and Theorem 1.9. For q ∈ {2, 3}, let Ãq be as in Lemma 1.10. We will prove by

induction on t that for all n g t,

exaff(n,F
t
q) < qn−n/((Ãq−1)Ãt−1

q )+2. (1)

For t = 1, let N = qn, and let A ¦ F
n
q be F1

q-free of size ³N = exaff(n,F
1
q). By Lemma 1.10, there are at least

³ÃqN2 affine homomorphisms F1
q → A, all of which are degenerate since A is F1

q-free. But the degenerate

affine homomorphisms F1
q → A are precisely the constant maps, so we have ³ÃqN2 f ³N, and hence

³N f N1−1/(Ãq−1).

Now assume t g 2. Let N = qn, let exaff(n,F
t
q) = ³N , and let A ¦ F

t
q be an affine configuration of

density ³. Again, by Lemma 1.10, there are at least ³ÃqN2 − ³N non-degenerate affine homomorphisms

F
1
q → A. Therefore, by Lemma 4.1, with B = F

1
q, F = {Ft−1

q }, and c(B, n, ³) g ³ÃqN2 − ³N , we have

³ÃqN2 − ³N f qNexaff(n− 1,Ft−1
q ).

By the inductive hypothesis, this gives

³ÃqN2 − ³N < qNqn−1−(n−1)/((Ãq−1)Ãt−2
q )+2 = q2+1/((Ãq−1)Ãt−2

q )N2−1/((Ãq−1)Ãt−2
q ).

12



We can assume that ³ÃqN2 g 2³N , as otherwise the claim holds already. Now we have

1

2
³ÃqN2 < q2+1/((Ãq−1)Ãt−2

q )N2−1/((Ãq−1)Ãt−2
q ),

and hence

³N <
(

2q2+1/((Ãq−1)Ãt−2
q )

)1/Ãq

N1−1/((Ãq−1)Ãt−1
q ) f q2N1−1/((Ãq−1)Ãt−1

q ).

We observe that our supersaturation results from Section 3 give an alternative proof of Theorems 1.8

and 1.9. This method additionally establishes a strong supersaturation result for affine subspaces of Fq for

q ∈ {2, 3}.

Theorem 4.2. For q ∈ {2, 3}, let Ãq be as in the statement of Lemma 1.10, and let t g 0. Then for any n,

exaff(n,F
t
q) < qn−(n−t)/(Ãt

q−t).

Moreover, if A ¦ F
n
q with |A| = Dq(1−1/(Ãt

q−t))n for some D > 0, then A contains more than

(

1−
qt

DÃt
q−t

)

³Ãt
qN t+1

|Autaff(Ft
q)|

affine t-spaces, where N = qn and |A| = ³N .

Proof. The claim is simply a special case of Lemma 3.2. By Lemma 1.10, F1
q is Ãq-weakly Sidorenko, so by

Theorem 1.11, Ft
q is Ãt

q-weakly Sidorenko, with rankaff(F
t
q) = t+ 1.

We take a moment to compare our supersaturation results to a supersaturation result of Gijswijt ([16]

Proposition 22). His result applies to any affine configuration B ¦ F
m
q whose n-th affine extremal number

is bounded above by (q1−¶)n for some constant ¶ > 0. He proves that affine configurations in F
n
q with

density ³ k q−¶n have Ω(³(r−1+2¶)/¶Nr) affine copies of B, where r = rankaff(B) and N = qn. Our result

Lemma 3.2 improves this count to Ω(³(¶(r−1)+1)/¶Nr) affine copies of B when B is C-weakly Sidorenko and

we take ¶ = 1/(C − r + 1). In particular, for q ∈ {2, 3}, Gijswijt’s result guarantees only ³(1+o(1))tÃt
qN t+1

affine t-spaces when |A| is above the Bonin-Qin threshold (for q = 2) or Fox-Pham threshold (for q = 3). Now

Theorem 4.2 improves this to Ω(³Ãt
qN t+1) affine t-spaces, which is tight for q = 2 by considering a random

affine configuration of density ³.

5 Proof of Theorem 1.3

We first prove a general upper bound for the two-color Ramsey number Rq(s, t) for q ∈ {2, 3}, from which

Theorem 1.3 is easily derived. The proof uses nothing more than Theorem 1.7 and our explicit forms of

Theorem 1.8 and Theorem 1.9 for bounds on exaff(n,F
t
q).

Theorem 5.1. For q ∈ {2, 3}, let Ãq be as in Lemma 1.10. For any t g s g 2, Rq(s, t) is at most a tower of

height s of the form

Rq(s, t) f Ã
Ã

. .
.
σ2t
q

q

q .
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Proof. We induct on s for fixed t. Clearly, we have Rq(1, t) = t. Now for s g 2, let r = Rq(s− 1, t), and let

n = tÃr
q . Suppose we have a projectively determined red-blue coloring of Fn

q \ {0} with red set R and blue set

B satisfying É(R) < s and É(B) < t. By Theorem 1.7, the fact that É(B) < t implies that |R| g qn−t+1 − 1,

with equality if and only if R ∪ {0} is a linear (n− t+ 1)-space. But É(R) < s f n− t+ 1, so we must have

|R| g qn−t+1. Also, by Theorem 4.2,

exaff(n,F
r
q) f qn−(n−r)/(Ãr

q−r) f qn−n/Ãr
q = qn−t < |R|,

so R contains an affine r-space A. Note that 0 /∈ A since 0 /∈ R. Let W be the translate of A containing 0,

which is a linear r-space. Then by our choice of r and because we’ve assumed É(B) < t, there exists a linear

(s− 1)-space U ′ ¦ W with U ′ \ {0} entirely red. Now because the coloring is projectively determined, for any

u ∈ A and ¼ ∈ Fq \ {0}, the set W + ¼u = ¼A is entirely red. But then U := span{U ′, u} is a linear s-space

contained in U ′ ∪
⋃

¼∈Fq\{0}
¼A, so U \ {0} is entirely red, a contradiction. Thus

Rq(s, t) f n = tÃr
q .

By induction, Rq(s, t) is at most a tower of height s of the form

Rq(s, t) f tÃ
tÃ

. .
.
tσt

q

q

q .

To obtain the friendlier-looking bound stated in the theorem, it suffices to show that log(s−1)
Ãq

(Rq(s, t)) f 2t,

where log
(k)
b (x) denotes the k-th iterated logarithm (to base b) of x, defined by

log
(k)
b (x) :=















x if k = 0,

logb

(

log
(k−1)
b (x)

)

if k g 1 and log
(k−1)
b (x) > 0,

−∞ if k g 1 and log
(k−1)
b (x) f 0.

First note that

logÃq
(Rq(s, t)) f logÃq



tÃ
tÃ

. .
.
tσt

q

q

q



 = logÃq
t+ tÃ

tÃ
. .

.
tσt

q

q

q f 2tÃ
tÃ

. .
.
tσt

q

q

q ,

where the height of the tower on the right is s− 1. Now applying the logarithm again gives

log(2)Ãq
(Rq(s, t)) f logÃq

(2t) + tÃ
tÃ

. .
.
tσt

q

q

q f 2tÃ
tÃ

. .
.
tσt

q

q

q ,

where the height is now s− 2. Continuing in this fashion, we obtain log(s−2)
Ãq

(Rq(s, t)) f 2tÃt
q, and thus

log(s−1)
Ãq

(Rq(s, t)) f logÃq
(2t) + t f 2t

since t g 2.
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Proof of Theorem 1.3. For q ∈ {2, 3}, let Ãq be as in Lemma 1.10. We induct on k. The base case k = 2 is

given by Theorem 5.1.

For k g 3, we use the simple recurrence

Rq(t1, . . . , tk) f Rq(t1, . . . , tk−2, Rq(tk−1, tk)).

Indeed, consider a partition F
n
q \ {0} = B1 ∪ · · · ∪Bk with n = Rq(t1, . . . , tk−2, Rq(tk−1, tk)), where each set

Bi is projectively determined. If É(Bi) < ti for all i f k− 2, then we must have É(Bk−1 ∪Bk) g Rq(tk−1, tk),

and so É(Bi) g ti for some i g k − 1.

With this observation, we obtain by the inductive hypothesis that

Rq(t1, . . . , tk) f Rq(t1, . . . , tk−2, Rq(tk−1, tk)) f Ã
Ã

. .
.
σ
3Rq(tk−1,tk)
q

q

q ,

where the height of the tower is
∑k−2

i=1 (ti − 1) + 1. Now by Theorem 5.1,

log(tk−1−1)
Ãq

(Rq(tk−1, tk)) f 2tk,

which implies

log(tk−1−1)
Ãq

(3Rq(tk−1, tk)) f 2tk + logÃq
3 f 3tk

since tk g 2. This completes the inductive step.

6 A Reformulation of Rq(2, t)

We now reformulate the off-diagonal Ramsey problem as an affine extremal problem. We look at the F2 case

first for the sake of exposition. Consider the sumset of A ¦ F
n
2 , defined as

A+A := {x+ y : x, y ∈ A},

and let m2(t) be the minimum n such that every set A ¦ F
n
2 of size at least 2n−t+1 satisfies É(A+A) g t;

that is, A+ A contains a linear t-space. Nelson and Nomoto [23] observed that m2(t) is an upper bound

for R2(2, t) for all t g 2 (see Lemma 6.2 for the argument). One way to bound m2(t) from above is via the

following theorem of Sanders [27].

Theorem 6.1 (Sanders). Let A be a subset of Fn
2 of density ³ < 1/2. Then

É(A+A) g n−

⌈

n/ log2
2− 2³

1− 2³

⌉

.

Taking ³ = 21−t and n = (t+ 1)2t, and noting that n−
⌈

n/ log2
2−2³
1−2³

⌉

g ³n/2− 1 = t for this choice of

parameters, Theorem 6.1 gives m2(t) f n. This is how Theorem 1.4 is proved in [23].

Alternatively, we can take an affine extremal approach to bound m2(t), based on the simple observation

that É(A+A) g t if and only if A contains an affine copy B′ of some affine configuration B with É(B+B) g t.
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Indeed, as noted in Section 2, É(B + B) = É→(B) is entirely determined by the affine structure of B, so

É(B′ +B′) = É(B +B). Therefore, if we define

Bt
2 := {B ¦ F

m
2 : m g 1, É(B +B) g t},

then we have the alternative description of m2(t) as the minimum n such that exaff(n,B
t
2) < 2n−t+1. We

see that this is finite by Theorem 1.6, and in fact, Theorem 1.8 immediately implies an improvement of

Theorem 1.4 by a constant factor. Note that any set A which properly contains an affine (t− 1)-space has

É(A+A) g t, so using the explicit bound in (1), we have

exaff(n,B
t
2) f exaff(n,F

t−1
2 ) < 2(1−22−t)n+2

for n g t. In particular, if n = (t+ 1)2t−2, then exaff(n,B
t
2) < 2n−t+1, so

R2(2, t) f m2(t) f (t+ 1)2t−2.

We obtain further improvements on R2(2, t) by finding better upper bounds for exaff(n,B
t
2).

More generally, we define for an arbitrary finite field Fq

Bt
q := {B ¦ F

m
q : m g 1, É→(B) g t},

and we define mq(t) to be the minimum n such that exaff(n,B
t
q) < qn−t+1. Equivalently, mq(t) is the

minimum n such that É→(A) g t for every A ¦ F
n
q of size at least qn−t+1. We have the following.

Lemma 6.2. Let Fq be any finite field. Then Rq(2, t) f mq(t) for all t g 2.

Proof. Let n = mq(t). First, we show that n g t+ 1. Let H be a linear hyperplane in F
n
q , which satisfies

É→(H) = n− 1. Since |H| = qn−1 g qn−t+1, we have É→(H) g t by our choice of n.

Now suppose we have a projectively determined red-blue coloring of Fn
q \ {0} with red set R and blue set

B satisfying É(R) < 2 and É(B) < t. Since É(B) < t, we have by Theorem 1.7 that |R| g qn−t+1 − 1, with

equality iff R∪{0} is a linear (n− t+1)-space. But n− t+1 g 2 > É(R), so we can’t have equality, and hence

|R| g qn−t+1. By our choice of n, É→(R) g t > É(B), so there exists some nonzero d ∈ R→ \ B. That is,

d ∈ R→ ∩R. Let a ∈ R be such that a+¼d ∈ R for every ¼ ∈ Fq. Note that a and d are linearly independent

since 0 /∈ R. Therefore, since R is projectively determined, span{a, d} is a linear 2-space contained in R∪{0},

contradicting that É(R) < 2.

We can now use the machinery from Section 3 to prove Theorem 1.5.

Proof of Theorem 1.5. Let t g 1, and let k = +t/4,. Consider the affine configuration C6 ¦ F
4
2, defined prior

to Lemma 1.10. Suppose we have two pairs {x, y}, {x′, y′} ∈
(

C6

2

)

with x+ y = x′ + y′. Since every 4 distinct

elements of C6 are affinely independent, we must have that x, y, x′, y′ are not distinct. Then x = x′ without

loss of generality, which implies y = y′ as well. Thus we have
(

6
2

)

= 15 distinct nonzero sums x + y ∈ F
4
2

for x, y ∈ C6 with x ̸= y, which means that C6 + C6 = F
4
2, and we have É→(C6) = 4. By Proposition 2.1,
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É→(Ck
6 ) = 4k g t and rankaff(C

k
6 ) = 4k + 1. Recall that Bt

2 = {B : É→(B) g t}, so Ck
6 ∈ Bt

2. Furthermore,

by Lemma 1.10 and Theorem 1.11, Ck
6 is Sidorenko, so by Lemma 3.2,

exaff(n,B
t
2) f exaff(n,C

k
6 ) < 2n−(n−4k)/(6k−4k) = 2n−t+1

for n = (t− 1)(6k − 4k) + 4k. Thus

R2(2, t) f m2(t) f (t− 1)(6k − 4k) + 4k = O
(

t6t/4
)

by Lemma 6.2.

Similarly, since É→(Ft
3) = t, we have by Theorem 4.2 that

exaff(n,B
t
3) f exaff(n,F

t
3) < 2n−(n−t)/(Ct

0−t) = 2n−t+1

for n = (t− 1)(Ct
0 − t) + t, with C0 ≈ 13.901 as in Theorem 1.9. Thus

R3(2, t) f m3(t) f (t− 1)(Ct
0 − t) + t = O

(

tCt
0

)

by Lemma 6.2.

We remark that the constants implicit in the O(·) in our bounds for Theorem 1.5 are not optimized.

Bounding the extremal numbers of Bt
2 and Bt

3 via iterative application of Lemma 4.1 gives the best results,

but the computations are slightly more cumbersome.

We state a generalization of this argument, which can be used to further improve our off-diagonal Ramsey

bounds by establishing homomorphic supersaturation of affine configurations. Unfortunately, this technique

by itself can never give a subexponential bound for Rq(2, t). Indeed, for any affine configuration B ¦ F
m
q

with É→(B) g 1, the map f : B2 → F
m
q given by f(x, y) = y − x has B→ in its image so |B→| f |B|2. Also,

for any linear configuration A, we have |A| g qÉ(A), and hence

|B|1/É
→(B) g |B→|1/(2É

→(B)) g q1/2.

Thus the best possible upper bound that can come directly from Theorem 6.3 is Ω
(

tqt/2
)

.

Theorem 6.3. Suppose that B ¦ F
m
q is C-weakly Sidorenko, and let p = É→(B) g 1. Then as t → ∞,

Rq(2, t) = O
(

tCt/p
)

.

Proof. Let n g t g 2, and let k = +t/p, and r = rankaff(B). By Theorem 1.11 and Proposition 2.1, Bk is

Ck-weakly Sidorenko with É→(Bk) = kp g t and rankaff(B
k) = (r − 1)k + 1. Therefore, by Lemma 3.2,

exaff(n,B
t
q) f exaff(n,B

k) < qn−(n−(r−1)k)/(Ck−(r−1)k)

If we take

n = (t− 1)(Ck − (r − 1)k) + (r − 1)k = O(tCt/p),
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then exaff(n,B
t
q) < qn−t+1. By Lemma 6.2, Rq(2, t) f mq(t) f n.

7 Concluding Remarks

We believe mq(t) = min{n : exaff(n,B
t
q) < qn−t+1} to be polynomial in t for all q, which would imply that

Rq(2, t) is also polynomial by Lemma 6.2. For q = 2, this was asked by Peter Nelson [1] in the second Barbados

graph theory workshop 2022 (Problem 17), and this remains open. For q ≠ 2, 3, it is unknown whether

mq(t) is even bounded by an exponential function. Such a bound would follow immediately from exponential

improvements on the affine extremal number of F
1
q by Lemma 4.1, combined with the aforementioned

supersaturation result of Gijswijt ([16], Proposition 22). In particular, if it is true that exaff(n,F
1
q) f (q1−¶)n

for some ¶ > 0, then we immediately obtain

Rq(2, t) f mq(t) = O
(

t(2 + 1/¶)t
)

.

It is also worth mentioning the natural relationship of affine extremal numbers to affine Ramsey numbers.

We use Raffq(t1, . . . , tk) to denote the minimum n such that for every k-coloring f : Fn
q → [k] of the points

of Fn
q , there exist i ∈ [k] and an affine subspace U ¦ F

n
q of dimension ti, such that U is monochromatic in

color i. If t1 = · · · = tk = t, we write Raffq(t1, . . . , tk) = Raffq(t; k). Such Ramsey numbers clearly exist

by Theorem 1.6 since the majority color class, say color i, has size at least qn/k, which is greater than

exaff(n,F
ti
q ) for large n. In fact, any general upper bound for exaff(n,F

t
q) immediately implies upper bounds

for affine Ramsey numbers. For q ∈ {2, 3}, Theorems 1.8 and 1.9 give

Raffq(t; k) f (log2 k)Ã
t
q for all k g 2, t g 1;

Raffq(s, t) f (logq Ãq)(Ãq − 1)Ãs−1
q t for all s fixed, t large,

where Ãq is as in Lemma 1.10. Upper bounds on Hales-Jewett numbers (see [28], for example) also imply

upper bounds on affine Ramsey numbers for general q, though these are of a much larger order of growth.

For lower bounds, straightforward applications of the Lovász Local Lemma give the following:

Raffq(t; k) g (logq k)
qt

t
for all k fixed, t large;

Raffq(s, t) g

(

qs − 1

s
− o(1)

)

t for all s fixed, as t → ∞.

It would be interesting to see new methods develop for obtaining upper bounds on affine Ramsey numbers.
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