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Abstract

For B C Fy", the n-th affine extremal number of B is the maximum cardinality of a set A C Fy with
no subset which is affinely isomorphic to B. Furstenberg and Katznelson proved that for any B C F7", the
n-th affine extremal number of B is 0(q") as n — oo. By counting affine homomorphisms between subsets
of Fy, we derive new bounds and give new proofs of some previously known bounds for certain affine
extremal numbers. At the same time, we establish corresponding supersaturation results. We connect
these bounds to certain Ramsey-type numbers in vector spaces over finite fields. For s,t > 1, let Ry(s,t)
denote the minimum 7 such that in every red-blue coloring of the one-dimensional subspaces of Fy, there
is either a red s-dimensional subspace or a blue ¢-dimensional subspace of Fy. The existence of these
numbers is a special case of a well-known theorem of Graham, Leeb, Rothschild. We improve the best
known upper bounds on R2(2,t), R3(2,t), Ra2(t,t), and Rs(t,t).

1 Introduction

We consider bounds for Ramsey-type and Turan-type problems in the setting of vector spaces over finite
fields. In this paper, we use [ ] to denote the collection of all t-dimensional linear subspaces of a vector
space V. The following theorem is a special case of a classical theorem of Graham, Leeb, and Rothschild [17],

which establishes the existence of the Ramsey numbers we consider.

Theorem 1.1 (Graham, Leeb, Rothschild). Let F, be any finite field. For any positive integers t1,. .., tx,
there exists a minimum n =: Ry(t1,...,tx) such that for every k-coloring f : [FIZ} — [k] of the 1-dimensional

n

linear subspaces of Fy, there exist i € [k] and a linear subspace U C Fy of dimension t;, such that (] is

monochromatic in color i.

In the case t; = --- =t = t, we write Ry(t1,...,tr) = Ry(t; k). The bounds for R,(t1,...,t;) implied by
early proofs of Theorem 1.1 (see [17], [30]) are quite large due to repeated use of the Hales-Jewett Theorem
[19]. In the case ¢ = 2, the problem can be reduced to the disjoint unions problem for finite sets, considered
by Taylor [31], which gives the following bound.
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Theorem 1.2 (Taylor). The number Ry (t;k) is at most a tower of height 2k(t — 1) of the form
3

Ro(t;k) < k*°

For comparison, lower bounds for Ry (t; k) attained from applying the techniques from [2] such as the
Lovész Local Lemma to a uniform random coloring are only on the order of Q2 (2% log, k) .
We improve the bound of Theorem 1.2 by bringing the height of the tower down to (k — 1)(t — 1) + o(¢),

and we prove a corresponding bound over Fs.

Theorem 1.3. There exists a constant Cy ~ 13.901 such that for oo = 2 and o3 = Cy, the following
holds for g € {2,3}. For any k > 2 and any ti, > -+ > 11 > 2, Ry(t1,...,tk) is at most a tower of height
Zf;ll(ti — 1)+ 1 of the form

3t
.%q k

Ry(ty, ... tr) <oy

More recently, Nelson and Nomoto [23] considered the off-diagonal version of this problem over Fy with
two colors while investigating x-boundedness of certain classes of binary matroids, and they proved the

following bound.

Theorem 1.4 (Nelson, Nomoto). For every t > 2,
Ra(2,t) < (t+1)2%

In this case, standard probabilistic arguments give a lower bound for Ry(2,t) which is only linear in t.

Specifially, the Lovdsz Local Lemma gives Ro(2,t) > (2 — o(1))t as t — 0o, and more generally,

@’ —q

Rs,t)Z(—ol))t as t — 00
AN SV

for fixed g and s. Nelson and Nomoto asked if a subexponential upper bound is possible. While the answer to

that question remains to be seen, we provide the following exponential improvement for Rs(2,t) and similarly

give the first exponential upper bound for R3(2,t).

Theorem 1.5. There exists a constant Cy =~ 13.901 such that as t — o,

Ry(2,1) = O(t6"4);
R3(2,t) = O(tCY).

These improved bounds come from some simple observations about affine extremal numbers and their
supersaturation properties, which are analogous to bipartite Turdn numbers in graph theory. The n-th affine
extremal number of a family B of affine configurations {B; C ]F;"i}ie 1, denoted ex,g(n, B), is the maximum
size of a subset A C F with no affine copy of any B; (see Section 2 for a more complete definition). The
asymptotic study of affine extremal numbers dates back at least to the following theorem of Furstenberg and
Katznelson [13].



Theorem 1.6 (Furstenberg, Katznelson). Let Fy be any finite field. For anyt >0,
exagt (n, Fy) = o(q") as n — oo.

Since any B-free set is Ffz—free for some ¢, Theorem 1.6 says that affine extremal numbers are always o(g™).
Furstenberg and Katznelson went on to prove a density version of the Hales-Jewett Theorem [14], from which
Theorem 1.6 is immediate. Alternative proofs of these results can be found in [25] and [24], respectively.

The projective version of this problem is even older, beginning with the following result of Bose and
Burton [6].

Theorem 1.7 (Bose, Burton). Let F, be a finite field, and let t > 1. Let A be a subset of [Flgl for which
there is no linear t-dimensional subspace U C E’; with [({] C A. Then
n n—t+1

9 —9q
[

)

with equality if and only if A = [Fll}] \ ['V'] for some linear (n — t + 1)-dimensional linear subspace W C F7.

Remark. Tt is sometimes convenient to identify a set A C [Flg] of projective points with a set A C Fy \ {0}
of vectors, given by
A=Je\{o})
le A
We call a set A of this form projectively determined. Similarly, we can identify any k-coloring of [Flﬂ with a
projectively determined k-coloring of Fy \ {0}, meaning that each color class is a projectively determined set
of vectors. Moving forward, we will work from the perspective of projectively determined sets and colorings

whenever we discuss results of a projective nature, such as Theorems 1.3, 1.5, and 1.7.

The problem of determining projective extremal numbers asymptotically for general projective configura-
tions over F, was almost entirely solved by Geelen and Nelson [15], who proved a theorem analogous to the
Erdés-Stone-Simonivits Theorem for graphs. Their theorem gives precise asymptotics for the extremal number
of any projective configuration, except for those which exclude a linear hyperplane, which are usually called
“affine”. Up to a constant factor, the projective extremal numbers of these “affine” projective configurations
reduce to affine extremal numbers of the type discussed in this paper. Therefore, what can be said of their
projective extremal numbers is that they are degenerate by Theorem 1.6, which is far from an asymptotic
determination, similar to the case of extremal numbers of bipartite graphs.

It is unknown in general (see [16], Open Problem 32) whether the o(¢"™) bound in Theorem 1.6 can be
taken to be of the form O ((¢*~°)") for some § = &(q,t) > 0. However, for ¢ = 2 and ¢ = 3, we have the

following respective results of Bonin and Qin [5], and of Fox and Pham [11].

Theorem 1.8 (Bonin, Qin). There exists an absolute constant ¢ such that for every t > 1, every subset of

F2 of size at least (2172 )" contains an affine t-space.

Theorem 1.9 (Fox, Pham). There exist absolute constants ¢ and Cy, with Cy = 13.901 such that for every

N
t > 1, every subset of Fy of size at least (31_600 t) contains an affine t-space.



The proof of Theorem 1.8 is entirely self-contained and is no more than a page. Theorem 1.9, on the other
hand, is the culmination of several breakthroughs related to the Cap Set Problem, starting with the advances
in polynomial methods from Croot, Lev, and Pach [8] and the subsequent proof of the Cap Set Theorem
by Ellenberg and Gijswijt [9], which says that ex,g(n,F}) < (3'7%)" for some § > 0. Fox and Lovész [10]
then used this result to give improved bounds on Green’s Arithmetic Triangle Removal Lemma [18]. Fox and
Pham observed that this improvement implies a supersaturation version of the Cap Set Theorem, from which
they derived Theorem 1.9, which is a multidimensional extension of the Cap Set Theorem. It is unknown
whether the constant Cj given in the theorem is tight, as probabilistic lower bounds for ex,g(n,F}) are on
the order of (31_37(1“(1)”)” [11].

The argument of Fox and Pham over Fj3 is essentially the same as Bonin and Qin’s proof over Fy. The
key ingredient to both is supersaturation of affine lines, which is trivial over Fy and highly non-trivial over
F3. We include this argument here in a more general form in Section 4. We also give a new proof of these
results which additionally asserts a strong form of supersaturation, giving a quantitative improvement to a
supersaturation result of Gijswijt [16] for certain affine configurations.

Our supersaturation results arise naturally from counting affine homomorphisms which are maps preserving
affine configurations. (See Section 2 for details of the notation and terminology used here). We use hom,g (B, A)
to denote the number of affine homomorphisms B — A. We say that an affine configuration B C F;" is

C-weakly Sidorenko if, for any A C IFZ of density «,
homaH(B, A) > 040]\7”“11%“(3)7

where N := ¢". By taking A to be a p-random subset of F for some fixed p € (0,1), we see that B cannot
be C-weakly Sidorenko for C' < |B|. In the case that B is C-weakly Sidorenko with C' = |B|, we simply say
that B is Sidorenko; that is, B is Sidorenko if

hom,g(B, A) > ol Bl yrankags (B)

for any A C Fy of density a, with N := ¢".

The notion of Sidorenko affine configurations originates from Saad and Wolf [26], who gave an equivalent
definition in the language of linear forms. They proved that an affine configuration {x1,...,xx} with a single
relation Zle Aix; = 0 is Sidorenko whenever the coefficients \; can be partitioned into zero-sum pairs. They
conjectured that these are the only affine configurations with a single relation which are Sidorenko. Fox,
Pham, and Zhao showed that the conjecture is true in spirit, but in reality the correct statement is that
{z1,...,z} with a single relation Zle Aix; = 0 is Sidorenko if and only if the nonzero coefficients \; can
be partitioned into zero-sum pairs [12]. In particular, these results tell us that for each k > 2, the circuit of
length 2k over Fg, which we define to be the affine configuration Cyy := {0, ey, ..., €22, Zfi;z e} C F%’“a
where eq,...,e,_o are the standard basis vectors in F%k_Q, is Sidorenko. We also have trivially that ]F% is
Sidorenko, as is any affinely independent affine configuration over any finite field. It is unknown whether
there exist affine configurations over Fo which are not Sidorenko. Over Fs, Fox and Pham [11] pointed out
that a result of Fox and Lovdsz [10] implies that for Cp = 13.901, for any affine configuration A C F¥ of size
aN, where N := 37, there are at least «©° N2 triples in A% of the form (x, 2 + d,z + 2d). In other words, Fi



is Cop-weakly Sidorenko. It is unclear whether or not F} is C-weakly Sidorenko for some C' < Cy. What we
can say is that known lower bounds on ex,g(n,Fi) by Tyrell [32] imply that F} is not C-weakly Sidorenko

for any C' < 4.63. We summarize these for future reference in the following lemma.
Lemma 1.10. Let 09 := 2 and o3 := Cy ~ 13.901 as in Theorem 1.9.

(a) F} is og-weakly Sidorenko and hence Sidorenko.

(b) For each k > 2, Coy C F%k_Q 15 Sidorenko.

(c) FL is o3-weakly Sidorenko.

We make the following simple observation which allows us to construct new weakly Sidorenko affine

configurations from old ones, which we prove in Section 3.

Theorem 1.11. Suppose that By C Fj" is C1-weakly Sidorenko and By C Fi*? is Cay-weakly Sidorenko.
Then B x By is C1Cy-weakly Sidorenko. In particular, if By and Bs are both Sidorenko, then so is By X Bs.

Recently, some attention has been given to classifying Sidorenko affine configurations, usually motivated
by Ramsey multiplicity problems in additive settings. In addition to the work of [26] and [12] already
mentioned, Kamcev, Liebenau, and Morrison proved that affine configurations admitting a certain type of
tree-like structure are Sidorenko [21]. They additionally gave a necessary condition for an affine configuration
to be Sidorenko, which always holds trivially over Fy. Altman defined a local weakening of the Sidorenko
property and described a particular family of affine configurations (none over Fy) which are not Sidorenko [3].
See [4], [7], [20], [22], [33], and [34] for further work in the area.

We now give a vector space analogue of Sidorenko’s Conjecture [29] on graph homomorphisms, which
says that for any bipartite graph H on v vertices with e edges, and any graph G with N vertices and a/N?/2

edges, the number of homomorphisms from H to G is at least a®N".
Conjecture 1.12. Every affine configuration over Fy is Sidorenko.

It is not hard to check that IE‘}] is not Sidorenko for any ¢ > 2, so the conjecture only makes sense over
F5. We also note that for ¢ € {2, 3}, every affine configuration is C-weakly Sidorenko for some C'. Indeed, if
B C Fy has affine rank r, then we can embed B into ]Fg_l7 which is ag_l—weakly Sidorenko by Lemma 1.10
and Theorem 1.11, with o4 as in Lemma 1.10. It follows that B is U,’J'_l—weakly Sidorenko as well. We ask if

the same holds for general q.
Question 1.13. Is every affine configuration over any finite field C-weakly Sidorenko for some C'?

By Theorem 1.11, this is equivalent to asking if for every prime power g, there exists o, such that IF; is

o4-weakly Sidorenko.

2 Preliminaries

The objects we consider are subsets of finite-dimensional vector spaces over a fixed finite field F,. Such a
subset A C Iy has linear structure as well as affine structure, which we define precisely below. Depending on

which type of structure we are considering, we call A a linear configuration or an affine configuration.



A linear relation on A = {x1,...,x;} C IF} is an equation of the form Zle Aix; =0, where Ay, ..., A\, € Fy.
If, in addition, we have Zle A; = 0, then the relation is called affine. The relation is trivial if each \; = 0.
If A has no nontrivial affine relations, then A is called affinely independent. A maximal affinely independent
subset of A is called an affine basis for A. The size of any affine basis for A is an invariant of A, called its
affine rank, which we denote by rank,g(A).

Given two configurations A C Fj and B C Fi*, a function ¢ : B — A is an affine homomorphism if
¢ preserves affine relations; that is, for any Aq,...,A\x € Fy and z1,...,2, € B with Zle A = 0 and
Zle Aiz; = 0, we have Zle Aiw (x;) = 0. Equivalently, ¢ is an affine homomorphism if ¢ extends to an
affine map Fy* — Fy. We say that a homomorphism ¢ : B — A is an isomorphism if ¢ is bijective and o lis
a homomorphism. If B = A, we call ¢ an automorphism of B, the set of which we denote by Aut.g(B). The
affine isomorphism class of A C Iy is called its affine structure. A homomorphism ¢ which is an isomorphism
onto its image is called non-degenerate, which means that ¢ is injective and preserves relations as well as
non-relations.

Each of the affine notions above has a naturally-defined linear counterpart by considering linear relations
instead of affine relations. In particular, the linear structure of A CFy is its linear isomorphism class, which
characterizes the linear relations and non-relations among elements of A. We denote the linear rank of A by
rank(A).

We say that A C Fy contains an affine copy of B C F;" if there is a non-degenerate affine homomorphism
B — A. 1f B = {B;}icr is a family of affine configurations B; C Fy**, we say that A is B-free if A contains no
affine copy of any B;. The largest size exag(n, B) of an affine B-free subset of Fy is called the n-th affine
extremal number of B. If B = {B}, we write exag(n, {B}) = exag(n, B).

For A C Fy and B C F}", define the product of A and B to be the set

AxB:={(z,y) eF}™™ 2 € A,y € B}.

The affine and linear structures of A x B are determined by the respective affine and linear structures of A
and B.
For A C IF‘Z}, define the direction set of A to be the set

A7 = {d € Fy : there exists x € F} such that x + Ad € A for all A € F}.

Note that for ¢ =2, A7 is just the sumset A+ A ={x +y: 2,y € A}. Also note that the linear structure of
A7 is entirely determined by the affine structure of A since, for any = € Fy, the translate A + z has the
same direction set as A does, and any linear isomorphism applied to A will also preserve the linear structure
of A~. Additionally, it should be clear from the definitions that for any A C IFZ‘, B C IF;”, we have

(AxB)? =A7 x B™.

We define a few more linear and affine invariants. For nonempty A C Fy, let w(A) denote the dimension
of the largest linear subspace of Fj contained in AU {0}. Define w™(A) := w(A™), which is determined by

the affine structure of A. Let wag(A) denote the dimension of the largest affine subspace of Fy contained in
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Figure 1: Example showing the product of configurations A C F3 and B C F3.
A. We also have
W(A) < wa(A) <w™(4)

since any linear subspace is an affine subspace, and the direction set of any affine subspace is a linear subspace
of the same dimension. The following proposition shows that these invariants interact well with the product

operation. Part (b) will be especially useful for our purposes.
Proposition 2.1. Let A CFy and B CFy* be nonempty. Then we have the following.
(a) If0 € A and 0 € B, then w(A x B) = w(A) + w(B).
(b)) w?(Ax B)=w(A)+w(B).
(c) waet(A X B) = wag(A) + wag(B).
(d) If 0 € A and 0 € B, then rank(A x B) = rank(A4) + rank(B).
(e) rank,g(A x B) = rank,g(A) + rank.g(B) — 1.

Proof. We first prove (a). Let k = w(A) and £ = w(B). Since A contains a linear copy of F¥ and B contains
a linear copy of F';, A x B contains a linear copy of F¥ x F! = FF*. Thus w(A x B) >k + (.

Conversely, suppose that W is a linear subspace in A x B with basis {(z1,41),..., (zt,y:)}, with ¢t =
w(A x B). Then span{zy,...,2:} € A and span{yi,...,y:} C B, which means that rank{z,...,2;} < k
and rank{y1,...,y:} < ¢. Now W is contained in the < k 4 ¢ dimensional subspace of FZL“"” spanned by



(21,0),...,(20),(0,y1),...,(0,9;), so
w(Ax B)=dimW <k +¢.
Part (b) now follows. Since 0 € A~ and 0 € B~, we have by part (a) that
Ww((AXx B)?)=w(A7 x B7)=w(A7) +w(B7).

Now we prove (c). First, let U be an affine space in A of dimension w,g(A), and let W be an affine space
in B of dimension w,g(B). Let z € U and y € W. By translating A by —z and B by —y, we may assume
that 0 € A and that wag(A4) = w(A4), and also that 0 € B and that w,g(B) = w(B). Now by part (a),

watt(A x B) > w(A x B) = w(A) + w(B) = wagr(A) + waer(B).

Conversely, let V be an affine space in A x B of dimension w,g(A X B), and let 2’ = (z/,3') € V. Then
7' € A and y' € B, so by translating A by —z’ and B by —y’, we can assume that 0 € A, that 0 € B, and
that V is a linear space in A x B. Thus by part (a),

waf(A X B) =w(A x B) = w(A) + w(B) < wag(A) + wag(B).

For part (d), note that, given a linear basis {x1,..., 2} for A and a linear basis {y1,...,y¢} for B, the
set {(z1,0),..., (2, 0),(0,y1),...,(0,y¢)} is a linear basis for A x B.

Finally, we consider part (e). By translating, we can assume 0 € A and 0 € B, which implies 0 € A x B
as well. Then rank(A) = rank,g(A) — 1, since for any linear basis {z1,..., 2} for A, it is easily seen that
{z1,...,2,0} is an affine basis for A. Similarly, we have rank(B) = rank,g(B) — 1, and rank(A x B) =
rank,s(A x B) — 1. Now by part (d), we have

rank,g(A x B) =rank(A x B) +1
= rank(A) + rank(B) + 1
= rank,g(A4) — 1 +rank.g(B) — 1+ 1
= rank,g(A) + rank.g(B) — 1. O

3 Homomorphic Supersaturation

We first prove a simple lemma that shows that the number of degenerate affine homomorphisms B — A is

small compared to the total number of affine homomorphisms B — A.

Lemma 3.1. Let B C Fi* and A C Fy be affine configurations, with B nonempty. Write r = rankag(B) > 1,
N =q", and |A| = aN. Then the number of degenerate affine homomorphisms B — A is less than (qaN)™ 1.

Proof. If {xq,...,x.—1} is an affine basis for B, then an affine homomorphism f: B — A is degenerate iff
{f(z0),..., f(zr—1)} C Ais affinely dependent. There are (¢"~* —1)/(¢— 1) < ¢"~! possible nontrivial affine

relations among the r elements f(zg),..., f(z,—1), up to scaling, each of the form Z:;Ol Xif(z;) =0, with



Z:;Ol A; = 0 and some A; # 0. Once such a relation is established, then the entire function f is determined
by the values it takes on {zg,...,7,_1}\ {z;}, so there are at most (a/N)"~! such f’s with the given relation.

Altogether, this gives the desired count. O

We now show that the property of B being C-weakly Sidorenko immediately gives an upper bound on the
extremal number of B, and that affine configurations larger than the given bound have supersaturation of
affine copies of B. In particular, when B is Sidorenko, we have the strongest possible form of supersaturation of
copies of B for affine configurations A C Fy' above a certain threshold, namely the same number asymptotically

as a p-random subset of Fy with p = |A|/q"™.
Lemma 3.2. Let B C ]Fg” be C-weakly Sidorenko, with rank,g(B) =: r > 1. Then for every n,
exXagr(n, B) < ¢~ (DOl
Moreover, if A C Ty with |[A] = Dq(=1/(C=r+)n for some D > 0, then A contains more than
<1 B q’l’fl > aCN’I‘
DC=r+1 ) |Aut.g(B)|

subsets affinely isomorphic to B, where N = ¢ and |A| = aN.

Proof. We prove the supersaturation result first. If A C Fy has [A] = Dq(=1/(C=r+1)n then by Lemma 3.1,

the number of degenerate affine homomorphisms B — A is less than

r—1

(qaN) = %

C arr
77D0—r+1a N".

Since B is C-weakly Sidorenko, we have more than
r—1
q C arr
(1 - Dc-m) a N

non-degenerate affine homomorphisms B — A. For each subset B’ C A which is affinely isomorphic to B,

there are exactly |Aut,g(B)| non-degenerate affine homomorphisms mapping B onto B’, so we must have

more than
) qrfl aC'Nr
DC=r+1 ] |Autag(B)|

such subsets.

In particular, if
|A| > qn—(n—r—i-l)/(C—r—i-l)’

then

r—1

q
Dot =

so A must contain an affine copy of B, giving our desired bound on ex,g(n, B). O

We now show that the property of being weakly Sidorenko is preserved under taking products.



Proof of Theorem 1.11. Let A C Fy be an affine configuration with density «, and let N = ¢".

, Zr—1} and {yo,. ..
spang, (u) to denote the set

affine bases {zo, ...

ry—1
{Zmz IF”'QCO—&—Z)\

We similarly define

ro—1
spanp, (v :{ZAUZGIF

,Yry—1} for By and Bs. For u = (uq, ...

7u7’1*1) €

ry—1

i — Xo EBl}
— Yo) 632}

ro—1

yo+Z/\

(Fz)>~1, and we further define

Ay :={z€F;:z+spang,(v) C A}.

for v=(v1,...,0p,—1) €

Note that
homaff( # {
homaff( # {

We can thus express hom,g(By X Bs, A) as

homaff(Bl X Bg,

n)yro—1
ve(Fy)r2

ve(Fr)r2—1

A) = #{(Z,u,v) c F;“L «
=#{(z,u,v) eF} x
- Z 7* {(z7u) € FZL X (IE‘Z)T‘l—l

ri—1
) € Fy x (Fy)

n n\ro—1
) € Fy x (Fy)™

: 2+ spang, (u) C A};

: z+spang, (v) C A}.

n\ri—1 n\ro—1
(Fg)™ ™ x (Fg)"™

(F2)7 =1 x (F2)™*) : 2 4 spang, () C Ay}

q
: 2+ spang (u) C Ay}

Z hom,g(B1, Ay).

Since Bj is Ci-weakly Sidorenko, this is at least

5 (%)

ve(Fn)r2—1

> Nm—Cl Nr2—1

=N Y (A9

ve(Fr)r2—1

1
Nr2—1 Z

VE(]FZ)TQ—I

Cy

Ay

10

: z+spang, (u) + spanpg, (v

Fix respective

(Fz) 1, we use

) C A}



by Jensen’s inequality. Since By is Ca-weakly Sidorenko, and yra=1 |Ay| = hom,g (B2, A), we have

ve(Fy

C1
1
homaff(Bl X BQyA) Z NniCleil (er_lhomaff(Bg,A)>

> NTmCiNT (a2 N)
— 040102NT1+T2_1_

By Proposition 2.1, rank,g(By X Bz) = 11 +172 — 1, so this is our desired bound, and the proof is complete. [

4 Unified Proofs of Theorem 1.8 and Theorem 1.9

The following is the same argument used in [5] and [11], but stated in our language in a unified and generalized
way. For an affine configuration B and a family F of affine configurations, we use B X F to denote the family
{Bx F:FelF}

Lemma 4.1. Let B C F)* with r := rank.g(B) > 1, and let F be any family of affine configurations.
Letn > r > 1, N = ¢", and exan(n,B x F) = aN, and let ¢(B,n,«) denote the minimum number of

non-degenerate affine homomorphisms B — A for an affine configuration A CFy of density o. Then
¢(B,n,a) < ¢ PN lexag(n —r + 1, F).

Proof. Let A C Fy be affine (B x F)-free with density a. Let S be the set of non-degenerate affine
homomorphisms B — A, which has size at least ¢(B,n, «) by assumption. Fix an affine basis {xq,..., 2,1}
for B. For each f € S and for each 1 <4 <r — 1, define w;(f) := f(z;) — f(x0), and define

u(f) = (ui(f)s - ura(f))-

Note that the components of u(f) are linearly independent elements of Fy since f is non-degenerate.
For each ordered (r — 1)-tuple u = (uy,...,ur—1) € (Fj)"~! with linearly independent components, let

Su={f € S:u(f) =u}. By the Pigeonhole Principle, there exists some u = (u1,...,u,_1) with

c(B,n,a)
|Sul > TN
Now we choose a linear subspace Wy C Fy of codimension r — 1 with Fy = Wy @ span{uy, ..., u,—1}. We
r—1
take WL(II), e (4" {6 be the distinct translates of W, and for each 1 < j < ¢"~!, we define

SO = {feSy: f(zo) e WP}

Again, by the Pigeonhole Principle, there exists some j with

¢(B,n, )

|S'gj)| = qrlerfl .
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We now define

AY) = {f(xo) L fe 553‘)} c Wy,

Note that the map S - A given by f — f(zo) is a bijection with inverse

Y ifi=0
Y lf(wi) = { . ] :
y+u; otherwise

In particular,
¢(B,n, a)

|Ag)|ZW'

On the other hand, if we have an affine copy F’ of some member F' € F in A&j), then
G = {f(x) cx€ B, feSY, f(xo) € F}
is an affine copy of B x F' € B x F in A, contrary to assumption. Thus A.(Jj) - W.Sj) is F-free, so we have

c(B,n,a) )
FoINTT S |AD)| < exag(n — 7+ 1, F). -

We now apply Lemma 4.1 iteratively to recover the results of Bonin-Qin and Fox-Pham.

Proof of Theorem 1.8 and Theorem 1.9. For q € {2,3}, let o, be as in Lemma 1.10. We will prove by

induction on ¢ that for all n > ¢,
exaﬁ(n, FZ) < qnfn/((aqfl)g;—1)+2' (1)

Fort=1,let N = ¢", and let A CF be Fé—free of size alN = exug(n, IF}I) By Lemma 1.10, there are at least
a??N? affine homomorphisms Fj — A, all of which are degenerate since A is Fi-free. But the degenerate

affine homomorphisms F}z — A are precisely the constant maps, so we have a”e N2 < aN, and hence
aN < N1I-1/(eq—1)

Now assume t > 2. Let N = ¢", let exaﬁ(n,Fé) = alN, and let A C Ffl be an affine configuration of
density «. Again, by Lemma 1.10, there are at least a®e N2 — N non-degenerate affine homomorphisms
IF; — A. Therefore, by Lemma 4.1, with B = IE";, F = {Ffl’l}, and ¢(B,n,a) > a’eN? — aN, we have

a’N? —aN < qNexug(n — 1,15"2[1).
By the inductive hypothesis, this gives

0% N? — N < gNg™=1=(=D/(ea=Dol )42 _ 241/ (0q=1)7} ™) N2=1/ (04 =1)a}™?)

12



We can assume that a®s N2 > 2aN, as otherwise the claim holds already. Now we have

Looon? < (@m0t ) 21/ (=1t ?)
2 )

and hence
1/oq4

aN < (2q2+1/<<oq71>o;—2)) NIV (ea=Dog™h) < 2 N1=1/(ea=Doi ™), O

We observe that our supersaturation results from Section 3 give an alternative proof of Theorems 1.8

and 1.9. This method additionally establishes a strong supersaturation result for affine subspaces of I, for
q €{2,3}.

Theorem 4.2. For g € {2,3}, let 0, be as in the statement of Lemma 1.10, and let t > 0. Then for any n,
exag(n, Fl) < gD/ (g =1)
Moreover, if A C Ty with |[A] = Dq(l_l/("ctz_t))” for some D > 0, then A contains more than
<1 B qt > aa;NtJrl
D=t ) |Aut,q(F?)]

affine t-spaces, where N = ¢q" and |A| = aN.

Proof. The claim is simply a special case of Lemma 3.2. By Lemma 1.10, IF}I is o4-weakly Sidorenko, so by
Theorem 1.11, F!, is o}-weakly Sidorenko, with rank,g(F;) =t + 1. O

We take a moment to compare our supersaturation results to a supersaturation result of Gijswijt ([16]
Proposition 22). His result applies to any affine configuration B C Fy" whose n-th affine extremal number
is bounded above by (¢'~°)" for some constant § > 0. He proves that affine configurations in [y with
density a > ¢ have Q(a("=1+29)/9N7) affine copies of B, where r = rank,g(B) and N = ¢". Our result
Lemma 3.2 improves this count to Q(a®"=D+1D/9 N7 affine copies of B when B is C-weakly Sidorenko and
we take 6 = 1/(C —r + 1). In particular, for ¢ € {2, 3}, Gijswijt’s result guarantees only a(tro))tog Nt+1
affine ¢-spaces when |A| is above the Bonin-Qin threshold (for ¢ = 2) or Fox-Pham threshold (for ¢ = 3). Now
Theorem 4.2 improves this to Q(a”fz N'*1) affine t-spaces, which is tight for ¢ = 2 by considering a random

affine configuration of density «.

5 Proof of Theorem 1.3

We first prove a general upper bound for the two-color Ramsey number R, (s, t) for ¢ € {2,3}, from which
Theorem 1.3 is easily derived. The proof uses nothing more than Theorem 1.7 and our explicit forms of

Theorem 1.8 and Theorem 1.9 for bounds on exag(n, Ff).

Theorem 5.1. For q € {2,3}, let o4 be as in Lemma 1.10. For anyt > s > 2, R,(s,t) is at most a tower of
height s of the form

2t
7q

Ry(s,t) < oy

13



Proof. We induct on s for fixed t. Clearly, we have R4(1,t) =t. Now for s > 2, let r = R,(s — 1,¢), and let
n = toy. Suppose we have a projectively determined red-blue coloring of Fy \ {0} with red set R and blue set
B satisfying w(R) < s and w(B) < t. By Theorem 1.7, the fact that w(B) < t implies that |R| > ¢"~ Tt — 1,
with equality if and only if R U {0} is a linear (n —t + 1)-space. But w(R) < s <n — ¢+ 1, so we must have
|R| > ¢"~ 1. Also, by Theorem 4.2,

GXaﬁf(n,F;) < q”_(n—T')/(UZ—T) < qn—n/a;' — qn—t < |R|7

so R contains an affine r-space A. Note that 0 ¢ A since 0 ¢ R. Let W be the translate of A containing 0,
which is a linear r-space. Then by our choice of r and because we’ve assumed w(B) < t, there exists a linear
(s — 1)-space U’ C W with U’ \ {0} entirely red. Now because the coloring is projectively determined, for any
u € Aand A € F,\ {0}, the set W + Au = AA is entirely red. But then U := span{U’,u} is a linear s-space
contained in U’ UUygr,\ {0y A, so U \ {0} is entirely red, a contradiction. Thus

Ry(s,t) <n=to

Q3

By induction, R,(s,t) is at most a tower of height s of the form
t

tog

Ry(s,t) < tog "

To obtain the friendlier-looking bound stated in the theorem, it suffices to show that logff;l) (Ry(s,t)) < 2t,
where log,()k) () denotes the k-th iterated logarithm (to base b) of x, defined by

T if k=0,
logék)(m) =< log (logék_l)(mo if k> 1 and 1og£k_1)(x) > 0,
—00 if k>1and 10g£k71)(m) <0.
First note that
log, (Ry(s,1)) <log,, tcr;% =log, t+ taéa‘} < 2taég‘} ,

where the height of the tower on the right is s — 1. Now applying the logarithm again gives

t t

to _taq

. q

log®) (Rq(s,1)) < log,, (2t) +tog”" <20,
where the height is now s — 2. Continuing in this fashion, we obtain logffq_z)(Rq(s, t)) < 2tol, and thus
log$ ™" (Ry(s,t)) < log, (2t) +t <2t

9q

since ¢ > 2. O
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Proof of Theorem 1.5. For q € {2,3}, let g, be as in Lemma 1.10. We induct on k. The base case k = 2 is
given by Theorem 5.1.

For k > 3, we use the simple recurrence
Rq(th s 7tk) < Rq(th B 7tk—27Rq(tk—17tk))~

Indeed, consider a partition Fy \ {0} = By U---U By, with n = Ry(t1,...,tk—2, Ry(tr—1,11)), where each set
B; is projectively determined. If w(B;) < t; for all i < k — 2, then we must have w(Bj_1 U By) > Ry(tk—1, k),
and so w(B;) > t; for some i > k — 1.

With this observation, we obtain by the inductive hypothesis that

3Rq(tg—1.tk)
7a

Rq(th s 7tk) < Rq(tla s atk—27Rq(tk—17tk)) < qu ;

where the height of the tower is Ef:_f (t; — 1) + 1. Now by Theorem 5.1,

og

10g(tqk7171)(3q(tk—1,tk)) < 2y,

which implies
log!* 1" (3R, (te—1,tk)) < 2tk +log, 3 < 3ty

since t; > 2. This completes the inductive step. O

6 A Reformulation of R (2,t)

We now reformulate the off-diagonal Ramsey problem as an affine extremal problem. We look at the Fy case

first for the sake of exposition. Consider the sumset of A C Fy, defined as
A+ A={x+y:zyec A}

and let ma(t) be the minimum n such that every set A C F} of size at least 2"~ '*1 satisfies w(A4 + A) > t;
that is, A + A contains a linear ¢-space. Nelson and Nomoto [23] observed that ma(t) is an upper bound
for Ro(2,t) for all ¢ > 2 (see Lemma 6.2 for the argument). One way to bound ms(t) from above is via the

following theorem of Sanders [27].

Theorem 6.1 (Sanders). Let A be a subset of Fy of density o < 1/2. Then

2-2
wA+A)>n— [n/log21_2z—‘.

12«
parameters, Theorem 6.1 gives mo(t) < n. This is how Theorem 1.4 is proved in [23].

Taking o = 21 7% and n = (¢ + 1)2¢, and noting that n — [n/ log, 2’20‘—‘ > an/2 — 1 =t for this choice of

Alternatively, we can take an affine extremal approach to bound ma(t), based on the simple observation
that w(A+ A) > t if and only if A contains an affine copy B’ of some affine configuration B with w(B+ B) > t.
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Indeed, as noted in Section 2, w(B + B) = w™(B) is entirely determined by the affine structure of B, so
w(B"+ B') = w(B + B). Therefore, if we define

B, :={BCFy:m>1,wB+ B) >t}

then we have the alternative description of ma(t) as the minimum n such that ex,g(n, BS) < 2771 We
see that this is finite by Theorem 1.6, and in fact, Theorem 1.8 immediately implies an improvement of
Theorem 1.4 by a constant factor. Note that any set A which properly contains an affine (¢ — 1)-space has
w(A+ A) > t, so using the explicit bound in (1), we have

eXar (1, BY) < exan(n, Fy 1) < (12" ")n+2
for n > t. In particular, if n = (¢t + 1)2°72, then ex.g(n, By) < 27711 so0
Ro(2,t) <ma(t) < (t+1)272

We obtain further improvements on Ry (2,t) by finding better upper bounds for ex,g(n, B).

More generally, we define for an arbitrary finite field I,
t . m .
B,:={BCF:m>1,w"(B) > t},

and we define mg(t) to be the minimum n such that ex.g(n,B.) < ¢"~**'. Equivalently, m,(t) is the

n—t+1

minimum n such that w™(A) >t for every A C Fy of size at least ¢ . We have the following.

Lemma 6.2. Let F, be any finite field. Then R,(2,t) < my(t) for all t > 2.

Proof. Let n = m,(t). First, we show that n > ¢+ 1. Let H be a linear hyperplane in Fy;, which satisfies
w7 (H)=n—1. Since |H| = ¢"! > ¢!, we have w™(H) >t by our choice of n.

Now suppose we have a projectively determined red-blue coloring of Iy \ {0} with red set R and blue set
B satisfying w(R) < 2 and w(B) < t. Since w(B) < t, we have by Theorem 1.7 that |R| > ¢"~**1 — 1, with
equality iff RU{0} is a linear (n—¢+1)-space. But n—t+1 > 2 > w(R), so we can’t have equality, and hence
|R| > ¢"~**1. By our choice of n, w™(R) >t > w(B), so there exists some nonzero d € R~ \ B. That is,
d € R7NR. Let a € R be such that a4+ Ad € R for every A € F,. Note that a and d are linearly independent
since 0 ¢ R. Therefore, since R is projectively determined, span{a, d} is a linear 2-space contained in RU {0},
contradicting that w(R) < 2. O

We can now use the machinery from Section 3 to prove Theorem 1.5.

Proof of Theorem 1.5. Let t > 1, and let k = [t/4]. Consider the affine configuration Cs C F3, defined prior
to Lemma 1.10. Suppose we have two pairs {z,y}, {z/,y'} € (C;) with z +y = 2’ + /. Since every 4 distinct
elements of Cg are affinely independent, we must have that z,y,z’,7y’ are not distinct. Then x = x’ without
loss of generality, which implies y = 3" as well. Thus we have (g) = 15 distinct nonzero sums z +y € Fj3

for =,y € Cg with = # y, which means that Cs + Cs = F3, and we have w™(Cg) = 4. By Proposition 2.1,
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w?(CF) = 4k > t and rank,q(CE) = 4k + 1. Recall that B, = {B : w™(B) > t}, so C¥ € BS. Furthermore,
by Lemma 1.10 and Theorem 1.11, C¥ is Sidorenko, so by Lemma 3.2,

EXaﬁ(n,Bé) < eXa{-f(TL, Céc) < 2n7(n74k)/(6k74k) _ 2n7t+1
for n = (t — 1)(6F — 4k) + 4k. Thus
Ry(2,t) < ma(t) < (t — 1)(6% — 4k) + 4k = O(t6/4)

by Lemma 6.2.
Similarly, since w™ (F%) = ¢, we have by Theorem 4.2 that

exagr (1, BY) < exag(n,FL) < gn—(n=1)/(Cy—t) _ gn—t+1
for n = (t — 1)(Cf —t) +t, with Cp ~ 13.901 as in Theorem 1.9. Thus
R3(2,t) <mg(t) < (t —1)(C5 —t) +t = O(tCF)

by Lemma 6.2. O

We remark that the constants implicit in the O(-) in our bounds for Theorem 1.5 are not optimized.
Bounding the extremal numbers of BS and BY via iterative application of Lemma 4.1 gives the best results,
but the computations are slightly more cumbersome.

We state a generalization of this argument, which can be used to further improve our off-diagonal Ramsey
bounds by establishing homomorphic supersaturation of affine configurations. Unfortunately, this technique
by itself can never give a subexponential bound for R,(2,t). Indeed, for any affine configuration B C Fj*
with w™(B) > 1, the map f: B> — F}" given by f(x,y) =y — « has B~ in its image so |[B~| < |B|. Also,

for any linear configuration A, we have |A| > ¢*), and hence
|B|1/w”(B) > |B—>|1/(2w”(3)) > C]l/2-

Thus the best possible upper bound that can come directly from Theorem 6.3 is Q(tqt/ 2).

Theorem 6.3. Suppose that B C F* is C-weakly Sidorenko, and let p=w™(B) > 1. Then as t — oo,
R,(2,t) =0 (tct/P) .

Proof. Let n >t > 2, and let k = [t/p] and r = rank,g(B). By Theorem 1.11 and Proposition 2.1, B¥ is
C*-weakly Sidorenko with w™(B¥) = kp > t and rank.g(B*) = (r — 1)k + 1. Therefore, by Lemma 3.2,
eXaf-f(’n,Bé) < exant(n, Bk) < qn—(n—(r—l)k)/(Ck—(r—l)k)

If we take
n=(t—1)(C* = (r—1)k)+ (r— 1)k =0tC?),
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then ex,g(n, B)) < ¢"~''. By Lemma 6.2, Ry(2,t) < mg(t) < n. O

7 Concluding Remarks

We believe mg(t) = min{n : exag(n, BL) < ¢"~**'} to be polynomial in ¢ for all ¢, which would imply that
R4(2,1) is also polynomial by Lemma 6.2. For ¢ = 2, this was asked by Peter Nelson [1] in the second Barbados
graph theory workshop 2022 (Problem 17), and this remains open. For ¢ # 2,3, it is unknown whether
my(t) is even bounded by an exponential function. Such a bound would follow immediately from exponential
improvements on the affine extremal number of F}I by Lemma 4.1, combined with the aforementioned
supersaturation result of Gijswijt ([16], Proposition 22). In particular, if it is true that ex,g(n,Fy) < (g' =%

for some 0 > 0, then we immediately obtain
Ry(2,t) <my(t) = O (t(2+1/6)").

It is also worth mentioning the natural relationship of affine extremal numbers to affine Ramsey numbers.
We use Rafq(ti, .- ,tx) to denote the minimum n such that for every k-coloring f : Fy — [k] of the points
of Iy, there exist i € [k] and an affine subspace U C [y of dimension ¢;, such that U is monochromatic in
color i. If t1 = -+ =t = t, we write Ragq(t1,...,tk) = Ramq(t; k). Such Ramsey numbers clearly exist
by Theorem 1.6 since the majority color class, say color ¢, has size at least ¢™/k, which is greater than
eXafr (N, IFZ) for large n. In fact, any general upper bound for eXaff(n,Fé) immediately implies upper bounds

for affine Ramsey numbers. For ¢ € {2,3}, Theorems 1.8 and 1.9 give
Ragiq(t; k) < (logy k)o, forall k >2,t>1;

Rasig(s,t) < (log, 0q)(0q — 1)os 't for all s fixed, ¢ large,

where o0, is as in Lemma 1.10. Upper bounds on Hales-Jewett numbers (see [28], for example) also imply

upper bounds on affine Ramsey numbers for general ¢, though these are of a much larger order of growth.
For lower bounds, straightforward applications of the Lovasz Local Lemma give the following:

¢

Ragiq(t; k) > (log, k)? for all k fixed, t large;

¢ -1
S

Ragiq(s,t) > ( - 0(1)) t for all s fixed, as t — co.

It would be interesting to see new methods develop for obtaining upper bounds on affine Ramsey numbers.
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