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Symmetry algebras of quantum many-body systems with locality can be understood using commutant

algebras, which are defined as algebras of operators that commute with a given set of local operators.

In this work, we show that these symmetry algebras can be expressed as frustration-free ground states

of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conven-

tional symmetries such as Z2, U(1), and SU(2), where the symmetry algebras map to various kinds of

ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking

phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show

that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries,

which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection

is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation

in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation

for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians

indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous)

symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and

asymptotic scars in the presence of U(1) symmetry, HSF, and a tower of quantum scars, respectively.

In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive

understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes,

and their dynamical consequences in systems with locality.

DOI: 10.1103/PRXQuantum.5.040330

I. INTRODUCTION

Developing an understanding of symmetries in their

most general form has been a recent quest in many dif-

ferent parts of physics. The definition of symmetries in

most of the quantum many-body physics literature implic-

itly assumes some kinds of restriction imposed on the

symmetry operators, e.g., they are usually on-site unitary

symmetries with nice group structures or lattice symme-

tries such as translation, rotation, reflection, etc. However,

several recent works have demonstrated that generalized
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symmetries beyond what is usually studied in much of

the literature can naturally arise in several physical set-

tings. In the context of equilibrium physics, several new

types of symmetries have recently been studied in the con-

text of various physical lattice models or quantum field

theories [1,2]. Examples include “higher-form symme-

tries,” where the symmetry operators live on manifolds

of some nonzero codimension [3–6]; “noninvertible” or

“categorical” symmetries, where the symmetries are not

representations of groups but of categories [7–9]; “MPO

symmetries,” where the symmetry operators are matrix

product operators (MPOs) [10–12]; or even more exotic

symmetries that appear in the study of fractons [13–

16], where the symmetries depend on the system size. In

the context of nonequilibrium physics, a general frame-

work for symmetries based on “commutant algebras” has

naturally appeared in the study of dynamical phenom-

ena known as weak ergodicity breaking [17–20]. For

example, systems exhibiting Hilbert-space fragmentation
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(HSF) [21–24] have symmetry algebras that grow expo-

nentially with system size [25] and systems exhibiting

quantum many-body scars (QMBSs) [17,19,20,26–30]

have nonlocal symmetries such as projectors onto certain

pure states [31]. The discovery of such wide varieties of

symmetries motivates the search for certain characteriz-

ing properties of symmetry operators that are allowed in

physical quantum many-body systems.

A hint comes from the framework where symmetry alge-

bras can be understood as commutant algebras, i.e., as

the associative algebra of operators that commute with a

given set of local operators. In our previous works, we

have explored this framework in detail and demonstrated

that it can be used to understand regular symmetries and

symmetry sectors in a wide variety of standard Hamilto-

nians [32], as well as to discover novel symmetries that

explain the phenomena of QMBSs [31] and HSF [25]. Fur-

ther, in Ref. [33], we have introduced numerical methods

to calculate commutant algebras. One such method has

been based on the property of these operator algebras that

when operators are viewed as states in a doubled Hilbert

space, these algebras are the ground-state spaces of certain

frustration-free local superoperators. Mapping the deter-

mination of symmetry algebras to a ground-state problem

has led to efficient algorithms to determine symmetries,

which have used ideas from tensor-network methods for

determining ground states in general [34] as well as spe-

cialized methods for determining frustration-free ground

states [35–37].

In this work, we explore the analytical aspects and con-

sequences of the idea that symmetries are ground states

of local superoperators, which we refer to as “super-

Hamiltonians.” This allows us to analytically understand

several properties of symmetric systems with locality.

We work out the explicit super-Hamiltonians, which have

interpretations in terms of simple ladder or bilayer Hamil-

tonians, and we solve for their ground states, which map

precisely onto commutant algebras. This allows us to

obtain a priori bizarre connections between Z2, U(1), and

SU(2) symmetry algebras and ferromagnetic states of var-

ious kinds, which can all be expressed as ground states

of frustration-free Hamiltonians. In addition, we illustrate

the commutant algebras in certain unconventional symme-

tries, including some of the examples of HSFs and QMBSs

discussed in Refs. [25,31].

In addition to a clear understanding of exact symmetries,

which are understood as “white” or “black” properties

of the system—i.e., a given symmetry either exists or it

does not—this mapping to ground states also introduces a

grayscale and provides a precise language for discussing

approximate symmetries. These approximate symmetries

are naturally defined as operators that are in the low-

energy spectrum of the super-Hamiltonians, of which exact

symmetries are the ground states. Since the exact sym-

metries in many of the examples map onto ferromagnetic

states, the low-energy excitations are given by spin waves,

which map back onto approximate symmetries. These

are approximately conserved quantities, which can be

loosely viewed as long-wavelength textures in the densities

of the exactly conserved quantities and hence are con-

served up to times that diverge with the system size (e.g.,

taking the longest wavelengths fitting into the system).

This feature of approximate symmetries also illustrates

their connection to hydrodynamic modes, as we discuss

below.

This connection to approximate symmetries is made pre-

cise by a remarkable physical relation between the super-

Hamiltonian and noisy Brownian-circuit models similar to

those studied in the context of noisy spin chains [38–42],

or as toy models for quantum chaos [43–52]. In particu-

lar, the low-energy spectrum of the superoperator is related

to the relaxation rates of noise-averaged autocorrelation

functions toward their Mazur-bound values dictated by

symmetry [53,54], which leads to two main insights. First,

it provides an alternative physical meaning to the Mazur-

bound value, usually interpreted as a lower bound on the

autocorrelation function of an operator evolving under a

single physical Hamiltonian with a given set of symme-

tries. Second, it shows that the approximate symmetries

that appear as low-energy excitations above the ground

state of the super-Hamiltonian correspond to slowly relax-

ing hydrodynamic modes that govern late-time transport

properties in symmetric systems with locality. For exam-

ple, we are able to understand the approximately L2 relax-

ation time in U(1) symmetric systems, which occurs due to

the presence of charge or spin diffusion, in terms of spin-

wave excitations above ferromagnetic ground states of the

superoperator Hamiltonian. In addition, we are also able to

use this framework to understand hydrodynamic modes for

unconventional symmetries such as QMBS, which coin-

cide with slowly thermalizing initial states in such systems,

recently referred to as asymptotic QMBSs [55]. With these

insights, we connect exact symmetries understood in the

commutant-algebra framework to approximate symmetries

that are related to hydrodynamic relaxation modes and

late-time transport, which have been of significant inter-

est lately in systems with various kinds of symmetries

[56–64].

This paper is organized as follows. In Sec. II, we review

key concepts in the study of commutant algebras and their

connection to ground states of local super-Hamiltonians.

In Sec. III, we work out several examples in the context

of conventional and unconventional symmetries. Then, in

Sec. IV, we illustrate the connection between the low-

energy spectrum of the super-Hamiltonians and operator

relaxation to Mazur bounds, which can be made concrete

in Brownian- or noisy-circuit models. We also exhibit

the approximate conserved quantities in the context of

various kinds of symmetries. Finally, we conclude with

open questions in Sec. VI.

040330-2



SYMMETRIES AS GROUND STATES OF LOCAL SUPEROPERATORS PRX QUANTUM 5, 040330 (2024)

II. COMMUTANT ALGEBRAS AND GROUND

STATES

We first review the connection between commutant

algebras and frustration-free ground states of local super-

operator Hamiltonians, which was first introduced in the

context of numerical methods to detect symmetries in [33].

Here, we only review aspects necessary for this work

and more comprehensive discussions can be found in our

previous papers [25,31–33].

A. Definitions

The essential idea of commutant algebras is to think of

symmetries in terms of a pair of operator algebras (A, C),

referred to as the local algebra and the commutant alge-

bra, respectively, which are centralizers of each other in

the algebra of all operators on the full (finite-dimensional)

Hilbert space. As the name suggests, the local algebra A

is generated by a set of Hermitian local operators {Ĥα},
which can either be strictly local or extensive local, and

we denote it as A = 〈〈{Ĥα}〉〉. In the case in which all

the operators Ĥα are strictly local, the algebra A is also

commonly referred to as a bond algebra [65–67]. The com-

mutant algebra C, by definition, is the centralizer of A, i.e.,

the set of all operators that commute with the {Ĥα}, which

is the symmetry algebra for all Hamiltonians in A, i.e.,

those that can be expressed in terms of linear combinations

of products of {Ĥα}.
For the Hamiltonians constructed out of the genera-

tors of A, symmetry sectors and dynamically disconnected

Krylov subspaces due to the symmetry algebra C can

be understood in terms of their representation theory of

von Neumann algebras. Thinking of symmetries in this

commutant-algebra framework leads to a comprehensive

understanding of symmetry algebras, symmetric opera-

tors, and associated symmetry quantum number sectors,

we refer to Refs. [25,31,32] for concrete examples in a

variety of systems.

B. Liouvillians and super-Hamiltonians

Given the local algebra A, determining the commu-

tant C is not always straightforward in practice. Hence in

Ref. [33], we have introduced two numerical methods to

numerically construct the full commutant algebra C given

a set of local terms {Ĥα} that generate the local algebra

A. The method relevant for this work is the “Liouvillian

method,” which starts by interpreting operators Ô on the

Hilbert space H as vectors |Ô). In particular, operators

on the Hilbert space H, which themselves form a Hilbert

space denoted as L(H), can be mapped onto states on the

doubled Hilbert space H ⊗ H via the mapping

Ô =
∑

μ,ν

oμν |vμ〉〈vν | ⇐⇒ |Ô) =
∑

μ,ν

oμν |vμ〉 ⊗ |vν〉,

(1)

where {|vμ〉} is an orthonormal basis for H, which we

take to be the computational basis of product states. For

example, for a spin-1/2 system, we have

|1)j = |↑〉j ⊗ |↑〉j + |↓〉j ⊗ |↓〉j , (2)

where j labels a site [the identity operator in a many-body

system is 1̂ ⇐⇒ ⊗j |1)j ]. In this work, we will some-

times interchangeably use |•〉 and |•) when referring to

operators as states on a doubled Hilbert space and the

meaning should be obvious from the context. Adapting the

definition of Eq. (1) together with the conventional inner

product in the doubled space implies that the inner product

in the operator Hilbert space is defined as [68]

(̂A|̂B) := Tr(̂A†B̂). (3)

The action of the commutator of an operator Ô with an

operator Ĥα can be represented as

[Ĥα , Ô] ⇐⇒
L̂α :=︷ ︸︸ ︷(

Ĥα ⊗ 1− 1⊗ Ĥ T
α

)
|Ô), (4)

where the transpose is taken in the computational basis. In

Eq. (4), L̂α is referred to as the Liouvillian corresponding

to the term Ĥα , which is the superoperator that represents

the adjoint action of that term, i.e., L̂α |•) := [Ĥα , •].

Given an algebra A = 〈〈{Ĥα}〉〉, the operators in the

commutant C by definition commute with each of the Ĥα .

Hence, as vectors in the doubled Hilbert space, they span

the common kernel of the Liouvillian superoperators {L̂α},
which is also the null space of the positive semidefinite

superoperator defined as

P̂ :=
∑

α

P̂α :=︷ ︸︸ ︷
L̂†

αL̂α , P̂|Ô) = 0 ⇐⇒ L̂α|Ô) = 0 ∀α, (5)

where the second condition follows since all the P̂α are

positive semidefinite. As discussed in Ref. [33], this pro-

vides an efficient numerical method to compute the full

commutant C, given the generators {Ĥα}. In addition, in

the absence of exact symmetries, the low-energy spectrum

of P̂ can be treated as approximate symmetries, as we dis-

cuss later in this work. In Appendix D, we comment on the

dependence of the super-Hamiltonians on the choice of the

generators of the bond algebra A, which does not affect the

exact ground states and is not of any concern when using

this method to find the commutant C.

C. Ladder-bilayer interpretation

In order to study the P̂ in typical cases, where H is a

tensor-product Hilbert space with qudits arranged on some

lattice, it is convenient to view the Hilbert space H ⊗ H
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FIG. 1. The doubled Hilbert space H ⊗ H for one-

dimensional (1D) systems depicted as a ladder with the two

legs labeled by {t, b}. The super-Hamiltonian term L̂
†

j ,j +1L̂j ,j +1

arising from a nearest-neighbor bond-algebra term ĥj ,j +1 is a

nearest-neighbor term along the ladder, i.e., it acts nontrivially

only on rungs j and j + 1.

as two copies of the original lattice with the sites aligned,

i.e., a site j on the first copy is taken to be neighbor of the

site j on the second copy. This geometry corresponds to a

ladder [in one dimension (1D); see Fig. 1] or a bilayer [in

two dimensions (2D)]; hence we will refer to the first copy

of the Hilbert space as the “top” leg or layer, the second as

the “bottom” leg or layer, and the link between the two legs

or layers as “rungs.” We denote operators on the doubled

Hilbert space that act only on one leg or layer using the

shorthand notations

Ôα;t := Ôα ⊗ 1, Ôα;b := 1⊗ Ôα , (6)

where using leg or layer labels {t, b} as “local indices,” as

often done when writing local Hamiltonians in compact

form (we label them using subscripts {t, b}).
In most examples that we study, A is a bond algebra,

i.e., the operators {Ĥα} are strictly local operators, e.g.,

nearest-neighbor terms of the form {̂hj ,j +1}. In such cases,

the superoperators P̂α := L̂
†
αL̂α are also strictly local oper-

ators on the ladder or bilayer, with the same range along the

ladder or bilayer as the {Ĥα}, e.g., nearest-neighbor terms

{̂hj ,j +1} give rise to superoperator terms {L̂†

j ,j +1L̂j ,j +1}, as

shown in Fig. 1. As a consequence, P̂ of Eq. (5) is an

extensive local operator on the ladder or bilayer, and has

a natural interpretation as a superoperator Hamiltonian,

which we refer to as a “super-Hamiltonian.” The definition

of the L̂α in Eq. (4) can be used to directly obtain an

expression for P̂ of Eq. (5) in terms of the {Ĥα}, which

reads

P̂ =
∑

α

P̂α =
∑

α

(
Ĥ 2

α;t + (Ĥ ∗
α;b)

2 − 2Ĥα;tĤ
∗
α;b

)
, (7)

where we have used the fact that the Ĥα are Hermitian.

This super-Hamiltonian object is the key focus of this work

and in the subsequent sections we will study several exam-

ples of this superoperator in various bond and commutant

algebras.

Symmetries, which are the operators in the commu-

tant C and satisfy L̂α|·) = 0, hence are the frustration-free

ground states of the local superoperator P̂ , since they are

ground states of each term P̂α of P̂ . The dimension of the

commutant, dim(C), is given by the number of independent

ground states of P̂ .

Finally, we note that this super-Hamiltonian P̂ also

has an interpretation as the dissipator of a Lindbladian if

we treat the Ĥα as jump operators of a Lindblad master

equation, since the action of P̂ on an operator |Ô) reads

P̂|Ô) ⇐⇒ −
∑

α

(
2ĤαÔĤα − {Ĥ 2

α , Ô}
)
, (8)

which corresponds to the dissipative part of the Lindbla-

dian. Indeed, similar mappings are also commonly used in

the literature on Lindblad systems [69,70]. In Appendix C,

we further discuss formal symmetry properties of the

super-Hamiltonians viewed as ladder-bilayer systems; in

particular, we encounter ones known as strong symmetries

in the Lindblad context and consider how the ground states

of the super-Hamiltonians relate to these.

III. EXAMPLES OF SUPER-HAMILTONIANS

We now study super-Hamiltonians P̂ in the context

of several conventional and unconventional symmetries

studied in earlier literature [25,31,32] and show that the

respective commutant algebras can be understood as its

ground states. Note that the super-Hamiltonian corre-

sponding to a given symmetry is not unique and it depends

on the choice of generators of the corresponding bond

algebra. The ground states of all such super-Hamiltonians

are the same by definition but the excited states can dif-

fer. We will restrict to a simple choice of local generators

of the bond algebras, which lead to simple local super-

Hamiltonians, and we expect the qualitative features of

low-energy excited states to be the same for any other

choice of local generators of the bond algebras. We also

restrict examples to 1D systems and higher-dimensional

examples proceed in similar ways.

A. Global symmetry

We start with the case of global symmetries, studied in

Ref. [32], and we separately show examples of discrete

and continuous symmetries. Note that we only illustrate the

Hamiltonians for 1D systems but that the results generalize

to higher dimensions as well.

1. Z2 symmetry

As an example of a discrete symmetry, we focus on Z2

symmetry in spin-1/2 systems, where we know that the pair
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of bond and commutant algebras is given by [32]

AZ2
= 〈〈{Xj Xj +1}, {Zj }〉〉,

CZ2
=
〈〈∏

j

Zj

〉〉
= span

⎧
⎨
⎩1,

L∏

j =1

Zj

⎫
⎬
⎭ , (9)

where the Xj and Zj are Pauli matrices on site j . We can use

the generators of AZ2
to construct the corresponding super-

operator P̂Z2
, which when interpreted as a Hamiltonian on

a ladder reads, following Eq. (7),

P̂Z2
= 2
∑

j

[1 − Zj ;tZj ;b]

+ 2
∑

j

[1 − Xj ,tXj ;bXj +1;tXj +1;b], (10)

where Xj ;ℓ and Zj ,ℓ are now the Pauli matrices on the ℓth

leg of the j th site of the ladder system representing the

doubled Hilbert space. Note that all the terms of P̂Z2
com-

mute among themselves; hence its spectrum is completely

solvable.

We can directly solve for the ground states of P̂Z2
by

starting with configurations that “satisfy,” i.e., minimize,

the energy under each of the terms individually. First, we

note that “rung term” {1 − Zj ;tZj ;b} in P̂Z2
is satisfied when

both the spins on the rung at site j are aligned; hence we

can work in the space of composite spins on the rungs,

defined as

∣∣∣↑̃
〉

:=
∣∣∣∣

↑
↑
〉

,

∣∣∣↓̃
〉

:=
∣∣∣∣

↓
↓
〉

, (11)

where the top and bottom spins in the ket are states

of the top and bottom legs, respectively. Within the 2L-

dimensional space spanned by all product configurations

of the “composite spins” |↑̃〉 and |↓̃〉, the action of P̂Z2

reads

P̂Z2|comp = 2
∑

j

[1 − X̃j X̃j +1], (12)

where X̃j is the composite-spin Pauli matrix on site j ; this

is because the action of Xj ;tXj ;b flips the composite spins

and hence can be mapped to X̃j . Equation (12) is simply

the classical Ising ferromagnet and its two ground states,

|G→〉 and |G←〉, are given by

|G→〉 = |→̃ →̃ · · · →̃ →̃〉 , |G←〉 = |←̃ ←̃ · · · ←̃ ←̃〉 ,

|→̃〉 := |↑̃〉 + |↓̃〉√
2

, |←̃〉 := |↑̃〉 − |↓̃〉√
2

. (13)

In the operator language, the composite spins on rung

j map to physical spin projectors on site j as |↑̃〉j =
||↑〉〈↑|)j and |↓̃〉j = ||↓〉〈↓|)j . Hence the composite spins

of Eq. (13) map as

|→̃〉 = 1√
2
|1)j , |←̃〉 = 1√

2
|Z)j (14)

and the normalized ground states are

|G→〉 = 1

2
L
2

|1), |G←〉 = 1

2
L
2

|
L∏

j =1

Zj ), (15)

which are precisely the two linearly independent oper-

ators that span the commutant algebra for the Z2 sym-

metry, shown in Eq. (9). Hence the ground-state space

of the superoperator P̂Z2
precisely maps to the commu-

tant algebra CZ2
. In Appendix C 1, we further discuss

the fate of the formal inherited symmetries of the super-

Hamiltonian—here, independent Z2 symmetries associ-

ated with each leg—in the corresponding quantum “phase”

that contains these ground states and show that they can be

understood in terms of particular spontaneous symmetry

breaking.

As an extension, it is easy to see that all Pauli-string

bond algebras, i.e., those generated by Pauli strings, have

super-Hamiltonians that are composed of commuting pro-

jectors. This is because the Pauli strings themselves square

to 1, making the first two terms in Eq. (7) constants, while

the Pauli strings appear in pairs in the last term, which

commute with any other pair of Pauli strings. Hence the

ground states of these super-Hamiltonians can be solved

to reproduce the respective commutants (which in such

cases are also generated by physical Pauli strings [32]).

Since the commutants in such cases are also generated by

Pauli strings [32], we expect them to correspond to discrete

symmetries.

2. U(1) symmetry

We next illustrate a continuous symmetry, turning to the

commutant of the spin-1/2 U(1) bond algebra, given in 1D

040330-5
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by [25,32]

AU(1) = 〈〈{Xj Xj +1 + Yj Yj +1}, {Zj }〉〉,

CU(1) =
〈〈

L∑

j =1

Zj

〉〉
= span

⎧
⎨
⎩
∑

j1<···<jm

Zj1 · · · Zjm

⎫
⎬
⎭ . (16)

We can then use the generators of AU(1) to construct the

superoperator P̂U(1) using Eq. (7). When expressed on the

two-leg ladder, after simplification it reads

P̂U(1) = 2
∑

j

[
1 − Zj ;tZj ;b

]
+ 2
∑

j

⎡
⎣2 −

∑

ℓ∈{t,b}
Zj ,ℓZj +1,ℓ − (Xj ;tXj +1;t + Yj ;tYj +1;t)(Xj ;bXj +1;b + Yj ;bYj +1;b)

⎤
⎦ . (17)

Although P̂U(1) is not composed of commuting terms,

we can solve for their exact ground states. Note that simi-

lar to the Z2 case, each of the first-rung terms proportional

to 1 − Zj ;tZj ;b commutes with all other terms in P̂U(1) and

is satisfied when spins on both legs at site j are aligned,

which then justifies working in terms of the composite

spins of Eq. (11). It is also easy to see that P̂U(1) leaves the

subspace spanned by the 2L product configurations of the

composite spins invariant and, within that subspace, P̂U(1)

acts as

P̂U(1)|comp = 8
∑

j

(|↑̃↓̃〉 − |↓̃↑̃〉)(〈↑̃↓̃| − 〈↓̃↑̃|)[j ,j +1]

= 4
∑

j

[1 − (X̃j X̃j +1 + Ỹj Ỹj +1 + Z̃j Z̃j +1)],

(18)

where X̃j , Ỹj , and Z̃j are the composite-spin Pauli oper-

ators on site j , defined in the obvious way. Up to an

overall factor, this is simply the ferromagnetic Heisen-

berg model reviewed in Appendix A, here in terms of

the composite spins. Its ground-state space is hence the

(L + 1)-dimensional ferromagnetic multiplet of the com-

posite spins; these are obtained by replacing the regular

spins of the usual ferromagnet shown in Eq. (A5) by the

composite spins. Using the correspondence between states

on the ladder and operators of Eq. (14), the states of

the composite-spin ferromagnetic multiplet translate into

operators of the form

|Qz
m) ∼

∑

j1<···<jm

|Zj1Zj2 · · · Zjm), (19)

where we have ignored an overall constant. These are pre-

cisely the L + 1 linearly independent operators forming a

basis in the commutant algebra CU(1) corresponding to the

U(1) symmetry [25,32], shown in Eq. (16).

While the above operator mapping is more evident in

the x̂ basis of the composite spins, the same multiplet can

be described in terms of the ẑ basis of composite spins,

analogous to Eq. (A5). Since the composite-spin states

|↑̃〉j and |↓̃〉j map onto physical spin projectors |↑〉〈↑|j
and |↓〉〈↓|j in the operator language, this ẑ basis for the

ground-state space of P̂U(1) corresponds to projectors onto

the L + 1 spin sectors labeled by different values of the

physical spin Sz
tot. Indeed, for Abelian symmetries, the pro-

jectors onto symmetry sectors form an orthogonal basis for

the commutant algebra [25].

Finally, in Appendix C 2, we consider the formal inher-

ited symmetries of the super-Hamiltonian—here, indepen-

dent U(1) symmetries associated with each leg—and show

that the ground-state manifold can be understood using

particular spontaneous symmetry breaking.

3. SU(2) symmetry

As an example of a non-Abelian symmetry, we now

illustrate the commutant of the spin-1/2 SU(2) bond alge-

bra, given by

ASU(2) = 〈〈{�Sj · �Sj +1}〉〉 = 〈〈{P(2)

[j ,j +1]}〉〉,

P
(2)

[j ,j +1] := 2�Sj · �Sj +1 + 1

2
,

CSU(2) = 〈〈Sx
tot, S

y
tot, Sz

tot〉〉, (20)

where P
(2)

[j ,j +1] here is the spin-1/2 permutation operator

between sites j and j + 1, i.e.,

P
(2)

[j ,j +1] |σσ ′〉[j ,j +1] = |σ ′σ 〉[j ,j +1] , (21)

and the {Sα
tot} are the total spin operators. (This bond

algebra contains the Heisenberg Hamiltonian reviewed in

Appendix A.) As we will see, the expression in terms of

the permutation operators is more convenient for solv-

ing the corresponding super-Hamiltonian and in this form

the treatment immediately generalizes to bond algebras

for SU(q) symmetry for any q ≥ 2, which are generated
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by permutation operators for q-level systems, which we

denote by P
(q)

[j ,j +1].

In the following, we denote the permutation oper-

ators without superscripts to mean that they hold for

any q and that q = 2 corresponds to the SU(2) case.

Using (P[j ,j +1])
2 = 1, the super-Hamiltonian associated

with {P[j ,j +1]} in the ladder representation has the form

P̂SU(q) = 2
∑

j

(1 − P[j ,j +1];tP[j ,j +1];b)

= 2
∑

j

(1 − P
rung

[j ,j +1]), (22)

where P
rung

[j ,j +1] is the permutation operator for the rungs

j and j + 1, i.e., P
rung

[j ,j +1]

∣∣∣∣
σ σ ′

τ τ ′

〉

[j ,j +1]

=
∣∣∣∣

σ ′ σ

τ ′ τ

〉

[j ,j +1]

.

Note that this can also be viewed as the permutation

operator P
(q2)

[j ,j +1] acting on the q2-level systems associ-

ated with each of the rungs j and j + 1. The permutation

operator P
(q2)

[j ,j +1] possesses an SU(q2) symmetry and the

super-Hamiltonian P̂SU(q) is then equivalent to a chain

of q2-level systems with nearest-neighbor ferromagnetic

SU(q2)-invariant interactions.

The ground states of P̂SU(q) are the ferromagnetic states

of this chain of q2-level systems, which can be tabulated as

follows. Given a fixed number of on-site states of each type

N1, N2, . . . , Nq2 with constraint N1 + N2 + · · · + Nq2 = L,

we define |�N1,N2,...,N
q2

〉 to be an equal-weight superposi-

tion of all possible configurations with precisely the given

number of on-site states of each type. This is analogous

to the spin-1/2 ferromagnetic multiplet that appears as the

ground state of the super-Hamiltonian in the U(1) case.

These states are invariant under permutations P
(q2)

[j ,j +1] and it

is easy to prove that they completely span the ground-state

manifold of P̂SU(q). Their count is

dim(CSU(q)) =
L∑

N1,N2,...,N
q2=0

δN1+N2+...N
q2=L

=
(

L + q2 − 1

q2 − 1

)
, (23)

which, for the q = 2 case, precisely matches the known

description of the commutant for the SU(2) symmetry

[25,32].

B. Hilbert-space fragmentation

We now turn to examples of HSF, where the dimen-

sion of the commutant scales exponentially with the sys-

tem size [25,71,72], which leads to exponentially many

disconnected Krylov subspaces [18,19,21–23], which are

analogues of quantum number sectors for conventional

symmetries.

We start with an example of classical fragmentation, the

t − Jz model [73–75], which is a model of two species

of spins, ↑ and ↓, which are allowed to hop but are not

allowed to cross. Schematically, there are three possible

states at any given site—spin ↑, spin ↓, and the vacant site

0—and the allowed “moves” can be denoted as ↑ 0 ↔ 0 ↑
and ↓ 0 ↔ 0 ↓. These moves satisfy a conservation of

the full pattern of spins (i.e., ↑ and ↓, ignoring the 0)

in one dimension, which results in a fragmented Hilbert

space with exponentially many Krylov subspaces corre-

sponding to exponentially many allowed patterns [24,25].

In Ref. [25], we have shown that these exponentially many

subspaces are attributed to exponentially many conserved

quantities in the commutant algebra.

Specifically, the bond algebra corresponding to the t −
Jz model, when viewed as a hard-core bosonic model for

simplicity, is given by [25]

At−Jz = 〈〈{̂T↑
[j ,j +1]}, {̂T↓

[j ,j +1]}, {Sz
j }〉〉,

T̂σ
[j ,j +1] := (|σ 0〉〈0 σ | + h.c.)[j ,j +1],

Sz
j := (|↑〉〈↑| − |↓〉〈↓|)j , (24)

where σ ∈ {↑, ↓}, and the {Tσ
[j ,j +1]} are the nearest-

neighbor hopping terms for the spin of type σ . The

corresponding commutant, derived in Ref. [25], reads

Ct−Jz = span{N σ1σ2···σk , k = 0, 1, . . . , L},

N σ1σ2···σk =
∑

j1<j2<···<jk

N
σ1
j1

N
σ2
j2

· · · N
σk
jk

, σj ∈ {↑, ↓}.

(25)

Note that most of the conserved quantities in the commu-

tant Ct−Jz are functionally independent from the two obvi-

ous U(1) symmetries, N σ =∑j N σ
j , σ ∈ {↑, ↓}, which are

the separate particle-number conservations of ↑ spins and

↓ spins. The commutant Ct−Jz can be generated by a dis-

tinct set of nonlocal operators, referred to as statistically

localized integrals of motion (SLIOMs) [24,25]; however,

for our purposes, working with the linearly independent

basis for Ct−Jz is more convenient.

We can construct the super-Hamiltonian using the gen-

erators of At−Jz to understand the operators in Ct−Jz as its

ground states. We first note that the super-Hamiltonian is

of the form

P̂t−Jz =
∑

j

(Sz
j ;t − Sz

j ;b)
2 +
∑

j

F({̂Tσ
[j ,j +1];ℓ}), (26)

where F({̂Tσ
[j ,j +1];ℓ}) is the positive-semidefinite part of

the super-Hamiltonian that comes from the generators

{̂Tσ
[j ,j +1]} of At−Jz . We now observe that the first sum in
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Eq. (26) enforces that the ground states |�〉 of P̂t−Jz sat-

isfy Sz
j ;t |�〉 = Sz

j ;b |�〉; hence the ground states lie in the

subspace spanned by product states of composite spins,

defined here as

∣∣∣↑̃
〉

:=
∣∣∣∣

↑
↑
〉

,

∣∣∣0̃
〉

:=
∣∣∣∣

0

0

〉
,

∣∣∣↓̃
〉

:=
∣∣∣∣

↓
↓
〉

. (27)

It is easy to check that these composite spins are left

invariant under the action of P̂t−Jz and that the effective

Hamiltonian in this subspace reads

P̂t−Jz |comp = 2
∑

j ,σ∈{↑,↓}

(
|σ̃ 0̃〉 − |0̃ σ̃ 〉

)

×
(
〈σ̃ 0̃| − 〈0̃ σ̃ |

)
[j ,j +1]

, (28)

where we have used the expression for T̂σ
[j ,j +1] in Eq. (24).

This resembles the form of the ferromagnetic Heisenberg

Hamiltonian in Eq. (18) and, in fact, as we discuss in Sec.

V B 2, there is a mapping between eigenstates of P̂t−Jz |comp

and those of the Heisenberg model discussed in Appendix

A. For the purposes of the ground states, it is easy to show

that they must have equal amplitudes on all product states

that are “connected” by the nearest-neighbor “hops” of

the composite spin σ̃ . An orthogonal basis for the ground

states is formed by states that are equal-weight superpo-

sitions of all spin configurations with a fixed pattern of

composite spins ↑̃ and ↓̃. For example, the ground states

of P̂t−Jz with ordinary boundary conditions (OBCs) read

|Gσ1···σk 〉 =
∑

j1<j2<···<jk

|σ̃1(j1) σ̃2(j2) · · · σ̃k(jk)〉, (29)

where the notation σ̃l(jl) indicates that the composite spin

σ̃l is at site jl and the remaining sites are implicitly assumed

to be 0̃. We note that this form of the ground state is a

consequence of the fact that P̂t−Jz of Eq. (28) is of the

Rokhsar-Kivelson (RK) form [also referred to as stoquastic

or stochastic-matrix-form (SMF) decomposable] [76,77].

Such superoperators often appear in systems with “classi-

cal” symmetries, i.e., where all the symmetry operators are

diagonal in the product-state basis, and we discuss these

connections in Appendix B. Note that the symmetry of the

action of the super-Hamiltonian P̂t−Jz |comp on ↑̃ and ↓̃ in

Eq. (28) is in fact a composite-spin SU(2) symmetry. As a

consequence, P̂t−Jz |comp has the same form when written in

terms of composite spins →̃ and ←̃ in the x̂ basis defined

in Eq. (13), i.e., when σ̃ ∈ {→̃, ←̃} in Eq. (28).

We can map the ground states of P̂t−Jz to operators

by noting that a composite-spin configuration |s̃〉j , s ∈
{↑, 0, ↓}, maps to on-site projectors ||s〉〈s|)j . The ground

states of P̂t−Jz then correspond to the projectors onto the

Krylov subspaces of the t − Jz model, which are spanned

by all configurations with a fixed pattern of spins. Thus,

the ground-state space of P̂t−Jz is equivalent to the sub-

space spanned by these projectors, which, one can argue,

is the same as the subspace spanned by the (nonorthogo-

nal) operators N σ1σ2···σk ; hence it precisely reproduces the

commutant algebra Ct−Jz of Eq. (25).

C. Quantum many-body scars

We finally analyze the commutants of QMBSs [17–

20], using the super-Hamiltonian picture. In Ref. [31], we

have built on several earlier works [26,78,79] to show that

QMBSs can be defined as singlets of locally generated

algebras. By this we mean that there are local operators

such that their common eigenstates are the QMBSs. A

simple example is when the QMBS eigenstates are simul-

taneous eigenstates of a set of strictly local operators;

without loss of generality, projectors {R[j ]} acting of a few

sites neighboring j (with the range bounded by some fixed

number) that annihilate the QMBSs, as proposed by Shi-

raishi and Mori in Ref. [26]. We denote the common kernel

of {R[j ]} as

span{|	n〉} := {|ψ〉 : R[j ] |ψ〉 = 0 ∀ j }, (30)

where {|	n〉} is an orthonormal basis for the kernel, and

these are the QMBS eigenstates. Several known examples

of QMBSs, including embedded matrix product states [26],

towers of states in the spin-1 XY [80], and the Hubbard

model [78,79,81,82], as well as those in the Affleck-

Kennedy-Lieb-Tasaki (AKLT) models [27,29,83,84], can

be understood to be of this form.

For simplicity, we restrict ourselves to spin-1/2 sys-

tems. As discussed in Ref. [31], we expect the bond and

commutant algebra

Ascar = 〈〈{R[j ]σ
α
k , k ∈ �j , α = 0, x, y, z}〉〉,

Cscar = 〈〈{|	n〉〈	m|}〉〉, (31)

where the {σ α
k } are the on-site Pauli matrices with σ 0

k = 1k,

R[j ] is a projector acting on few sites near j , and the index

k runs over a set of sites �j that does not have overlap

with the support of R[j ] but is in the vicinity [85]. Note that

there are many different choices of generators for Ascar,

which then determine the super-Hamiltonian, and we have

chosen one set that is convenient for calculations. The

algebra Ascar is claimed to be the exhaustive algebra of

operators with {|	n〉} as degenerate eigenstates with eigen-

value 0; i.e., any such operator can be expressed as sums of

products of generators of Ascar. We will verify this claim

using the super-Hamiltonian formalism for specific exam-

ples below. In examples of towers of QMBSs, a “lifting”

term [81,83] can be added to the generators of these alge-

bras to obtain the exhaustive algebra of operators {|	n〉} as

nondegenerate eigenstates (for more details, see Ref. [31]).
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Following Eq. (7), the expression for the super-

Hamiltonian P̂scar reads

P̂scar =
∑

j ,k,α

[R[j ];t + R[j ];b − 2R[j ];tR[j ];b ηασ α
k;tσ

α
k;b],

= 4
∑

j ,k

(R[j ];t − R[j ];b)
2 + 8

∑

j ,k

R[j ];tR[j ];b[1 − |ι〉〈ι|]k,

(32)

where for simplicity we have assumed that RT
[j ] = R[j ]

(equivalently, R∗
[j ] = R[j ]) in the computational basis, and

we have defined η0 = ηx = ηz = 1 and ηy = −1, and the

state

|ι〉k := 1√
2

(∣∣∣∣
↑
↑
〉

k

+
∣∣∣∣

↓
↓
〉

k

)
. (33)

Note that |ι〉k is identical to the composite spin |→̃〉k of

Eq. (13) and hence in the operator language it maps onto
1√
2
|1)k.

Since all the individual terms in Eq. (32) are positive

semidefinite, any ground state |�〉 of P̂scar should satisfy

(R[j ];t − R[j ];b)
2 |�〉 = 0 =⇒ R[j ];t |�〉 = R[j ];b|�), (34)

R[j ];tR[j ];b[1 − |ι〉〈ι|]k |�〉 = 0 =⇒ R[j ],ℓ[1 − |ι〉〈ι|]k |�〉 = 0, (35)

where ℓ ∈ {t, b}, k ∈ �j , and we have used Eq. (34) in the

second step of Eq. (35). Using these equations, it is easy

to see the presence of the following two types of ground

states:

|Gm,n〉 := |	m〉t ⊗ |	n〉b , |G1〉 =
⊗

k

|ι〉k. (36)

In the operator language, |Gm,n〉 maps onto ||	m〉〈	n|)
(using |	n〉 with real-valued amplitudes in the compu-

tational basis corresponding to the earlier assumption of

real-valuedness of R[j ] in this basis) and |G1〉 is propor-

tional to the global identity operator |1). These operators

are all in the commutant Cscar shown in Eq. (31).

1. Isolated QMBSs

Proving that these are the only ground states of P̂scar

is more challenging and we do that in specific cases

in Appendix E. There, we consider an example of an

isolated QMBS [19], where R[j ] := Rj = (1 − σ z
j )/2 =

|↓〉〈↓|j ; hence, following Eq. (30), the only scar state is

|	〉 := |↑ ↑ . . . ↑〉 . (37)

We start with a set of bond generators of the form of

Eq. (31) with �j = {j − 1, j + 1} and follow Eq. (32) to

construct the super-Hamiltonian P̂iso corresponding to this

case [see the explicit expression in Eq. (E2)]. As we show

in Appendix E 1, in the same composite-spin subsector of

interest, we obtain the spin model

P̂iso|comp = 2
∑

j

[(1 − Z̃j )(1 − X̃j +1)

+ (1 − X̃j )(1 − Z̃j +1)], (38)

where the {X̃j , Z̃j } are the composite-spin Pauli operators

also used in Eq. (18). As we show in Appendix E 1, this

Hamiltonian can be mapped to a frustration-free model that

lies on the so-called Peschel-Emery line in the vicinity of

a transverse-field Ising model [86–88]. From these studies,

this is known to possess only two ground states both in

periodic boundary conditions (PBCs) and OBCs, which in

the composite-spin language read

|G1〉 = |→̃ →̃ · · · →̃ →̃〉 = 1

2
L
2

|1),

|GQMBS〉 = |↑̃ ↑̃ · · · ↑̃ ↑̃〉 = ||	〉〈	|). (39)

This proves the above claim and hence shows the existence

of the following pairs of algebras of the form of Eq. (31)

that are centralizers of each other:

Aiso := 〈〈{Rj σ
α
j +1, σ α

j Rj +1}〉〉, Ciso := 〈〈|	〉〈	|〉〉.
(40)

Any operator constructed out of the generators of Aiso con-

tains the state |	〉 as an eigenstate, which can be a QMBS

if it is in the bulk of the spectrum [31].

Finally, in Appendix C 3, we consider the relation

between the ground-state manifold and the inherited for-

mal symmetries of the super-Hamiltonian in this case.
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2. Tower of QMBSs

Similarly, as an example of a tower of QMBSs,

we consider R[j ] := Rj ,j +1 = 1
4

− �Sj · �Sj +1 = 1
2
(|↑↓〉 −

|↓↑〉)(〈↑↓| − 〈↓↑|)j ,j +1, where the common kernel con-

tains the entire ferromagnetic tower of states as scars

[89]:

|	n,0〉 := 1

n!

(
L

n

)− 1
2

(Sz−
tot )

n |↑ ↑ . . . ↑〉 , 0 ≤ n ≤ L,

(41)

where Sz−
tot is the total spin lowering operator in the ẑ direc-

tion. We again start with bond generators of the form of Eq.

(31) with �j ∈ {j − 1, j + 2} and follow Eq. (32) to con-

struct the super-Hamiltonian P̂tower corresponding to this

case [see the explicit expression in Eq. (E13)] and then

solve for all of its ground states to show the existence of

the following pairs of algebras that are centralizers of each

other:

Atower := 〈〈{Rj ,j +1σ
α
j +2, σ α

j −1Rj ,j +1}〉〉,
Ctower = 〈〈{|	n,0〉〈	m,0|}〉〉. (42)

Any operator constructed out of the generators of Atower

contains the ferromagnetic multiplet as degenerate QMBSs

[31]. These results also generalize to algebras correspond-

ing to the case in which the QMBSs are nondegenerate

towers. However, we discuss this case in Appendix H, due

to more care being required in the Brownian-circuit setup

and analysis.

IV. SUPER-HAMILTONIAN SPECTRUM:

APPROXIMATE SYMMETRIES AND SLOW

MODES

While the ground states of the superoperator P̂ corre-

spond to the symmetry operators in the commutant algebra,

we now show that the low-energy excitations correspond

to operators that are “approximate” symmetries until long

times under local dynamics. To make this idea precise,

we show that the superoperator P̂ acts as a dissipator for

operators in ensemble-averaged noisy Brownian circuits.

Several types of Brownian circuits have been studied in

the literature, e.g., in the context of information scrambling

[43–45], the SYK model [47–50,52], in quantum general-

izations of certain classical processes such as the symmet-

ric simple exclusion process (SSEP) [38,39,41,42,90], and

in the context of transport with symmetries [51,62]; and

similar connections between superoperators and ensemble-

averaged dissipative dynamics of operators have been

noted in some of them.

A. Algebra-based Brownian circuits

Given a bond algebra A = 〈〈{Ĥα}〉〉, we consider an

associated Brownian circuit that consists of time evolution

with the Hamiltonian H =∑α J (t)
α Ĥα for a short time of

�t. At each time step, the {J (t)
α } are chosen to be uncor-

related random variables from a fixed distribution and we

are eventually interested in ensemble-averaged quantities

such as correlation functions. Operators under this circuit

evolve in the adjoint language as

|Ô(t + �t)) = ei
∑

α J
(t)
α L̂α�t|Ô(t))

= |Ô(t)) + i�t
∑

α

J (t)
α L̂α|Ô(t)) − (�t)2

2

∑

α,β

J (t)
α J

(t)
β L̂αL̂β |Ô(t)) + O((�t)3), (43)

where L̂α is the Liouvillian corresponding to Ĥα , defined

in Eq. (4). If the {J (t)
α } at different times t are chosen to be

uncorrelated random variables, and we are only interested

in ensemble-averaged quantities that are linear in the oper-

ator Ô(t), e.g., correlation functions such as Tr(̂A†Ô(t)ρ0)

for some fixed operator Â and density matrix ρ0, we can

average the operator over the probability distribution of the

random variables directly. Using Gaussian distributions for

J (t)
α ,

P({J (t)
α }) ∼ exp

(
−
∑

t,α

(J (t)
α )2

2σ 2
α

)
, σ 2

α = 2κα

�t
, (44)

where σ 2
α is the variance of J (t)

α , we obtain

|Ô(t + �t)) = |Ô(t)) − �t
∑

α

καL̂
†
αL̂α|Ô(t)) + O((�t)2),

(45)

where · · · denotes the average over all the {J (t)
α } performed

independently at all times t and we have used the properties

that J
(t)
α = 0, J

(t)
α J

(t′)
β = σ 2

αδα,βδt,t′ and also the Hermitic-

ity of the super-Hamiltonian with respect to the Frobenius

scalar product of Eq. (3). Note that in the continuous time

limit when �t → 0, the distribution of Eq. (44) is referred
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to as shot noise [91] and the Brownian circuits can be

understood using the language of stochastic processes and

Itô calculus [92,93], which we will not discuss here. For

our purposes, it is sufficient to note that in the continuous

time limit, we obtain

d

dt
|Ô(t)) = −

∑

α

καL̂
†
αL̂α|Ô(t))

=⇒ |Ô(t)) = e−κP̂t|Ô(0)), (46)

where for simplicity we assume κα = κ , we use that

Ô(0) = Ô(0), since it is independent of all the J (t)
α , and

P̂ is defined in Eqs. (5) and (7). Ensemble-averaged quan-

tities linear in the time-evolved operator Ô(t), e.g., two-

point correlation functions with a fixed second operator,

can then be expressed in terms of the ensemble-averaged

operator |Ô(t)). We note in passing that ensemble aver-

ages of higher-order functionals of the operator Ô(t),

e.g., higher-point correlation functions or Rényi entropies,

can also be studied using similar methods; these usually

involve studying effective Hamiltonians on more copies or

replicas of the original Hilbert space (for discussions of

such techniques, see, e.g., Refs. [47,50]).

B. Correlation functions

With this understanding, ensemble-averaged correlation

functions can also be studied using the eigenstates and

spectrum of P̂ . The two-point dynamical correlation func-

tions of operators Â and B̂ at infinite temperature are

defined as [94]

CB̂,̂A(t) := 1

D
Tr(̂B(0)†Â(t)) = 1

D
(̂B(0)|̂A(t)), (47)

where D := Tr(1) = dim(H). After ensemble averaging,

this can be written in terms of eigenstates of P̂ as

CB̂,̂A(t) = 1

D
(̂B(0)|̂A(t)) = 1

D
(̂B(0)|e−κP̂t |̂A(0))

= 1

D

∑

μ

(̂B|λμ)(λμ |̂A)e−κpμt

= 1

D

∑

E

e−κEt

NE∑

νE=1

(̂B|λνE
(E))(λνE

(E)|̂A), (48)

where the {|λμ)} are the orthonormal eigenstates of P̂ with

eigenvalues {pμ}, with real pμ ≥ 0, since P̂ is positive

semidefinite. In the last step, we have reorganized the sum

in terms of energy eigenvalues of P̂ and their degenera-

cies, where the {|λνE
(E))} are eigenstates with eigenvalue

E and NE is the degeneracy at that energy; this form is con-

venient to work with in examples that we study in Sec. V.

As t → ∞ for a finite system size L, we obtain the equilib-

rium value of the ensemble-averaged two-point correlation

function,

CB̂,̂A(∞) := lim
t→∞

CB̂,̂A(t) = 1

D

∑

μ

δpμ,0(̂B|λμ)(λμ |̂A).

(49)

The information of the late-time transport associated with

the symmetry is stored in the nature of the approach to the

infinite-time quantity, which for a finite system is given

by CB̂,̂A(t) − CB̂,̂A(∞). However, for such purposes, we are

usually interested in the L → ∞, in which case we usually

have CB̂,̂A(∞) → 0 and it is sufficient to focus on CB̂,̂A(t).

C. Autocorrelation functions and Mazur bounds

With the understanding of correlation functions, we

illustrate a novel interpretation for the Mazur bounds of

autocorrelation functions, studied extensively in the litera-

ture [24,25,53,54,95–98]. The autocorrelation function of

an operator Â is defined as

CÂ(t) := 1

D
(̂A(0)|̂A(t)), (50)

and using Eq. (48) its ensemble-averaged value can be

written as

CÂ(t) = 1

D
(̂A(0)|e−κP̂t |̂A(0)) = 1

D

∑

μ

|(λμ |̂A)|2e−κpμt

=
∑

E

e−κEt 1

D

NE∑

νE=1

|(λνE
(E)|̂A)|2

︸ ︷︷ ︸
WÂ(E):=

, (51)

where in the second line we have expressed the sum in

terms of energies (possibly degenerate) and corresponding

eigenstates of P̂ , similar to Eq. (48). Note that WÂ(E) can

also be viewed as the weight of the state |̂A) in the subspace

spanned by energy eigenstates {|λνE
(E))}, i.e., the degener-

ate subspace of eigenstates with eigenvalue E. This shows

that only eigenstates |λμ) that have nonzero overlap with

the operator |̂A) contribute to CÂ(t). At t = 0, this is simply

the total weight of the initial operator Â(0), given by

CÂ(0) = 1

D
(̂A|̂A) =

∑

E

WÂ(E). (52)

For operators of interest, such as a local operator, this starts

at a value of O(1); e.g., for a Pauli matrix in a spin- 1
2

system, we have (Zj |Zj )/D = 1 in our definition of the
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operator scalar product. As t → ∞ for a finite system size

L, its equilibrium value is

CÂ(∞) := lim
t→∞

CÂ(t) = 1

D

∑

μ

δpμ,0|(λμ |̂A)|2. (53)

Noting that {|λμ)}pμ=0, i.e., the ground states of P̂ among

the above eigenstates, is an orthonormal basis for the

commutant algebra C, the right-hand side of Eq. (53) is

precisely the Mazur bound [25,53,54]. Hence the Mazur

bound can also be interpreted as the saturation value of the

ensemble-averaged autocorrelation function in Brownian

circuits, in addition to the conventional interpretation as a

lower bound for the time-averaged autocorrelation func-

tion for a static Hamiltonian. Note that there is an extra

factor of (1/D) in Eq. (53) due to the different definition

of operator overlap in Eq. (3) from that commonly used in

the related literature.

The nature of decay of the autocorrelation to the Mazur

bound of Eq. (53) also reveals information about the slow-

est operators or hydrodynamic modes in the system. The

deviation of the autocorrelation function from the Mazur

bound for a finite system is CÂ(t) − CÂ(∞). Unlike the

Mazur bound, which is usually computed for finite L, in

the decay of autocorrelations we are usually interested in

the limit L → ∞ and finite but long times t. Since the

Mazur bound CÂ(∞) vanishes in the L → ∞ limit for all

the examples that we study, we can still restrict our study to

CÂ(t). In this limit, it is clear that the behavior is dominated

by the nature of the low-energy excitations of P̂ . However,

the precise behavior also depends on their degeneracies

as well as the weights of the operator of interest on these

eigenstates.

If P̂ is gapped in the thermodynamic limit, with gap

Emin := minμ Eμ > 0, using Eqs. (52) and (51), and

assuming CÂ(∞) = 0 in the thermodynamic limit, we

obtain that CÂ(t) ≤ CÂ(0) exp(−κEmint); hence it decays

exponentially fast, with a rate proportional to the inverse

gap. When P̂ is gapless, i.e., when Emin → 0 as L → ∞,

we need to be more careful in deriving the form of the

decay. Since P̂ is a local superoperator, the low-energy

excited states are usually quasiparticles such as spin waves

with dispersion relations of the form E(k) ∼ kγ . If the full

weight of the operator Â, or at least a majority of it lies

within this quasiparticle band of states, we can heuristi-

cally write Eq. (51) as CÂ(t) ∼
∫

dk e−κE(k)t ∼ t−(1/γ ). As

we will see with concrete examples in Sec. V, for many

conventional symmetries such as U(1) or SU(2), we obtain

E(k) ∼ k2 and hence we obtain a power-law decay of the

autocorrelation function, i.e., CÂ(t) ∼ (1/
√

t). However,

note that this argument is not rigorous and if the weight

of the operator does not lie fully in the lowest quasiparticle

band, this argument may not lead to the correct form of the

late-time CÂ(t); we demonstrate this with an example of

Hilbert-space fragmentation in Sec. V. Hence, when P̂ is

gapless, it is important to carefully study the nature of the

operator weight distribution WÂ(E) in Eq. (51) across the

spectrum.

D. Approximate block-diagonalization

While exact symmetries lead to exact block diagonal-

izations of operators with those symmetries [25,32], it is

natural to ask if approximate symmetries lead to approxi-

mate block diagonalizations of operators. While we have

not been able to establish this in complete generality, here

we nevertheless make some simple observations in this

direction.

Given a super-Hamiltonian P̂ of the form of Eq. (5) and

a subspace K of the Hilbert space with dimension DK, the

“energy” of its projector �K under P̂ is a measure of how

connected this subspace is to the rest of the Hilbert space

under the action of the terms {Ĥα}. To see this, note that

the energy of �K is given by

εK := (�K|P̂|�K)

(�K|�K)

= 2

DK

∑

α

(Tr[Ĥ 2
α�K] − Tr[�KĤα�KĤα])

= 2

DK

∑

α

Tr[�KĤα�K⊥Ĥα], (54)

where �K⊥ is the projector onto the subspace orthogo-

nal to K. The last line in Eq. (54) is precisely the sum

of the norms of the “block off-diagonal” parts of the Ĥα ,

i.e., the sums of squares of matrix elements between states

in K and K⊥. This is consistent with the fact that if K is

a symmetry sector or a closed Krylov subspace, �K has

zero energy under P̂ , which implies that K is completely

disconnected from the rest of the Hilbert space.

Hence the existence of a basis in which all the Ĥα

have an “approximate block diagonal structure” [in the

sense that εK of Eq. (54) is small] implies the existence

of low-energy excitations in the corresponding super-

Hamiltonian. Likewise, the existence of a projector that

has a small energy under P̂ implies the existence of a

basis in which Ĥα (and hence the Hamiltonians formed

by their linear combinations) have approximate block-

diagonal forms. However, the existence of general low-

energy excitations of the super-Hamiltonian, which is what

we show for a number of cases in Sec. V B, does not itself

guarantee the existence of low-energy projectors in gen-

eral. We defer a careful exploration of this issue for future

works.

V. EXAMPLES OF LOW-ENERGY EXCITATIONS

In this section, we construct the low-energy excited

states of the super-Hamiltonian P̂ for several of the
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examples discussed in Sec. III and discuss corollaries for

dynamical properties. We illustrate examples of gapped

and gapless super-Hamiltonians separately, since they lead

to qualitatively different physics. Again, we restrict explicit

illustrations to 1D systems, but the results carry over to

higher-dimensional systems mutatis mutandis. Note that

while the low-energy spectra depend on the precise choice

of generators of the bond algebras A that leads to the

super-Hamiltonians P̂ , the qualitative aspects should not

depend on these details despite some choices leading to

extraneous features that allow more tractability, as we

argue in Appendix D.

A. Gapped super-Hamiltonians

1. Z2 symmetry

We begin by considering an example from Sec. III A 1.

Since P̂Z2
of Eq. (10) is a commuting projector Hamilto-

nian, it is easy to see that it is gapped, since the lowest-

energy excitations can be constructed only by “unsatis-

fying” one of the terms Zj ; tZj ; b or Xj ; tXj ; bXj +1; tXj +1; b.

For example, one of the lowest excited states can be con-

structed by “destroying” a single composite spin—say, at

the rung j0—by acting the operator Xj0;b on either of the

ferromagnetic ground states |G→〉 or |G←〉 of Eq. (13).

The resulting excitation “violates” the Zj0;tZj0;b term and

hence the energy of the excitation from Eq. (10) is 4.

In the original operator language, these excitations can

be written as |Xj0) and |iYj0

∏
j �=j0

Zj ), respectively (omit-

ting numerical factors), which commute with all {Xj Xj +1}
terms and all {Zj } in the generators of the bond alge-

bra AZ2
, except with Zj0 . Hence they can be also viewed

as “local-charge-insertion” operators for the original Z2

symmetry generated by
∏

j Zj .

Another type of excitation can be constructed by vio-

lating one of the Xj ;tXj ;bXj +1;tXj +1;b terms, which corre-

sponds to a domain wall between the two ferromagnetic

configurations |G←〉 and |G→〉. For a system with OBCs,

such excitations have the same energy as the ones in the

previous paragraph, whereas for PBCs, they have twice the

energy, since domain walls necessarily appear in pairs in

this case. In the operator language, considering OBCs for

simplicity, we obtain operators of the form |∏k≤j0
Zk) and

|∏k>j0
Zk), which can be viewed as operators that create

a charge of the “dual Z2 symmetry” obtained by applying

a Kramers-Wannier duality transformation on the original

system [99]. These are operators that commute with all the

generators of AZ2
except Xj0Xj0+1. Both types of the low-

energy excitations can be viewed as operators that create

either a Z2 charge or a dual Z2 charge as discussed in

Ref. [99] (note that the authors’ convention has Z and X

interchanged compared to our Sec. III A 1). In the “holo-

graphic” view of symmetry in 1D [8,99], these charge

creation operators in turn correspond to e or m particles

of the 2D toric code and it would be interesting to make

further connections between their view of symmetries and

our super-Hamiltonian perspective.

Finally, we note that the gapped nature following from

the commuting-projector property of P̂Z2
extends to super-

Hamiltonians for all Pauli-string algebras, which usually

correspond to discrete symmetries. Hence this feature also

carries over to higher-dimensional super-Hamiltonians

corresponding to such symmetries, which can be inter-

preted as commuting projector Hamiltonians on a bilayer

geometry.

2. Isolated QMBS

The case of an isolated QMBS, discussed in Sec. III C,

also gives rise to a gapped super-Hamiltonian P̂iso cor-

responding to the algebra Aiso of Eq. (40). This super-

Hamiltonian, restricted to the composite-spin sector, is

shown in Eq. (38). An intuition for the gap is that P̂iso

has exactly two linearly independent ground states shown

in Eq. (39) and that there is no natural “smooth” low-

energy excitation on top of the two ground states. While

this model is not solvable, it is frustration free and has

been studied in the earlier literature, and it has been proven

to be gapped with OBCs [87]. We also numerically find

evidence that it is gapped with PBCs (for more details,

see Appendix E). We expect that similar phenomenology

holds for other examples of isolated QMBSs and it would

be interesting to prove this in general, perhaps using some

of the mathematical physics methods developed for such

purposes [100–103].

B. Gapless super-Hamiltonians

We now move on to demonstrate interesting examples of

gapless super-Hamiltonians, which lead to slowly relaxing

hydrodynamic modes associated with the symmetry.

1. U(1) symmetry

We start with the case of U(1) symmetry. As discussed

in Sec. III A, the ground states of the super-Hamiltonian

P̂U(1) of Eq. (17) are in the composite-spin sector, obtained

by minimizing the energy under the rung terms {1 −
Zj ;tZj ;b} defined on rungs of the ladder in Eq. (11). Since

each of the rung terms {1 − Zj ;tZj ;b} commutes with all

the terms in Eq. (17), any state not in the composite-spin

sector has an energy of at least 4; hence we expect the

lowest excited states of P̂U(1) to be within the composite-

spin sector. Within this sector, the effective Hamiltonian

maps onto the ferromagnetic Heisenberg model of Eq. (18)

and, as discussed in Appendix A, the lowest-energy eigen-

states are spin waves on top of the ferromagnetic multiplet,

shown in Eq. (A6). The energies of these states are given

by 32 sin2 (k/2), where k is quantized as shown in Eq. (A7)

or Eq. (A8), and hence the gap of P̂U(1) scales as approx-

imately 1/L2, showing that it is gapless. When mapped to
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the operator language, using Eq. (14), the spin-wave states

of Eq. (A6) translate to

|λm,k) = 1√
2LMm,k

∑

j1<···<jm

(
m∑

ℓ=1

cjℓ,k

)
|Zj1 · · · Zjm), (55)

where cj , k is the form of the orbitals given in Eqs. (A7)

and (A8) for PBCs and OBCs and Mm,k is a normalization

factor shown in Eq. (A9).

With the exact form of the excited states, we can com-

pute the ensemble-averaged correlation functions of local

operators CB̂,̂A(t) and CÂ(t), shown in Eqs. (48) and (53).

We study correlators of the on-site operators {Zj }, which in

the composite-spin language read

|Zj ) = 2
L
2 |→̃ · · · →̃ ←̃j →̃ · · · →̃〉 . (56)

Using this expression, it is clear that all the weight of

this operator belongs to the Hilbert space spanned by the

one-spin-flip spin waves {|λ1,k)} of Eq. (55), including the

k = 0 case, which belongs to the ground-state manifold

(for more details, see Appendix A), and |Zj ) is orthogo-

nal to every other eigenstate of P̂U(1), both in and outside

the composite-spin sector. Hence the full time evolution

of ensemble-averaged correlation functions CZj ,Zj ′ (t) and

CZj
(t) can be computed just using these one-spin-flip spin

waves.

The overlap of these operators on the single spin-wave

eigenstates reads

(λ1,k|Zj ) =
c∗

j ,k2L/2

√
M1,k

,
1

D
|(λ1,k|Zj )|2 = |cj ,k|2

M1,k

= |cj ,k|2.

(57)

When k = 0, the last expression is precisely the Mazur

bound, CZj
(∞) = 1/L, which has also been computed in

Ref. [25]. From now on, we specialize to PBCs for sim-

plicity [104]. Using Eqs. (51) and (57), and the PBC

parameters discussed in Appendix A, the time dependence

of the autocorrelation reads

CZj
(t) = 1

L

∑

k

e
−32κ sin2

(
k
2

)
t =
∫ 2π

0

dk

2π
e−16κ[1−cos(k)]t

= e−16κtI0(16κt) ≈ 1√
2π × 16κt

at large t,

(58)

where k in the first sum is quantized as 2πn/L for 0 ≤
n ≤ L − 1 and we have taken the L → ∞ limit to go from

the sum to the integral, and I0 is the modified Bessel

function of the first kind. Note that the late-time depen-

dence can also be easily recovered by simply substituting

the “slow-mode” dispersion to be approximately k2, which

leads directly to CZj
(t) ∼ (1/

√
t), consistent with diffusive

systems.

It is also possible to recover the Gaussian spatial spread-

ing nature of the two-point correlation of Eq. (48), which

in the L → ∞ limit leads to the integral

CZj ,Zj ′ (t) =
∫ 2π

0

dk

2π
e−16κ[1−cos(k)]teik(j −j ′)

= e16κtIj −j ′(16κt) (59)

κt≫1≈
∫ ∞

−∞

dk

2π
e−8κk2teik(j −j ′) = e− (j −j ′)2

32κt

√
32πκt

, (60)

where in the second line Iν is the modified Bessel func-

tion of the first kind of index ν = j − j ′, while the last line

shows the behavior for κt ≫ 1. The Gaussian nature of the

correlation function in Eq. (60), with a variance growing

linearly in t, is consistent with the prediction of diffusion.

It is easy to see that similar results hold in higher

dimensions and the complete weight of the local spin oper-

ator |Zj ) is within the one-spin-flip spin-wave band. This

allows us to compute the ensemble-averaged correlation

functions, recovering the standard results expected from

diffusion, e.g., the decay of autocorrelations as approxi-

mately t−(d/2) in d dimensions.

Moreover, as discussed in Appendix D, the super-

Hamiltonian can be different if one starts with a different

set of generators of the bond algebra AU(1) and it need

not be solvable or SU(2) symmetric. However, the ground

states are always the same by construction and on physical

grounds we expect the approximately k2 dispersion of the

low-energy excitations to be the same as long as the gener-

ator set is chosen to be local, since it still represents a U(1)

symmetric Brownian circuit. Indeed, the gap in longer-

range Hamiltonians with this set of ground states has been

studied numerically in Ref. [59] and has been shown to be

consistent with approximately 1/L2 scaling for a system of

size L, and the approximately k2 form of low-energy exci-

tations has been argued based on mappings to a field theory

[105].

2. Hilbert-space fragmentation

We now discuss the low-energy excitations of the super-

Hamiltonian P̂t−Jz of Eq. (26) in the case with t − Jz frag-

mentation and we show that its low-energy excitations can

be used to understand slow modes and late-time behavior

of the t − Jz model. Due to the conservation of the pat-

tern of spins, the t − Jz model at late times is expected to

exhibit tracer diffusion for typical initial states [106,107],

which is the phenomenology exhibited in one dimension

by a single “tracer” particle that is not allowed to cross its
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neighbors [108–110]. This leads to an approximately t
− 1

4

prediction for the nature of decay of spin autocorrelation

functions at late times [111].

To determine the low-energy excitations, it is sufficient

to work in the composite-spin sector defined by spins of

the form of Eq. (27), since there is necessarily a gap to

other sectors due to the first term in Eq. (26). The super-

Hamiltonian restricted to composite spins, Pt−Jz |comp of

Eq. (28), in the ket-bra notation then closely resembles

the Heisenberg Hamiltonian PU(1)|comp of Eq. (18). In fact,

apart from the degeneracies, the spectra of these Hamilto-

nians are identical. To see that, we first note that P̂t−Jz |comp

acting on states with n “spinful particles” in OBCs pre-

serves the pattern of spins σ̃1, σ̃2, . . . , σ̃n on these particles,

ordered from left to right. Working in a sector with such a

fixed pattern, the action of P̂t−Jz |comp does not differentiate

in any way between the spins ↑̃ and ↓̃ on these particles

and we can simply label the states in this sector by mark-

ing each particle location as “state” 1̃, obtaining a Hilbert

space of L qubits 1̃/0̃ with precisely n qubits in state 1̃.

The 0̃ and 1̃ can further be mapped onto the Hilbert space

of spins ↑ and ↓ and the Hamiltonian P̂t−Jz |comp of Eq. (28)

after these identifications precisely maps to the ferromag-

netic Heisenberg model HHeis of Eq. (A2), up to an overall

factor. Once the eigenstates of the Heisenberg model are

written in terms of the spins ↑ and ↓, they can first be

mapped to 0̃ and 1̃, respectively, and then the 1̃ can be

replaced by the specific pattern of spins in the given sector

in the t − Jz model, i.e., ↑̃ and ↓̃, to obtain an eigenstate of

P̂t−Jz |comp, and hence that of P̂t−Jz . Hence any eigenstate

of the Heisenberg model with n ↑ and (L − n) ↓ cor-

responds to 2n degenerate eigenstates of P̂t−Jz . This also

maps the L + 1 ground states of the ferromagnetic Heisen-

berg model in Eq. (A5) to the total of
∑L

n=0 2n = 2L+1 − 1

ground states of P̂t−Jz |comp in Eq. (29). Moreover, due to the

composite-spin SU(2) symmetry of P̂t−Jz |comp discussed in

Sec. III B, this mapping also holds in terms of composite-

spin states {→̃, ←̃} defined in Eq. (13) instead of {↑̃, ↓̃};
this is useful in the discussion in Appendix F. The entire

list of mappings can be summarized as follows:

(↑̃/↓̃, 0̃)/(→̃/←̃, 0̃) ←→ (1̃, 0̃) ←→ (↓, ↑)/(←, →),

(61)

where the leftmost states are in the t − Jz composite-spin

Hilbert space and the rightmost ones are in the spin-1/2

Hilbert space.

To understand the behavior of autocorrelation functions,

we restrict to a local operator Â = Sz
j , defined in Eq. (24).

We then need to compute the behavior of CSz
j
(t), which

according to Eq. (51) requires the computation of the over-

laps between Sz
j and the eigenstates of P̂t−Jz . First, since

the ground states of P̂t−Jz are precisely the operators of

the commutant Ct−Jz , the total weight of |Sz
j ) on all these

ground states is the Mazur bound. This bound has been

computed exactly for the spin operator Sz
j in Ref. [25] and

it has been shown to decay with the system size as approx-

imately (1/
√

L) for OBCs in the bulk of the chain and

remain O(1) at the boundaries, even as L → ∞. Since we

are interested in the bulk transport properties, we focus on

the behavior of CSz
j
(t) at large t for j in the middle of the

chain as L → ∞.

We discuss the computation of the overlap with other

low-energy eigenstates of P̂t−Jz in Appendix F. Unlike the

case for U(1) symmetry discussed in Sec. V B 1, where the

weight of the local spin operator was completely within

the spin-wave band of excitations of P̂U(1), the weight

distribution of the Sz
j operator seems to be significantly

more complicated; in particular, a significant portion of

the weight appears to lie in states of higher energy. Since

the operator |Sz
j ) corresponds to the composite spin |←̃〉j

on the ladder, it is easy to see that it has nonzero over-

lap only on the eigenstates of P̂t−Jz |comp. Although the

Heisenberg model, and hence P̂t−Jz |comp, is completely

integrable, its eigenstates do not have a simple form, which

hinders a fully analytical computation of these overlaps.

Nevertheless, with a combination of analytical and numer-

ical results, we are able to deduce the existence of tracer

diffusion from the spectrum of P̂t−Jz |comp.

We first express CÂ(t) from Eq. (51) as

CÂ(t) =
∫

dE wÂ(E) e−κEt =
∫

dE
d�Â

dE
e−κEt,

wÂ(E) := lim
�E→0

1

�E

∑

E′∈(E,E+�E)

WÂ(E′),

�Â(E) :=
∫ E

0

dE′ wÂ(E′) =
∑

E′<E

WÂ(E′), (62)

where wÂ(E) can be interpreted as the “density” of the

weight at a given energy E and �Â(E) is the cumulative

weight on eigenstates at energies below E. This expression

is valid for finite sizes with discrete levels (possibly degen-

erate but all are included in the formal sum) but it is written

in anticipation of the thermodynamic limit L → ∞ where,

for a local observable Â, we expect �Â(E) to converge to

an L-independent function that, at E → ∞, gives the total

weight (1/D)(̂A|̂A), which is a fixed O(1) number. Note

that, in fact, we expect most of the weight to be spread over

a finite range of E, since |̂A) for any strictly local operator

Â can be viewed as a result of an action of a superoperator

|̂A)(1| that is strictly local in the ladder formulation on one

of the ground states |1) of the super-Hamiltonian, which

can deposit only finite energy of the latter. As an exam-

ple of immediate interest to us, a simple calculation gives

(Sz
j |P̂t−Jz |Sz

j )/(S
z
j |Sz

j ) = 4/3.
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FIG. 2. The cumulative weight �(E) of the operator |Sz
j ),

with j = ((L + 1)/2) in the middle of an OBC chain, on the

eigenstates of the super-Hamiltonian P̂t−Jz |comp of Eq. (28) as

a function of the energy for various system sizes L. Note that

�(E) appears to be converging to an L-independent function. At

large E, it approaches the total weight of the operator, which is 2
3
.

With our choices of overall factors in P̂t−Jz |comp, the Heisenberg

model to which it maps has a one-magnon bandwidth of 8 and a

total bandwidth of O(2.6L), which are the natural energy scales

to judge the horizontal axis. The inset shows the same plot on a

log-log scale to extract its scaling as E → 0. The form appears

to be �(E) ∼ Eγ , with γ ∈ [0.25, 0.3].

We can then use the behavior of �Â(E) at small E to

deduce the behavior of CÂ(t) at large t. For example, if

we have �Â(E) ∼ Eγ as E → 0, according to Eq. (62) we

have

CÂ(t) ∼ γ

∫
dE Eγ−1e−κEt ∼ t−γ for large t. (63)

For the operator |Sz
j ), the weights on the eigenstates of

P̂t−Jz |comp can formally be written down in terms of eigen-

states of the Heisenberg model; we present the details in

Appendix F. The cumulative weight distribution �Sz
j
(E)

can then be computed numerically and its form for j =
((L + 1)/2) and odd system sizes with OBCs is shown in

Fig. 2. The nature of this distribution as E → 0 is consis-

tent with γ ∈ [0.25, 0.3] in Eq. (63), which is consistent

with the scaling expected from the tracer diffusion [107].

3. Asymptotic QMBS

We now demonstrate that asymptotic QMBS, introduced

in Ref. [55], can be understood in terms of low-energy

excitations of the super-Hamiltonians corresponding to

towers of QMBSs, e.g., P̂scar of Eq. (32) for the bond alge-

bra of Eq. (42). In models with a tower of exact QMBSs,

asymptotic QMBSs are low-entanglement states orthogo-

nal to exact QMBSs that have a vanishing energy variance

in the L → ∞. As a consequence of their low variance,

their relaxation time diverges with the system size, a prop-

erty that does not happen for generic low-entanglement

states under local Hamiltonian dynamics [112].

Simple examples of asymptotic QMBSs [55] in the con-

text of models with the ferromagnetic tower of QMBSs,

which correspond to the algebras of Eq. (42), are

|	n,k〉 := 1√
Nn,k

S−
k |	n+1,0〉 , 1 ≤ n ≤ L − 1, (64)

where S−
k :=∑j cj ,kS−

j , with cj ,k chosen such that

〈	n,k|	n′,0〉 = δn,n′δk,0 and the variance of |	n,k〉 decreases

with increasing system size L, and Nn,k is a normalization

constant that can be tedious to compute. A simple way to

satisfy these conditions is to choose |	n,k〉 to be a spin

wave on top of the ferromagnet, with k ≪ 2π such that

k → 0 as L → ∞; hence the similarity between |	m,k〉 and

|λz
m,k〉 of Eq. (A6). For example, the use of (cj ,k, k) of the

form of Eq. (A7) with k = (2π/L) leads to an energy vari-

ance of approximately 1/L2 and a fidelity-relaxation time

scale of approximately L, similar to the example discussed

in Ref. [55].

We now show that the behavior of asymptotic QMBSs

of the form of Eq. (64) can be understood from the low-

energy excitations of the super-Hamiltonian P̂tower for the

tower of QMBSs. We start with a subspace of states of the

form |ψ〉t ⊗ |	m,0〉b, where the state on the bottom leg of

the ladder is |	m,0〉, an exact QMBS shown in Eq. (41).

Using the fact that R[j ,j +1];b |	m,0〉b = 0 and R2
[j ,j +1];ℓ =

R[j ,j +1];ℓ, P̂tower of the form of Eq. (32) keeps this subspace

invariant and acts within it as

P̂tower = 8
∑

j

R[j ,j +1];t = 2L − 8
∑

j

(�Sj ;t · �Sj +1;t), (65)

which, up to an overall factor, is simply the ferromagnetic

Heisenberg Hamiltonian of Appendix A, acting on the top

leg. Hence, excitations within this subspace are spin waves

on the top leg of the ladder of the form

|	n,k〉t ⊗ |	m,0〉b = ||	n,k〉〈	m,0|), (66)

where |	n,k〉 is a spin wave on top of the Heisenberg fer-

romagnet, e.g., as defined in Eq. (64). These states on the

ladder have energy as shown in Eq. (A10); in particular, the

dispersion scales as approximately k2. Hence the relaxation

of the autocorrelation function of any operator to its Mazur

bound is expected to occur on time scales of approximately

L2, provided that the operator has a nonzero overlap with

the slowly relaxing mode.

To apply the general theory of autocorrelation func-

tions to study the asymptotic QMBSs, we first note some
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general properties that hold for an initial state |ψ〉 evolv-

ing under a Brownian circuit corresponding to an algebra

A = 〈〈{Ĥα}〉〉. The autocorrelation function of an operator

Â = |ψ〉〈ϒ |, for any normalized state |ϒ〉, is given by

Tr[̂A(0)†Â(−t)] = 〈ψ(0)|ψ(t)〉〈ϒ(t)|ϒ(0)〉, (67)

where Â(−t) can be viewed as the time-evolved operator

under the Brownian circuit with bond generators of oppo-

site sign; in this context, Â(−t) = |ψ(t)〉〈ϒ(t)|, with |ψ(t)〉
and |ϒ(t)〉 being the time-evolved states under a single

realization of the Brownian-circuit couplings {J (t′)
α } (for

precise details, see Appendix G). Given that the algebra

A admits a singlet |ϒ〉, i.e., that is an eigenstate of each

of the {Ĥα} (so that |ϒ(t)〉 = e−iϕt |ϒ(0)〉 for some ϕ that,

in general, depends on the random couplings), we can use

Eq. (67) to lower bound the ensemble-averaged fidelity as

follows:

F(t) := |〈ψ(0)|ψ(t)〉|2 ≥ |〈ψ(0)|ψ(t)〉|2

≥
∣∣∣〈ψ(0)|ψ(t)〉eiϕt

∣∣∣
2

=
∣∣∣Tr[̂A(0)†Â(−t)]

∣∣∣
2

. (68)

In the case of asymptotic QMBSs, we can choose Â =
|	n,k〉〈	m,0| with normalized |	m,0〉 and |	n,k〉, which sat-

isfy the required conditions. This operator |̂A) is precisely

that in Eq. (66) and is hence an eigenstate of the super-

Hamiltonian P̂tower with eigenvalue pk = 8[1 − cos(k)].

Using Eq. (68), we have

|〈	n,k(0)|	n,k(t)〉|2 ≥
∣∣∣(̂A(0)|̂A(−t))

∣∣∣
2

= e−2κpk t. (69)

Thus, the average fidelity decays on a time scale of approx-

imately L2. This qualitatively recovers that the fidelity

of asymptotic QMBSs decays on time scales that grow

with the system size. However, note that this scaling dif-

fers quantitatively from the approximately L scaling of the

fidelity-decay time scale seen in Hamiltonian systems with

asymptotic QMBSs [55]. We hypothesize on reasons for

this difference between the Brownian-circuit and Hamilto-

nian systems in Appendix G and it appears to be related

to the quantum Zeno effect due to stochasticity in the

Brownian circuit.

The behavior of the overlap in Eq. (69) can also be

understood from a direct analysis of the evolution of states

under Brownian-circuit dynamics, which we discuss in

Appendix G. Considerations discussed there also lead us

to the following conjecture on the existence of asymptotic

QMBS in Hamiltonians with exact QMBS.

Conjecture 1. Consider a space S = span{|	n〉} that

can be expressed as the exhaustive common kernel of

a set of strictly local projectors. Any local Hamiltonian

that realizes this subspace as the exact QMBS subspace

also has asymptotic QMBSs if S cannot be expressed as

the ground-state space of a gapped frustration-free Hamil-

tonian. Furthermore, the gapless excitations of any such

Hamiltonian are the asymptotic QMBSs.

The same phenomenology generalizes to cases in which

the QMBSs are nondegenerate and we discuss this in more

detail in Appendix H.

Finally, we remark that even though one can construct

low-energy excitations of P̂tower with dispersion approxi-

mately k2 that is similar to the dispersion of the low-energy

excitations of P̂U(1) in the U(1)-symmetry case, there is

generally no diffusion of local operators in systems with

only QMBSs. This is due to the exponentially small over-

lap of local operators on these low-energy modes, similar

to the result that QMBSs have an exponentially small con-

tribution to the Mazur bound of general local operators, as

demonstrated in Ref. [31].

4. Other continuous symmetries

The strategy of studying the low-energy excitations of

the super-Hamiltonians can be applied to more general

symmetries and we briefly discuss two cases here.

First, this can be applied to non-Abelian symmetries

such as SU(q) for q ≥ 2. As discussed in Sec. III A 3, the

simplest super-Hamiltonians in such cases are Heisenberg-

like models with SU(q2) symmetry [see Eq. (22)] and

the ground states are SU(q2) ferromagnets. We can then

straightforwardly also obtain exact low-energy excitations

of such Hamiltonians by creating spin waves on top of

these generalized ferromagnetic states, e.g.,

L∑

j =1

eikj S
m̃,m̃′
j |m̃, . . . , m̃, m̃, m̃, . . . , m̃〉 , (70)

where S
m̃,m̃′
j is the operator that changes the state on the

(rung) site j from m̃ to m̃′. This state can be shown to

have energy 4(1 − cos(k)) ∼ k2 at small k, similar to the

spin waves of the spin-1/2 Heisenberg model. This enables

computations of various correlation functions, including

autocorrelation functions of local operators similar to the

U(1) case discussed in Sec. V B 1, and we get similar

answers, e.g., diffusion due to the similar nature of the

super-Hamiltonians in both cases.

Second, the analysis simplifies in the case of “classical”

symmetries, where the super-Hamiltonians map onto RK-

type Hamiltonians, as discussed in Appendix B. Similar

RK-type Hamiltonians appear in the study of spectral form

factors in Floquet random circuits with symmetries or con-

straints [59,113,114], and the Thouless time is determined

by the scaling of the inverse of the gap of the correspond-

ing Hamiltonian with the system size. For example, RK-

type Hamiltonians that appear in the context of dipole and
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multipole symmetries have been studied in Ref. [59]. Their

low-energy physics can be understood using Lifshitz-

like field theories, which leads to an approximately k4

dispersion of the low-energy mode for dipole-moment-

conserving systems, and approximately k2(m+1) for systems

conserving the mth moment. With the appropriate choice

of bond generators, the same set of RK-type Hamiltonians

would appear as super-Hamiltonians in our analysis [115]

and using heuristic arguments based on the dispersion

relation of the low-energy modes, we obtain that autocor-

relations should decay as approximately 1/t(d/(2(m+1))) in

d-dimensional systems with mth-multipole-moment con-

servation, indicating subdiffusion. This Brownian-circuit

approach to determine transport phenomena has also

recently been applied to short-range and long-range dipole-

conserving Hamiltonians [62], where the low-energy exci-

tations of the effective super-Hamiltonians (referred to

there as Lindbladians) have yielded results consistent with

those obtained from other methods [58,59,63,64].

We close this discussion with a general remark on the

low-energy excited states of general super-Hamiltonians.

Note that the identity operator |1) is always a ground

state of any super-Hamiltonian, since it always belongs

to the commutant algebra. In the ladder language, this

corresponds to a “homogeneous” product state, e.g.,

|→̃→̃ · · · →̃〉 for spin-1/2 systems. Given that the super-

Hamiltonian is a local superoperator, it is natural to expect

that its low-energy spectrum should be well approximated

by a “quasiparticle” trial state that aids in determining the

late-time transport. This happens in all of the cases that

we have studied; however, exploring the validity of this

statement or coming up with counterexamples would be

an interesting avenue for future work.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have shown that many examples of

both conventional and unconventional symmetries can

be understood as ground states of local superoperators

interpreted as Hamiltonians acting on a doubled ladder

Hilbert space; hence we have referred to them as “super-

Hamiltonians.” This originates from the understanding of

symmetries as commutants of bond algebras generated

by local operators, as illustrated in Refs. [25,31–33]. For

conventional symmetries such as Z2, U(1), SU(2), the

symmetry algebras can be interpreted as various kinds

of ferromagnetic states of appropriate super-Hamiltonians.

Unconventional symmetries such as fragmentation and

QMBSs have also led to frustration-free Hamiltonians with

solvable ground states.

We have then shown that the low-energy spectra of

the super-Hamiltonians can be interpreted as approxi-

mate symmetries associated with the exact symmetries.

We have done this by showing that super-Hamiltonians

obtained in this way are effective Hamiltonians that

describe noise-averaged dynamics in noisy symmetric

Brownian circuits constructed using the bond-algebra gen-

erators. This gives a physical interpretation for the super-

Hamiltonians and connects their low-energy excited states

to slowly relaxing hydrodynamic modes of the symmetric

Brownian circuits. This also gives a novel interpretation

for the Mazur bound [53,54], usually interpreted as a lower

bound for the time-averaged autocorrelation function, as

the saturation value of the ensemble-averaged autocorrela-

tion function of Brownian circuits. The approach to this

saturation value is governed by the low-energy spectra

of the super-Hamiltonians; hence their low-energy eigen-

states beyond the ground states have interpretations as

approximate symmetries.

We have then explicitly solved for the low-energy spec-

tra of the super-Hamiltonians and discussed the dynamical

consequences of the associated slowly relaxing modes.

Using this framework, we have first recovered well-known

facts that while conventional discrete symmetries such as

Z2 have gapped super-Hamiltonians, and hence no asso-

ciated slow modes, conventional continuous symmetries

such as U(1) and SU(2) have gapless super-Hamiltonians

and the corresponding slow modes lead to diffusion. How-

ever, we have shown that this framework works much

more generally, for understanding slow modes associated

with unconventional symmetries such as fragmentation

and QMBSs as well. While isolated QMBSs have gapped

super-Hamiltonians and hence no associated slow modes,

towers of QMBSs have asymptotic scars of the type dis-

cussed in Ref. [55] as slow modes. Hilbert-space frag-

mentation in the t − Jz model has slow modes, which can

be used to understand tracer diffusion in such systems,

as pointed out in earlier works [106,107]. On a technical

note, the quantitative understanding of the slow relaxation

of certain observables in some cases, such as the t − Jz

fragmentation, has required a careful analysis of the full

low-energy spectrum (including appropriate weights for

observables), rather than the simple scaling of the gap

that has been sufficient for such purposes in earlier works

[59,62]. In all, our work connects studies of the commutant

algebra focusing on exact conserved quantities (ground

states of the corresponding super-Hamiltonians) to stud-

ies of hydrodynamic and transport properties controlled

by approximately conserved quantities (low-lying excita-

tions of the super-Hamiltonians) in symmetric systems.

While we have restricted illustrations to 1D systems, the

results and phenomenology generalize straightforwardly to

higher-dimensional systems.

It would be interesting to explore the applicabil-

ity of this method to other generalized symmetries

being studied in the literature, e.g., subsystem symme-

tries [60,116–119], spatially modulated symmetries [61],

and categorical or MPO symmetries [11,12,120], and

understand if they can be viewed as ground states of

local super-Hamiltonians. The low-energy spectrum of the
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corresponding super-Hamiltonians should reveal the late-

time dynamical properties of such systems and of the

associated hydrodynamic modes, which would also be

interesting to explore in other models of Hilbert-space

fragmentation [21,25,72,121–124], and lattice gauge the-

ories with strictly local symmetries [125,126]. It would

also be interesting to try to reproduce in this language

the sector-dependent hydrodynamic behavior observed in

many models of HSF based on pattern conservation or

“irreducible strings” [106,127]. Of course, strictly speak-

ing, some symmetries, such as dynamical symmetries

[32,128], are not ground states of local Hermitian super-

operators, since they correspond to algebras generated by

also including extensive local terms (for more details, see

Ref. [32]) but we hope that a generalization of this story

might capture many more examples. In addition, lattice

symmetries or those that appear in the context of integra-

bility [129] have so far not been explored in the commutant

framework, which would be an interesting direction to

pursue.

The fact that the super-Hamiltonians can be understood

as frustration-free Hamiltonians—and, moreover, of the

RK form in many cases—also opens up many directions

of exploration. First, such Hamiltonians are easy to ana-

lyze and this method might provide a better systematic

approach to prove the exhaustion of commutant algebras,

which has turned out to be tedious using brute-force meth-

ods [31,32]. Second, they are also amenable to standard

techniques for proving gaps or their absence [100–103,

130–132] and the understanding of which symmetries have

a gap is important for understanding the nature of late-time

transport in symmetric systems. Third, RK Hamiltonians

have connections to several standard concepts in classi-

cal master equations and also to spectral graph theory

[59,76,77,133], and it would be interesting to exploit this

property to study the low-energy excited states using exist-

ing methods such as classical stochastic circuits, similar to

those used in the literature [58,72,134,135], and potentially

also quantum Monte Carlo techniques [136]. Finally, many

of these super-Hamiltonians also have interesting contin-

uum limits and their low-energy physics can be understood

in terms of field theories. For example, several types of

RK Hamiltonians map onto Lifshitz field theories that are

easy to analyze [59,137–139]. Given that many general-

ized symmetries are studied in the context of quantum field

theories in the continuum [1,2], it is natural to wonder

if the novel symmetries there, e.g., noninvertible symme-

tries understood via category theory, can be understood as

“ground states” in any sense. Some aspects of the super-

Hamiltonian constructions, e.g., working in a doubled

Hilbert space and studying the low-energy physics, resem-

ble the Schwinger-Keldysh formalism [140–143] and it

would be useful to elucidate these connections further.

More speculatively, connecting symmetry algebras to

ground states should also help impose some general

constraints on symmetry operators, e.g., perhaps they nec-

essarily have MPO forms or some restrictions on their

operator entanglement. Moreover, the fact that symmetry,

which is a property of the Hilbert space, is connected to

ground-state properties of a local operator, is consistent

with the conjecture that symmetries are related to topo-

logical orders—a ground-state property—in one higher

dimension [8,99,144]. The commutant framework along

with this ground-state mapping might be a framework in

which to make such a correspondence more precise in

lattice systems.

The language of super-Hamiltonians also introduces a

precise language with which to discuss approximate sym-

metries. While we have illustrated this only for approx-

imate symmetries that accompany exact symmetries, it

would be very interesting to identify bond algebras with-

out exact symmetries, but with approximate symmetries

that appear as low-energy excited states of the super-

Hamiltonians, which could lead to slow dynamics and

phenomena such as prethermalization. Furthermore, as

we have shown in Sec. IV D, approximate symmetries

are also potentially related to approximate block-diagonal

structures and hence the language of super-Hamiltonians

might help explain the origin of approximate symmetries

in certain systems in the literature; e.g., the so-called PXP

model [17] is known to exhibit approximate QMBS and

approximate block-diagonal structures [145].

On a different note, since algebra-based Brownian cir-

cuits have played a crucial role in understanding and/or

interpreting the super-Hamiltonian spectrum, this seems

like a useful setting to explore more. For example, it is

likely that several results on Haar-random circuits can be

reproduced using the seemingly more tractable Brown-

ian circuits and, indeed, there have been many interest-

ing works studying the properties of “generic” Brownian

circuits using “effective Hamiltonians,” which are super-

Hamiltonians of the kind we study in this work [43,45,

47]. On the other hand, Brownian circuits with symme-

tries have been much less studied and the large class of

“algebra-based” circuits that we have introduced in this

work, which are defined using the bond algebra corre-

sponding to the symmetry, might prove to be useful toy

models that are easier to study than symmetric Haar-

random circuits for a number of reasons. First, defining

the latter requires knowledge of the irreducible represen-

tations [113,146–148], i.e., the block-diagonal structure

of each gate, whereas Brownian circuits only require the

generators of the corresponding bond algebra. Second, in

contrast to rigid Haar-random circuits, the class of Brow-

nian circuits that we study possesses a lot of tunable

parameters in the choice of their generators, which might

lead to more analytically tractable super-Hamiltonians that

provide better physical insights. Finally, while compu-

tations in Haar-random circuits map onto questions in

classical statistical mechanics, computations in Brownian
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circuits map onto the low-energy physics of effective

super-Hamiltonians, which, although they are equivalent

to questions in classical statistical mechanics, are nev-

ertheless more directly accessible using analytical and

numerical treatments developed in the context of quan-

tum many-body systems. For example, the hydrodynamic

modes associated with the symmetries arise more “natu-

rally” as “low-energy excitations” on top of simple ground

states, which can be studied using a variety of variational

methods. Hence this should be a nice analytical tool with

which to explore the physics of symmetric systems, includ-

ing those with unconventional symmetries, and this can be

contrasted from the physics of systems without any sym-

metry, by studying bond-algebra generators that have a

trivial commutant of only the identity operator.

Finally, it is important to better understand the precise

connections between the dynamics of Brownian circuits

and more general Hamiltonian or Floquet systems. While

the microscopic physics is expected to be different, uni-

versal properties such as hydrodynamic modes, that arise

solely due to the symmetry and locality of the systems,

should appear in both kinds of systems, even though they

are analytically tractable only in Brownian circuits. It

would be interesting to check if these modes survive under

“relaxation” of the structure of Brownian circuits and mak-

ing this closer to non-Markovian Hamiltonian systems in

various ways, e.g., by incorporating temporally correlated

noise.
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APPENDIX A: THE FERROMAGNETIC

HEISENBERG MODEL

In this appendix, we define a canonical form for the fer-

romagnetic Heisenberg model and set the conventions we

use to describe it and its eigenstates. This appears repeat-

edly in the analysis of various super-Hamiltonians that we

have studied in the main text. It is a spin- 1
2

Hamiltonian

acting on a system of size L, with the local degrees of

freedom |↑〉j and |↓〉j in the ẑ basis or |→〉j and |←〉j in

the x̂ basis. We use the convention that these are related as

|→〉j := |↑〉j + |↓〉j√
2

, |←〉j := |↑〉j − |↓〉j√
2

. (A1)

The standard forms of the Heisenberg Hamiltonian that we

use in this work are given by

HHeis =
Lmax∑

j =1

(|↑↓〉 − |↓↑〉)(〈↑↓| − 〈↓↑|)[j ,j +1]

=
Lmax∑

j =1

(|→←〉 − |←→〉)(〈→←| − 〈←→|)[j ,j +1]

=
Lmax∑

j =1

(1 − P
(2)

j ,j +1)

= 1

2

Lmax∑

j =1

[1 − (Xj Xj +1 + Yj Yj +1 + Zj Zj +1)]

= 2

Lmax∑

j =1

[
1

4
− �Sj · �Sj +1

]
, (A2)

where the {Xj , Yj , Zj } are the Pauli operators on site j ,

{Sx
j , S

y
j , Sz

j } are the spin operators on site j , which are the

Pauli matrices multiplied by a factor of 1
2
, and P

(2)

j ,j +1 is

the operator that permutes the states on sites j and j + 1

defined in Eq. (21). Moreover, Lmax = L − 1 with OBCs

and Lmax = L with PBCs, with the subscripts taken to be

modulo L. We also define raising and lowering operators,

Sz−
tot :=

L∑

j =1

Sz−
j =

L∑

j =1

|↓〉〈↑|j ,

Sx−
tot :=

L∑

j =1

Sx−
j =

L∑

j =1

|←〉〈→|j ,

Sz+
tot := (Sz−

tot )
†, Sx+

tot := (Sx−
tot )

†, (A3)

all of which commute with HHeis.

This Hamiltonian has (L + 1)-fold degenerate frustration-

free ground states, which we often refer to as the “ferro-

magnetic multiplet.” To obtain an orthonormal basis for

this multiplet, we can start with the fully polarized state

with all spins in either the +ẑ or +x̂ direction, which read

|Fz
0〉 := |↑↑ · · · ↑〉 , |Fx

0〉 := |→→ · · · →〉 , (A4)

and repeatedly act with the corresponding lowering opera-

tors, Sz−
tot or Sx−

tot of Eq. (A3), respectively, to obtain L + 1

linearly independent states of the form
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|Fα
m〉 = 1√(

L

m

)
∑

j1<···<jm

Sα−
j1

Sα−
j2

· · · Sα−
jm

|Fα
0 〉, 0 ≤ m ≤ L, α ∈ {z, x}. (A5)

Beyond the ground-state space, the low-energy excitations of HHeis are well known to be spin waves. These spin waves

are (L − 1)-fold degenerate (corresponding to degeneracy of a multiplet with total spin of L/2 − 1) and a complete

orthonormal basis for these degenerate eigenstates can be chosen as

|λα
m,k〉 = 1√

Mm,k

∑

j1<···<jm

[(
m∑

ℓ=1

cjℓ,k

)
Sα−

j1
· · · Sα−

jm
|Fα

0 〉
]

, 1 ≤ m ≤ L − 1, α ∈ {z, x}, (A6)

where k labels orthonormal “orbitals” cj ,k in the single-magnon problem, e.g., k is the plane-wave momentum in the PBC

case,

cPBC
j ,k := 1√

L
eikj , k = 2πn

L
, 1 ≤ n ≤ L − 1; (A7)

or k is the appropriate standing-wave “momentum” in the OBC case,

cOBC
j ,k :=

√
2

L
cos[k(j − 1/2)], k = πn

L
, 1 ≤ n ≤ L − 1. (A8)

Further unpacking Eq. (A6), integer 1 ≤ m ≤ L − 1 labels states in the given SU(2) multiplet with fixed k and Mm,k is

a normalization factor chosen so that |λm,k〉 is normalized, with the precise form shown in Eq. (A9) below. However, for

much of the description, we can keep the spin-wave orbitals general by only requiring orthonormality among themselves

as well as orthogonality to a completely uniform “k = 0 orbital,” obtained for convenience by setting k = 0 in Eq. (A7)

or Eq. (A8) for PBCs or OBCs, respectively. The states in Eq. (A6) formally corresponding to the latter in fact belong to

the ferromagnetic multiplet, i.e., the ground states of the Heisenberg model, and we have |λα
m,0〉 = |Fα

m〉 of Eq. (A5). In

all, the normalization factor reads

Mm,k =

⎧
⎪⎨
⎪⎩

(
L−2

m−1

)
, if k �= 0,

2m2

L

(
L

m

)
, if k = 0.

(A9)

The above spin-wave excitation solutions are directly obtained by solving the Heisenberg Hamiltonian in the one-spin-

flip Hilbert space spanned by the states of the form |↑ · · · ↑ ↓ ↑ · · · ↑〉 or |→ · · · → ← → · · · →〉, which gives

|λz
1,k〉 or |λx

1,k〉, respectively, with total spin L/2 − 1 for k �= 0, and then by repeatedly acting with the lowering operator

Sα−
tot on the state |λα

1,k〉 for α ∈ {z, x}. The energies of these states are given by

HHeis|λα
m,k〉 = 4 sin2

(
k

2

)
|λα

m,k〉, 1 ≤ m ≤ L − 1, α ∈ {z, x}; (A10)

hence the gap of HHeis is given by 4 sin2(π/2L) or 4 sin2(π/L) for OBCs or PBCs. This gap scales as approximately 1/L2,

showing that HHeis is gapless in the thermodynamic limit.

Moreover, the HHeis is known to be completely integrable and the expressions for the eigenstates can in principle be

derived using the Bethe ansatz. However, they are in general not simple to use for our purposes and we refer interested

readers to one of the numerous review articles on the subject for more details [149–151].

APPENDIX B: ROKHSAR-KIVELSON-TYPE SUPER-HAMILTONIANS FROM CLASSICAL

SYMMETRIES

In this appendix, we discuss cases in which the superoperator P̂ is an RK-type Hamiltonian, also known as a stochastic-

matrix-form (SMF) decomposible or stoquastic Hamiltonian. Abstractly, these are Hamiltonians that are defined over a

Hilbert space spanned by a set of classical configurations, which could be a set of product states or something more
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complex, such as nonintersecting dimer coverings of a lattice. Given this configuration space, one can define a set of local

transitions that relate two different configurations; this defines a local Hamiltonian. With these sets of local configurations

and transitions defined, a simple RK-type Hamiltonian is defined as

HRK =
∑

〈C,C′〉
Q̂C,C′ , Q̂C,C′ :=

(
|C〉 − |C′〉

) (
〈C| − 〈C′|

)
, (B1)

where “〈C, C′〉” in the sum indicates that the configurations C and C′ are connected by some local moves. Noting that

each term Q̂C,C′ in HRK is positive semidefinite, it is easy to solve for its ground states {|G(K)〉}, which are given by

Q̂C,C′(|C〉 + |C′〉) = 0, ∀C, C′ =⇒ |G(K)〉 = 1√
NK

∑

C∈K
|C〉, (B2)

where K defines a Krylov subspace of NK configurations connected by the local moves and there is one ground state

corresponding to each Krylov subspace. As a simple example, the ferromagnetic Heisenberg Hamiltonian of Eq. (A2)

is a Hamiltonian of the RK form of Eq. (B1), where the configuration space is the space of all product states, and the

local moves that connect different configurations are given by nearest-neighbor swap ↑↓ ↔ ↓↑ in the ẑ basis or →←
↔ ←→ in the x̂ basis. The (L + 1) ferromagnetic ground states of the Heisenberg model are also ground states of

the form of Eq. (B2), where each Krylov subspace K consists of product states with the same total spin (since they

can all be connected via the aforementioned local moves, assuming a connected lattice of sites) and there are (L + 1)

such Krylov subspaces. Such RK-type Hamiltonians have been extensively studied in the literature and they naturally

appear in several different physically relevant contexts. Examples include dimer models [138,152,153], Markov processes

satisfying detailed balance [76,137], and in the study of various kinds of random circuits [59,113,114,154]. There are also

generalizations of Hamiltonians of this type and we refer readers to Ref. [76] for further discussions.

Turning to the problem of finding commutant algebras, here we consider families of Hamiltonians defined on a q-level

Hilbert space, which are comprised of terms that relate some set of classical product-state configurations {|C〉} that form

a basis of the Hilbert space. In particular, we work with strictly local terms defined as

T
(�τ ,�τ ′)
[j ,j +r] := (|�τ 〉〈�τ ′| + |�τ ′〉〈�τ |)[j ,j +r], Sz

j :=
∑

σ

sσ |σ 〉〈σ |j , 1 ≤ σ ≤ q, N �τ
[j ,j +r] := |�τ 〉〈[j ,j +r]|, (B3)

where Sz
j is spin operator and sσ is the spin of level σ and (�τ , �τ ′) denotes a pair of strictly local (r + 1)-site orthogonal

product configurations that are “connected” according to some local rules that we leave general in this appendix. The

generators of several standard examples of bond algebras can be cast in this form, e.g., Xj Xj +1 + Yj Yj +1 = 2 T
(↑↓,↓↑)

[j ,j +1] .

With these definitions, we can write down classical bond and commutant algebras as

Acl = 〈〈{Sz
j }, {T(�τ ,�τ ′)

[j ,j +r]}〉〉, Ccl = 〈〈{Fα({Sz
j })}〉〉, (B4)

where {Fα(· · · )} denotes some set of polynomials [that depends on the specific set of connections (�τ , �τ ′) in Acl], essen-

tially stating that the operators in the commutant Ccl are diagonal in the computational basis. Note that the diagonal

form of operators in Ccl directly follows from the inclusion of {Sz
j } in the generators of the bond algebra, as we have

shown in Appendix A of Ref. [25] (here, implicitly assuming that powers of Sz on a qubit generate the space of all q × q

diagonal matrices). We refer to commutants of the form of Ccl as classical symmetries, since they lead to block decom-

positions of Hamiltonians in Acl that are completely understood in the product-state basis. The super-Hamiltonian of Eq.

(7) corresponding to Acl is then of the form

P̂cl =
∑

j

(Sz
j ;t − Sz

j ;b)
2 +
∑

j ,(�τ ,�τ ′)

[
(T

(�τ ,�τ ′)
[j ,j +r];t)

2 + (T
(�τ ,�τ ′)
[j ,j +r];b)

2 − 2T
(�τ ,�τ ′)
[j ,j +r];tT

(�τ ,�τ ′)
[j ,j +r];b

]

=
∑

j

(Sz
j ;t − Sz

j ;b)
2 +
∑

j ,(�τ ,�τ ′)

[
N �τ

[j ,j +r];t + N �τ ′
[j ,j +r];t + N �τ

[j ,j +r];b + N �τ ′
[j ,j +r];b − 2T

(�τ ,�τ ′)
[j ,j +r];tT

(�τ ,�τ ′)
[j ,j +r];b

]
. (B5)

The minimization of energy under the first term in Eq. (B5) ensures that the ground state is in the subspace spanned

by composite spins defined on the rungs of the ladder (or bilayer) as |σ̃ 〉 :=
∣∣∣∣

σ

σ

〉
. Pcl restricted to this composite-spin
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subspace then reads

P̂cl|comp = 2
∑

j ,(�τ ,�τ ′)

[
|̃�τ 〉〈̃�τ |[j ,j +r] + |�̃τ ′〉〈�̃τ ′|[j ,j +r] − |̃�τ 〉〈�̃τ ′|[j ,j +r] − |�̃τ ′〉〈̃�τ |[j ,j +r]

]

= 2
∑

j ,(�τ ,�τ ′)

(|̃�τ 〉 − |�̃τ ′〉)(〈̃�τ | − 〈�̃τ ′|)[j ,j +r], (B6)

where |̃�τ 〉 is the (r + 1)-site composite-spin configuration that contains identical �τ placed on both the top and bottom legs

of the ladder (similar to |σ̃ 〉). Note that several superoperators studied in the main text can be brought to this form [see,

e.g., Eqs. (18) and (28)]. Equation (B6) can alternatively be expressed in terms of overall classical product configurations

{|C〉} as

P̂cl|comp =
∑

〈C,C′〉
(|C̃〉 − |C̃′〉)(〈C̃| − 〈C̃′|), |C̃〉 :=

∣∣∣∣
C

C

〉
, (B7)

which is precisely a Hamiltonian of the RK form of Eq. (B1), and the corresponding analysis of the ground states can be

immediately reused with tildes playing a dummy role (since the C̃ are in one-to-one correspondence with the C). Hence

the ground states of P̂cl are of the form of Eq. (B2) and the number of ground states is the number of Krylov subspaces

of classical configurations connected by the moves �τ ↔ �τ ′. In the operator language, noting that the composite spins |σ̃ 〉
map onto projectors ||σ 〉〈σ |), the ground state |G(K)〉 ∼∑C∈K |C̃〉 of P̂cl|comp maps onto |PK), where PK is the projector

onto the Krylov subspace K. In the case of classical conventional symmetries such as U(1), these Krylov subspaces are

equivalent to conventional symmetry quantum number sectors.

APPENDIX C: FORMAL SYMMETRIES OF SUPER-HAMILTONIANS

In this appendix, we discuss some additional formal properties of the constructed super-Hamiltonians viewed as lad-

der bilayer systems, as described in Sec. II C and Eq. (7). By construction, such super-Hamiltonians have symmetries

that descend directly from the symmetries of the bond algebra terms {Ĥα}: Using Eq. (7), it is easy to see that for any

Ĉ ∈ C (i.e., the commutant of the algebra A = 〈〈{Ĥα}〉〉), we have that Ĉt ⊗ 1b and 1t ⊗ ĈT
b commute with the super-

Hamiltonian. In studies of Lindbladians [155,156], these symmetries associated independently with each leg or layer are

often referred to as strong symmetries, which commute with all the jump operators.

There are additional symmetries of the super-Hamiltonian that do not play significant roles in our analysis, e.g., the

super-Hamiltonians also commute with an antiunitary operator composed of the exchange operation between the two

legs and complex conjugation in the computational basis. While there seem to be no other obvious symmetries, for each

Ĉ ∈ C, the corresponding |Ĉ) is an exact zero-eigenvalue eigenstate of each L̂α; hence the |Ĉ)(Ĉ′| with Ĉ, Ĉ′ ∈ C are

additional conserved quantities of the super-Hamiltonians, which can be understood by thinking about symmetries in

terms of {L̂α}. This character of the physical symmetries |C) with respect to families of super-Hamiltonians resembles

exact scar states [31] but here occurring in the superoperator space.

Furthermore, since the super-Hamiltonians contain only positive-semidefinite terms {L̂†
αL̂α}, they have an additional

“quantitative feature” that all |Ĉ) are exact ground states by the very construction. As we discuss below, in examples with

conventional Abelian symmetries, this quantitative feature leads to the symmetries being broken in the ground states in a

particular way that preserves some combinations of the symmetries; i.e., the super-Hamiltonians can be loosely viewed

as being in a particular partial symmetry-breaking phase. Below, we will illustrate the formal symmetries and their fate

in the ground states of the super-Hamiltonians for several conventional symmetries from Sec. III and we also discuss the

extension of the concepts to the unconventional case of isolated QMBS.

1. Global Z2 symmetry

We start with the case of the global Z2 symmetry considered in Sec. III A 1. Here, the inherited “strong” symmetries

can be expressed in terms of unitaries U
Z2
t :=∏j Zj ;t and U

Z2
b :=∏j Zj ;b, which are Z2 symmetries associated with

each individual leg. The two exact ground states |G→〉 and |G←〉 of Eq. (15) break the individual Z2 symmetries while
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preserving the combined symmetry U
Z2
t U

Z2
b :

U
Z2
ℓ |G→〉 = |G←〉 , U

Z2
ℓ |G←〉 = |G→〉 , ℓ ∈ {t, b}; U

Z2
t U

Z2
b |Ga〉 = |Ga〉 , a ∈ {→, ←}. (C1)

Alternatively, this Z2 symmetry breaking can be detected by checking if the ground-state space contains states from both

+1 and −1 quantum numbers of the symmetry, which is satisfied by U
Z2
t and U

Z2
b . This symmetry breaking is also detected

by a local order parameter Xj ;tXj ;b (charged under both U
Z2
t and U

Z2
b ), which clearly has perfect long-range order in |G→〉

and |G←〉. On the other hand, the combined symmetry U
Z2
t U

Z2
b in fact acts as an identity in the entire composite-spin

sector, so it is not broken in this sector and hence in the ground states. While we can loosely say that this pattern of the

(Z2)t × (Z2)b symmetry breaking down to a single remaining Z2 is responsible for the appearance of the 2D ground-state

manifold, further structures or energetics in the super-Hamiltonian by construction are responsible for the specific ground-

state wave functions and their exact degeneracy at finite system sizes, landing the system at a “fine-tuned point” inside of

this particular symmetry-breaking phase.

2. Global U(1) symmetry

We next consider the case of the global U(1) symmetry from Sec. III A 2. Here, the inherited strong symmetries

of the super-Hamiltonians are U(1) symmetries associated with each individual leg, which can be implemented with

unitaries U
U(1)
t (θt) := exp(iθt

∑
j Zj ;t) and U

U(1)

b (θb) := exp(iθb

∑
j Zj ;b) with θt, θb ∈ [0, 2π). The ground states of the

super-Hamiltonian form the ferromagnetic manifold of the composite spins and these U(1) symmetries act nontrivially

in this manifold, e.g., in the case of the basis |Qz
m) ∼ |F̃x

m〉 of Eq. (19), and are hence broken. Alternatively, consider a

different ground-state basis {|F̃z
m〉}, i.e., a composite-spin version of the ferromagnetic states in Eq. (A5) with polarization

axis α = z. The inherited U(1) symmetries act on these as

U
U(1)

ℓ (θℓ)|F̃z
m〉 = eiθℓ(L−2m)|F̃z

m〉, ℓ ∈ {t, b} (C2)

and the presence of such nontrivial eigenvalues in the ground-state manifold signifies U(1) symmetry breaking. On the

other hand, the combined symmetry U
U(1)
t (θ)U

U(1)

b (−θ) acts trivially in the composite-spin subspace and hence in the

ground-state manifold; hence it is not broken, i.e., we have only partial breaking of the formal U(1)t × U(1)b symmetry.

In physical terms, this symmetry breaking represents a quantum phase in which the charges from the top and bottom legs

are bound and the resulting composite particle is condensed, while they are individually gapped.

To give a more precise description of the character of the condensate, we note that |F̃z
m〉 is an equal-weight superpo-

sition of all configurations with m bosonic composite particles represented by the ↓̃ composite spins in the “vacuum”

of ↑̃ composite spins, and that such a wave function represents a “perfect superfluid”— i.e., a Bose-Einstein condensate

(BEC)—of such bosons. Indeed, correlations of a local order parameter S̃+
j := S+

j ;tS
+
j ;b = |↑̃〉〈↓̃| [charged with respect to

both U(1)] in terms of the boson density ρ read

〈F̃z
m |̃S+

j S̃−
j ′ |F̃z

m〉 =
(

L−2

m−1

)
(

L

m

) = m(L − m)

L(L − 1)

L→∞−−−→ ρ(1 − ρ), ρ := m

L
. (C3)

The key observation is that this is nonzero for any 0 < ρ < 1 and is independent of the separation between the points j

and j ′, and this is true in any dimension. This is unlike generic superfluid wave functions, where the correlations would

approach the nonzero limit in a power-law fashion in dimension d > 1. A related BEC versus generic superfluid difference

also shows up in the excitation spectrum: quadratically dispersing excitations for our super-Hamiltonians as discussed in

Sec. V B 1 versus linearly dispersing Goldstone modes in generic superfluids.

The perfect superfluid order revealed by all these perspectives, as well as the exact degeneracy among the ground

states, are due to the further structures or energetics present in the super-Hamiltonian by construction, as discussed in the

introductory part of this appendix.

3. Isolated QMBS

It is also curious to examine the fate of the inherited symmetries in the case of the isolated scar of Sec. III C 1. Here,

the inherited symmetries can be viewed as highly nonlocal Z2 symmetries associated with each leg and specified by

unitaries Uiso
t := (1− 2|	〉〈	|)t ⊗ 1b and Uiso

b := 1t ⊗ (1− 2|	〉〈	|)b. Simple analysis shows that in the ground-state
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manifold spanned by the (nonorthonormal) basis of Eq. (39), both Uiso
t and Uiso

b take eigenvalues ±1, while Uiso
t Uiso

b acts

trivially (true in the full composite-spin sector). This structure of the eigenvalues of the symmetries is similar to the super-

Hamiltonians constructed in the case of the global Z2 symmetry considered in Sec. C 1 and one may loosely say that Uiso
t

and Uiso
b are broken while Uiso

t Uiso
b is preserved. However, in this case there is no local order parameter that would have

nontrivial charge under these symmetries and that could detect this “symmetry breaking,” which is then not a very useful

concept here.

APPENDIX D: EXTRANEOUS FEATURES OF SPECIFIC SUPER-HAMILTONIANS

Many of the super-Hamiltonians in the main text have some additional extraneous features, sometimes allowing full

or partial solvability beyond the expected exact ground states. These features in fact depend on the specific choice of the

bond-algebra generators {Ĥα} used to define the super-Hamiltonian P̂ in Eq. (5) and in this appendix we comment on this

dependence.

Most importantly, for a fixed bond algebra A, the formal superoperator-space symmetries of the set of the Liouvil-

lian superoperators {L̂α} can depend on the choice of the generators {Ĥα}. That is, for different sets of generators of

A = 〈〈{Ĥα}〉〉 = 〈〈{Ĥ ′
β}〉〉, the corresponding sets of the Liouvillian superoperators {L̂α} and {L̂′

β} can generate different

superoperator algebras and their commutants can be different and larger than the set of formal symmetries discussed in

Appendix C, which are always present. Examples of this include instances in which the composite-spin subspace is invari-

ant under the action of the super-Hamiltonians (many cases in the main text), the appearance of the SU(2) symmetry in

the case of P̂U(1)|comp in Eq. (18), or the appearance of the SU(q2) symmetry in the case of P̂SU(q) in Eq. (22). Furthermore,

the couplings with which {L̂2
α} enter in P̂ also matter for some extraneous features as well as for lattice symmetries of the

super-Hamiltonians. Nevertheless, for the problem of finding the commutant of A, we are guaranteed that the commutant

is the exact ground-state manifold of any super-Hamiltonian constructed from any set of generators of A, so there is no

issue here.

On the other hand, one may worry whether the low-energy spectra of such specific “more symmetric” super-

Hamiltonians correspond to slow dynamical modes in more generic systems. We expect that this is true, namely, that

possible additional features in the super-Hamiltonians do not change the qualitative character of the low-energy excita-

tions, which we think is tied to the structure of the exact ground-state space, and we demonstrate this in some cases in the

main text, while here we provide more general comments.

First, in all cases, we can progressively suppress the additional features by adding more terms from the bond

algebra (e.g., combining different sets of generators) and this would add more positive-semidefinite terms to the super-

Hamiltonian. By construction, the exact ground-state manifold would remain unchanged, while all excitation energies

would only increase. In particular, the gapped cases would remain gapped (which we can then consider as a proof of a

generic gap), while in the gapless cases the presented low excitation energies of specific super-Hamiltonians would at

least provide exact lower bounds on the excitation energies of the modified super-Hamiltonians. We further expect that

the corresponding specific eigenstates could be used as trial states and would also provide variational upper bounds on

the excitation energies of the modified super-Hamiltonians that would retain the same qualitative character as before, e.g.,

would give similar dispersion laws. In the main text, we have shown evidence for this in the case of P̂U(1). In some cases,

the additional features allowing solvability beyond the exact ground states are like the integrability of the Heisenberg

chain. It is well established that low-energy excitations of such integrable models capture qualitatively the physics of

more generic models in the same phase.

Finally, our main confidence that the additional features are not qualitatively important comes from the fact that the

specific super-Hamiltonians arise naturally as descriptions of properties of concrete Brownian circuits that by themselves

do not look fine tuned, e.g., each random instance is not solvable or special in any way. The additional features in the

super-Hamiltonians can be loosely thought of as coming from some choices of taking the simplest generators as well as

convenient distributions of the random couplings, and such choices should not affect qualitative long-time hydrodynamic

properties in the Brownian circuits.

APPENDIX E: DETAILS ON QUANTUM MANY-BODY SCAR SUPER-HAMILTONIANS

In this appendix, we provide some details on the ground states of the super-Hamiltonians P̂scar that appear in the study

of QMBS.
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1. Isolated QMBS

In the case of a single isolated QMBS given by |	〉 = |↑ ↑ . . . ↑〉, we can choose R[j ] := Rj = (1 − σ z
j )/2 = |↓〉〈↓|j .

It is easy to see that the common kernel of the Rj contains a single state |	〉. We start with the bond algebra

Aiso := 〈〈{Rj σ
α
j +1, σ α

j Rj +1}〉〉, (E1)

where for simplicity we choose PBCs for the bond-algebra generators, although similar results carry forward for the OBC

case. The full super-Hamiltonian of Eq. (32) reads

P̂iso = 8
∑

j

(Rj ;t − Rj ;b)
2 + 8

∑

j

(
Rj ;tRj ;b[1 − |ι〉〈ι|]j +1 + [1 − |ι〉〈ι|ι]j Rj +1;tRj +1;b

)

= 2
∑

j

(σ z
j ;t − σ z

j ;b)
2 + 8

∑

j

(
|↓〉〈↓|j ;t|↓〉〈↓|j ;b[1 − |ι〉〈ι|]j +1 + [1 − |ι〉〈ι|]j |↓〉〈↓|j +1;t|↓〉〈↓|j +1;b

)
. (E2)

Note that the (σ z
j ;t − σ z

j ;b)
2 terms enforce that the ground state is in the sector of composite spins defined in Eq. (11),

similar to the Z2 and U(1) cases.

a. Ground states

We do not need to use the full structure of the super-Hamiltonian to obtain the ground states. According to Eq. (35), the

ground-state space satisfies

|↓〉〈↓|j ;ℓ[1 − |ι〉〈ι|]j +1 |�〉 = 0, [1 − |ι〉〈ι|]j |↓〉〈↓|j +1;ℓ |�〉 = 0, ℓ ∈ {t, b}
=⇒ |↓̃, ←̃〉〈↓̃, ←̃|j ,j +1 |�〉 = 0, |←̃, ↓̃〉〈←̃, ↓̃|j ,j +1 |�〉 = 0, (E3)

where in the second line we have expressed the conditions in terms of composite spins defined in Eqs. (11) and (14),

and in replacing [1 − |ι〉〈ι|] by |←̃〉〈←̃| we have used that the ground states |�〉 are in the composite-spin sector. These

conditions highly constrain the structure of |�〉. In particular, suppose that |�〉 is decomposed as

|�〉 =
∑

α

|uα〉[j ,j +1] ⊗ |vα〉rest, (E4)

where the supports of each part of the wave function along the ladder are indicated in the subscript, with “rest” denoting

the complement to [j , j + 1], and {|vα〉rest} form a linearly independent set. Such a decomposition always exists, Schmidt

decomposition being one example, but we will only require the linear independence of {|vα〉rest} and not orthonormality.

The conditions of Eq. (E3) and the linear independence of {|vα
rest〉} imply that both of the following should hold:

|↓̃, ←̃〉〈↓̃, ←̃|j ,j +1 |uα〉j ,j +1 = 0, |←̃, ↓̃〉〈←̃, ↓̃|j ,j +1 |uα〉j ,j +1 = 0

=⇒ |uα〉j ,j +1 ∈ span{|↑̃, ↑̃〉j ,j +1, |→̃, →̃〉j ,j +1}. (E5)

Hence, |�〉 can be written as

|�〉 = |↑̃, ↑̃〉j ,j +1 ⊗ |ϒ〉rest + |→̃, →̃〉j ,j +1 ⊗ |�〉rest, (E6)

with some states, |ϒ〉rest and |�〉rest, on the complement to [j , j + 1]. Moving on to requiring Eq. (E5) on the next pair

of sites [j + 1, j + 2], since |↑̃〉j and |→̃〉j are linearly independent, we can apply a similar argument independently to

|↑̃〉j +1 ⊗ |ϒ〉rest and |→̃〉j +1 ⊗ |�〉rest. For example, we obtain that

|↑̃〉j +1 ⊗ |ϒ〉rest = |↑̃, ↑̃〉j +1,j +2 ⊗ |ϒ ′〉rest′ + |→̃, →̃〉j +1,j +2 ⊗ |�′〉rest′

=⇒ |↑̃〉j +1 ⊗ |ϒ〉rest = |↑̃, ↑̃〉j +1,j +2 ⊗ |ϒ ′〉rest′ , (E7)

where we have used linear independence of |↑̃〉j +1 and |→̃〉j +1 and “rest′” denotes the complement to [j , j + 1, j + 2].

In all, requiring Eq. (E5) on all pairs of neighboring sites, we can conclude that |�〉 is spanned by |↑̃, ↑̃, . . . , ↑̃〉 and
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|→̃, →̃, . . . , →̃〉, which correspond to operators |1) and ||	〉〈	|). In the original language, this means that the commutant

of Eq. (E1) is given by

Ciso = 〈〈|	〉〈	|〉〉, (E8)

where the 1 is implicit in the notation 〈〈· · · 〉〉. Note that while we have included two types of bond-algebra generators in

Eq. (E1), it is usually possible to choose a subset of them and still recover the same commutant of Eq. (E8), although the

analytical analysis might not be so straightforward.

b. Gap and low-energy excitations

We then study the low-energy spectrum of P̂iso of Eq. (E2). Since (σ z
j ;t − σ z

j ;b)
2 commutes with all other terms in the

Hamiltonian, configurations of composite spins form a closed subspace for P̂iso. The violation of such a composite spin

costs a constant amount of energy; hence we can work in the space of composite spins to determine if P̂iso may have a

smaller gap. Restricted to the space of composite spins, the action of P̂iso reads

P̂iso|comp = 2
∑

j

[(1 − Z̃j )(1 − X̃j +1) + (1 − X̃j )(1 − Z̃j +1)],

Z̃ := |↑̃〉〈↑̃| − |↓̃〉〈↓̃|, X̃ := |↑̃〉〈↓̃| + |↓̃〉〈↑̃|. (E9)

This can be simplified to

P̂iso|comp = 2
∑

j

[2 − (X̃j + Z̃j + X̃j +1 + Z̃j +1) + X̃j Z̃j +1 + Z̃j X̃j +1]

= 2
∑

j

[2 −
√

2(X̃ ′
j + X̃ ′

j +1) + X̃ ′
j X̃ ′

j +1 − Ỹ′
j Ỹ′

j +1], X̃ ′
j := X̃j + Z̃j√

2
, Ỹ′

j := X̃j − Z̃j√
2

, (E10)

where in the second step we have performed a basis transformation for the composite spins. For even system size and

PBCs, this further maps to

P̂iso|comp = 4

⎡
⎣L −

√
2
∑

j

X̃ ′
j + 1

2

∑

j

(X̃ ′
j X̃ ′

j +1 + Ỹ′
j Ỹ′

j +1)

⎤
⎦ , (E11)

where we have used the bipartiteness of the lattice to transform spins on even sites such that Ỹ′
j → (−1)j Ỹ′

j by rotating

around the X̃ ′ axis. Note that this is simply the antiferromagnetic XX model with a longitudinal field with the specific value

or, equivalently, the transverse-field Ising model with nearest-neighbor interactions with the specific field and interaction

values, such that the product states |→̃ →̃ · · · →̃〉 and |↑̃ ↑̃ · · · ↑̃〉 (in the original X̃ , Z̃ axes) are exact ground states.

This model has in fact been studied in the earlier literature. For example, Eq. (E11) is known to be dual to the well-

studied axial next-nearest-neighbor Ising (ANNNI) models and in the phase diagram obtained in Ref. [157], this appears

to be in the gapped ferromagnetic phase. Our own exact diagonalization study of the specific model in Eq. (E11) in PBCs

indeed finds that there are two exactly degenerate ground states that spontaneously break the Z2 symmetry generated by∏
j X̃ ′

j , separated by a gap between 0.5 and 1. from the rest of the spectrum (thus, the lowest-energy excitation of P̂iso

indeed lies in the composite-spin sector). Moreover, the Hamiltonian of Eq. (E10) exactly maps onto a frustration-free

model that lies on the so-called Peschel-Emery line [86,88]. A relatively recent work [87] proves that the OBC version

of the Hamiltonian in Eq. (E10) is gapped, by performing a Jordan-Wigner mapping to an interacting Majorana chain in

OBCs and exhibiting a deformation path to a gapped free-fermion Hamiltonian without closing a gap. The same argument

can also be carried out directly in the spin model in the PBC system as well.

2. Tower of QMBSs

We now illustrate the example of the ferromagnetic tower of QMBSs. Consider R[j ] := Rj ,j +1 = 1
4

− �Sj · �Sj +1 =
1
2
(|↑↓〉 − |↓↑〉)(〈↑↓| − 〈↓↑|)j ,j +1 = 1

2
(1 − P

(2)

j ,j +1), where the target scar manifold contains the entire ferromagnetic
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tower of QMBSs |	n〉 ∼ (S−
tot)

n |↑ ↑ . . . ↑〉, 0 ≤ n ≤ L. We start with the bond algebra similar to Eq. (E1),

Atower := 〈〈{Rj ,j +1σ
α
j +2, σ α

j −1Rj ,j +1}〉〉, (E12)

and for simplicity choose PBCs for the bond-algebra generators. Any operator constructed out of the generators of Atower

contains the ferromagnetic multiplet as degenerate QMBS [31].

The full super-Hamiltonian in this case reads

P̂tower = 8
∑

j

(R[j ,j +1];t − R[j ,j +1];b)
2 + 8

∑

j

(
R[j ,j +1];tR[j ,j +1];b[1 − |ι)(ι|]j +1 + [1 − |ι)(ι|]j R[j +1,j +2];tR[j +1,j +2];b

)
.

(E13)

Since (R[j ,j +1];t − R[j ,j +1];b)
2 = 1

2
(1 − P

(2)

[j ,j +1],tP
(2)

[j ,j +1],b), the ground states must be symmetric under exchange of the states

on the nearby rungs:

P
rung

[j ,j +1] |�〉 = |�〉 ⇐⇒ [1 − P
rung

[j ,j +1]] |�〉 = 0, P
rung

[j ,j +1] := P
(2)

[j ,j +1];tP
(2)

[j ,j +1];b. (E14)

Furthermore, according to Eq. (35), the ground-state space satisfies

R[j ,j +1];ℓ[1 − |ι〉〈ι|]j +2 |�〉 = 0, [1 − |ι〉〈ι|]j R[j +1,j +2];ℓ |�〉 = 0, ℓ ∈ {t, b}. (E15)

As in the isolated QMBSs, these conditions highly constrain the structure of the wave function |�〉. Generalizing Eq. (E4),

given a region A and its complement Ac, suppose that we decompose |�〉 as

|�〉 =
∑

α

|uα〉A ⊗ |vα〉Ac , (E16)

where the supports of each part of the wave function are indicated in the subscript and the {|vα〉Ac} are linearly independent.

Then, if |�〉 is annihilated by some operators acting entirely within the region A, it follows that each |uα〉A is annihilated

by the same operators and we can write

|�〉 =
∑

γ

|eγ 〉A ⊗ |wγ 〉Ac , (E17)

where {|eγ 〉A} is a complete basis in the common kernel of the annihilators acting within A and the {|wγ 〉Ac} are some new

states on Ac that are not required to be linearly independent. The above are precise statements about the constraints on

local “parts” of such a |�〉 and are used repeatedly (often implicitly) below.

Before proceeding with proofs, we introduce some shorthand notation. On a segment [j , j + r], we denote the common

kernel of all {R[k,k+1];ℓ} with support completely within the segment as K[j ,j +r]. It is easy to see that it is spanned by

{|	m〉[j ,j +r];t ⊗ |	n〉[j ,j +r];b}, where {|	m〉[j ,j +r]} is the full QMBS set in the original problem on the segment [j , j + r].

We further denote a complete basis of K[j ,j +r] as {|Ŵa〉[j ,j +r]}. On the same segment, the common kernel of all {[1 − |ι〉〈ι|]k}
acting within the segment is spanned by a single state, for which we introduce a shorthand |ι〉[j ,j +r] := ⊗j +r

k=j |ι〉k.

Lemma 1. The common kernel of R[j ,j +1];ℓ and [1 − |ι〉〈ι|]k is trivial for any ℓ ∈ {t, b} if k ∈ {j , j + 1}. As corrollaries,

R[j ,j +1] |ι〉[j ,j +1] �= 0 and |ι〉[j ,j +r] /∈ K[j ,j +r] for any r.
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Proof. We illustrate the proof for k = j ; the proof for k = j + 1 follows in the same way. Any state |v〉[j ,j +1] on rungs

j and j + 1 in the kernel of [1 − |ι〉〈ι|]j can, without loss of generality, be expressed as

|v〉[j ,j +1] = |ι〉j ⊗ |↑〉j +1;ℓ ⊗ |w↑〉j +1;ℓ + |ι〉j ⊗ |↓〉j +1;ℓ ⊗ |w↓〉j +1;ℓ, (E18)

where |w↑〉j +1;ℓ and the |w↓〉j +1;ℓ are some states on the site (j + 1; ℓ), where ℓ is the complement of ℓ in {t, b}. The action

of R[j ,j +1];ℓ on |v〉[j ,j +1] of this form reads

R[j ,j +1];ℓ |v〉[j ,j +1] = 1

2
√

2
(|↑↓〉 − |↓↑〉)[j ,j +1];ℓ ⊗ (− |↓〉j ;ℓ ⊗ |w↑〉j +1,ℓ + |↑〉j ;ℓ ⊗ |w↓〉j +1,ℓ). (E19)

It is then easy to see that R[j ,j +1];ℓ vanishes on |v〉[j ,j +1] only if |w↑〉j +1;ℓ = |w↓〉j +1;ℓ = 0, which in turn means that

|v〉[j ,j +1] = 0.

It then directly follows that R[j ,j +1] |ι〉[j ,j +1] �= 0, since |ι〉[j ,j +1] is clearly in the kernel of [1 − |ι〉〈ι|j ]. This can also be

directly verified; a simple calculation gives R[j ,j +1];t |ι〉[j ,j +1] = 1
4
|S〉[j ,j +1];t ⊗ |S〉[j ,j +1];b �= 0, where |S〉 is a singlet state

for two spins involved. This also means that |ι〉[j ,j +r] /∈ K[j ,j +r], and |ι〉[j ,j +r] is linearly independent from {|Ŵa〉[j ,j +r]}. �

Lemma 2. All the states satisfying Eqs. (E14) and (E15) in region [j , j + r] are in span{|Ŵa〉[j ,j +r], |ι〉[j ,j +r]}.

Proof. Clearly, {|Ŵa
[j ,j +r]〉} and |ι〉[j ,j +r] are annihilated by all {1 − P

rung

k,k+1} and {R[k,k+1];ℓ(1 − |ι〉〈ι|)k+2} acting within

the segment; hence they satisfy Eqs. (E14) and (E15). We now show that any other state |�〉 satisfying these conditions

is spanned by the above states.

Starting with r = 1, i.e., two rungs of the ladder at j , j + 1, we show that just requiring annihilation by [1 − P
rung

[j ,j +1]]

enforces |�〉 to lie in the span of K[j ,j +1] and |ι〉[j ,j +1]. The kernel of [1 − P
rung

[j ,j +1]] is ten-dimensional, consisting of all

states that are symmetric under the rung exchanges, and its complete basis is {|Tm〉[j ,j +1];t ⊗ |Tn〉[j ,j +1];b , m, n ∈ {0, ±1}} ∪
|S〉[j ,j +1];t ⊗ |S〉[j ,j +1];b, where |Tm〉 and |S〉 are, respectively, triplet and singlet states for two spins involved. For two spins,

the triplet space {|Tm〉[j ,j +1]} is the same as {|	m〉[j ,j +1]}, so the nine states {|Tm〉[j ,j +1];t ⊗ |Tn〉[j ,j +1];b} can be replaced by

{|Ŵa〉[j ,j +1]}. Since |ι〉[j ,j +1] is also annihilated by [1 − P
rung

[j ,j +1]] and is linearly independent of {|Ŵa〉[j ,j +1]}, it can replace

|S〉j ,j +1;t ⊗ |S〉j ,j +1;b in the constructed complete basis of the kernel of 1 − P
rung

j ,j +1.

Moving to r = 2, for the appropriate parts of |�〉, we can write

|�〉[j ,j +2] =
∑

a

|Ŵa〉[j ,j +1] ⊗ |va〉j +2 + |ι〉[j ,j +1] ⊗ |w〉j +2 , (E20)

where {|va〉j +2} and {|w〉j +2} are some states on the rung at j + 2. Now consider annihilation by R[j ,j +1];ℓ(1 − |ι〉〈ι|)j +2.

Since R[j ,j +1];ℓ annihilates all {|Ŵa〉[j ,j +1]}, we deduce that

R[j ,j +1];ℓ(1 − |ι〉〈ι|)j +2 |ι〉[j ,j +1] ⊗ |w〉j +2 = 0. (E21)

However, since R[j ,j +1];ℓ |ι〉[j ,j +1] �= 0 following Lemma 1, we have |w〉j +2 = c |ι〉j +2; hence

∑

a

|Ŵa〉[j ,j +1] ⊗ |va〉j +2 = |ψ〉[j ,j +2] − c |ι〉[j ,j +2] . (E22)

Since |ψ〉[j ,j +2] must be symmetric under the exchange of rungs j + 1 and j + 2 according to Eq. (E14), and |ι〉[j ,j +2]

clearly is, the left-hand side should be symmetric under this and all other rung exchanges in [j , j + 2]. Since the left-hand

side is annihilated by R[j ,j +1];ℓ, it must then also be annihilated by Rj +1,j +2;ℓ, i.e., it belongs to the span of {|Ŵa′〉[j ,j +2]}.
This completes the proof for the segment [j , j + 2].

Essentially the same steps can then be used for an inductive proof going from [j , j + r] to [j , j + r + 1], considering

annihilation by R[j +r−1,j +r];ℓ(1 − |ι〉〈ι|)j +r+1 to peel off the |ι〉[j ,j +r+1] contribution, and then for the remainder deducing

the symmetry under the rung exchange at j + r and j + r + 1 and proving that it belongs to K[j ,j +r+1]. �

040330-29



SANJAY MOUDGALYA and OLEXEI I. MOTRUNICH PRX QUANTUM 5, 040330 (2024)

Hence the only states on the full chain satisfying Eqs. (E14) and (E15) are

|�〉 = |	m〉t ⊗ |	n〉b = ||	m〉〈	n|) or |�〉 = ⊗L
j =1|ι〉j = 1

2
L
2

|1). (E23)

In the original language, this means that the commutant of Eq. (E1) is given by

Ctower = 〈〈{|	m〉〈	n|}〉〉, (E24)

where the 1 is implicit in the notation 〈〈· · · 〉〉.

APPENDIX F: EIGENSTATES OF THE t − Jz SUPER-HAMILTONIAN

In this appendix, we provide details on the eigenstates of the super-Hamiltonian P̂t−Jz and on the computation of the

weights of the operator |Sz
j ) on these eigenstates. As discussed in Sec. V B 2, understanding the cumulative weight function

�Sz
j
(E) is key to understanding the late-time behavior of the ensemble-averaged autocorrelation function CSz

j
(t). However,

we are only able to analytically determine the weights corresponding to the ground states and the “spin-wave” excited

states, both of which ultimately vanish in the thermodynamic limit. It is then crucial to include contributions from the

higher excited states to analytically reproduce the results of Fig. 2; hence we also discuss the general setup for this weight

calculation, although we are only able to implement this numerically in general.

1. General setup

To determine the low-energy excitations of P̂t−Jz that have a nonzero overlap on |Sz
j ), it is sufficient to work in the

composite-spin sector on the ladder (for discussions on this, see Sec. V B 2). A convenient computational basis in terms

of the composite spins {↑̃, ↓̃, 0̃} defined in Eq. (27) is of the form

{|τ̃ (1)
j1

τ̃
(2)
j2

· · · τ̃ (m)
jm

〉}, τ̃ (q) ∈ {→̃, ←̃}, |→̃〉 := |↑̃〉 + |↓̃〉√
2

, |←̃〉 := |↑̃〉 − |↓̃〉√
2

, (F1)

where the subscripts indicate the positions of the τ̃ (q) and the rest of the sites are assumed to be occupied by the 0̃.

Note that we are working in the basis with the spins →̃ and ←̃ instead of ↑̃ and ↓̃, since we are ultimately interested in

the overlap with the operator |Sz
j ), which maps onto the composite spin |←̃〉j on the ladder. The ground-state space of

P̂t−Jz |comp, shown in Eq. (29), in this basis is spanned by the equal-weight superpositions of the states with fixed pattern

τ (1), τ (2), . . . , τ (m), i.e.,

|Gτ (1)···τ (m)〉 =
∑

j1<···<jm

|τ̃ (1)
j1

· · · τ̃ (m)
jm

〉. (F2)

In the operator language, these ground states are the “words” defined in Appendix B in Ref. [25], which have been shown

to form an orthogonal basis for the commutant algebra Ct−Jz for OBCs and have been used to compute exact Mazur

bounds.

We then study the excited states of P̂t−Jz |comp in the computational basis of Eq. (F1). We start with an eigenstate of the

Heisenberg model HHeis of Appendix A with m ↓, that has the form

|λ; m〉 =
∑

j1<j2<···<jm

Cλ
j1,j2,...,jm

|↓j1 ↓j2 · · · ↓jm〉, (F3)

where λ denotes the energy and m denotes the number of ↓ in the eigenstate, the subscripts of the ↓ denote their positions,

and the rest of the sites are assumed to be ↑. Utilizing the mapping between HHeis and P̂t−Jz |comp and summarized in Eq.

(61), we can write down 2m degenerate eigenstates of the latter corresponding to each eigenstate |λ; m〉 of the former;
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these are of the form

|λ; τ (1) · · · τ (m)〉 =
∑

j1<···<jm

Cλ
j1,...,jm

|τ̃ (1)
j1

· · · τ̃ (m)
jm

〉, τ (ℓ) ∈ {→, ←}, (F4)

labeled by the fixed pattern τ (1), τ (2), . . . , τ (m). In all, given that there are
(

L

m

)
Heisenberg eigenstates with m ↓, we obtain

a total of
∑L

m=0 2m
(

L

m

)
= 3L eigenstates of P̂t−Jz |comp, which, as expected, covers the entire Hilbert space of the composite

spins.

To compute the overlap between these eigenstates and the operator |Sz
j ), we note that this operator maps onto the

following state on the ladder:

|Sz
j ) := |ζj 〉 =

j −1∏

k=1

(
√

2 |→̃〉k + |0̃〉k) ⊗
√

2 |←̃〉j ⊗
L∏

k=j +1

(
√

2 |→̃〉k + |0̃〉k). (F5)

The only configurations |τ̃ (1)
j1

· · · τ̃ (m)
jm

〉 with which |ζj 〉 has nonzero overlap are the ones where jℓ = j for some 1 ≤ ℓ ≤ m,

with τ (ℓ) =← and τ (k) =→ for k �= ℓ. Hence the only eigenstates of the form of Eq. (F4) that have a nonzero overlap

with |ζj 〉 are those of the form

|λ; →α←→β〉 =
∑

j1<···<jα+β+1

Cλ
j1,...,jα+β+1

|→̃j1 · · · →̃jα←̃jα+1
→̃jα+2

· · · →̃jα+β+1
〉, (F6)

where the sum is over {jℓ} for 1 ≤ ℓ ≤ α + β + 1 and “τ k” in the pattern label for τ ∈ {→, ←} denotes that τ is repeated

k times. That is, in an m-spin pattern, there is precisely one ← the position of which is parametrized by α, β with α + 1 +
β = m. This is a total of

∑L
m=1 m

(
L

m

)
= L × 2L−1 eigenstates that can have a nonzero overlap with the |ζj 〉. We find that

the overlap is generically nonzero for all such states and that such eigenstates are not necessarily only in the very low-

energy part of the spectrum, e.g., in the one-magnon band. Using Eqs. (F5) and (F6), the weight of |ζj 〉 on the eigenstate

|λ; →α←→β〉 is given by [for the definition, see Eq. (51)]

1

3L
|〈ζj |λ; →α←→β〉|2 = 2α+β+1

3L

∣∣∣∣∣∣
∑

j1<···<jα+β+1

Cλ
j1,...,jα+β+1

δjα+1,j

∣∣∣∣∣∣

2

. (F7)

We are unable to use Eq. (F7) to proceed analytically without any approximations. However, given the eigenstates of the

Heisenberg model numerically, it is easy to use this expression to numerically compute the weights. We have employed

this method to compute the cumulative weight �Sz
j
(E) shown in Fig. 2.

2. Spin-wave contribution

We apply the results of Sec. F 1 to compute the overlap of |Sz
j ) on the spin-wave excited states of P̂t−Jz |comp. In the

notation of Eq. (F3), the spin-wave excited states for the OBC Heisenberg model, shown in Eq. (A6), read

|λk; m〉 := 1√
Mm,k

∑

j1<···<jm

m∑

ℓ=1

cjℓ,k |↓j1 ↓j2 · · · ↓jm〉 =⇒ C
λk
j1,...,jm

= 1√
Mm,k

×
m∑

ℓ=1

cjℓ,k, (F8)

where k ∈ (πn/L) for 1 ≤ n ≤ L − 1, and cjℓ,k and Mm,k are shown in Eqs. (A8) and (A9), respectively. The corre-

sponding eigenstates of P̂t−Jz |comp are of the form |λk; τ (1) · · · τ (m)〉, which can be explicitly written down using Eq. (F4).
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To compute the weight in Eq. (F7), we first compute

G
α,β

j ,k :=
∑

j1<···<jα+β+1

c
λk
j1,...,jα+β+1

δjα+1,j

= 1√
Mα+β+1,k

∑

1≤j1<···<jα≤j −1

⎡
⎣ ∑

j +1≤jα+2<···<jα+β+1≤L

(
α∑

ℓ=1

cjℓ,k + cj ,k +
α+β+1∑

ℓ=α+2

cjℓ,k

)⎤
⎦

= 1√
Mα+β+1,k

[
F

1,j −1

α,k

(
L − j

β

)
+ cj ,k

(
j − 1

α

)(
L − j

β

)
+
(

j − 1

α

)
F

j +1,L

β,k

]
, (F9)

where we have defined

F
l,r
m,k :=

∑

l≤j1<···<jm≤r

(
m∑

ℓ=1

cjℓ,k

)
=
(

r − l

m − 1

) r∑

jℓ=l

cjℓ,k. (F10)

Using Eqs. (F9) and (F10) and the OBC expression for cj ,k in Eq. (A8), we obtain, for k �= 0,

F
l,r
m,k =

√
2

L
× sin(kr) − sin(k(l − 1))

2 sin( k
2
)

×
(

r − l

m − 1

)
,

G
α,β

j ,k =
√

2
(

j −1

α

)(
L−j

β

)
√

L × Mα+β+1,k

×
[

α

2(j − 1)

sin[k(j − 1)]

sin( k
2
)

+ cos

[
k(j − 1

2
)

]
+ β

2(L − j )

sin(kL) − sin(kj )

sin( k
2
)

]
, (F11)

while for k = 0 we have

F
l,r
m,k=0 =

√
2√
L

(r − l + 1) ×
(

r − l

m − 1

)
, G

α,β

j ,k=0 =
√

2
(

j −1

α

)(
L−j

β

)
√

L × Mα+β+1,k=0

× [α + 1 + β] . (F12)

For simplicity, we henceforth assume that L is odd and that j = ((L + 1)/2). We then set k = (nπ/L) and compute the

total weight of the state |ζ((L+1)/2)〉 on all eigenstates of the form |λk; →α←→β〉 for all values of α and β. Using Eq. (F7),

this weight is

WSz
L+1

2

(k = nπ

L
) := 1

3L

L−1
2∑

α=0

L−1
2∑

β=0

2α+β+1|Gα,β
L+1

2
,k
|2

=
L−1

2∑

α=0

L−1
2∑

β=0

2α+β+1
( L−1

2
α

)2( L−1
2
β

)2

3L ×
(

L

α+β+1

) ×

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if n = 0,

2(L−1−α−β)

(L−1)(α+β+1)
, if n �= 0 even,

2(α−β)2

(L−1)(L−α−β−1)(α+β+1)
cot2( k

2
), if n odd,

(F13)

where we have used Eq. (F11) and the normalization factors of Eq. (A9). Note that WSz
((L+1)/2)

(k = 0) is the same as the

Mazur bound computed in Ref. [25], done here in the composite-spin language.

The expression in Eq. (F13) for general k can be analyzed in detail using a saddle-point analysis for large L, similar

to the calculation for the Mazur bound demonstrated in Ref. [25], but for our purposes it is sufficient to schematically

extract the L dependence. To obtain this, we substitute α = Lp and β = Lq to convert the sums into integrals over p and

q. In Appendix G of Ref. [25], the expression for the Mazur bound WSz
((L+1)/2)

(k = 0) has been shown to be of the form

(the computation has been done there for a general x = j /L, whereas here we will set x = 1/2 and remove it from the
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arguments of the functions involved)

WSz
L+1

2

(k = 0) =
√

L

∫ 1
2

0

∫ 1
2

0

dp dq C(p , q) exp (LF(p , q)) ≈ 2π C(p0, q0)√
L det H(p0, q0)

exp (LF(p0, q0)) , (F14)

where C(p , q) and F(p , q) are some L-independent functions, and a saddle-point approximation has been performed in

the second step, which we unpack below. H(p , q) is the Hessian of F(p , q) and the “saddle” is given by the point at which

((∂F/∂p), (∂F/∂q))|(p ,q)=(p0,q0) = (0, 0), which turns out to be at (p0, q0) = ( 1
3
, 1

3
). It also turns out that F(p0, q0) = 0;

hence we obtain the Mazur-bound scaling of approximately L
− 1

2 [25]. Note that both H(p , q) and (p0, q0) are completely

determined by F(p , q).

Since the n �= 0 expressions in Eq. (F13) differ from the n = 0 case only by factors that are polynomial in L, we can

express them in terms of p and q and, analogously, write down the form of the leading-order terms in the saddle-point

approximation:

WSz
L+1

2

(
k = nπ

L

)
≈ 2π C(p0, q0)√

L det H(p0, q0)
exp (LF(p0, q0))

×

⎧
⎪⎨
⎪⎩

2(1−p0−q0)

L(p0+q0)
, if n �= 0 even,

2(p0−q0)2

L(1−p0−q0)(p0+q0)
cot2( k

2
), if n odd,

(F15)

where the saddle (p0, q0) is unchanged, since the function F(p , q) in the exponent is unchanged from the n = 0 case.

We can then use Eq. (F15) with the fact that F(p0, q0) = 0 to determine the scaling of WSz
((L+1)/2)

(k). For n �= 0 even, we

obtain a scaling of approximately L
− 3

2 and adding the contributions over all even n, we obtain a total scaling of approx-

imately L
− 1

2 . For n odd, since p0 = q0, the leading-order term shown in Eq. (F15) vanishes. Since the subleading terms

in the saddle-point approximation are suppressed by a factor of L, we obtain a scaling of approximately L
− 5

2 cot2(k/2).

Adding these contributions over all odd n = 2l + 1, we obtain approximately L
− 5

2
∑((L−1)/2)

l=0 cot2[(l + 1
2
)(π/L)] ∼ L

− 1
2 ,

since it is dominated by a few values of k close to 0, where cot2(k/2) ∼ k−2. In all, the total weight of the operator

Sz
((L+1)/2) on the ground states and the “single-magnon” spin-wave states scales as approximately L

− 1
2 , which is vanishing

in the thermodynamic limit. This completes the demonstration that the contribution from these excitations to �Sz
j
(E) of

Eq. (62) vanishes when L → ∞ and more complicated excitations need to be considered to understand its form, which at

present we have only done numerically.

APPENDIX G: ASYMPTOTIC QMBSs IN BROWNIAN CIRCUITS

In this appendix, we discuss asymptotic QMBSs in Brownian circuits with exact QMBSs. We start with the assumption

that there is a set of local projectors {R[j ]} such that the common kernel of these projectors is spanned by the exact QMBS

{|	n〉}; this is sometimes referred to as the Shiraishi-Mori condition [26,31]. In other words, the subspace spanned by

these QMBS states can be expressed as the exhaustive ground-state space of a frustration-free Hamiltonian, i.e.,

∑

j

R[j ] |ψ〉 = 0 ⇐⇒ |ψ〉 ∈ S = span{|	n〉}. (G1)

Several examples of QMBSs, including those in the spin-1 XY model [80], the Hubbard model and its deformations

[81,82], and also those in the spin-1 AKLT model [27] can be understood in this way [19,20,31]. With this, we can

generically write down a bond algebra Ascar of the form of Eq. (42), which has generators of the form {R[j ]σ
α
k }, such that

its centralizer is Cscar spanned by {|	m〉〈	n|} (for a precise statement, see Ref. [85] ). This structure guarantees that the

QMBSs are degenerate eigenstates of all operators constructed out of the generators of Ascar.

Here, we consider Brownian circuits built out of the generators of Ascar, and directly work with the evolution of states

under this circuit, as opposed to operators discussed in Sec. IV A. Exact QMBSs are stationary states under such circuits,

since they are by definition eigenstates of each “gate” of the circuit. Here, we show that working with states directly also
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shows the existence of asymptotic QMBSs that relax slowly in such circuits. Denoting the generators of the bond algebra

to be {Ĥα}, the time evolution of a state |ψ(t)〉 by a time step �t can be written, in direct analogy to Eq. (43), as

|ψ(t + �t)〉 = e−i
∑

α J
(t)
α Ĥα�t |ψ(t)〉 = |ψ(t)〉 − i�t

∑

α

J (t)
α Ĥα |ψ(t)〉

− (�t)2

2

∑

α,β

J (t)
α J

(t)
β ĤαĤβ |ψ(t)〉 + O((�t)3). (G2)

After ensemble averaging with the distributions of Eq. (44), the expression for the state in the continuum time limit reads,

in analogy to Eq. (46),

|ψ(t)〉 = e−κP̂t |ψ(0)〉 , =⇒ 〈ψ(0)|ψ(t)〉 = 〈ψ(0)| e−κP̂t |ψ(0)〉 , P̂ :=
∑

α

Ĥ 2
α . (G3)

As a consequence, the decay of the ensemble-averaged overlap is governed by the spectrum of P̂. While we are unable to

directly compute the ensemble-averaged fidelity using this approach, it can be lower bounded in terms of the overlap as

F(t) = |〈ψ(0)|ψ(t)〉|2 ≥
∣∣∣〈ψ(0)|ψ(t)〉

∣∣∣
2

. (G4)

We now restrict to specific examples of QMBSs, where bond generators are of the form of Eq. (31). Then, we have

P̂ =
∑

j ,k,α

(R[j ]σ
α
k )2 = C

∑

j

R[j ], (G5)

where C is an overall constant that depends on the number of α and k in the generators (assumed to be the same for each j

for simplicity) and we have used the fact that R[j ] is a projector. Strikingly, one can see that this is precisely the frustration-

free Hamiltonian that has appeared in Eq. (G1). This already shows that exact QMBSs never decay, since they are ground

states of P̂. The slowly relaxing states, or the asymptotic QMBSs, are then the low-energy excitations of P̂, provided that it

is gapless. In the case of the ferromagnetic tower of QMBSs discussed in Sec. III C 2, we have R[j ] = 1
4

− �Sj · �Sj +1; hence

P̂ is just the ferromagnetic Heisenberg model of Eq. (A2) up to an overall factor. The asymptotic QMBSs {|	n,k〉} are then

simply spin waves on top of the ferromagnet shown in Eq. (A6); this explains their form in Eq. (64). Since these states

with small k have energy approximately pk ∼ k2 under P̂, their ensemble-averaged overlap 〈	n,k(0)|	n,k(t)〉 decays on

time scales of approximately L2, which due to Eq. (G4) is also a lower bound for the time scale for the fidelity, consistent

with Eq. (69). This method hence more directly reproduces the asymptotic QMBSs found from the super-Hamiltonian

perspective in Sec. V B 3 and explains the significance of the corresponding super-Hamiltonian eigenstates, i.e., those

associated with spin waves on only one leg of the ladder that appeared there.

The appearance of the frustration-free Hamiltonian of Eq. (G1) in Eq. (G5), and the physical interpretation of its

eigenstates as the decay modes of the overlap in Eq. (G3), leads us to the Conjecture 1 on the conditions for the existence

of asymptotic QMBS, restated here for clarity.

Conjecture 2. Consider a space S = span{|	n〉} that can be expressed as the exhaustive common kernel of a set of

strictly local projectors. Any local Hamiltonian that realizes this subspace as the exact QMBS subspace also has asymp-

totic QMBSs if S cannot be expressed as the ground-state space of a gapped frustration-free Hamiltonian. Furthermore,

the gapless excitations of any such Hamiltonian are the asymptotic QMBSs.

One might also note that the form of the decay of the overlap of the asymptotic QMBSs obtained using Eq. (G3)

is necessarily a simple exponential of the form exp(−ct/L2), where the asymptotic QMBS is an eigenstate of P̂ with

eigenvalue approximately k2 ∼ c/L2. Since the ensemble-averaged fidelity is lower bounded by this [see Eq. (68)], this

predicts a fidelity-decay time scale that scales as approximately L2. This is different from the fidelity-decay time scale

of asymptotic QMBSs predicted and observed in Hamiltonian systems in Ref. [55]. The fidelity of an initial state under

Hamiltonian evolution at short times is of the form exp(−�H 2t2) [158], where �H 2 is the variance of the energy in the

initial state, �H 2 ≡ |ψ0〉 H 2 〈ψ0| − (|ψ0〉 H 〈ψ0|)2. Given that the variance of asymptotic QMBS scales as �H 2 ∼ 1/L2

[55], the fidelity decay is of the form exp(−c′t2/L2), which predicts a decay time scale approximately L. The fidelity in
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the Brownian circuits hence decays parametrically slower than in the Hamiltonian evolution. This is reminiscent of the

quantum Zeno effect, where unitary evolution is suppressed by external factors such as repeated measurements or fast-

fluctuating stochasticity. It would be interesting to make this connection precise in future work, while here we can give

a rough argument showing the reconcilability of these results, which also sheds some light on the quantitative relations

between the Brownian-circuit and Hamiltonian dynamics.

Note that the derivation of the ensemble-averaged state dynamics from Eqs. (G2)–(G3) has formally required taking

�t → 0 limit while taking the variance of the couplings J (t)
α to diverge as σ 2

J = 2κ/�t at fixed κ . We can, in fact, also

use the obtained results in the circuit setups, where σ 2
J is kept fixed while we take �t sufficiently small—which, however,

then enters the characteristic rate κ in all results: κ = σ 2
J �t/2. This already shows that if the applied Hamiltonians have

typical couplings of a given strength of approximately σJ and hence typical dynamic rates of approximately σJ , changing

the Hamiltonian randomly after every small time interval �t suppresses the dynamic rates to approximately κ ∼ σJ · σJ �t,

assuming that σJ �t ≪ 1. For an initial state |ψ(0)〉 that is an eigenstate of P̂ of Eq. (G3) with a bounded eigenvalue p:

P̂ |ψ(0)〉 = p |ψ(0)〉, the ensemble-averaged Eq. (G2) gives

|ψ(�t)〉 ≈
(

1 − (�t)2

2
σ 2

J p

)
|ψ(0)〉 =⇒ |ψ(t)〉 ≈

(
1 − (�t)2

2
σ 2

J p

) t
�t

|ψ(0)〉 ≈ e− 1
2
σ 2

J (�t)pt |ψ(0)〉 , (G6)

which matches the result in Eq. (G3) with κ = 1
2
σ 2

J �t as claimed, and the approximations used are controlled as long as

(((�t)2)/2)σ 2
J p ≪ 1.

This is also roughly consistent with the expected fidelity decay under a fixed Hamiltonian, controlled by its variance

�H 2 in the state [158], which we expect to apply for individual evolution steps over time �t:

|〈ψ(0)|ψ(�t)〉|2 = e−�H2(�t)2
, �H 2 := 〈ψ(0)| H 2 |ψ(0)〉 − 〈ψ(0)| H |ψ(0)〉2 . (G7)

With H =∑α J (t)
α Hα , an elementary calculation averaging over the independent Gaussian J (t)

α with variance σ 2
J gives

|ψ0〉 H 2 〈ψ0| = σ 2
J |ψ0〉 P̂ 〈ψ0| = σ 2

J p if P̂ |ψ0〉 = p |ψ0〉. This upper bounds the ensemble-averaged variance of the

energy, �H 2, and can be viewed as a reasonable estimate of a typical value of the variance of the energy in |ψ0〉 for

Hamiltonians drawn from this distribution. We can then recover the qualitative form of Eq. (G6) if we conjecture that the

result of the multiple time steps of the Brownian circuit is to have roughly the same fidelity-suppression factor for each

step �t: in this case, the total suppression factor is e
−�H2

typ(�t)2·(t/�t)
qualitatively matching Eq. (G6).

While this is not a precise quantitative argument, we can justify using the same suppression factor after each time step

�t as follows. At any given instance of the Brownian circuit, we have

|ψ(�t)〉 = |ψ(0)〉 〈ψ(0)|ψ(�t)〉 + |δψ⊥〉, (G8)

where the first term is the projection onto |ψ(0)〉, while |δψ⊥〉 is the deviation. While the asymptotic QMBS property

of |ψ(0)〉 is common for all H (t) (i.e., is essentially nonrandom across them), the deviation |δψ⊥〉 is particular to the

Hamiltonian applied at that step, which is hence random across different steps, and it is plausible that the chances of the

|δψ⊥〉 part returning close to |ψ(0)〉 under the subsequent steps are small. For the purposes of calculating the fidelity, we

are only interested in keeping track of the |ψ(0)〉 projection and we obtain a similar suppression factor at each step.

Finally, note that the presentation here has focused on the asymptotic QMBSs appearing due to exact towers of QMBSs,

where the p ∼ 1/L2 scaling of the super-Hamiltonian energy of an initial state implies the divergence of its fidelity decay

time. Mathematically, the same arguments also go through in the case of exact isolated QMBSs such as those in Sec.

V A 2, where the super-Hamiltonian energy of any initial state |ψ(0)〉 orthogonal to the exact QMBS is at least a constant,

implying a constant fidelity decay time. Nevertheless, this still signifies some hidden “nonthermalness” in the “thermal”

sector that occurs even due to a single exact scar state [159,160], although it is less dramatic than in the asymptotic

QMBSs. It would be interesting to understand whether this framework can be used to quantify such nonthermalness in

more detail.

APPENDIX H: SUPER-HAMILTONIANS FOR EQUALLY SPACED TOWER OF QMBSs

We now discuss different choices of super-Hamiltonians suitable for analyzing cases with a tower of QMBSs and we

show that the physics of asymptotic QMBSs is captured in this setup. As discussed in Ref. [31], we can describe such a
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tower of exact ferromagnetic scar states split in energy by the Zeeman-field term using the algebras

Atower-lift := 〈〈{Rj ,j +1σ
α
j +2, σ α

j −1Rj ,j +1},
∑

j

σ z
j 〉〉, Ctower-lift = 〈〈{|	n,0〉〈	n,0|}〉〉. (H1)

This seems to necessarily require the addition of an extensive-local term Ztot :=∑j σ z
j to the generators of Atower. In

order to capture the commutant Ctower-lift as the ground states of a super-Hamiltonian, we need to sacrifice either locality

or Hermiticity of the super-Hamiltonian and we discuss both options below.

1. Nonlocal super-Hamiltonian

We can naively follow the discussion in Sec. II B and construct a super-Hamiltonian using Eq. (5). While the resulting

super-Hamiltonian P̂tower-lift is Hermitian, it becomes nonlocal, with the addition of the term [
∑

j (σ z
j ;t − σ z

j ;b)]
2. This

term changes the energy of the ground states |	m,0〉 ⊗ |	n,0〉 of P̂tower from 0 to (m − n)2. Hence the ground states

of the new super-Hamiltonian P̂tower-lift with this nonlocal term now require m = n and are hence {|	n,0〉t ⊗ |	n,0〉b},
which shows that the above algebras are indeed centralizers of each other. The operators |	n,k〉〈	n,0| are still exact low-

energy eigenstates of P̂tower-lift with eigenvalue pk = 8[1 − cos(k)], which allows us to understand the asymptotic QMBSs.

Equation (69) holds for Â = |	n,k〉〈	n,0|, since |	n,0〉 is still a singlet of Atower-lift, which rigorously lower bounds the

fidelity decay time in the case of nondegenerate towers as well.

Note that this quantity is not straightforward to bound from the direct consideration of the dynamics of states discussed

in Appendix G. The effective Hamiltonian P̂ shown in Eq. (G3) acquires an additional term (
∑

j σ z
j )2, which then shows

that

〈	n,k(0)|	n,k(t)〉 = e−κ[pk+(L−2n)2]t, (H2)

which decays rapidly when n �= (L/2), i.e., when the eigenvalue Ztot = L − 2n �= 0. This is also the case for the overlap

〈	n,0(0)|	n,0(t)〉, even though |	n,0〉 is an exact QMBS, and it is an effect of averaging over the random phases acquired

by the action of Ztot. While these are mathematically correct properties of the Brownian circuit with a random fluctuating

Zeeman field, they are not useful for understanding the fidelity properties of the asymptotic QMBS.

2. Non-Hermitian super-Hamiltonian

We now discuss an alternative super-Hamiltonian for the algebra of Eq. (H1) that preserves locality but sacrifices

Hermiticity. This naturally appears in a Brownian circuit where the coefficient of the magnetic field is constant and not

random. We can then redo the analysis of Eqs. (43)–(46) to derive an effective Hamiltonian that describes the ensemble-

averaged operator dynamics. Given a Brownian circuit evolving under a set of operators {Ĥα} with random coefficients

{J (t)
α } chosen from the distribution of Eq. (44), and an operator Ĝ with a constant O(1) coefficient K , analogous to Eq.

(45), we obtain

|Ô(t + �t)) = |Ô(t)) + i�tKL̂Ĝ|Ô(t)) − �t
∑

α

καL̂
†
αL̂α|Ô(t)) + O((�t)2), (H3)

where L̂Ĝ := Ĝt ⊗ 1b − 1t ⊗ Ĝb is the Liouvillian corresponding to Ĝ (assumed to be Hermitian and real valued in the

working basis for simplicity). In the continuous time limit, we then obtain

d

dt
|Ô(t)) = −

[∑

α

καL̂
†
αL̂α − iKL̂Ĝ

]
|Ô(t)), =⇒ |Ô(t)) = e−(κP̂−iKL̂Ĝ)t|Ô(0)).

Hence the physics of this system can be understood using the non-Hermitian super-Hamiltonian P̂n-h = κP̂ − iKL̂Ĝ.

Operators in the commutant Cext-loc of the algebra Aext-loc = 〈〈{Ĥα}, Ĝ〉〉 are guaranteed to have zero eigenvalue under

P̂n-h. Moreover, any zero-eigenvalued operator of P̂n-h is in the commutant Cext-loc. A simple proof is as follows. Starting

from P̂n-h|�) = 0, we have (�|P̂n-h|�) = κ(�|P̂|�) − iK(�|L̂Ĝ|�) = 0, which, since P̂ and L̂G are Hermitian, means

that (�|P̂|�) = 0 and (�|L̂G|�) = 0. Since P̂ is positive semidefinite, we can conclude that P̂|�) = 0, which also

means that L̂G|�) = 0, showing that |�) is in the commutant Cext-loc.
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Applying this to asymptotic QMBSs, where the {Ĥα} are

the generators of Atower of Eq. (42) and Ĝ =∑j σ z
j , we

have L̂Ĝ =∑j (σ z
j ;t − σ z

j ;b). Since P̂ has the form of the

dissipator of a Lindblad master equation [see Eq. (8)] with

jump operators {Ĥα}, the full P̂n-h has the form of a full

Lindbladian with the Hamiltonian Ĝ and the jump opera-

tors {Ĥα}. Hence the eigenvalues of the P̂n-h are guaranteed

to have non-negative real parts. It is easy to verify that the

eigenstates |	n,k〉t ⊗ |	m,0〉b of P̂ , discussed in Eq. (66),

continue to be eigenstates of P̂n-h, and we have

P̂n-h||	n,k〉〈	m,0|) = [κpk + 2iK(n − m)]||	n,k〉〈	m,0|),
(H4)

where pk = 8[1 − cos(k)] and we have used that |	n,0〉
and |	n,k〉 are eigenstates of Ztot with eigenvalue L − 2n.

We can then follow the same arguments as in Sec. V B 3

to obtain exact results—lower bounds—for the ensemble-

averaged fidelity, by relating it to the autocorrelation func-

tion of an operator Â = |	n,k〉〈	m,0|, which leads to Eq.

(69), consistent with the expected slow decay of asymp-

totic QMBSs.
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