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We study quantum many-body scars (QMBS) in the language of commutant algebras, which are defined
as symmetry algebras of families of local Hamiltonians. This framework explains the origin of dynamically
disconnected subspaces seen in models with exact QMBS, i.e., the large “thermal” subspace and the small
“nonthermal” subspace, which are attributed to the existence of unconventional nonlocal conserved
quantities in the commutant; hence, it unifies the study of conventional symmetries and weak ergodicity-
breaking phenomena into a single framework. Furthermore, this language enables us to use the von
Neumann double commutant theorem to formally write down the exhaustive algebra of all Hamiltonians
with a desired set of QMBS, which demonstrates that QMBS survive under large classes of local
perturbations. We illustrate this using several standard examples of QMBS, including the spin-1/2
ferromagnetic, AKLT, spin-1 XY z-bimagnon, and the electronic #-pairing towers of states; in each of these
cases, we explicitly write down a set of generators for the full algebra of Hamiltonians with these QMBS.
Understanding this hidden structure in QMBS Hamiltonians also allows us to recover results of previous
“brute-force” numerical searches for such Hamiltonians. In addition, this language clearly demonstrates the
equivalence of several unified formalisms for QMBS proposed in the literature and also illustrates the
connection between two apparently distinct classes of QMBS Hamiltonians—those that are captured by the
so-called Shiraishi-Mori construction and those that lie beyond. Finally, we show that this framework
motivates a precise definition for QMBS that automatically implies that they violate the conventional

eigenstate thermalization hypothesis, and we discuss its implications to dynamics.
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I. INTRODUCTION

The dynamics of isolated quantum systems has been the
subject of much recent interest. Such systems evolve
unitarily; hence, all the information of the dynamics of the
system can be deduced from the eigenstates of the time-
evolution operator, e.g., the Hamiltonian. In generic non-
integrable systems, where any initial state at finite energy
density is expected to thermalize under time evolution, the
eigenstates are themselves expected to be thermal, which
leads to the eigenstate thermalization hypothesis (ETH) [1-5].
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The conventional form of this hypothesis is violated for all
the eigenstates in systems that do not thermalize, e.g., in
integrable or many-body localized systems [6-8]. An addi-
tional possibility was recently discovered in nonintegrable
systems, where some ‘“anomalous” eigenstates that do not
satisfy the conventional form of ETH exist amidst most
eigenstates that satisfy ETH. Such systems are said to exhibit
“weak ergodicity breaking,” which is further categorized into
the phenomena of quantum many-body scarring or Hilbert
space fragmentation [9—12], depending on the scaling of the
number of anomalous eigenstates with system size. These
weak ergodicity-breaking phenomena have gathered much
attention due to their natural occurrence in several experimen-
tally relevant contexts; e.g., quantum many-body scarring is
responsible for long-lived revivals in several Rydberg and cold
atom experiments [13—18], and Hilbert space fragmentation
plays arole in slow dynamics in the presence of a strong electric
field [19-25], as realized in cold atoms in tilted lattices.
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In this work, focus on quantum many-body scarring,
where the anomalous eigenstates, referred to as quantum
many-body scars (QMBS) [14], constitute a vanishing
fraction of the full Hilbert space. There has been a lot of
recent theoretical progress in understanding systems that
exhibit QMBS, with the discovery of several nonintegrable
models with exactly solvable QMBS eigenstates. These
models include equally spaced towers of exact QMBS
in several well-known systems, starting from the one-
dimensional AKLT model [26,27], to several spin models
[28-31], and also including the Hubbard models and their
deformations in any number of dimensions [32-34]; there
are several examples of isolated QMBS [11,35-38] as well,
including the well-studied PXP models in one and higher
dimensions [39,40]. For a comprehensive review of the
literature on this subject, we refer readers to the recent
reviews [9-12].

Because of the abundance of examples of QMBS, it is
highly desirable to try to capture them in a single
framework or obtain a systematic procedure for their
construction. Progress in this direction has been made
for certain classes of isolated QMBS, where large classes of
QMBS eigenstates can be systematically embedded into
spectra of nonintegrable models using so-called Shiraishi-
Mori (SM) construction [35]. In addition, there have been
several attempts to unify models exhibiting towers of
QMBS into a single framework, with varying degrees of
success [33,35,41-48] (see Ref. [11] for a broad overview
of some of these approaches). Moreover, it has been noted
that even for a given set of QMBS states, multiple “parent
Hamiltonians” with those states as eigenstates can be
constructed. While some such Hamiltonians can be sys-
tematically understood using the unified formalisms, sev-
eral of them, including the AKLT model [26,27], are yet to
be satisfactorily understood within any of these systematic
constructions.

A striking feature of all these exact examples is that the
QMBS eigenstates appear to be uncorrelated from the rest of
the spectrum to a large extent. For example, in many cases, it
is known that the QMBS eigenstates can be made to move in
and out of the bulk energy spectrum by tuning parameters in the
Hamiltonian, and in some cases, they can also be the ground
states of their respective Hamiltonians [33,34,41,44,49]. These
cases are reminiscent of eigenstates within quantum number
sectors of conventional symmetries, where level crossings can
occur between eigenstates in different sectors by tuning a
parameter in a Hamiltonian, for example, as a function of a
magnetic field in SU(2)-symmetric systems. Indeed, in models
exhibiting exact QMBS, the Hilbert space H is said to
“fracture” into dynamically disconnected blocks as [9-11,50]

H= cherm @ Hocars (1)

where H e and He,, are “large” and “small” subspaces [51]
that are invariant under the action of H, and the subspaces are

such that eigenstates of H in Hyer, typically satisfy the
conventional form of ETH whereas eigenstates in H,., have
anomalous properties and are the QMBS. While a decom-
position of the form of Eq. (1) is expected if eigenstates in H,,
and H g differ by some symmetry quantum numbers, in the
typical model realizations, the QMBS do not differ from the
rest of the spectrum under any obvious symmetries.

On the other hand, for any finite-dimensional Hilbert
space and a given Hamiltonian H, Eq. (1) is trivially true
since one can always use the eigenbasis of H to split the
Hilbert space in multiple ways. This case necessitates a
more precise definition for the blocks Hyerm and He,r in
Eq. (1). Important progress in this direction has been made
in Refs. [35,42]. First, Shiraishi and Mori introduced an
embedding formalism in Refs. [35,52], where the QMBS
were part of a “target space” that was annihilated by a set of
strictly local operators, a condition that is typically satisfied
by tensor network states [53]. This property was then used
to construct families of Hamiltonians with those QMBS as
eigenstates; hence, for these Hamiltonians, H,.,, in Eq. (1)
refers to the target space. More recently, following the
realization of how particularly simple and familiar states—
so-called #-pairing states [32,54]—can appear as scars in
deformed Hubbard models [33,34], Pakrouski et al. noted
in Refs. [42,45] that QMBS in certain systems can be
understood as singlets (i.e., one-dimensional representa-
tions) of certain Lie algebras, and this perspective brought
to the fore the spatial structure (in fact, lack thereof in any
dimension) in these QMBS. In particular, they constructed
sets of local operators that are D-dimensional representa-
tions of the generators of a semisimple Lie algebra, where
D = dim(H), and their unique decomposition into smaller-
dimensional irreducible representations (irreps) splits the
Hilbert space into blocks that transform under various
irreps. Reference [42] used this structure to systematically
construct families of local Hamiltonians that preserve the
states in the Hilbert space that transform under one-dimen-
sional irreps (i.e., the singlets) as QMBS while mixing all
other states. This process resulted in models where Eq. (1)
holds, where H,, is the subspace spanned by the Lie group
singlets. Apart from these classes of systems, a nontrivial
definition of the scar subspace H,,,, i.€., one that does not
directly refer to the individual eigenstates themselves, does
not exist for other examples of QMBS, and it is still not
clear if all examples of QMBS can be understood within the
frameworks proposed in Refs. [35,42].

Thus, we need a more general understanding of the
fracture of Hilbert space into dynamically disconnected
blocks such as Eq. (1). A similar question arises in systems
exhibiting Hilbert space fragmentation [19-21,55], where
the Hilbert space “fragments” into exponentially many
dynamically disconnected blocks, as opposed to two in
Eq. (1). Recently, in Ref. [56], we showed that the blocks in
fragmented systems can be understood by studying the
local and nonlocal conserved quantities that commute with
each term of the Hamiltonian. The algebra of all such
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conserved quantities was referred to as the “commutant
algebra,” which is the centralizer of the algebra generated
by the terms of the Hamiltonian or, more generally, the
individual parts of a family of Hamiltonians; the latter
algebra was referred to as the “bond algebra” [57-59] when
the individual parts were strictly local operators or, more
generally, as a “local algebra” when the individual parts
included extensive local (i.e., sums of strictly local)
operators. In a parallel work [60], we applied this formal-
ism to understand conserved quantities of several standard
Hamiltonians, including the spin-1/2 Heisenberg model,
several free-fermion models, and the Hubbard model.
There, we showed that this method captures all of the
conventional on-site unitary symmetries of those models,
and in some cases, it also reveals examples of unconven-
tional “nonlocal” symmetries that manifest themselves in
degeneracies of eigenstates that are not captured by on-site
unitary symmetries.

In this work, we extend the formalism of commutant
algebras developed in Refs. [56,60] to understand Eq. (1) in
models that exhibit QMBS. As we will show, the unified
formalisms for QMBS in Refs. [35,42] can be recast in
terms of bond and local algebras, their commutants, and
their singlets, which also elucidates their connections to
other proposed unified formalisms in Refs. [43,44].
Further, stating them in this language has multiple benefits,
which we briefly summarize below.

First, it allows the application of the double commutant
theorem (DCT) that enables the construction of (the
exhaustive algebra of) all local Hamiltonians that possess
a given set of QMBS as eigenstates, which is the analog
of constructing the algebra of all symmetric operators
corresponding to conventional symmetries, discussed in
Ref. [60]. This method circumvents the “guess-work” or
“brute-force” approaches used for such purposes in earlier
works [33,34,41,44,49] and enables the construction of
numerous local perturbations that exactly preserve a given
set of QMBS, demonstrating a much less fine-tuned
property. Further, the local or commutant algebra formal-
ism also allows us to conjecture certain constraints on the
spectra of local Hamiltonians that contain QMBS, e.g., that
certain sets of QMBS necessarily appear as equally spaced
towers in the spectrum of any Hamiltonian containing them
as eigenstates.

Second, this formalism reveals the distinction between
two types of Hamiltonians with QMBS that appear in the
literature—the “Shiraishi-Mori” type, which can be
captured by the Shiraishi-Mori construction [35], and the
“as-a-sum” type, which lies beyond the Shiraishi-Mori
construction; in the algebra language, these correspond
to two distinct types of “symmetric” Hamiltonians that
can be constructed starting from a set of strictly local
generators of a bond algebra, which we refer to as type I
and type II symmetric Hamiltonians, respectively.
Hamiltonians believed to be of the latter type include

the Dzyaloshinskii-Moriya Hamiltonian [34] and the
AKLT Hamiltonian [26,27,41,44,49], and we demonstrate
their distinctions and connections to Hamiltonians obtained
from the Shiraishi-Mori formalism via the exhaustive
algebra of QMBS Hamiltonians obtained from the com-
mutant language, hence resolving a previously open ques-
tion [41,44,61].

Third, this language also motivates a concrete definition
of QMBS eigenstates, and we propose that they are always
simultaneous eigenstates of multiple noncommuting local
operators. As we will discuss, this definition automatically
implies that these states violate ETH, due to the non-
uniqueness of local Hamiltonian reconstruction from the
state [62,63]. Finally, perhaps most importantly, this
formalism hence provides a very general framework for
understanding systems with QMBS and elucidates the
precise connections of systems exhibiting QMBS to those
with other conventional symmetries and/or Hilbert space
fragmentation, allowing us to incorporate several phenom-
ena involving dynamically disconnected subspaces [11]
into a single framework.

This paper is organized as follows. In Sec. II, we briefly
review the concepts of bond, local, and commutant algebras
and the DCT, and in Sec. III, we use these concepts to
formulate the main ideas presented in this work. In Sec. IV,
we revisit previously proposed symmetry-based unified
frameworks for understanding QMBS and describe them in
the language of local and commutant algebras. In Sec. V,
we study several standard examples of QMBS, construct
the full algebras of Hamiltonians that possess these QMBS
as eigenstates, and discuss implications of the DCT. Then,
in Sec. VI, we propose a definition for QMBS motivated
from this framework, and we discuss implications for
thermalization and dynamics. We conclude with open
questions in Sec. VIIL.

II. RECAP OF LOCAL
AND COMMUTANT ALGEBRAS

We now briefly review some key concepts of bond, local,
and commutant algebras relevant for this work, and we
refer to Refs. [56,60] for more detailed discussions on the
general properties of these algebras.

A. Definition

Focusing on systems with a D-dimensional tensor
product Hilbert space H of local degrees of freedom
on some lattice, we are interested in Hamiltonians of the
form

H = Zjagav (2)

where {H,} is some set of local operators, either strictly
local with support on a few nearby sites on the lattice or
extensive local, i.e., a sum of such terms, and {J,} is an
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arbitrary set of coefficients. Corresponding to this family,
we can define the local and commutant algebras A and C as

A= ({H}).

Here, C and A can be viewed as the “symmetry algebra”
and the algebra of all “symmetric operators,” respectively,
and we use (---)) to denote the associative algebra
generated by (linear combinations with complex coeffi-
cients of arbitrary products of) the enclosed elements and
the identity operator 1, also assumed to be closed under
Hermitian conjugation of operators (‘“{-algebra”), which is
natural in our setting.

As a concrete example, we consider SU(2) symmetry for
one-dimensional spin-1/2 systems with L sites. In the
commutant language, this symmetry can be expressed in
terms of the pair of algebras [60]

C=1{0:1A,.01=0 Va}. (3)

Asu) = (15, 5,110, Csu) = €St St Sods (4)

where S&; =" 757 In other words, starting with a family
of Heisenberg models of the form of Eq. (2) with the
generators {H,} = {§ Ik S j+1}» the commutant Cgy(2) can
be derived using Eq. (3); hence, SU(2) is the complete
symmetry of the family of Heisenberg models [60]. Since
the Heisenberg term can also be related to the two-site
permutation term that acts as P ;. |o7); ;1 = |16); 11,
Agu() is also the group algebra of the permutation group
S, on L sites.

B. Hilbert space decomposition

Given such f algebras A and C that are centralizers of
each other in the algebra of all operators on the full Hilbert
space ‘H, their irreps can be used to construct a bipartition
[56,60,64-66] of the Hilbert space, i.e., a basis where the

operators h 4 and fzc in A and C, respectively, act as

A

ha= @(Mﬁy(fu) ®1,). he= GP(HDAA ® Nj, (he)).
(5)

where D, and d; are the dimensions of the irreps of A
and C, Mf)i(la 1) and Nfgi(ﬁc) are D,-dimensional and
d,;-dimensional matrices, respectively, and arbitrary matri-
ces such as these are realized in the corresponding algebras.
Equation (5) can be simply viewed as the matrix forms of
the operators in the basis in which all the operators in A or
C are simultaneously (maximally) block diagonal. Since the
Hamiltonians we are interested in are part of A, this
decomposition can be used to precisely define dynamically
disconnected “Krylov” subspaces for all Hamiltonians in
the family [56]. Hence, Eq. (5) implies the existence of d,
number of identical D,-dimensional Krylov subspaces for
each A. In systems with only conventional symmetries such

as U(1) or SU(2), these correspond to regular quantum
number sectors [60], whereas in fragmented systems, they
are the exponentially many Krylov subspaces [56].

For example, in the case of the SU(2) algebras of Eq. (4),
we have 0 < A < L/2, where A(4 + 1) is the eigenvalue of
§%:=3,(St)? and (Dy.d;) = ((L/éﬂ) - (L/zigﬂ)vz}“"_ 1)
for even L, which denote the sizes of the quantum number
sectors and their degeneracies, respectively. Note that {D, }
and {d,} are the dimensions of the irreducible representa-
tions of the permutation group S; (and hence that of
Asu(2)) and the group SU(2) (and hence that of Cgy)),
respectively.

C. Singlets

In the decomposition of Eq. (5), it is sometimes possible
to have D; = 1 for some A, which means the existence of
simultaneous eigenstates of all the operators in the algebra
A. We refer to these eigenstates as “singlets” of the algebra
A, and in Ref. [60], we discussed examples of singlets that
appear in standard Hamiltonians. For the bond algebra
Asu(z), the singlets are the ferromagnetic multiplet of states
[60] given by

Wa) = (S)"|F), [F)=1---1), (6)

where Si == ;7. Since Agy(y) is the group algebra
of the permutation group S;, its singlets are simply the
states invariant under arbitrary permutations of sites, which
are spanned by {|¥,)}. Since these are states with S?
eigenvalue (L/2)[(L/2) + 1], following the discussion in
Sec. II B, they appear in the decomposition of Eq. (5)
with (D,,d;) = (1,L +1).

In general, A could have many sets of singlets that are
degenerate within each set and nondegenerate between the
sets, e.g., when it has irreps such that D, = Dy =1 for
some A # A'; the different sets of singlets differ by their
eigenvalues under some operators in .4, while all singlets
within a set have the same eigenvalue under all operators in
A. The projectors onto the singlet states are all in the
commutant algebra C and are thus examples of eigenstate
projectors that can be viewed as conserved quantities of the
family of Hamiltonians we are interested in. For the case
of degenerate singlets |w) and |y'), “ket-bra” operators
lw) (y'| are also in the commutant C. As we will discuss in
Secs. IV and V, the singlets of local algebras will define the
subspace H,.,, of Eq. (1).

D. Double commutant theorem

An important property satisfied by .4 and C is the DCT
[60,67-69], which, for our purposes, is the following
statement.

Theorem II.1. [DCT] Given a finite-dimensional Hilbert

space H and an algebra A = ({H,})), where {H,,} is a set
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of Hermitian operators, and its centralizer C, then A is the
centralizer of C.

In other words, the DCT implies that A and C are
centralizers of each other in the space of all operators in the
Hilbert space H. The DCT has some deep implications
when applied to local and commutant algebras and, in
principle, allows us to exhaustively construct all operators
that commute with some set of conserved quantities [60]. In
particular, given a set of conserved quantities {Q;} that
generate a commutant algebra C = ({Q,})), if we are
able to determine a set of local generators {H,} for its
centralizer A, i.e.,if A = {{H,}), then we can, in principle,
exhaustively construct all local operators that commute with
the conserved quantities {Q,} starting from {H,}. In the
case of SU(2) symmetry, where the algebras are shown in
Eq. (4), this statement says that all SU(2)-symmetric terms
can be expressed in terms of the Heisenberg terms
{§ I S j+1}» which are the generators of Agyy).

Locality considerations bring new aspects to the appli-
cation of the DCT. First, given a commutant C, there is the
obvious question of whether A can be generated by local
operators; however, we are not concerned about this issue
here since we start from a local algebra A and then
determine its commutant C. More importantly for us, given
an extensive local operator in A, i.e., a Hamiltonian
symmetric under operators in C, we wish to express it in
terms of the local generators of A. The DCT guarantees that
an expression exists, and in several situations, we can use it
to constrain the allowed forms of extensive local operators
in A. For example, in Ref. [60], we showed that when C is
completely generated by on-site unitary symmetries, such
as in the SU(2) case of Eq. (4), all extensive local operators
in the corresponding bond algebra A (i.e., all symmetric
Hamiltonians) can be expressed as sums of symmetric
strictly local operators. Further, in systems with dynamical
symmetries, we proved that all extensive local operators
contain equally spaced towers of states in their spectra.

III. FAMILIES OF MODELS WITH QMBS IN THE
COMMUTANT ALGEBRA LANGUAGE

Having reviewed the formalism of local algebras and
their commutants, we can now provide an overview of the
approach to defining QMBS and determining exhaustive
families of models with exact scars. As a concrete example
for illustration throughout this section and the next, we
consider models where the QMBS are the ferromagnetic
tower of states {|¥,)} of Eq. (6). Several Hamiltonians
with these states as QMBS have been studied in the
literature [11,34,70], e.g.,

L L
Hyw =Y J;iS; S +hY_Si+DY (S;%xS;41) -2
j j=1 j=1

()

Note that {|¥,)} are exact eigenstates of H.,, and for
generic values of {J;} and D, they appear as a tower of
QMBS with splitting of 2x; hence, when # = 0, they are
examples of degenerate QMBS [71]. We refer to the first
sum in Eq. (7) as the Heisenberg Hamiltonian and the last
sum as the Dzyaloshinskii-Moriya Interaction (DMI)
Hamiltonian [34,72]. For the sake of brevity, we directly
state the key results here, while detailed justifications and
proofs can be found in Sec. V and the appendixes.

A. General structure of the commutants

Our primary aim in this work is to show that, for many
examples of QMBS, algebras A, generated by a set of
local operators, with commutants Cg,., spanned by pro-
jectors or ket-bra operators of QMBS eigenstates, exist and
can be explicitly constructed. Corresponding to a set of
QMBS eigenstates and their degeneracies, say, {|y,4)},
where all the |y, ,)’s for fixed n are degenerate, we wish to
construct a local algebra A, such that its commutant is
given by

Cscar = <<{|l//n,a> <Wn,ﬂ|}>>- (8)

The operators { |y, ,)(y, 4|} are then examples of “non-
local” conserved quantities of Hamiltonians in A, and
the exhaustive set of Hamiltonians with these QMBS
eigenstates can be constructed using the local generators
of A, In some situations, the construction of physically
relevant Hamiltonians might sometimes call for commu-
tants consisting of both the QMBS and some other natural
conserved quantities {Q, } such as U(1) spin conservation,
in which case, we would be interested in constructing local
algebras Agym_or corresponding to commutants such

as Csym—scar = <<{|Wn,a> <l//n,ﬂ }’ {Q}l}»

B. Degeneracies and lifting operators

Note that in cases with multiple QMBS, there can
sometimes be some arbitrariness in the algebras we are
interested in, depending on which set of degeneracies
among the scar states we choose to preserve in the
Hamiltonians we are interested in. For example, for the
same set of QMBS {|¥,)} of Eq. (6), we could construct

two distinct algebras A, and Ay, that correspond to

the commutants éscar = <<{|\Pm><lpn|}>> and  Cyeor =
{|¥,)(¥,|}), respectively; hence, {|¥,)} are degenerate
or nondegenerate eigenstates, respectively. The expressions
for these algebras are given by

- -

Afcl\fr = «{Sj ’ Sj+1}’ {D;‘I,j+1,j+2}>>’
A = ({8 S; b AD a 1S, (9)

where DY ;. =30 (§jk X S:ij) -a is the three-site
DMI term, where the sum over k is modulo 3 (i.e., the
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TABLEL  Summary of QMBS examples studied in this work. Number 1 is an isolated QMBS, whereas Nos. 2-6 are towers of QMBS.
In 2-6, A, is the exhaustive (bond) algebra of Hamiltonians that contain the QMBS as degenerate eigenstates, and CNSCar is the
symmetry (commutant) algebra for those Hamiltonians. Note that the choices of generators of the bond algebras are not unique, and we
point to the simplest choice we are able to derive. The existence of the bond algebras is guaranteed by Lemma IV.1 if strictly local SM
projectors {P(;} can be found with their common kernel spanned by the QMBS states; these can be constructed in all cases we study.
These projectors can be used to construct type I symmetric Hamiltonians with degenerate QMBS using the Shiraishi-Mori construction,
but the bond algebras also contain type II symmetric Hamiltonians that lie beyond the Shiraishi-Mori construction; we show one
example in each case. For the towers of QMBS in 2-6, exhaustive algebras A, of Hamiltonians with the QMBS as potentially
nondegenerate eigenstates are obtained by adding the “lift operator” H, to the corresponding bond algebras As.,. In such cases, we
conjecture that any local Hamiltonian in A, is a linear combination of the lift operator and the type I or II Hamiltonian from .,Ztscar
(Conjecture III.1). This finding implies that the QMBS necessarily appear as equally spaced towers in the spectra of Hamiltonians
containing them (Conjecture II1.2).

Number QMBS Asears Cocar SM projectors {P}; } Type II op. Lift op. H,
1 AKLT ground state(s) (AAKLT GAKLT) Eq. (19) {PH Eq. (18) St Appendix B3
2 Spin-1/2 ferromagnet (Afcl\:lrc”gfi\f)) Eq. (22) {P; i1} Eq. (12)  H, pwm Eq. 24) S
3 PBC AKLT QMBS () @)y  Eq. (26) {12} Appendix D2 g(n)  Eq. (28) Si
Alo) Alo ! r i (0 z

4 OBC AKLT QMBS (Agcgr,cgcgr) Eq. (D21) {H(l.)z’ {H[j,j+2]}’HQLL} Appendix D 3 HE“)QT Eq. (28) St

in- “bi 7(XY) A(XY XY.x Z
5 Spin-1 XY z-bimagnon (41X #XY))  Eq. (30) { P_</,_/+1 it Eq. (F2)  No. 12 Eq. (32) Stot
6 Hubbard #-pairing (,Zlggﬁb), égg{b)) Eq. (34) Table III in Ref. [34] No. 12 in Table III [34] Nt
three sites are considered as forming a loop hosting the Note that the commutants, in general, also contain

DMI term). Note that A™ is an example of a bond algebra ~ information about degeneracies among the scar states
since it is generated by a set of strictly local terms, whereas ~ for a given family of Hamiltonians, which is a finer
ARM is not since its generators include an extensive local ~ Characterization than just the statement of the fracture in

Definition. Given a set of QMBS, we refer to any  decompositions with degenerate and nondegenerate scars
extensive local operator that lifts the degeneracies of the 15 shown in Figs. 1(c) and 1(d). Further, in cases where
QMBS as a lifting operator. the commutants consist of QMBS ket-bra operators as

We find that this is a general feature of the local algebras ~ Well as other conventional conserved quantities, operators
for which the QMBS states are nondegenerate; i.e., they ~ 1n the local algebra d_O not act irreducibly in the com-
cannot be generated by strictly local operators. Examples of ~ plement of ., and 1-nstead have smaller blocks within
lifting operators in various other examples of QMBS are  Hinerm also corresponding to the nonscar conserved quan-

shown in Table L and we discuss them in more detail in tities. Neveﬂheless, we expect generic Hamiltonians within
Sec. V and the appendixes. each of those blocks to be “thermal” in the conven-
tional sense.

C. Hilbert space decomposition

Denoting the span of the QMBS states { |y, ,) } as Hcar
and its dimension as D, the structure of the commutant Locality considerations for the construction of symmet-
Cycar Such as in Eq. (8) implies that A, acts irreducibly in ric extensive local operators or Hamiltonians are more
the orthogonal complement to H,,,, which is then naturally ~ challenging in the QMBS and other weak ergodicity-
viewed as Hyenn from Eq. (1). Indeed, in this case, A,  breaking problems where the corresponding “symmetries”
can realize any operator acting in H e, and it is natural to  are highly unconventional, generically nonlocal, and not
expect a generic Hamiltonian from A, to be “thermal” on-site. In particular, in any bond algebra corresponding to
(i.e., with random-matrix-like level spacings) in this sub- ~ commutants with QMBS, we find qualitatively new types
space. In the decomposition in Eq. (5), the subspace Hperm of symmetric Hamiltonians that are forbidden for conven-
corresponds to the block Aperm, Which is the only block  tional commutants corresponding to on-site unitary sym-
other than those of the algebra singlets; the corresponding ~ metries. In general, given a bond algebra A := ({H,})),
Dierm = D — Dyeye and dypermn = 1, thus connecting the i.e., where {Fla} are strictly local, we can make a clear
decompositions of Egs. (1) and (5). For the ferromagnetic  distinction between two types of symmetric extensive local

D. Type I and type II symmetric Hamiltonians

tower of QMBS of Eq. (6), we hence have H, =  operators or symmetric Hamiltonians in A.
span{|¥,)}, Dyor = L + 1, and Dyen =25 =L =1, as Definition. An extensive local operator in a bond algebra
shown in Fig. 1(d). A is a type I (type II) operator if it can (cannot) be
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FIG. 1. Summary of the local and commutant algebras and associated block decompositions that appear enroute to the exhaustive
description of towers of QMBS. We show explicit algebras for the ferromagnetic states {|¥,)} as QMBS, but similar block
decompositions hold for other examples we study. Particular Hamiltonians that realize these block decompositions have been studied
previously, but the algebra language provides an exhaustive characterization of such Hamiltonians. This framework is also much more
general, and it treats symmetries and scars on similar footing and captures examples such as the AKLT tower of QMBS that do not fit
into previous frameworks. (a) Prebond algebra generated by a set of strictly local terms that have a degenerate set of common
eigenstates, which are the “target states.” Such an algebra usually has a larger commutant, which leads to other symmetry sectors in the
block decomposition; this could be a conventional non-Abelian symmetry such as SU(2), although not always. (b) Extensive local
“lifting operator” added to the generators of the prebond algebra. This operator lifts degeneracies between the target states while still
preserving some symmetry sectors. In the ferromagnetic example, this case corresponds to a dynamical SU(2) symmetry, and the states
are split into an equally spaced tower in any local Hamiltonian from this algebra. (c) Additional symmetries of the prebond algebra,
which can be broken by the inclusion of terms that preserve the degenerate target states while mixing the remaining symmetry sectors
into a single large thermal block. The target states are now examples of degenerate scars. (d) Lifting operator and the terms that break
other symmetries of the prebond algebra, which can be added to obtain the typical decomposition in the case of QMBS systems into a
thermal block and a scar block composed of nondegenerate scar states. In the ferromagnetic example, we conjecture that the scar states
appear as an equally spaced tower in any local Hamiltonian in this algebra. This algebra ultimately exhaustively characterizes the

Degenerate
states

QMBS, while the algebras in panels (a)—(c) are simply motivating steps.

expressed as a sum of strictly local operators also in the
same bond algebra A.

While the DCT guarantees that the type II Hamiltonians
can, in principle, be produced from the strictly local
generators in the algebra sense, such a procedure neces-
sarily involves highly nonlocal expressions in terms of
those generators. Lemma II.2 in Ref. [60] shows that, for
commutants generated by on-site unitary operators, all
symmetric Hamiltonians are of type I; hence, type II
Hamiltonians can only exist for unconventional commu-
tants as exemplified by the kinds we consider in this work.

As an example, for the bond algebra lescar corresponding

to the commutant Cy o = ({|¥,)(¥,,|}) that contains the
states of Eq. (6) as degenerate QMBS, we will show that the
Heisenberg Hamiltonian in Eq. (7) is a type I operator,
whereas the DMI Hamiltonian is a type II operator.
Examples of type II operators for other instances of
QMBS are shown in Table I and discussed in detail in
Sec. V and the appendixes.

With these definitions, we can make a few simple
observations on the nature of these operators that we use
in this work. First, note that type I and type II properties of
an operator are invariant under the addition of type I
operators, which allows us to define equivalence classes
of type II operators, where two type II operators are
equivalent if they differ by the addition of a type I operator.

For extensive local operators that are sums of strictly local
operators of a maximum range r,,, type I symmetric
operators form a vector space that is a subspace of the space
of all symmetric operators of that range; hence, the set of
equivalence classes of type II operators has a natural
quotient space structure. An advantage of studying the
equivalence classes instead of the operators directly is that
the number of linearly independent equivalence classes of
type II operators of range at most r,, can be extracted
numerically in a rather straightforward manner [73].
Second, the type II property depends on the local algebra
in question; in general, a type Il operator with respect to one
algebra might be a type I operator with respect to another.
Nevertheless, given two algebras A; C A,, we can always
say that any type I operator in .4, is also a type I operator in
A,. Equivalently, any operator in .4; that is a type II
operator with respect to A, is also a type II operator with
respect to A,; i.e., any extensive local operator in A; that
cannot be written as a linear combination of strictly local
operators in .4, cannot be written as a linear combination of
strictly local operators in A;.

Note that the distinction between type I and type II
symmetric Hamiltonians is not so clear in local algebras
that are not bond algebras, i.e., if one of the generators is
necessarily extensive local, due to the arbitrariness in the
choice of generators of a local algebra. For example,
without the restriction of strict locality that is natural in
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bond algebras, the extensive local Hamiltonian itself can be
made a generator in a local algebra, wiping out the dis-
tinction between the types of symmetric Hamiltonians.
Hence, whenever we refer to an operator as type I or type II
Hamiltonians, we implicitly assume that there is a bond
algebra involved. Following the discussion in Sec. III B,
this usually means that the distinction can only be made in
cases of isolated QMBS or degenerate QMBS, and not in
the cases with nondegenerate towers of QMBS.

E. Structure of local Hamiltonians with QMBS

While locality considerations for bond algebras corre-
sponding to degenerate QMBS lead to distinctions
between type I and type II Hamiltonians, locality con-
siderations for local algebras corresponding to nondegen-
erate QMBS also lead to certain constraints on the
structure of Hamiltonians. As discussed in Sec. III B,
the algebras A, of operators with nondegenerate QMBS
usually involve an extensive local “lifting operator” in
their generators. Heuristically, in the expression of any
local operator in Ay, Wwhose generation necessarily
involves the lifting operator, it should appear either in a
linear combination or in a commutator with another local
operator; all other combinations are generically nonlocal.
However, in any operator where it appears as a commu-
tator, the QMBS remain degenerate since they are eigen-
states of all operators in A,.. Hence, in many examples,
we conjecture that any Hamiltonian in Ay, is a linear
combination of the extensive local operator and an

operator from flscar for which the QMBS are degenerate.
Of course, the validity of this conjecture depends on the
details of the models and the operators involved; never-
theless, we can conjecture a more precise statement for the

algebras A and A™ of Eq. (9), which contain the
ferromagnetic states {|¥,)} of Eq. (6) as degenerate and
nondegenerate QMBS, respectively.

Conjecture IlI.1. Any extensive local Hamiltonian with
the ferromagnetic states {|¥,)} as eigenstates, i.e., any
Hamiltonian in the algebra ALY, is a linear combination of
the lifting operator Sg,; and the type I or II Hamiltonian
from the bond algebra ./Zlfcl\fr

The local algebras in several other examples of towers of
QMBS we study in Sec. V have similar structures, as shown
in Table I, and we also make similar conjectures for them.
Since the lifting operator is simply S5, this conjecture has
an immediate corollary on the equal spacing of the spectra
of Hamiltonians with these states as QMBS.

Conjecture I11.2. Any local Hamiltonian with the ferro-
magnetic states {|¥,)} as QMBS necessarily has them as
an equally spaced tower of states in the spectrum.

Note that this conjecture is analogous to the claim we
proved in Ref. [60] on the spectra of Hamiltonians with the
dynamical SU(2) symmetry, but here we have been unable
to prove it.

IV. FROM UNIFIED FORMALISMS TO
EXHAUSTIVE ALGEBRAS

We now discuss some unified formalisms of QMBS that
potentially capture several examples of QMBS in a single
framework; an overview can be found in the reviews on this
subject [10-12]. Particularly, the SM formalism introduced
in Ref. [35] and the closely related group-invariant (GI)
formalism introduced in Ref. [42] motivated a concrete
route to constructing the exhaustive algebra A, of
Hamiltonians with a given set of QMBS. Identifying these
exhaustive algebras then allows us to directly connect all
the “symmetry-based” unified formalisms of QMBS to the
commutant language, which in turn allows for generaliza-
tions that apply to many more examples of QMBS.

A. Shiraishi-Mori formalism
1. Original formulation

Reference [35] introduced a formalism for embedding
exact eigenstates into the spectra of nonintegrable
Hamiltonians, which provides a way of explicitly con-
structing Hamiltonians with ETH-violating eigenstates. In
particular, they considered a target space 7, spanned by a
set of states that are all annihilated by a set of (generically
noncommuting) local projectors {P[ j]}, where P; denotes
a projector with support in the vicinity of a site j, i.e.,

T ={ly):Pyly) =0 ¥ j}. (10)

Given a target space 7, SM considered Hamiltonians of the
form

Hv =Y _PhiPy + Ho. [Ho Pyl =0 Vj. (1)
J

where hp; is a sufficiently general (e.g., “randomly
chosen”) local operator with support in the vicinity of site
J that might have a support distinct from Py, and Hy is a
local operator. The {P;;h;Py;)} terms of Hgy in Eq. (11)
vanish on the states in 7', and H,, leaves the target space 7
invariant as a consequence of the imposed commutation
conditions. Hence, eigenstates of Hgy; can be constructed
from within the target space 7, and they are generically in
the middle of the spectrum. Since in many examples 7 can
be completely spanned by low-entanglement states, [74]
e.g., states with an MPS form, and Hgy; is generically
nonintegrable, these eigenstates are said to be QMBS of
Hg\y [9-11,35].

For example, this formalism can be used to construct
Hamiltonians with the ferromagnetic states {|¥,)} of
Eq. (6) as QMBS, using the fact that they are the singlets
of Agy(z) as discussed in Sec. IIC and hence are in the
common kernel of the set of strictly local projectors
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1 - -
Pj,j+l :ZZ_SJ'Sj+1' (12)

Then, any Hamiltonian of the form of Eq. (11) with P;; =
Pj ;.1 and Hy = >, S¢ (that satisfies the requirements) has
{|¥,)} as QMBS.

To cast the SM formalism in terms of local and
commutant algebras, we start with the bond algebra A=
«{Pr;})» generated by the aforementioned projectors.
Then, 7 is a subspace spanned by one set of the degenerate
singlets of A, namely, by the ones on which all the
projectors Pp; vanish. The block decomposition typical
for such bond algebras is depicted in Fig. 1(a). According
to Eq. (11), H, is then a local operator that belongs to C, the
commutant of A. Thus, we see that the singlets of any local
algebra can be made into QMBS of some Hamiltonian of
the form of Eq. (11), provided the 7 and H|, that satisfy the
required conditions exist. We will sometimes refer to Aand
C as the “prebond” and “precommutant” algebras, respec-
tively, and QMBS can be constructed from several prebond
algebras; e.g., all of those discussed in Ref. [60]. In the
example of the ferromagnetic QMBS discussed above, we
simply have A = ({P; ;1 }) = Asur) and C = Cgy(y) of
Eq. (4), which explains the choice of H there.

2. Immediate generalizations
While in the SM framework all states in the target
subspace are singlets that are annihilated under the local
projectors {P[ j]}, we can embed other sets of singlets with
Hamiltonians of the form

Hsygen = D _Pyjhyy Py + Ho, (13)
J

where P[j] ’s are some operators in the vicinity of site j that
need not commute with each other and need not be
projectors, [78] hy;’s are arbitrary Hermitian operators,
and H is any operator that leaves the target space 7 (now
defined as the common kernel of all the {Pj;}) invariant,
which can also be any operator in the commutant of the
prebond algebra (({ﬁm})) or any other local operator that
commutes with the projector onto 7. In this generalized
setting, an arbitrary degenerate set of singlets of a bond
algebra A := «{A[;)}), e.g., those that satisfy Ajjly) =
ajjly) with some fixed set {aj; }, can be made into QMBS
of Hgppgen bY choosing P = Aj; — af; 1. Another obvious
generalization is to target two sets of singlets of the prebond
algebra A = «{Aj}), one described by the generator
eigenvalue set {aj;} and the other by {ail.]}, by using

Py = (A = ap)(Ay

choice for Hy is any operator from ({Af;}) that splits

—a’m). In this case, a possible

the degeneracy between the two sets; this choice need not
belong to the commutant of (({Ism})) and hence is an
example where local H, preserves the target space but does
not commute with the PU]’S that were required in the
original SM formalism.

3. Exhaustive algebra of QMBS Hamiltonians

While these approaches provide a way to construct one
family of Hamiltonians with QMBS, we are primarily
interested in exhaustively characterizing all Hamiltonians
with a given set of QMBS, and we now show that the SM
formalism appropriately extended and interpreted provides
a way to do so. We start by analyzing the Hamiltonians
Hg\ by focusing on the first term in Eq. (11), and we
consider the bond algebra Agy = «{Pijh;P}) where
we choose sufficiently general operators hj; with an
appropriate support (implicitly allowing several generators
associated with each [j] if needed). It is natural to expect
that most operators in the precommutant C no longer
commute with general Hamiltonians built out of ./ZtSM.
Nevertheless, the states in the target space 7 are still
annihilated by the generators of .,ZlSM; hence, ket-bra
operators formed by those states are in éSM, the centralizer
of .ZlSM. For sufficiently general /[;, we expect these to be

the only operators in Cqy; hence, we obtain the bond and
commutant algebra pair

Asm = (P Pty Com = (lwan)(wal}).  (14)

where |y ,,), [w,) € T. We sometimes refer to bond alge-
bras of this form as Shiraishi-Mori bond algebras. A proof
of this statement depends on the specific details of the
operators and the target spaces, but it can be verified for
several examples, which we discuss in Sec. V using
numerical methods we presented in Ref. [73]. The exist-
ence of this pair of algebras is equivalent to the statement
that Agy; is irreducible in 7+, the orthogonal complement
of the target space 7 of Eq. (10). While it is not a priori
clear that .,ZlSM can be generated by strictly local terms, in
Appendix A we are able to prove the following Lemma,
which guarantees the existence of such an algebra as long
as a target space 7 of the form of Eq. (10) exists.

Lemma IV.1. Consider the target space 7 = {|y),
Pjly) = 0}, where the P;’s are strictly local projectors
of range at most an L-independent number r,,,.. Then, we
can always construct a bond algebra Agy = (({ﬁ[ A
where the ﬁm’s are strictly local terms of a range bounded
by some L-independent number r},,, > Fpax Such that it is
irreducible in 71, the orthogonal complement of the
target space.

Hence, such Agy is an example of A, discussed in
Sec. III; in particular, it contains all Hamiltonians that have
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the QMBS {|y,)} as degenerate eigenstates. The block
decomposition corresponding to such algebras is depicted
in Fig. 1(c). Note that while Lemma IV.1 provides an upper
bound on the range of the generators of Agy, in many
examples discussed in Sec. V, we are able to use the
structure of the states in 7 to reduce this range.

To understand all Hamiltonians that simply have the
states {|y,)} as eigenstates, including the ones that lift the
degeneracies among them, we can simply add a single H,,

to the generators of ,ZlSM. In other words, assuming the
existence of an H, that lifts all the degeneracies among the
states in 7, [79] it is clear that we can write down a local
and commutant algebra pair of the form

CSM = «{ll//n><u’n|}»,
(15)

Asm = {{ Pk P} Hos

where |y,) now refer to the eigenstates of Hy in the scar
space. This completes the construction of a local algebra
with the projectors onto the QMBS eigenstates completely
determining its commutant; hence, all Hamiltonians with
these QMBS can be constructed from the generators of
Agwm, which then gives the algebra A, that we envisioned
in Sec. III. The block decomposition corresponding to this
algebra is depicted in Fig. 1(d). In summary, for any set of
states {|y,)} that span the complete kernel of a set of
strictly local projectors {P[ j]} (or equivalently, that can be
expressed as the ground-state subspace of a frustration-free
Hamiltonian), a locally generated algebra of Hamiltonians
for which these states are QMBS is guaranteed to exist.
Since the ferromagnetic QMBS {|¥,)} of Eq. (6) can be
understood as the common kernel of the set of strictly local
projectors {P; 1}, the exhaustive algebras with these

states as degenerate or nondegenerate QMBS, ./Zlfcl\;[r and
ARM " can respectively be written as

Al = (AP j1hj Py 1),
A = P jr hij Py St ) (16)

where ;) is a term of range at most 4 (proved analytically),
although we numerically find that terms of range 3 are
sufficient. As we will discuss with examples in Sec. V, this
case is also true for several if not all examples of QMBS
studied in the literature, which allows us to identify the
appropriate algebras that contain the exhaustive set of local
Hamiltonians that have these states as QMBS.

Note that although the generators of ./ZlSM and Agy as
motivated by the SM construction include the “randomly
chosen” operators {h;}, the algebras as a whole are 7
independent since they are the centralizers of /(;;-independent
algebras Ceu and Ceyy. Indeed, it is possible to choose a set of
“nice” h;-independent generators for ASM, which are more
useful in systematically constructing local operators in this

algebra. For example, for the ferromagnetic tower of QMBS
{|¥,)}, this exhaustive algebra of Eq. (16) can equivalently be
expressed as shown in Eq. (9).

4. Nature of Shiraishi-Mori Hamiltonians

We now emphasize a few aspects of the class of
Hamiltonians of the form of Eq. (11). The main difference
in interpretation compared to considering individual
instances of Hgy done in prior works is that here we are
exhaustively characterizing the family of Hamiltonians with
the given QMBS; then, we expect that reasonably generic
instances from this family will have the exact QMBS inside
an otherwise thermal spectrum. As a consequence, the
algebra Ag) includes Hamiltonians that are not of the form
of Hgy of Eq. (11) but nevertheless contain the same QMBS
as Hgqyp. As discussed in Sec. III D, there are two types of
symmetric Hamiltonians that can, in principle, occur for any
bond algebra, the symmetry here being the QMBS commu-

tant éSM and the bond algebra being JZlSM. Itis easy to see that
all Hamiltonians of the form of Eq. (11), or even the
immediate generalizations in Eq. (13), are a linear combi-

nation of a type I operator in the algebra ASM that leaves the
QMBS degenerate and a lifting operator that lifts the
degeneracy between the QMBS. However, the most general
Hamiltonian with the same set of QMBS could be a type II

operator in the algebra Agy, along with a linear combination
of the lifting operator and type I operator. This finding allows
us to explain QMBS in Hamiltonians that are considered to
be “beyond” the Shiraishi-Mori formalism. For example, in
the case of the ferromagnetic tower of QMBS, the DMI term
is a type Il operator, and in Sec. V, we show that the
Hamiltonian of Eq. (7) with D # 0 cannot be expressed as
Eq. (13), while with D = 0 it can.

B. Group-invariant formalism
1. Original formulation

A closely related formalism, which we refer to as the GI
formalism, was introduced and developed by Pakrouski,
Pallegar, Popov, and Klebanov in Refs. [42,45], where they
proposed that QMBS are singlets of certain Lie groups.
Given a set of operators {7} that are generators of a Lie
group G, the singlets of the group are states that are invariant
under the action of any element in G. Since the elements of
the group are unitaries of the form exp(i >, a,T,), the
singlets are annihilated by all the generators. Defining the
space of singlets as 7 = span{|y): T,|lw) =0 Va},
Ref. [42] showed that the states in 7 are QMBS of
Hamiltonians of the form

Ha =) 0,Tq+Ho,  [HoCEl=WCE,  (17)

a

where O, are arbitrary operators chosen such that Hg; is
Hermitian, C%; is the quadratic Casimir of the Lie group G,
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and W can be any operator. Reference [42] found examples
where the generators {7, } of the Lie group G can be chosen
to be strictly local operators, allowing Hg; to be a local
Hamiltonian. In particular, when T',’s are quadratic fermion
operators in an N-site spinful electron system—e.g., hopping
terms, on-site chemical potentials, or magnetic fields—they
generate some Lie algebras (depending on the chosen set of
generators), and the corresponding Lie groups G are sub-
groups of U(2N); see Refs. [42,45,60] for detailed discus-
sions with several examples. Further, the condition on H, in
Eq. (17) is equivalent to stating that it leaves the subspace 7°
invariant [80]. Hence, with a choice of strictly local {7, } and
the substitutions T, — P; and O, — P;hy;, Eq. (17) is
equivalent to the generalized SM Hamiltonian of Eq. (13) [81].

Note that similar to the SM formalism, this case can be
generalized further to include singlets of A that satisfy
T,ly) = t,Jy) by substituting 7, > T, —1t, in the GI
construction. While the states embedded this way are
not “group invariant” in the original sense, they are still
invariant under the action of elements of G up to an
overall phase.

2. Extensions to local and commutant algebras

With this mapping to the (generalized) SM formalism, all
of the exhaustive algebra results of Secs. IVA 3 and IVA 4
apply here. The target space 7 here is spanned by the
singlets of the group G, which are also the singlets of the

bond algebra A = ({T,}). The families of Hamiltonians
with these singlets as eigenstates can be constructed in direct

analogy with the SM formalism; e.g., the algebra Ag =
{{0,T,}) is the analog of Agy and leaves the singlets

degenerate while breaking symmetries of A, and Agr =
{{0,T,}, Hy) is the analog of Agy; and lifts (some of) the
degeneracies of the singlets. Further, we can also apply
Lemma IV.1 to show that as long as T,’s are strictly local
operators, we can construct algebras that provide an exhaus-
tive description of all Hamiltonians with singlets of G as
eigenstates. Similar to the SM formalism, Hamiltonians of
H g, are linear combinations of a type I operator in Ag; and a
lifting operator, whereas the most general Hamiltonian with
these group singlets as eigenstates could be a type I operator
in .,ZlGI and a lifting operator.

Note that the interpretation of these states as being group
invariant or singlets of Ais not necessary for characterizing
the final algebra .,ZlGI. In fact, multiple choices of the group
G or the prebond algebra A can have the same set of
singlets (e.g., see Nos. 2, 3a, and 3b in Table II in
Ref. [60]), and all such prealgebras would give rise to
the same Ag; under the construction discussed above.
Nevertheless, starting from “well-known” prebond alge-
bras, e.g., any of the algebras discussed in Ref. [60],
provides a convenient route to construct the final bond
algebra of interest.

3. Features of the QMBS revealed by this framework

The group-invariant interpretation illustrates several non-
trivial features of QMBS, as emphasized in Ref. [42]. Since

the prebond algebra A = ({T,}) is generated by the
generators of a Lie group G, and since the QMBS are

singlets of A, their projectors are part of its commutant C.
Thus, the QMBS projectors, and hence the states themselves,
are “symmetric’ under the group G. For example, as
discussed in Ref. [42], several QMBS that have group-
invariant interpretations (e.g., the tower of #-pairing states in
the Hubbard model [33,34]) are invariant (i.e., symmetric—
understood more generally to include cases with very
specific sign factors under the action of the symmetry
operations) under the permutation of sites since the permu-
tation group is a subgroup of G in those cases. However, the
presence of the permutation group within a bond algebra for
QMBS does notrequire parent Lie group structure and occurs
much more generally. For example, the ferromagnetic towers
of QMBS {|¥,)} are singlets of Agy,), which is the group
algebra of the permutation group S; that is not a Lie group.
From this perspective, the states {|¥,)} are invariant under
permutation of sites of the lattice, which can be readily
verified from their expressions in Eq. (6). Hence, the
commutant language is also useful in generalizing key ideas
from the GI approach.

C. Particular breaking of symmetries
or tunnels-to-towers formalism

With the understanding of the exhaustive algebra moti-
vated by the SM and GI formalisms, we now discuss other
unified frameworks in the algebra language and demon-
strate how they lead to constructions of the QMBS algebra
A.ar- References [34,44] introduced a mechanism that can
be viewed as a particular removal of symmetries that
preserves an original symmetry-dictated multiplet, dubbed
the “tunnels-towers” mechanism in Ref. [44]. This mecha-
nism entails a three-step process to construct Hamiltonians
with QMBS, which we now summarize and describe in the
commutant language.

First, we begin with a model with a non-Abelian
symmetry under which the “target” QMBS eigenstates
are degenerate. This model can be from the prebond algebra

,Zl, which has a non-Abelian commutant C~, where the
potential QMBS states are the singlets of A, as shown in
Fig. 1(a). For the ferromagnetic states {|¥,,) } of Eq. (6), we
have A = Asu(z) of Eq. (4), which has the SU(2) sym-
metry of C = Csu(2)-

Second, terms are added to this Hamiltonian that lift the
degeneracy between the potential QMBS states, while the
Hamiltonian preserves (a part of) the original symmetry.
Such terms can be like H,, from the SM or GI constructions,
which preserve the target space, e.g., a local operator from
the precommutant C. The addition of these terms to the
generators results in an algebra of the form ./Zldyn, which is
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the algebra of Hamiltonians for which the singlets of A are
eigenstates, albeit not necessarily degenerate, as shown in

Fig. 1(b). If Hyy is chosen from the precommutant C and
added to the generators of A to construct Agy,, the
commutant of .;ldyn would be at least as large as the center

Zof AandC, ie., C~dyn D Z. In the ferromagnetic example,
H can be chosen to be any operator from Cgy(a), €.8, St
which results in the algebra Adyn = Adgyn-su2) =
<<{§ ;- S 41} Sto)- Hamiltonians from Agy,_sy(2) exhibit
a dynamical SU(2) symmetry [60], i.e., the commutant is
Cayn-su(2) = ((§2, S0, [82] and the degeneracies among
the states in the ferromagnetic tower are lifted.

Third, Hamiltonians with QMBS are constructed by
breaking even this restricted (dynamical) symmetry édyn
while preserving the target manifold of states. In the
commutant language, this step corresponds to enlarging
the algebra Agy, to A, wWhich then coincides with the
exhaustive algebra Agy or Ag; constructed from the
Shiraishi-Mori or group-invariant formalisms, respectively.
In the ferromagnetic example, this step corresponds to
adding terms that preserve {|W¥,)} as eigenstates but break
the dynamical SU(2) symmetry Cayn_sy(2), €-g., strictly
local such terms like {P; ;,1hf;P; 1} that appear in the
Shiraishi-Mori formalism; this step ultimately leads to the
algebra AR of the form of Eq. (16) or (9).

In all, this formalism constructs QMBS Hamiltonians by
sequentially constructing Hamiltonians that realize the block
decompositions shown in Figs. 1(a), 1(b), and 1(d). The
description of this formalism in the local and commutant
algebra language provides additional insights. First, the
original formulation relies on starting from QMBS states
that transform under a particular representation of a conven-
tional non-Abelian symmetry such as SU(2). However, in the
algebra language, these states can be the degenerate singlets

of any locally generated prebond algebra A. Second, in the
original formulation in each of these steps, the terms with the
right properties are determined either by guesswork or brute-
force numerical searches. However, a systematic way to
derive these terms is only evident in the local and commutant
algebra language. Third, in the final step of this construction,
Refs. [34,44] noted that two distinct types of terms can be
added that break the dynamical symmetry while preserving
QMBS, one that annihilates the QMBS locally and one that
annihilates the QMBS “as a sum.” Once these steps are
described in the algebra language, the origin of these two
types of terms can be traced back to the existence of type [ and
type II extensive local operators in the corresponding
algebras, as discussed in Sec. III D.

D. Quasisymmetry formalism

Similarly, Ref. [43] illustrated a mechanism for con-
structing QMBS models, introducing the idea of a

quasisymmetry, which can also be understood clearly in
the algebra language. To summarize, quasisymmetries are
symmetries only on part of the Hilbert space, and they lead
to degeneracies in the spectrum of the Hamiltonian that
cannot be understood as a consequence of conventional on-
site symmetries. For example, when the precommutant C
consists of a regular non-Abelian symmetry [e.g., when
(A.C) = (Asu(2)- Csu(2))], the operators in Agy or Ag are
considered to exhibit a quasisymmetry since the singlets of
A [e.g., the ferromagnetic manifold {|¥,)}] are their
degenerate eigenstates, and this degeneracy can be under-
stood as a consequence of the original non-Abelian sym-
metry restricted to the space of singlets. Hamiltonians with
nondegenerate QMBS are then constructed by adding
appropriate terms to lift these degeneracies, e.g., terms
such as H, in the SM or GI constructions. In the commutant
language, Agy or Ag; is the bond algebra of quasisym-
metric operators for which the QMBS are degenerate, as
depicted in Fig. 1(c), and the addition of H, to the
generators of this algebra leads to Aj,., which coincides
with Agy or Ag;. In the example of the ferromagnetic

states, Afcl\fr is the algebra with a quasisymmetry, and
adding H, = S, results in the algebra ALY, that exhaus-
tively characterizes Hamiltonians with the ferromagnetic
states as QMBS. Hence, the quasisymmetry framework
sequentially constructs particular Hamiltonians that realize
the block decompositions of Figs. 1(a), 1(c), and 1(d).
However, similar to the previous unified formalisms, in the
original quasisymmetry formulation, the states in which the
quasisymmetry transforms under a particular representation
of a conventional non-Abelian symmetry, such as SU(2),
and terms with the required properties are determined by
brute-force numerics or guess work. The algebra language
generalizes these conditions and provides a systematic way
to understand such terms. In addition, Ref. [46] found two
distinct types of operators that can be added to a symmetric
operator to make it “quasisymmetric,” which, in the algebra
language, correspond to type I and type II operators in
,lecar. Moreover, the “quasisymmetry” that preserves the
degeneracy between states need not originate from any
conventional symmetry—in the algebra language, the
degeneracy simply arises from the fact that these are the

degenerate singlets of some prebond algebra A.

V. EXAMPLES

We now illustrate examples of systems where the
commutant algebra picture is useful in understanding the
QMBS. The discussion broadly follows the template
presented in Sec. III. In particular, for some of the well-
known examples of QMBS, (i) we show that there is a
locally generated algebra A, corresponding to the com-
mutants C,.,, with ket-bra operators of QMBS; (ii) we
illustrate type I and type II operators with QMBS, which
are related to Hamiltonians beyond the Shiraishi-Mori
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formalisms; (iii) we derive constraints on extensive local
Hamiltonians with QMBS using the DCT and locality
considerations. We particularly associate the following
examples with the Shiraishi-Mori formalism since, as we
discussed in Sec. IVA3, identifying the strictly local
projectors that annihilate the QMBS guarantees the exist-
ence of local algebras with the desired commutants.
However, we will also use inspiration from the other
formalisms to construct nicer expressions for the local
algebras. We summarize the examples and results in
Table L.

Note that in the following, whenever we work with
examples with multiple QMBS, we use the notation Ascar
and ésca: with appropriate superscripts to denote the local
and commutant algebras for which the QMBS eigenstates
are degenerate. Similarly, we use Ay, and C,, Wwith
appropriate superscripts to denote the local and commutant
algebras for which the QMBS are nondegenerate to the
extent possible with local operators.

A. Embedding matrix product states

We start with the embedding of matrix product states in
the middle of the spectrum, as envisioned by Shiraishi and
Mori in Ref. [35]. Although it was clear in the earlier
literature that Hamiltonians with MPS as QMBS exist, the
exhaustive algebras of Hamiltonians with a given MPS as
QMBS, including ones that are not of the Shiraishi-Mori
form of Eq. (11), were not discussed.

1. AKLT ground state

For the purpose of illustration, we start with the unique
AKLT ground state |G) with PBC; analogous results can be
derived for the four OBC AKLT ground states, and we refer
readers to Appendix B 1 for detailed discussions. We also
refer to earlier literature [26,83,84] for detailed discussions
on the AKLT state and its properties. The AKLT ground
state can be expressed as the unique state in the kernel of
nearest-neighbor projectors { PAXLT} where the projectors

JJt+1
are defined as [83]

-

(Sj-Sj1) +

1
AKLT ,_
Py =3+

(Sj ’ Sj+1)2» (18)

| =
AN =

where 3,- is the spin-1 operator on site j [see Eq. (D1) for an
equivalent definition in terms of total angular momentum
states on the two sites]. Hence, the AKLT state can
be viewed as unique singlet of the prebond algebra
AN o= (PR,

To construct a bond algebra with this singlet projector as
completely generating the commutant, we can use ideas
from the Shiraishi-Mori construction and consider the
algebra generated by {P}LTh;yPAHT} for a generic
strictly local term hf; with support in the vicinity of ;.
As guaranteed by Lemma IV.1, for a sufficiently large but

finite range of hj;, there exists the bond and commutant
pair

AGRET = ({PAKLTh PARLTYY, CRRET = (1G)(GI).
(19)

We numerically observe that for system size L > 3, hy;
can be chosen to be a sufficiently generic nearest-neighbor
term for Eq. (19) to be true. In Appendix B, we use this
observation to prove an equivalent statement, namely,

that the algebra ,ZlfcIa(ILT generated with generic nearest-
neighbor £y;) is irreducible in the space orthogonal to |G).
This finding is different from the general proof of the
existence of the Shiraishi-Mori bond algebra presented in
Appendix A since here we use the structure of |G) to show
that the required Shiraishi-Mori bond algebra can be
generated by nearest-neighbor terms.

2. DCT and type II operators

Using the DCT, we can then infer that all operators that
commute with CAKIT, ie., all operators with |G) as an
eigenstate, are in the algebra ,Zlfcfrm (remembering that the
identity operator is always included in our bond algebras).
Hence, ASKLT s the algebra of all parent Hamiltonians of
the AKLT states (not requiring the states to be ground
states). This algebra includes Hamiltonian terms comprised
of longer-range projectors that annihilate the AKLT states
as well as extensive local operators such as Si,, which
vanishes on |G). While it is highly nonobvious to see
that S5, can be expressed in terms of the generators
{PYE R PARET), the existence of such an expression
can be argued for using the irreducibility of AAKLT
nonsinglet space, as we discuss in Appendix B.

However, we have not been able to obtain a compact

expression for S%, in terms of the generators of ALNET, and

we suspect any such expression is tedious and nonlocal.

Indeed, in Appendix B 3, we use the MPS structure of |G)

to prove that S, in ./Zlfclﬁ‘T for PBC is an example of a type

II symmetric operator defined in Sec. III D; i.e., it cannot be
expressed as a sum of strictly local bounded-range oper-

ators in AXKLT . These arguments also directly extend to S%,
for a € {x,y, z}, and indeed, we numerically observe that
the number of linearly independent equivalence classes of
type Il operators of range 7y, = 1 in ALK for PBC s 3,
which are the classes containing Si, Si, and S%,
respectively [85]. Moreover, the number of independent
equivalence classes for range r,, = 2 grows to 8, which
suggests that the number of independent equivalence
classes grows with range r,,..; however, we defer a more
detailed study to future work. The existence of nontrivial
classes of type Il operators points to an important difference
between the commutants here and those generated by on-
site unitary symmetries, discussed in detail in Ref. [60],

in the
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where type II symmetric operators are forbidden. We
believe this difference is due to the “nonlocality” or
“non—on-site” property of the conserved quantities in
CAKLT "but we defer a systematic exploration of this issue

to future work.

3. General MPS

The AKLT ground-state scar construction can be directly
extended to arbitrary matrix product states (MPS) since the
projectors { P2XET} can also be constructed starting from
the MPS representation of the AKLT state and the parent
Hamiltonian construction [49,87]. For a general MPS |y)
for PBC, if it is injective as in the AKLT case, it can be
expressed as the unique state in a kernel of a set of local
projectors [87,88] of a range r that depends on the bond
dimension of the MPS, say, {IT}; ;. ,_ }. Then, because of
Lemma IV.1, we are guaranteed the bond algebra and
commutant pair

Als\gs = «{P[LH—r—l]h[j]P[/»j+r—1]}»’
CNRS = (Jw) (w). (20)

for some generic choice of strictly local /). Then, AMPS jg
also the algebra of all Hamiltonians that have the MPS |y)
as an eigenstate, which includes both type I operators, such
as the parent Hamiltonians used regularly in the literature,
and potential type II operators that could exist.

Similar results also hold if the MPS |y) is not injective
but is so-called G injective [88]. It can be expressed as
part of a larger manifold of states {|y,)} that span the
common kernel of a set of strictly local projectors, and by
Lemma IV.1, we are guaranteed to have a bond algebra with
the commutant Cgy = {{lwa) (wsl} ). We have checked
numerically that this is the case for the Majumdar-Ghosh
states [89] with » = 3, and Hamiltonians with these states
as QMBS were constructed in Ref. [35]. In some cases, the
degeneracy between these states {|y,)} can be lifted using
some extensive local lifting operator (as demonstrated for
the MG states in Ref. [35]), although its existence is not
guaranteed, in general.

B. Spin-1/2 ferromagnetic scar tower

We now methodically discuss Hamiltonians for which
the multiplet of spin-1/2 ferromagnetic states {|¥,)} of
Eq. (6) is the QMBS subspace; we stated the key results for
this case as immediate illustrations of various concepts in
Secs. IIT and TV. Several examples of such Hamiltonians
have been constructed (e.g., see Refs. [11,34,41,90]), and
many of them can be understood within the Shiraishi-Mori
formalism; i.e., they are of the form of Eq. (11). This
interpretation is possible because, as discussed in Sec. [V A,
the ferromagnetic multiplet can be expressed as the
common kernel of a set of spin-1/2 projectors {P; ;. }

defined in Eq. (12) or, equivalently, as the unique degen-
erate singlets of the prebond algebra A = Asup) =

(<{§j'§j +11)- Note that while we focus on the one-
dimensional case, this discussion directly generalizes to
higher dimensions.

1. Local algebras

As discussed in Sec. IVA, the bond algebra .Zlféfr with
the commutant Ctoh = (|W,,)(¥,|), which contains all
Hamiltonians with the ferromagnetic multiplet as degen-
erate eigenstates, can be directly constructed following the
Shiraishi-Mori prescription as in Sec. IV A 3. As mentioned
in Eq. (16) and following Lemma IV.1, the generators of the
bond algebra corresponding to {|¥,)} can be chosen to be
of the form {P;; 1hjP; 1}

Note that hj; cannot be a nearest-neighbor term with
support only on sites {j, j + 1} since P; ;; is a projector of
rank 1; hence, P; ;. hj;.1Pjj « Pjj, which would
lead to .,ZlfCMm = Agy(z)- We numerically observe that
generic choices of hj; with a support of at least three sites
in the vicinity of j are sufficient to yield the necessary
commutant; in particular, for system sizes L > 5, we find
(irrespective of the boundary conditions)

A = ({hjo1 Py b AP b)),

where h;_; and h;,, are some generic terms. In

Appendix C 1, we show that Jztfg\;[r generated by such
three-site terms acts irreducibly in the orthogonal comple-
ment of the ferromagnetic multiplet states, which proves
Eq. (21), which is tighter than the general result of Lemma
IV.1 since we use the specific structure of {|¥,)}. In
addition, as discussed in Appendix C2b, we are able to
obtain a simpler set of generators for this algebra, which
reads

A = (185 S5 1 AD% 1 1)

where DY ; . =370, (S, xS,,) @ is the three-site
DMI term, where the sum over k is modulo 3 (i.e., the
three sites are considered to form a loop hosting the
DMI term).

As discussed in Sec. IVA 3, a local operator from the
precommutant, i.e., commutant of the prebond algebra JZ(
e.g., Sy or i, can be added to the algebra /Zlfclfr to break
the degeneracy among the ferromagnetic states. For exam-
ple, if we add S5, we have the local algebra and commutant
pair
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AR = ({8, S5 b AD% s b S
CEML = ({|¥,,) (¥, 1) (23)

and S, is a lifting operator as defined in Sec. III B. Note
that there are several different choices for the generators of
ARM and also several choices of lifting operators that lift
the degeneracies between the QMBS; we have chosen a
simple natural set.

2. DCT and type II operators for degenerate scars

We now discuss a few aspects of constructing local

operators in the local algebras, starting with those in .,Zlfifr
Strictly local operators with support in a contiguous region
R, when required to commute with the ket-bra operators or
projectors in Cfcl\fr, necessarily commute with these algebras

restricted to the region R, i.e., Coonk ¢ == {{|¥.)r (¥l } )

where |¥,)r = (Sg.r)"|F)g» and Sg, z and |F)p are the
restrictions of Sy and |F) to the region R, which are well
defined in the obvious way. Since (?fé\er has the same
structure as éfé\dm, the corresponding local algebra is
generated by restricting the generators of ﬂfgf, to the

region R; hence, all strictly local operators in ﬂfgr within
the region R can be expressed in terms of these generators
restricted to the same region [91].

Moving on to extensive local operators, there are indeed
lots of type I operators that can be constructed by simple

linear combinations of strictly local terms in uzlfé\;[r
However, there are also type II operators that are not of
this form and yet have the ferromagnetic states as degen-
erate eigenstates, e.g., the Dzyaloshinskii-Moriya
Hamiltonian with PBC, which reads

L

H,_pmp = Z (S;xSi1)-a, (24)
=

where the site labels are modulo L. Hamiltonians of this
type, first derived in Ref. [34], where the QMBS are not
eigenstates of individual terms, were referred to as “as-a-
sum” Hamiltonians [44] and are considered to be “beyond”
the SM formalism [34,44,61]. In agreement with the DCT,
in Appendix C 2 c, we explicitly show that the H,_pyq can

be expressed in terms of the generators of Afglp although
the expression that we find for the PBC H ,_py in terms of
these local generators involves manifestly nonlocal con-
structions. In fact, in Appendix C 3, we prove that there
does not exist a rewriting of H,_pyg as a sum of strictly
local symmetric terms of a range bounded by some fixed
number independent of system size, which is proof that it is
a type II symmetric Hamiltonian discussed in Sec. III D.

Given the type II operators, we also numerically observe
that there are three linearly independent equivalence
classes, defined in Sec. III D, for operators of range at

most 7. = 2, which correspond to classes containing
H, pwi for a€e{x,y,z}. Similar to the AKLT case in
Sec. VA, the number of independent equivalence classes
grows with the range, and we observe that there are eight
such classes for r,,, = 3; we defer a detailed study of these
classes to future work. Such extensive local operators
cannot exist in the case of commutants generated by on-
site unitary operators [60], and this appears to be a feature

of the non—on-site nature of the commutant Chu:.

3. Nondegenerate scars and the equal spacing conjecture

Locality considerations can be applied to local operators
in AR (which includes S%,, in its generators). In particular,
any strictly local operators in a contiguous region R
necessarily commute with the ket-bra operators formed
using the Schmidt states of {|¥,)} over the region R [92].
The algebra generated by these operators is precisely 5% R
defined previously; hence, strictly local operators within
ARM can actually be expressed in terms of generators of
.Zlfcbfr that are within the region R; note that they have
“more” symmetry than desired.

We can also comment on the structure of the extensive
local operators constructed using the generators of AM . In
Ref. [60], we showed that any extensive local operators in
the local algebra corresponding to a dynamical SU(2)
symmetry, i.e., Agyn-su2) = €{S; - Sjt1}, Stor)), are always
a linear combination of Sf, and an operator from the SU(2)
bond algebra Agy () = (({3' I S i+1}). This structure
implies that any Hamiltonian with a dynamical SU(2)
symmetry necessarily contains equally spaced towers of
states in its spectrum. Since AR is an extension of
Adyn-su(2)» we make the conjecture of Conjecture IIL1
that any such operator is a linear combination of S;,; and
an operator from ,Z(fcl\’[ar Since the latter leaves the ferro-
magnetic states degenerate and the former splits their
degeneracy into an equally spaced tower, we obtain
Conjecture II1.2.

Finally, note that the Hamiltonians of the (generalized)
Shiraishi-Mori form of Eq. (13) that contain {|¥,)} as
QMBS are necessarily a linear combination of a type I
Hamiltonian from AIM and a lifting operator S%,; see
discussion in Sec. IV A 4. The exhaustive algebra analysis
and associated conjectures imply that the only additional
class of Hamiltonians with the same set of QMBS {|¥,)}
includes linear combinations of a type II operator from
«Zlfcl\fn e.g., the DMI term of Eq. (24), and a lifting operator
such as S§.

C. AKLT scar tower

Next, we discuss the tower of QMBS in the one-
dimensional AKLT models. For simplicity, we restrict

ourselves to the PBC Hamiltonian HX’IQLT = PR
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where PAXI is defined in Eq. (18). The QMBS eigenstates

were first derived in Refs. [26,27], and the same states were
subsequently shown to be eigenstates of a large family of
models in Refs. [34,44,49]. We review key results below
and refer readers to Appendix D1 for a more detailed
discussion on the Hamiltonians.

1. QMBS eigenstates

We briefly review the AKLT tower of QMBS in the
AKLT and related Hamiltonians. For PBC in one dimen-
sion, we start with the unique AKLT ground state |G)
discussed in Sec. VA. For even system sizes, a tower of
exact eigenstates {|y,)} of the AKLT and related models
can be constructed from |G), defined as

wa) = (Q1)"(G),  QTs=) (=1)I(S))A (25)

J

where (S;r) is the spin-1 raising operator on site j.
Given the QMBS eigenstates, we wish to construct the

99

local algebra ,Ztié’a)r and Aﬁ?}I (with the superscript “p
standing for PBC) of the form discussed in Sec. III such
that their commutants are completely spanned by ket-bra
operators or projectors onto the desired QMBS eigenstates,
respectively, i.e., {|y,) }. We construct the algebras by first
identifying a set of strictly local projectors such that their
common kernel is completely spanned only by the QMBS
eigenstates |y,), and then proceeding via the route dis-
cussed in Sec. IVA 3. As we discuss below, we do not
always find such a choice of projectors, and we sometimes
find that any choice of such strictly local projectors
necessarily contains more states in the common kernel.
Nevertheless, we can consider these extra states as valid
examples of QMBS as long as they are eigenstates of the
AKLT and related Hamiltonians, which we find is the case;
hence, we can use this information to construct a local
algebra containing those Hamiltonians. We outline the
construction below and refer readers to Appendix D 2.
We also discuss analogous constructions for the OBC case
in Appendix D 3.

2. Shiraishi-Mori projectors

To construct local algebras with the commutants C’ig’a)r =

(v wnl}) and Cs= ({Jy,) w|}). which contain
Hamiltonians with {|y,)} as degenerate or nondegenerate

QMBS, respectively, we need to construct a set of strictly
local Shiraishi-Mori projectors whose common kernel is
completely spanned by {|y,)}. As a naive guess, we start
with two-site projectors {II; ;,} that vanish on the AKLT
towers of states, which can be inferred from results in
Refs. [41,49]; the exact expressions are shown in Eq. (D9).
Using these projectors, we numerically observe that the
dimension of their common kernel grows exponentially

with system size [see Eq. (D10)]; hence, this kernel
contains many more states than the tower of states
{ly,)}. We also numerically check that the extra states
are not eigenstates of the AKLT model; hence, these
projectors cannot be used for the construction of the
desired ,Zlﬁé’gr

We then systematically construct three-site projectors
{I0; j4} that vanish on the tower of states. As we discuss
in detail in Appendix D 2, their expressions can be derived
directly from the MPS structure of { |y, )} by first comput-
ing the total linear span of all the Schmidt states that appear
on sites {j,j+1,j+ 2} from all {|y,)}; TIj; ;5 is the
projector onto the orthogonal complement of that subspace.
This linear span of Schmidt states turns out to be an eight-
dimensional subspace spanned by states listed in Eq. (D12);
hence, I1j; ;5 is a projector onto its orthogonal 19-dimen-
sional subspace of the Hilbert space of three spin-1’s,
spanned by states listed in Eq. (E1). The same projectors
were also found numerically in Ref. [75] recently in a
different context. We numerically find that the common
kernel of these projectors is spanned by the tower of states
{|w,)} and one or two additional states [depending on the
system size; see Eq. (D13) and Appendix E 3 for a partial
analytical proof], which we denote by {|¢,)}.

3. Exhaustive algebras
Lemma IV.1 then implies that there exists a bond algebra
generated by finite-range terms that is irreducible in the
orthogonal complement of this common kernel; i.e., we
obtain bond and commutant algebra pairs of the form

ALl = ({1 T 1),

where hj; is a generic (e.g., randomly chosen) term in the
vicinity of site j. Indeed, we can verify this numerically for
small system sizes using methods we discuss in Ref. [73],
and we find that a generic three-site term ;) is sufficient.

While this commutant éﬁéﬁr is larger than naively desired
(which would be (|y,,){w,|)), we can analytically deter-
mine that the extra states {|¢,,)} are either the ferromag-
netic state |F) or spin-wave states |l;_,,,) that are
eigenstates of the AKLT model obtained in Ref. [26]
[see Egs. (D14) and (D15)]. Hence, all the states {|y,)}
and {|¢,,)} are degenerate exact -eigenstates of
Hamiltonians such as HI(APIQLT — Sk in particular, of the
entire family of Hamiltonians shown in Eq. (D4).
According to the DCT, leéfgr is the algebra of all

Hamiltonians with these as degenerate eigenstates; hence,
HXELT — 8% and the related family of Hamiltonians all

belong to Aﬁé’; However, we have neither been able to
obtain an analytical expression for these Hamiltonians in
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terms of the generators of ,Zlﬁé’gr nor prove analytically the
numerically observed irreducibility of this algebra,
although we anticipate that a proof similar to the ones
for the AKLT ground state (Appendix B) or the ferromag-
netic tower states (Appendix C 1) could work.

The algebra of Hamiltonians with {|y,)} and {|¢,,)} as
potentially nondegenerate eigenstates is obtained by adding
an Sg, to the algebra, and we have the local and commutant
algebra pair

A = (AT gy} S,
ngzzr = <<{|Wn><l/’n }’ { ¢n><¢m‘}» (27)

Note that degeneracy between the two {|¢,,)} states is
not split by S%, if L = 4n (see Appendix D 2 for details).
We verify this numerically for small system sizes using
methods in Ref. [73] with a randomly chosen hj;
with support on sites {j,j+ 1,j+ 2}. The PBC AKLT

Hamiltonian H X’I%LT and the related families should be part

of this algebra, although we have not been able to obtain an

analytical expression for HX’&LT in terms of the generators

of AP

4. Locality considerations and type II operators

We now discuss some aspects of locality considerations
for the AKLT algebras, and several results are similar to
the ferromagnetic tower case discussed in Sec. V B. For

example, strictly local operators in the bond algebra Agé’ﬁr
within a contiguous region R in the bulk of the system
should commute with the algebra of ket-bra operators
formed by the Schmidt states of {|y,)} over the region
R. This algebra can actually be shown to be (?SW_R =
<<{|Wn.00">R<Wm,TT’|R}>>’ where |1//n$50/>R is the state of the
OBC tower within the contiguous region R that starts from
|G, ) g, the AKLT state restricted to R and boundary
spin configurations ¢ and ¢’ (see Appendix D3 for a
discussion of the OBC tower). Using the bond and
commutant algebra pair for the OBC tower [see
Eq. (D18)], we can conclude that all strictly local operators

in .Zlgfgr that are in the bulk contiguous region R should be

expressible in terms of the generators of ,Zlgé’al in Eq. (26)
within that region. Following similar arguments as for the
ferromagnetic tower, it is easy to show that this also applies
to strictly local operators within a bulk contiguous region R

in the algebra AgQr that includes S%; hence, all such strictly
local operators necessarily have “more” symmetry than
desired.

Moving on to extensive local operators, it is straightfor-
ward to construct type I operators using the generators of

the bond algebra Jléé’a)r In addition, the algebra also
contains operators that are not easily expressible in terms

of symmetric strictly local ones [44,61], a prime example
being

H ExpléLT =H ExpléLT = Stots (28)

where S§, has been subtracted from H XQLT to ensure that

the states {|y,)} and {|¢,,)} are degenerate eigenstates,
which, by DCT, guarantees that I:IE{’I%LT e,Ztﬁfa)r. We now
show that HE{QLT is a type Il operator in the algebra AXELT.
Note that A% ¢ AAKLD A(AKLT)

G, where Al
Eq. (19); hence, any operator in ,Ztéé’a)r that is type II with
T)

is defined in

respect to AQ?JEL is also a type II operator with respect to
legfgr. Note that HE{’&LT — 8% is a type Il operator with

respect to Aﬁ?}f D) since H XQLT is type I and S5, is type 11

as shown in Appendix B 3. Hence, it follows that this

operator is type Il with respect to ,Ztﬁé,‘f LT) as well; i.e., it is

impossible to express it as a linear combination of operators
7 (AKLT)
ASCZ]I .

Note that similar arguments can also be used to show that

the entire family of Hamiltonians A ggLT_fam of Eq. (D4) for
both OBC and PBC (i.e., Y € {p, 0}) are type II operators.
However, many of them are in the same equivalence class
since they differ by type I operators. In addition, there could
be many distinct equivalence classes of type II operators in

jlgé’a)r, perhaps some of them capture the Hamiltonians
discussed in Ref. [93], but we defer a systematic explora-
tion of this to future work.

5. Difference from Shiraishi-Mori Hamiltonians
and equal spacing conjecture

The PBC AKLT Hamiltonian itself, which belongs to the

local algebra of Aﬁé’}I of Eq. (27), is then an example of a
type II Hamiltonian plus a lifting operator that is the
uniform magnetic field Si;. Thus, it is different from
QMBS Hamiltonians of the generalized Shiraishi-Mori
form, which, as discussed in Sec. IVA4, is a linear
combination of a type I operator and a lifting operator.
Thus, it is also analogous to the DMI Hamiltonian for the
ferromagnetic tower of QMBS, which, as discussed in
Sec. VB2, has the same form. Finally, because of the

similar structures of the algebra AP 4o that of A of
Eq. (23), similar to Conjecture III.2, we conjecture that any
local Hamiltonian that preserves the AKLT QMBS {|y,,) }
necessarily breaks the degeneracy among the states into an
equally spaced tower.

D. Spin-1 XY z-bimagnon and electronic Hubbard
1-pairing scar towers

We now move on to the towers of QMBS in the spin-1
XY model [28,34] and the deformations of the electronic
Hubbard models [33,34]. Both these Hamiltonians host
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very similar towers of QMBS (the precise correspondence
between them was established in Ref. [34]), and they also
closely resemble the ferromagnetic towers of QMBS
discussed in Sec. V B—e.g., they, too, exist in lattices in
all dimensions, irrespective of boundary conditions. We
refer readers to Appendix F for a quick recap of some of the
results on the spin-1 XY QMBS.

1. Towers of spin-1 XY QMBS

We start with the “z-bimagnon” QMBS in the spin-1 XY
Hamiltonian on L sites in one dimension, given by

VIR 0T=) DS (29)

J

@) = (Q

where |F):=|—— - —— ) is a spin-1 “ferromagnetic”
state polarized in the (—Z2) direction. Note that |®,) can
also be expressed by acting Q = (Q)" multiple times on
the ferromagnetic state |F) := |+ + ---++). Here, |F)
and |F) are the highest and lowest ladder states of the
“pseudospin” SU(2) symmetry generated by the operators
Q" and Q; hence, this tower of QMBS spans a complete
multiplet of the corresponding SU(2), similar to the
ferromagnetic tower of QMBS discussed in Sec. V B.
Indeed, the momentum k = zz-bimagnon tower of
Eq. (29) can be unitarily mapped onto a momentum
k=0 0-bimagnon tower obtained using Qf_,=3" i(S7)%,
which is similar to the spin-1/2 ferromagnetic tower, and
we summarize this mapping in Appendix F2. Another
similarity to the ferromagnetic tower is that the operators
that permute the sites of the lattice are in the bond algebra
of the 0-bimagnon QMBS (see Appendix F 3); hence, the
0-bimagnon states lack a spatial structure—i.e., they are
invariant under arbitrary permutations of the sites.

2. Local algebras

Similar to the previous examples, we construct a local
algebra whose commutant is spanned by ket-bra operators
of the QMBS eigenstates, i.e., (| D, ) (D,,|) or {|DP,)(D,|)-
Since the spin-1 XY Hamiltonian can be completely
understood within the Shiraishi-Mori formalism of
Eq. (13) (see Refs. [28,41] for the details of this con-
struction, and also Appendix F for the expressions of the
Shiraishi-Mori projectors), it is straightforward to repeat
the procedure discussed earlier in Sec. IVA 3 to construct
the corresponding local algebras. However, we illustrate a
different approach here, which might be more useful for
searching for physically relevant Hamiltonians with the
same QMBS. In particular, we restrict our search to local
algebras that have additional natural symmetries, e.g., with
U(1) symmetry; hence, we are interested in constructing

the local algebras Aﬁi‘a}{ ) and Agg) such that the commu-

tants are given by XY) H|®,)(D,|}, S&)y and

XY .= | D@,)(DP,|}, St - We guess a set of nice near-
est-neighbor terms that generate the desired bond algebra,
and we conjecture that the bond and commutant algebra
pair for all L in OBC and even L in PBC is given by

scar - (({SXSj+1 + S S‘-‘rl} {(SZ) }
{(S5+ S5, )1 = S385,.)1)
C& = ({19, (@, ]}, Sioe), (30)

which we numerically verify for small system sizes using
methods we discuss in Ref. [73].

Given this bond algebra, the degeneracy of the eigen-
states can be lifted as in the ferromagnetic and AKLT tower
examples by the addition of S7, to the generators of Asear-
Hence, we then expect the local and commutant algebra
pair

AGY = (AS5S50 + $87 14592},
{085+ 8501 = 57850} Sioh

C&) = ({1 D) (@]}, S (31)

It is straightforward to see that this algebra contains
the standard spin-1 XY Hamiltonian discussed in
Refs. [11,12,28].

Note that these algebras can be directly generalized
to the case of O-bimagnon towers, as we discuss in
Appendix F.

3. Locality considerations and type II operators
According to the DCT, all operators that annihilate the

states {|®,)} should be part of the algebra A which
can be used to understand the structure of U(1) spin-
conserving local operators with {|®,)} as degenerate
eigenstates. Using arguments similar to the ferromagnetic
and AKLT towers of QMBS, we can show that strictly

local operators in ,Ztﬁi‘a? with support in a contiguous
region can be constructed from generators completely
within that region. However, also similar to the other
QMBS, the construction of extensive local operators can
be more complicated; i.e., there are type II symmetric
Hamiltonians that cannot be expressed as a sum of strictly
local operators in the algebra; we again attribute this to the

“nonlocal” nature of the commutant éﬁi‘a?.

We can use these considerations to understand the results
of a systematic numerical search for U(1)-conserving on-
site and nearest-neighbor Hamiltonians (or terms) for
which the states {|®,)} are degenerate, as carried out in
Ref. [34]. In particular, they found the terms listed in group
A of Table I and the terms 1-7 and 9-12 in Table II of that
work. Among these terms are 13 linearly independent,
strictly local operators, in the span of entries 1-7 and
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9-11 of Table II [a convenient basis spanning these terms is
shown in Appendix F; see Eq. (F3)], [94] and one extensive
local operator 12, which we list here for easy reference:

2= i) (= = =N g (32)

Since any nearest-neighbor strictly local operator from the
bond algebra can be constructed from nearest-neighbor
generators, the 13 independent, strictly local terms can be
understood from Eq. (30); indeed, we find that the

dimension of the two-site algebra, ie., (S7S7+
SIS 1 (S92 (S5, 2 (85 4+ 87,0 (1= 385, ), i 13,

and we have verified that the 13 terms obtained in
Ref. [34] span this two-site algebra (see Appendix F 1
for some details). This exercise can also be repeated to
construct strictly local U(1)-symmetric operators that have
support on three or more sites and annihilate the QMBS,
without resorting to numerical searches.

The construction of the extensive local operator 12 is not
so straightforward, and its derivation proceeds similar to
that of the DMI term in the case of the spin-1/2 ferro-
magnetic tower (see Sec. V B 2). For simplicity, we first
unitarily transform the z-bimagnon QMBS Eq. (29) to the
0-momentum-bimagnon tower (see Appendix F2 for
details of this transformation), and the operator 12 with
consecutive sites on different sublattices exactly maps onto
itself up to an overall unimportant sign. The bond algebra
corresponding to the 0-bimagnon tower exactly maps onto
that of the spin-1/2 ferromagnetic tower (we refer the
reader to Appendix D of Ref. [34] and our Appendix F for
the details), and the operator 12 maps onto the DMI term
of Eq. (24).

We can then directly follow the derivation of the DMI
term in the algebra .,ZlfcMm To begin, we first numerically
verify that the three-site term [similar to DYy i in
Eq. (22)] can be generated using the nearest-neighbor
generators of the bond algebra for the 0-bimagnon
QMBS on sites {j,j+ 1} and {j +1,j+2}. We then
apply permutation operators, which are also in the bond
algebra, on these terms and eventually derive the cyclic
extensive local term with PBC. Since the z-bimagnon
QMBS of Eq. (29) and the 0-bimagnon QMBS are unitarily
related, the same derivation hence works for the extensive
local term in the former case, up to some extra sign factors
obtained from the sublattice transformation. Moreover, it is
also possible to use the analogy to the spin-1/2 cyclic DMI
term and repeat the arguments in Appendix C 3 essentially
verbatim to show that this extensive local term of Eq. (32)
for the 0-bimagnon QMBS cannot be expressed as a sum of
strictly local terms that annihilate the QMBS; a similar
statement is true for the extensive local term in the
z-bimagnon case due to the sublattice transformation.

Thus, 12 of Eq. (32) is a type II operator in A%y,

Finally, because of the similar structures of the algebra

Aﬁi‘a‘ﬁ compared to the ferromagnetic case, Conjectures
III.1 and III.2 are valid in this case, too.

4. Generalization to n-pairing QMBS

We now briefly discuss the n-pairing QMBS in the
electronic Hubbard and related models [33,34]. To recap,
we consider an electronic Hilbert space of spin-1/2
fermions, and the QMBS states on L sites in one dimension
are given by

) = ()19, nhe= Y (=1l (33)

J

where {c;g} and {c;,} for c€{1.]} are the spin-c
fermionic creation and annihilation operators, and |Q) is
the vacuum. Similar to the ferromagnetic and spin-1 XY

—_—

, |8,) can also be expressed starting from the fully
filled state |Q) by repeated actions of 5, == (n})". Here, |Q)
and |Q) are the highest and lowest ladder states of the
pseudospin SU(2) symmetry generated by the ;} and 7,
operators [32,54]; hence, this tower of QMBS spans a
complete multiplet of this SU(2). Moreover, as discussed in
Refs. [42,60], these states are singlets of certain Lie groups
or prebond algebras; e.g., see Nos. 1c or 3b of Table III in
Ref. [60]. The representations of these groups or algebras
also contain the operators that permute the sites of the
lattice, which enforces the fact that these states lack spatial
structure, a feature first pointed out in Ref. [42].
Reference [34] illustrated a correspondence between
the QMBS {|E,)} of Eq. (33) and the spin-1 XY
QMBS {|®,)} of Eq. (29). In addition to the correspon-
dence between the states, they also offered a correspon-
dence between classes of parent Hamiltonians containing
the QMBS, and between electronic spin SU(2)-symmetric
operators for {|E,)} and U(1) spin-conserving operators
for {|®,) }. Here, we exploit the correspondence to directly
construct the local algebra of spin SU(2)-symmetric
electronic operators with {|E,)} as QMBS, using the
local algebras of U(1) spin-conserving operators shown
in Egs. (30) and (31). The results of Ref. [34] directly
suggest the following substitutions between the operators
on the spin-1 (XY model) and spin-1/2 fermion (Hubbard

: . ) ._
model? Hilbert = spaces: S§7S7., + SfS,+l <~ T] it =
>0 (€joCip1o T He) and S5 K;—1,  where

K jE=njyt+ng, and we obtain the bond and commutant

algebra pair

Al — (({T“H} {(K; = 1)},
{(K; +Kjp1 —2) (KK — K= Kj1) 1),
G = ({|En) (B oD (34)
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where {Tﬁrj) .1} denotes the real free-fermion hopping terms
and (K;—1) is the on-site Hubbard term. The bond

algebra ,Ztﬁ?;b) of Eq. (34) can thus be interpreted as an

enlargement of the so-called Hubbard algebra Agzb with
real hoppings; see Ref. [60] for a discussion of the various
types of Hubbard models in the algebra language (particu-
larly Table IV in that work).

A few comments on these algebras are in order. First, the
degeneracy of {|E,)} can be lifted by adding the total

number operator Ny, =, ;¢ ! ¢! ¢, to the algebra

jotie

,Zlg‘;bl which results in an algebra similar to Eq. (31).
Second, locality considerations for the construction of
strictly and extensive local operators are identical to those
in the spin-1 XY case, discussed in Sec. V D 3. Hence, the
results of a numerical search for spin SU(2)-symmetric on-
site and nearest-neighbor terms for which {|Z,)} are
degenerate eigenstates, performed in Ref. [34], can be

understood using the algebra of ,Zlﬁ?;b). That work found 14
linearly independent such strictly local terms, given by the
terms in group A in Table I and 1-7 and 9-11 in Table III
there, [95] and these span the 14-dimensional two-site bond
algebra generated by the generators of Eq. (34) with
support on sites {j, j + 1}. The derivation of the type II
symmetric DMI-like Hamiltonian of 12 in Table III of
Ref. [34] is also similar to that of the analogous term in the
spin-1 XY case shown in Eq. (32). Finally, similar ideas can
be used to derive local algebras that consist of terms
breaking the spin SU(2) symmetry while preserving the
same QMBS, e.g., those that only preserve the total spin
S%. such as the ones discussed in Refs. [11,33]; or to derive
local algebras with related QMBS, e.g., the zero-momen-
tum n-pairing states [34,60] or the spin ferromagnetic
multiplet in this Hilbert space. These derivations follow
using rather straightforward guesswork or mappings to
algebra discussed here; hence, we do not write down their
explicit expressions.

VI. IMPLICATIONS FOR THERMALIZATION

We now discuss a few implications of this local and
commutant algebra interpretation of QMBS and raise a few
questions about them in the context of thermalization.

A. Towards a definition for QMBS

Thinking about QMBS in this framework motivates a
precise definition for QMBS, which has so far been absent
from the literature.

1. Necessary condition and violation of ETH

As we demonstrate with the help of several examples, the
QMBS are singlets of algebras generated by local operators
that do not commute with each other. This finding
motivates the following necessary condition for QMBS.

Condition. Any exact QMBS eigenstate is a common
eigenstate of multiple noncommuting local operators.

Note that the local operators involved can either be
strictly local or extensive local. Any state that satisfies this
condition can be embedded into the middle of the spectrum
of a generic local Hamiltonian constructed from the said
local operators, although, as we discuss below, its atypi-
cality is not guaranteed only by this condition. While this
requirement might appear sweeping, it is clear from the
literature that numerous examples of QMBS satisfy this
definition [10,11] (see also, e.g., Refs. [29,31,96-98] for a
partial list). The class of states that satisfy this condition
includes tensor network states (e.g., MPS and PEPS) with
finite bond dimension, but it is not limited to them; e.g., the
QMBS can have entanglement growing logarithmically
with system size [27,28,32,33] or even proportional to the
system size (i.e., as a volume law) [99-101].

This property of QMBS also has direct implications for
the ETH [1,2]. According to ETH, since the reduced
density matrix of an eigenstate in the bulk of the spectrum
should resemble the Gibbs density matrix expressed in
terms of the Hamiltonian, a single eigenstate should contain
all the information about the Hamiltonian [62]. Indeed,
when a systematic “correlation matrix” method [63,102] to
search for local operators for which a given state is an
eigenstate is applied to a generic eigenstate of some local
Hamiltonian without any local conserved quantities, the
local Hamiltonian can generically be uniquely recon-
structed from that eigenstate [63,103]. However, requiring
the aforementioned property on QMBS, such a unique
reconstruction is not possible even in principle since they
are, by definition, simultaneous eigenstates of multiple
noncommuting local operators. This feature distinguishes
QMBS from other generic eigenstates even for a particular
Hamiltonian and implies that the QMBS necessarily violate
the ETH.

While this feature is a necessary property of QMBS, it is
clear that it is not sufficient since there are examples of
states that are expected to satisfy ETH and the above
property. For example, any nonintegrable SU(2)-symmet-
ric Hamiltonian possesses exponentially many eigenstates

{|E,)} that satisfy §120t|E,1) = 0 [these are usually referred
to as the spin singlets of the SU(2) symmetry], and they are
simultaneous eigenstates of all the total spin operators
{S¢,}, which do not commute with each other.

2. Sufficient conditions

For singlets of any local algebra to be referred to as
QMBS, we also require that the decomposition of Eq. (5)
corresponds to that of Eq. (1); i.e., we require the existence
of a “large” thermal block that spans most of the Hilbert
space. This condition can be made more precise by
studying the local algebra generated by the multiple local
operators reconstructed from that state using procedures
such as the correlation matrix methods [63,102]; the QMBS
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state is one of the singlets of this algebra, by construction
[105]. Since the existence of the “thermal” block of Eq. (1)
is equivalent to requiring that the decomposition of Eq. (5)
for this local algebra has a “large” irreducible representa-
tion, we arrive at the following sufficient condition
for QMBS.

Condition. Any state can be made a QMBS eigenstate of
some Hamiltonian if the dimensions {D,} of the irreduc-
ible representations of its “parent algebra” (algebra gen-
erated by all the bounded-range strictly local and extensive
local operators that have the state as an eigenstate) satisfy

maxﬂDﬂ
dim(H)

-1 asL — oo. (35)

Note that Eq. (35) is satisfied by the tower examples
of QMBS discussed in this work since they have
max; D; = dim(H) — O(L”), and also by some examples
of QMBS like embedding of 2L scar states inside a
3L _-dimensional Hilbert space in Ref. [35]; however, we
cannot rule out other possibilities [106]. Nevertheless, with
the requirement of Eq. (35), the QMBS eigenstates, which
transform under one-dimensional representations of this
local algebra generated by finite-range local parent oper-
ators, are atypical eigenstates of generic Hamiltonians
constructed from that local algebra.

The aforementioned SU(2) spin singlets of a nonintegr-
able SU(2)-symmetric Hamiltonian—hence eigenstates of
noncommuting “parent Hamiltonians” Sg, @ € {x,y, z}—
do not satisfy this QMBS condition. Given a generic, spin-
1/2, nonintegrable, local SU(2)-symmetric Hamiltonian H
and a generic choice of its singlet eigenstate |E,), we
generically expect the only local operators that can
be reconstructed are H and {S%}. The parent algebra
(H,{S%}) does not have any exponentially large irre-
ducible representations since, for a generic H, its commu-

tant and center is ((H, §t20t)), which implies that
H =@, c;1p,, where D,’s are the dimensions of the irreps
of the reconstructed algebra (d; = 1 since the expected
commutant is Abelian). This case should be equivalent to
the full diagonalization of H, which, by virtue of being a
generic SU(2)-symmetric Hamiltonian, has an eigenstate
degeneracy of at most L + 1, which immediately shows
that max,(D;) = L + 1, violating Eq. (35).

Finally, we also note that this definition of QMBS
implies that ‘“scarriness” of a state is also a Hilbert-
space-dependent feature and sometimes depends on quan-
tities we are interested in; we discuss some such “edge
cases” in Appendix G 3.

3. Sufficiency of the Shiraishi-Mori structure

We now show that the “Shiraishi-Mori” condition of
Eq. (10), i.e., demanding that the candidate state is in the
common kernel of some set of strictly local projectors, is
sufficient for Eq. (35) to be satisfied, although we cannot

prove that these are necessary. In particular, in Appendix G,
we prove the following Lemma.

Lemma VI.I. In a system of size L, if among the
reconstructed parent operators bounded by some finite
range rp., we have a “dense” set of O(L) strictly local
operators {A[;;} covering the entire lattice such that the
separation between neighboring A(;;’s is bounded by an
L-independent number ¢ ,,, then Eq. (35) is satisfied for a
parent algebra generated by operators of some finite
range Fax = Fmax-

To provide some intuition for Lemma VI.1, we note that
since the reconstruction of any strictly local Aj; also
implies the reconstruction of all its powers, we can, without
loss of generality, assume A(; to be a projector, say P(;. The
state can then be expressed as part of the kernel of strictly
local projectors, i.e., in a target space 7. The result of
Lemma IV.1 proves that we can find some finite 7/, >
rmax such that max; D; = dim(H) — dim(7); hence, it
satisfies Eq. (35) as long as dim(7) scales slower than
the Hilbert space dimension. In Appendix G 2, we prove
this result using the fact that they are the common kernel of
a set of “dense” strictly local projectors [see Eq. (G4)].

We conclude this discussion with some remarks. First, in
the above, we only considered a subset of all possible
reconstructed parent operators, and that was sufficient to
guarantee Eq. (35); additional parent operators only increase
max,; D, for the algebra of reconstructed local operators;
hence, Eq. (35) still holds. Second, the fact that the Shiraishi-
Mori structure is a sufficient condition for QMBS already
shows that all the examples we considered in Sec. V are
QMBS in this definition. Finally, as we mention in Sec. [V A,
the results of Ref. [75], along with the Shiraishi-Mori
structure, can be used to show that the entanglement entropy
of the candidate QMBS, or any other state in 7, over any
extensive contiguous subregion is smaller than the Page
value [76] expected in generic eigenstates in the middle of the
spectrum of a nonintegrable local Hamiltonian.

B. QMBS projectors as generalized symmetries

The commutant language makes QMBS projectors on
par with regular conserved quantities as well as the
exponentially many ones in the context of Hilbert space
fragmentation [56], incorporating all these phenomena
under the umbrella of “generalized” symmetries. These
generalized symmetries are beyond the usual on-site
symmetries and also beyond other exotic symmetries such
as subsystem or higher-form symmetries that are being
explored in several different contexts in the literature [107].
Naively, if the QMBS projectors are considered to be
nonlocal symmetries, then QMBS are not examples of
ergodicity breaking since ergodicity is usually defined for a
given symmetry sector [108]. However, QMBS clearly do
not fit into the usual framework of quantum statistical
mechanics; e.g., it is not clear if analogues of the Gibbs
ensembles can be defined for such systems.
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Moreover, these conserved quantities are qualitatively
very different from the conventional ones, which has
implications for the dynamics starting from generic initial
states. One important difference is in the distribution of
{D,}’s, i.e., the sizes of the various quantum number
sectors, which is highly “skewed” in the case of QMBS
conserved quantities. For example, while the presence of a
Z, symmetry in a spin-1/2 Hilbert space would lead to two
sectors of sizes 2E7!, the presence of a single QMBS would
also lead to two sectors but now with dimensions 2- — 1
and 1 [109]. This case is essentially a formal way to state
the intuition that the presence of QMBS only “affects” a
small part of the Hilbert space, and the dynamics of most
initial states remain unchanged. This difference is also
sometimes evident from the Mazur bound for the infinite-
temperature autocorrelation function [110,111]. Given a set
of operators {Q,} in the commutant that are mutually
orthogonal [defined as Tr(QZ,Q/,) & 8,4 corresponding to
infinite-temperature ensembles], the time-averaged auto-
correlation function of an operator under the dynamics of
any Hamiltonian in the corresponding local algebra A is
lower bounded as [56]

e (A1) (QulA)
tim [ arawao) 2 Y @I (36)

where A(t) = e"A(0)e~""", and the overlap is defined as
(A|B) := Tr(A'B)/dim(H). We can then quantify the
“importance” of various operators {Q,} in the commutant
for the dynamics of the operator A in terms of their
contribution to the rhs of Eq. (36). For strictly local
operators A, the contribution of local conserved quantities
such as Sg, scales with system size as ~1/L, whereas
for QMBS eigenstates and the corresponding projectors or
ket-bra operators as conserved quantities, it scales as
~exp(—cL), analogous to the contribution of “frozen
states” in the case of Hilbert space fragmentation [56].

Finally, while the QMBS eigenstates can exist for a
variety of systems, they are considered to break ergodicity
only if their existence cannot be explained by conventional
symmetries. For example, the states of the ferromagnetic
multiplet of the Heisenberg Hamiltonian are not referred to
as examples of QMBS as long as SU(2) symmetry is
present, while the same eigenstates become QMBS once
the global SU(2) symmetry is broken. These inconsisten-
cies in the definitions, which also exist in systems with
Hilbert space fragmentation [56], call for a more precise
definition of ergodicity and its breaking in isolated quan-
tum systems.

VII. CONCLUSION AND OUTLOOK

In this work, we studied QMBS in the language of local
and commutant algebras. In particular, we propose that
there is a local algebra, i.e., an algebra generated by strictly

local and/or extensive local terms, such that its commutant
algebra (i.e., the centralizer) is spanned by projectors onto
the QMBS eigenstates. We demonstrated this with explicit
examples of QMBS from the literature, including general
MPS states, the spin-1/2 ferromagnetic tower of states, the
AKLT tower of states, and the spin-1 XY zbimagnon and
electronic #-pairing towers of states. In previous works, we
showed that Hilbert space fragmentation [56] and several
conventional symmetries [60] can be understood in this
language, and in each of these cases, there is a local algebra
such that the commutant algebra contains all the conserved
quantities that explain the origin of dynamically discon-
nected subspaces, which are the Krylov subspaces in
fragmented systems and the usual symmetry sectors in
systems with conventional symmetries. This work hence
casts QMBS in the same framework, attributing the origin
of the dynamically disconnected QMBS subspace to
unconventional conserved quantities in the commutant
algebra, hence demonstrating the similarity between the
underlying mathematical structures responsible for QMBS
phenomena and those in fragmentation phenomena and in
conventional symmetry physics.

Understanding QMBS in this language has a number of
advantages. First, as we discussed in Sec. IV, this frame-
work unifies several of the previously introduced unified
formalisms for QMBS [10-12], particularly the symmetry-
based ones [11], and provides a common language in which
they can all be related to one another. This language
generalizes the idea that QMBS are singlets of certain
Lie groups, introduced in the group-invariant formalism
[42], to the idea that QMBS are singlets of certain local
algebras which need not have any simple underlying Lie
group structure. For Lie groups and bond algebras gen-
erated by free-fermion terms, which was the focus of
Ref. [42], these two pictures coincide, and we illustrated
this equivalence in Ref. [60,112]. Reference [42] also
highlighted that several examples of the QMBS eigenstates
lack spatial structure, which was attributed to the presence
of the permutation group as a subgroup of the parent Lie
group. However, we find that this occurs more generally
since the presence of the permutation group within the local
algebra does not require parent Lie group structure.
Additionally, this interpretation of QMBS also has explicit
connections to decoherence-free subspaces, noiseless sub-
systems, and dark states studied in different contexts in the
literature [65,113—115], and it would be interesting to
explore these connections further. It would also be inter-
esting to better understand how so-called spectrum-gen-
erating algebra mechanisms, discussed in Refs. [33,41], or
the related scarred Hamiltonians derived from spherical
tensor operators [61] fit into this framework.

Second, this language allows the application of the DCT,
which guarantees that the local algebra is the exhaustive
algebra of “symmetric” operators, i.e., the set of all
operators that commute with the conserved quantities in
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the commutant. In the case of conventional symmetries,
this process allows wus to formally construct all
Hamiltonians with a given set of symmetries [60].
Analogously, the local algebra for the QMBS case allows
us to build all Hamiltonians with the desired set of QMBS
in their spectrum, which also shows that there are usually
multiple local perturbations that exactly preserve the
QMBS. For standard examples of QMBS, we showed
how ideas from the Shiraishi-Mori formalism [35] can be
generalized to construct generators for the exhaustive local
algebras with the commutants spanned by the QMBS
projectors (or QMBS ket-bra operators for degenerate
scars), and all Hamiltonians with the same QMBS should
be expressible in terms of these generators. This finding led
to an exhaustive characterization of Hamiltonians with a
given set of QMBS, which motivated conjectures on the
general structure of such Hamiltonians. For example, for
many examples of towers of QMBS, we conjectured that any
extensive local Hamiltonians with those QMBS necessarily
have the QMBS as equally spaced towers of eigenstates.
The application of DCT also allowed us to precisely
understand the distinction between the two broad classes
of Hamiltonians with QMBS: (i) Shiraishi-Mori-like
Hamiltonians for which the QMBS are eigenstates of each
strictly local term defined in a precise sense, and (ii) intrinsi-
cally “as-a-sum annihilator” [34,44] or “beyond Shiraishi-
Mori” [41,44,61] Hamiltonians, where all the individual
terms collaborate such that the QMBS are annihilated by
the full extensive local Hamiltonian and not by the
individual terms. In the algebra language, this distinction
originates from two types of symmetric Hamiltonians
that can be constructed within any bond algebra generated
by strictly local terms: type I and type II symmetric
Hamiltonians, where the former can be expressed as a
sum of strictly local symmetric terms whereas the latter
cannot. This idea also resolved a long-standing open ques-
tion on the connection between the AKLT Hamiltonian and
the Shiraishi-Mori formalism [41,44,61]. In this work, we
found a set of three-site projectors such that the common
kernel was completely spanned by the QMBS tower of
states of the AKLT model, which led to the exhaustive
algebra of all Hamiltonians that contain the AKLT QMBS.
The generators of this algebra could then be used to
construct Shiraishi-Mori-like Hamiltonians with the
AKLT QMBS as well as Hamiltonians such as the
AKLT Hamiltonian itself that lie beyond them. This
process could reveal the bigger picture in the land-
scape of QMBS Hamiltonians. For the AKLT tower of
QMBS, it happened historically that the Hamiltonian
beyond the Shiraishi-Mori construction—the celebrated
AKLT chain—was known first [26,27], and the projectors
required for constructing Shiraishi-Mori-like Hamiltonians
have only been illustrated in this paper. In contrast,
for many other QMBS towers such as the spin-1/2
ferromagnetic, spin-1z-bimagnon, and electronic n-pairing,

the Shiraishi-Mori-like Hamiltonians were constructed first
[33,34,116], and as-a-sum Hamiltonians that lie beyond,
such as the DMI-like terms, were discovered in later works
using more systematic searches [34,44,46]. Hence, from
the algebra perspective, there is no fundamental difference
between the AKLT and the other towers of QMBS—in both
cases, there are Hamiltonians of both kinds.

However, this framework is not without its caveats. A
major caveat that remains is that while the DCT
guarantees that a given operator with QMBS belongs
to the local algebra, it does not provide an expression
for it. Such expressions can be complicated; e.g., in the
case of the ferromagnetic tower of QMBS, we showed
how the extensive local DMI term can be generated
from the strictly local generators of the algebra by
means of a highly nonlocal expression; we were also
able to prove that there is no rewriting as a sum of
symmetric strictly local terms. This finding is an
example of a type II operator, and while we were able
to rule out their existence for bond algebras with on-site
unitary symmetries [60], this is no longer the case for
QMBS commutants, as evidenced by several examples.
Other examples of extensive local operators that nec-
essarily involve type Il operators include the S, for the
AKLT ground-state QMBS and the AKLT Hamiltonian
itself for the AKLT tower QMBS; in both cases, we
have not been able to find a useful expression or
procedure to construct them from the strictly local
generators. Given a set of strictly local generators, it
is hence extremely desirable to develop a systematic
understanding of the full space of, or equivalence
classes of, type II operators that can be constructed;
even in simple examples of QMBS, we numerically
observe several equivalence classes that we have not
been able to picture or understand in simple terms.
Results in Refs. [48,61,93,117] provide novel perspec-
tives on potentially type II Hamiltonians with QMBS,
which would be interesting to explore further.
Developing this understanding is crucial for a truly
“exhaustive” construction of Hamiltonians with a given
set of QMBS and for proving conjectures on the spectra
of Hamiltonians. Perhaps a first step is to determine a
simpler set of generators for all of these QMBS local
algebras, analogous to the ferromagnetic tower case,
which can, in principle, be done by numerical checks on
small system sizes, e.g., for L = 4. The lack of a deeper
understanding of these issues also presents a significant
obstacle for using this framework to find new examples
of QMBS, for which less systematic methods proposed
in the earlier literature [33,34,41-46,49] have been
highly successful in practice.

Another matter of concern might be the lack of a formal
representation theory of the algebras involved since
these no longer have simple generating group structures
in them. Nevertheless, going beyond groups is essential for
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understanding some types of QMBS, such as the spin-1
AKLT models, which do not fall into previously proposed
mechanisms based on the representation theory of groups
[42,45]. Moreover, algebras beyond groups also naturally
appear in other physically interesting systems, such as
fragmentation [56] and categorical symmetries [107]; bond
algebras of the type we are interested in have already been
understood in terms of more abstract objects such as fusion
categories, and they have representation theories that are
well understood in some cases, e.g., in Temperley-Lieb spin
chains [66,118]. We hope that this work will eventually
motivate the development of such a representation theory of
even more general bond algebras, including those that
capture quantum scars. In the meantime, while the more
standard approach to studying symmetries is to consider
abstract objects such as groups or categories, construct their
formal representation theory in complete generality, and
then apply it to the Hilbert space of interest, we wish to
advocate for a different approach where we can start with a
concrete Hilbert space and think of symmetries in terms of
simultaneous block diagonalization of matrices. Since we
are only interested in the physics of a given system with a
given Hilbert space rather than a whole class of systems
across varying Hilbert spaces, we believe the approach we
suggest is more practical for physical and numerical
purposes and can be applied even if the formal representa-
tion theory or the abstract objects are not known.
Finally, the local and commutant algebra language
motivates a precise definition of QMBS. A necessary
condition for QMBS is that they should be common
eigenstates of multiple noncommuting local operators,
hence ruling out the unique recovery of the local parent
Hamiltonian from the QMBS eigenstate, which implies the
violation of the conventional form of ETH for systems with
Abelian symmetries, although its status is not clear for
systems with non-Abelian symmetries. In addition, we
showed that if a state can be expressed as one of the ground
states of a frustration-free Hamiltonian, or, equivalently, as
part of some target space in the Shirashi-Mori formalism,
then it satisfies certain sufficient conditions, phrased
precisely in terms of algebras generated by the recovered
local operators, to be one of the QMBS of some local
Hamiltonian. Thus, we need a characterization of states that
can be made as QMBS of some Hamiltonian, and the
answer is clearly beyond conventional tensor network
states due to examples of QMBS that exhibit entanglement
growth with system size. This definition also opens up
several examples in the literature that might be examples
of QMBS, e.g., the U-independent eigenstates in the one-
and higher-dimensional Hubbard models [32,119-121].
Interestingly, most examples of QMBS that we are aware
of satisfy the Shiraishi-Mori condition; i.e., they can be
expressed as the ground state(s) of a frustration-free
Hamiltonian, which we showed is a sufficient condition
for QMBS. It is then natural to wonder if this is also a

necessary condition for QMBS or if there exist QMBS that
do not satisfy this condition. On a different note, one might
also wonder if there could be cases where any such local
parent Hamiltonian necessarily has additional conserved
quantities, analogous to several other examples in the
literature; e.g., any local Hamiltonian with charge and
dipole symmetries and with bounded range for all terms
necessarily has fragmentation, i.e., exponentially many
other conserved quantities [19,20,56].

In light of this enhanced understanding of QMBS, it
would also be interesting to revisit the approximate QMBS
of the PXP model. For example, do the approximate QMBS
in the PXP model (approximately) satisfy the proposed
definition of QMBS? Indeed, compelling evidence for
the satisfaction of the necessary conditions for QMBS
was presented in a recent work [75], which applied the
correlation matrix method [63] to the PXP QMBS and
numerically found multiple local terms for which these
states are approximate eigenstates. Moreover, one might
wonder if there is a point proximate to the PXP model with
a larger commutant that might explain the approximate
QMBS subspace in the PXP model [9,10,122-124], or if
the proposed deformations of the PXP model to “integra-
bility” [125] or to perfect revivals [50,90] can be attributed
to some strange commutants.

Beyond Hamiltonians with exact QMBS, we can ask if
exact Floquet QMBS [24,126—128] can also be understood
within a similar framework. Of course, while the local
algebra allows us to straightforwardly construct Floquet
unitaries with the desired QMBS, this does not exclude the
existence of intrinsically Floquet QMBS that are not
possible in any Hamiltonian systems. Beyond many-body
physics itself, it would be interesting to check if some
similar properties hold for quantum scars in single-particle
systems [129,130], which would provide a good justifica-
tion for the name “quantum many-body scars.”
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APPENDIX A: PROOF OF EXISTENCE
OF EXHAUSTIVE SHIRAISHI-MORI BOND
ALGEBRAS FOR SCARS

In this appendix, we prove that given a set of states of the
form Eq. (10) that completely span the common kernel of a
set of strictly local projectors, we can always construct a
Shiraishi-Mori bond algebra of the form of Eq. (14)
generated by strictly local terms corresponding to these
states as degenerate QMBS, satisfying Eq. (14). For the
sake of illustration, we restrict ourselves to one-dimen-
sional systems of size L, but these arguments can also be
extended to higher dimensions.

Lemma IV.1. Consider the target space 7 = {|y),
Pjjly) = 0}, where P[;’s are strictly local projectors of
range at most an L-independent number r,,,,. Then, we can

always construct a bond algebra Agy = (({ﬂm})) where

hyj)’s are strictly local terms of a range bounded by some
L-independent number 7}, > 7max Such that it is irreduc-
ible in 7, the orthogonal complement of the target space.

Proof. Before proceeding to the general case, we start
with a simple example to illustrate the main idea.

Simple example: Consider a spin-1 chain with on-
site states labeled |0),|+),|—), and on-site projectors
{Pj; =10)(0[;}; hence, ry, = 1. The target space is
then given by 7 =span{|s,05,....0.).0;€{+.—}},
i.e., all states annihilated by all on-site operators [0)(0|;.
We then construct the following operators of range
Imax = 2 that annihilate the target space: |0)(0]; ® A,
and h;_; ® |0){0|;, where /., can be an arbitrary on-site
operator acting on site j + 1 (e.g., |@)(f|;;, with arbitrary
a,p€{0,+,—}), and similarly for /2;_; on-site j — 1; these
are the operators {A;} mentioned in the claim. We
now show that the algebra generated by these two-site
operators Agy = ({[0)(0]; ® hj.1.hj—1 ®]0){0];})) (Where
we assume, for simplicity, that we have a set of /;’s that can
generate all on-site operators) acts irreducibly in 7+, the
space spanned by basis product states with at least one
on-site |0). We first note that the multiplication of the
generators [0)(0[; ® |a)(0[;;; and [0){0];.; ® [')(0];.»
shows that |0) (0]j R |a, ()(’)(O,Oﬁ_l’j+2 is in the bond
algebra .ZlSM. Next, combining with the Hermitian con-
jugate of [0){(0]; ® |8,4)(0,0];;; 2, we find that
0)(0]; ® |, @) (B. |12 is in Agy with arbitrary
a,d, p,p €{0,+,—}. By repeating this procedure includ-
ing generators acting on [j — 1, /], [j + 2, + 3], etc., we
can generate |0)(0]; ® Ocompi(j)> Where Ocopp(j) can be any
operator acting on the sites other than j, i.e., on the
complement of j in the whole system. This case is true
for all j, and combining such operators for distinct j and j/,
we can see that any two basis states that have at least one
on-site |0) can be connected to each other by the operators
in the bond algebra ]lSM, which completes the proof of the

claim in this example. Incidentally, this .,ZlSM is the
exhaustive bond algebra for a Shiraishi-Mori-type family
embedding the 2L states {|6,,05,...,6.),6,€{+,—}} as
degenerate scars in the 3%-dimensional Hilbert space.

General case: We now consider the general case where
we are given a set of projectors P := {P[;)} and its target
space 7, and as we will see, the proof of the claim in this
case is qualitatively similarly to the above spin-1 example.
We first divide the full set of projectors P into subsets
{P,} such that P =u, P, the supports of the projectors
within each subset P, do not overlap, and the projectors
within each P, are “dense” on the lattice (i.e., the distance
between neighboring projectors is bounded by an
L-independent number). For example, in a one-dimensional
system with an even system size L and nearest-neighbor
projectors labeled as P = P;;,;, the non-overlapping
subsets are P, :={Pyyi1} and P, = {Py_ixul}.
Denoting the kernel and its orthogonal complement of P,
as T, and 74, the full target space 7 can be expressed
as 7 =n, 7,

Focusing on a single such subset P,, we now show that a
bond algebra generated by strictly local terms can be
constructed such that it is irreducible in 7 5. Consider
diagonalizing P[;;’s in P, over the Hilbert space on its
support R; on the lattice:

Dy,

Py = Z |u(/;”)><u<j;”)\Rj,

)
y—DR/_ +1

(A1)

where Dg, is the corresponding Hilbert space dimension,
{|ul)) k-1 v <Dg} the corresponding orthonormal
eigenvectors, and D%}_ the number of zero eigenvalues of
P[; (note that we have used the fact that all the eigenvalues
of Py; are either O or 1, and we have also labeled the zero
eigenvalues as 1 <v < D%j). We then find that the pro-
Jector onto any eigenvector of P; with eigenvalue 1
annihilates all states in 7, i.e.,

|u<fw>><u<fw)|Rj|w>:0 if yZD%j—f—], lw)eT.
(A2)

Since Py is not zero, there exists at least one such v that
satisfies Eq. (A2), and we assume this is the case for the v in
the discussion below.

The projectors in Eq. (A2) are analogous to the projec-
tors |0)(0[; in the spin-1 illustration above. Proceeding as in
that example, the operators |ul/*))(ul)| &, ® Ouy(j) also
annihilate the target space, where O, ;) can be an arbitrary
operator acting in a region neighboring but not overlapping
with R; [nb(j) with respect to R; is an analog of j £ 1 with
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respect to j in the spin-1 illustration]. We consider
appropriately chosen operators of this form to be the
{ﬁm} of range 7. = Fmax. FoOr large enough 7/, since
the distance between neighboring projectors within the
subset P, is bounded by an L-independent number, the
support of Oy ;) Will cover the support of the neighboring
Pj; in the subset (analogous to the support of |0)(0]; ®
la)(B|; 1 covering the support of |0)(0|;,; in the spin-1
example). For example, in the one-dimensional case and
focusing on P|; €P,, if Pj_o = Pauoir1, Onp(j) can be
any operator Wlth support on sites {2k + 2,2k + 3} such
that it covers the support of Pjy_y o = Poy2.2k43-

Similarly to the spin-1 example, it is easy to see that the
bond algebra Agy generated using operators such as
{|u(f;”))<u<f3”)|Rj ® Oup(j)}  contains |u(j;”)><u(j;”)|Rj ®
Ocompl(Rj)’ where Ocompl(R,-) is an arbitrary operator in the
entire lattice complement of R;, which we denote as
compl(R;). Now, consider comblnmg such operators for
distinct j and j', i.e., for disjoint regions R; and Rj. It is
easy to see that the bond algebra ASM then contains
the  operator |“<J;U)>Rj ® [0)k, @ [X)compi(r,ur,) (Wlr, ®
<M(j’;v’)| R, ® <y|c0mpl(RjuRj/)’ where |v) Ry is an arbitrary
state on Ry, [w) g, 18 an arbitrary state on R;, and
|x)comp1(leuR/) and |y>comp1(leuR/) are arbitrary states on
the complement of the union of R j and R - Hence, all states
of the form |u(j;’“)> ® [2)compi(r,)» With an arbitrary state
|2) compi(r,) 0N the complement of R;, are “connected”; i.e.,
the ket-bra operator formed from any pair of such states is
in the bond algebra ./ZlSM. Thus, we see that all states in the
T L are connected under the action of operators from the
algebra Agy;. We also note that 7, forms an exponentially
small fraction of all states in the entire Hilbert space.
Indeed, it is easy to see that, for large L, this fraction is
bounded as

dlm('H) j P[j] eP, DRj - re

for some p, < 1,

(A3)

where we have used the fact that D%j/ Dg, <1 while the

number of such j within the subset P, is a finite fraction
of L.

1
\72(| +0) +[04)),

T10) =

ITr 1) =+ %), Tr41) =

Ty 41) = 7—(|i0> |0+£)), 7

(I+=)=1=+)),

Finally, in order to prove that all states in 7+ are
connected, we need to show that states from any pair of
different 7, and 75 are connected. For this aim, it is

sufficient to show that T N T4 #0 since, if the two
subspaces share at least one common nonzero vector, then
any pair of states in 7, and 7 can be connected by ket-
bra operators via such a common vector. This condition
translates to 7, + 7 » # H, which is necessarily true for
large system sizes as is evident from the dimension
counting of 7, and 7, each being an exponentially small
fraction of . This concludes the proof that all states in 7 +

are connected; i.e., the algebra .,ZlSM is irreducible in this
space. n

APPENDIX B: BOND ALGEBRA FOR THE AKLT
GROUND STATE(S) AS SCARS

In this appendix, we provide many results on the bond

algebras Vzlfcl,fILT corresponding to the case with AKLT
ground states as QMBS, discussed in Sec. VA. In
particular, we show that these algebras act irreducibly
in the space orthogonal to the four OBC AKLT ground
states or the unique PBC AKLT ground state; hence, any
operator |y,){wy| for states |y,) and |y4) orthogonal to
the AKLT ground states is in these algebras. In addition,
we also show that S;, is a type II operator in the
PBC ASKLT,

In the following, we use the fact that the ground
states of the AKLT are the unique states in the common

kernel of the AKLT projectors {P}1} and hence are

the only singlets annihilated by AQI;LT. For PBC, this is a
unique ground state |G), discussed in Sec. VA, whereas
for OBC, there are four ground states |G,y), with
0,6 €{?, |} denoting the configurations of the emergent
edge spin-1/2’s [26,83].

Note that everywhere below, when we say that an
algebra A annihilates some states, we always exclude the
identity, and it is implicit that this exclusion is a
subalgebra of A. Throughout this appendix, we work
with the total angular momentum states formed by two
spin-1’s on sites j and j + 1, labeled by the total spin J
and its z component m, and we denote them by
|Tym);j+1- Explicit expressions for these states in the
spin-1 language are given by

T20) = —= (I + =) +2[00) + | = +)),

7
(I + =) =100) + | = +)).

To0) = (B1)

7
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1. OBC AKLT ground states as scars

We start with the bond algebra generated by two-site terms of the form {|7'5 ,,,) (T, |

denote the algebra as

.....

where we observe the second equality numerically for
L > 3 and a sufficiently generic choice of 4; ;.. In other
words, a single generator per bond is, in principle,
sufficient for L > 3, while the analytical arguments below,
for simplicity, assume a larger set of generators per bond
listed in the ﬁrst expression [131]. There are precisely four

..... —namely,
the four OBC AKLT ground states {|G,,,,J>1’2 ..... 1,0,0 €
{7, }}—and this follows from the fact that these states
span the common kernel of the projectors { P?XL}, which
is a known fact for any L. (Here and below, when we say
“annihilated by the algebra AY*MKET” we mean annihi-
lated by the above generators, i.e., excluding the identity.)
Denoting the on-site spin-1 states as |+), |0), and |—), and
using |T55); 41 = |+, +); 41, it is easy to see that the
projector onto the ferromagnetic state |+ -, 4) X

(4,4, +l1 2.1 belongs to AN
the followmg Lemma.

Lemma B.l. For any L, the algebra acts
irreducibly in the orthogonal complement to the four
OBC AKLT ground states {|G,,);,.  ;}. Denoting an

|

ASMObcAKLT

.....

.....

= 11) = ({P3fHh

k) Dk = (Va2 4 @ )i ) (.4,

m,m' €{-2,-1,0,1,2}}. We

JJj+1

AKLT lsst_l}»’

j Jj+1- (BZ)

Joj1 g1

|

orthonormal basis in this space as {|ly,),a=1,...,
—4}, this is equivalent to the statement that

|l//(1><+’ oo L €A

operators of the form [we) <l//ﬁ| can be generated from these

and their Hermitian conjugates.

Proof. We proceed by induction; assuming this case
holds for some L = k, we show that it is true for L = k + 1.
We begin the induction from L = 2, where the span of the
four AKLT ground states {|G,,);,} is simply the span of
{IT\~1/0/1)12+1T00)12}- Hence, by definition in Eq. (B2),
ATYOPAKLT acts irreducibly in the space spanned by
{ITyn)12.me —2,-1,0, 1,2} orthogonal to {|G,y); 5}
For induction, we assume the claim holds for L = k or k
consecutive sites in general. This assumption then implies

.....

and  ASNOPRKHT. Given  (wg) (4,4, -+, + |)1,2 ..... ke
ASI\’{?%/?KLT and similar ket-bras in .ASM‘.’,b_C?flL T, we can

then combine these with appropriate |75 ,)(T55]. m = 2, 1,

0, near the ends to obtain the following ket-bras

SMobcAKLT.
from AN

RN

(lwa) ) kA

(lwa) (+. 4 D12 a(([4.0) + 10, ) +Dikrr = Wadi2a @ 100 )+ +o -+ Flia ks

(lwe) (4 D12 a4 =) +210.0) + [= DI+ D = (Wadra a @ =) (F 4 Hla ks
(lwa) (4 D as e (I ) D2 = (01 @ Wados a4+l kit

(lwa) (+. 4. HDasat ([1H.0) + [0, )+ +D 12 = (1001 @ Wa)as . art) (e +o o Flia kst

(lwa) (+. . D2 a1 =) +200,0) + [ )+ +D) 12 = (7)1 @ Wadas. ae) (e +o o+ o kst

...............

—kr> (B3)

,,,,,,

)1 ® Wa)2s.. k1 001 ® [Wa)2s.. a1 =) ® [Wa)23.. kst (B4)
which are not all linearly independent, span the orthogonal complement to the four AKLT ground states on sites
1,2,...,k,k+ 1. To do so, it is sufficient to show that any state orthogonal to the span of the above states is part of the
AKLT ground-state manifold, i.e., is annihilated by the algebra .ASM"bCAKLT ki1 orthogonal to the

“oer1 - Consider any D)1,
above states, and decompose it as

P10 kit = )12k @ [F)isr + o) 12 & @10 iy +u) 12 & ® [=)pss- (BS)

041069-27



SANJAY MOUDGALYA and OLEXEI I. MOTRUNICH

PHYS. REV. X 14, 041069 (2024)

Requiring orthogonality to the states in Eq. (B3), we
conclude that |u,,p_);, , are orthogonal to all
[Wa)1o. 4 and hence |¢),, 4y is annihilated by
ANPAKLT By an identical argument using orthogonality
to the states in Eq. (B4), we conclude that |¢); 5 ;. is

annihilated by ASM???,?KLT Since ASMObC,/j,];LlT is com-

,,,,,,,,,

conclude that |@),, ;. is annihilated by ASMObC,’?ﬁ“lT
and hence must be in the span of the four OBC AKLT
ground states {|G,y);5. i1} This proves that the
states in Eqs. (B3) and (B4) indeed span the orthogonal
complement to the four OBC AKLT ground states. Com-
bining the arguments, this proves the claim for L = k + 1,
completing the induction and hence proving the claim for
all L. =

2. PBC AKLT ground state as a scar

We now extend the proof to show irreducibility of AQI;LT

for the PBC AKLT ground state. We consider the algebra

SM bcAKLT
AL

«{|T2m><

= ({Pyj Ay, ,+1Pf}‘+L1T, I1<j< L}>>,

(B6)

where the subscripts are modulo L and we observe the
second equality numerically for L > 3 and a sufficiently
generic choice of h; ;.. There is precisely one state

annihilated by (the above generators of) this algebra
ASMpbcAKLT

o namely, the unique PBC AKLT ground state
|G)1 5.1, and this follows from the fact that it is the unique
state in the common kernel of the projectors

{PEET 1 < j <L}, which is a known fact for any L. In

JHL
the following, we use the fact that the algebra A?I\Z/I’??fAKLT
is generated by the OBC algebras AN*?XLT and

ASMobeAKLT,

Lemma B.2. For any L, the algebra ATSPM " acts
irreducibly in the orthogonal complement to the PBC
AKLT ground state |G);, ;. Denoting an orthonormal
basis in this space as {|y,),a=1,...,3F =1}, this
is equivalent to the statement that |w,)(+,+, -,

iz E.A?I\;? PR for all a.
Proof. Consider the sites 1,2,...,L —1,L as an OBC
system. The corresponding bond algebra is A?l‘f"_’?fAKLT and

{lWadia. 1-1p.a=1,...,3*"*} the orthonormal basis
that spans the orthogonal complement of the four
OBC AKLT states |G,,), . on these L sites. Next, we
consider the sites 2,3,...,L,1 as an OBC system and
repeat the process; schematically, we denote this algebra as
ASNOPARLT and the basis as {|yq),3.. 1 }» Which are just

some new states {|y;)15. ;1)

Following the proof of Lemma B.1, we can show that
W)l .ot oo and fwe)(H 4+

+|p3..21 are in the algebras ASM"bCAKLT and

: SMpbeAKLT
ASM"bCf‘IfLT, and hence are in the algebra A75P°

Further, note that the “bra” states that appear in these cases
are actually the same, ie., (+, 4+, .+, +|1o 111 =
(+.+.---.+,+l3. 11 hence, the full bond algebra
contains the operators |y,)(+,+. .+, +|12. 1 11
and |we) (4, 4. -+, 4+, |12 1_1.- We now show that
the states {[Wu)io 11z [Widia 112} span the
orthogonal complement to the AKLT ground state |G).
We show this in a procedure similar to the OBC case, i.e.,
that any state orthogonal to these states must be part of the
ground-state manifold, which, in the PBC case, is simply
|G). )12....-1. orthogonal to
both |yg) 15 p-1. and [wg)1 5. r-1..- By the applications
of the results in the OBC case, |¢);, .  ;_, must be
annihilated by both AFY°PAKLT and ASYPMLT: hence, it

must be annihilated by the PBC bond algebra A?l\z/{? F’fAKLT
This completes the proof of irreducibility for the
PBC case. [

3. Impossibility of writing S5, as a sum
of strictly local symmetric terms

We now use some known properties of the AKLT ground

states to prove that, in the bond algebra ASKLT, §2 s a type

IT symmetric operator as defined in Sec. III D. This finding
follows from the following Lemma, as well as the dis-
cussion in Sec. V A 2 that, because of the DCT, Sg,; is in the
algebra ./Zl?CI;ILT.

Lemma B.3. In the spin-1 chain, the operator S, =
> ;5% cannot be written as a sum of strictly local terms of a
range bounded by a finite r,,,, from the PBC bond algebra
ARKLT of Eq. (19).

Proof. We start with an explicit proof by contradiction
for rp. = 2. Indeed, let us assume that we can write

L
Stzot =cl+ Z aj;m,m’|T2,m><T2.m’|j,j+1 s (B7)

j=1

where [T, ,)’s are total angular momentum states on two
spin-1’s as defined in Eq. (B1), and we have used the fact
that ket-bra operators formed from them are the most
general two-site operators that annihilate |G). We can
immediately set ¢ =0 since we know that S,|G) = 0.
We also know that S, |G14) = |Gyy), where |Gy4) is one
of the OBC AKLT ground states. We use the action of
Si on these two states to arrive at a contradiction. We
first recall the well-known MPS structures of the OBC
and PBC AKLT ground states |G,,) and |G), which read
[27,84]
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Gog) = 3 (AU AW fmymy ). 6.0 € {1 L),

{m./‘}le

IG) = Z Tr[AlmI Al . Al mymy - my ), (B8)
{’"./‘}le

where m; € {+,0,—} labels the physical indices on site j; ¢ and ¢’ are auxiliary indices that label the emergent
boundary spins of the OBC AKLT state; and {A[’"/]} are matrices over the two-dimensional auxiliary space. They read

570 1 /1 0 5/0 0
A2 A _( ) A[—]:_\/:< ) B9
3(0 0) 3\0 -1 3\1 0 (B9)

Because of the structure of Eq. (B8), it is easy to see that the condition that the two-site term [75,,)(T,|; ;. vanishes
on |G) for 1 < j <L implies that it also vanishes on |G;;) for 1 < j <L —1. Hence, all terms in Eq. (B7) with
1 <j<L-1l—ie., that do not go across the “PBC connection” [L, I]—annihilate the OBC state |G;;), and the
assumed Eq. (B7) implies that

ZR = ZaL;m,m’|T2,m><T2,m’|L_1 = ZR|GTT> = |GTT>’ (BIO)

m,m’

where we define a “straddling region” R := {L, 1}. In addition, the definition of Z shows that it vanishes on |G), i.e
Zg|G) = 0. We can then use these conditions and the MPS structures of |G44) and |G) in Eq. (B8) to express
conditions on the action of Zp on states over the region R as follows:

1Gyp) = Z |GM o) ® |G§/ ) = ZR|GMM> |GM o) Yo, de{1.]}

oo’ €{t.l}
G)= > IGR)®IGR,) = Z|GR) =0 Vo. de{t.|}. (B11)
oo e€{t.l}
where {|GT t o)} and {|G®,)} are the vectors of the MPS |G;4) and |G) over region R with auxiliary indices ¢ and ¢,
and their forms can be directly deduced from Eq. (BS8):
G}y o) = D (A (A lmymy), (GRS = Y [AAI iy my). (B12)
{my.m} {mp.m}

Here, |GX ) are the standard OBC AKLT ground states over R = {L, 1}; on the other hand, |GTT .. are the specific

extractions from |G44). Additionally, in Eq. (BI1), |G(’f,0) are the standard OBC AKLT ground states over
R = {2,3,...,L = 2,L — 1}, specializing Eq. (B8) to such a region. Note that these “parts” over R and R are not the same
as the Schmidt vectors of the respective wave functions over the region R since they are not guaranteed to be orthogonal;

nevertheless, Eq. (B11) holds due to the linear independence of {|G§,U)}. Using Eq. (B11), we can then arrive at

(GR |G (G |ZxlGE, ) =0 Voo v {11}, (B13)

Thee) =

|
Equation (B13) is then a contradiction if (at least one We can generalize this proof to arbitrary fixed 7., as
element of) the overlap “matrix” on the lhs is nonzero. This ~ follows. Suppose we write
matrix can straightforwardly be computed for r,, = 2,

where |GX ) are in the span of [T ,,e (1 o}) and [T ) on "

P me{+.0. X S = 1 T max) B14
the two sites R = {L 1}; it is also straightforward to o = el Z Z i (B14)
extract |GTT bo')s € |GTT 1) = (1/3)[00), ;, and this

(

clearly has a nonzero overlap with |To); . This contra-  where T jf;’“*) S A’:‘CEILT is a strictly local annihilator of |G)

diction proves the invalidity of the assumption in Eq. (B7).  with support contained in [}, j + rp. — 1] (modulo L).
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Again, by acting with this on |G), we conclude ¢ = 0,
and we apply this presumed expression to the OBC ground
state |Gy4) with S5, = 1. As a consequence of the MPS

structure of Eq. (BS), the terms {T}r;‘“),l <j<
L — rpa + 1} that do not straddle the PBC link [L, 1]
annihilate |G ). Hence, analogous to Eq. (B10), we obtain

(assuming L > r.)
|

Z [A [mL—rnmerz] ..

{m;.jER}

|G,y) = [A[nmrmaxn] ..
{m;,jER}

|G oor) =

Equation (B13) then follows and can be shown to be a
contradiction for any finite r.,, for L > r.,  using
straightforward AKLT transfer matrix calculations. Hence,
we see the invalidity of the assumption of Eq. (B14), thus
completing the proof. =

APPENDIX C: BOND ALGEBRA FOR THE
SPIN-1/2 FERROMAGNETIC TOWER AS SCARS

In this appendix, we provide details on the bond algebra
corresponding to the spin-1/2 ferromagnetic tower of states
{|¥,)} of Eq. (6) as scars. As discussed in Sec. V B, ideas
from the Shiraishi-Mori formalism can be used to construct
the algebra of Hamiltonians that leave the ferromagnetic
states degenerate, and they are of the form shown in
Eq. (16). Further, we find numerical evidence that gen-
erators with support on three or more sites, e.g., those of the
form of Eq. (21), are necessary to obtain the desired
commutant Cik. In order to show the irreducibility of this

bond algebra ./thé\;[r in the orthogonal complement of the
scars {|¥,)}, it is convenient to use a simpler expression
involving multiple generators per each three-segment part,
using two-site projectors {P; ;| = |[S)(S|; ;;,} that anni-
hilate the ferromagnetic states:

A = (LIS} (Sl 141 ® o) (0]}
{lo)(e']; ® IS)(Sljs1 121D

where j=1,2,...,L =2 for L sites, |S),, = (1/Vv2) x
(11, 4) = . 1))rr is a spin singlet on sites k and £, and
c,6' €{1, |} To verify the equivalence of the expressions
of Eq. (C1) and those of Eq. (21), it is sufficient to check
that, for L = 4, these generators give the same algebra,
which is indeed the case from numerical experiments for
sufficiently generic h;_; and hj,, in Eq. (21).

(C1)

A[mL]A[ml] .. .Armax_l](m_/|mL_rmax+2 P mLml “e mrmax_l>‘

L
Zei= Y Y a4 TV = Z40Gyy) =Gy, (BIS)
j:L_rmax+2 a

where we define a straddling region R := {L — rp. + 2,
v L1, .o Fax — 1}. Equation (B11) then follows directly
for this new region R, and analogous to Eq. (B12), the
corresponding vectors on the region R are defined as

.A[mL]}GT [A[m]] . .Armux_l}TD_,|mL_rmax+2 P mLml P mrmax_1>’

(B16)

1. Proof of irreducibility

We now show that CtM is the full commutant of the
bond algebra Aﬁi‘ﬁr of Eq. (Cl) by proving the follow-
ing Lemma.

Lemma C.I. Denoting the bond algebra .,Zlfcl\fr of
Eq. (Cl) on the L-site system 1,2,...,L as A, ;, for
any L there is a set of states W, = {|w,),. ..} (not
required to be orthonormalized) such that A, ; =
<<{|l//a> <Wa'|1,2 ..... L> l//a>7 Wa’> € WL}>> and any state
orthogonal to W, is annihilated by A, ;.

Proof. The set W is constructed such that it also
contains the specific states {|1,..., 1),

.....

conclude that A4, , acts irreducibly in the orthogonal
complement to the ferromagnetic multiplet {(Sg,)"|F)},
|F) =11 1)1s..r» which is precisely the set of
states annihilated by this algebra (which is a well-known
fact for the important projectors involved, namely,
{181 j=1.....L = 1}).

We proceed inductively, similar to the AKLT case
discussed in Appendix B. For L =3, we take W; =
{1S) 2@ 1)3:[1) @ [8)23:18)12 @ [)3. 1)1 ®S)23}
which are linearly independent and span the space orthogo-
nal to the four ferromagnetic states on the three sites. It is
easy to verify that the corresponding |w,)(w,| indeed
span Aj ;3.

Proceeding by induction, we suppose the claim is true
for L = k sites. We can take any |y,);, €W, and a
convenient fixed [1,....,1); > ® [S)i_ 14 €W, (here
using the requirement that the W, contains the specific
states), so that |yg)io k(T M1 k2 @ (Shicik €
Aj .. and then combine these with the generators of

Afifr acting on sites k — 1, k, k + 1 to construct operators
that bEIOl’lg to Al,2,...,k.k+1:
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|l//a>1.2 ,,,,, T M e ® <8|k—1,k<|8><8|k—1,k
® o) (Tis1l) = W12k ® 1)k (15 os M ko
® (Slicik ® (Meti- (C2)

Hence, defining (k4 1)-site states [Wy5)10. txsi1'=
Wa12.. x®0)y1,  we  have that all  ([i,,) x
W12 kxe1 €A12. kkr1- We can repeat the same
exercise with the k-site bond algebra A, ;.| containing
Wa)a... k1S3 @ (1. ..o. My g1,  multiplying  on
the right by |o)(1| ® |S)(S|,5 to obtain elements of
A kx+1, which leads us to define (k + 1)-site states
Woaia...kis1 = 10)1 ® [Wa)a, ka1 to conclude that

all (|l/76;a><lﬁa’;aj|)1,2,...,k,k+1 €Ain kkt1-
We now define

Wist = {Wao) 12, ka1 U {|l/70';(1>1,2,...,k,k+1}‘ (C3)

Note that the two sets being joined here happen to have
common states, e.g, [1,....1); ;i1 ®[S); ;1 ®

,,,,,

flanked by some nonzero number of 1’s on both sides.
Thus, we have the requirement that the W contains the
specific states again, and it is also easy to see that the
corresponding requirement will be satisfied for W, ;. The
fact that the two sets being joined to form W, have at
least one common element (true for k£ > 3) implies that ket-
bra operators constructed from any pair of states in W,
belong 0 A5 it

It now remains to show that any state orthogonal to Wy,
is annihilated by A;, 1. The argument here is iden-
tical to that used in the AKLT case in Appendix B. Any
|¢>1,2,.4..k,k+1 = |”¢>1,2 ..... K ® |T>k+1 + |”L>1,2 ..... K ® |\L>k+1
orthogonal to Wy, has its k-site parts |uy);,
|y )15, x orthogonal to W, and hence annihilated by
A\ 5.k which implies that |¢), 5 ;. is annihilated by
Aio. k- Similarly, |¢);, iz can be shown to be
annihilated by A, i1, which shows that ), ;..
is annihilated by Ajs i = €Az Aok )-
This finding also implies that the ket-bra operators con-
structed from any pair of states in W,,, in fact span
A kx+1, completing the inductive step. [

2. Generation of the DMI term

As discussed in Sec. V B, the full PBC DMI term of
Eq. (24) will be generated from the generators of .,Zlfcl\fr due
to the DCT. We now explicitly show that it can be expressed
in terms of the generators of ,Zlfcl\fI in Eq. (C1). We show this
in multiple steps discussed below.

a. Three-site cyclic DMI term from three-site generators
We start with the three-site DMI term, defined as

- -

Dfppi= (S x Sp) - @+ (Spx Sp) - @+ (S, % 5)) - &,
(C4)
and express it in terms of the generators of APM in

Eq. (Cl1). We first focus on the @ = Z component and
expand Dj, ; as

D, 5 = S{S5 — 1S5 + 5385 — 8§35 + S58) — §35¢

- %l ([1S12, 13) {11, S| = [S12. d3) (1, S

+ cycl perm| + H.c. (C5)

The equality between the two lines can be checked, e.g., by

writing out each of them in the ket-bra notation. The second
line can be expressed in terms of spin operators using

1S, T3><T1’523
- —2|S> <5 12(S§ + S?)

1 - - 1 - -
:—2<Z—S1'52>(5§+S?><Z—52'53>, (C6)

- |Sl27 \L3><‘L1’823|
S)(Sls

where the first equality can be checked by writing out the
rhs in the ket-bra notation, and we have also used
S)(S|y, =1—5,-S,. Further, the terms obtained by
cyclic permutations of the spins can be generated from
the above term by applying two-spin exchanges between
sites 1 and 2 and between sites 2 and 3 [132]. Using
Eq. (C6) and applying cyclic permutations, Eq. (C5) can be
expressed in terms of the generators of Afcl\fr in Eq. (CI).
Note that Egs. (C5) and (C6) are for the @ = Z component.
For the @ =X or @ =y components, we obtain similar
expressions, with the S3’s replaced by S$7’s or S} ’s,
respectively.

b. A simple set of generators for the bond algebra

We next obtain an alternate set of generators for the bond
algebra A™ by enlarging the algebra Asu) = €{S; -
S j+11) with three-site DMI terms {D§,, ;,,} within all

contiguous clusters of three sites on a one-dimensional
chain; i.e., we show that

A = (S Sp b AP @€ {ny, ). (CT)
As discussed earlier, all the generators shown in Eq. (C7)

can be expressed in terms of generators of yzlfclfr in Eq. (C1).
To show the converse, we use the identity
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(35008 )Dtas (3= 5) (5-515:) = 008D i s SD(9)Shia = 5 (1SS © 5. (€8)

where [133]

(812D12518)23 = =3i(I1)3 (Tl = )3 (L), (SlaslS)ia = —%(IT>1<TI3 + 1)

By considering an equation similar to Eq. (C8) replacing,
e.g., D — D*, we can clearly use the generators in Eq. (C7)
to produce the ones in Eq. (C1), showing the equivalence of
these two sets of generators in Egs. (C1) and (C8).

Of course, not all the generators in Eq. (C7) are
independent. For example, since the Heisenberg terms
can be used to generate the two-site exchange operators

2o 1
P =25, 545, (C10)

a single three-site DMI term D%, , .., can be used to
generate any three-site DMI term D¢

JisJ2:J3
In fact, we also numerically observe that the addition of the

using exchanges.

DY . o=

J1seees, Jk

We first show the generation of the four-site DMI term. Starting from the three-site terms DY ;| ;, and D

generate DY, ;. ;.5 using the two-site exchange operator

according to Eq. (C10)] as

a __ pexch a exch
DYy jis = PR51aD5 11 ja PTG e

Similarly, we can express the (k + 1)-site DMI term D¢

. . . y
induction) and the three-site DMI term D k=2 k=1t

Pexch

a __ pexch a
Dj,j+1,...,j+k—2.j+k - Pj+k—1,j+ij.,j+l ,,,,, Jj+k=1" j+k-1,j+k°

D

1 a
Gl jtk using DY

. as follows:

a _
Dj,j+1 ----- J+k

(€9)

|
Heisenberg terms is not necessary in the generators of

Eq. (C7); ie, we observe AM — D5y j1-a€
{x,y,z}})) for systems of size L > 4. However, we have
not been able to express the Heisenberg term using the DMI

terms in a simple way.

c. Full DMI term from the three-site generators

Finally, we inductively show that the DMI term on any
contiguous k sites can be generated from the generators of

AR in Eq. (C7), where the k-site DMI terms D% ; with

support on an arbitrary set of k sites {j,...,J
defined as

2 xS;),  ae{xy.z) (C11)

F1j12,j4+3> We can

exch i i
P55 [which can be expressed in terms of S;,5 - S;y3

D (C12)

o J— o 14
Gtz = Df i1 ez T Dis i jiss

L ket (which is assumed to be generated by

a o
DS i jekezjik T Dfircajikor jon (C13)

Using this procedure, it is easy to see that “closed-loop” DMI terms of all ranges can be generated, including the full PBC

.....

Eq. (C7) reads

L-2

Hpm :Z

=

L—j-2

k=1

where P;‘ff‘,fh is defined in Eq. (C10).

exch
H PL—k,L—k+l

L—j-2 T
a exch
Dj,j+l.j+2 H PL—k,L—k+l ’

(C14)
k=1

3. Impossibility of writing the full DMI Hamiltonian as a sum of strictly local symmetric terms

Here, we prove the following Lemma.

Lemma C.2. The PBC DMI Hamiltonian H ,_pyy of Eq. (24) cannot be expressed as a sum of strictly local terms from the
bond algebra Ag\fr or, without loss of generality, strictly local terms that annihilate all states in the ferromagnetic multiplet.
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Proof. Consider a product state with a spin texture that makes a complete rotation independent of L, e.g., by an angle of
4z in the S, — S, plane, as we go around the chain:

R T L B R s s D
J

The textured state is chosen such that the local contributions to the H,_pyq have a uniform nonzero value proportional to g
at small ¢:

(‘Ptex|SjS}v-+l - S;V-S“;Jrl [Prex) = %, = (V| H _py|P**) = L%n(q) -7 for L — oo, (C16)
where we have used the identities
ei‘”st“J?e_i“’S; = cos(@)S} —sin(g)S7, ei"’stjfe_i“’S; = cos(@)S; +sin(g)S7,
(8= =5, (=18 -)=0. 1)

Now, suppose there exists a decomposition of the DMI term as H,_pyy = > g h r» Where the sum runs over an extensive
number of strictly local terms /i labeled by R, such that each /i annihilates the ferromagnetic multiplet and has support
bounded by a fixed number independent of L; we also assume that the norm of each /i is bounded by a fixed number
independent of L. Note that below we will also abuse notation and refer to R as a finite region, where hy acts centered
around a site labeled by jz. Under the above assumptions, we will show that the expectation value of the rhs evaluated in
[P} scales as ~CLg? for small g ~ 1/L with some fixed C independent of L. This expectation value vanishes when
L — oo, in contradiction to Eq. (C16). The proof uses the fact that each Az annihilates any perfect ferromagnetic state,
which implies that its expectation value in the textured state is bounded by an O(g?) value. Specifically, denoting the
restriction of product states to that region by a subscript R, we have

<\Ptex|flR|\Inex> _ <\Ptex|RﬁR|\Ptex>R _ <\I~;FM|Reiqz_,/€R(/’—jR)S} ﬁRe—iqu/ER(j’—jk)S}|1I7FM>R’ (C18)
where jr is some fixed site in the region R, e.g., the site in the middle of the region, and we have defined

ey R UYDIS PPV | it S | PFMLA) (C19)

WM is a uniform ferromagnetic state with spins

where Sg, » is the total z-spin operator restricted to the region R. Hence,

pointing in the same direction as spins at site j in the state |¥'**); in particular, it is annihilated by h r- Furthermore, note
that | — jg| for any j/ € R is bounded by the size of R, which is bounded by an L-independent number. Now, consider the
series expansions of the operator in Eq. (C18) in powers of ¢,

121 el o™ 2T — o g {Z (7' - in)S;. ,;R} +0(a?). (c20)

j'€R

Taking the expectation value of this operator in the state |[¥™), note that the O(¢°) and O(g") terms vanish since the state is
annihilated by A. Further, since R is a region containing a fixed number of sites, we expect the series to be convergent, with
the norm of the O(g?) “remainder” bounded by M¢g?, where M is an L-independent number (since the norm of h r 1s also
assumed to be bounded by an L-independent number). Hence, | (W' |/ |¥**)| < Mg? for some L-independent number M:;

then, |(W*| 3. fig|¥*)| < CLg? with some L-independent number C, as claimed earlier, thus completing the proof. m

APPENDIX D: BOND ALGEBRA FOR THE AKLT TOWER AS SCARS

In this appendix, we provide details of the bond algebra for the tower of QMBS eigenstates discovered in the AKLT spin
chain, discussed in Sec. V C.
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1. Review of AKLT tower of states
We first provide a review of known results on models that share these QMBS as eigenstates. The one-dimensional AKLT

Hamiltonian is defined as

2
Ye{p.o}., PN =>" (T, )0(Tonl); -

m=-=2

Ly
T
HfAK)LT = prﬁﬁv (D1)
j=1

where T = p and T = o stand for PBC and OBC, respectively; L, = L — 1 and L, = L; the subscripts are modulo L for

PBC; and |T,,); ;1 are the total angular-momentum states of two spin-1’s, defined in Eq. (B1). Hence, P25l is the

projector onto the states of total angular momentum 2, whose expression in terms of spin variables is shown in Eq. (18).

Reference [26] solved for a tower of states in the spectrum of HSQLT, which are given by {|y,,) :== (Q")"|G)} for PBC

and {|y,, 11) = (Q7)"|G4)} for OBC, where |G) and |G ) are the AKLT ground states for PBC and OBC, respectively,

discussed in Sec. VA. These QMBS eigenstates have the following eigenvalues under HSQLT and S§,:

H ) = 20lw,). Sawa) = 2nly,),

Hygurlvnry) = 2nlwaie)e Sialwas) = @+ Dlygy), (D2)
where the spin eigenvalues are a consequence of the operator Q' being a spin-2 raising operator, as shown in Eq. (25).

References [41,49] further showed that a family of nearest-neighbor Hamiltonians with the same set of QMBS for PBC and

OBC is given by

0
T 2,2 2,1 . J.m
H o fam = Z[rs(Tﬁ,,:ﬁl FT+ D0 @D (T2 (Tl T35 = (o) Taml)ijon

J lim==2

(T

where {qa,,,(j)} are arbitrary constants. Similar to H AK)LT,

(D3)

the QMBS have the eigenvalues {2n€} under HXQLT_fam and

hence form a tower of equally spaced states with spacings 2&. Note that Eq. (D3) reduces to the AKLT model H SQLT of

(1)

Eq. (D1) for £ = 1 and a;,,(j) = 8/, Further, we can use Eq. (D2) to construct a family of Hamiltonians H ) 1., for

which the QMBS eigenstates are all degenerate by simply subtracting Sg,; times a constant from HggLT_fam, ie.,

5(p) = g ,
H 31 Toam = HAKLUTfam — €St

When restricted to the AKLT case with PBC, Eq. (D4)
reduces to Eq. (28).

2. Bond algebra for the PBC AKLT QMBS

We now provide some details on the bond algebra for the
QMBS of the PBC AKLT model discussed in Sec. V C. To
do so, we first need to find an appropriate set of projectors
such that the AKLT QMBS {|y,,) = (Q7)"|G)} completely
span their common kernel.

a. Two-site projectors

We start by constructing nearest-neighbor projectors that
are required to vanish on the states {|y,)}, which can be
computed by performing a Schmidt decomposition of the
states over the two sites {j,j+ 1} (i.e., with the sub-
systems being the two sites and the rest of the system),
computing the linear span of these Schmidt states, and

A X)I%LT—fam =H I(AOI)(LT—fam —&(Sio = 1).

(D4)

[
constructing a projector out of that subspace. For the AKLT
tower of states, this process can be worked out analytically
in the MPS formalism, starting with the MPS representa-
tion of the ground state |G) shown in Eq. (B8); e.g., we can
deduce that the linear span of Schmidt states over sites
{j.j+ 1} is given by

St = p{ D (A["ﬂ)m(mw])m/m,,-mj+1>},

mjmj. T

(Ds)

where 1 <o0,0,7 <2, and (A[’"/])M denotes the matrix
elements of Al Projectors that vanish on this subspace
can then be constructed directly, which gives PAKLT as
discussed in Sec. VA and Appendix B; this result is
equivalent to the parent Hamiltonian construction discussed
in Refs. [49,87,88].
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We can repeat the exercise for the AKLT tower of states with the observation that the entire QMBS subspace {|y,,) } can
be represented as the span of a one-parameter family of MPS, i.e.,

span{|y,)} = span{e‘2'|G)} = span{He‘f(_l)
Biml = Z[eﬂ—l)"“ﬂ I

”j

A[”/] — Almjl +(

where [],, ,
Eq. (D6) is the span of the two-site MPS, i.e.,

S

mjmji1 T

(S7)2|G} span{ZTr Blmlipglmal.
Jé:z S*

mml...ma},
{m;}

’n/_A[”f],mj,njE{-i-, O’_}, (D6)

; denotes the matrix elements of e. The linear span of all the Schmidt states over {j, j 4+ 1} in the states of

B[mfﬂbmwm,-mm}, (D7)

where the subscript £ indicates that the span is taken over all values of £, which, in this case, equals the span of vectors that
appear in the above expression with coefficients £ and &' (none of the higher powers appear in the expansion). It is easy to
show that this is precisely the span of the OBC towers of QMBS on the two sites, i.e.,

Sjj1 = Span{ Wi oe) i1

where {|G,y); 1} are the four OBC AKLT ground states
on the two sites {j, j + 1}; this expression is a consequence
of the raising operator Q' being a sum of on-site terms. The
projectors out of the subspace S; ;,; then turn out to have
the compact expression [41,49]

(2,m)
JJ+1 - Z T]]+1’

m=-=2

(D9)

where {T ij} are projectors onto total angular-momen-
tum states, defined in Eq. (D3). The common kernel of
these projectors can be computed using the efficient
methods discussed in Refs. [73,75], and for small system
sizes, we numerically observe that its dimension grows as

dimker({Il; ;.,}) =2%+2 for even L. (D10)
The exponential growth with system size implies that the

projectors vanish on many more states than {|y,,) }; hence,
|

0.0 €{t.}}.

S[jsj+2] = Span{ |l//n,0'6/> [i.j+2]

J+1 n
0.0 € (0 Wnarlisor = 5 (30 (VSR 16w

(D8)
k=i

|
these are not the desired projectors. This fact can be easily
seen by noting that any product state containing only the
“—"or “0” spin-1 on-site states and such that no two 0’s are
next to each other is annihilated by the above projectors;
however, we do not have an analytical argument for the
precise count of all states in the common kernel including
nonproduct states.

b. Three-site projectors

We hence look for three-site projectors {ITj; ;5 } that
vanish on the states {|y,)}. These projectors can be
computed in a way similar to the two-site projectors by
studying the Schmidt decomposition of {|w,)} over the
three sites {j,j+ 1,7+ 2} and the linear span of the
Schmidt states S; ;). This computation can be worked out
in the MPS language using the same method as described
for the two-site projectors, and similar to Eq. (D8), it can be
shown to be the subspace spanned by the OBC AKLT
towers of QMBS on the three sites, i.e.,

Jj+2

1 n
|Wn,tm’>[j.j+2] = ./\7 (Z (_1)1{(5}?)2) |G0'6’>[j,j+2]’ (Dll)

k=j

which is the span of the four towers of states originating from the four three-site ground states. In the spin language, we have

Sjjjia = span{|sa>[j.j+2],ae {1, ...,

8}}, where the (unnormalized) states are defined as

041069-35



SANJAY MOUDGALYA and OLEXEI I. MOTRUNICH

PHYS. REV. X 14, 041069 (2024)

|5y

=10 = 1. = 1) = = +00) +]0+0) = [00+) +2| + —+),

|sy) ==/ =1,J,=0) =—|+0-)+|—-4+0) + |0+ —) — | = 0+) — |000) + |0 — +) + | + —0),

|53

lss):==|J =3,J,=3)=|+++),
s¢) = | =2,J. =2) = |+ +0) = [0+ +),
ls7) = |J = x,J, =2) = |+ 0+),

Isg) = |J = x,J, =1) = =| +00) — |0+ 0) — |00+) + 2| + +=) + 2| — ++),

where J and J, denote the total angular-momentum
quantum numbers of the spin-1’s on three consecutive
sites. The first four states |s;)—|s;) are the OBC AKLT
ground states on the three sites, and the remaining states
|ss)—|sg) are obtained by acting the raising operator Q' on
the four ground states. Note that unlike the other states, |s;)
and |sg) are not eigenstates of the total spin angular
momentum on the three sites; further, |s;) and |sg) are
not mutually orthogonal. Then, ITj; ;5 is the projector onto
the subspace orthogonal to {|s,),a€{l,...,8}} on the
three sites {j,j+ 1,7+ 2}.

Similar to the two-site case, the kernel of these projectors
{I0j; ;42 } can be computed using efficient methods dis-
cussed in Refs. [73,75]. Here, we find that up to fairly large
system sizes, the dimension of the common kernel is

%4—3 if L =2 xeven

. DI13)
L+1 if L=2xo0dd,

dim ker({l’[[j#z] H = {

and in Appendix E 3, we analytically prove an upper bound
on the dimension of this kernel. For system sizes
L =2 xodd, the common kernel is precisely spanned
by the states of the tower {|w,)} and the spin-1 ferromag-
netic state given by

|F) =4+ +- 4+ +). (D14)

Note that we count the ferromagnetic state separately since
it is not part of the tower defined by Eq. (25) for these
system sizes, i.e., (Q7)X/?|G) =0 for L/2 odd, so the
tower does not reach the ferromagnetic state. For system
sizes L = 2 x even, the kernel is larger than the span of the
tower of states {|y,)} (which now includes the ferromag-
netic state |F)) by two states. For system sizes L < 8, we
numerically determine that these are states with spin $° =
L — 1 and momenta k = +x/2, which exist only for these
system sizes. We can immediately solve for these states
using this information, and we obtain

)
) :
yi=|J=1,J, = —1) = =| = 00) + [0 = 0) — |00=) + 2| — +-),
Isg) =[J=0,J,=0)=|4+0=) = |+-0) = [0+ =) +]0—+) + | —+0) — | — 0+),
) :
) :
) :
) :

(D12)

L
o /w1
1) = Zelk15j7|F>, ke{_i’i}' (D15)
j=1

It is easy to verify that they are annihilated by the projectors
I1}; ;42 or, equivalently, by any three-site state orthogonal
to the {|s;)} in Eq. (D12). Note that these states are the
same as the |1;) eigenstates of the AKLT model, solved for
in Ref. [26]. Further, we numerically observe that these
extra states are not eliminated from the common kernel
even if we consider four-site projectors {Ij; ;.5 } that are
required to annihilate {|,)}.

In general, we can conclude that the common kernel of
{I0j; 12} is spanned by {|y,)} and {[¢,,)}, all of which
are eigenstates of the PBC AKLT model. This form of the
kernel motivates the construction of the PBC bond algebra
of Eq. (26), discussed in Sec. V C.

3. Bond algebra for the OBC AKLT QMBS

Moving on to the OBC AKLT model, we again wish to
construct a set of local projectors such that the common
kernel is completely spanned by the tower of

states { |y, 11)}-

a. Two-site projectors

Similar to the PBC case, we can start with nearest-
neighbor projectors and look for two-site projectors that
annihilate the tower. Using the same procedure, i.e.,
constructing the subspace spanned by the Schmidt states
of {|w,.11)}, we obtain the same set of projectors {II; ;. }
as Eq. (D9) in the bulk of the system. Similar to the PBC
case, the common kernel of these projectors for OBC also
grows exponentially with system size:

dimker({II; ;;}) =3 x 257", (D16)
and the exponential growth can be understood using similar
arguments as in the PBC case. Note that, strictly speaking,
the projectors on the boundary should be chosen differently
if we require that the kernel only contains the tower
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{lwn.11)} and not the towers |y, ,»). However, we observe,
and it is easy to show, that the choice of the boundary
projectors does not affect the exponential nature of the
scaling of the kernel dimension with system size. For
example, if we include the two-site boundary projectors
Hgl)z and H(Lrl,. ; that we discuss below in the next section,

we find that dimker(IT\,, {T1; ;1 }, I/, ) = 6 x 274,

b. Three-site bulk projectors + two-site
boundary projectors

Hence, we move on to three-site projectors. We again
find the same set of projectors {Il}; ;. } in the bulk of the

system as the PBC case. The common kernel of these
projectors can be computed numerically, and we find that
dimker({IT}; ;,2}) = 2L + 2, (D17)
which was also observed in Ref. [75]. In Appendix E 1, we
analytically prove an upper bound on the dimension of this
kernel, and it appears that the kernel is spanned completely
by {|y,..0)} ie., the four OBC towers of states and
possibly a few extra states such as |F) that might not be part
of the towers for certain system sizes. Following the ideas
discussed in Sec. V C, this case actually implies the
existence of a bond and commutant algebra pair,

Cscar = <<{|l//n,0(r’><l//m,rr’|}>>v o, OJ’T? T/G{T"L}’ (Dlg)

Asear = §{j ey hj e o 1)
for a generic choice of hj; ;).

In order to limit the kernel to only one of the towers {[y, 1)}, we need additional projectors acting on the boundaries.
We can start by adding on-site projectors (|—)(—[); and (|=)(~|), to the list of three-site projectors {IIj; ;. } in order to
“enforce” only the tower {|y, 14)} to constitute the common kernel. However, we numerically find that some states from
the other towers survive; i.e., they are annihilated by the edge projectors. These states are not eigenstates of the OBC AKLT
model (for which, as mentioned previously, only states in the tower {|y, 11)} are eigenstates, while the other three towers
are generally not eigenstates).

We then construct left and right two-site boundary projectors and require them to vanish on the towers of states [y, 14).
These projectors are, respectively, the projectors out of the linear span of the Schmidt states over the sites {1, 2} and over the
sites {L — 1, L}, and the corresponding subspaces are spanned by the three (unnormalized) states {|/,),,,a = 1,2,3} and
{lra)p-10.a=1,2,3}, defined as

1) =1+ 0) = [04), ) = |+ =) = [00), [L3) = + +);

[r) = 140) = [04), [r2) = [ = +) = 100), |r3) = [ + +). (D19)

(i

Referring to the left and right projectors out of the above subspaces as IT; )2 and H(Lrll > respectively, we numerically observe

that the dimension of the common kernel of the projectors {H(ll)2 {0 42} H(erl, .} is given by

L+1 if Liseven

: O] (r)
dimker(IT} 5, {I1;; ; TG = D20
(i My e b o) {—L'ZH if L is odd, (D20)

and in Appendix E 2, we analytically prove an upper bound on the dimension of this kernel. We also numerically verify that
this kernel is completely spanned by { |y, 14)} for odd system sizes and by {|y, 1++)} and |F) (the ferromagnetic state) for
even system sizes, all of which are eigenstates of the OBC AKLT model. This form of the kernel motivates the construction
of the OBC bond algebra given by

égggr = «{ll//n,TT><l//m,TT‘}»,

~ (o ] ! l r r r
Ay = «H(],)zhmn(l.)z’ {H[j,j+2]h[j]n[j,j+2]}’H(Lll,LhEIjH(LZI,L»7 (D21)

where hff]) hj, hm are sufficiently generic operators with support in the vicinity of sites indicated in the subscripts.

APPENDIX E: SOME ANALYTICAL RESULTS ON THE SINGLETS
OF THE AKLT TOWER BOND ALGEBRAS

Here, we collect some analytical results on the singlets of the bond algebras described in Sec. V C and Appendix D, more
specifically, upper bounds on the number of states annihilated by the Shiraishi-Mori projectors involved in the constructions
of the bond algebras.
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1. Three-site bulk projectors with OBC

Consider states annihilated by the projectors {HU, jpJi=L..L- 2} in OBC. As discussed in Appendix D 2, each
I j+2) projects onto the subspace orthogonal to {[sy)(; ;12 @ €{1,...,8}} of Eq. (D12); it is easy to check that this
subspace is spanned by the following 19 states {|u,)}; ;5. a €{1,...,19} }:

) =] = ==). Juz) = [0 — =), [uz) = | = 0=). [ug) = | = =0). |us) = | + —=). |ug) = [ = =),
|u7) == 00) + [0 = 0). |ug) == [00—) 4 [0 = 0). |ug) = | = 0+) + |0 = +). [uy0) = | + 0—) + | + -0,
|upr) = 100+) = [+ 00). [u1p) = |+ +=) = | = ++). [u13) = [+ +0) + [0 + +),
14) =10 = +) = | = 40). [uy5) = [0+ =) = | + =0). [us6) := | = +-) = 2/0 - 0),
luy7) = [+ =0) + [ = +0) +2[000), [u;g) := | + —+) + | = ++) + 2[00+), [u19) :=2[0 + 0) + | + +=) = [ + —+).
(E1)
Note that not all of the states are normalized, nor are all ¥(...,0,0,+,...) =¥(...,+,0,0, ...), (E4)
of them mutually orthogonal; however, they are linearly
independent and span the desired subspace. Below, we Yo+, + =) =¥(..,— +,+,...), (E5)
require the annihilation by projectors onto each of these
states to derive conditions on the states in the common
Y(...,+,+,0,...) ==¥Y(...,0,4+,+, ...), E6
kernel; we find that the two-site projectors |7 ,,)(T>. ( ) ( ). (ES)
m|j’j+1,me{—2,—1,0}, defined in Eq. (B1), can be ex- W00 =) =W = 4.0, (E7)
pressed in terms of ket-bra operators of the form T oo
{lu,){up|}, which simplifies some of the analysis. 3 -

Requiring the annihilation of |¥) by IT}; ;. is equivalent POt =) =%+ 2. 0.0, (E8)
to requiring annihilation by Rrojectors {|.ua<u'a|[j,j+2], ae W oo ) = 2%(.0,-.0, ) (E9)
{1,...,19}}. Then, we consider expansion in the com-
putational ba51s,. |T> = Z{_m{-} q_l(ml’ My, oo my )|y, m, Further requiring annihilation by |u;7)(u;;| and
...,mp). Requiring annihilation by {|u,)(u,|.a€ |u1g) (usg|, combined with the previous conditions from

{1,2,4,5,6}} is equivalent to
(E2)

for any location along the chain of the two consecutive sites
hosting a “——"" pattern somewhere in the chain, with any
configuration on the rest of the chain marked with dots. This
case is equivalent to the condition of annihilation by two-site
{| = =){=—1;+1}>anditis easy to show that these two-site
projectors [Ty _»)(T> _5|. .., can be expressed in terms of

Jit
the three-site ket-bra operators {[u)(uy|j; 42, a. b €
{1,2,4,5,6}}.
Further requiring annihilation by {|u,)(u,|,a €

{3.7,8,9,10}}, combined with the previous conditions
from |u,)(u,| and |uy) (uy|, gives the condition

(E3)

for any location of the two consecutive sites, which again
reflects the fact that we can express the two-site projectors
{IT2-1)(T2.1]; 1} in terms of the corresponding three-
site ket-bra operators.

Further requiring annihilation by {|u,)(u,|,a €
{11,12,13,14,15,16}} produces three-site conditions,

lu16) (ui| and |ug)(ug|, gives the condition

(oot =) + P = 4, ) +29(...,0,0,..) = 0.
(E10)

This two-site condition again reflects the idea that we can
express the two-site projectors {|70)(T20l;;,} in terms
of the corresponding three-site ket-bra operators. Finally,
requiring annihilation by |u9) (19| gives the condition

2¥(...,0,4+,0,...) + P(..., +,+,—, ...)

-¥(..,+,—,+...)=0. (EI11)

For the most part, we will be using conditions Egs. (E3)—
(E9), which specifically relate the amplitudes on two
configurations related by a simple “local move” that is
easy to read off for each condition. In particular, we have
moves that exchange nearest-neighbor “—"" and 0; hop 00
pasta +; hop ++ pasta “—"or a 0; hop 0 pasta —+ or +—;
and relate — 4+ — and 0 — 0. Our strategy below is to use
these moves to relate the amplitude on any given configu-
ration (a.k.a. a product state in the computational basis,
often referred to simply as “state” below) to the amplitudes
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on some specific “reference” configurations and count the
number of independent reference configurations. For the
OBC chain, we will prove the following Lemma.

Lemma E.I. For |¥) annihilated by {I1}; ; .5,/ =1,...,
L -2}, ¥(my,my,...,my) for any |m, m,,...,m;) can be
related to amplitudes on states in the following three families:

@ |-.0,0,...,0,0,0), [4+,-,0,...,0,0,0), |+, +,
= 0,0,0), oy [ =, 0), [
St =)

(i) |—,+,0, 50,0,0), [+, —+,...,0,0,0), ...,
[ s e = 0), [ e = )
(i) |+ +.+ ), e+ 0),
|+,+,+,
+,0,+).

There are L states in the first family, L — 1 states in the
second family, and three states in the third family, for a
total of 2L + 2 states; hence, dimker({IT}; ;;2}) < 2L +2
in OBC.

Proof. Consider first the case where at least one
m; = —1. In the following analysis, we recall that having
a configuration —— anywhere along the chain immediately
implies that the amplitude is zero due to Eq. (E2); hence,
the amplitude of any configuration that can be “connected”
to a configuration with —— is also zero, and we implicitly
consider only cases where this combination never occurs.

Using the moves m + + — + + m for m € {—,0}, and
00m — m00 for m € {—, +}, we can push all instances of
++ to the left and all instances of 00 to the right and relate the
original configuration to a configuration of the form
+ -+ - + [singletons]0.. .0, where, for each site in the middle
“singletons” region, the state on the site differs from those of
its neighbors, and we have used the fact that —— cannot
appear.

In the singletons region, we then try to push all 0’s as far
to the right as possible via moves 0— — —0 [Eq. (E3)], 0 —
+ —- —+0 [Eq. (E7)], and 0+ — = 4+ —0 [Eq. (ES)],
“cleaning up” any instances of ++ and 00 that may occur
in the process by pushing these to the left or to the right
boundary of the singletons region, thus shrinking it. We
perform all these moves until no such moves are possible,
obtaining a new (possibly smaller) singleton region. We can
then argue that the configuration in the singleton region
must reach the form [— + — + ...(—or +)0 40+ ...0+],
recalling that we started with the assumption that there must
be at least one — state in the region while the rest of the
pattern can, in principle, be empty [134].

We now show that we can further “simplify” the singleton
region by application of some of the previous moves as well
as the moves —0 - 0— or —4+0 — 0 -+ moving 0
temporarily to the left. Specifically, we can perform the
following moves at the left boundary of the 0 +0+4 - --
segment inside the singleton region: —0+ 0+ —
0-+0+—->-+00+ > —-++00 - ++-00 or -+
0+0+-0-+4+0+-04++-0+->++0-0+—
+ + 00 — + — + + — + 00. We can follow this method by

again pushing the leftmost +—+ to the left and the rightmost
00 to the right, effectively reducing the size of the 0 + 0 + - - -
segment (and hence the singleton region) by 4. After repeated
applications of these steps, and a few extra similar steps if the
original size of the segment O + 0 + - was 4n + 2, we
can “simplify” the singleton region to the form
[— + —+ ...(—or +)]. Note that it is crucial to have at least
one — to facilitate the required moves to bring the singleton
region to this form.

Finally, we can further reduce the size of the singletons
region using moves — + — - 0 — 0 — —00 [Eq. (E9) fol-
lowed by Eq. (E3)] until there is a single — remaining in the
singleton region. At this point, we have connected the
amplitude of the original configuration to the amplitude on
one of the states in family (i) or (ii), and this completes the
analysis of configurations with at least one m; = —1.

What remains is to consider special cases where there are
no — states among the mj’s. If there are at least two 0’s, we
can move any +- intervening between them and bring the
two 0’s to be either nearest neighbors 00 or next-nearest
neighbors 0 + 0. In the first case, we can use Eq. (E10), and
in the second case, Eq. (E11), to relate the amplitude to those
on states with at least one —, which are presumed to already
be fixed by the preceding construction by amplitudes on the
states in family (i) or (ii). Finally, if there are no 0’s or there is
precisely one 0, we can move ++-’s and relate such states to
the states in family (iii), which completes the proof of the
claim. For this family, we can, in fact, write down the three
corresponding linearly independent states in the common
kernel:

liiig) = |F) = [+, 4., 4),
liii;) = (ST = S5 + S5 =87 + ...)|F),
liiiy) = (S5 — S5 + Sg — Sz +...)|F), (E12)

where the exhibited sums run as long as they stay within the
OBC chain. To establish the fact that these states are indeed in
the common kernel, the only nontrivial case to check is the
annihilation by |...)(

The consideration of these cases completes the proof of
the Lemma. [

Some remarks are in order. The above claim upper
bounds the dimension of the common kernel of {IT}; ;.5 }
in OBC by 2L + 2, and the numerical study summarized in
Appendix D 3 [see Eq. (D17)] shows that this is, in fact, the
exact answer. However, we do not have a direct analytical
argument other than noting that the count basically matches
the naive count of the states in the four AKLT towers in
OBC, up to a few states for certain system sizes. One
challenge is that a given configuration may be connected to
reference configurations by multiple paths (i.e., sequences
of moves), and we have to assure that the amplitude
evaluated along each path is independent of the path.
Specifically, Egs. (E3) and (E6) contain a minus sign when
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relating the amplitudes, while Eq. (E9) contains a factor
of 2. While in the latter case we can see path independence
by relating the factor of 2 to the change in N by 2, tying
this to the configuration property independent of the path
taken, it is not clear how to do this in the former cases.
Nevertheless, we can make the following simple obser-
vations. The states in family (i) have distinct S7, taking
values —1,0,1,...,L — 3, L — 2, while the states in family
(ii) have distinct S5, taking values 0,1,...,L —3,L —2.
All the moves considered preserve S7; hence, the ampli-
tudes of states in these families with distinct S7,; should be
independent. Furthermore, states in families (i) and (ii) with
the same Sf, cannot be connected by the moves in
Egs. (E3)—~(E9): Indeed, it is easy to see that these moves
preserve the parity of the number of +’s to the right of the
rightmost —. Hence, we do not need to worry about
connections under such moves between any states in
|

1) =1[==) |v2)=[=0), [v3) =10-),

oa) == | = +),

families (i) and (ii), only about possible “cycles” involving
one such state at a time. We are also still concerned with
whether Egs. (E10) and (E11), together with cycles, may
further constrain the amplitudes for the two families; again,
we do not attempt full analytic proofs but are content with the
obtained upper bound that agrees with the numerical results.
In any case, the numerical study provides the definite answer
for the size of the common kernel and its relation to the AKLT
towers and any of the few extra states.

2. Three-site bulk projectors and two-site boundary
projectors with OBC

We can also see how the two-site boundary projectors
added in Appendix D 3 reduce the size of the kernel; see
Eq. (D20). Six states orthogonal to {|l,);,,a€{1,2,3}}
of Eq. (D19) are {|v,),,.b€{1,...,6}} given by

vs) = [+ 0) +10+),  [ve) = [+ =) +]00), (EI3)

and annihilation by H(ll)2 is equivalent to annihilation by all |v,)(v,|;,. Similarly, six states orthogonal to
{lra)p10.a€{1,2,3}} of Eq. (D19) are {|w;,); _;,;.b€{l,...,6}} given by

wi)=1==), [w)=[=0), |w3):=]0-),

and annihilation by H(Lrllq .. 1s equivalent to annihilation by

all |vp)(Wp_1 1

Additionally, we consider requiring annihilation by these
projectors for each of the three families in Lemma E.1.
Starting first with family (i), requiring annihilation by
wy)(Walp_yp and |wy)(ws|,_,, and implementing the
“moves” discussed in Appendix E1, we find that the
amplitude on any state in this family with at least one +
must be zero for any L since any such state can be related to
a state with either |w,) or |w,) on sites {L —1,L} by
pushing 00 units to the left and hence must have zero
amplitude. For L even, this also includes the state with no
+’s, i.e., the very first of the listed states in family (i),
while for L odd, we can add requiring annihilation by
|w3) (w3, _; 1 to conclude that the amplitude on this state is
also zero. Thus, in either case, family (i) does not survive
the addition of these boundary projectors.

We now consider family (ii). Requiring annihilation by
|v4)(v4];, gives the condition that the amplitude must be
zero for each state in this family, where the — is located on
an odd site (labeling the sites 1,2, ..., L) and we recall that
the amplitudes on configurations connected by moving ++
units are related. This process eliminates L/2 and (L +
1)/2 states from family (ii) for L even and odd, respec-
tively, leaving at most /2 — 1 and (L — 3)/2 independent
nonzero amplitudes for L even and odd, respectively.

Finally, we consider family (iii). Adding the requirement
of annihilation by |ws)(ws|;_; ; relates the amplitudes of

wa) = [+ =),

ws) = +0) +104), [we) =[=+)+1[00), (El4)

|
the last two states in this family, thus leaving at most two
independent amplitudes.

Putting everything together, we have at most (L/2 + 1)
independent amplitudes for L even and (L + 1)/2 inde-
pendent amplitudes for L odd. This finding matches the
result of the numerical study in Appendix D 3; see
Eq. (D20). Again, for the same reason as before, we do
not have a full direct proof, and we cannot exclude the
possibility that different amplitudes acquired along differ-
ent paths leading to the same reference states would force
some of the amplitudes in family (ii) to be zero. However,
an indirect argument is that this count matches the count of
the states in the AKLT tower { |y, 11}, which we know are
indeed annihilated by these projectors.

3. Three-site bulk projectors with PBC

Here, we start with the bulk OBC analysis in
Appendix E1 leading to the three families in Lemma
E.1 and add the requirement of annihilation by ITj; ;) with
j=L—-1 and j=L, with identifications L+ 1=1,
L 42 =2,i.e., going across the PBC connection between
the sites L and 1. Thus, we have the same requirements, ¥
in Egs. (E2)—(E11); however, now the exhibited two-site or
three-site locations can happen anywhere on the circle
formed by the PBC chain, and the amplitudes on configu-
rations can also be related by local moves that go across the
PBC connection; hence, we can reduce the number of
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independent amplitudes using the extra moves, as we will
now describe. Throughout, we assume L is even, which is
required for the PBC tower of states to exist.

Consider first family (iii). The PBC makes no difference
for the ferromagnetic configuration |F), which is trivially
annihilated by all |u,){u,|; ;12 on any three sites. For the
other two reference configurations, the corresponding OBC
constructions of eigenstates in Eq. (E12), states [iii;) and
|iii), can nicely fit in the PBC if L = 4n, and they form the
|1k—1r/2) states of Eq. (D15); thus, we have two more states
in the common kernel for such L. On the other hand, if
L = 4n + 2, states [iii;) and [iii,) in Eq. (E12) do not “fit”
in the PBC, and we can show that, for any |¥) in the
common kernel, its amplitudes on these configurations
must be zero. As an example, we show this case for the
configuration |+, +, +..., 4+, +, 0). Using Eq. (E6), we hop
the O over the ++’s all the way to the left and then across
the PBC, returning to the original configuration but with
sign (=1)¥/2 = —1 for L/2 odd; hence, the amplitude
must be zero. Thus, for family (iii), we have three states in
the common kernel if L =4n but only one state
if L=4n+2.

Turning to families (i) and (ii), we first note that all such
configurations where the number of + states N, is even
must have zero amplitude, which is consistent with the
absence of states with S%, odd from the PBC AKLT tower
of QMBS. We will show this for family (i), while family
(i1) will easily follow. First, consider configurations in
family (i) with N, even and at least two 0’s. Working near
the single —, we perform moves —00 - 0 -0 —» — + —
[Egs. (E3) and (E9)]. We can use Eq. (ES) to hop the left —
across ++’s to the left if N, #0 (this is where the
evenness of the original N, is important). Then, we can
use Eq. (E3) to move the same — across the PBC across all
0’s, eventually bringing this — next to the other —, and this
configuration must have zero amplitude by Eq. (E2).

Now, consider the family (i) case with precisely one 0,
|+, +, 4+, -+, +,—,0), which is the only case left with N
even. We can relate it to configuration |—|—, +, 4+, ...,
0,—,+) using the following two different sequences of
moves. In the first sequence, we perform right hops of 0
over +-+’s using Eq. (E6), performing L/2 — 1 such moves
and acquiring a minus sign from each move, for a total
factor of (—1)1/>7!. In the second sequence, we first
perfoom -0+ - 0—-+ — — 40 using Egs. (E3) and
(E7) and acquire a minus sign (this move goes across
the PBC); we then perform right hops of 0 over ++’s, a
total of L/2 — 2 moves, which results in a sign factor of
(=1)E/272; finally, we perform 0+ — — +—0 — +0—
using Egs. (E8) and (E3) and acquire one more minus
sign, for a total factor of (—1)%/2 for this sequence. We can
then see that the accumulated signs differ for the two
sequences, and hence the amplitude must be zero.

The family (ii) cases with N, even can be treated
identically to the family (i) cases by first moving —+ to

the right across all 0’s using Eq. (E7), reaching a configu-
ration of the form |+,+,---,+,0,...,0,—,+), which, on
the PBC circle, has the same structure as in family
(i) considered above. The same arguments apply, showing
that such configurations with N, even must have zero
amplitude.

Thus, from family (i), we are left to consider L/2
configurations |+,—,0,0,0,0,...,0,0), |+,+,+,—.0,
0,...,0,0), ..., |+, +,+,+,+,+,- -+, +,—), while from
family (ii)), we have L/2 configurations |—,+,0,0,
0,0,...,0,0), [+,4+,—,+,0,0,...,0,0), ..., [+, +,+.+,
+,+,...,— +), both with N odd. It is easy to see that the
first L/2 — 1 configurations in family (ii) can be related to
the corresponding L/2 — 1 configurations in family (i): We
can move the rightmost + across all 00’s all the way to the
right [using Eq. (E4)], then the leftmost O across the +—
[using Eq. (E8)] and then across all ++’s to the left,
including across the last ++ crossing the PBC, to arrive
at a configuration in family (i). Thus, we have related the
family (i) and family (ii) configurations with at least two
0’s. Finally, we can show that the amplitude on the last
configuration in family (i) and the last configuration in
family (ii)—the configurations with no 0’s—are also
related, which we show separately for L =4n and
L=4n+2.

For L = 4n, we use Eq. (E10) to write

T(+7+7+7“.’+7+9_)+\P(+7+7+5“'7+7_’+)

+2¥(+,+,+, -, +,0,0) =0 (E15)
and then show that ¥(+, +, +, - - -, +,0,0) = 0 for such L.
By starting with |+, +,+,---,+,0,0), we can move the
left O across L/2 — 1 instances of 4+ to the left, acquiring
a minus sign for each move. We now have 00 across the
PBC, which we move to the left across one + [using
Eq. (E4)], returning to the very initial configuration but
with sign (=1)%/2"! = —1 for L/2 even; hence, we
must have ¥(+,+,+,---,4,0,0) =0, which implies
P+, + 4+ =) = =P(+ + e ).
For L = 4n + 2, we instead use Eq. (E11),

29+, 4+, +.....0,+,0) + P(+, +,+, -, +.+.0)

-¥Y(+,+.+,---.+.—+) =0, (E16)
and show that ¥(+,+,+,...,0,+,0) =0 for such L.
Starting with configuration |+, +, +, ..., 0, +,0), we first
hop the left 0 across L/2 — 2 of ++s to the left (landing at
site j = 2); we then hop the right 0 across one ++ to the
left (this O then lands at the site j = L — 2); finally, we hop
the other O (currently at site j = 2) across ++ to the left,
going across the PBC and landing at j = L. We have thus
returned to the original configuration after performing L /2
moves of the type in Eq. (E6), which accumulates sign
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(=1)8/2 = —1 for L/2 odd. This process proves that
the corresponding amplitude must be zero, which implies
Y+, +,+, -+ + ) =¥+, ++ -+ - ).

To summarize, from families (i) and (ii), we end up
with at most L/2 independent amplitudes. Combining
with the analysis of family (iii), we conclude that there
are at most L/2 + 3 independent amplitudes for L = 4n
and L/2+ 1 for L =4n+ 2, which appears to match
the results of the numerical study in Eq. (D13). This
result is also the total count of the AKLT tower of states
{lw,)} and the extra states {|¢,)} discussed in
Appendix D 2, which we know are part of the common
kernel.

1X1) =—=(

)+HI=LD), X)) =

Nl

[X7) =—=(1,=1)=[=L1)),  [Xs)=[L1),

0), X)) =1[1,0),  |X4)=

APPENDIX F: SOME DETAILS ON THE SPIN-1
MODELS WITH BIMAGNON TOWERS AS QMBS

In this appendix, we provide some details behind the
discussion in Sec. V D of the bond algebras for the spin-
1k = z and k = 0 bimagnon scar towers, connecting with
previous works [34,116].

1. Shiraishi-Mori projectors and bond algebras

The Shiraishi-Mori projectors, i.e., the set of projectors such
that the QMBS span their common kernel, are conveniently
defined using the following two-site states [X,); ;,; (reusing
notation from Appendixes C and D in Ref. [34]):

A), [Xs)=[=10), [Xe)=

’_1>7

[Xo) = |=1,=1). (F1)

For the k = # bimagnon tower defined in Eq. (29), the Shiraishi-Mori projector is

(XY,
JJ+1ﬂ = Z|X JJ+1 (FZ)

For two sites j and j+ 1, it is easy to verify that the bond algebra of U(1) spin-conserving operators, such
that the k =7 QMBS of Eq. (29) are degenerate eigenstates, is spanned by the 13 linearly independent opera-

tors {]]]]+1; |X ><Xb|
(S5)7(S5,0)* (8587, +
also denote the bond algebra Aﬁi‘d‘f ) of Eq. (30) as

J.j+1

a,be{l,2},a,be{3,4}, or a,be{5,6}}. To give some examples,
SIST )/ V2 X ) (Xl = (S5)°[L = (85,0

|X1><Xz|j,j+1 =

+ (85 + 8%, 1) (1 = 8%5%,1)]/2; etc. Thus, we can

AGE = ALY = (X Xyl a.b€{1,2), or abe{3.4}, or abe{56}}), (F3)
where the sites j and j + 1 belong to the different sublattices of the bipartite chain.
For the k = 0 bimagnon tower, the Shiraishi-Mori projector is
pXY.0)
//+1 = Z [Xa)(X ‘/ JH1 (F4)

It is very similar to the k = 7 bimagnon tower projector, except that |X;)(X|; ;;, is replaced by |X7)(X7|; ;;, (so that

requiring annihilation by [X7)(X7|; ;;; locally enforces “k = 0" |X)

jj+1 1n the wave function, as opposed to “k = 7~

|X7); ;1 locally enforced by requiring annihilation by |X,)(X,|; ;). The corresponding U(1) spin-conserving bond

algebra can be defined as

XYO

AXYO = ({1x, N Xplj 1.0, b€{7,2}, or a,be{3,4}, or a,b€{5,6}}), (F5)

where we can assume that j and j 4 1 belong to different sublattices just like in Eq. (F3), although it is not necessary for this

k = 0 bimagnon tower.

2. Unitary transformation between the k=0 and k =x towers

As discussed in Sec. V D, the k = 7 and k = 0 bimagnon towers can be mapped to one another on a bipartite lattice using
a unitary transformation U = [ j i, with @; = expli(z/2)S5] on one sublattice [conjugation by this u; maps S} — +iS7,
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(87)* = =(S7)*1 and @; = T on the other. Indeed, it is easy to see that this transformation maps |X,,)
themselves up to unimportant phases, while it exchanges |X;)

jj+1r2<as<6to

;j+1 and |X7); .5 hence, conjugating using this unitary

realizes an isomorphism of the two algebras Aﬁi‘} ) and Aii‘d‘f ’0). In addition, term 12 of Eq. (32), which annihilates the
k = = bimagnon tower, maps to itself up to a sign. Hence, for our purposes, it suffices to focus on the k = 0 case, and all
results can be translated to the kK = z case by this unitary transformation.

3. Permutation group in the bond algebra

Using Eq. (F5), it is easy to see that ,Ztﬁi‘;f 9 contains two-site exchange operators Pj"jcﬂl = up

a, ﬁ> <ﬂv a|j,j+1’ namely,

P = (1X5)(Xal +1Xa) (X5] + |X5) (K| + [X6) (Xs| + T = |X3)(X5] = [X4) (Xa| = |X5)(Xs] = [X6) (X6| = 21X7)(X7]) 11

Hence, this bond algebra also contains arbitrary exchange
operators P‘;’ffnh; consequently, it also contains a represen-
tation of the permutation group on L sites. Just like in the
spin-1/2 ferromagnetic tower, the presence of the exchange
operators in the bond algebra is ultimately responsible for
the spatial structure of the singlets of this algebra, i.e., the
states of the k =0 bimagnon tower. In particular, this
finding implies that these states lack any spatial structure:
When any such singlet state is expanded in the computa-
tional basis, all permutation-related basis states must have
the same amplitude. Indeed, the properties (P$!)? = 1
and PZSMPiPPEeh = P! guarantee that any common
eigenstate of all such exchange operators must have the
same eigenvalue under all the exchange operators; fur-
thermore, this eigenvalue cannot be (—1) for large system
sizes.

4. Mapping term 12 to the spin-1/2 DMI term

Finally, Appendix D in Ref. [34] showed that the k = 0
bimagnon tower and the corresponding extensive local
annihilator, Eq. (32), can be related precisely to the spin-
1/2 ferromagnetic tower and the DMI annihilator discussed
in Sec. V B. This result is achieved by relating |+) <> |1),
|-) <> |}), which also relates the spin-1 operators
585,5(S7)? to spin-1/2 operators %, S7. Hence, the proof
in Appendix C3 that the DMI annihilator cannot be
represented as a sum of strictly local annihilators carries
over to the spin-1 Hamiltonian, Eq. (32), showing that it is
an example of a type II symmetric Hamiltonian for the
k = 0 bimagnon scar tower (and hence also for the k = #
bimagnon scar tower by the unitary mapping).

APPENDIX G: SUFFICIENT CONDITIONS
FOR QMBS

In this appendix, we prove Lemma VI.1, which provides
a set of sufficient conditions that a state [y uuaq) ON a
system of size L can satisfy for it to be a QMBS of some
local Hamiltonian. We restate it here for convenience.

(Fo)

Lemma VI.I. In a system of size L, if among the
reconstructed parent operators bounded by some finite
range rp., we have a “dense” set of O(L) strictly local
operators {A[;} covering the entire lattice such that the
separation between neighboring Af;’s is bounded by an
L-independent number Z,,,,, then Eq. (35) is satisfied for a
parent algebra generated by operators of some finite
range Fiax = Fmax-

1. Existence of an exponentially large block

Before proving the main result, we note that, for deriving
some simple results, it is more natural and convenient to
assume that the union of the supports of {A [ j]} completely
covers the lattice and that, among these, there are non-
commuting operators occurring at finite density across the
lattice [135]. In such a case, if rp, > 2 and the Ap;)’s with
overlapping supports do not commute, we can already
show that the parent algebra A = ({A[;}) possesses an
exponentially large block. The dimension of A clearly
grows exponentially in L since we can construct strings of
operators such as A Aj,---Ap, for any k and any
positions ji, ja, ..., ji that are sufficiently far from each
other such that the supports of any two A;’s do not overlap,
and there are exponentially many such linearly independent
strings. Concretely, we can divide the lattice into L/n
nonoverlapping regions {Rf}lgi | of roughly equal size n ~
O(1) such that each R, contains at least one pair of
noncommuting Ay;’s. We can then lower bound dim(A) in
terms of Dy 1o := dim(Ag, ) (assumed to be the same for all
¢, for simplicity), where Ag, is the algebra generated by
Apj’s that are completely within R,; it is easy to see that
dim(A) > Dﬁ’/lgc by the above “strings of operators” argu-
ment. Since Ag, is non-Abelian by definition,
Dy = dim(Zg,) < Dy joc» Where Zp is the center of
Ag,. The full center Z of A should be contained in
{2r, };i”l »; hence, we obtain dim(Z) < D%gc. We then
note a general bound
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dim(Z2)

dim(A) = Z D = l’nle(D,l) > dim(A)
Py

dim(Z)’

(G1)
and applying this bound to the recovered algebra A, we

obtain

DA.loc

Z loc

L
mfx(Di) > ( >2n ~exp(cL), (G2)
implying the existence of an exponentially large block.
Another perspective on this bound is that each region R,
“gives” a qudit of dimension (at least) /Dy joc/ Dz 1o and
the bond algebra contains arbitrary operators in the Hilbert
space of L/n such qudits.

2. Existence of a “thermal” block satisfying Eq. (35)

We now proceed to the main proof of Lemma VI.1. Note
that we can assume Aj;)’s, without loss of generality, to be
projectors Pp;), for some value of rp, =1 since the
recovery of Af; implies the recovery of all its powers.
We then wish to show that there exists a finite 7, > Fmax
such that Eq. (35) is satisfied for the (irreps of the) algebra
Agy = (({ﬁ[ 1), where ﬁ[j] are the strictly local recon-
structed operators with range bounded by r,,,. This case is
closely related to the result of Lemma IV.1 proven in
Appendix A; hence, we have suggestively denoted the
reconstructed algebra with the same notation .,ZlSM. There,
the operators {ﬁm} that generate such an algebra are
obtained by “dressing” the projectors P[; by longer-range
terms, e.g., ﬁ[j] = P[j ® Oyp(j), where nb(j) denotes some
finite neighborhood of j not including the support of Pp;.
Since the projectors vanish on [y ,nqq) by definition, so do
the operators 15[ j» and they can be obtained by the
reconstruction procedure applied with a range 7.
Hence, the algebra of local operators reconstructed with
this range ri,,« necessarily satisfies

. . max,; D dim(7)
m?X(Dﬁ) > dim(H) - dim(7) = dimZH; >1- dim(H)’
(G3)

where dim(7) is the dimension of the target space 7, the
common kernel of the projectors {P[;}.

For the sake of illustration, we return to the example of
the spin-1 chain used in Appendix A with on-site states
labeled |0), |[+),|—). Suppose we have a candidate state
[Wcandae) Tor which we have recovered, using rp,, = 1, the
idea that it is annihilated by all on-site operators [0)(0|;,
which form the set {P[;} discussed above. If we perform
our test for the QMBS procedure with range rj,,, = 2, we
will also recover the following two-site operators that
annihilate this state: [0)(0; ® h;;; and h;_; ® [0)(0];,

where h;_; and h;,; can be arbitrary on-site operators
acting on sites j — 1 and j + 1; these operators form the set
{ﬁm} discussed above. The common kernel of the projec-
tors {|0)(0[;} in this case is the space spanned by product
states with no |0)’s, hence dim(7") = 2L. As we showed in
Appendix A, this algebra acts irreducibly in 7+, the space
spanned by basis product states with at least one on-site |0).
Thus, in this case, we have max; D, > 3 — 2% for the
irreps of JZlSM, and hence Eq. (35) is satisfied.

We now prove that as long as the projectors Py; are
“dense” on the lattice, dim(7")/ dim(H) < p’, in general,
for some p < 1; hence, Eq. (35) is satisfied. We follow the
same procedure as in Appendix A, first dividing the set of
projectors P := {P[;)} into a finite number of nonoverlap-
ping dense subsets {P,} such that P =u,, P, and studying
each of these subsets separately. In particular, we note that
the common kernel 7 can be expressed in terms of the
common kernel of these nonoverlapping subsets of pro-
jectors as 7 =n, 7 ,; hence, we obtain the bound for its
dimension dim(7) < min, dim(7,). Combining this
bound with the bound of Eq. (A3), for large L, we obtain

dim(7")

dim(H) (G4)

< p* for some p < 1,

which shows that Eq. (35) is satisfied as L — oo.

3. Hilbert space dependence of scarriness

In this section, we provide a few concrete examples that
illustrate that the notion of scarriness depends on the
Hilbert space being considered and quantities we are
interested in.

First, we demonstrate an example from the spin-1
illustration discussed in Appendixes A and G2. Sup-
pose we start with a candidate state |¥,nqq) Originating
as an eigenstate of a generic nonintegrable Hamiltonian
Hgyin.1/2 acting in the space of states spanned by
{lo1.65,....0.),0;€{+.—}}, which we will loosely call
the spin-1/2 subspace. When subjected to the test for the
QMBS procedure discussed in Sec. VI A, it is reasonable
to expect that the reconstructed parent operators at finite
Fmaxw Would be the previously considered {[0)(0]; ®
hj i hjioy ®10){0];} plus only the original Hamiltonian
H gpin-1/2 (note that multiplying an extensive local operator
like Hgpin1/2 by a strictly local operator gives a very
nonlocal operator and would not be considered by the
procedure). If this is true, then all eigenstates of H .1/, in
the spin-1/2 subspace are singlets of the algebra of
reconstructed local operators, while the algebra acts irre-
ducibly in the orthogonal complement to these states, i.e.,
in the space of states spanned by basis states with at least
one on-site |0), as discussed in Appendix A. Hence, this
reconstruction on the state demonstrates that while it is
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generically thermal as a spin-1/2 state [since Eq. (35) is not
satisfied when it is viewed in the restricted “spin-1/2”
Hilbert space], it is a QMBS as a spin-1 state in the whole
Hilbert space since Eq. (35) is then satisfied. Interestingly,
this reconstruction also informs us that, as a QMBS, it must
come together with all the other eigenstates of Hpy,.1/» as
QMBS. Incidentally, the so-called Yang-Zhang Slater
determinant states in the Hubbard model considered in
Ref. [136], constructed by populating plane-wave states of
only one spin species, would be qualitatively similar to this
spin-1 model example and could also be called QMBS, if
we ignore the free-fermion character of the construction
involving only the kinetic energy of the fermions (which is
easy to remedy if, in addition, we allow interactions
involving only fermions of the same spin species).

Finally, we consider an example of a candidate state that
is of the form |Wyema) ® |0), where |¥gperma) iS some
thermal state on some Hilbert space and |0) is the state on a
“dummy” qubit. This state could perhaps be called a
QMBS with respect to the added single qubit; e.g., the
expectation value of any operator on the dummy qubit
would be highly nongeneric. On the other hand, the algebra
of reconstructed local operators with a finite r,,,, would not
satisfy Eq. (35), consistent with the intuition that this
should not be a QMBS from the point of view of the bulk of
the system.
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