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We study quantum many-body scars (QMBS) in the language of commutant algebras, which are defined

as symmetry algebras of families of local Hamiltonians. This framework explains the origin of dynamically

disconnected subspaces seen in models with exact QMBS, i.e., the large “thermal” subspace and the small

“nonthermal” subspace, which are attributed to the existence of unconventional nonlocal conserved

quantities in the commutant; hence, it unifies the study of conventional symmetries and weak ergodicity-

breaking phenomena into a single framework. Furthermore, this language enables us to use the von

Neumann double commutant theorem to formally write down the exhaustive algebra of all Hamiltonians

with a desired set of QMBS, which demonstrates that QMBS survive under large classes of local

perturbations. We illustrate this using several standard examples of QMBS, including the spin-1=2

ferromagnetic, AKLT, spin-1 XY π-bimagnon, and the electronic η-pairing towers of states; in each of these

cases, we explicitly write down a set of generators for the full algebra of Hamiltonians with these QMBS.

Understanding this hidden structure in QMBS Hamiltonians also allows us to recover results of previous

“brute-force” numerical searches for such Hamiltonians. In addition, this language clearly demonstrates the

equivalence of several unified formalisms for QMBS proposed in the literature and also illustrates the

connection between two apparently distinct classes of QMBS Hamiltonians—those that are captured by the

so-called Shiraishi-Mori construction and those that lie beyond. Finally, we show that this framework

motivates a precise definition for QMBS that automatically implies that they violate the conventional

eigenstate thermalization hypothesis, and we discuss its implications to dynamics.

DOI: 10.1103/PhysRevX.14.041069 Subject Areas: Condensed Matter Physics,

Quantum Physics, Statistical Physics

I. INTRODUCTION

The dynamics of isolated quantum systems has been the

subject of much recent interest. Such systems evolve

unitarily; hence, all the information of the dynamics of the

system can be deduced from the eigenstates of the time-

evolution operator, e.g., the Hamiltonian. In generic non-

integrable systems, where any initial state at finite energy

density is expected to thermalize under time evolution, the

eigenstates are themselves expected to be thermal, which

leads to the eigenstate thermalization hypothesis (ETH) [1–5].

The conventional form of this hypothesis is violated for all

the eigenstates in systems that do not thermalize, e.g., in

integrable or many-body localized systems [6–8]. An addi-

tional possibility was recently discovered in nonintegrable

systems, where some “anomalous” eigenstates that do not

satisfy the conventional form of ETH exist amidst most

eigenstates that satisfy ETH. Such systems are said to exhibit

“weak ergodicity breaking,” which is further categorized into

the phenomena of quantum many-body scarring or Hilbert

space fragmentation [9–12], depending on the scaling of the

number of anomalous eigenstates with system size. These

weak ergodicity-breaking phenomena have gathered much

attention due to their natural occurrence in several experimen-

tally relevant contexts; e.g., quantum many-body scarring is

responsible for long-lived revivals in several Rydberg and cold

atom experiments [13–18], and Hilbert space fragmentation

plays a role in slowdynamics in thepresenceof a strongelectric

field [19–25], as realized in cold atoms in tilted lattices.
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In this work, focus on quantum many-body scarring,

where the anomalous eigenstates, referred to as quantum

many-body scars (QMBS) [14], constitute a vanishing

fraction of the full Hilbert space. There has been a lot of

recent theoretical progress in understanding systems that

exhibit QMBS, with the discovery of several nonintegrable

models with exactly solvable QMBS eigenstates. These

models include equally spaced towers of exact QMBS

in several well-known systems, starting from the one-

dimensional AKLT model [26,27], to several spin models

[28–31], and also including the Hubbard models and their

deformations in any number of dimensions [32–34]; there

are several examples of isolated QMBS [11,35–38] as well,

including the well-studied PXP models in one and higher

dimensions [39,40]. For a comprehensive review of the

literature on this subject, we refer readers to the recent

reviews [9–12].

Because of the abundance of examples of QMBS, it is

highly desirable to try to capture them in a single

framework or obtain a systematic procedure for their

construction. Progress in this direction has been made

for certain classes of isolated QMBS, where large classes of

QMBS eigenstates can be systematically embedded into

spectra of nonintegrable models using so-called Shiraishi-

Mori (SM) construction [35]. In addition, there have been

several attempts to unify models exhibiting towers of

QMBS into a single framework, with varying degrees of

success [33,35,41–48] (see Ref. [11] for a broad overview

of some of these approaches). Moreover, it has been noted

that even for a given set of QMBS states, multiple “parent

Hamiltonians” with those states as eigenstates can be

constructed. While some such Hamiltonians can be sys-

tematically understood using the unified formalisms, sev-

eral of them, including the AKLT model [26,27], are yet to

be satisfactorily understood within any of these systematic

constructions.

A striking feature of all these exact examples is that the

QMBS eigenstates appear to be uncorrelated from the rest of

the spectrum to a large extent. For example, in many cases, it

is known that the QMBS eigenstates can be made to move in

andout of the bulk energy spectrumby tuningparameters in the

Hamiltonian, and in some cases, they can also be the ground

states of their respectiveHamiltonians [33,34,41,44,49]. These

cases are reminiscent of eigenstates within quantum number

sectors of conventional symmetries, where level crossings can

occur between eigenstates in different sectors by tuning a

parameter in a Hamiltonian, for example, as a function of a

magnetic field inSUð2Þ-symmetric systems. Indeed, inmodels
exhibiting exact QMBS, the Hilbert space H is said to

“fracture” into dynamically disconnected blocks as [9–11,50]

H ¼ Htherm ⊕ Hscar; ð1Þ

whereHtherm andHscar are “large” and “small” subspaces [51]

that are invariant under the action ofH, and the subspaces are

such that eigenstates of H in Htherm typically satisfy the

conventional form of ETH whereas eigenstates in Hscar have

anomalous properties and are the QMBS. While a decom-

position of the formof Eq. (1) is expected if eigenstates inHscar

andHtherm differ by some symmetry quantum numbers, in the

typical model realizations, the QMBS do not differ from the

rest of the spectrum under any obvious symmetries.

On the other hand, for any finite-dimensional Hilbert

space and a given Hamiltonian H, Eq. (1) is trivially true

since one can always use the eigenbasis of H to split the

Hilbert space in multiple ways. This case necessitates a

more precise definition for the blocks Htherm and Hscar in

Eq. (1). Important progress in this direction has been made

in Refs. [35,42]. First, Shiraishi and Mori introduced an

embedding formalism in Refs. [35,52], where the QMBS

were part of a “target space” that was annihilated by a set of

strictly local operators, a condition that is typically satisfied

by tensor network states [53]. This property was then used

to construct families of Hamiltonians with those QMBS as

eigenstates; hence, for these Hamiltonians, Hscar in Eq. (1)

refers to the target space. More recently, following the

realization of how particularly simple and familiar states—

so-called η-pairing states [32,54]—can appear as scars in

deformed Hubbard models [33,34], Pakrouski et al. noted

in Refs. [42,45] that QMBS in certain systems can be

understood as singlets (i.e., one-dimensional representa-

tions) of certain Lie algebras, and this perspective brought

to the fore the spatial structure (in fact, lack thereof in any

dimension) in these QMBS. In particular, they constructed

sets of local operators that are D-dimensional representa-

tions of the generators of a semisimple Lie algebra, where

D ¼ dimðHÞ, and their unique decomposition into smaller-

dimensional irreducible representations (irreps) splits the

Hilbert space into blocks that transform under various

irreps. Reference [42] used this structure to systematically

construct families of local Hamiltonians that preserve the

states in the Hilbert space that transform under one-dimen-

sional irreps (i.e., the singlets) as QMBS while mixing all

other states. This process resulted in models where Eq. (1)

holds, whereHscar is the subspace spanned by the Lie group

singlets. Apart from these classes of systems, a nontrivial

definition of the scar subspace Hscar, i.e., one that does not

directly refer to the individual eigenstates themselves, does

not exist for other examples of QMBS, and it is still not

clear if all examples of QMBS can be understood within the

frameworks proposed in Refs. [35,42].

Thus, we need a more general understanding of the

fracture of Hilbert space into dynamically disconnected

blocks such as Eq. (1). A similar question arises in systems

exhibiting Hilbert space fragmentation [19–21,55], where

the Hilbert space “fragments” into exponentially many

dynamically disconnected blocks, as opposed to two in

Eq. (1). Recently, in Ref. [56], we showed that the blocks in

fragmented systems can be understood by studying the

local and nonlocal conserved quantities that commute with

each term of the Hamiltonian. The algebra of all such
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conserved quantities was referred to as the “commutant

algebra,” which is the centralizer of the algebra generated

by the terms of the Hamiltonian or, more generally, the

individual parts of a family of Hamiltonians; the latter

algebra was referred to as the “bond algebra” [57–59] when

the individual parts were strictly local operators or, more

generally, as a “local algebra” when the individual parts

included extensive local (i.e., sums of strictly local)

operators. In a parallel work [60], we applied this formal-

ism to understand conserved quantities of several standard

Hamiltonians, including the spin-1=2 Heisenberg model,

several free-fermion models, and the Hubbard model.

There, we showed that this method captures all of the

conventional on-site unitary symmetries of those models,

and in some cases, it also reveals examples of unconven-

tional “nonlocal” symmetries that manifest themselves in

degeneracies of eigenstates that are not captured by on-site

unitary symmetries.

In this work, we extend the formalism of commutant

algebras developed in Refs. [56,60] to understand Eq. (1) in

models that exhibit QMBS. As we will show, the unified

formalisms for QMBS in Refs. [35,42] can be recast in

terms of bond and local algebras, their commutants, and

their singlets, which also elucidates their connections to

other proposed unified formalisms in Refs. [43,44].

Further, stating them in this language has multiple benefits,

which we briefly summarize below.

First, it allows the application of the double commutant

theorem (DCT) that enables the construction of (the

exhaustive algebra of) all local Hamiltonians that possess

a given set of QMBS as eigenstates, which is the analog

of constructing the algebra of all symmetric operators

corresponding to conventional symmetries, discussed in

Ref. [60]. This method circumvents the “guess-work” or

“brute-force” approaches used for such purposes in earlier

works [33,34,41,44,49] and enables the construction of

numerous local perturbations that exactly preserve a given

set of QMBS, demonstrating a much less fine-tuned

property. Further, the local or commutant algebra formal-

ism also allows us to conjecture certain constraints on the

spectra of local Hamiltonians that contain QMBS, e.g., that

certain sets of QMBS necessarily appear as equally spaced

towers in the spectrum of any Hamiltonian containing them

as eigenstates.

Second, this formalism reveals the distinction between

two types of Hamiltonians with QMBS that appear in the

literature—the “Shiraishi-Mori” type, which can be

captured by the Shiraishi-Mori construction [35], and the

“as-a-sum” type, which lies beyond the Shiraishi-Mori

construction; in the algebra language, these correspond

to two distinct types of “symmetric” Hamiltonians that

can be constructed starting from a set of strictly local

generators of a bond algebra, which we refer to as type I

and type II symmetric Hamiltonians, respectively.

Hamiltonians believed to be of the latter type include

the Dzyaloshinskii-Moriya Hamiltonian [34] and the

AKLT Hamiltonian [26,27,41,44,49], and we demonstrate

their distinctions and connections to Hamiltonians obtained

from the Shiraishi-Mori formalism via the exhaustive

algebra of QMBS Hamiltonians obtained from the com-

mutant language, hence resolving a previously open ques-

tion [41,44,61].

Third, this language also motivates a concrete definition

of QMBS eigenstates, and we propose that they are always

simultaneous eigenstates of multiple noncommuting local

operators. As we will discuss, this definition automatically

implies that these states violate ETH, due to the non-

uniqueness of local Hamiltonian reconstruction from the

state [62,63]. Finally, perhaps most importantly, this

formalism hence provides a very general framework for

understanding systems with QMBS and elucidates the

precise connections of systems exhibiting QMBS to those

with other conventional symmetries and/or Hilbert space

fragmentation, allowing us to incorporate several phenom-

ena involving dynamically disconnected subspaces [11]

into a single framework.

This paper is organized as follows. In Sec. II, we briefly

review the concepts of bond, local, and commutant algebras

and the DCT, and in Sec. III, we use these concepts to

formulate the main ideas presented in this work. In Sec. IV,

we revisit previously proposed symmetry-based unified

frameworks for understanding QMBS and describe them in

the language of local and commutant algebras. In Sec. V,

we study several standard examples of QMBS, construct

the full algebras of Hamiltonians that possess these QMBS

as eigenstates, and discuss implications of the DCT. Then,

in Sec. VI, we propose a definition for QMBS motivated

from this framework, and we discuss implications for

thermalization and dynamics. We conclude with open

questions in Sec. VII.

II. RECAP OF LOCAL

AND COMMUTANT ALGEBRAS

We now briefly review some key concepts of bond, local,

and commutant algebras relevant for this work, and we

refer to Refs. [56,60] for more detailed discussions on the

general properties of these algebras.

A. Definition

Focusing on systems with a D-dimensional tensor

product Hilbert space H of local degrees of freedom

on some lattice, we are interested in Hamiltonians of the

form

H ¼
X

α

JαĤα; ð2Þ

where fĤαg is some set of local operators, either strictly

local with support on a few nearby sites on the lattice or

extensive local, i.e., a sum of such terms, and fJαg is an
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arbitrary set of coefficients. Corresponding to this family,

we can define the local and commutant algebrasA and C as

A ¼ ⟪fĤαg⟫; C ¼ fÔ∶½Ĥα; Ô� ¼ 0 ∀ αg: ð3Þ

Here, C and A can be viewed as the “symmetry algebra”

and the algebra of all “symmetric operators,” respectively,

and we use ⟪ � � �⟫ to denote the associative algebra

generated by (linear combinations with complex coeffi-

cients of arbitrary products of) the enclosed elements and

the identity operator 1, also assumed to be closed under

Hermitian conjugation of operators (“†-algebra”), which is

natural in our setting.

As a concrete example, we consider SUð2Þ symmetry for

one-dimensional spin-1=2 systems with L sites. In the

commutant language, this symmetry can be expressed in

terms of the pair of algebras [60]

ASUð2Þ ¼ ⟪fS⃗j · S⃗jþ1g⟫; CSUð2Þ ¼ ⟪Sxtot; S
y
tot; S

z
tot⟫; ð4Þ

where Sαtot ≔
P

j S
α
j . In other words, starting with a family

of Heisenberg models of the form of Eq. (2) with the

generators fĤαg ¼ fS⃗j · S⃗jþ1g, the commutant CSUð2Þ can
be derived using Eq. (3); hence, SUð2Þ is the complete

symmetry of the family of Heisenberg models [60]. Since

the Heisenberg term can also be related to the two-site

permutation term that acts as Pj;jþ1jστij;jþ1 ¼ jτσij;jþ1,

ASUð2Þ is also the group algebra of the permutation group

SL on L sites.

B. Hilbert space decomposition

Given such † algebras A and C that are centralizers of

each other in the algebra of all operators on the full Hilbert

space H, their irreps can be used to construct a bipartition

[56,60,64–66] of the Hilbert space, i.e., a basis where the

operators ĥA and ĥC in A and C, respectively, act as

ĥA ¼ ⨁
λ

ðMλ
Dλ
ðĥAÞ ⊗ 1dλÞ; ĥC ¼ ⨁

λ

ð1Dλ
⊗ Nλ

dλ
ðĥCÞÞ;

ð5Þ

where Dλ and dλ are the dimensions of the irreps of A

and C, Mλ
Dλ
ðĥAÞ and Nλ

dλ
ðĥCÞ are Dλ-dimensional and

dλ-dimensional matrices, respectively, and arbitrary matri-

ces such as these are realized in the corresponding algebras.

Equation (5) can be simply viewed as the matrix forms of

the operators in the basis in which all the operators in A or

C are simultaneously (maximally) block diagonal. Since the

Hamiltonians we are interested in are part of A, this

decomposition can be used to precisely define dynamically

disconnected “Krylov” subspaces for all Hamiltonians in

the family [56]. Hence, Eq. (5) implies the existence of dλ
number of identical Dλ-dimensional Krylov subspaces for

each λ. In systems with only conventional symmetries such

as Uð1Þ or SUð2Þ, these correspond to regular quantum

number sectors [60], whereas in fragmented systems, they

are the exponentially many Krylov subspaces [56].

For example, in the case of the SUð2Þ algebras of Eq. (4),
we have 0 ≤ λ ≤ L=2, where λðλþ 1Þ is the eigenvalue of
S2≔

P

αðSαtotÞ2, and ðDλ;dλÞ¼ (ð L
L=2þλ

Þ−ð L
L=2þλþ1

Þ;2λþ1)

for even L, which denote the sizes of the quantum number

sectors and their degeneracies, respectively. Note that fDλg
and fdλg are the dimensions of the irreducible representa-

tions of the permutation group SL (and hence that of

ASUð2Þ) and the group SUð2Þ (and hence that of CSUð2Þ),
respectively.

C. Singlets

In the decomposition of Eq. (5), it is sometimes possible

to have Dλ ¼ 1 for some λ, which means the existence of

simultaneous eigenstates of all the operators in the algebra

A. We refer to these eigenstates as “singlets” of the algebra

A, and in Ref. [60], we discussed examples of singlets that

appear in standard Hamiltonians. For the bond algebra

ASUð2Þ, the singlets are the ferromagnetic multiplet of states

[60] given by

jΨni ≔ ðS−totÞnjFi; jFi ≔ j↑ � � �↑i; ð6Þ

where S−tot ≔
P

j S
−
j . Since ASUð2Þ is the group algebra

of the permutation group SL, its singlets are simply the

states invariant under arbitrary permutations of sites, which

are spanned by fjΨnig. Since these are states with S2

eigenvalue ðL=2Þ½ðL=2Þ þ 1�, following the discussion in

Sec. II B, they appear in the decomposition of Eq. (5)

with ðDλ; dλÞ ¼ ð1; Lþ 1Þ.
In general, A could have many sets of singlets that are

degenerate within each set and nondegenerate between the

sets, e.g., when it has irreps such that Dλ ¼ Dλ0 ¼ 1 for

some λ ≠ λ0; the different sets of singlets differ by their

eigenvalues under some operators in A, while all singlets

within a set have the same eigenvalue under all operators in

A. The projectors onto the singlet states are all in the

commutant algebra C and are thus examples of eigenstate

projectors that can be viewed as conserved quantities of the

family of Hamiltonians we are interested in. For the case

of degenerate singlets jψi and jψ 0i, “ket-bra” operators

jψihψ 0j are also in the commutant C. As we will discuss in

Secs. IVand V, the singlets of local algebras will define the

subspace Hscar of Eq. (1).

D. Double commutant theorem

An important property satisfied by A and C is the DCT

[60,67–69], which, for our purposes, is the following

statement.

Theorem II.1. [DCT] Given a finite-dimensional Hilbert

spaceH and an algebra A ¼ ⟪fĤαg⟫, where fĤαg is a set
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of Hermitian operators, and its centralizer C, then A is the

centralizer of C.

In other words, the DCT implies that A and C are

centralizers of each other in the space of all operators in the

Hilbert space H. The DCT has some deep implications

when applied to local and commutant algebras and, in

principle, allows us to exhaustively construct all operators

that commute with some set of conserved quantities [60]. In

particular, given a set of conserved quantities fQkg that

generate a commutant algebra C ¼ ⟪fQkg⟫, if we are

able to determine a set of local generators fĤαg for its

centralizerA, i.e., ifA ¼ ⟪fĤαg⟫, thenwe can, in principle,
exhaustively construct all local operators that commute with

the conserved quantities fQkg starting from fĤαg. In the

case of SUð2Þ symmetry, where the algebras are shown in

Eq. (4), this statement says that all SUð2Þ-symmetric terms

can be expressed in terms of the Heisenberg terms

fS⃗j · S⃗jþ1g, which are the generators of ASUð2Þ.
Locality considerations bring new aspects to the appli-

cation of the DCT. First, given a commutant C, there is the

obvious question of whether A can be generated by local

operators; however, we are not concerned about this issue

here since we start from a local algebra A and then

determine its commutant C. More importantly for us, given

an extensive local operator in A, i.e., a Hamiltonian

symmetric under operators in C, we wish to express it in

terms of the local generators ofA. The DCT guarantees that

an expression exists, and in several situations, we can use it

to constrain the allowed forms of extensive local operators

in A. For example, in Ref. [60], we showed that when C is

completely generated by on-site unitary symmetries, such

as in the SUð2Þ case of Eq. (4), all extensive local operators
in the corresponding bond algebra A (i.e., all symmetric

Hamiltonians) can be expressed as sums of symmetric

strictly local operators. Further, in systems with dynamical

symmetries, we proved that all extensive local operators

contain equally spaced towers of states in their spectra.

III. FAMILIES OF MODELS WITH QMBS IN THE

COMMUTANT ALGEBRA LANGUAGE

Having reviewed the formalism of local algebras and

their commutants, we can now provide an overview of the

approach to defining QMBS and determining exhaustive

families of models with exact scars. As a concrete example

for illustration throughout this section and the next, we

consider models where the QMBS are the ferromagnetic

tower of states fjΨnig of Eq. (6). Several Hamiltonians

with these states as QMBS have been studied in the

literature [11,34,70], e.g.,

Hscar ¼
X

L

j¼1

JjS⃗j · S⃗jþ1 þ h
X

L

j¼1

Szj þD
X

L

j¼1

ðS⃗j × S⃗jþ1Þ · ẑ:

ð7Þ

Note that fjΨnig are exact eigenstates of Hscar, and for

generic values of fJjg and D, they appear as a tower of

QMBS with splitting of 2h; hence, when h ¼ 0, they are

examples of degenerate QMBS [71]. We refer to the first

sum in Eq. (7) as the Heisenberg Hamiltonian and the last

sum as the Dzyaloshinskii-Moriya Interaction (DMI)

Hamiltonian [34,72]. For the sake of brevity, we directly

state the key results here, while detailed justifications and

proofs can be found in Sec. V and the appendixes.

A. General structure of the commutants

Our primary aim in this work is to show that, for many

examples of QMBS, algebras Ascar, generated by a set of

local operators, with commutants Cscar, spanned by pro-

jectors or ket-bra operators of QMBS eigenstates, exist and

can be explicitly constructed. Corresponding to a set of

QMBS eigenstates and their degeneracies, say, fjψn;αig,
where all the jψn;αi’s for fixed n are degenerate, we wish to

construct a local algebra Ascar such that its commutant is

given by

Cscar ¼ ⟪fjψn;αihψn;βjg⟫: ð8Þ

The operators fjψn;αihψn;βjg are then examples of “non-

local” conserved quantities of Hamiltonians in Ascar, and

the exhaustive set of Hamiltonians with these QMBS

eigenstates can be constructed using the local generators

of Ascar. In some situations, the construction of physically

relevant Hamiltonians might sometimes call for commu-

tants consisting of both the QMBS and some other natural

conserved quantities fQμg such as Uð1Þ spin conservation,
in which case, we would be interested in constructing local

algebras Asym−scar corresponding to commutants such

as Csym−scar ¼ ⟪fjψn;αihψn;βjg; fQμg⟫.

B. Degeneracies and lifting operators

Note that in cases with multiple QMBS, there can

sometimes be some arbitrariness in the algebras we are

interested in, depending on which set of degeneracies

among the scar states we choose to preserve in the

Hamiltonians we are interested in. For example, for the

same set of QMBS fjΨnig of Eq. (6), we could construct

two distinct algebras Ãscar and Ascar that correspond to

the commutants C̃scar ¼ ⟪fjΨmihΨnjg⟫ and Cscar ¼
⟪fjΨnihΨnjg⟫, respectively; hence, fjΨnig are degenerate

or nondegenerate eigenstates, respectively. The expressions

for these algebras are given by

Ã
FM
scar ¼ ⟪fS⃗j · S⃗jþ1g; fDα

j;jþ1;jþ2
g⟫;

AFM
scar ¼ ⟪fS⃗j · S⃗jþ1g; fDα

j−1;j;jþ1
g; Sztot⟫; ð9Þ

where Dα
j1;j2;j3

≔
P

3
k¼1 ðS⃗jk × S⃗jkþ1

Þ · α̂ is the three-site

DMI term, where the sum over k is modulo 3 (i.e., the
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three sites are considered as forming a loop hosting the

DMI term). Note that ÃFM
scar is an example of a bond algebra

since it is generated by a set of strictly local terms, whereas

AFM
scar is not since its generators include an extensive local

operator Sztot, which we refer to as a lifting operator.

Definition. Given a set of QMBS, we refer to any

extensive local operator that lifts the degeneracies of the

QMBS as a lifting operator.

We find that this is a general feature of the local algebras

for which the QMBS states are nondegenerate; i.e., they

cannot be generated by strictly local operators. Examples of

lifting operators in various other examples of QMBS are

shown in Table I, and we discuss them in more detail in

Sec. V and the appendixes.

C. Hilbert space decomposition

Denoting the span of the QMBS states fjψn;αig as Hscar

and its dimension as Dscar, the structure of the commutant

Cscar such as in Eq. (8) implies that Ascar acts irreducibly in

the orthogonal complement toHscar, which is then naturally

viewed as Htherm from Eq. (1). Indeed, in this case, Ascar

can realize any operator acting inHtherm, and it is natural to

expect a generic Hamiltonian from Ascar to be “thermal”

(i.e., with random-matrix-like level spacings) in this sub-

space. In the decomposition in Eq. (5), the subspaceHtherm

corresponds to the block λtherm, which is the only block

other than those of the algebra singlets; the corresponding

Dtherm ¼ D −Dscar and dtherm ¼ 1, thus connecting the

decompositions of Eqs. (1) and (5). For the ferromagnetic

tower of QMBS of Eq. (6), we hence have Hscar ¼
spanfjΨnig, Dscar ¼ Lþ 1, and Dtherm ¼ 2L − L − 1, as

shown in Fig. 1(d).

Note that the commutants, in general, also contain

information about degeneracies among the scar states

for a given family of Hamiltonians, which is a finer

characterization than just the statement of the fracture in

Eq. (1). Pictorially, the distinction between the block

decompositions with degenerate and nondegenerate scars

is shown in Figs. 1(c) and 1(d). Further, in cases where

the commutants consist of QMBS ket-bra operators as

well as other conventional conserved quantities, operators

in the local algebra do not act irreducibly in the com-

plement of Hscar and instead have smaller blocks within

Htherm also corresponding to the nonscar conserved quan-

tities. Nevertheless, we expect generic Hamiltonians within

each of those blocks to be “thermal” in the conven-

tional sense.

D. Type I and type II symmetric Hamiltonians

Locality considerations for the construction of symmet-

ric extensive local operators or Hamiltonians are more

challenging in the QMBS and other weak ergodicity-

breaking problems where the corresponding “symmetries”

are highly unconventional, generically nonlocal, and not

on-site. In particular, in any bond algebra corresponding to

commutants with QMBS, we find qualitatively new types

of symmetric Hamiltonians that are forbidden for conven-

tional commutants corresponding to on-site unitary sym-

metries. In general, given a bond algebra A ≔ ⟪fĤαg⟫,
i.e., where fĤαg are strictly local, we can make a clear

distinction between two types of symmetric extensive local

operators or symmetric Hamiltonians in A.

Definition. An extensive local operator in a bond algebra

A is a type I (type II) operator if it can (cannot) be

TABLE I. Summary of QMBS examples studied in this work. Number 1 is an isolated QMBS, whereas Nos. 2–6 are towers of QMBS.

In 2–6, Ãscar is the exhaustive (bond) algebra of Hamiltonians that contain the QMBS as degenerate eigenstates, and C̃scar is the

symmetry (commutant) algebra for those Hamiltonians. Note that the choices of generators of the bond algebras are not unique, and we

point to the simplest choice we are able to derive. The existence of the bond algebras is guaranteed by Lemma IV.1 if strictly local SM

projectors fP½j�g can be found with their common kernel spanned by the QMBS states; these can be constructed in all cases we study.

These projectors can be used to construct type I symmetric Hamiltonians with degenerate QMBS using the Shiraishi-Mori construction,

but the bond algebras also contain type II symmetric Hamiltonians that lie beyond the Shiraishi-Mori construction; we show one

example in each case. For the towers of QMBS in 2–6, exhaustive algebras Ascar of Hamiltonians with the QMBS as potentially

nondegenerate eigenstates are obtained by adding the “lift operator” H0 to the corresponding bond algebras Ãscar. In such cases, we

conjecture that any local Hamiltonian in Ascar is a linear combination of the lift operator and the type I or II Hamiltonian from Ãscar

(Conjecture III.1). This finding implies that the QMBS necessarily appear as equally spaced towers in the spectra of Hamiltonians

containing them (Conjecture III.2).

Number QMBS Ãscar; C̃scar SM projectors fP½j�g Type II op. Lift op. H0

1 AKLT ground state(s) ðÃAKLT
scar ; C̃AKLTscar Þ Eq. (19) fPAKLT

j;jþ1 g Eq. (18) Sztot Appendix B 3 � � �
2 Spin-1=2 ferromagnet ðÃFM

scar; C̃
ðFMÞ
scar Þ Eq. (22) fPj;jþ1g Eq. (12) Hα−DMI Eq. (24) Sαtot

3 PBC AKLT QMBS ðÃðpÞ
scar; C̃

ðpÞ
scarÞ Eq. (26) fΠ½j;jþ2�g Appendix D 2 H̃

ðpÞ
AKLT

Eq. (28) Sztot

4 OBC AKLT QMBS ðÃðoÞ
scar; C̃

ðoÞ
scarÞ Eq. (D21) fΠðlÞ

1;2; fΠ½j;jþ2�g;ΠðrÞ
L−1;Lg Appendix D 3 H̃

ðoÞ
AKLT

Eq. (28) Sztot

5 Spin-1 XY π-bimagnon ðÃðXYÞ
scar ; C̃

ðXYÞ
scar Þ Eq. (30) fPðXY;πÞ

j;jþ1 g Eq. (F2) No. 12 Eq. (32) Sztot

6 Hubbard η-pairing ðÃðHubÞ
scar ; C̃

ðHubÞ
scar Þ Eq. (34) Table III in Ref. [34] No. 12 in Table III [34] Ntot

SANJAY MOUDGALYA and OLEXEI I. MOTRUNICH PHYS. REV. X 14, 041069 (2024)

041069-6



expressed as a sum of strictly local operators also in the

same bond algebra A.

While the DCT guarantees that the type II Hamiltonians

can, in principle, be produced from the strictly local

generators in the algebra sense, such a procedure neces-

sarily involves highly nonlocal expressions in terms of

those generators. Lemma II.2 in Ref. [60] shows that, for

commutants generated by on-site unitary operators, all

symmetric Hamiltonians are of type I; hence, type II

Hamiltonians can only exist for unconventional commu-

tants as exemplified by the kinds we consider in this work.

As an example, for the bond algebra Ãscar corresponding

to the commutant C̃scar ¼ ⟪fjΨnihΨmjg⟫ that contains the

states of Eq. (6) as degenerate QMBS, we will show that the

Heisenberg Hamiltonian in Eq. (7) is a type I operator,

whereas the DMI Hamiltonian is a type II operator.

Examples of type II operators for other instances of

QMBS are shown in Table I and discussed in detail in

Sec. V and the appendixes.

With these definitions, we can make a few simple

observations on the nature of these operators that we use

in this work. First, note that type I and type II properties of

an operator are invariant under the addition of type I

operators, which allows us to define equivalence classes

of type II operators, where two type II operators are

equivalent if they differ by the addition of a type I operator.

For extensive local operators that are sums of strictly local

operators of a maximum range rmax, type I symmetric

operators form a vector space that is a subspace of the space

of all symmetric operators of that range; hence, the set of

equivalence classes of type II operators has a natural

quotient space structure. An advantage of studying the

equivalence classes instead of the operators directly is that

the number of linearly independent equivalence classes of

type II operators of range at most rmax can be extracted

numerically in a rather straightforward manner [73].

Second, the type II property depends on the local algebra

in question; in general, a type II operator with respect to one

algebra might be a type I operator with respect to another.

Nevertheless, given two algebras A1 ⊆ A2, we can always

say that any type I operator inA1 is also a type I operator in

A2. Equivalently, any operator in A1 that is a type II

operator with respect to A2 is also a type II operator with

respect to A1; i.e., any extensive local operator in A1 that

cannot be written as a linear combination of strictly local

operators inA2 cannot be written as a linear combination of

strictly local operators in A1.

Note that the distinction between type I and type II

symmetric Hamiltonians is not so clear in local algebras

that are not bond algebras, i.e., if one of the generators is

necessarily extensive local, due to the arbitrariness in the

choice of generators of a local algebra. For example,

without the restriction of strict locality that is natural in

FIG. 1. Summary of the local and commutant algebras and associated block decompositions that appear enroute to the exhaustive

description of towers of QMBS. We show explicit algebras for the ferromagnetic states fjΨnig as QMBS, but similar block

decompositions hold for other examples we study. Particular Hamiltonians that realize these block decompositions have been studied

previously, but the algebra language provides an exhaustive characterization of such Hamiltonians. This framework is also much more

general, and it treats symmetries and scars on similar footing and captures examples such as the AKLT tower of QMBS that do not fit

into previous frameworks. (a) Prebond algebra generated by a set of strictly local terms that have a degenerate set of common

eigenstates, which are the “target states.” Such an algebra usually has a larger commutant, which leads to other symmetry sectors in the

block decomposition; this could be a conventional non-Abelian symmetry such as SUð2Þ, although not always. (b) Extensive local

“lifting operator” added to the generators of the prebond algebra. This operator lifts degeneracies between the target states while still

preserving some symmetry sectors. In the ferromagnetic example, this case corresponds to a dynamical SUð2Þ symmetry, and the states

are split into an equally spaced tower in any local Hamiltonian from this algebra. (c) Additional symmetries of the prebond algebra,

which can be broken by the inclusion of terms that preserve the degenerate target states while mixing the remaining symmetry sectors

into a single large thermal block. The target states are now examples of degenerate scars. (d) Lifting operator and the terms that break

other symmetries of the prebond algebra, which can be added to obtain the typical decomposition in the case of QMBS systems into a

thermal block and a scar block composed of nondegenerate scar states. In the ferromagnetic example, we conjecture that the scar states

appear as an equally spaced tower in any local Hamiltonian in this algebra. This algebra ultimately exhaustively characterizes the

QMBS, while the algebras in panels (a)–(c) are simply motivating steps.
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bond algebras, the extensive local Hamiltonian itself can be

made a generator in a local algebra, wiping out the dis-

tinction between the types of symmetric Hamiltonians.

Hence, whenever we refer to an operator as type I or type II

Hamiltonians, we implicitly assume that there is a bond

algebra involved. Following the discussion in Sec. III B,

this usually means that the distinction can only be made in

cases of isolated QMBS or degenerate QMBS, and not in

the cases with nondegenerate towers of QMBS.

E. Structure of local Hamiltonians with QMBS

While locality considerations for bond algebras corre-

sponding to degenerate QMBS lead to distinctions

between type I and type II Hamiltonians, locality con-

siderations for local algebras corresponding to nondegen-

erate QMBS also lead to certain constraints on the

structure of Hamiltonians. As discussed in Sec. III B,

the algebras Ascar of operators with nondegenerate QMBS

usually involve an extensive local “lifting operator” in

their generators. Heuristically, in the expression of any

local operator in Ascar whose generation necessarily

involves the lifting operator, it should appear either in a

linear combination or in a commutator with another local

operator; all other combinations are generically nonlocal.

However, in any operator where it appears as a commu-

tator, the QMBS remain degenerate since they are eigen-

states of all operators in Ascar. Hence, in many examples,

we conjecture that any Hamiltonian in Ascar is a linear

combination of the extensive local operator and an

operator from Ãscar for which the QMBS are degenerate.

Of course, the validity of this conjecture depends on the

details of the models and the operators involved; never-

theless, we can conjecture a more precise statement for the

algebras Ã
FM
scar and AFM

scar of Eq. (9), which contain the

ferromagnetic states fjΨnig of Eq. (6) as degenerate and

nondegenerate QMBS, respectively.

Conjecture III.1. Any extensive local Hamiltonian with

the ferromagnetic states fjΨnig as eigenstates, i.e., any

Hamiltonian in the algebra AFM
scar, is a linear combination of

the lifting operator Sztot and the type I or II Hamiltonian

from the bond algebra Ã
FM
scar.

The local algebras in several other examples of towers of

QMBSwe study in Sec. V have similar structures, as shown

in Table I, and we also make similar conjectures for them.

Since the lifting operator is simply Sztot, this conjecture has
an immediate corollary on the equal spacing of the spectra

of Hamiltonians with these states as QMBS.

Conjecture III.2. Any local Hamiltonian with the ferro-

magnetic states fjΨnig as QMBS necessarily has them as

an equally spaced tower of states in the spectrum.

Note that this conjecture is analogous to the claim we

proved in Ref. [60] on the spectra of Hamiltonians with the

dynamical SUð2Þ symmetry, but here we have been unable

to prove it.

IV. FROM UNIFIED FORMALISMS TO

EXHAUSTIVE ALGEBRAS

We now discuss some unified formalisms of QMBS that

potentially capture several examples of QMBS in a single

framework; an overview can be found in the reviews on this

subject [10–12]. Particularly, the SM formalism introduced

in Ref. [35] and the closely related group-invariant (GI)

formalism introduced in Ref. [42] motivated a concrete

route to constructing the exhaustive algebra Ascar of

Hamiltonians with a given set of QMBS. Identifying these

exhaustive algebras then allows us to directly connect all

the “symmetry-based” unified formalisms of QMBS to the

commutant language, which in turn allows for generaliza-

tions that apply to many more examples of QMBS.

A. Shiraishi-Mori formalism

1. Original formulation

Reference [35] introduced a formalism for embedding

exact eigenstates into the spectra of nonintegrable

Hamiltonians, which provides a way of explicitly con-

structing Hamiltonians with ETH-violating eigenstates. In

particular, they considered a target space T , spanned by a

set of states that are all annihilated by a set of (generically

noncommuting) local projectors fP½j�g, where P½j� denotes
a projector with support in the vicinity of a site j, i.e.,

T ¼ fjψi∶P½j�jψi ¼ 0 ∀ jg: ð10Þ

Given a target space T , SM considered Hamiltonians of the

form

HSM ¼
X

j

P½j�h½j�P½j� þH0; ½H0; P½j�� ¼ 0 ∀ j; ð11Þ

where h½j� is a sufficiently general (e.g., “randomly

chosen”) local operator with support in the vicinity of site

j that might have a support distinct from P½j�, and H0 is a

local operator. The fP½j�h½j�P½j�g terms of HSM in Eq. (11)

vanish on the states in T , and H0 leaves the target space T

invariant as a consequence of the imposed commutation

conditions. Hence, eigenstates of HSM can be constructed

from within the target space T , and they are generically in

the middle of the spectrum. Since in many examples T can

be completely spanned by low-entanglement states, [74]

e.g., states with an MPS form, and HSM is generically

nonintegrable, these eigenstates are said to be QMBS of

HSM [9–11,35].

For example, this formalism can be used to construct

Hamiltonians with the ferromagnetic states fjΨnig of

Eq. (6) as QMBS, using the fact that they are the singlets

of ASUð2Þ as discussed in Sec. II C and hence are in the

common kernel of the set of strictly local projectors
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Pj;jþ1 ≔
1

4
− S⃗j · S⃗jþ1: ð12Þ

Then, any Hamiltonian of the form of Eq. (11) with P½j� ¼
Pj;jþ1 andH0 ¼

P

j S
α
j (that satisfies the requirements) has

fjΨnig as QMBS.

To cast the SM formalism in terms of local and

commutant algebras, we start with the bond algebra Ã ¼
⟪fP½j�g⟫ generated by the aforementioned projectors.

Then, T is a subspace spanned by one set of the degenerate

singlets of Ã, namely, by the ones on which all the

projectors P½j� vanish. The block decomposition typical

for such bond algebras is depicted in Fig. 1(a). According

to Eq. (11),H0 is then a local operator that belongs to C̃, the

commutant of Ã. Thus, we see that the singlets of any local

algebra can be made into QMBS of some Hamiltonian of

the form of Eq. (11), provided the T andH0 that satisfy the

required conditions exist. We will sometimes refer to Ã and

C̃ as the “prebond” and “precommutant” algebras, respec-

tively, and QMBS can be constructed from several prebond

algebras; e.g., all of those discussed in Ref. [60]. In the

example of the ferromagnetic QMBS discussed above, we

simply have Ã ¼ ⟪fPj;jþ1g⟫ ¼ ASUð2Þ and C̃ ¼ CSUð2Þ of
Eq. (4), which explains the choice of H0 there.

2. Immediate generalizations

While in the SM framework all states in the target

subspace are singlets that are annihilated under the local

projectors fP½j�g, we can embed other sets of singlets with

Hamiltonians of the form

HSM-gen ¼
X

j

P̃½j�h½j�P̃½j� þH0; ð13Þ

where P̃½j�’s are some operators in the vicinity of site j that

need not commute with each other and need not be

projectors, [78] h½j�’s are arbitrary Hermitian operators,

and H0 is any operator that leaves the target space T (now

defined as the common kernel of all the fP̃½j�g) invariant,
which can also be any operator in the commutant of the

prebond algebra ⟪fP̃½j�g⟫ or any other local operator that

commutes with the projector onto T . In this generalized

setting, an arbitrary degenerate set of singlets of a bond

algebra Ã ≔ ⟪fA½j�g⟫, e.g., those that satisfy A½j�jψi ¼
a½j�jψi with some fixed set fa½j�g, can be made into QMBS

ofHSM-gen by choosing P̃½j� ¼ A½j� − a½j�1. Another obvious
generalization is to target two sets of singlets of the prebond

algebra Ã ¼ ⟪fA½j�g⟫, one described by the generator

eigenvalue set fa½j�g and the other by fa0½j�g, by using

P̃½j� ¼ ðA½j� − a½j�ÞðA½j� − a0½j�Þ. In this case, a possible

choice for H0 is any operator from ⟪fA½j�g⟫ that splits

the degeneracy between the two sets; this choice need not

belong to the commutant of ⟪fP̃½j�g⟫ and hence is an

example where localH0 preserves the target space but does

not commute with the P̃½j�’s that were required in the

original SM formalism.

3. Exhaustive algebra of QMBS Hamiltonians

While these approaches provide a way to construct one

family of Hamiltonians with QMBS, we are primarily

interested in exhaustively characterizing all Hamiltonians

with a given set of QMBS, and we now show that the SM

formalism appropriately extended and interpreted provides

a way to do so. We start by analyzing the Hamiltonians

HSM by focusing on the first term in Eq. (11), and we

consider the bond algebra ÃSM ¼ ⟪fP½j�h½j�P½j�g⟫ where

we choose sufficiently general operators h½j� with an

appropriate support (implicitly allowing several generators

associated with each [j] if needed). It is natural to expect

that most operators in the precommutant C̃ no longer

commute with general Hamiltonians built out of ÃSM.

Nevertheless, the states in the target space T are still

annihilated by the generators of ÃSM; hence, ket-bra

operators formed by those states are in C̃SM, the centralizer

of ÃSM. For sufficiently general h½j�, we expect these to be

the only operators in C̃SM; hence, we obtain the bond and

commutant algebra pair

ÃSM ¼ ⟪fP½j�h½j�P½j�g⟫; C̃SM ¼ ⟪fjψmihψnjg⟫; ð14Þ

where jψmi; jψni∈ T . We sometimes refer to bond alge-

bras of this form as Shiraishi-Mori bond algebras. A proof

of this statement depends on the specific details of the

operators and the target spaces, but it can be verified for

several examples, which we discuss in Sec. V using

numerical methods we presented in Ref. [73]. The exist-

ence of this pair of algebras is equivalent to the statement

that ÃSM is irreducible in T ⊥, the orthogonal complement

of the target space T of Eq. (10). While it is not a priori

clear that ÃSM can be generated by strictly local terms, in

Appendix A we are able to prove the following Lemma,

which guarantees the existence of such an algebra as long

as a target space T of the form of Eq. (10) exists.

Lemma IV.1. Consider the target space T ¼ fjψi,
P½j�jψi ¼ 0g, where the P½j�’s are strictly local projectors

of range at most an L-independent number rmax. Then, we

can always construct a bond algebra ÃSM ¼ ⟪fh̃½j�g⟫,
where the h̃½j�’s are strictly local terms of a range bounded

by some L-independent number r0max ≥ rmax, such that it is

irreducible in T ⊥, the orthogonal complement of the

target space.

Hence, such ÃSM is an example of Ãscar discussed in

Sec. III; in particular, it contains all Hamiltonians that have
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the QMBS fjψnig as degenerate eigenstates. The block

decomposition corresponding to such algebras is depicted

in Fig. 1(c). Note that while Lemma IV.1 provides an upper

bound on the range of the generators of ÃSM, in many

examples discussed in Sec. V, we are able to use the

structure of the states in T to reduce this range.

To understand all Hamiltonians that simply have the

states fjψnig as eigenstates, including the ones that lift the

degeneracies among them, we can simply add a single H0

to the generators of ÃSM. In other words, assuming the

existence of an H0 that lifts all the degeneracies among the

states in T , [79] it is clear that we can write down a local

and commutant algebra pair of the form

ASM ¼ ⟪fP½j�h½j�P½j�g; H0⟫; CSM ¼ ⟪fjψnihψnjg⟫;
ð15Þ

where jψni now refer to the eigenstates of H0 in the scar

space. This completes the construction of a local algebra

with the projectors onto the QMBS eigenstates completely

determining its commutant; hence, all Hamiltonians with

these QMBS can be constructed from the generators of

ASM, which then gives the algebraAscar that we envisioned

in Sec. III. The block decomposition corresponding to this

algebra is depicted in Fig. 1(d). In summary, for any set of

states fjψnig that span the complete kernel of a set of

strictly local projectors fP½j�g (or equivalently, that can be

expressed as the ground-state subspace of a frustration-free

Hamiltonian), a locally generated algebra of Hamiltonians

for which these states are QMBS is guaranteed to exist.

Since the ferromagnetic QMBS fjΨnig of Eq. (6) can be
understood as the common kernel of the set of strictly local

projectors fPj;jþ1g, the exhaustive algebras with these

states as degenerate or nondegenerate QMBS, ÃFM
scar and

AFM
scar, can respectively be written as

Ã
FM
scar ¼ ⟪fPj;jþ1h½j�Pj;jþ1g⟫;

AFM
scar ¼ ⟪fPj;jþ1h½j�Pj;jþ1; S

z
totg⟫; ð16Þ

where h½j� is a term of range at most 4 (proved analytically),

although we numerically find that terms of range 3 are

sufficient. As we will discuss with examples in Sec. V, this

case is also true for several if not all examples of QMBS

studied in the literature, which allows us to identify the

appropriate algebras that contain the exhaustive set of local

Hamiltonians that have these states as QMBS.

Note that although the generators of ÃSM and ASM as

motivated by the SM construction include the “randomly

chosen” operators fh½j�g, the algebras as a whole are h½j�
independent since they are the centralizers of h½j�-independent

algebras C̃SM and CSM. Indeed, it is possible to choose a set of

“nice” h½j�-independent generators for ÃSM, which are more

useful in systematically constructing local operators in this

algebra. For example, for the ferromagnetic tower of QMBS

fjΨnig, this exhaustive algebra ofEq. (16) can equivalently be
expressed as shown in Eq. (9).

4. Nature of Shiraishi-Mori Hamiltonians

We now emphasize a few aspects of the class of

Hamiltonians of the form of Eq. (11). The main difference

in interpretation compared to considering individual

instances of HSM done in prior works is that here we are

exhaustively characterizing the family of Hamiltonians with

the given QMBS; then, we expect that reasonably generic

instances from this family will have the exact QMBS inside

an otherwise thermal spectrum. As a consequence, the

algebra ASM includes Hamiltonians that are not of the form

ofHSM of Eq. (11) but nevertheless contain the same QMBS

as HSM. As discussed in Sec. III D, there are two types of

symmetric Hamiltonians that can, in principle, occur for any

bond algebra, the symmetry here being the QMBS commu-

tant C̃SM and the bond algebra being ÃSM. It is easy to see that

all Hamiltonians of the form of Eq. (11), or even the

immediate generalizations in Eq. (13), are a linear combi-

nation of a type I operator in the algebra ÃSM that leaves the

QMBS degenerate and a lifting operator that lifts the

degeneracy between the QMBS. However, the most general

Hamiltonian with the same set of QMBS could be a type II

operator in the algebra ÃSM, along with a linear combination

of the lifting operator and type I operator. This finding allows

us to explain QMBS in Hamiltonians that are considered to

be “beyond” the Shiraishi-Mori formalism. For example, in

the case of the ferromagnetic tower of QMBS, the DMI term

is a type II operator, and in Sec. V, we show that the

Hamiltonian of Eq. (7) with D ≠ 0 cannot be expressed as

Eq. (13), while with D ¼ 0 it can.

B. Group-invariant formalism

1. Original formulation

A closely related formalism, which we refer to as the GI

formalism, was introduced and developed by Pakrouski,

Pallegar, Popov, and Klebanov in Refs. [42,45], where they

proposed that QMBS are singlets of certain Lie groups.

Given a set of operators fTag that are generators of a Lie

groupG, the singlets of the group are states that are invariant
under the action of any element in G. Since the elements of

the group are unitaries of the form expði
P

a αaTaÞ, the
singlets are annihilated by all the generators. Defining the

space of singlets as T ¼ spanfjψi∶ Tajψi ¼ 0 ∀ ag,
Ref. [42] showed that the states in T are QMBS of

Hamiltonians of the form

HGI ¼
X

a

OaTa þH0; ½H0; C
2
G� ¼ WC2

G; ð17Þ

where Oa are arbitrary operators chosen such that HGI is

Hermitian, C2
G is the quadratic Casimir of the Lie group G,
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and W can be any operator. Reference [42] found examples

where the generators fTag of the Lie groupG can be chosen

to be strictly local operators, allowing HGI to be a local

Hamiltonian. In particular, when Ta’s are quadratic fermion

operators in anN-site spinful electron system—e.g., hopping

terms, on-site chemical potentials, or magnetic fields—they

generate some Lie algebras (depending on the chosen set of

generators), and the corresponding Lie groups G are sub-

groups of Uð2NÞ; see Refs. [42,45,60] for detailed discus-

sions with several examples. Further, the condition onH0 in

Eq. (17) is equivalent to stating that it leaves the subspace T

invariant [80]. Hence, with a choice of strictly local fTag and
the substitutions Ta → P̃½j� and Oa → P̃½j�h½j�, Eq. (17) is

equivalent to the generalized SMHamiltonian of Eq. (13) [81].

Note that similar to the SM formalism, this case can be

generalized further to include singlets of Ã that satisfy

Tajψi ¼ tajψi by substituting Ta → Ta − ta in the GI

construction. While the states embedded this way are

not “group invariant” in the original sense, they are still

invariant under the action of elements of G up to an

overall phase.

2. Extensions to local and commutant algebras

With this mapping to the (generalized) SM formalism, all

of the exhaustive algebra results of Secs. IVA 3 and IVA 4

apply here. The target space T here is spanned by the

singlets of the group G, which are also the singlets of the

bond algebra Ã ¼ ⟪fTag⟫. The families of Hamiltonians

with these singlets as eigenstates can be constructed in direct

analogy with the SM formalism; e.g., the algebra ÃGI ¼
⟪fOaTag⟫ is the analog of ÃSM and leaves the singlets

degenerate while breaking symmetries of Ã, and AGI ¼
⟪fOaTag; H0⟫ is the analog of ASM and lifts (some of) the

degeneracies of the singlets. Further, we can also apply

Lemma IV.1 to show that as long as Ta’s are strictly local

operators, we can construct algebras that provide an exhaus-

tive description of all Hamiltonians with singlets of G as

eigenstates. Similar to the SM formalism, Hamiltonians of

HGI are linear combinations of a type I operator in ÃGI and a

lifting operator, whereas the most general Hamiltonian with

these group singlets as eigenstates could be a type II operator

in ÃGI and a lifting operator.

Note that the interpretation of these states as being group

invariant or singlets of Ã is not necessary for characterizing

the final algebra ÃGI. In fact, multiple choices of the group

G or the prebond algebra Ã can have the same set of

singlets (e.g., see Nos. 2, 3a, and 3b in Table II in

Ref. [60]), and all such prealgebras would give rise to

the same AGI under the construction discussed above.

Nevertheless, starting from “well-known” prebond alge-

bras, e.g., any of the algebras discussed in Ref. [60],

provides a convenient route to construct the final bond

algebra of interest.

3. Features of the QMBS revealed by this framework

The group-invariant interpretation illustrates several non-

trivial features of QMBS, as emphasized in Ref. [42]. Since

the prebond algebra Ã ¼ ⟪fTag⟫ is generated by the

generators of a Lie group G, and since the QMBS are

singlets of Ã, their projectors are part of its commutant C̃.
Thus, theQMBSprojectors, and hence the states themselves,

are “symmetric” under the group G. For example, as

discussed in Ref. [42], several QMBS that have group-

invariant interpretations (e.g., the tower of η-pairing states in

the Hubbard model [33,34]) are invariant (i.e., symmetric—

understood more generally to include cases with very

specific sign factors under the action of the symmetry

operations) under the permutation of sites since the permu-

tation group is a subgroup ofG in those cases. However, the

presence of the permutation group within a bond algebra for

QMBSdoesnot require parent Liegroup structure andoccurs

muchmore generally. For example, the ferromagnetic towers

of QMBS fjΨnig are singlets of ASUð2Þ, which is the group

algebra of the permutation group SL that is not a Lie group.

From this perspective, the states fjΨnig are invariant under

permutation of sites of the lattice, which can be readily

verified from their expressions in Eq. (6). Hence, the

commutant language is also useful in generalizing key ideas

from the GI approach.

C. Particular breaking of symmetries

or tunnels-to-towers formalism

With the understanding of the exhaustive algebra moti-

vated by the SM and GI formalisms, we now discuss other

unified frameworks in the algebra language and demon-

strate how they lead to constructions of the QMBS algebra
Ascar. References [34,44] introduced a mechanism that can

be viewed as a particular removal of symmetries that

preserves an original symmetry-dictated multiplet, dubbed

the “tunnels-towers” mechanism in Ref. [44]. This mecha-

nism entails a three-step process to construct Hamiltonians

with QMBS, which we now summarize and describe in the

commutant language.

First, we begin with a model with a non-Abelian

symmetry under which the “target” QMBS eigenstates

are degenerate. This model can be from the prebond algebra

Ã, which has a non-Abelian commutant C̃, where the

potential QMBS states are the singlets of Ã, as shown in

Fig. 1(a). For the ferromagnetic states fjΨnig of Eq. (6), we
have Ã ¼ ASUð2Þ of Eq. (4), which has the SUð2Þ sym-

metry of C̃ ¼ CSUð2Þ.
Second, terms are added to this Hamiltonian that lift the

degeneracy between the potential QMBS states, while the

Hamiltonian preserves (a part of) the original symmetry.

Such terms can be likeH0 from the SM or GI constructions,

which preserve the target space, e.g., a local operator from

the precommutant C̃. The addition of these terms to the

generators results in an algebra of the form Ãdyn, which is
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the algebra of Hamiltonians for which the singlets of Ã are

eigenstates, albeit not necessarily degenerate, as shown in

Fig. 1(b). If H0 is chosen from the precommutant C̃ and

added to the generators of Ã to construct Ãdyn, the

commutant of Ãdyn would be at least as large as the center

Z̃ of Ã and C̃, i.e., C̃dyn ⊇ Z̃. In the ferromagnetic example,

H0 can be chosen to be any operator from CSUð2Þ, e.g., S
z
tot,

which results in the algebra Ãdyn ¼ Adyn−SUð2Þ ¼
⟪fS⃗j · S⃗jþ1g; Sztot⟫. Hamiltonians from Adyn−SUð2Þ exhibit

a dynamical SUð2Þ symmetry [60], i.e., the commutant is

Cdyn−SUð2Þ ¼ ⟪S⃗
2
; Sztot⟫, [82] and the degeneracies among

the states in the ferromagnetic tower are lifted.

Third, Hamiltonians with QMBS are constructed by

breaking even this restricted (dynamical) symmetry C̃dyn

while preserving the target manifold of states. In the

commutant language, this step corresponds to enlarging

the algebra Adyn to Ascar, which then coincides with the

exhaustive algebra ASM or AGI constructed from the

Shiraishi-Mori or group-invariant formalisms, respectively.

In the ferromagnetic example, this step corresponds to

adding terms that preserve fjΨnig as eigenstates but break

the dynamical SUð2Þ symmetry Cdyn−SUð2Þ, e.g., strictly

local such terms like fPj;jþ1h½j�Pj;jþ1g that appear in the

Shiraishi-Mori formalism; this step ultimately leads to the

algebra AFM
scar of the form of Eq. (16) or (9).

In all, this formalism constructs QMBS Hamiltonians by

sequentially constructing Hamiltonians that realize the block

decompositions shown in Figs. 1(a), 1(b), and 1(d). The

description of this formalism in the local and commutant

algebra language provides additional insights. First, the

original formulation relies on starting from QMBS states

that transform under a particular representation of a conven-

tional non-Abelian symmetry such asSUð2Þ.However, in the
algebra language, these states can be the degenerate singlets

of any locally generated prebond algebra Ã. Second, in the

original formulation in each of these steps, the termswith the

right properties are determined either by guesswork or brute-

force numerical searches. However, a systematic way to

derive these terms is only evident in the local and commutant

algebra language. Third, in the final step of this construction,

Refs. [34,44] noted that two distinct types of terms can be

added that break the dynamical symmetry while preserving

QMBS, one that annihilates the QMBS locally and one that

annihilates the QMBS “as a sum.” Once these steps are

described in the algebra language, the origin of these two

types of terms can be traced back to the existenceof type I and

type II extensive local operators in the corresponding

algebras, as discussed in Sec. III D.

D. Quasisymmetry formalism

Similarly, Ref. [43] illustrated a mechanism for con-

structing QMBS models, introducing the idea of a

quasisymmetry, which can also be understood clearly in

the algebra language. To summarize, quasisymmetries are

symmetries only on part of the Hilbert space, and they lead

to degeneracies in the spectrum of the Hamiltonian that

cannot be understood as a consequence of conventional on-

site symmetries. For example, when the precommutant C̃

consists of a regular non-Abelian symmetry [e.g., when

ðÃ; C̃Þ ¼ ðASUð2Þ; CSUð2ÞÞ], the operators in ÃSM or ÃGI are

considered to exhibit a quasisymmetry since the singlets of

Ã [e.g., the ferromagnetic manifold fjΨnig] are their

degenerate eigenstates, and this degeneracy can be under-

stood as a consequence of the original non-Abelian sym-

metry restricted to the space of singlets. Hamiltonians with

nondegenerate QMBS are then constructed by adding

appropriate terms to lift these degeneracies, e.g., terms

such asH0 in the SM or GI constructions. In the commutant

language, ÃSM or ÃGI is the bond algebra of quasisym-

metric operators for which the QMBS are degenerate, as

depicted in Fig. 1(c), and the addition of H0 to the

generators of this algebra leads to Ascar, which coincides

with ASM or AGI. In the example of the ferromagnetic

states, Ã
FM
scar is the algebra with a quasisymmetry, and

adding H0 ¼ Sztot results in the algebra AFM
scar that exhaus-

tively characterizes Hamiltonians with the ferromagnetic

states as QMBS. Hence, the quasisymmetry framework

sequentially constructs particular Hamiltonians that realize

the block decompositions of Figs. 1(a), 1(c), and 1(d).

However, similar to the previous unified formalisms, in the

original quasisymmetry formulation, the states in which the

quasisymmetry transforms under a particular representation

of a conventional non-Abelian symmetry, such as SUð2Þ,
and terms with the required properties are determined by

brute-force numerics or guess work. The algebra language

generalizes these conditions and provides a systematic way

to understand such terms. In addition, Ref. [46] found two

distinct types of operators that can be added to a symmetric

operator to make it “quasisymmetric,” which, in the algebra

language, correspond to type I and type II operators in

Ãscar. Moreover, the “quasisymmetry” that preserves the

degeneracy between states need not originate from any

conventional symmetry—in the algebra language, the

degeneracy simply arises from the fact that these are the

degenerate singlets of some prebond algebra Ã.

V. EXAMPLES

We now illustrate examples of systems where the

commutant algebra picture is useful in understanding the

QMBS. The discussion broadly follows the template

presented in Sec. III. In particular, for some of the well-

known examples of QMBS, (i) we show that there is a

locally generated algebra Ascar corresponding to the com-

mutants Cscar with ket-bra operators of QMBS; (ii) we

illustrate type I and type II operators with QMBS, which

are related to Hamiltonians beyond the Shiraishi-Mori
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formalisms; (iii) we derive constraints on extensive local

Hamiltonians with QMBS using the DCT and locality

considerations. We particularly associate the following

examples with the Shiraishi-Mori formalism since, as we

discussed in Sec. IVA 3, identifying the strictly local

projectors that annihilate the QMBS guarantees the exist-

ence of local algebras with the desired commutants.

However, we will also use inspiration from the other

formalisms to construct nicer expressions for the local

algebras. We summarize the examples and results in

Table I.

Note that in the following, whenever we work with

examples with multiple QMBS, we use the notation Ãscar

and C̃scar with appropriate superscripts to denote the local

and commutant algebras for which the QMBS eigenstates

are degenerate. Similarly, we use Ascar and Cscar with

appropriate superscripts to denote the local and commutant

algebras for which the QMBS are nondegenerate to the

extent possible with local operators.

A. Embedding matrix product states

We start with the embedding of matrix product states in

the middle of the spectrum, as envisioned by Shiraishi and

Mori in Ref. [35]. Although it was clear in the earlier

literature that Hamiltonians with MPS as QMBS exist, the

exhaustive algebras of Hamiltonians with a given MPS as

QMBS, including ones that are not of the Shiraishi-Mori

form of Eq. (11), were not discussed.

1. AKLT ground state

For the purpose of illustration, we start with the unique

AKLT ground state jGiwith PBC; analogous results can be
derived for the four OBC AKLT ground states, and we refer

readers to Appendix B 1 for detailed discussions. We also

refer to earlier literature [26,83,84] for detailed discussions

on the AKLT state and its properties. The AKLT ground

state can be expressed as the unique state in the kernel of

nearest-neighbor projectors fPAKLT
j;jþ1 g, where the projectors

are defined as [83]

PAKLT
j;jþ1 ≔

1

3
þ 1

2
ðS⃗j · S⃗jþ1Þ þ

1

6
ðS⃗j · S⃗jþ1Þ2; ð18Þ

where S⃗j is the spin-1 operator on site j [see Eq. (D1) for an

equivalent definition in terms of total angular momentum

states on the two sites]. Hence, the AKLT state can

be viewed as unique singlet of the prebond algebra

Ã
AKLT

≔ ⟪fPAKLT
j;jþ1

g⟫.
To construct a bond algebra with this singlet projector as

completely generating the commutant, we can use ideas

from the Shiraishi-Mori construction and consider the

algebra generated by fPAKLT
j;jþ1 h½j�P

AKLT
j;jþ1 g for a generic

strictly local term h½j� with support in the vicinity of j.

As guaranteed by Lemma IV.1, for a sufficiently large but

finite range of h½j�, there exists the bond and commutant

pair

Ã
AKLT
scar ¼ ⟪fPAKLT

j;jþ1
h½j�P

AKLT
j;jþ1

g⟫; C̃AKLTscar ¼ ⟪jGihGj⟫:
ð19Þ

We numerically observe that for system size L ≥ 3, h½j�
can be chosen to be a sufficiently generic nearest-neighbor

term for Eq. (19) to be true. In Appendix B, we use this

observation to prove an equivalent statement, namely,

that the algebra Ã
AKLT
scar generated with generic nearest-

neighbor h½j� is irreducible in the space orthogonal to jGi.
This finding is different from the general proof of the

existence of the Shiraishi-Mori bond algebra presented in

Appendix A since here we use the structure of jGi to show

that the required Shiraishi-Mori bond algebra can be

generated by nearest-neighbor terms.

2. DCT and type II operators

Using the DCT, we can then infer that all operators that

commute with C̃AKLTscar , i.e., all operators with jGi as an

eigenstate, are in the algebra ÃAKLT
scar (remembering that the

identity operator is always included in our bond algebras).

Hence, ÃAKLT
scar is the algebra of all parent Hamiltonians of

the AKLT states (not requiring the states to be ground

states). This algebra includes Hamiltonian terms comprised

of longer-range projectors that annihilate the AKLT states

as well as extensive local operators such as Sztot, which
vanishes on jGi. While it is highly nonobvious to see

that Sztot can be expressed in terms of the generators

fPAKLT
j;jþ1 h½j�P

AKLT
j;jþ1 g, the existence of such an expression

can be argued for using the irreducibility of ÃAKLT
scar in the

nonsinglet space, as we discuss in Appendix B.

However, we have not been able to obtain a compact

expression for Sztot in terms of the generators of ÃAKLT
scar , and

we suspect any such expression is tedious and nonlocal.

Indeed, in Appendix B 3, we use the MPS structure of jGi
to prove that Sztot in Ã

AKLT
scar for PBC is an example of a type

II symmetric operator defined in Sec. III D; i.e., it cannot be

expressed as a sum of strictly local bounded-range oper-

ators in ÃAKLT
scar . These arguments also directly extend to Sαtot

for α∈ fx; y; zg, and indeed, we numerically observe that

the number of linearly independent equivalence classes of

type II operators of range rmax ¼ 1 in Ã
AKLT
scar for PBC is 3,

which are the classes containing Sxtot, S
y
tot, and Sztot,

respectively [85]. Moreover, the number of independent

equivalence classes for range rmax ¼ 2 grows to 8, which

suggests that the number of independent equivalence

classes grows with range rmax; however, we defer a more

detailed study to future work. The existence of nontrivial

classes of type II operators points to an important difference

between the commutants here and those generated by on-

site unitary symmetries, discussed in detail in Ref. [60],
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where type II symmetric operators are forbidden. We

believe this difference is due to the “nonlocality” or

“non–on-site” property of the conserved quantities in

C̃AKLTscar , but we defer a systematic exploration of this issue

to future work.

3. General MPS

The AKLT ground-state scar construction can be directly

extended to arbitrary matrix product states (MPS) since the

projectors fPAKLT
j;jþ1 g can also be constructed starting from

the MPS representation of the AKLT state and the parent

Hamiltonian construction [49,87]. For a general MPS jψi
for PBC, if it is injective as in the AKLT case, it can be

expressed as the unique state in a kernel of a set of local

projectors [87,88] of a range r that depends on the bond

dimension of the MPS, say, fΠ½j;jþr−1�g. Then, because of
Lemma IV.1, we are guaranteed the bond algebra and

commutant pair

Ã
MPS
scar ¼ ⟪fP½j;jþr−1�h½j�P½j;jþr−1�g⟫;

C̃MPS
scar ¼ ⟪jψihψ j⟫; ð20Þ

for some generic choice of strictly local h½j�. Then, Ã
MPS is

also the algebra of all Hamiltonians that have the MPS jψi
as an eigenstate, which includes both type I operators, such

as the parent Hamiltonians used regularly in the literature,

and potential type II operators that could exist.

Similar results also hold if the MPS jψi is not injective
but is so-called G injective [88]. It can be expressed as

part of a larger manifold of states fjψαig that span the

common kernel of a set of strictly local projectors, and by

Lemma IV.1, we are guaranteed to have a bond algebra with

the commutant C̃SM ¼ ⟪fjψαihψβjg⟫. We have checked

numerically that this is the case for the Majumdar-Ghosh

states [89] with r ¼ 3, and Hamiltonians with these states

as QMBS were constructed in Ref. [35]. In some cases, the

degeneracy between these states fjψαig can be lifted using

some extensive local lifting operator (as demonstrated for

the MG states in Ref. [35]), although its existence is not

guaranteed, in general.

B. Spin-1=2 ferromagnetic scar tower

We now methodically discuss Hamiltonians for which

the multiplet of spin-1=2 ferromagnetic states fjΨnig of

Eq. (6) is the QMBS subspace; we stated the key results for

this case as immediate illustrations of various concepts in

Secs. III and IV. Several examples of such Hamiltonians

have been constructed (e.g., see Refs. [11,34,41,90]), and

many of them can be understood within the Shiraishi-Mori

formalism; i.e., they are of the form of Eq. (11). This

interpretation is possible because, as discussed in Sec. IVA,

the ferromagnetic multiplet can be expressed as the

common kernel of a set of spin-1=2 projectors fPj;jþ1g

defined in Eq. (12) or, equivalently, as the unique degen-

erate singlets of the prebond algebra Ã ¼ ASUð2Þ ¼
⟪fS⃗j · S⃗jþ1g⟫. Note that while we focus on the one-

dimensional case, this discussion directly generalizes to

higher dimensions.

1. Local algebras

As discussed in Sec. IVA, the bond algebra Ã
FM
scar with

the commutant C̃FMscar ¼ ⟪jΨmihΨnj⟫, which contains all

Hamiltonians with the ferromagnetic multiplet as degen-

erate eigenstates, can be directly constructed following the

Shiraishi-Mori prescription as in Sec. IVA 3. As mentioned

in Eq. (16) and following Lemma IV.1, the generators of the

bond algebra corresponding to fjΨnig can be chosen to be

of the form fPj;jþ1h½j�Pj;jþ1g.
Note that h½j� cannot be a nearest-neighbor term with

support only on sites fj; jþ 1g since Pj;jþ1 is a projector of

rank 1; hence, Pj;jþ1hj;jþ1Pj;jþ1 ∝ Pj;jþ1, which would

lead to Ã
FM
scar ¼ ASUð2Þ. We numerically observe that

generic choices of h½j� with a support of at least three sites

in the vicinity of j are sufficient to yield the necessary

commutant; in particular, for system sizes L ≥ 5, we find

(irrespective of the boundary conditions)

Ã
FM
scar ¼ ⟪fhj−1Pj;jþ1g; fPj;jþ1hjþ2g⟫;

C̃FMscar ¼ ⟪fjΨnihΨmjg⟫; ð21Þ

where hj−1 and hjþ2 are some generic terms. In

Appendix C 1, we show that Ã
FM
scar generated by such

three-site terms acts irreducibly in the orthogonal comple-

ment of the ferromagnetic multiplet states, which proves

Eq. (21), which is tighter than the general result of Lemma

IV.1 since we use the specific structure of fjΨnig. In

addition, as discussed in Appendix C 2 b, we are able to

obtain a simpler set of generators for this algebra, which

reads

Ã
FM
scar ¼ ⟪fS⃗j · S⃗jþ1g; fDα

j;jþ1;jþ2
g⟫;

C̃FMscar ¼ ⟪fjΨnihΨmjg⟫; ð22Þ

where Dα
j1;j2;j3

≔
P

3
k¼1 ðS⃗jk × S⃗jkþ1

Þ · α̂ is the three-site

DMI term, where the sum over k is modulo 3 (i.e., the

three sites are considered to form a loop hosting the

DMI term).

As discussed in Sec. IVA 3, a local operator from the

precommutant, i.e., commutant of the prebond algebra Ã,

e.g., Sxtot or S
z
tot, can be added to the algebra ÃFM

scar to break

the degeneracy among the ferromagnetic states. For exam-

ple, if we add Sztot, we have the local algebra and commutant

pair
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AFM
scar ¼ ⟪fS⃗j · S⃗jþ1g; fDα

j−1;j;jþ1
g; Sztot⟫;

CFMscar ¼ ⟪fjΨmihΨmjg⟫; ð23Þ

and Sztot is a lifting operator as defined in Sec. III B. Note

that there are several different choices for the generators of

AFM
scar and also several choices of lifting operators that lift

the degeneracies between the QMBS; we have chosen a

simple natural set.

2. DCT and type II operators for degenerate scars

We now discuss a few aspects of constructing local

operators in the local algebras, starting with those in Ã
FM
scar.

Strictly local operators with support in a contiguous region

R, when required to commute with the ket-bra operators or

projectors in C̃FMscar, necessarily commute with these algebras

restricted to the region R, i.e., C̃FMscar;R ≔ ⟪fjΨniRhΨmjRg⟫,
where jΨniR ≔ ðS−tot;RÞnjFiR, and S−tot;R and jFiR are the

restrictions of S−tot and jFi to the region R, which are well

defined in the obvious way. Since C̃FMscar;R has the same

structure as C̃FMscar, the corresponding local algebra is

generated by restricting the generators of Ã
FM
scar to the

region R; hence, all strictly local operators in Ã
FM
scar within

the region R can be expressed in terms of these generators

restricted to the same region [91].

Moving on to extensive local operators, there are indeed

lots of type I operators that can be constructed by simple

linear combinations of strictly local terms in Ã
FM
scar.

However, there are also type II operators that are not of

this form and yet have the ferromagnetic states as degen-

erate eigenstates, e.g., the Dzyaloshinskii-Moriya

Hamiltonian with PBC, which reads

Hα−DMI ≔
X

L

j¼1

ðS⃗j × S⃗jþ1Þ · α̂; ð24Þ

where the site labels are modulo L. Hamiltonians of this

type, first derived in Ref. [34], where the QMBS are not

eigenstates of individual terms, were referred to as “as-a-

sum” Hamiltonians [44] and are considered to be “beyond”

the SM formalism [34,44,61]. In agreement with the DCT,

in Appendix C 2 c, we explicitly show that the Hα−DMI can

be expressed in terms of the generators of ÃFM
scar, although

the expression that we find for the PBC Hα−DMI in terms of

these local generators involves manifestly nonlocal con-

structions. In fact, in Appendix C 3, we prove that there

does not exist a rewriting of Hα−DMI as a sum of strictly

local symmetric terms of a range bounded by some fixed

number independent of system size, which is proof that it is

a type II symmetric Hamiltonian discussed in Sec. III D.

Given the type II operators, we also numerically observe

that there are three linearly independent equivalence

classes, defined in Sec. III D, for operators of range at

most rmax ¼ 2, which correspond to classes containing

Hα−DMI for α∈ fx; y; zg. Similar to the AKLT case in

Sec. VA, the number of independent equivalence classes

grows with the range, and we observe that there are eight

such classes for rmax ¼ 3; we defer a detailed study of these

classes to future work. Such extensive local operators

cannot exist in the case of commutants generated by on-

site unitary operators [60], and this appears to be a feature

of the non–on-site nature of the commutant C̃FMscar.

3. Nondegenerate scars and the equal spacing conjecture

Locality considerations can be applied to local operators

inAFM
scar (which includes S

z
tot in its generators). In particular,

any strictly local operators in a contiguous region R
necessarily commute with the ket-bra operators formed

using the Schmidt states of fjΨnig over the region R [92].

The algebra generated by these operators is precisely C̃FMscar;R
defined previously; hence, strictly local operators within

AFM
scar can actually be expressed in terms of generators of

Ã
FM
scar that are within the region R; note that they have

“more” symmetry than desired.

We can also comment on the structure of the extensive

local operators constructed using the generators ofAFM
scar. In

Ref. [60], we showed that any extensive local operators in

the local algebra corresponding to a dynamical SUð2Þ
symmetry, i.e., Adyn-SUð2Þ ≔ ⟪fS⃗j · S⃗jþ1g; Sztot⟫, are always
a linear combination of Sztot and an operator from the SUð2Þ
bond algebra ASUð2Þ ≔ ⟪fS⃗j · S⃗jþ1g⟫. This structure

implies that any Hamiltonian with a dynamical SUð2Þ
symmetry necessarily contains equally spaced towers of

states in its spectrum. Since AFM
scar is an extension of

Adyn−SUð2Þ, we make the conjecture of Conjecture III.1

that any such operator is a linear combination of Sztot and

an operator from Ã
FM
scar. Since the latter leaves the ferro-

magnetic states degenerate and the former splits their

degeneracy into an equally spaced tower, we obtain

Conjecture III.2.

Finally, note that the Hamiltonians of the (generalized)

Shiraishi-Mori form of Eq. (13) that contain fjΨnig as

QMBS are necessarily a linear combination of a type I

Hamiltonian from AFM
scar and a lifting operator Sztot; see

discussion in Sec. IVA 4. The exhaustive algebra analysis

and associated conjectures imply that the only additional

class of Hamiltonians with the same set of QMBS fjΨnig
includes linear combinations of a type II operator from

Ã
FM
scar, e.g., the DMI term of Eq. (24), and a lifting operator

such as Sztot.

C. AKLT scar tower

Next, we discuss the tower of QMBS in the one-

dimensional AKLT models. For simplicity, we restrict

ourselves to the PBC Hamiltonian H
ðpÞ
AKLT ¼

P

L
j¼1P

AKLT
j;jþ1 ,
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where PAKLT
j;jþ1 is defined in Eq. (18). The QMBS eigenstates

were first derived in Refs. [26,27], and the same states were

subsequently shown to be eigenstates of a large family of

models in Refs. [34,44,49]. We review key results below

and refer readers to Appendix D 1 for a more detailed

discussion on the Hamiltonians.

1. QMBS eigenstates

We briefly review the AKLT tower of QMBS in the

AKLT and related Hamiltonians. For PBC in one dimen-

sion, we start with the unique AKLT ground state jGi
discussed in Sec. VA. For even system sizes, a tower of

exact eigenstates fjψnig of the AKLT and related models

can be constructed from jGi, defined as

jψni ≔ ðQ†ÞnjGi; Q† ≔
X

j

ð−1ÞjðSþj Þ2; ð25Þ

where ðSþj Þ is the spin-1 raising operator on site j.

Given the QMBS eigenstates, we wish to construct the

local algebra Ã
ðpÞ
scar and A

ðpÞ
scar (with the superscript “p”

standing for PBC) of the form discussed in Sec. III such

that their commutants are completely spanned by ket-bra

operators or projectors onto the desired QMBS eigenstates,

respectively, i.e., fjψnig. We construct the algebras by first

identifying a set of strictly local projectors such that their

common kernel is completely spanned only by the QMBS

eigenstates jψni, and then proceeding via the route dis-

cussed in Sec. IVA 3. As we discuss below, we do not

always find such a choice of projectors, and we sometimes

find that any choice of such strictly local projectors

necessarily contains more states in the common kernel.

Nevertheless, we can consider these extra states as valid

examples of QMBS as long as they are eigenstates of the

AKLT and related Hamiltonians, which we find is the case;

hence, we can use this information to construct a local

algebra containing those Hamiltonians. We outline the

construction below and refer readers to Appendix D 2.

We also discuss analogous constructions for the OBC case

in Appendix D 3.

2. Shiraishi-Mori projectors

To construct local algebras with the commutants C̃
ðpÞ
scar ≔

⟪fjψnihψmjg⟫ and C
ðpÞ
scar ≔ ⟪fjψnihψnjg⟫, which contain

Hamiltonians with fjψnig as degenerate or nondegenerate

QMBS, respectively, we need to construct a set of strictly

local Shiraishi-Mori projectors whose common kernel is

completely spanned by fjψnig. As a naive guess, we start

with two-site projectors fΠj;jþ1g that vanish on the AKLT

towers of states, which can be inferred from results in

Refs. [41,49]; the exact expressions are shown in Eq. (D9).

Using these projectors, we numerically observe that the

dimension of their common kernel grows exponentially

with system size [see Eq. (D10)]; hence, this kernel

contains many more states than the tower of states

fjψnig. We also numerically check that the extra states

are not eigenstates of the AKLT model; hence, these

projectors cannot be used for the construction of the

desired Ã
ðpÞ
scar.

We then systematically construct three-site projectors

fΠ½j;jþ2�g that vanish on the tower of states. As we discuss

in detail in Appendix D 2, their expressions can be derived

directly from the MPS structure of fjψnig by first comput-

ing the total linear span of all the Schmidt states that appear

on sites fj; jþ 1; jþ 2g from all fjψnig; Π½j;jþ2� is the

projector onto the orthogonal complement of that subspace.

This linear span of Schmidt states turns out to be an eight-

dimensional subspace spanned by states listed in Eq. (D12);

hence, Π½j;jþ2� is a projector onto its orthogonal 19-dimen-

sional subspace of the Hilbert space of three spin-1’s,

spanned by states listed in Eq. (E1). The same projectors

were also found numerically in Ref. [75] recently in a

different context. We numerically find that the common

kernel of these projectors is spanned by the tower of states

fjψnig and one or two additional states [depending on the

system size; see Eq. (D13) and Appendix E 3 for a partial

analytical proof], which we denote by fjϕnig.

3. Exhaustive algebras

Lemma IV.1 then implies that there exists a bond algebra

generated by finite-range terms that is irreducible in the

orthogonal complement of this common kernel; i.e., we

obtain bond and commutant algebra pairs of the form

Ã
ðpÞ
scar ¼ ⟪fΠ½j;jþ2�h½j�Π½j;jþ2�g⟫;

C̃
ðpÞ
scar ¼ ⟪fjψnihψmjg; fjψnihϕmjg; fjϕnihϕmjg⟫; ð26Þ

where h½j� is a generic (e.g., randomly chosen) term in the

vicinity of site j. Indeed, we can verify this numerically for

small system sizes using methods we discuss in Ref. [73],

and we find that a generic three-site term h½j� is sufficient.

While this commutant C̃
ðpÞ
scar is larger than naively desired

(which would be ⟪jψnihψmj⟫), we can analytically deter-

mine that the extra states fjϕmig are either the ferromag-

netic state jFi or spin-wave states j1k¼�π=2i that are

eigenstates of the AKLT model obtained in Ref. [26]

[see Eqs. (D14) and (D15)]. Hence, all the states fjψnig
and fjϕmig are degenerate exact eigenstates of

Hamiltonians such as H
ðpÞ
AKLT − Sztot, in particular, of the

entire family of Hamiltonians shown in Eq. (D4).

According to the DCT, Ã
ðpÞ
scar is the algebra of all

Hamiltonians with these as degenerate eigenstates; hence,

H
ðpÞ
AKLT − Sztot and the related family of Hamiltonians all

belong to Ã
ðpÞ
scar. However, we have neither been able to

obtain an analytical expression for these Hamiltonians in
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terms of the generators of Ã
ðpÞ
scar nor prove analytically the

numerically observed irreducibility of this algebra,

although we anticipate that a proof similar to the ones

for the AKLT ground state (Appendix B) or the ferromag-

netic tower states (Appendix C 1) could work.

The algebra of Hamiltonians with fjψnig and fjϕmig as

potentially nondegenerate eigenstates is obtained by adding

an Sztot to the algebra, and we have the local and commutant

algebra pair

A
ðpÞ
scar ¼ ⟪fΠ½j;jþ2�h½j�Π½j;jþ2�g; Sztot⟫;

C
ðpÞ
scar ¼ ⟪fjψnihψnjg; fjϕnihϕmjg⟫: ð27Þ

Note that degeneracy between the two fjϕmig states is

not split by Sztot if L ¼ 4n (see Appendix D 2 for details).

We verify this numerically for small system sizes using

methods in Ref. [73] with a randomly chosen h½j�
with support on sites fj; jþ 1; jþ 2g. The PBC AKLT

Hamiltonian H
ðpÞ
AKLT and the related families should be part

of this algebra, although we have not been able to obtain an

analytical expression for H
ðpÞ
AKLT in terms of the generators

of A
ðpÞ
scar.

4. Locality considerations and type II operators

We now discuss some aspects of locality considerations

for the AKLT algebras, and several results are similar to

the ferromagnetic tower case discussed in Sec. V B. For

example, strictly local operators in the bond algebra Ã
ðpÞ
scar

within a contiguous region R in the bulk of the system

should commute with the algebra of ket-bra operators

formed by the Schmidt states of fjψnig over the region

R. This algebra can actually be shown to be C̃scar;R ¼
⟪fjψn;σσ0iRhψm;ττ0 jRg⟫, where jψn;σσ0iR is the state of the

OBC tower within the contiguous region R that starts from

jGσσ0iR, the AKLT state restricted to R and boundary

spin configurations σ and σ0 (see Appendix D 3 for a

discussion of the OBC tower). Using the bond and

commutant algebra pair for the OBC tower [see

Eq. (D18)], we can conclude that all strictly local operators

in Ã
ðpÞ
scar that are in the bulk contiguous region R should be

expressible in terms of the generators of Ã
ðpÞ
scar in Eq. (26)

within that region. Following similar arguments as for the

ferromagnetic tower, it is easy to show that this also applies

to strictly local operators within a bulk contiguous region R

in the algebraA
ðpÞ
scar that includes S

z
tot; hence, all such strictly

local operators necessarily have “more” symmetry than

desired.

Moving on to extensive local operators, it is straightfor-

ward to construct type I operators using the generators of

the bond algebra Ã
ðpÞ
scar. In addition, the algebra also

contains operators that are not easily expressible in terms

of symmetric strictly local ones [44,61], a prime example

being

H̃
ðpÞ
AKLT ¼ H

ðpÞ
AKLT − Sztot; ð28Þ

where Sztot has been subtracted from H
ðpÞ
AKLT to ensure that

the states fjψnig and fjϕmig are degenerate eigenstates,

which, by DCT, guarantees that H̃
ðpÞ
AKLT ∈ Ã

ðpÞ
scar. We now

show that H̃
ðpÞ
AKLT is a type II operator in the algebra Ã

ðpÞ
AKLT.

Note that Ã
ðpÞ
scar ⊂ Ã

ðAKLTÞ
scar , where Ã

ðAKLTÞ
scar is defined in

Eq. (19); hence, any operator in Ã
ðpÞ
scar that is type II with

respect to Ã
ðAKLTÞ
scar is also a type II operator with respect to

Ã
ðpÞ
scar. Note that H

ðpÞ
AKLT − Sztot is a type II operator with

respect to Ã
ðAKLTÞ
scar since H

ðpÞ
AKLT is type I and Sztot is type II

as shown in Appendix B 3. Hence, it follows that this

operator is type II with respect to Ã
ðAKLTÞ
scar as well; i.e., it is

impossible to express it as a linear combination of operators

in Ã
ðAKLTÞ
scar .

Note that similar arguments can also be used to show that

the entire family of Hamiltonians H̃
ðϒÞ
AKLT-fam of Eq. (D4) for

both OBC and PBC (i.e., ϒ∈ fp; og) are type II operators.
However, many of them are in the same equivalence class

since they differ by type I operators. In addition, there could

be many distinct equivalence classes of type II operators in

Ã
ðpÞ
scar; perhaps some of them capture the Hamiltonians

discussed in Ref. [93], but we defer a systematic explora-

tion of this to future work.

5. Difference from Shiraishi-Mori Hamiltonians

and equal spacing conjecture

The PBC AKLT Hamiltonian itself, which belongs to the

local algebra of A
ðpÞ
scar of Eq. (27), is then an example of a

type II Hamiltonian plus a lifting operator that is the

uniform magnetic field Sztot. Thus, it is different from

QMBS Hamiltonians of the generalized Shiraishi-Mori

form, which, as discussed in Sec. IVA 4, is a linear

combination of a type I operator and a lifting operator.

Thus, it is also analogous to the DMI Hamiltonian for the

ferromagnetic tower of QMBS, which, as discussed in

Sec. V B 2, has the same form. Finally, because of the

similar structures of the algebra A
ðpÞ
scar to that of AFM

scar of

Eq. (23), similar to Conjecture III.2, we conjecture that any

local Hamiltonian that preserves the AKLT QMBS fjψnig
necessarily breaks the degeneracy among the states into an

equally spaced tower.

D. Spin-1 XY π-bimagnon and electronic Hubbard

η-pairing scar towers

We now move on to the towers of QMBS in the spin-1

XY model [28,34] and the deformations of the electronic

Hubbard models [33,34]. Both these Hamiltonians host
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very similar towers of QMBS (the precise correspondence

between them was established in Ref. [34]), and they also

closely resemble the ferromagnetic towers of QMBS

discussed in Sec. V B—e.g., they, too, exist in lattices in

all dimensions, irrespective of boundary conditions. We

refer readers to Appendix F for a quick recap of some of the

results on the spin-1 XY QMBS.

1. Towers of spin-1 XY QMBS

We start with the “π-bimagnon” QMBS in the spin-1 XY

Hamiltonian on L sites in one dimension, given by

jΦni ≔ ðQ†ÞnjF̄i; Q† ≔
X

j

ð−1ÞjðSþj Þ2; ð29Þ

where jF̄i ≔ j− − � � � − −i is a spin-1 “ferromagnetic”

state polarized in the ð−ẑÞ direction. Note that jΦni can

also be expressed by acting Q ≔ ðQ†Þ† multiple times on

the ferromagnetic state jFi ≔ jþ þ � � � þ þi. Here, jFi
and jF̄i are the highest and lowest ladder states of the

“pseudospin” SUð2Þ symmetry generated by the operators

Q† and Q; hence, this tower of QMBS spans a complete

multiplet of the corresponding SUð2Þ, similar to the

ferromagnetic tower of QMBS discussed in Sec. V B.

Indeed, the momentum k ¼ ππ-bimagnon tower of

Eq. (29) can be unitarily mapped onto a momentum

k¼0 0-bimagnon tower obtained using Q†
k¼0

≔
P

jðSþj Þ2,
which is similar to the spin-1=2 ferromagnetic tower, and

we summarize this mapping in Appendix F 2. Another

similarity to the ferromagnetic tower is that the operators

that permute the sites of the lattice are in the bond algebra

of the 0-bimagnon QMBS (see Appendix F 3); hence, the

0-bimagnon states lack a spatial structure—i.e., they are

invariant under arbitrary permutations of the sites.

2. Local algebras

Similar to the previous examples, we construct a local

algebra whose commutant is spanned by ket-bra operators

of the QMBS eigenstates, i.e., ⟪jΦnihΦmj⟫ or ⟪jΦnihΦnj⟫.
Since the spin-1 XY Hamiltonian can be completely

understood within the Shiraishi-Mori formalism of

Eq. (13) (see Refs. [28,41] for the details of this con-

struction, and also Appendix F for the expressions of the

Shiraishi-Mori projectors), it is straightforward to repeat

the procedure discussed earlier in Sec. IVA 3 to construct

the corresponding local algebras. However, we illustrate a

different approach here, which might be more useful for

searching for physically relevant Hamiltonians with the

same QMBS. In particular, we restrict our search to local

algebras that have additional natural symmetries, e.g., with

Uð1Þ symmetry; hence, we are interested in constructing

the local algebras Ã
ðXYÞ
scar and A

ðXYÞ
scar such that the commu-

tants are given by C̃
ðXYÞ
scar ≔ ⟪fjΦmihΦnjg; Sztot⟫ and

C
ðXYÞ
scar ≔ ⟪fjΦnihΦnjg; Sztot⟫. We guess a set of nice near-

est-neighbor terms that generate the desired bond algebra,

and we conjecture that the bond and commutant algebra

pair for all L in OBC and even L in PBC is given by

Ã
ðXYÞ
scar ¼ ⟪fSxjSxjþ1

þ S
y
jS

y
jþ1

g; fðSzjÞ2g;
fðSzj þ Szjþ1Þð1 − SzjS

z
jþ1Þg⟫;

C̃
ðXYÞ
scar ¼ ⟪fjΦmihΦnjg; Sztot⟫; ð30Þ

which we numerically verify for small system sizes using

methods we discuss in Ref. [73].

Given this bond algebra, the degeneracy of the eigen-

states can be lifted as in the ferromagnetic and AKLT tower

examples by the addition of Sztot to the generators of Ãscar.

Hence, we then expect the local and commutant algebra

pair

A
ðXYÞ
scar ¼ ⟪fSxjSxjþ1

þ S
y
jS

y
jþ1

g; fðSzjÞ2g;
fðSzj þ Szjþ1Þð1 − SzjS

z
jþ1Þg; Sztot⟫;

C
ðXYÞ
scar ¼ ⟪fjΦnihΦnjg; Sztot⟫: ð31Þ

It is straightforward to see that this algebra contains

the standard spin-1 XY Hamiltonian discussed in

Refs. [11,12,28].

Note that these algebras can be directly generalized

to the case of 0-bimagnon towers, as we discuss in

Appendix F.

3. Locality considerations and type II operators

According to the DCT, all operators that annihilate the

states fjΦnig should be part of the algebra Ã
ðXYÞ
scar , which

can be used to understand the structure of Uð1Þ spin-

conserving local operators with fjΦnig as degenerate

eigenstates. Using arguments similar to the ferromagnetic

and AKLT towers of QMBS, we can show that strictly

local operators in Ã
ðXYÞ
scar with support in a contiguous

region can be constructed from generators completely

within that region. However, also similar to the other

QMBS, the construction of extensive local operators can

be more complicated; i.e., there are type II symmetric

Hamiltonians that cannot be expressed as a sum of strictly

local operators in the algebra; we again attribute this to the

“nonlocal” nature of the commutant C̃
ðXYÞ
scar .

We can use these considerations to understand the results

of a systematic numerical search for Uð1Þ-conserving on-

site and nearest-neighbor Hamiltonians (or terms) for

which the states fjΦnig are degenerate, as carried out in

Ref. [34]. In particular, they found the terms listed in group

A of Table I and the terms 1–7 and 9–12 in Table II of that

work. Among these terms are 13 linearly independent,

strictly local operators, in the span of entries 1–7 and
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9–11 of Table II [a convenient basis spanning these terms is

shown in Appendix F; see Eq. (F3)], [94] and one extensive

local operator 12, which we list here for easy reference:

12 ¼
X

j

iðj−;þihþ;−j − jþ;−ih−;þjÞj;jþ1: ð32Þ

Since any nearest-neighbor strictly local operator from the

bond algebra can be constructed from nearest-neighbor

generators, the 13 independent, strictly local terms can be

understood from Eq. (30); indeed, we find that the

dimension of the two-site algebra, i.e., ⟪SxjS
x
jþ1

þ
S
y
jS

y
jþ1; ðSzjÞ2; ðSzjþ1Þ2; ðSzj þ Szjþ1Þð1 − SzjS

z
jþ1Þ⟫, is 13,

and we have verified that the 13 terms obtained in

Ref. [34] span this two-site algebra (see Appendix F 1

for some details). This exercise can also be repeated to

construct strictly local Uð1Þ-symmetric operators that have

support on three or more sites and annihilate the QMBS,

without resorting to numerical searches.

The construction of the extensive local operator 12 is not

so straightforward, and its derivation proceeds similar to

that of the DMI term in the case of the spin-1=2 ferro-

magnetic tower (see Sec. V B 2). For simplicity, we first

unitarily transform the π-bimagnon QMBS Eq. (29) to the

0-momentum-bimagnon tower (see Appendix F 2 for

details of this transformation), and the operator 12 with

consecutive sites on different sublattices exactly maps onto

itself up to an overall unimportant sign. The bond algebra

corresponding to the 0-bimagnon tower exactly maps onto

that of the spin-1=2 ferromagnetic tower (we refer the

reader to Appendix D of Ref. [34] and our Appendix F for

the details), and the operator 12 maps onto the DMI term

of Eq. (24).

We can then directly follow the derivation of the DMI

term in the algebra Ã
FM
scar. To begin, we first numerically

verify that the three-site term [similar to Dα
j;jþ1;jþ2 in

Eq. (22)] can be generated using the nearest-neighbor

generators of the bond algebra for the 0-bimagnon

QMBS on sites fj; jþ 1g and fjþ 1; jþ 2g. We then

apply permutation operators, which are also in the bond

algebra, on these terms and eventually derive the cyclic

extensive local term with PBC. Since the π-bimagnon

QMBS of Eq. (29) and the 0-bimagnon QMBS are unitarily

related, the same derivation hence works for the extensive

local term in the former case, up to some extra sign factors

obtained from the sublattice transformation. Moreover, it is

also possible to use the analogy to the spin-1=2 cyclic DMI

term and repeat the arguments in Appendix C 3 essentially

verbatim to show that this extensive local term of Eq. (32)

for the 0-bimagnon QMBS cannot be expressed as a sum of

strictly local terms that annihilate the QMBS; a similar

statement is true for the extensive local term in the

π-bimagnon case due to the sublattice transformation.

Thus, 12 of Eq. (32) is a type II operator in A
ðXYÞ
scar .

Finally, because of the similar structures of the algebra

A
ðXYÞ
scar compared to the ferromagnetic case, Conjectures

III.1 and III.2 are valid in this case, too.

4. Generalization to η-pairing QMBS

We now briefly discuss the η-pairing QMBS in the

electronic Hubbard and related models [33,34]. To recap,

we consider an electronic Hilbert space of spin-1=2
fermions, and the QMBS states on L sites in one dimension

are given by

jΞni ≔ ðη†πÞnjΩi; η
†
π ≔

X

j

ð−1Þjc†j;↑c
†
j;↓; ð33Þ

where fc†j;σg and fcj;σg for σ ∈ f↑;↓g are the spin-σ

fermionic creation and annihilation operators, and jΩi is

the vacuum. Similar to the ferromagnetic and spin-1 XY

towers, jΞni can also be expressed starting from the fully

filled state jΩ̄i by repeated actions of ηπ ≔ ðη†πÞ†. Here, jΩ̄i
and jΩi are the highest and lowest ladder states of the

pseudospin SUð2Þ symmetry generated by the η
†
π and ηπ

operators [32,54]; hence, this tower of QMBS spans a

complete multiplet of this SUð2Þ. Moreover, as discussed in

Refs. [42,60], these states are singlets of certain Lie groups

or prebond algebras; e.g., see Nos. 1c or 3b of Table III in

Ref. [60]. The representations of these groups or algebras

also contain the operators that permute the sites of the

lattice, which enforces the fact that these states lack spatial

structure, a feature first pointed out in Ref. [42].

Reference [34] illustrated a correspondence between

the QMBS fjΞnig of Eq. (33) and the spin-1 XY

QMBS fjΦnig of Eq. (29). In addition to the correspon-

dence between the states, they also offered a correspon-

dence between classes of parent Hamiltonians containing

the QMBS, and between electronic spin SUð2Þ-symmetric

operators for fjΞnig and Uð1Þ spin-conserving operators

for fjΦnig. Here, we exploit the correspondence to directly
construct the local algebra of spin SUð2Þ-symmetric

electronic operators with fjΞnig as QMBS, using the

local algebras of Uð1Þ spin-conserving operators shown

in Eqs. (30) and (31). The results of Ref. [34] directly

suggest the following substitutions between the operators

on the spin-1 (XY model) and spin-1=2 fermion (Hubbard

model) Hilbert spaces: SxjS
x
jþ1 þ S

y
jS

y
jþ1 ↔ T

ðrÞ
j;jþ1 ≔

P

σ ðc†j;σcjþ1;σ þ H:c:Þ and Szj ↔ Kj − 1, where

Kj ≔ nj;↑ þ nj;↓, and we obtain the bond and commutant

algebra pair

Ã
ðHubÞ
scar ¼ ⟪fTðrÞ

j;jþ1
g; fðKj − 1Þ2g;

fðKj þ Kjþ1 − 2ÞðKjKjþ1 − Kj − Kjþ1Þg⟫;

C̃
ðHubÞ
scar ¼ ⟪fjΞmihΞnjg; fSαtotg⟫; ð34Þ
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where fTðrÞ
j;jþ1g denotes the real free-fermion hopping terms

and ðKj − 1Þ2 is the on-site Hubbard term. The bond

algebra Ã
ðHubÞ
scar of Eq. (34) can thus be interpreted as an

enlargement of the so-called Hubbard algebra A
ðrÞ
Hub with

real hoppings; see Ref. [60] for a discussion of the various

types of Hubbard models in the algebra language (particu-

larly Table IV in that work).

A few comments on these algebras are in order. First, the

degeneracy of fjΞnig can be lifted by adding the total

number operator Ntot ≔
P

j;σ ∈ f↑;↓g c
†
j;σcj;σ to the algebra

Ã
ðHubÞ
scar , which results in an algebra similar to Eq. (31).

Second, locality considerations for the construction of

strictly and extensive local operators are identical to those

in the spin-1 XY case, discussed in Sec. V D 3. Hence, the

results of a numerical search for spin SUð2Þ-symmetric on-

site and nearest-neighbor terms for which fjΞnig are

degenerate eigenstates, performed in Ref. [34], can be

understood using the algebra of Ã
ðHubÞ
scar . That work found 14

linearly independent such strictly local terms, given by the

terms in group A in Table I and 1–7 and 9–11 in Table III

there, [95] and these span the 14-dimensional two-site bond

algebra generated by the generators of Eq. (34) with

support on sites fj; jþ 1g. The derivation of the type II

symmetric DMI-like Hamiltonian of 12 in Table III of

Ref. [34] is also similar to that of the analogous term in the

spin-1 XY case shown in Eq. (32). Finally, similar ideas can

be used to derive local algebras that consist of terms

breaking the spin SUð2Þ symmetry while preserving the

same QMBS, e.g., those that only preserve the total spin

Sztot such as the ones discussed in Refs. [11,33]; or to derive
local algebras with related QMBS, e.g., the zero-momen-

tum η-pairing states [34,60] or the spin ferromagnetic

multiplet in this Hilbert space. These derivations follow

using rather straightforward guesswork or mappings to

algebra discussed here; hence, we do not write down their

explicit expressions.

VI. IMPLICATIONS FOR THERMALIZATION

We now discuss a few implications of this local and

commutant algebra interpretation of QMBS and raise a few

questions about them in the context of thermalization.

A. Towards a definition for QMBS

Thinking about QMBS in this framework motivates a

precise definition for QMBS, which has so far been absent

from the literature.

1. Necessary condition and violation of ETH

As we demonstrate with the help of several examples, the

QMBS are singlets of algebras generated by local operators

that do not commute with each other. This finding

motivates the following necessary condition for QMBS.

Condition. Any exact QMBS eigenstate is a common

eigenstate of multiple noncommuting local operators.

Note that the local operators involved can either be

strictly local or extensive local. Any state that satisfies this

condition can be embedded into the middle of the spectrum

of a generic local Hamiltonian constructed from the said

local operators, although, as we discuss below, its atypi-

cality is not guaranteed only by this condition. While this

requirement might appear sweeping, it is clear from the

literature that numerous examples of QMBS satisfy this

definition [10,11] (see also, e.g., Refs. [29,31,96–98] for a

partial list). The class of states that satisfy this condition

includes tensor network states (e.g., MPS and PEPS) with

finite bond dimension, but it is not limited to them; e.g., the

QMBS can have entanglement growing logarithmically

with system size [27,28,32,33] or even proportional to the

system size (i.e., as a volume law) [99–101].

This property of QMBS also has direct implications for

the ETH [1,2]. According to ETH, since the reduced

density matrix of an eigenstate in the bulk of the spectrum

should resemble the Gibbs density matrix expressed in

terms of the Hamiltonian, a single eigenstate should contain

all the information about the Hamiltonian [62]. Indeed,

when a systematic “correlation matrix” method [63,102] to

search for local operators for which a given state is an

eigenstate is applied to a generic eigenstate of some local

Hamiltonian without any local conserved quantities, the

local Hamiltonian can generically be uniquely recon-

structed from that eigenstate [63,103]. However, requiring

the aforementioned property on QMBS, such a unique

reconstruction is not possible even in principle since they

are, by definition, simultaneous eigenstates of multiple

noncommuting local operators. This feature distinguishes

QMBS from other generic eigenstates even for a particular

Hamiltonian and implies that the QMBS necessarily violate

the ETH.

While this feature is a necessary property of QMBS, it is

clear that it is not sufficient since there are examples of

states that are expected to satisfy ETH and the above

property. For example, any nonintegrable SUð2Þ-symmet-

ric Hamiltonian possesses exponentially many eigenstates

fjEnig that satisfy S⃗
2
totjEni ¼ 0 [these are usually referred

to as the spin singlets of the SUð2Þ symmetry], and they are

simultaneous eigenstates of all the total spin operators

fSαtotg, which do not commute with each other.

2. Sufficient conditions

For singlets of any local algebra to be referred to as

QMBS, we also require that the decomposition of Eq. (5)

corresponds to that of Eq. (1); i.e., we require the existence

of a “large” thermal block that spans most of the Hilbert

space. This condition can be made more precise by

studying the local algebra generated by the multiple local

operators reconstructed from that state using procedures

such as the correlation matrix methods [63,102]; the QMBS

SANJAY MOUDGALYA and OLEXEI I. MOTRUNICH PHYS. REV. X 14, 041069 (2024)

041069-20



state is one of the singlets of this algebra, by construction

[105]. Since the existence of the “thermal” block of Eq. (1)

is equivalent to requiring that the decomposition of Eq. (5)

for this local algebra has a “large” irreducible representa-

tion, we arrive at the following sufficient condition

for QMBS.

Condition. Any state can be made a QMBS eigenstate of

some Hamiltonian if the dimensions fDλg of the irreduc-

ible representations of its “parent algebra” (algebra gen-

erated by all the bounded-range strictly local and extensive

local operators that have the state as an eigenstate) satisfy

maxλDλ

dimðHÞ → 1 as L→ ∞: ð35Þ

Note that Eq. (35) is satisfied by the tower examples

of QMBS discussed in this work since they have

maxλDλ ¼ dimðHÞ −OðLpÞ, and also by some examples

of QMBS like embedding of 2L scar states inside a

3L-dimensional Hilbert space in Ref. [35]; however, we

cannot rule out other possibilities [106]. Nevertheless, with

the requirement of Eq. (35), the QMBS eigenstates, which

transform under one-dimensional representations of this

local algebra generated by finite-range local parent oper-

ators, are atypical eigenstates of generic Hamiltonians

constructed from that local algebra.

The aforementioned SUð2Þ spin singlets of a nonintegr-

able SUð2Þ-symmetric Hamiltonian—hence eigenstates of

noncommuting “parent Hamiltonians” Sαtot; α∈ fx; y; zg—
do not satisfy this QMBS condition. Given a generic, spin-

1=2, nonintegrable, local SUð2Þ-symmetric Hamiltonian H
and a generic choice of its singlet eigenstate jEni, we

generically expect the only local operators that can

be reconstructed are H and fSαtotg. The parent algebra

⟪H; fSαtotg⟫ does not have any exponentially large irre-

ducible representations since, for a generic H, its commu-

tant and center is ⟪H; S⃗
2

tot⟫, which implies that

H ¼⊕λ cλ1Dλ
, where Dλ’s are the dimensions of the irreps

of the reconstructed algebra (dλ ¼ 1 since the expected

commutant is Abelian). This case should be equivalent to

the full diagonalization of H, which, by virtue of being a

generic SUð2Þ-symmetric Hamiltonian, has an eigenstate

degeneracy of at most Lþ 1, which immediately shows

that maxλðDλÞ ¼ Lþ 1, violating Eq. (35).

Finally, we also note that this definition of QMBS

implies that “scarriness” of a state is also a Hilbert-

space-dependent feature and sometimes depends on quan-

tities we are interested in; we discuss some such “edge

cases” in Appendix G 3.

3. Sufficiency of the Shiraishi-Mori structure

We now show that the “Shiraishi-Mori” condition of

Eq. (10), i.e., demanding that the candidate state is in the

common kernel of some set of strictly local projectors, is

sufficient for Eq. (35) to be satisfied, although we cannot

prove that these are necessary. In particular, in Appendix G,

we prove the following Lemma.

Lemma VI.1. In a system of size L, if among the

reconstructed parent operators bounded by some finite

range rmax we have a “dense” set of OðLÞ strictly local

operators fA½j�g covering the entire lattice such that the

separation between neighboring A½j�’s is bounded by an

L-independent number lmax, then Eq. (35) is satisfied for a

parent algebra generated by operators of some finite

range r0max ≥ rmax.

To provide some intuition for Lemma VI.1, we note that

since the reconstruction of any strictly local A½j� also

implies the reconstruction of all its powers, we can, without

loss of generality, assume A½j� to be a projector, say P½j�. The
state can then be expressed as part of the kernel of strictly

local projectors, i.e., in a target space T . The result of

Lemma IV.1 proves that we can find some finite r0max ≥

rmax such that maxλ Dλ ¼ dimðHÞ − dimðT Þ; hence, it

satisfies Eq. (35) as long as dimðT Þ scales slower than

the Hilbert space dimension. In Appendix G 2, we prove

this result using the fact that they are the common kernel of

a set of “dense” strictly local projectors [see Eq. (G4)].

We conclude this discussion with some remarks. First, in

the above, we only considered a subset of all possible

reconstructed parent operators, and that was sufficient to

guarantee Eq. (35); additional parent operators only increase

maxλDλ for the algebra of reconstructed local operators;

hence, Eq. (35) still holds. Second, the fact that the Shiraishi-

Mori structure is a sufficient condition for QMBS already

shows that all the examples we considered in Sec. V are

QMBS in this definition. Finally, as wemention in Sec. IVA,

the results of Ref. [75], along with the Shiraishi-Mori

structure, can be used to show that the entanglement entropy

of the candidate QMBS, or any other state in T , over any

extensive contiguous subregion is smaller than the Page

value [76] expected in generic eigenstates in themiddle of the

spectrum of a nonintegrable local Hamiltonian.

B. QMBS projectors as generalized symmetries

The commutant language makes QMBS projectors on

par with regular conserved quantities as well as the

exponentially many ones in the context of Hilbert space

fragmentation [56], incorporating all these phenomena

under the umbrella of “generalized” symmetries. These

generalized symmetries are beyond the usual on-site

symmetries and also beyond other exotic symmetries such

as subsystem or higher-form symmetries that are being

explored in several different contexts in the literature [107].

Naively, if the QMBS projectors are considered to be

nonlocal symmetries, then QMBS are not examples of

ergodicity breaking since ergodicity is usually defined for a

given symmetry sector [108]. However, QMBS clearly do

not fit into the usual framework of quantum statistical

mechanics; e.g., it is not clear if analogues of the Gibbs

ensembles can be defined for such systems.

EXHAUSTIVE CHARACTERIZATION OF QUANTUM MANY-BODY … PHYS. REV. X 14, 041069 (2024)

041069-21



Moreover, these conserved quantities are qualitatively

very different from the conventional ones, which has

implications for the dynamics starting from generic initial

states. One important difference is in the distribution of

fDλg’s, i.e., the sizes of the various quantum number

sectors, which is highly “skewed” in the case of QMBS

conserved quantities. For example, while the presence of a

Z2 symmetry in a spin-1=2 Hilbert space would lead to two

sectors of sizes 2L−1, the presence of a single QMBS would

also lead to two sectors but now with dimensions 2L − 1

and 1 [109]. This case is essentially a formal way to state

the intuition that the presence of QMBS only “affects” a

small part of the Hilbert space, and the dynamics of most

initial states remain unchanged. This difference is also

sometimes evident from the Mazur bound for the infinite-

temperature autocorrelation function [110,111]. Given a set

of operators fQαg in the commutant that are mutually

orthogonal [defined as TrðQ†
αQβÞ ∝ δα;β corresponding to

infinite-temperature ensembles], the time-averaged auto-

correlation function of an operator under the dynamics of

any Hamiltonian in the corresponding local algebra A is

lower bounded as [56]

lim
τ→∞

1

τ

Z

τ

0

dthAðtÞAð0Þi ≥
X

α

ðAjQαÞðQαjAÞ
ðQαjQαÞ

; ð36Þ

where AðtÞ ¼ eiHtAð0Þe−iHt, and the overlap is defined as

ðAjBÞ ≔ TrðA†BÞ= dimðHÞ. We can then quantify the

“importance” of various operators fQαg in the commutant

for the dynamics of the operator A in terms of their

contribution to the rhs of Eq. (36). For strictly local

operators A, the contribution of local conserved quantities

such as Sztot scales with system size as ∼1=L, whereas
for QMBS eigenstates and the corresponding projectors or

ket-bra operators as conserved quantities, it scales as

∼ expð−cLÞ, analogous to the contribution of “frozen

states” in the case of Hilbert space fragmentation [56].

Finally, while the QMBS eigenstates can exist for a

variety of systems, they are considered to break ergodicity

only if their existence cannot be explained by conventional

symmetries. For example, the states of the ferromagnetic

multiplet of the Heisenberg Hamiltonian are not referred to

as examples of QMBS as long as SUð2Þ symmetry is

present, while the same eigenstates become QMBS once

the global SUð2Þ symmetry is broken. These inconsisten-

cies in the definitions, which also exist in systems with

Hilbert space fragmentation [56], call for a more precise

definition of ergodicity and its breaking in isolated quan-

tum systems.

VII. CONCLUSION AND OUTLOOK

In this work, we studied QMBS in the language of local

and commutant algebras. In particular, we propose that

there is a local algebra, i.e., an algebra generated by strictly

local and/or extensive local terms, such that its commutant

algebra (i.e., the centralizer) is spanned by projectors onto

the QMBS eigenstates. We demonstrated this with explicit

examples of QMBS from the literature, including general

MPS states, the spin-1=2 ferromagnetic tower of states, the

AKLT tower of states, and the spin-1 XY π-bimagnon and

electronic η-pairing towers of states. In previous works, we

showed that Hilbert space fragmentation [56] and several

conventional symmetries [60] can be understood in this

language, and in each of these cases, there is a local algebra

such that the commutant algebra contains all the conserved

quantities that explain the origin of dynamically discon-

nected subspaces, which are the Krylov subspaces in

fragmented systems and the usual symmetry sectors in

systems with conventional symmetries. This work hence

casts QMBS in the same framework, attributing the origin

of the dynamically disconnected QMBS subspace to

unconventional conserved quantities in the commutant

algebra, hence demonstrating the similarity between the

underlying mathematical structures responsible for QMBS

phenomena and those in fragmentation phenomena and in

conventional symmetry physics.

Understanding QMBS in this language has a number of

advantages. First, as we discussed in Sec. IV, this frame-

work unifies several of the previously introduced unified

formalisms for QMBS [10–12], particularly the symmetry-

based ones [11], and provides a common language in which

they can all be related to one another. This language

generalizes the idea that QMBS are singlets of certain

Lie groups, introduced in the group-invariant formalism

[42], to the idea that QMBS are singlets of certain local

algebras which need not have any simple underlying Lie

group structure. For Lie groups and bond algebras gen-

erated by free-fermion terms, which was the focus of

Ref. [42], these two pictures coincide, and we illustrated

this equivalence in Ref. [60,112]. Reference [42] also

highlighted that several examples of the QMBS eigenstates

lack spatial structure, which was attributed to the presence

of the permutation group as a subgroup of the parent Lie

group. However, we find that this occurs more generally

since the presence of the permutation group within the local

algebra does not require parent Lie group structure.

Additionally, this interpretation of QMBS also has explicit

connections to decoherence-free subspaces, noiseless sub-

systems, and dark states studied in different contexts in the

literature [65,113–115], and it would be interesting to

explore these connections further. It would also be inter-

esting to better understand how so-called spectrum-gen-

erating algebra mechanisms, discussed in Refs. [33,41], or

the related scarred Hamiltonians derived from spherical

tensor operators [61] fit into this framework.

Second, this language allows the application of the DCT,

which guarantees that the local algebra is the exhaustive

algebra of “symmetric” operators, i.e., the set of all

operators that commute with the conserved quantities in
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the commutant. In the case of conventional symmetries,

this process allows us to formally construct all

Hamiltonians with a given set of symmetries [60].

Analogously, the local algebra for the QMBS case allows

us to build all Hamiltonians with the desired set of QMBS

in their spectrum, which also shows that there are usually

multiple local perturbations that exactly preserve the

QMBS. For standard examples of QMBS, we showed

how ideas from the Shiraishi-Mori formalism [35] can be

generalized to construct generators for the exhaustive local

algebras with the commutants spanned by the QMBS

projectors (or QMBS ket-bra operators for degenerate

scars), and all Hamiltonians with the same QMBS should

be expressible in terms of these generators. This finding led

to an exhaustive characterization of Hamiltonians with a

given set of QMBS, which motivated conjectures on the

general structure of such Hamiltonians. For example, for

many examples of towers of QMBS, we conjectured that any

extensive local Hamiltonians with those QMBS necessarily

have the QMBS as equally spaced towers of eigenstates.

The application of DCT also allowed us to precisely

understand the distinction between the two broad classes

of Hamiltonians with QMBS: (i) Shiraishi-Mori-like

Hamiltonians for which the QMBS are eigenstates of each

strictly local term defined in a precise sense, and (ii) intrinsi-

cally “as-a-sum annihilator” [34,44] or “beyond Shiraishi-

Mori” [41,44,61] Hamiltonians, where all the individual

terms collaborate such that the QMBS are annihilated by

the full extensive local Hamiltonian and not by the

individual terms. In the algebra language, this distinction

originates from two types of symmetric Hamiltonians

that can be constructed within any bond algebra generated

by strictly local terms: type I and type II symmetric

Hamiltonians, where the former can be expressed as a

sum of strictly local symmetric terms whereas the latter

cannot. This idea also resolved a long-standing open ques-

tion on the connection between the AKLT Hamiltonian and

the Shiraishi-Mori formalism [41,44,61]. In this work, we

found a set of three-site projectors such that the common

kernel was completely spanned by the QMBS tower of

states of the AKLT model, which led to the exhaustive

algebra of all Hamiltonians that contain the AKLT QMBS.

The generators of this algebra could then be used to

construct Shiraishi-Mori-like Hamiltonians with the

AKLT QMBS as well as Hamiltonians such as the

AKLT Hamiltonian itself that lie beyond them. This

process could reveal the bigger picture in the land-

scape of QMBS Hamiltonians. For the AKLT tower of

QMBS, it happened historically that the Hamiltonian

beyond the Shiraishi-Mori construction—the celebrated

AKLT chain—was known first [26,27], and the projectors

required for constructing Shiraishi-Mori-like Hamiltonians

have only been illustrated in this paper. In contrast,

for many other QMBS towers such as the spin-1=2
ferromagnetic, spin-1π-bimagnon, and electronic η-pairing,

the Shiraishi-Mori-like Hamiltonians were constructed first

[33,34,116], and as-a-sum Hamiltonians that lie beyond,

such as the DMI-like terms, were discovered in later works

using more systematic searches [34,44,46]. Hence, from

the algebra perspective, there is no fundamental difference

between the AKLTand the other towers of QMBS—in both

cases, there are Hamiltonians of both kinds.

However, this framework is not without its caveats. A

major caveat that remains is that while the DCT

guarantees that a given operator with QMBS belongs

to the local algebra, it does not provide an expression

for it. Such expressions can be complicated; e.g., in the

case of the ferromagnetic tower of QMBS, we showed

how the extensive local DMI term can be generated

from the strictly local generators of the algebra by

means of a highly nonlocal expression; we were also

able to prove that there is no rewriting as a sum of

symmetric strictly local terms. This finding is an

example of a type II operator, and while we were able

to rule out their existence for bond algebras with on-site

unitary symmetries [60], this is no longer the case for

QMBS commutants, as evidenced by several examples.

Other examples of extensive local operators that nec-

essarily involve type II operators include the Sztot for the
AKLT ground-state QMBS and the AKLT Hamiltonian

itself for the AKLT tower QMBS; in both cases, we

have not been able to find a useful expression or

procedure to construct them from the strictly local

generators. Given a set of strictly local generators, it

is hence extremely desirable to develop a systematic

understanding of the full space of, or equivalence

classes of, type II operators that can be constructed;

even in simple examples of QMBS, we numerically

observe several equivalence classes that we have not

been able to picture or understand in simple terms.

Results in Refs. [48,61,93,117] provide novel perspec-

tives on potentially type II Hamiltonians with QMBS,

which would be interesting to explore further.

Developing this understanding is crucial for a truly

“exhaustive” construction of Hamiltonians with a given

set of QMBS and for proving conjectures on the spectra

of Hamiltonians. Perhaps a first step is to determine a

simpler set of generators for all of these QMBS local

algebras, analogous to the ferromagnetic tower case,

which can, in principle, be done by numerical checks on

small system sizes, e.g., for L ¼ 4. The lack of a deeper

understanding of these issues also presents a significant

obstacle for using this framework to find new examples

of QMBS, for which less systematic methods proposed

in the earlier literature [33,34,41–46,49] have been

highly successful in practice.

Another matter of concern might be the lack of a formal

representation theory of the algebras involved since

these no longer have simple generating group structures

in them. Nevertheless, going beyond groups is essential for
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understanding some types of QMBS, such as the spin-1

AKLT models, which do not fall into previously proposed

mechanisms based on the representation theory of groups

[42,45]. Moreover, algebras beyond groups also naturally

appear in other physically interesting systems, such as

fragmentation [56] and categorical symmetries [107]; bond

algebras of the type we are interested in have already been

understood in terms of more abstract objects such as fusion

categories, and they have representation theories that are

well understood in some cases, e.g., in Temperley-Lieb spin

chains [66,118]. We hope that this work will eventually

motivate the development of such a representation theory of

even more general bond algebras, including those that

capture quantum scars. In the meantime, while the more

standard approach to studying symmetries is to consider

abstract objects such as groups or categories, construct their

formal representation theory in complete generality, and

then apply it to the Hilbert space of interest, we wish to

advocate for a different approach where we can start with a

concrete Hilbert space and think of symmetries in terms of

simultaneous block diagonalization of matrices. Since we

are only interested in the physics of a given system with a

given Hilbert space rather than a whole class of systems

across varying Hilbert spaces, we believe the approach we

suggest is more practical for physical and numerical

purposes and can be applied even if the formal representa-

tion theory or the abstract objects are not known.

Finally, the local and commutant algebra language

motivates a precise definition of QMBS. A necessary

condition for QMBS is that they should be common

eigenstates of multiple noncommuting local operators,

hence ruling out the unique recovery of the local parent

Hamiltonian from the QMBS eigenstate, which implies the

violation of the conventional form of ETH for systems with

Abelian symmetries, although its status is not clear for

systems with non-Abelian symmetries. In addition, we

showed that if a state can be expressed as one of the ground

states of a frustration-free Hamiltonian, or, equivalently, as

part of some target space in the Shirashi-Mori formalism,

then it satisfies certain sufficient conditions, phrased

precisely in terms of algebras generated by the recovered

local operators, to be one of the QMBS of some local

Hamiltonian. Thus, we need a characterization of states that

can be made as QMBS of some Hamiltonian, and the

answer is clearly beyond conventional tensor network

states due to examples of QMBS that exhibit entanglement

growth with system size. This definition also opens up

several examples in the literature that might be examples

of QMBS, e.g., the U-independent eigenstates in the one-

and higher-dimensional Hubbard models [32,119–121].

Interestingly, most examples of QMBS that we are aware

of satisfy the Shiraishi-Mori condition; i.e., they can be

expressed as the ground state(s) of a frustration-free

Hamiltonian, which we showed is a sufficient condition

for QMBS. It is then natural to wonder if this is also a

necessary condition for QMBS or if there exist QMBS that

do not satisfy this condition. On a different note, one might

also wonder if there could be cases where any such local

parent Hamiltonian necessarily has additional conserved

quantities, analogous to several other examples in the

literature; e.g., any local Hamiltonian with charge and

dipole symmetries and with bounded range for all terms

necessarily has fragmentation, i.e., exponentially many

other conserved quantities [19,20,56].

In light of this enhanced understanding of QMBS, it

would also be interesting to revisit the approximate QMBS

of the PXP model. For example, do the approximate QMBS

in the PXP model (approximately) satisfy the proposed

definition of QMBS? Indeed, compelling evidence for

the satisfaction of the necessary conditions for QMBS

was presented in a recent work [75], which applied the

correlation matrix method [63] to the PXP QMBS and

numerically found multiple local terms for which these

states are approximate eigenstates. Moreover, one might

wonder if there is a point proximate to the PXP model with

a larger commutant that might explain the approximate

QMBS subspace in the PXP model [9,10,122–124], or if

the proposed deformations of the PXP model to “integra-

bility” [125] or to perfect revivals [50,90] can be attributed

to some strange commutants.

Beyond Hamiltonians with exact QMBS, we can ask if

exact Floquet QMBS [24,126–128] can also be understood

within a similar framework. Of course, while the local

algebra allows us to straightforwardly construct Floquet

unitaries with the desired QMBS, this does not exclude the

existence of intrinsically Floquet QMBS that are not

possible in any Hamiltonian systems. Beyond many-body

physics itself, it would be interesting to check if some

similar properties hold for quantum scars in single-particle

systems [129,130], which would provide a good justifica-

tion for the name “quantum many-body scars.”
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APPENDIX A: PROOF OF EXISTENCE

OF EXHAUSTIVE SHIRAISHI-MORI BOND

ALGEBRAS FOR SCARS

In this appendix, we prove that given a set of states of the

form Eq. (10) that completely span the common kernel of a

set of strictly local projectors, we can always construct a

Shiraishi-Mori bond algebra of the form of Eq. (14)

generated by strictly local terms corresponding to these

states as degenerate QMBS, satisfying Eq. (14). For the

sake of illustration, we restrict ourselves to one-dimen-

sional systems of size L, but these arguments can also be

extended to higher dimensions.

Lemma IV.1. Consider the target space T ¼ fjψi;
P½j�jψi ¼ 0g, where P½j�’s are strictly local projectors of

range at most an L-independent number rmax. Then, we can

always construct a bond algebra ÃSM ¼ ⟪fh̃½j�g⟫ where

h̃½j�’s are strictly local terms of a range bounded by some

L-independent number r0max ≥ rmax, such that it is irreduc-

ible in T ⊥, the orthogonal complement of the target space.

Proof. Before proceeding to the general case, we start

with a simple example to illustrate the main idea.

Simple example: Consider a spin-1 chain with on-

site states labeled j0i; jþi; j−i, and on-site projectors

fP½j� ¼ j0ih0jjg; hence, rmax ¼ 1. The target space is

then given by T ¼ spanfjσ1; σ2;…; σLi; σj ∈ fþ;−gg,
i.e., all states annihilated by all on-site operators j0ih0jj.
We then construct the following operators of range

r0max ¼ 2 that annihilate the target space: j0ih0jj ⊗ hjþ1

and hj−1 ⊗ j0ih0jj, where hjþ1 can be an arbitrary on-site

operator acting on site jþ 1 (e.g., jαihβjjþ1 with arbitrary

α; β∈ f0;þ;−g), and similarly for hj−1 on-site j − 1; these

are the operators fh̃½j�g mentioned in the claim. We

now show that the algebra generated by these two-site

operators ÃSM¼⟪fj0ih0jj⊗hjþ1;hj−1⊗ j0ih0jjg⟫ (where

we assume, for simplicity, that we have a set of hk’s that can

generate all on-site operators) acts irreducibly in T ⊥, the

space spanned by basis product states with at least one

on-site j0i. We first note that the multiplication of the

generators j0ih0jj ⊗ jαih0jjþ1 and j0ih0jjþ1 ⊗ jα0ih0jjþ2

shows that j0ih0jj ⊗ jα; α0ih0; 0jjþ1;jþ2 is in the bond

algebra ÃSM. Next, combining with the Hermitian con-

jugate of j0ih0jj ⊗ jβ; β0ih0; 0jjþ1;jþ2, we find that

j0ih0jj ⊗ jα; α0ihβ; β0jjþ1;jþ2 is in ÃSM with arbitrary

α; α0; β; β0 ∈ f0;þ;−g. By repeating this procedure includ-

ing generators acting on ½j − 1; j�, ½jþ 2; jþ 3�, etc., we
can generate j0ih0jj ⊗ OcomplðjÞ, whereOcomplðjÞ can be any
operator acting on the sites other than j, i.e., on the

complement of j in the whole system. This case is true

for all j, and combining such operators for distinct j and j0,
we can see that any two basis states that have at least one

on-site j0i can be connected to each other by the operators

in the bond algebra ÃSM, which completes the proof of the

claim in this example. Incidentally, this ÃSM is the

exhaustive bond algebra for a Shiraishi-Mori-type family

embedding the 2L states fjσ1; σ2;…; σLi; σj ∈ fþ;−gg as

degenerate scars in the 3L-dimensional Hilbert space.

General case: We now consider the general case where

we are given a set of projectors P ≔ fP½j�g and its target

space T , and as we will see, the proof of the claim in this

case is qualitatively similarly to the above spin-1 example.

We first divide the full set of projectors P into subsets

fPαg such that P ¼∪α Pα, the supports of the projectors

within each subset Pα do not overlap, and the projectors

within each Pα are “dense” on the lattice (i.e., the distance

between neighboring projectors is bounded by an

L-independent number). For example, in a one-dimensional

system with an even system size L and nearest-neighbor

projectors labeled as P½j� ¼ Pj;jþ1, the non-overlapping

subsets are Pe ≔ fP2k;2kþ1g and Po ≔ fP2k−1;2kg.
Denoting the kernel and its orthogonal complement of Pα

as T α and T ⊥
α , the full target space T can be expressed

as T ¼∩α T α.

Focusing on a single such subset Pα, we now show that a

bond algebra generated by strictly local terms can be

constructed such that it is irreducible in T ⊥
α . Consider

diagonalizing P½j�’s in Pα over the Hilbert space on its

support Rj on the lattice:

P½j� ¼
X

DRj

ν¼D0
Rj
þ1

juðj;νÞihuðj;νÞjRj
; ðA1Þ

where DRj
is the corresponding Hilbert space dimension,

fjuðj;νÞiRj
; 1 ≤ ν ≤ DRj

g the corresponding orthonormal

eigenvectors, and D0
Rj

the number of zero eigenvalues of

P½j� (note that we have used the fact that all the eigenvalues
of P½j� are either 0 or 1, and we have also labeled the zero

eigenvalues as 1 ≤ ν ≤ D0
Rj
). We then find that the pro-

jector onto any eigenvector of P½j� with eigenvalue 1

annihilates all states in T , i.e.,

juðj;νÞihuðj;νÞjRj
jψi ¼ 0 if ν ≥ D0

Rj
þ 1; jψi∈ T :

ðA2Þ

Since P½j� is not zero, there exists at least one such ν that

satisfies Eq. (A2), and we assume this is the case for the ν in

the discussion below.

The projectors in Eq. (A2) are analogous to the projec-

tors j0ih0jj in the spin-1 illustration above. Proceeding as in
that example, the operators juðj;νÞihuðj;νÞjRj

⊗ OnbðjÞ also

annihilate the target space, where OnbðjÞ can be an arbitrary
operator acting in a region neighboring but not overlapping

with Rj [nbðjÞ with respect to Rj is an analog of j� 1 with
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respect to j in the spin-1 illustration]. We consider

appropriately chosen operators of this form to be the

fh̃½j�g of range r0max ≥ rmax. For large enough r0max, since

the distance between neighboring projectors within the

subset Pα is bounded by an L-independent number, the

support of OnbðjÞ will cover the support of the neighboring
P½j0� in the subset (analogous to the support of j0ih0jj ⊗
jαihβjjþ1 covering the support of j0ih0jjþ1 in the spin-1

example). For example, in the one-dimensional case and

focusing on P½j� ∈Pe, if P½j¼2k� ¼ P2k;2kþ1, OnbðjÞ can be

any operator with support on sites f2kþ 2; 2kþ 3g such

that it covers the support of P½j0¼2kþ2� ¼ P2kþ2;2kþ3.

Similarly to the spin-1 example, it is easy to see that the

bond algebra ÃSM generated using operators such as

fjuðj;νÞihuðj;νÞjRj
⊗ OnbðjÞg contains juðj;νÞihuðj;νÞjRj

⊗

OcomplðRjÞ, where OcomplðRjÞ is an arbitrary operator in the

entire lattice complement of Rj, which we denote as

complðRjÞ. Now, consider combining such operators for

distinct j and j0, i.e., for disjoint regions Rj and Rj0 . It is

easy to see that the bond algebra ÃSM then contains

the operator juðj;νÞiRj
⊗ jviRj0

⊗ jxicomplðRj∪Rj0 ÞhwjRj
⊗

huðj0;ν0ÞjRj0
⊗ hyjcomplðRj∪Rj0 Þ, where jviRj0

is an arbitrary

state on Rj0 , jwiRj
is an arbitrary state on Rj, and

jxicomplðRj∪Rj0 Þ and jyicomplðRj∪Rj0 Þ are arbitrary states on

the complement of the union of Rj and Rj0 . Hence, all states

of the form juðj;νÞiRj
⊗ jzicomplðRjÞ, with an arbitrary state

jzicomplðRjÞ on the complement of Rj, are “connected”; i.e.,

the ket-bra operator formed from any pair of such states is

in the bond algebra ÃSM. Thus, we see that all states in the

T ⊥
α are connected under the action of operators from the

algebra ÃSM. We also note that T α forms an exponentially

small fraction of all states in the entire Hilbert space.

Indeed, it is easy to see that, for large L, this fraction is

bounded as

dimðT αÞ
dimðHÞ ¼

Y

j;P½j� ∈Pα

�

D0
Rj

DRj

�

≤ pL
α for some pα < 1;

ðA3Þ

where we have used the fact that D0
Rj
=DRj

< 1 while the

number of such j within the subset Pα is a finite fraction

of L.

Finally, in order to prove that all states in T ⊥ are

connected, we need to show that states from any pair of

different T ⊥
α and T ⊥

α0 are connected. For this aim, it is

sufficient to show that T ⊥
α ∩ T ⊥

α ≠ 0⃗ since, if the two

subspaces share at least one common nonzero vector, then

any pair of states in T ⊥
α and T ⊥

α0 can be connected by ket-

bra operators via such a common vector. This condition

translates to T α þ T α0 ≠ H, which is necessarily true for

large system sizes as is evident from the dimension

counting of T α and T α0 , each being an exponentially small

fraction ofH. This concludes the proof that all states in T ⊥

are connected; i.e., the algebra ÃSM is irreducible in this

space. ▪

APPENDIX B: BOND ALGEBRA FOR THE AKLT

GROUND STATE(S) AS SCARS

In this appendix, we provide many results on the bond

algebras Ã
AKLT
scar corresponding to the case with AKLT

ground states as QMBS, discussed in Sec. VA. In

particular, we show that these algebras act irreducibly

in the space orthogonal to the four OBC AKLT ground

states or the unique PBC AKLT ground state; hence, any

operator jψαihψβj for states jψαi and jψβi orthogonal to

the AKLT ground states is in these algebras. In addition,

we also show that Sztot is a type II operator in the

PBC Ã
AKLT
scar .

In the following, we use the fact that the ground

states of the AKLT are the unique states in the common

kernel of the AKLT projectors fPAKLT
j;jþ1 g and hence are

the only singlets annihilated by Ã
AKLT
scar . For PBC, this is a

unique ground state jGi, discussed in Sec. VA, whereas

for OBC, there are four ground states jGσσ0i, with

σ; σ0 ∈ f↑;↓g denoting the configurations of the emergent

edge spin-1=2’s [26,83].

Note that everywhere below, when we say that an

algebra A annihilates some states, we always exclude the

identity, and it is implicit that this exclusion is a

subalgebra of A. Throughout this appendix, we work

with the total angular momentum states formed by two

spin-1’s on sites j and jþ 1, labeled by the total spin J
and its z component m, and we denote them by

jTJ;mij;jþ1. Explicit expressions for these states in the

spin-1 language are given by

jT2;�2i ≔ j � �i; jT2;�1i ≔
1
ffiffiffi

2
p ðj � 0i þ j0�iÞ; jT2;0i ≔

1
ffiffiffi

6
p ðj þ −i þ 2j00i þ j −þiÞ;

jT1;�1i ≔
1
ffiffiffi

2
p ðj � 0i − j0�iÞ; jT1;0i ≔

1
ffiffiffi

2
p ðj þ −i − j −þiÞ; jT0;0i ≔

1
ffiffiffi

3
p ðj þ −i − j00i þ j −þiÞ: ðB1Þ
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1. OBC AKLT ground states as scars

We start with the bond algebra generated by two-site terms of the form fjT2;mihT2;m0 jj;jþ1
; m;m0 ∈ f−2;−1; 0; 1; 2gg. We

denote the algebra as

ASMobcAKLT
1;2;…;L ≔ ⟪fjT2;mihT2;m0

j;jþ1
j; 1 ≤ j ≤ L − 1g⟫ ¼ ⟪fPAKLT

j;jþ1
hj;jþ1P

AKLT
j;jþ1

; 1 ≤ j ≤ L − 1g⟫; ðB2Þ

where we observe the second equality numerically for

L ≥ 3 and a sufficiently generic choice of hj;jþ1. In other

words, a single generator per bond is, in principle,

sufficient for L ≥ 3, while the analytical arguments below,

for simplicity, assume a larger set of generators per bond

listed in the first expression [131]. There are precisely four

states annihilated by the algebra ASMobcAKLT
1;2;…;L —namely,

the four OBC AKLT ground states fjGσσ0i1;2;…;L; σ; σ
0 ∈

f↑;↓gg—and this follows from the fact that these states

span the common kernel of the projectors fPAKLT
j;jþ1 g, which

is a known fact for any L. (Here and below, when we say

“annihilated by the algebra ASMobcAKLT
1;2;…;L ,” we mean annihi-

lated by the above generators, i.e., excluding the identity.)

Denoting the on-site spin-1 states as jþi, j0i, and j−i, and
using jT2;2ij;jþ1 ¼ jþ;þij;jþ1, it is easy to see that the

projector onto the ferromagnetic state jþ;þ; � � � ;þi ×
hþ;þ; � � � ;þj1;2;…;L belongs toA

SMobcAKLT
1;2;…;L . We then prove

the following Lemma.

Lemma B.1. For any L, the algebra ASMobcAKLT
1;2;…;L acts

irreducibly in the orthogonal complement to the four

OBC AKLT ground states fjGσσ0i1;2;…;Lg. Denoting an

orthonormal basis in this space as fjψαi; α ¼ 1;…;

3L − 4g, this is equivalent to the statement that

jψαihþ;þ; � � � ;þj1;2;…;L ∈ASMobcAKLT
1;2;…;L for all α since all

operators of the form jψαihψβj can be generated from these

and their Hermitian conjugates.

Proof. We proceed by induction; assuming this case

holds for some L ¼ k, we show that it is true for L ¼ kþ 1.

We begin the induction from L ¼ 2, where the span of the

four AKLT ground states fjGσσ0i1;2g is simply the span of

fjT1;−1=0=1i1;2; jT0;0i1;2g. Hence, by definition in Eq. (B2),

ASMobcAKLT
1;2 acts irreducibly in the space spanned by

fjT2;mi1;2; m∈ − 2;−1; 0; 1; 2g orthogonal to fjGσσ0i1;2g.
For induction, we assume the claim holds for L ¼ k or k
consecutive sites, in general. This assumption then implies

that the irreducibility holds for the algebras ASMobcAKLT
1;2;…;k

and ASMobcAKLT
2;3;…;kþ1 . Given ðjψαihþ;þ; � � � ;þjÞ1;2;…;k ∈

ASMobcAKLT
1;2;…;k and similar ket-bras in ASMobcAKLT

2;3;…;kþ1
, we can

then combine these with appropriate jT2;mihT2;2j; m ¼ 2, 1,

0, near the ends to obtain the following ket-bras

from ASMobcAKLT
1;2;…;k;kþ1 :

ðjψαihþ;þ; � � � ;þjÞ1;2;…;kðj þ þihþ;þjÞk;kþ1 ¼ ðjψαi1;2;…;k ⊗ jþikþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

ðjψαihþ;þ; � � � ;þjÞ1;2;…;kð½jþ; 0i þ j0;þi�hþ;þjÞk;kþ1 ¼ ðjψαi1;2;…;k ⊗ j0ikþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

ðjψαihþ;þ; � � � ;þjÞ1;2;…;kð½jþ;−i þ 2j0; 0i þ j−;þi�hþ;þjÞk;kþ1 ¼ ðjψαi1;2;…;k ⊗ j−ikþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

ðjψαihþ;þ; � � � ;þjÞ2;3;…;kþ1ðjþ;þihþ;þjÞ1;2 ¼ ðjþi1 ⊗ jψαi2;3…;kþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

ðjψαihþ;þ; � � � ;þjÞ2;3;…;kþ1ð½jþ; 0i þ j0;þi�hþ;þjÞ1;2 ¼ ðj0i1 ⊗ jψαi2;3;…;kþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

ðjψαihþ;þ; � � � ;þjÞ2;3;…;kþ1ð½jþ;−i þ 2j0; 0i þ j−;þi�hþ;þjÞ1;2 ¼ ðj−i1 ⊗ jψαi2;3;…;kþ1Þhþ;þ; � � � ;þ;þj1;2;…;k;kþ1;

where we have used the fact that ASMobcAKLT
1;…;kþ1 is generated by the algebras ASMobcAKLT

1;…;k and ASMobcAKLT
k;kþ1 or ASMobcAKLT

2;…;kþ1 and

ASMobcAKLT
1;2 . We can now show that kets appearing on the rhs (copied below),

jψαi1;2;…;k ⊗ jþikþ1; jψαi1;2;…;k ⊗ j0ikþ1; jψαi1;2;…;k ⊗ j−ikþ1; ðB3Þ

jþi1 ⊗ jψαi2;3…;kþ1; j0i1 ⊗ jψαi2;3…;kþ1; j−i1 ⊗ jψαi2;3…;kþ1; ðB4Þ

which are not all linearly independent, span the orthogonal complement to the four AKLT ground states on sites

1; 2;…; k; kþ 1. To do so, it is sufficient to show that any state orthogonal to the span of the above states is part of the

AKLT ground-state manifold, i.e., is annihilated by the algebra ASMobcAKLT
1;2;…;k;kþ1 . Consider any jϕi1;2;…;k;kþ1 orthogonal to the

above states, and decompose it as

jϕi1;2;…;k;kþ1 ¼ juþi1;2;…;k ⊗ jþikþ1 þ ju0i1;2;…;k ⊗ j0ikþ1 þ ju−i1;2;…;k ⊗ j−ikþ1: ðB5Þ
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Requiring orthogonality to the states in Eq. (B3), we

conclude that juþ=0=−i1;2;…;k are orthogonal to all

jψαi1;2;…;k, and hence jϕi1;2;…;k;kþ1 is annihilated by

ASMobcAKLT
1;2;…;k . By an identical argument using orthogonality

to the states in Eq. (B4), we conclude that jϕi1;2;…;k;kþ1 is

annihilated by ASMobcAKLT
2;3;…;kþ1 . Since ASMobcAKLT

1;2;…;k;kþ1 is com-

pletely generated by ASMobcAKLT
1;2;…;k and ASMobcAKLT

2;3;…;kþ1 , we

conclude that jϕi1;2;…;k;kþ1 is annihilated by ASMobcAKLT
1;2;…;k;kþ1

and hence must be in the span of the four OBC AKLT

ground states fjGσσ0i1;2;…;kþ1g. This proves that the

states in Eqs. (B3) and (B4) indeed span the orthogonal

complement to the four OBC AKLT ground states. Com-

bining the arguments, this proves the claim for L ¼ kþ 1,

completing the induction and hence proving the claim for

all L. ▪

2. PBC AKLT ground state as a scar

We now extend the proof to show irreducibility of ÃAKLT
scar

for the PBC AKLT ground state. We consider the algebra

A
SMpbcAKLT
1;2;…;L ≔ ⟪fjT2;mihT2;m0

j;jþ1
j; 1 ≤ j ≤ Lg⟫

¼ ⟪fPAKLT
j;jþ1

hj;jþ1P
AKLT
j;jþ1

; 1 ≤ j ≤ Lg⟫; ðB6Þ

where the subscripts are modulo L and we observe the

second equality numerically for L ≥ 3 and a sufficiently

generic choice of hj;jþ1. There is precisely one state

annihilated by (the above generators of) this algebra

A
SMpbcAKLT
1;2;…;k , namely, the unique PBC AKLT ground state

jGi1;2;…;L, and this follows from the fact that it is the unique

state in the common kernel of the projectors

fPAKLT
j;jþ1 ; 1 ≤ j ≤ Lg, which is a known fact for any L. In

the following, we use the fact that the algebra A
SMpbcAKLT
1;2;…;L

is generated by the OBC algebras ASMobcAKLT
1;2;…;L−1;L and

ASMobcAKLT
2;3;…;L;1 .

Lemma B.2. For any L, the algebra A
SMpbcAKLT
1;2;…;L acts

irreducibly in the orthogonal complement to the PBC

AKLT ground state jGi1;2;…;L. Denoting an orthonormal

basis in this space as fjψαi; α ¼ 1;…; 3L − 1g, this

is equivalent to the statement that jψαihþ;þ; � � � ;
þj1;2;…;L ∈A

SMpbcAKLT
1;2;…;L for all α.

Proof. Consider the sites 1; 2;…; L − 1; L as an OBC

system. The corresponding bond algebra isASMobcAKLT
1;2;…;L−1;L and

fjψαi1;2;…;L−1;L; α ¼ 1;…; 3L−4g the orthonormal basis

that spans the orthogonal complement of the four

OBC AKLT states jGσσ0i1;…;L on these L sites. Next, we

consider the sites 2; 3;…; L; 1 as an OBC system and

repeat the process; schematically, we denote this algebra as

ASMobcAKLT
2;3;…;L;1 and the basis as fjψαi2;3;…;L;1g, which are just

some new states fjψ 0
αi1;2;…;L−1;Lg.

Following the proof of Lemma B.1, we can show that

jψαijþ;þ; � � � ;þ;þj1;2;…;L−1;L and jψαihþ;þ; � � � ;þ;

þj2;3;…;L;1 are in the algebras ASMobcAKLT
1;2;…;L−1;L and

ASMobcAKLT
2;3;…;L;1 , and hence are in the algebra A

SMpbcAKLT
1;2;…;L .

Further, note that the “bra” states that appear in these cases

are actually the same, i.e., hþ;þ; � � � ;þ;þj1;2;…;L−1;L ¼
hþ;þ; � � � ;þ;þj2;3;…;L;1; hence, the full bond algebra

contains the operators jψαihþ;þ; � � � ;þ;þj1;2;…;L−1;L

and jψ 0
αihþ;þ; � � � ;þ;þj1;2;…;L−1;L. We now show that

the states fjψαi1;2;…;L−1;L; jψ 0
αi1;2;…;L−1;Lg span the

orthogonal complement to the AKLT ground state jGi.
We show this in a procedure similar to the OBC case, i.e.,

that any state orthogonal to these states must be part of the

ground-state manifold, which, in the PBC case, is simply

jGi. Indeed, consider any jϕi1;2;…;L−1;L orthogonal to

both jψαi1;2;…;L−1;L and jψ 0
αi1;2;…;L−1;L. By the applications

of the results in the OBC case, jϕi1;2;…;L−1;L must be

annihilated by both ASMobcAKLT
1;2;…;L−1;L and ASMobcAKLT

2;3;…;L;1 ; hence, it

must be annihilated by the PBC bond algebra A
SMpbcAKLT
1;2;…;L .

This completes the proof of irreducibility for the

PBC case. ▪

3. Impossibility of writing Sz
tot

as a sum

of strictly local symmetric terms

We now use some known properties of the AKLT ground

states to prove that, in the bond algebra ÃAKLT
scar , Sztot is a type

II symmetric operator as defined in Sec. III D. This finding

follows from the following Lemma, as well as the dis-

cussion in Sec. VA 2 that, because of the DCT, Sztot is in the

algebra Ã
AKLT
scar .

Lemma B.3. In the spin-1 chain, the operator Sztot ¼
P

j S
z
j cannot be written as a sum of strictly local terms of a

range bounded by a finite rmax from the PBC bond algebra

Ã
AKLT
scar of Eq. (19).

Proof. We start with an explicit proof by contradiction

for rmax ¼ 2. Indeed, let us assume that we can write

Sztot ¼ c1þ
X

L

j¼1

aj;m;m0 jT2;mihT2;m0 jj;jþ1
; ðB7Þ

where jT2;mi’s are total angular momentum states on two

spin-1’s as defined in Eq. (B1), and we have used the fact

that ket-bra operators formed from them are the most

general two-site operators that annihilate jGi. We can

immediately set c ¼ 0 since we know that SztotjGi ¼ 0.

We also know that SztotjG↑↑i ¼ jG↑↑i, where jG↑↑i is one
of the OBC AKLT ground states. We use the action of

Sztot on these two states to arrive at a contradiction. We

first recall the well-known MPS structures of the OBC

and PBC AKLT ground states jGσσ0i and jGi, which read

[27,84]
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jGσσ0i ¼
X

fmjgLj¼1

½A½m1�A½m2� � � �A½mL��σσ0 jm1m2 � � �mLi; σ; σ0 ∈ f↑;↓g;

jGi ¼
X

fmjgLj¼1

Tr½A½m1�A½m2� � � �A½mL��jm1m2 � � �mLi; ðB8Þ

where mj ∈ fþ; 0;−g labels the physical indices on site j; σ and σ0 are auxiliary indices that label the emergent

boundary spins of the OBC AKLT state; and fA½mj�g are matrices over the two-dimensional auxiliary space. They read

A½þ� ¼
ffiffiffi

2

3

r

�

0 1

0 0

�

; A½0� ¼ −

ffiffiffi

1

3

r

�

1 0

0 −1

�

; A½−� ¼ −

ffiffiffi

2

3

r

�

0 0

1 0

�

: ðB9Þ

Because of the structure of Eq. (B8), it is easy to see that the condition that the two-site term jT2;mihT2;m0 jj;jþ1
vanishes

on jGi for 1 ≤ j ≤ L implies that it also vanishes on jG↑↑i for 1 ≤ j ≤ L − 1. Hence, all terms in Eq. (B7) with

1 ≤ j ≤ L − 1—i.e., that do not go across the “PBC connection” ½L; 1�—annihilate the OBC state jG↑↑i, and the

assumed Eq. (B7) implies that

ZR ≔
X

m;m0
aL;m;m0 jT2;mihT2;m0 jL;1 ⇒ ZRjG↑↑i ¼ jG↑↑i; ðB10Þ

where we define a “straddling region” R ≔ fL; 1g. In addition, the definition of ZR shows that it vanishes on jGi, i.e.,
ZRjGi ¼ 0. We can then use these conditions and the MPS structures of jG↑↑i and jGi in Eq. (B8) to express

conditions on the action of ZR on states over the region R as follows:

jG↑↑i ¼
X

σ;σ0 ∈ f↑;↓g
jGR

↑↑;σσ0i ⊗ jGR̄
σ0σi ⇒ ZRjGR

↑↑;σσ0i ¼ jGR
↑↑;σσ0i ∀ σ; σ0 ∈ f↑;↓g;

jGi ¼
X

σ;σ0 ∈ f↑;↓g
jGR

σσ0i ⊗ jGR̄
σ0σi ⇒ ZRjGR

σσ0i ¼ 0 ∀ σ; σ0 ∈ f↑;↓g; ðB11Þ

where fjGR
↑↑;σσ0ig and fjGR

σσ0ig are the vectors of the MPS jG↑↑i and jGi over region R with auxiliary indices σ and σ0,

and their forms can be directly deduced from Eq. (B8):

jGR
↑↑;σσ0i ¼

X

fmL;m1g
½A½mL��σ↑½A½m1��↑σ0 jmLm1i; jGR

σσ0i ¼
X

fmL;m1g
½A½mL�A½m1��σσ0 jmLm1i: ðB12Þ

Here, jGR
σσ0i are the standard OBC AKLT ground states over R ¼ fL; 1g; on the other hand, jGR

↑↑;σσ0i are the specific

extractions from jG↑↑i. Additionally, in Eq. (B11), jGR̄
σ0σi are the standard OBC AKLT ground states over

R̄ ¼ f2; 3;…; L − 2; L − 1g, specializing Eq. (B8) to such a region. Note that these “parts” over R and R̄ are not the same

as the Schmidt vectors of the respective wave functions over the region R since they are not guaranteed to be orthogonal;

nevertheless, Eq. (B11) holds due to the linear independence of fjGR̄
σ0σig. Using Eq. (B11), we can then arrive at

hGR
σσ0 jGR

↑↑;ττ0i ¼ hGR
σσ0 jZRjGR

↑↑;ττ0i ¼ 0 ∀ σ; σ0; τ; τ0 ∈ f↑;↓g: ðB13Þ

Equation (B13) is then a contradiction if (at least one

element of) the overlap “matrix” on the lhs is nonzero. This

matrix can straightforwardly be computed for rmax ¼ 2,

where jGR
σσ0i are in the span of jT1;m∈ fþ;0;−gi and jT0;0i on

the two sites R ¼ fL; 1g; it is also straightforward to

extract jGR
↑↑;σσ0i, e.g., jGR

↑↑;↑↑i ¼ ð1=3Þj00iL;1, and this

clearly has a nonzero overlap with jT0;0iL;1. This contra-

diction proves the invalidity of the assumption in Eq. (B7).

We can generalize this proof to arbitrary fixed rmax as

follows. Suppose we write

Sztot ¼ c1þ
X

L

j¼1

X

α

aj;αT
ðrmaxÞ
j;α ; ðB14Þ

where T
ðrmaxÞ
j;α ∈ Ã

AKLT
scar is a strictly local annihilator of jGi

with support contained in ½j; jþ rmax − 1� (modulo L).
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Again, by acting with this on jGi, we conclude c ¼ 0,

and we apply this presumed expression to the OBC ground

state jG↑↑i with Sztot ¼ 1. As a consequence of the MPS

structure of Eq. (B8), the terms fTðrmaxÞ
j;α ; 1 ≤ j ≤

L − rmax þ 1g that do not straddle the PBC link ½L; 1�
annihilate jG↑↑i. Hence, analogous to Eq. (B10), we obtain
(assuming L ≫ rmax)

ZR≔
X

L

j¼L−rmaxþ2

X

α

aj;αT
ðrmaxÞ
j;α ⇒ZRjG↑↑i¼ jG↑↑i; ðB15Þ

where we define a straddling region R ≔ fL − rmax þ 2;
…; L; 1;…; rmax − 1g. Equation (B11) then follows directly
for this new region R, and analogous to Eq. (B12), the

corresponding vectors on the region R are defined as

jGR
↑↑;σσ0i ¼

X

fmj;j∈Rg
½A½mL−rmaxþ2� � � �A½mL��σ↑½A½m1� � � �Armax−1�↑σ0 jmL−rmaxþ2 � � �mLm1 � � �mrmax−1

i;

jGσσ0i ¼
X

fmj;j∈Rg
½A½mL−rmaxþ2� � � �A½mL�A½m1� � � �Armax−1�σσ0 jmL−rmaxþ2 � � �mLm1 � � �mrmax−1

i: ðB16Þ

Equation (B13) then follows and can be shown to be a

contradiction for any finite rmax for L ≫ rmax using

straightforward AKLT transfer matrix calculations. Hence,

we see the invalidity of the assumption of Eq. (B14), thus

completing the proof. ▪

APPENDIX C: BOND ALGEBRA FOR THE

SPIN-1=2 FERROMAGNETIC TOWER AS SCARS

In this appendix, we provide details on the bond algebra

corresponding to the spin-1=2 ferromagnetic tower of states

fjΨnig of Eq. (6) as scars. As discussed in Sec. V B, ideas

from the Shiraishi-Mori formalism can be used to construct

the algebra of Hamiltonians that leave the ferromagnetic

states degenerate, and they are of the form shown in

Eq. (16). Further, we find numerical evidence that gen-

erators with support on three or more sites, e.g., those of the

form of Eq. (21), are necessary to obtain the desired

commutant C̃FMscar. In order to show the irreducibility of this

bond algebra Ã
FM
scar in the orthogonal complement of the

scars fjΨnig, it is convenient to use a simpler expression

involving multiple generators per each three-segment part,

using two-site projectors fPj;jþ1 ¼ jSihSjj;jþ1g that anni-

hilate the ferromagnetic states:

Ã
FM
scar ≔ ⟪fjSihSjj;jþ1 ⊗ jσihσ0jjþ2g;

fjσihσ0jj ⊗ jSihSjjþ1;jþ2g⟫; ðC1Þ

where j ¼ 1; 2;…; L − 2 for L sites, jSik;l ≔ ð1=
ffiffiffi

2
p

Þ ×
ðj↑;↓i − j↓;↑iÞk;l is a spin singlet on sites k and l, and

σ; σ0 ∈ f↑;↓g. To verify the equivalence of the expressions

of Eq. (C1) and those of Eq. (21), it is sufficient to check

that, for L ¼ 4, these generators give the same algebra,

which is indeed the case from numerical experiments for

sufficiently generic hj−1 and hjþ2 in Eq. (21).

1. Proof of irreducibility

We now show that C̃FMscar is the full commutant of the

bond algebra Ã
FM
scar of Eq. (C1) by proving the follow-

ing Lemma.

Lemma C.1. Denoting the bond algebra Ã
FM
scar of

Eq. (C1) on the L-site system 1; 2;…; L as A1;2;…;L, for

any L there is a set of states WL ¼ fjψαi1;2;…;Lg (not

required to be orthonormalized) such that A1;2;…;L ¼
⟪fjψαihψα0 j1;2;…;L; jψαi; jψα0i∈WLg⟫ and any state

orthogonal to WL is annihilated by A1;2;…;L.

Proof. The set WL is constructed such that it also

contains the specific states fj↑;…;↑i1;…;j−1 ⊗ jSij;jþ1 ⊗

j↑;…;↑ijþ2;…;L, j ¼ 1;…; L − 1g. This case is enough to

conclude that A1;2;…;L acts irreducibly in the orthogonal

complement to the ferromagnetic multiplet fðS−totÞnjFig,
jFi ¼ j↑ � � �↑i1;2;…;L, which is precisely the set of

states annihilated by this algebra (which is a well-known

fact for the important projectors involved, namely,

fjSihSjj;jþ1; j ¼ 1;…; L − 1g).
We proceed inductively, similar to the AKLT case

discussed in Appendix B. For L ¼ 3, we take W3 ¼
fjSi1;2 ⊗ j↑i3; j↑i1 ⊗ jSi2;3; jSi1;2 ⊗ j↓i3; j↓i1 ⊗ jSi2;3g,
which are linearly independent and span the space orthogo-

nal to the four ferromagnetic states on the three sites. It is

easy to verify that the corresponding jψαihψα0 j indeed

span A1;2;3.

Proceeding by induction, we suppose the claim is true

for L ¼ k sites. We can take any jψαi1;2;…;k ∈Wk and a

convenient fixed j↑;…;↑i1;…;k−2 ⊗ jSik−1;k ∈Wk (here

using the requirement that the Wk contains the specific

states), so that jψαi1;2;…;kh↑;…;↑j1;…;k−2 ⊗ hSjk−1;k ∈
A1;2;…;k, and then combine these with the generators of

Ã
FM
scar acting on sites k − 1; k; kþ 1 to construct operators

that belong to A1;2;…;k;kþ1:
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jψαi1;2;…;kh↑;…;↑j1;…;k−2 ⊗ hSjk−1;kðjSihSjk−1;k
⊗ jσih↑kþ1jÞ ¼ jψαi1;2;…;k ⊗ jσikþ1h↑;…;↑j1;…;k−2

⊗ hSjk−1;k ⊗ h↑jkþ1: ðC2Þ

Hence, defining (kþ 1)-site states jψ̃α;σi1;2;…;k;kþ1≔

jψαi1;2;…;k⊗ jσikþ1, we have that all ðjψ̃α;σi×
hψ̃α0;σ0 jÞ1;2;…;k;kþ1∈A1;2;…;k;kþ1. We can repeat the same

exercise with the k-site bond algebra A2;…;k;kþ1 containing

jψαi2;…;k;kþ1hSj2;3 ⊗ h↑;…;↑j4;…;kþ1, multiplying on

the right by jσih↑1j ⊗ jSihSj2;3 to obtain elements of

A1;2;…;k;kþ1, which leads us to define (kþ 1)-site states

j ˜̃ψσ;αi1;2;…;k;kþ1 ≔ jσi1 ⊗ jψαi2;…;k;kþ1 to conclude that

all ðj ˜̃ψσ;αih ˜̃ψσ0;α0 jÞ1;2;…;k;kþ1 ∈A1;2;…;k;kþ1.

We now define

Wkþ1 ≔ fjψ̃α;σi1;2;…;k;kþ1g ∪ fj ˜̃ψσ;αi1;2;…;k;kþ1g: ðC3Þ

Note that the two sets being joined here happen to have

common states, e.g., j↑;…;↑i1;…;j−1 ⊗ jSij;jþ1 ⊗

j↑;…;↑ijþ2;…;kþ1, j ¼ 2;…; k − 1, i.e., with the singlet

flanked by some nonzero number of ↑’s on both sides.

Thus, we have the requirement that the Wk contains the

specific states again, and it is also easy to see that the

corresponding requirement will be satisfied for Wkþ1. The

fact that the two sets being joined to form Wkþ1 have at

least one common element (true for k ≥ 3) implies that ket-

bra operators constructed from any pair of states in Wkþ1

belong to A1;2;…;k;kþ1.

It now remains to show that any state orthogonal toWkþ1

is annihilated by A1;2;…;k;kþ1. The argument here is iden-

tical to that used in the AKLT case in Appendix B. Any

jϕi1;2;…;k;kþ1 ¼ ju↑i1;2;…;k ⊗ j↑ikþ1 þ ju↓i1;2;…;k ⊗ j↓ikþ1

orthogonal to Wkþ1 has its k-site parts ju↑i1;2;…;k and

ju↓i1;2;…;k orthogonal to Wk and hence annihilated by

A1;2;…;k, which implies that jϕi1;2;…;k;kþ1 is annihilated by

A1;2;…;k. Similarly, jϕi1;2;…;k;kþ1 can be shown to be

annihilated by A2;…;k;kþ1, which shows that jϕi1;2;…;k;kþ1

is annihilated by A1;2;…;k;kþ1 ¼ ⟪A1;2;…;k;A2;…;k;kþ1⟫.

This finding also implies that the ket-bra operators con-

structed from any pair of states in Wkþ1 in fact span

A1;2;…;k;kþ1, completing the inductive step. ▪

2. Generation of the DMI term

As discussed in Sec. V B, the full PBC DMI term of

Eq. (24) will be generated from the generators of ÃFM
scar due

to the DCT.We now explicitly show that it can be expressed

in terms of the generators of ÃFM
scar in Eq. (C1). We show this

in multiple steps discussed below.

a. Three-site cyclic DMI term from three-site generators

We start with the three-site DMI term, defined as

Dα
j;k;l ≔ ðS⃗j × S⃗kÞ · α̂þ ðS⃗k × S⃗lÞ · α̂þ ðS⃗l × S⃗jÞ · α̂;

ðC4Þ

and express it in terms of the generators of Ã
FM
scar in

Eq. (C1). We first focus on the α̂ ¼ ẑ component and

expand Dz
1;2;3 as

Dz
1;2;3 ¼ Sx1S

y
2 − S

y
1S

x
2 þ Sx2S

y
3 − S

y
2S

x
3 þ Sx3S

y
1 − S

y
3S

x
1

¼ −i

3
½jS12;↑3ih↑1;S23j − jS12;↓3ih↓1;S23j

þ cycl perm� þ H:c: ðC5Þ

The equality between the two lines can be checked, e.g., by

writing out each of them in the ket-bra notation. The second

line can be expressed in terms of spin operators using

jS12;↑3ih↑1;S23j − jS12;↓3ih↓1;S23j
¼ −2jSihSj12ðSz3 þ Sz1ÞjSihSj23

¼ −2

�

1

4
− S⃗1 · S⃗2

�

ðSz3 þ Sz1Þ
�

1

4
− S⃗2 · S⃗3

�

; ðC6Þ

where the first equality can be checked by writing out the

rhs in the ket-bra notation, and we have also used

jSihSjk;l ¼ 1
4
− S⃗k · S⃗l. Further, the terms obtained by

cyclic permutations of the spins can be generated from

the above term by applying two-spin exchanges between

sites 1 and 2 and between sites 2 and 3 [132]. Using

Eq. (C6) and applying cyclic permutations, Eq. (C5) can be

expressed in terms of the generators of ÃFM
scar in Eq. (C1).

Note that Eqs. (C5) and (C6) are for the α̂ ¼ ẑ component.

For the α̂ ¼ x̂ or α̂ ¼ ŷ components, we obtain similar

expressions, with the Szj’s replaced by Sxj ’s or S
y
j ’s,

respectively.

b. A simple set of generators for the bond algebra

We next obtain an alternate set of generators for the bond

algebra Ã
FM
scar by enlarging the algebra ASUð2Þ ¼ ⟪fS⃗j ·

S⃗jþ1g⟫ with three-site DMI terms fDα
j;jþ1;jþ2g within all

contiguous clusters of three sites on a one-dimensional

chain; i.e., we show that

Ã
FM
scar ¼ ⟪fS⃗j · S⃗jþ1g; fDα

j−1;j;jþ1
; α∈ fx; y; zgg⟫: ðC7Þ

As discussed earlier, all the generators shown in Eq. (C7)

can be expressed in terms of generators of ÃFM
scar in Eq. (C1).

To show the converse, we use the identity
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�

1

4
− S⃗1 · S⃗2

�

Dz
1;2;3

�

1

4
− S⃗2 · S⃗3

��

1

4
− S⃗1 · S⃗2

�

¼ ðjSihSjÞ12Dz
1;2;3ðjSihSjÞ23ðjSihSjÞ12 ¼

3i

2
ðjSihSjÞ12 ⊗ σz3; ðC8Þ

where [133]

hSj12Dz
1;2;3jSi23 ¼ −3iðj↑i3h↑j1 − j↓i3h↓j1Þ; hSj23jSi12 ¼ −

1

2
ðj↑i1h↑j3 þ j↓i1h↓j3Þ: ðC9Þ

By considering an equation similar to Eq. (C8) replacing,

e.g.,Dz
→ Dx, we can clearly use the generators in Eq. (C7)

to produce the ones in Eq. (C1), showing the equivalence of

these two sets of generators in Eqs. (C1) and (C8).

Of course, not all the generators in Eq. (C7) are

independent. For example, since the Heisenberg terms

can be used to generate the two-site exchange operators

Pexch
j;k ≔ 2S⃗j · S⃗k þ

1

2
; ðC10Þ

a single three-site DMI term Dα
j;jþ1;jþ2 can be used to

generate any three-site DMI term Dα
j1;j2;j3

using exchanges.

In fact, we also numerically observe that the addition of the

Heisenberg terms is not necessary in the generators of

Eq. (C7); i.e., we observe Ã
FM
scar ¼ ⟪fDα

j−1;j;jþ1
; α∈

fx; y; zgg⟫ for systems of size L ≥ 4. However, we have

not been able to express the Heisenberg term using the DMI

terms in a simple way.

c. Full DMI term from the three-site generators

Finally, we inductively show that the DMI term on any

contiguous k sites can be generated from the generators of

Ã
FM
scar in Eq. (C7), where the k-site DMI terms Dα

j1;…;jk
with

support on an arbitrary set of k sites fj1;…; jkg are

defined as

Dα
j1;…;jk

≔
X

k−1

l¼1

α̂ · ðS⃗jl × S⃗jlþ1
Þ þ α̂ · ðS⃗jk × S⃗j1Þ; α∈ fx; y; zg: ðC11Þ

We first show the generation of the four-site DMI term. Starting from the three-site termsDα
j;jþ1;jþ2 andD

α
jþ1;jþ2;jþ3, we can

generate Dα
j;jþ1;jþ2;jþ3 using the two-site exchange operator Pexch

jþ2;jþ3 [which can be expressed in terms of S⃗jþ2 · S⃗jþ3

according to Eq. (C10)] as

Dα
j;jþ1;jþ3 ¼ Pexch

jþ2;jþ3D
α
j;jþ1;jþ2P

exch
jþ2;jþ3; Dα

j;jþ1;jþ2;jþ3 ¼ Dα
j;jþ1;jþ3 þDα

jþ1;jþ2;jþ3: ðC12Þ

Similarly, we can express the (kþ 1)-site DMI termDα
j;jþ1;…;jþk usingD

α
j;jþ1;…;jþk−1 (which is assumed to be generated by

induction) and the three-site DMI term Dα
jþk−2;jþk−1;jþk as follows:

Dα
j;jþ1;…;jþk−2;jþk ¼ Pexch

jþk−1;jþkD
α
j;jþ1;…;jþk−1P

exch
jþk−1;jþk; Dα

j;jþ1;…;jþk ¼ Dα
j;jþ1;…;jþk−2;jþk þDα

jþk−2;jþk−1;jþk: ðC13Þ

Using this procedure, it is easy to see that “closed-loop” DMI terms of all ranges can be generated, including the full PBC

DMI term Dα
1;…;L, which is the Hamiltonian HDMI of Eq. (24), whose final expression in terms of the generators of ÃFM

scar of

Eq. (C7) reads

HDMI ¼
X

L−2

j¼1

"

Y

L−j−2

k¼1

Pexch
L−k;L−kþ1

#

Dα
j;jþ1;jþ2

"

Y

L−j−2

k¼1

Pexch
L−k;L−kþ1

#

†

; ðC14Þ

where Pexch
j;k is defined in Eq. (C10).

3. Impossibility of writing the full DMI Hamiltonian as a sum of strictly local symmetric terms

Here, we prove the following Lemma.

Lemma C.2. The PBC DMI HamiltonianHα−DMI of Eq. (24) cannot be expressed as a sum of strictly local terms from the

bond algebra ÃFM
scar or, without loss of generality, strictly local terms that annihilate all states in the ferromagnetic multiplet.
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Proof. Consider a product state with a spin texture that makes a complete rotation independent of L, e.g., by an angle of

4π in the Sx − Sy plane, as we go around the chain:

jΨtexi ¼ e
−iq
P

L

j¼1
jSz

j jΨFM;þx̂i; q ¼ 4π

L
; jΨFM;þx̂i ≔ ⨂

j

j →ij; j →i ≔ j↑i þ j↓i
ffiffiffi

2
p : ðC15Þ

The textured state is chosen such that the local contributions to the Hz−DMI have a uniform nonzero value proportional to q
at small q:

hΨtexjSxjS
y
jþ1 − S

y
jS

x
jþ1jΨtexi ¼ sinðqÞ

4
;⇒ hΨtexjHz−DMIjΨtexi ¼ L sinðqÞ

4
→ π for L →∞; ðC16Þ

where we have used the identities

eiφS
z
jSxje

−iφSz
j ¼ cosðφÞSxj − sinðφÞSyj ; eiφS

z
jS

y
je

−iφSz
j ¼ cosðφÞSyj þ sinðφÞSxj ;

h→ jSxj j →i ¼ 1

2
; h→ jSyj j →i ¼ 0: ðC17Þ

Now, suppose there exists a decomposition of the DMI term as Hz−DMI ¼
P

R ĥR, where the sum runs over an extensive

number of strictly local terms ĥR labeled by R, such that each ĥR annihilates the ferromagnetic multiplet and has support

bounded by a fixed number independent of L; we also assume that the norm of each ĥR is bounded by a fixed number

independent of L. Note that below we will also abuse notation and refer to R as a finite region, where hR acts centered

around a site labeled by jR. Under the above assumptions, we will show that the expectation value of the rhs evaluated in

jΨtexi scales as ∼CLq2 for small q ∼ 1=L with some fixed C independent of L. This expectation value vanishes when

L →∞, in contradiction to Eq. (C16). The proof uses the fact that each ĥR annihilates any perfect ferromagnetic state,

which implies that its expectation value in the textured state is bounded by an Oðq2Þ value. Specifically, denoting the

restriction of product states to that region by a subscript R, we have

hΨtexjĥRjΨtexi ¼ hΨtexjRĥRjΨtexiR ¼ hΨ̃FMjRe
iq
P

j0 ∈R
ðj0−jRÞSzj0 ĥRe

−iq
P

j0 ∈R
ðj0−jRÞSzj0 jΨ̃FMiR; ðC18Þ

where jR is some fixed site in the region R, e.g., the site in the middle of the region, and we have defined

jΨ̃FMiR ≔ e
−iqjR

P

j0 ∈R
Sz
j0 jΨFM;þx̂iR ¼ e−iqjRS

z
tot;R jΨFM;þx̂iR; ðC19Þ

where Sztot;R is the total z-spin operator restricted to the region R. Hence, jΨ̃FMi is a uniform ferromagnetic state with spins

pointing in the same direction as spins at site jR in the state jΨtexi; in particular, it is annihilated by ĥR. Furthermore, note

that jj0 − jRj for any j0 ∈R is bounded by the size of R, which is bounded by an L-independent number. Now, consider the

series expansions of the operator in Eq. (C18) in powers of q,

e
iq
P

j0 ∈R
ðj0−jRÞSzj0 ĥRe

−iq
P

j0 ∈R
ðj0−jRÞSzj0 ¼ ĥR þ iq

�

X

j0 ∈R

ðj0 − jRÞSzj0 ; ĥR
�

þOðq2Þ: ðC20Þ

Taking the expectation value of this operator in the state jΨ̃FMi, note that theOðq0Þ andOðq1Þ terms vanish since the state is

annihilated by ĥR. Further, since R is a region containing a fixed number of sites, we expect the series to be convergent, with

the norm of the Oðq2Þ “remainder” bounded by Mq2, where M is an L-independent number (since the norm of ĥR is also

assumed to be bounded by an L-independent number). Hence, jhΨtexjĥRjΨtexij ≤ Mq2 for some L-independent numberM;

then, jhΨtexj
P

R ĥRjΨtexij ≤ CLq2 with some L-independent number C, as claimed earlier, thus completing the proof. ▪

APPENDIX D: BOND ALGEBRA FOR THE AKLT TOWER AS SCARS

In this appendix, we provide details of the bond algebra for the tower of QMBS eigenstates discovered in the AKLT spin

chain, discussed in Sec. V C.
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1. Review of AKLT tower of states

We first provide a review of known results on models that share these QMBS as eigenstates. The one-dimensional AKLT

Hamiltonian is defined as

H
ðϒÞ
AKLT ≔

X

Lϒ

j¼1

PAKLT
j;jþ1 ; ϒ∈ fp; og; PAKLT

j;jþ1 ≔
X

2

m¼−2

ðjT2;mihT2;mjÞj;jþ1; ðD1Þ

where ϒ ¼ p and ϒ ¼ o stand for PBC and OBC, respectively; Lo ¼ L − 1 and Lp ¼ L; the subscripts are modulo L for

PBC; and jTJ;mij;jþ1 are the total angular-momentum states of two spin-1’s, defined in Eq. (B1). Hence, PAKLT
j;jþ1 is the

projector onto the states of total angular momentum 2, whose expression in terms of spin variables is shown in Eq. (18).

Reference [26] solved for a tower of states in the spectrum of H
ðϒÞ
AKLT, which are given by fjψni ≔ ðQ†ÞnjGig for PBC

and fjψn;↑↑i ≔ ðQ†ÞnjG↑↑ig for OBC, where jGi and jG↑↑i are the AKLT ground states for PBC and OBC, respectively,

discussed in Sec. VA. These QMBS eigenstates have the following eigenvalues under H
ðϒÞ
AKLT and Sztot:

H
ðpÞ
AKLTjψni ¼ 2njψni; Sztotjψni ¼ 2njψni;

H
ðoÞ
AKLTjψn;↑↑i ¼ 2njψn;↑↑i; Sztotjψn;↑↑i ¼ ð2nþ 1Þjψn;↑↑i; ðD2Þ

where the spin eigenvalues are a consequence of the operator Q† being a spin-2 raising operator, as shown in Eq. (25).

References [41,49] further showed that a family of nearest-neighbor Hamiltonians with the same set of QMBS for PBC and

OBC is given by

H
ðϒÞ
AKLT-fam ¼

X

j

�

EðTð2;2Þ
j;jþ1 þ T

ð2;1Þ
j;jþ1Þ þ

X

0

l;m¼−2

αl;mðjÞðjT2;lihT2;mjÞj;jþ1

�

; T
ðJ;mÞ
j;jþ1 ≔ ðjTJ;mihTJ;mjÞj;jþ1; ðD3Þ

where fαl;mðjÞg are arbitrary constants. Similar to H
ðϒÞ
AKLT, the QMBS have the eigenvalues f2nEg under H

ðϒÞ
AKLT-fam and

hence form a tower of equally spaced states with spacings 2E. Note that Eq. (D3) reduces to the AKLT model H
ðϒÞ
AKLT of

Eq. (D1) for E ¼ 1 and αl;mðjÞ ¼ δl;m. Further, we can use Eq. (D2) to construct a family of Hamiltonians H̃
ðϒÞ
AKLT-fam for

which the QMBS eigenstates are all degenerate by simply subtracting Sztot times a constant from H
ðϒÞ
AKLT-fam, i.e.,

H̃
ðpÞ
AKLT-fam ≔ H

ðpÞ
AKLT-fam − ESztot; H̃

ðoÞ
AKLT-fam ≔ H

ðoÞ
AKLT-fam − EðSztot − 1Þ: ðD4Þ

When restricted to the AKLT case with PBC, Eq. (D4)

reduces to Eq. (28).

2. Bond algebra for the PBC AKLT QMBS

We now provide some details on the bond algebra for the

QMBS of the PBC AKLT model discussed in Sec. V C. To

do so, we first need to find an appropriate set of projectors

such that the AKLT QMBS fjψni ¼ ðQ†ÞnjGig completely

span their common kernel.

a. Two-site projectors

We start by constructing nearest-neighbor projectors that

are required to vanish on the states fjψnig, which can be

computed by performing a Schmidt decomposition of the

states over the two sites fj; jþ 1g (i.e., with the sub-

systems being the two sites and the rest of the system),

computing the linear span of these Schmidt states, and

constructing a projector out of that subspace. For the AKLT

tower of states, this process can be worked out analytically

in the MPS formalism, starting with the MPS representa-

tion of the ground state jGi shown in Eq. (B8); e.g., we can
deduce that the linear span of Schmidt states over sites

fj; jþ 1g is given by

Sj;jþ1 ¼ span

�

X

mj;mjþ1

X

τ

ðA½mj�ÞστðA½mjþ1�Þτσ0 jmjmjþ1i
�

;

ðD5Þ

where 1 ≤ σ; σ0; τ ≤ 2, and ðA½mj�Þστ denotes the matrix

elements of A½mj�. Projectors that vanish on this subspace

can then be constructed directly, which gives PAKLT as

discussed in Sec. VA and Appendix B; this result is

equivalent to the parent Hamiltonian construction discussed

in Refs. [49,87,88].
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We can repeat the exercise for the AKLT tower of states with the observation that the entire QMBS subspace fjψnig can
be represented as the span of a one-parameter family of MPS, i.e.,

spanfjψnig ¼ spanfeξQ† jGig ¼ span

�

Y

j

eξð−1Þ
jðSþ

j
Þ2 jGi

�

¼ span

�

X

fmjg
Tr½B½m1�B½m2� � � �B½mL��jm1…mLi

�

;

B½mj� ≔
X

nj

½eξð−1ÞjðSþj Þ2 �mj;nj
A½nj� ¼ A½mj� þ ð−1Þjξ

X

nj

½ðSþj Þ2�mj;nj
A½nj�; mj; nj ∈ fþ; 0;−g; ðD6Þ

where ½•�mj;nj
denotes the matrix elements of •. The linear span of all the Schmidt states over fj; jþ 1g in the states of

Eq. (D6) is the span of the two-site MPS, i.e.,

Sj;jþ1 ¼ spanξ

�

X

mj;mjþ1

X

τ

ðB½mj�ÞστðB½mjþ1�Þτσ0 jmjmjþ1i
�

; ðD7Þ

where the subscript ξ indicates that the span is taken over all values of ξ, which, in this case, equals the span of vectors that

appear in the above expression with coefficients ξ0 and ξ1 (none of the higher powers appear in the expansion). It is easy to

show that this is precisely the span of the OBC towers of QMBS on the two sites, i.e.,

Sj;jþ1 ≔ spanfjψn;σσ0ij;jþ1; σ; σ0 ∈ f↑;↓gg; jψn;σσ0ij;jþ1 ≔
1

N n

�

X

jþ1

k¼j

ð−1ÞkðSþk Þ2
�n

jGσσ0ij;jþ1; ðD8Þ

where fjGσσ0ij;jþ1g are the four OBC AKLT ground states

on the two sites fj; jþ 1g; this expression is a consequence
of the raising operatorQ† being a sum of on-site terms. The

projectors out of the subspace Sj;jþ1 then turn out to have

the compact expression [41,49]

Πj;jþ1 ¼
X

0

m¼−2

T
ð2;mÞ
j;jþ1; ðD9Þ

where fTðJ;mÞ
j;jþ1g are projectors onto total angular-momen-

tum states, defined in Eq. (D3). The common kernel of

these projectors can be computed using the efficient

methods discussed in Refs. [73,75], and for small system

sizes, we numerically observe that its dimension grows as

dim kerðfΠj;jþ1gÞ ¼ 2L þ 2 for even L: ðD10Þ

The exponential growth with system size implies that the

projectors vanish on many more states than fjψnig; hence,

these are not the desired projectors. This fact can be easily

seen by noting that any product state containing only the

“−” or “0” spin-1 on-site states and such that no two 0’s are

next to each other is annihilated by the above projectors;

however, we do not have an analytical argument for the

precise count of all states in the common kernel including

nonproduct states.

b. Three-site projectors

We hence look for three-site projectors fΠ½j;jþ2�g that

vanish on the states fjψnig. These projectors can be

computed in a way similar to the two-site projectors by

studying the Schmidt decomposition of fjψnig over the

three sites fj; jþ 1; jþ 2g and the linear span of the

Schmidt states S½j;jþ2�. This computation can be worked out

in the MPS language using the same method as described

for the two-site projectors, and similar to Eq. (D8), it can be

shown to be the subspace spanned by the OBC AKLT

towers of QMBS on the three sites, i.e.,

S½j;jþ2� ≔ spanfjψn;σσ0i½j;jþ2�; σ; σ0 ∈ f↑;↓gg; jψn;σσ0i½j;jþ2� ≔
1

N n

 

X

jþ2

k¼j

ð−1ÞkðSþk Þ2
!

n

jGσσ0i½j;jþ2�; ðD11Þ

which is the span of the four towers of states originating from the four three-site ground states. In the spin language, we have

S½j;jþ2� ¼ spanfjsai½j;jþ2�; a∈ f1;…; 8gg, where the (unnormalized) states are defined as
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js1i ≔ jJ ¼ 1; Jz ¼ 1i ¼ −j þ 00i þ j0þ 0i − j00þi þ 2j þ −þi;
js2i ≔ jJ ¼ 1; Jz ¼ 0i ¼ −j þ 0−i þ j −þ0i þ j0þ −i − j − 0þi − j000i þ j0 −þi þ j þ −0i;
js3i ≔ jJ ¼ 1; Jz ¼ −1i ¼ −j − 00i þ j0 − 0i − j00−i þ 2j −þ−i;
js4i ≔ jJ ¼ 0; Jz ¼ 0i ¼ j þ 0−i − j þ −0i − j0þ −i þ j0 −þi þ j −þ0i − j − 0þi;
js5i ≔ jJ ¼ 3; Jz ¼ 3i ¼ j þ þþi;
js6i ≔ jJ ¼ 2; Jz ¼ 2i ¼ j þ þ0i − j0þþi;
js7i ≔ jJ ¼ ×; Jz ¼ 2i ¼ j þ 0þi;
js8i ≔ jJ ¼ ×; Jz ¼ 1i ¼ −j þ 00i − j0þ 0i − j00þi þ 2j þ þ−i þ 2j −þþi; ðD12Þ

where J and Jz denote the total angular-momentum

quantum numbers of the spin-1’s on three consecutive

sites. The first four states js1i–js4i are the OBC AKLT

ground states on the three sites, and the remaining states

js5i–js8i are obtained by acting the raising operator Q† on

the four ground states. Note that unlike the other states, js7i
and js8i are not eigenstates of the total spin angular

momentum on the three sites; further, js1i and js8i are

not mutually orthogonal. Then,Π½j;jþ2� is the projector onto
the subspace orthogonal to fjsai; a∈ f1;…; 8gg on the

three sites fj; jþ 1; jþ 2g.
Similar to the two-site case, the kernel of these projectors

fΠ½j;jþ2�g can be computed using efficient methods dis-

cussed in Refs. [73,75]. Here, we find that up to fairly large

system sizes, the dimension of the common kernel is

dim kerðfΠ½j;jþ2�gÞ ¼
(

L
2
þ 3 if L ¼ 2 × even

L
2
þ 1 if L ¼ 2 × odd;

ðD13Þ

and in Appendix E 3, we analytically prove an upper bound

on the dimension of this kernel. For system sizes

L ¼ 2 × odd, the common kernel is precisely spanned

by the states of the tower fjψnig and the spin-1 ferromag-

netic state given by

jFi ≔ jþ þ � � � þ þi: ðD14Þ

Note that we count the ferromagnetic state separately since

it is not part of the tower defined by Eq. (25) for these

system sizes, i.e., ðQ†ÞL=2jGi ¼ 0 for L=2 odd, so the

tower does not reach the ferromagnetic state. For system

sizes L ¼ 2 × even, the kernel is larger than the span of the

tower of states fjψnig (which now includes the ferromag-

netic state jFi) by two states. For system sizes L ≤ 8, we

numerically determine that these are states with spin Sz ¼
L − 1 and momenta k ¼ �π=2, which exist only for these

system sizes. We can immediately solve for these states

using this information, and we obtain

j1ki ¼
X

L

j¼1

eikjS−j jFi; k∈

�

−
π

2
;
π

2

�

: ðD15Þ

It is easy to verify that they are annihilated by the projectors

Π½j;jþ2� or, equivalently, by any three-site state orthogonal

to the fjsjig in Eq. (D12). Note that these states are the

same as the j1ki eigenstates of the AKLT model, solved for

in Ref. [26]. Further, we numerically observe that these

extra states are not eliminated from the common kernel

even if we consider four-site projectors fΠ½j;jþ3�g that are

required to annihilate fjψnig.
In general, we can conclude that the common kernel of

fΠ½j;jþ2�g is spanned by fjψnig and fjϕmig, all of which
are eigenstates of the PBC AKLT model. This form of the

kernel motivates the construction of the PBC bond algebra

of Eq. (26), discussed in Sec. V C.

3. Bond algebra for the OBC AKLT QMBS

Moving on to the OBC AKLT model, we again wish to

construct a set of local projectors such that the common

kernel is completely spanned by the tower of

states fjψn;↑↑ig.

a. Two-site projectors

Similar to the PBC case, we can start with nearest-

neighbor projectors and look for two-site projectors that

annihilate the tower. Using the same procedure, i.e.,

constructing the subspace spanned by the Schmidt states

of fjψn;↑↑ig, we obtain the same set of projectors fΠj;jþ1g
as Eq. (D9) in the bulk of the system. Similar to the PBC

case, the common kernel of these projectors for OBC also

grows exponentially with system size:

dim kerðfΠj;jþ1gÞ ¼ 3 × 2L−1; ðD16Þ

and the exponential growth can be understood using similar

arguments as in the PBC case. Note that, strictly speaking,

the projectors on the boundary should be chosen differently

if we require that the kernel only contains the tower
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fjψn;↑↑ig and not the towers jψn;σσ0i. However, we observe,
and it is easy to show, that the choice of the boundary

projectors does not affect the exponential nature of the

scaling of the kernel dimension with system size. For

example, if we include the two-site boundary projectors

Π
ðlÞ
1;2 and Π

ðrÞ
L−1;L that we discuss below in the next section,

we find that dim kerðΠðlÞ
1;2; fΠj;jþ1g;ΠðrÞ

L−1;LÞ ¼ 6 × 2L−4.

b. Three-site bulk projectors + two-site

boundary projectors

Hence, we move on to three-site projectors. We again

find the same set of projectors fΠ½j;jþ2�g in the bulk of the

system as the PBC case. The common kernel of these

projectors can be computed numerically, and we find that

dim kerðfΠ½j;jþ2�gÞ ¼ 2Lþ 2; ðD17Þ

which was also observed in Ref. [75]. In Appendix E 1, we

analytically prove an upper bound on the dimension of this

kernel, and it appears that the kernel is spanned completely

by fjψn;σσ0ig, i.e., the four OBC towers of states and

possibly a few extra states such as jFi that might not be part

of the towers for certain system sizes. Following the ideas

discussed in Sec. V C, this case actually implies the

existence of a bond and commutant algebra pair,

Ãscar ¼ ⟪fΠ½j;jþ2�h½j;jþ2�Π½j;jþ2�g⟫; C̃scar ¼ ⟪fjψn;σσ0ihψm;ττ0 jg⟫; σ; σ0; τ; τ0 ∈ f↑; ↓g; ðD18Þ

for a generic choice of h½j;jþ2�.
In order to limit the kernel to only one of the towers fjψn;↑↑ig, we need additional projectors acting on the boundaries.

We can start by adding on-site projectors ðj−ih−jÞ1 and ðj−ih−jÞL to the list of three-site projectors fΠ½j;jþ2�g in order to

“enforce” only the tower fjψn;↑↑ig to constitute the common kernel. However, we numerically find that some states from

the other towers survive; i.e., they are annihilated by the edge projectors. These states are not eigenstates of the OBC AKLT

model (for which, as mentioned previously, only states in the tower fjψn;↑↑ig are eigenstates, while the other three towers

are generally not eigenstates).

We then construct left and right two-site boundary projectors and require them to vanish on the towers of states jψn;↑↑i.
These projectors are, respectively, the projectors out of the linear span of the Schmidt states over the sites f1; 2g and over the
sites fL − 1; Lg, and the corresponding subspaces are spanned by the three (unnormalized) states fjlai1;2; a ¼ 1; 2; 3g and

fjraiL−1;L; a ¼ 1; 2; 3g, defined as

jl1i ≔ j þ 0i − j0þi; jl2i ¼ j þ −i − j00i; jl3i ≔ j þ þi;
jr1i ≔ j þ 0i − j0þi; jr2i ¼ j −þi − j00i; jr3i ≔ j þ þi: ðD19Þ

Referring to the left and right projectors out of the above subspaces asΠ
ðlÞ
1;2 andΠ

ðrÞ
L−1;L, respectively, we numerically observe

that the dimension of the common kernel of the projectors fΠðlÞ
1;2; fΠ½j;jþ2�g;ΠðrÞ

L−1;Lg is given by

dim kerðΠðlÞ
1;2; fΠ½j;jþ2�g;ΠðrÞ

L−1;LÞ ¼
(

L
2
þ 1 if L is even

Lþ1
2

if L is odd;
ðD20Þ

and in Appendix E 2, we analytically prove an upper bound on the dimension of this kernel. We also numerically verify that

this kernel is completely spanned by fjψn;↑↑ig for odd system sizes and by fjψn;↑↑ig and jFi (the ferromagnetic state) for

even system sizes, all of which are eigenstates of the OBC AKLT model. This form of the kernel motivates the construction

of the OBC bond algebra given by

Ã
ðoÞ
scar ¼ ⟪Π

ðlÞ
1;2h

ðlÞ
½1�Π

ðlÞ
1;2; fΠ½j;jþ2�h½j�Π½j;jþ2�g;ΠðrÞ

L−1;Lh
ðrÞ
½L�Π

ðrÞ
L−1;L⟫; C̃

ðoÞ
scar ¼ ⟪fjψn;↑↑ihψm;↑↑jg⟫; ðD21Þ

where h
ðlÞ
½1� , h½j�, h

ðrÞ
½L� are sufficiently generic operators with support in the vicinity of sites indicated in the subscripts.

APPENDIX E: SOME ANALYTICAL RESULTS ON THE SINGLETS

OF THE AKLT TOWER BOND ALGEBRAS

Here, we collect some analytical results on the singlets of the bond algebras described in Sec. V C and Appendix D, more

specifically, upper bounds on the number of states annihilated by the Shiraishi-Mori projectors involved in the constructions

of the bond algebras.
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1. Three-site bulk projectors with OBC

Consider states annihilated by the projectors fΠ½j;jþ2�, j ¼ 1;…; L − 2g in OBC. As discussed in Appendix D 2, each

Π½j;jþ2� projects onto the subspace orthogonal to fjsai½j;jþ2�; a∈ f1;…; 8gg of Eq. (D12); it is easy to check that this

subspace is spanned by the following 19 states fjuai½j;jþ2�; a∈ f1;…; 19gg:

ju1i ≔ j − −−i; ju2i ≔ j0 − −i; ju3i ≔ j − 0−i; ju4i ≔ j − −0i; ju5i ≔ j þ −−i; ju6i ≔ j − −þi;
ju7i ≔ j − 00i þ j0 − 0i; ju8i ≔ j00−i þ j0 − 0i; ju9i ≔ j − 0þi þ j0 −þi; ju10i ≔ j þ 0−i þ j þ −0i;
ju11i ≔ j00þi − j þ 00i; ju12i ≔ j þ þ−i − j −þþi; ju13i ≔ j þ þ0i þ j0þþi;
ju14i ≔ j0 −þi − j −þ0i; ju15i ≔ j0þ −i − j þ −0i; ju16i ≔ j −þ−i − 2j0 − 0i;
ju17i ≔ j þ −0i þ j −þ0i þ 2j000i; ju18i ≔ j þ −þi þ j −þþi þ 2j00þi; ju19i ≔ 2j0þ 0i þ j þ þ−i − j þ −þi:

ðE1Þ

Note that not all of the states are normalized, nor are all

of them mutually orthogonal; however, they are linearly

independent and span the desired subspace. Below, we

require the annihilation by projectors onto each of these

states to derive conditions on the states in the common

kernel; we find that the two-site projectors jT2;mihT2;

mjj;jþ1; m∈ f−2;−1; 0g, defined in Eq. (B1), can be ex-

pressed in terms of ket-bra operators of the form

fjuaihubjg, which simplifies some of the analysis.

Requiring the annihilation of jΨi byΠ½j;jþ2� is equivalent
to requiring annihilation by projectors fjuahuaj½j;jþ2�; a∈
f1;…; 19gg. Then, we consider expansion in the com-

putational basis, jΨi ¼PfmjgΨðm1; m2;…; mLÞjm1; m2;

…; mLi. Requiring annihilation by fjuaihuaj; a∈
f1; 2; 4; 5; 6gg is equivalent to

Ψð…;−;−;…Þ ¼ 0 ðE2Þ

for any location along the chain of the two consecutive sites

hosting a “−−” pattern somewhere in the chain, with any

configuration on the rest of the chain marked with dots. This

case is equivalent to the condition of annihilation by two-site

fj − −ih− − jj;jþ1g, and it is easy to show that these two-site

projectors jT2;−2ihT2;−2jj;jþ1
can be expressed in terms of

the three-site ket-bra operators fjuaihubj½j;jþ2�; a; b∈
f1; 2; 4; 5; 6gg.
Further requiring annihilation by fjuaihuaj; a∈

f3; 7; 8; 9; 10gg, combined with the previous conditions

from ju2ihu2j and ju4ihu4j, gives the condition

Ψð…;−; 0;…Þ ¼ −Ψð…; 0;−;…Þ ðE3Þ

for any location of the two consecutive sites, which again

reflects the fact that we can express the two-site projectors

fjT2;−1ihT2;−1jj;jþ1
g in terms of the corresponding three-

site ket-bra operators.

Further requiring annihilation by fjuaihuaj; a∈
f11; 12; 13; 14; 15; 16gg produces three-site conditions,

Ψð…; 0; 0;þ;…Þ ¼ Ψð…;þ; 0; 0;…Þ; ðE4Þ

Ψð…;þ;þ;−;…Þ ¼ Ψð…;−;þ;þ;…Þ; ðE5Þ

Ψð…;þ;þ; 0;…Þ ¼ −Ψð…; 0;þ;þ;…Þ; ðE6Þ

Ψð…; 0;−;þ;…Þ ¼ Ψð…;−;þ; 0;…Þ; ðE7Þ

Ψð…; 0;þ;−;…Þ ¼ Ψð…;þ;−; 0;…Þ; ðE8Þ

Ψð…;−;þ;−;…Þ ¼ 2Ψð…; 0;−; 0;…Þ: ðE9Þ

Further requiring annihilation by ju17ihu17j and

ju18ihu18j, combined with the previous conditions from

ju16ihu16j and ju8ihu8j, gives the condition

Ψð…;þ;−;…Þ þ Ψð…;−;þ;…Þ þ 2Ψð…; 0; 0;…Þ ¼ 0:

ðE10Þ

This two-site condition again reflects the idea that we can

express the two-site projectors fjT2;0ihT2;0jj;jþ1
g in terms

of the corresponding three-site ket-bra operators. Finally,

requiring annihilation by ju19ihu19j gives the condition

2Ψð…; 0;þ; 0;…Þ þ Ψð…;þ;þ;−;…Þ
−Ψð…;þ;−;þ…Þ ¼ 0: ðE11Þ

For the most part, we will be using conditions Eqs. (E3)–

(E9), which specifically relate the amplitudes on two

configurations related by a simple “local move” that is

easy to read off for each condition. In particular, we have

moves that exchange nearest-neighbor “−” and 0; hop 00

past aþ; hopþþ past a “−” or a 0; hop 0 past a −þ orþ−;

and relate −þ − and 0 − 0. Our strategy below is to use

these moves to relate the amplitude on any given configu-

ration (a.k.a. a product state in the computational basis,

often referred to simply as “state” below) to the amplitudes
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on some specific “reference” configurations and count the

number of independent reference configurations. For the

OBC chain, we will prove the following Lemma.

Lemma E.1. For jΨi annihilated by fΠ½j;jþ2�; j ¼ 1;…;
L − 2g, Ψðm1; m2;…; mLÞ for any jm1; m2;…; mLi can be

related to amplitudes on states in the following three families:

(i) j−; 0; 0;…; 0; 0; 0i, jþ;−; 0;…; 0; 0; 0i, jþ;þ;
−;…; 0; 0; 0i, …, jþ;þ;þ; � � � ;þ;−; 0i, jþ;þ;þ;
� � � ;þ;þ;−i;

(ii) j−;þ; 0;…; 0; 0; 0i, jþ;−;þ;…; 0; 0; 0i, …,

jþ;þ;þ;…;−;þ; 0i, jþ;þ;þ; � � � ;þ;−;þi;
(iii) jþ;þ;þ; � � � ;þ;þ;þi, jþ;þ;þ; � � � ;þ;þ; 0i,

jþ;þ;þ;
� � � ;þ; 0;þi.

There are L states in the first family, L − 1 states in the

second family, and three states in the third family, for a

total of 2Lþ 2 states; hence, dimkerðfΠ½j;jþ2�gÞ ≤ 2Lþ 2

in OBC.

Proof. Consider first the case where at least one

mj ¼ −1. In the following analysis, we recall that having

a configuration −− anywhere along the chain immediately

implies that the amplitude is zero due to Eq. (E2); hence,

the amplitude of any configuration that can be “connected”

to a configuration with −− is also zero, and we implicitly

consider only cases where this combination never occurs.

Using the moves mþþ → þþm for m∈ f−; 0g, and
00m → m00 for m∈ f−;þg, we can push all instances of

þþ to the left and all instances of 00 to the right and relate the

original configuration to a configuration of the form

þ � � � þ ½singletons�0…0, where, for each site in the middle

“singletons” region, the state on the site differs from those of

its neighbors, and we have used the fact that −− cannot

appear.

In the singletons region, we then try to push all 0’s as far

to the right as possible via moves 0− → −0 [Eq. (E3)], 0 −

þ → −þ 0 [Eq. (E7)], and 0þ −→ þ − 0 [Eq. (E8)],

“cleaning up” any instances of þþ and 00 that may occur

in the process by pushing these to the left or to the right

boundary of the singletons region, thus shrinking it. We

perform all these moves until no such moves are possible,

obtaining a new (possibly smaller) singleton region. We can

then argue that the configuration in the singleton region

must reach the form ½−þ −þ…ð−or þÞ0þ 0þ…0þ�,
recalling that we started with the assumption that there must

be at least one − state in the region while the rest of the

pattern can, in principle, be empty [134].

We now show that we can further “simplify” the singleton

region by application of some of the previous moves as well

as the moves −0 → 0− or −þ 0 → 0 −þ moving 0

temporarily to the left. Specifically, we can perform the

following moves at the left boundary of the 0þ 0þ � � �
segment inside the singleton region: −0þ 0þ →
0 −þ0þ→ −þ 00þ → −þþ00→ þþ −00 or −þ
0þ 0þ → 0 −þþ 0þ → 0þþ − 0þ → þþ 0 − 0þ →
þþ 00 −þ → þþ −þ 00. We can follow this method by

again pushing the leftmost þþ to the left and the rightmost

00 to the right, effectively reducing the size of the0þ 0þ � � �
segment (and hence the singleton region) by4.After repeated

applications of these steps, and a few extra similar steps if the

original size of the segment 0þ 0þ � � � was 4nþ 2, we

can “simplify” the singleton region to the form

½−þ −þ…ð−or þÞ�. Note that it is crucial to have at least
one − to facilitate the required moves to bring the singleton

region to this form.

Finally, we can further reduce the size of the singletons

region using moves −þ −→ 0 − 0 → −00 [Eq. (E9) fol-

lowed by Eq. (E3)] until there is a single − remaining in the

singleton region. At this point, we have connected the

amplitude of the original configuration to the amplitude on

one of the states in family (i) or (ii), and this completes the

analysis of configurations with at least one mj ¼ −1.

What remains is to consider special cases where there are

no − states among the mj’s. If there are at least two 0’s, we

can move any þþ intervening between them and bring the

two 0’s to be either nearest neighbors 00 or next-nearest

neighbors 0þ 0. In the first case, we can use Eq. (E10), and

in the second case, Eq. (E11), to relate the amplitude to those

on states with at least one −, which are presumed to already

be fixed by the preceding construction by amplitudes on the

states in family (i) or (ii). Finally, if there are no 0’s or there is

precisely one 0, we can moveþþ’s and relate such states to

the states in family (iii), which completes the proof of the

claim. For this family, we can, in fact, write down the three

corresponding linearly independent states in the common

kernel:

jiii0i ≔ jFi ¼ jþ;þ; � � � ;þi;
jiii1i ≔ ðS−1 − S−3 þ S−

5
− S−7 þ…ÞjFi;

jiii2i ≔ ðS−2 − S−4 þ S−6 − S−8 þ…ÞjFi; ðE12Þ

where the exhibited sums run as long as they stay within the

OBCchain. To establish the fact that these states are indeed in

the common kernel, the only nontrivial case to check is the

annihilation by j…ihu13j, which is simple to see.

The consideration of these cases completes the proof of

the Lemma. ▪

Some remarks are in order. The above claim upper

bounds the dimension of the common kernel of fΠ½j;jþ2�g
in OBC by 2Lþ 2, and the numerical study summarized in

Appendix D 3 [see Eq. (D17)] shows that this is, in fact, the

exact answer. However, we do not have a direct analytical

argument other than noting that the count basically matches

the naive count of the states in the four AKLT towers in

OBC, up to a few states for certain system sizes. One

challenge is that a given configuration may be connected to

reference configurations by multiple paths (i.e., sequences

of moves), and we have to assure that the amplitude

evaluated along each path is independent of the path.

Specifically, Eqs. (E3) and (E6) contain a minus sign when
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relating the amplitudes, while Eq. (E9) contains a factor

of 2. While in the latter case we can see path independence

by relating the factor of 2 to the change in N0 by 2, tying

this to the configuration property independent of the path

taken, it is not clear how to do this in the former cases.

Nevertheless, we can make the following simple obser-

vations. The states in family (i) have distinct Sztot taking
values −1; 0; 1;…; L − 3; L − 2, while the states in family

(ii) have distinct Sztot taking values 0; 1;…; L − 3; L − 2.

All the moves considered preserve Sztot; hence, the ampli-

tudes of states in these families with distinct Sztot should be

independent. Furthermore, states in families (i) and (ii) with

the same Sztot cannot be connected by the moves in

Eqs. (E3)–(E9): Indeed, it is easy to see that these moves

preserve the parity of the number of þ’s to the right of the

rightmost −. Hence, we do not need to worry about

connections under such moves between any states in

families (i) and (ii), only about possible “cycles” involving

one such state at a time. We are also still concerned with

whether Eqs. (E10) and (E11), together with cycles, may

further constrain the amplitudes for the two families; again,

we do not attempt full analytic proofs but are content with the

obtained upper bound that agrees with the numerical results.

In any case, the numerical study provides the definite answer

for the size of the common kernel and its relation to the AKLT

towers and any of the few extra states.

2. Three-site bulk projectors and two-site boundary

projectors with OBC

We can also see how the two-site boundary projectors

added in Appendix D 3 reduce the size of the kernel; see

Eq. (D20). Six states orthogonal to fjlai1;2; a∈ f1; 2; 3gg
of Eq. (D19) are fjvbi1;2; b∈ f1;…; 6gg given by

jv1i ≔ j − −i; jv2i ≔ j − 0i; jv3i ≔ j0−i; jv4i ≔ j −þi; jv5i ≔ j þ 0i þ j0þi; jv6i ≔ j þ −i þ j00i; ðE13Þ

and annihilation by Π
ðlÞ
1;2 is equivalent to annihilation by all jvbihvbj1;2. Similarly, six states orthogonal to

fjraiL−1;L; a∈ f1; 2; 3gg of Eq. (D19) are fjwbiL−1;L; b∈ f1;…; 6gg given by

jw1i≔ j−−i; jw2i≔ j− 0i; jw3i≔ j0−i; jw4i≔ j þ−i; jw5i≔ j þ 0i þ j0þi; jw6i≔ j−þiþ j00i; ðE14Þ

and annihilation by Π
ðrÞ
L−1;L is equivalent to annihilation by

all jvbihwbjL−1;L.
Additionally, we consider requiring annihilation by these

projectors for each of the three families in Lemma E.1.

Starting first with family (i), requiring annihilation by

jw2ihw2jL−1;L and jw4ihw4jL−1;L, and implementing the

“moves” discussed in Appendix E 1, we find that the
amplitude on any state in this family with at least one þ
must be zero for any L since any such state can be related to
a state with either jw2i or jw4i on sites fL − 1; Lg by

pushing 00 units to the left and hence must have zero

amplitude. For L even, this also includes the state with no
þ’s, i.e., the very first of the listed states in family (i),

while for L odd, we can add requiring annihilation by
jw3ihw3jL−1;L to conclude that the amplitude on this state is

also zero. Thus, in either case, family (i) does not survive

the addition of these boundary projectors.

We now consider family (ii). Requiring annihilation by

jv4ihv4j1;2 gives the condition that the amplitude must be

zero for each state in this family, where the − is located on

an odd site (labeling the sites 1; 2;…; L) and we recall that

the amplitudes on configurations connected by movingþþ
units are related. This process eliminates L=2 and ðLþ
1Þ=2 states from family (ii) for L even and odd, respec-

tively, leaving at most L=2 − 1 and ðL − 3Þ=2 independent

nonzero amplitudes for L even and odd, respectively.

Finally, we consider family (iii). Adding the requirement

of annihilation by jw5ihw5jL−1;L relates the amplitudes of

the last two states in this family, thus leaving at most two

independent amplitudes.

Putting everything together, we have at most ðL=2þ 1Þ
independent amplitudes for L even and ðLþ 1Þ=2 inde-

pendent amplitudes for L odd. This finding matches the

result of the numerical study in Appendix D 3; see

Eq. (D20). Again, for the same reason as before, we do

not have a full direct proof, and we cannot exclude the

possibility that different amplitudes acquired along differ-

ent paths leading to the same reference states would force

some of the amplitudes in family (ii) to be zero. However,

an indirect argument is that this count matches the count of

the states in the AKLT tower fjψn;↑↑ig, which we know are

indeed annihilated by these projectors.

3. Three-site bulk projectors with PBC

Here, we start with the bulk OBC analysis in

Appendix E 1 leading to the three families in Lemma

E.1 and add the requirement of annihilation by Π½j;jþ2� with
j ¼ L − 1 and j ¼ L, with identifications Lþ 1≡ 1;

Lþ 2≡ 2, i.e., going across the PBC connection between

the sites L and 1. Thus, we have the same requirements, Ψ

in Eqs. (E2)–(E11); however, now the exhibited two-site or

three-site locations can happen anywhere on the circle

formed by the PBC chain, and the amplitudes on configu-

rations can also be related by local moves that go across the

PBC connection; hence, we can reduce the number of
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independent amplitudes using the extra moves, as we will

now describe. Throughout, we assume L is even, which is

required for the PBC tower of states to exist.

Consider first family (iii). The PBC makes no difference

for the ferromagnetic configuration jFi, which is trivially

annihilated by all juaihuaj½j;jþ2� on any three sites. For the

other two reference configurations, the corresponding OBC

constructions of eigenstates in Eq. (E12), states jiii1i and
jiii2i, can nicely fit in the PBC if L ¼ 4n, and they form the

j1k¼�π=2i states of Eq. (D15); thus, we have two more states

in the common kernel for such L. On the other hand, if

L ¼ 4nþ 2, states jiii1i and jiii2i in Eq. (E12) do not “fit”

in the PBC, and we can show that, for any jΨi in the

common kernel, its amplitudes on these configurations

must be zero. As an example, we show this case for the

configuration jþ;þ;þ…;þ;þ; 0i. Using Eq. (E6), we hop
the 0 over the þþ’s all the way to the left and then across

the PBC, returning to the original configuration but with

sign ð−1ÞL=2 ¼ −1 for L=2 odd; hence, the amplitude

must be zero. Thus, for family (iii), we have three states in

the common kernel if L ¼ 4n but only one state

if L ¼ 4nþ 2.

Turning to families (i) and (ii), we first note that all such

configurations where the number of þ states Nþ is even

must have zero amplitude, which is consistent with the

absence of states with Sztot odd from the PBC AKLT tower

of QMBS. We will show this for family (i), while family

(ii) will easily follow. First, consider configurations in

family (i) with Nþ even and at least two 0’s. Working near

the single −, we perform moves −00→ 0 − 0→ −þ −

[Eqs. (E3) and (E9)]. We can use Eq. (E5) to hop the left −

across þþ’s to the left if Nþ ≠ 0 (this is where the

evenness of the original Nþ is important). Then, we can

use Eq. (E3) to move the same − across the PBC across all

0’s, eventually bringing this − next to the other −, and this

configuration must have zero amplitude by Eq. (E2).

Now, consider the family (i) case with precisely one 0,

jþ;þ;þ; � � � ;þ;−; 0i, which is the only case left with Nþ
even. We can relate it to configuration jþ;þ;þ;…;
0;−;þi using the following two different sequences of

moves. In the first sequence, we perform right hops of 0

overþþ’s using Eq. (E6), performing L=2 − 1 such moves

and acquiring a minus sign from each move, for a total

factor of ð−1ÞL=2−1. In the second sequence, we first

perform −0þ → 0 −þ → −þ 0 using Eqs. (E3) and

(E7) and acquire a minus sign (this move goes across

the PBC); we then perform right hops of 0 over þþ’s, a

total of L=2 − 2 moves, which results in a sign factor of

ð−1ÞL=2−2; finally, we perform 0þ − → þ − 0→ þ0−

using Eqs. (E8) and (E3) and acquire one more minus

sign, for a total factor of ð−1ÞL=2 for this sequence. We can

then see that the accumulated signs differ for the two

sequences, and hence the amplitude must be zero.

The family (ii) cases with Nþ even can be treated

identically to the family (i) cases by first moving −þ to

the right across all 0’s using Eq. (E7), reaching a configu-

ration of the form jþ;þ; � � � ;þ; 0;…; 0;−;þi, which, on
the PBC circle, has the same structure as in family

(i) considered above. The same arguments apply, showing

that such configurations with Nþ even must have zero

amplitude.

Thus, from family (i), we are left to consider L=2
configurations jþ;−; 0; 0; 0; 0;…; 0; 0i, jþ;þ;þ;−; 0;
0;…; 0; 0i, …, jþ;þ;þ;þ;þ;þ; � � � ;þ;−i, while from

family (ii), we have L=2 configurations j−;þ; 0; 0;
0; 0;…; 0; 0i, jþ;þ;−;þ; 0; 0;…; 0; 0i, …, jþ;þ;þ;þ;
þ;þ;…;−;þi, both with Nþ odd. It is easy to see that the

first L=2 − 1 configurations in family (ii) can be related to

the corresponding L=2 − 1 configurations in family (i): We

can move the rightmost þ across all 00’s all the way to the

right [using Eq. (E4)], then the leftmost 0 across the þ−

[using Eq. (E8)] and then across all þþ’s to the left,

including across the last þþ crossing the PBC, to arrive

at a configuration in family (i). Thus, we have related the

family (i) and family (ii) configurations with at least two

0’s. Finally, we can show that the amplitude on the last

configuration in family (i) and the last configuration in

family (ii)—the configurations with no 0’s—are also

related, which we show separately for L ¼ 4n and

L ¼ 4nþ 2.

For L ¼ 4n, we use Eq. (E10) to write

Ψðþ;þ;þ; � � � ;þ;þ;−Þ þΨðþ;þ;þ; � � � ;þ;−;þÞ
þ 2Ψðþ;þ;þ; � � � ;þ; 0; 0Þ ¼ 0 ðE15Þ

and then show thatΨðþ;þ;þ; � � � ;þ; 0; 0Þ ¼ 0 for such L.
By starting with jþ;þ;þ; � � � ;þ; 0; 0i, we can move the

left 0 across L=2 − 1 instances of þþ to the left, acquiring

a minus sign for each move. We now have 00 across the

PBC, which we move to the left across one þ [using

Eq. (E4)], returning to the very initial configuration but

with sign ð−1ÞL=2−1 ¼ −1 for L=2 even; hence, we

must have Ψðþ;þ;þ; � � � ;þ; 0; 0Þ ¼ 0, which implies

Ψðþ;þ;þ; � � � ;þ;þ;−Þ ¼ −Ψðþ;þ;þ; � � � ;þ;−;þÞ.
For L ¼ 4nþ 2, we instead use Eq. (E11),

2Ψðþ;þ;þ;…; 0;þ; 0Þ þ Ψðþ;þ;þ; � � � ;þ;þ;−Þ
−Ψðþ;þ;þ; � � � ;þ;−;þÞ ¼ 0; ðE16Þ

and show that Ψðþ;þ;þ;…; 0;þ; 0Þ ¼ 0 for such L.
Starting with configuration jþ;þ;þ;…; 0;þ; 0i, we first

hop the left 0 across L=2 − 2 ofþþ’s to the left (landing at

site j ¼ 2); we then hop the right 0 across one þþ to the

left (this 0 then lands at the site j ¼ L − 2); finally, we hop

the other 0 (currently at site j ¼ 2) across þþ to the left,

going across the PBC and landing at j ¼ L. We have thus

returned to the original configuration after performing L=2
moves of the type in Eq. (E6), which accumulates sign
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ð−1ÞL=2 ¼ −1 for L=2 odd. This process proves that

the corresponding amplitude must be zero, which implies

Ψðþ;þ;þ; � � � ;þ;þ;−Þ ¼ Ψðþ;þ;þ; � � � ;þ;−;þÞ.
To summarize, from families (i) and (ii), we end up

with at most L=2 independent amplitudes. Combining

with the analysis of family (iii), we conclude that there

are at most L=2þ 3 independent amplitudes for L ¼ 4n
and L=2þ 1 for L ¼ 4nþ 2, which appears to match

the results of the numerical study in Eq. (D13). This

result is also the total count of the AKLT tower of states

fjψnig and the extra states fjϕmig discussed in

Appendix D 2, which we know are part of the common

kernel.

APPENDIX F: SOME DETAILS ON THE SPIN-1

MODELS WITH BIMAGNON TOWERS AS QMBS

In this appendix, we provide some details behind the

discussion in Sec. V D of the bond algebras for the spin-

1k ¼ π and k ¼ 0 bimagnon scar towers, connecting with

previous works [34,116].

1. Shiraishi-Mori projectors and bond algebras

TheShiraishi-Mori projectors, i.e., the set of projectors such

that the QMBS span their common kernel, are conveniently

defined using the following two-site states jXaij;jþ1 (reusing

notation from Appendixes C and D in Ref. [34]):

jX1i ¼
1
ffiffiffi

2
p ðj1;−1i þ j−1;1iÞ; jX2i ¼ j0;0i; jX3i ¼ j1;0i; jX4i ¼ j0;1i; jX5i ¼ j−1;0i; jX6i ¼ j0;−1i;

jX7i ¼
1
ffiffiffi

2
p ðj1;−1i− j−1;1iÞ; jX8i ¼ j1;1i; jX9i ¼ j−1;−1i: ðF1Þ

For the k ¼ π bimagnon tower defined in Eq. (29), the Shiraishi-Mori projector is

P
ðXY;πÞ
j;jþ1 ≔

X

6

a¼1

jXaihXajj;jþ1: ðF2Þ

For two sites j and jþ 1, it is easy to verify that the bond algebra of Uð1Þ spin-conserving operators, such

that the k ¼ π QMBS of Eq. (29) are degenerate eigenstates, is spanned by the 13 linearly independent opera-

tors f1j;jþ1; jXaihXbjj;jþ1; a; b∈ f1; 2g; a; b∈ f3; 4g; or a; b∈ f5; 6gg. To give some examples, jX1ihX2jj;jþ1 ¼
ðSzjÞ2ðSzjþ1Þ2ðSxjSxjþ1 þ S

y
jS

y
jþ1Þ=

ffiffiffi

2
p

; jX3ihX3jj;jþ1 ¼ ðSzjÞ2½1 − ðSzjþ1Þ2 þ ðSzj þ Szjþ1Þð1 − SzjS
z
jþ1Þ�=2; etc. Thus, we can

also denote the bond algebra Ã
ðXYÞ
scar of Eq. (30) as

Ã
ðXY;πÞ
scar ≔ Ã

ðXYÞ
scar ¼ ⟪fjXaihXbjj;jþ1; a; b∈ f1; 2g; or a; b∈ f3; 4g; or a; b∈ f5; 6gg⟫; ðF3Þ

where the sites j and jþ 1 belong to the different sublattices of the bipartite chain.

For the k ¼ 0 bimagnon tower, the Shiraishi-Mori projector is

P
ðXY;0Þ
j;jþ1 ≔

X

7

a¼2

jXaihXajj;jþ1: ðF4Þ

It is very similar to the k ¼ π bimagnon tower projector, except that jX1ihX1jj;jþ1 is replaced by jX7ihX7jj;jþ1 (so that

requiring annihilation by jX7ihX7jj;jþ1 locally enforces “k ¼ 0” jX1ij;jþ1 in the wave function, as opposed to “k ¼ π”

jX7ij;jþ1 locally enforced by requiring annihilation by jX1ihX1jj;jþ1). The corresponding Uð1Þ spin-conserving bond

algebra can be defined as

Ã
ðXY;0Þ
scar ≔ ⟪fjXaihXbjj;jþ1; a; b∈ f7; 2g; or a; b∈ f3; 4g; or a; b∈ f5; 6gg⟫; ðF5Þ

where we can assume that j and jþ 1 belong to different sublattices just like in Eq. (F3), although it is not necessary for this

k ¼ 0 bimagnon tower.

2. Unitary transformation between the k= 0 and k= π towers

As discussed in Sec. V D, the k ¼ π and k ¼ 0 bimagnon towers can be mapped to one another on a bipartite lattice using

a unitary transformation Û ¼
Q

j ûj, with ûj ¼ exp½iðπ=2ÞSzj� on one sublattice [conjugation by this uj maps S�j → �iS�j ,
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ðS�j Þ2 → −ðS�j Þ2] and ûj ¼ 1 on the other. Indeed, it is easy to see that this transformation maps jXaij;jþ1; 2 ≤ a ≤ 6 to

themselves up to unimportant phases, while it exchanges jX1ij;jþ1 and jX7ij;jþ1; hence, conjugating using this unitary

realizes an isomorphism of the two algebras Ã
ðXY;πÞ
scar and Ã

ðXY;0Þ
scar . In addition, term 12 of Eq. (32), which annihilates the

k ¼ π bimagnon tower, maps to itself up to a sign. Hence, for our purposes, it suffices to focus on the k ¼ 0 case, and all

results can be translated to the k ¼ π case by this unitary transformation.

3. Permutation group in the bond algebra

Using Eq. (F5), it is easy to see that Ã
ðXY;0Þ
scar contains two-site exchange operators Pexch

j;jþ1 ≔
P

α;β jα; βihβ; αjj;jþ1, namely,

Pexch
j;jþ1 ¼ ðjX3ihX4jþ jX4ihX3jþ jX5ihX6jþ jX6ihX5j þ1− jX3ihX3j− jX4ihX4j− jX5ihX5j− jX6ihX6j− 2jX7ihX7jÞj;jþ1:

ðF6Þ

Hence, this bond algebra also contains arbitrary exchange

operators Pexch
l;m ; consequently, it also contains a represen-

tation of the permutation group on L sites. Just like in the

spin-1=2 ferromagnetic tower, the presence of the exchange

operators in the bond algebra is ultimately responsible for

the spatial structure of the singlets of this algebra, i.e., the

states of the k ¼ 0 bimagnon tower. In particular, this

finding implies that these states lack any spatial structure:

When any such singlet state is expanded in the computa-

tional basis, all permutation-related basis states must have

the same amplitude. Indeed, the properties ðPexch
l;m Þ2 ¼ 1

and Pexch
l;m Pexch

m;n P
exch
l;m ¼ Pexch

l;n guarantee that any common

eigenstate of all such exchange operators must have the

same eigenvalue under all the exchange operators; fur-

thermore, this eigenvalue cannot be (−1) for large system

sizes.

4. Mapping term 12 to the spin-1=2 DMI term

Finally, Appendix D in Ref. [34] showed that the k ¼ 0

bimagnon tower and the corresponding extensive local

annihilator, Eq. (32), can be related precisely to the spin-

1=2 ferromagnetic tower and the DMI annihilator discussed

in Sec. V B. This result is achieved by relating jþi ↔ j↑i,
j−i ↔ j↓i, which also relates the spin-1 operators
1
2
Szj;

1
2
ðS�j Þ2 to spin-1=2 operators Szj; S

�
j . Hence, the proof

in Appendix C 3 that the DMI annihilator cannot be

represented as a sum of strictly local annihilators carries

over to the spin-1 Hamiltonian, Eq. (32), showing that it is

an example of a type II symmetric Hamiltonian for the

k ¼ 0 bimagnon scar tower (and hence also for the k ¼ π

bimagnon scar tower by the unitary mapping).

APPENDIX G: SUFFICIENT CONDITIONS

FOR QMBS

In this appendix, we prove Lemma VI.1, which provides

a set of sufficient conditions that a state jψcanddti on a

system of size L can satisfy for it to be a QMBS of some

local Hamiltonian. We restate it here for convenience.

Lemma VI.1. In a system of size L, if among the

reconstructed parent operators bounded by some finite

range rmax we have a “dense” set of OðLÞ strictly local

operators fA½j�g covering the entire lattice such that the

separation between neighboring A½j�’s is bounded by an

L-independent number lmax, then Eq. (35) is satisfied for a

parent algebra generated by operators of some finite

range r0max ≥ rmax.

1. Existence of an exponentially large block

Before proving the main result, we note that, for deriving

some simple results, it is more natural and convenient to

assume that the union of the supports of fA½j�g completely

covers the lattice and that, among these, there are non-

commuting operators occurring at finite density across the

lattice [135]. In such a case, if rmax ≥ 2 and the A½j�’s with
overlapping supports do not commute, we can already

show that the parent algebra A ¼ ⟪fA½j�g⟫ possesses an

exponentially large block. The dimension of A clearly

grows exponentially in L since we can construct strings of

operators such as A½j1�A½j2� � � �A½jk� for any k and any

positions j1; j2;…; jk that are sufficiently far from each

other such that the supports of any two A½j�’s do not overlap,
and there are exponentially many such linearly independent

strings. Concretely, we can divide the lattice into L=n

nonoverlapping regions fRlgL=nl¼1
of roughly equal size n ∼

Oð1Þ such that each Rl contains at least one pair of

noncommuting A½j�’s. We can then lower bound dimðAÞ in
terms ofDA;loc ≔ dimðARl

Þ (assumed to be the same for all

l, for simplicity), where ARl
is the algebra generated by

A½j�’s that are completely within Rl; it is easy to see that

dimðAÞ ≥ D
L=n
A;loc by the above “strings of operators” argu-

ment. Since ARl
is non-Abelian by definition,

DZ;loc ≔ dimðZRl
Þ < DA;loc, where ZRl

is the center of

ARl
. The full center Z of A should be contained in

⟪fZRl
gL=n
l¼1

⟫; hence, we obtain dimðZÞ ≤ D
L=n
Z;loc. We then

note a general bound
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dimðAÞ ¼
X

dimðZÞ

λ¼1

D2
λ ⇒ max

λ
ðDλÞ ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dimðAÞ
dimðZÞ

s

; ðG1Þ

and applying this bound to the recovered algebra A, we

obtain

max
λ

ðDλÞ ≥
�

DA;loc

DZ;loc

� L
2n

∼ expðcLÞ; ðG2Þ

implying the existence of an exponentially large block.

Another perspective on this bound is that each region Rl

“gives” a qudit of dimension (at least)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DA;loc=DZ;loc

p

and

the bond algebra contains arbitrary operators in the Hilbert

space of L=n such qudits.

2. Existence of a “thermal” block satisfying Eq. (35)

We now proceed to the main proof of Lemma VI.1. Note

that we can assume A½j�’s, without loss of generality, to be

projectors P½j�, for some value of rmax ≥ 1 since the

recovery of A½j� implies the recovery of all its powers.

We then wish to show that there exists a finite r0max ≥ rmax

such that Eq. (35) is satisfied for the (irreps of the) algebra

ÃSM ≔ ⟪fh̃½j�g⟫, where h̃½j� are the strictly local recon-

structed operators with range bounded by r0max. This case is

closely related to the result of Lemma IV.1 proven in

Appendix A; hence, we have suggestively denoted the

reconstructed algebra with the same notation ÃSM. There,

the operators fh̃½j�g that generate such an algebra are

obtained by “dressing” the projectors P½j� by longer-range

terms, e.g., h̃½j� ¼ P½j� ⊗ OnbðjÞ, where nbðjÞ denotes some

finite neighborhood of j not including the support of P½j�.
Since the projectors vanish on jψ canddti by definition, so do
the operators h̃½j�, and they can be obtained by the

reconstruction procedure applied with a range r0max.

Hence, the algebra of local operators reconstructed with

this range r0max necessarily satisfies

max
λ

ðDλÞ ≥ dimðHÞ− dimðT Þ⇒ maxλDλ

dimðHÞ ≥ 1−
dimðT Þ
dimðHÞ ;

ðG3Þ

where dimðT Þ is the dimension of the target space T , the

common kernel of the projectors fP½j�g.
For the sake of illustration, we return to the example of

the spin-1 chain used in Appendix A with on-site states

labeled j0i; jþi; j−i. Suppose we have a candidate state

jψ canddti for which we have recovered, using rmax ¼ 1, the

idea that it is annihilated by all on-site operators j0ih0jj,
which form the set fP½j�g discussed above. If we perform

our test for the QMBS procedure with range r0max ¼ 2, we

will also recover the following two-site operators that

annihilate this state: j0ih0jj ⊗ hjþ1 and hj−1 ⊗ j0ih0jj,

where hj−1 and hjþ1 can be arbitrary on-site operators

acting on sites j − 1 and jþ 1; these operators form the set

fh̃½j�g discussed above. The common kernel of the projec-

tors fj0ih0jjg in this case is the space spanned by product

states with no j0i’s, hence dimðT Þ ¼ 2L. As we showed in

Appendix A, this algebra acts irreducibly in T ⊥, the space

spanned by basis product states with at least one on-site j0i.
Thus, in this case, we have maxλDλ ≥ 3L − 2L for the

irreps of ÃSM, and hence Eq. (35) is satisfied.

We now prove that as long as the projectors P½j� are

“dense” on the lattice, dimðT Þ= dimðHÞ ≤ pL, in general,

for some p < 1; hence, Eq. (35) is satisfied. We follow the

same procedure as in Appendix A, first dividing the set of

projectors P ≔ fP½j�g into a finite number of nonoverlap-

ping dense subsets fPαg such that P ¼∪α Pα and studying

each of these subsets separately. In particular, we note that

the common kernel T can be expressed in terms of the

common kernel of these nonoverlapping subsets of pro-

jectors as T ¼∩α T α; hence, we obtain the bound for its

dimension dimðT Þ ≤ minα dimðT αÞ. Combining this

bound with the bound of Eq. (A3), for large L, we obtain

dimðT Þ
dimðHÞ ≤ pL for some p < 1; ðG4Þ

which shows that Eq. (35) is satisfied as L→ ∞.

3. Hilbert space dependence of scarriness

In this section, we provide a few concrete examples that

illustrate that the notion of scarriness depends on the

Hilbert space being considered and quantities we are

interested in.

First, we demonstrate an example from the spin-1

illustration discussed in Appendixes A and G 2. Sup-

pose we start with a candidate state jΨcanddti originating

as an eigenstate of a generic nonintegrable Hamiltonian

Hspin-1=2 acting in the space of states spanned by

fjσ1; σ2;…; σLi; σj ∈ fþ;−gg, which we will loosely call

the spin-1=2 subspace. When subjected to the test for the

QMBS procedure discussed in Sec. VI A, it is reasonable

to expect that the reconstructed parent operators at finite

rmax would be the previously considered fj0ih0jj ⊗
hjþ1; hj−1 ⊗ j0ih0jjg plus only the original Hamiltonian

Hspin-1=2 (note that multiplying an extensive local operator

like Hspin-1=2 by a strictly local operator gives a very

nonlocal operator and would not be considered by the

procedure). If this is true, then all eigenstates of Hspin-1=2 in

the spin-1=2 subspace are singlets of the algebra of

reconstructed local operators, while the algebra acts irre-

ducibly in the orthogonal complement to these states, i.e.,

in the space of states spanned by basis states with at least

one on-site j0i, as discussed in Appendix A. Hence, this

reconstruction on the state demonstrates that while it is
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generically thermal as a spin-1=2 state [since Eq. (35) is not
satisfied when it is viewed in the restricted “spin-1=2”
Hilbert space], it is a QMBS as a spin-1 state in the whole

Hilbert space since Eq. (35) is then satisfied. Interestingly,

this reconstruction also informs us that, as a QMBS, it must

come together with all the other eigenstates of Hspin-1=2 as

QMBS. Incidentally, the so-called Yang-Zhang Slater

determinant states in the Hubbard model considered in

Ref. [136], constructed by populating plane-wave states of

only one spin species, would be qualitatively similar to this

spin-1 model example and could also be called QMBS, if

we ignore the free-fermion character of the construction

involving only the kinetic energy of the fermions (which is

easy to remedy if, in addition, we allow interactions

involving only fermions of the same spin species).

Finally, we consider an example of a candidate state that

is of the form jΨthermali ⊗ j0i, where jΨthermali is some

thermal state on some Hilbert space and j0i is the state on a
“dummy” qubit. This state could perhaps be called a

QMBS with respect to the added single qubit; e.g., the

expectation value of any operator on the dummy qubit

would be highly nongeneric. On the other hand, the algebra

of reconstructed local operators with a finite rmax would not

satisfy Eq. (35), consistent with the intuition that this

should not be a QMBS from the point of view of the bulk of

the system.
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