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Symmetry algebras of quantum many-body systems with locality can be understood using commutant
algebras, which are defined as algebras of operators that commute with a given set of local operators.
In this work, we show that these symmetry algebras can be expressed as frustration-free ground states
of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conven-
tional symmetries such as Z,, U(1), and SU(2), where the symmetry algebras map to various kinds of
ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking
phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show
that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries,
which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection
is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation
in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation
for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians
indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous)
symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and
asymptotic scars in the presence of U(1) symmetry, HSF, and a tower of quantum scars, respectively.
In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive
understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes,

and their dynamical consequences in systems with locality.
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I. INTRODUCTION

Developing an understanding of symmetries in their
most general form has been a recent quest in many dif-
ferent parts of physics. The definition of symmetries in
most of the quantum many-body physics literature implic-
itly assumes some kinds of restriction imposed on the
symmetry operators, e.g., they are usually on-site unitary
symmetries with nice group structures or lattice symme-
tries such as translation, rotation, reflection, etc. However,
several recent works have demonstrated that generalized
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symmetries beyond what is usually studied in much of
the literature can naturally arise in several physical set-
tings. In the context of equilibrium physics, several new
types of symmetries have recently been studied in the con-
text of various physical lattice models or quantum field
theories [1,2]. Examples include “higher-form symme-
tries,” where the symmetry operators live on manifolds
of some nonzero codimension [3—6]; “noninvertible” or
“categorical” symmetries, where the symmetries are not
representations of groups but of categories [7-9]; “MPO
symmetries,” where the symmetry operators are matrix
product operators (MPOs) [10—12]; or even more exotic
symmetries that appear in the study of fractons [13—
16], where the symmetries depend on the system size. In
the context of nonequilibrium physics, a general frame-
work for symmetries based on “commutant algebras” has
naturally appeared in the study of dynamical phenom-
ena known as weak ergodicity breaking [17-20]. For
example, systems exhibiting Hilbert-space fragmentation
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(HSF) [21-24] have symmetry algebras that grow expo-
nentially with system size [25] and systems exhibiting
quantum many-body scars (QMBSs) [17,19,20,26-30]
have nonlocal symmetries such as projectors onto certain
pure states [31]. The discovery of such wide varieties of
symmetries motivates the search for certain characteriz-
ing properties of symmetry operators that are allowed in
physical quantum many-body systems.

A hint comes from the framework where symmetry alge-
bras can be understood as commutant algebras, i.e., as
the associative algebra of operators that commute with a
given set of local operators. In our previous works, we
have explored this framework in detail and demonstrated
that it can be used to understand regular symmetries and
symmetry sectors in a wide variety of standard Hamilto-
nians [32], as well as to discover novel symmetries that
explain the phenomena of QMBSs [31] and HSF [25]. Fur-
ther, in Ref. [33], we have introduced numerical methods
to calculate commutant algebras. One such method has
been based on the property of these operator algebras that
when operators are viewed as states in a doubled Hilbert
space, these algebras are the ground-state spaces of certain
frustration-free local superoperators. Mapping the deter-
mination of symmetry algebras to a ground-state problem
has led to efficient algorithms to determine symmetries,
which have used ideas from tensor-network methods for
determining ground states in general [34] as well as spe-
cialized methods for determining frustration-free ground
states [35-37].

In this work, we explore the analytical aspects and con-
sequences of the idea that symmetries are ground states
of local superoperators, which we refer to as “super-
Hamiltonians.” This allows us to analytically understand
several properties of symmetric systems with locality.
We work out the explicit super-Hamiltonians, which have
interpretations in terms of simple ladder or bilayer Hamil-
tonians, and we solve for their ground states, which map
precisely onto commutant algebras. This allows us to
obtain a priori bizarre connections between Z,, U(1), and
SU(2) symmetry algebras and ferromagnetic states of var-
ious kinds, which can all be expressed as ground states
of frustration-free Hamiltonians. In addition, we illustrate
the commutant algebras in certain unconventional symme-
tries, including some of the examples of HSFs and QMBSs
discussed in Refs. [25,31].

In addition to a clear understanding of exact symmetries,
which are understood as “white” or “black™ properties
of the system—i.e., a given symmetry either exists or it
does not—this mapping to ground states also introduces a
grayscale and provides a precise language for discussing
approximate symmetries. These approximate symmetries
are naturally defined as operators that are in the low-
energy spectrum of the super-Hamiltonians, of which exact
symmetries are the ground states. Since the exact sym-
metries in many of the examples map onto ferromagnetic

states, the low-energy excitations are given by spin waves,
which map back onto approximate symmetries. These
are approximately conserved quantities, which can be
loosely viewed as long-wavelength textures in the densities
of the exactly conserved quantities and hence are con-
served up to times that diverge with the system size (e.g.,
taking the longest wavelengths fitting into the system).
This feature of approximate symmetries also illustrates
their connection to hydrodynamic modes, as we discuss
below.

This connection to approximate symmetries is made pre-
cise by a remarkable physical relation between the super-
Hamiltonian and noisy Brownian-circuit models similar to
those studied in the context of noisy spin chains [38—42],
or as toy models for quantum chaos [43—52]. In particu-
lar, the low-energy spectrum of the superoperator is related
to the relaxation rates of noise-averaged autocorrelation
functions toward their Mazur-bound values dictated by
symmetry [53,54], which leads to two main insights. First,
it provides an alternative physical meaning to the Mazur-
bound value, usually interpreted as a lower bound on the
autocorrelation function of an operator evolving under a
single physical Hamiltonian with a given set of symme-
tries. Second, it shows that the approximate symmetries
that appear as low-energy excitations above the ground
state of the super-Hamiltonian correspond to slowly relax-
ing hydrodynamic modes that govern late-time transport
properties in symmetric systems with locality. For exam-
ple, we are able to understand the approximately L? relax-
ation time in U(1) symmetric systems, which occurs due to
the presence of charge or spin diffusion, in terms of spin-
wave excitations above ferromagnetic ground states of the
superoperator Hamiltonian. In addition, we are also able to
use this framework to understand hydrodynamic modes for
unconventional symmetries such as QMBS, which coin-
cide with slowly thermalizing initial states in such systems,
recently referred to as asymptotic QMBSs [55]. With these
insights, we connect exact symmetries understood in the
commutant-algebra framework to approximate symmetries
that are related to hydrodynamic relaxation modes and
late-time transport, which have been of significant inter-
est lately in systems with various kinds of symmetries
[56-64].

This paper is organized as follows. In Sec. 11, we review
key concepts in the study of commutant algebras and their
connection to ground states of local super-Hamiltonians.
In Sec. III, we work out several examples in the context
of conventional and unconventional symmetries. Then, in
Sec. IV, we illustrate the connection between the low-
energy spectrum of the super-Hamiltonians and operator
relaxation to Mazur bounds, which can be made concrete
in Brownian- or noisy-circuit models. We also exhibit
the approximate conserved quantities in the context of
various kinds of symmetries. Finally, we conclude with
open questions in Sec. VI.
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II. COMMUTANT ALGEBRAS AND GROUND
STATES

We first review the connection between commutant
algebras and frustration-free ground states of local super-
operator Hamiltonians, which was first introduced in the
context of numerical methods to detect symmetries in [33].
Here, we only review aspects necessary for this work
and more comprehensive discussions can be found in our
previous papers [25,31-33].

A. Definitions

The essential idea of commutant algebras is to think of
symmetries in terms of a pair of operator algebras (A, C),
referred to as the local algebra and the commutant alge-
bra, respectively, which are centralizers of each other in
the algebra of all operators on the full (finite-dimensional)
Hilbert space. As the name suggests, the local algebra A
is generated by a set of Hermitian local operators (Hy),
which can either be strictly local or extensive local, and
we denote it as A = (({ﬁa})). In the case in which all
the operators H, are strictly local, the algebra A is also
commonly referred to as a bond algebra [65—67]. The com-
mutant algebra C, by definition, is the centralizer of A, i.e.,
the set of all operators that commute with the {ﬁ]a}, which
is the symmetry algebra for all Hamiltonians in A, i.e.,
those that can be expressed in terms of linear combinations
of products of {ﬁa}.

For the Hamiltonians constructed out of the genera-
tors of A, symmetry sectors and dynamically disconnected
Krylov subspaces due to the symmetry algebra C can
be understood in terms of their representation theory of
von Neumann algebras. Thinking of symmetries in this
commutant-algebra framework leads to a comprehensive
understanding of symmetry algebras, symmetric opera-
tors, and associated symmetry quantum number sectors,
we refer to Refs. [25,31,32] for concrete examples in a
variety of systems.

B. Liouvillians and super-Hamiltonians

Given the local algebra A, determining the commu-
tant C is not always straightforward in practice. Hence in
Ref. [33], we have introduced two numerical methods to
numerically construct the full commutant algebra C given
a set of local terms {H,} that generate the local algebra
A. The method relevant for this work is the “Liouvillian
method,” which starts by interpreting operators O on the
Hilbert space H as vectors |0). In particular, operators
on the Hilbert space H, which themselves form a Hilbert
space denoted as L(H), can be mapped onto states on the
doubled Hilbert space H ® H via the mapping

5 = Zouvlvu><vv| — |5) = Zouv |U;L> ® |vy),
ww

v
(D

where {|v,)} is an orthonormal basis for H, which we
take to be the computational basis of product states. For
example, for a spin-1/2 system, we have

D =11 ®11); + ) @ N> 2

where j labels a site [the identity operator in a many-body
system is 1 <= ®;[1);]. In this work, we will some-
times interchangeably use |e) and |e) when referring to
operators as states on a doubled Hilbert space and the
meaning should be obvious from the context. Adapting the
definition of Eq. (1) together with the conventional inner
product in the doubled space implies that the inner product
in the operator Hilbert space is defined as [68]

(4[B) := Tr(4'B). 3)

The action of the commutator of an operator O with an
operator H,, can be represented as

Loi=

[[,,0] — (H,o1-10H)0), @)

where the transpose is taken in the computational basis. In
Eq. (4), L, is referred to as the Liouvillian corresponding
to the term H,, which is the superoperator that represents
the adjoint action of that term,i.e., Ly |e) :=[Hy,e].

Given an algebra A = (({H,})), the operators in the
commutant C by definition commute with each of the H,.
Hence, as vectors in the doubled Hilbert space, they span
the common kernel of the Liouvillian superoperators {£L,},
which is also the null space of the positive semidefinite
superoperator defined as

L L
P:=) LiLs, PlO)=0 < L,0)=0Va, (5)

o

where the second condition follows since all the 730( are
positive semidefinite. As discussed in Ref. [33], this pro-
vides an efficient numerical method to compute the full
commutant C, given the generators {H,}. In addition, in
the absence of exact symmetries, the low-energy spectrum
of P can be treated as approximate symmetries, as we dis-
cuss later in this work. In Appendix D, we comment on the
dependence of the super-Hamiltonians on the choice of the
generators of the bond algebra .4, which does not affect the
exact ground states and is not of any concern when using
this method to find the commutant C.

C. Ladder-bilayer interpretation

In order to study the P in typical cases, where H is a
tensor-product Hilbert space with qudits arranged on some
lattice, it is convenient to view the Hilbert space H ® H
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FIG. 1. The doubled Hilbert space H® H for one-

dimensional (1D) systems depicted as a ladder with the two
legs labeled by {#, b}. The super-Hamiltonian term El 1 +1£/ J+1
arising from a nearest-neighbor bond-algebra term h j+1 s a
nearest-neighbor term along the ladder, i.e., it acts nontrivially
only on rungsj and j + 1.

as two copies of the original lattice with the sites aligned,
i.e., a site j on the first copy is taken to be neighbor of the
site j on the second copy. This geometry corresponds to a
ladder [in one dimension (1D); see Fig. 1] or a bilayer [in
two dimensions (2D)]; hence we will refer to the first copy
of the Hilbert space as the “top” leg or layer, the second as
the “bottom” leg or layer, and the link between the two legs
or layers as “rungs.” We denote operators on the doubled
Hilbert space that act only on one leg or layer using the
shorthand notations

o~

Oui =0y ®1, Oup:=1®0,, (6)
where using leg or layer labels {¢, b} as “local indices,” as
often done when writing local Hamiltonians in compact
form (we label them using subscripts {z, b}).

In most examples that we study, A is a bond algebra,
i.e., the operators {(H,} are strictly local operators, e.g.,
nearest-neighbor terms of the form {/; ;;(}. In such cases,

the superoperators ﬁa = ELE& are also strictly local oper-
ators on the ladder or bilayer, with the same range along the
ladder or bilayer as the {H,}, e.g., nearest- neighbor terms
{h; j 41} give rise to superoperator terms {E /JJH}, as

shown in Fig. 1. As a consequence, P of Eq (5) is an
extensive local operator on the ladder or bilayer, and has
a natural interpretation as a superoperator Hamiltonian,
which we refer to as a “super-Hamiltonian.” The definition
of the Ea in Eg. (4) can be used to directly obtain an
expression for P of Eq. (5) in terms of the {H,}, which
reads

ﬁit + (ﬁ;;b)z - 2ﬁa;tﬁ;;b)a (7

where we have used the fact that the ﬁ[a are Hermitian.
This super-Hamiltonian object is the key focus of this work
and in the subsequent sections we will study several exam-
ples of this superoperator in various bond and commutant
algebras.

Symmetries, which are the operators in the commu-
tant C and satisfy L,|-) = 0, hence are the frustration-free
ground states of the local superoperator P, since they are
ground states of each term P, of P. The dimension of the
commutant, dim(C), is given by the number of independent
ground states of P.

Finally, we note that this super-Hamiltonian P also
has an interpretation as the dissipator of a Lindbladian if
we treat the H, as jump operators of a Lindblad master
equation, since the action of P on an operator |O) reads

PlO) <= -> (2H,0H, —{H2,0)), (8

which corresponds to the dissipative part of the Lindbla-
dian. Indeed, similar mappings are also commonly used in
the literature on Lindblad systems [69,70]. In Appendix C,
we further discuss formal symmetry properties of the
super-Hamiltonians viewed as ladder-bilayer systems; in
particular, we encounter ones known as strong symmetries
in the Lindblad context and consider how the ground states
of the super-Hamiltonians relate to these.

1. EXAMPLES OF SUPER-HAMILTONIANS

We now study super-Hamiltonians P in the context
of several conventional and unconventional symmetries
studied in earlier literature [25,31,32] and show that the
respective commutant algebras can be understood as its
ground states. Note that the super-Hamiltonian corre-
sponding to a given symmetry is not unique and it depends
on the choice of generators of the corresponding bond
algebra. The ground states of all such super-Hamiltonians
are the same by definition but the excited states can dif-
fer. We will restrict to a simple choice of local generators
of the bond algebras, which lead to simple local super-
Hamiltonians, and we expect the qualitative features of
low-energy excited states to be the same for any other
choice of local generators of the bond algebras. We also
restrict examples to 1D systems and higher-dimensional
examples proceed in similar ways.

A. Global symmetry

We start with the case of global symmetries, studied in
Ref. [32], and we separately show examples of discrete
and continuous symmetries. Note that we only illustrate the
Hamiltonians for 1D systems but that the results generalize
to higher dimensions as well.

1. Z; symmetry

As an example of a discrete symmetry, we focus on Z,
symmetry in spin-1/2 systems, where we know that the pair
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of bond and commutant algebras is given by [32]

Az, = ({5 X513.{Z 1)),

L
Cz, = <<HZ,>> =span{ 1.][[% ¢ . 9)
J j=1

where the X; and Z; are Pauli matrices on site j . We can use
the generators of Az, to construct the corresponding super-
operator ﬁzz, which when interpreted as a Hamiltonian on
a ladder reads, following Eq. (7),

= 22[1
+2Z[1

where X;,, and Z; , are now the Pauli matrices on the £th
leg of the jth site of the ladder system representing the
doubled Hilbert space. Note that all the terms of Pz, com-
mute among themselves; hence its spectrum is completely
solvable. R

We can directly solve for the ground states of Pz, by
starting with configurations that “satisfy,” i.e., minimize,

j[Z b]

X; X 0 X 11X 113015 (10)

Gy =155 55,
o 1

In the operator language, the composite spins on rung
j map to physical spin projectors on site j as [1); =
[11) (1), and [{); = [I{){{]);. Hence the composite spins
of Eq. (13) map as

~

—_ 1
=) = <) = —=12); (14)

1
—|1);,
I, V2

V2

and the normalized ground states are

1 L
G =27 1%,

which are precisely the two linearly independent oper-
ators that span the commutant algebra for the Z, sym-
metry, shown in Eq. (9). Hence the ground-state space
of the superoperator Pz, precisely maps to the commu-
tant algebra Cz,. In Appendix C1, we further discuss
the fate of the formal inherited symmetries of the super-
Hamiltonian—here, independent Z, symmetries associ-
ated with each leg—in the corresponding quantum “phase”

1
G=) = — 1), (15)
22

the energy under each of the terms individually. First, we
note that “rung term” {1 — Z;.,.Z;.;} in Py, is satisfied when
both the spins on the rung at site j are aligned; hence we
can work in the space of composite spins on the rungs,

defined as
- T ’ - \L >

where the top and bottom spins in the ket are states
of the top and bottom legs, respectively. Within the 2%-
dimensional space spanned by all product configurations
of the “composite spins” |']*) and |]), the action of PZZ
reads

(11)

Pzzlcomp = 22[1 - %E«H])

J

(12)

where )A(; is the composite-spin Pauli matrix on site j ; this
is because the action of XX, flips the composite spins
and hence can be mapped to )~(J Equation (12) is simply
the classical Ising ferromagnet and its two ground states,
|G- ) and |G. ), are given by

(13)

that contains these ground states and show that they can be
understood in terms of particular spontaneous symmetry
breaking.

As an extension, it is easy to see that all Pauli-string
bond algebras, i.e., those generated by Pauli strings, have
super-Hamiltonians that are composed of commuting pro-
jectors. This is because the Pauli strings themselves square
to 1, making the first two terms in Eq. (7) constants, while
the Pauli strings appear in pairs in the last term, which
commute with any other pair of Pauli strings. Hence the
ground states of these super-Hamiltonians can be solved
to reproduce the respective commutants (which in such
cases are also generated by physical Pauli strings [32]).
Since the commutants in such cases are also generated by
Pauli strings [32], we expect them to correspond to discrete
symmetries.

2. UQ1) symmetry

We next illustrate a continuous symmetry, turning to the
commutant of the spin-1/2 U(1) bond algebra, given in 1D
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by [25,32]
Avay = (XX + Y Y01 {Z ),

L
Cuy = <<ZZ/>> =spany Y. Z,---Z,
j=1

J1<<jm
Puy =2 Z

(16)

s tZ/ ;b
J Le{t,b}

Although 73(/(1) is not composed of commuting terms,
we can solve for their exact ground states. Note that simi-
lar to the Z; case, each of the first-rung terms proportional
to 1 — Z;,,Z;,, commutes with all other terms in Py;) and
is satisfied when spins on both legs at site j are aligned,
which then justifies working in terms of the composite
spins of Eq. (11). It is also easy to see that Py leaves the
subspace spanned by the 27 product configurations of the
composite spins invariant and, within that subspace, Py
acts as
(T

Puiicomp = 8Z<m N = Dy

_42 )?/)? ?j?j—ﬁ—l +ZZ'+1)],

(18)

where X,, i, and Z are the composite-spin Pauli oper-
ators on site j, deﬁned in the obvious way. Up to an
overall factor, this is simply the ferromagnetic Heisen-
berg model reviewed in Appendix A, here in terms of
the composite spins. Its ground-state space is hence the
(L 4 1)-dimensional ferromagnetic multiplet of the com-
posite spins; these are obtained by replacing the regular
spins of the usual ferromagnet shown in Eq. (A5) by the
composite spins. Using the correspondence between states
on the ladder and operators of Eq. (14), the states of
the composite-spin ferromagnetic multiplet translate into
operators of the form

%)~ Y. 12,2, Z,),

J1<<Jm

(19)

where we have ignored an overall constant. These are pre-
cisely the L + 1 linearly independent operators forming a
basis in the commutant algebra Cy; corresponding to the
U(1) symmetry [25,32], shown in Eq. (16).

While the above operator mapping is more evident in
the X basis of the composite spins, the same multiplet can

+2) 2= > ZiZiie — KXy ina + YY) X1 + Yo Y1)

We can then use the generators of Ay to construct the
superoperator Py using Eq. (7). When expressed on the
two-leg ladder, after simplification it reads

(17

(

be described in terms of the Z basis of composite spins,
analogous to Eq. (AS5). Since the composite-spin states
|$)j and |l)j map onto physical spin projectors |1)(1];
and |})(}|; in the operator language, this Z basis for the
ground-state space of 75U(1 y corresponds to projectors onto
the L + 1 spin sectors labeled by different values of the
physical spin S;;. Indeed, for Abelian symmetries, the pro-
jectors onto symmetry sectors form an orthogonal basis for
the commutant algebra [25].

Finally, in Appendix C 2, we consider the formal inher-
ited symmetries of the super-Hamiltonian—here, indepen-

that the ground-state manifold can be understood using
particular spontaneous symmetry breaking.

3. SU(2) symmetry

As an example of a non-Abelian symmetry, we now
illustrate the commutant of the spin-1/2 SU(2) bond alge-
bra, given by

Asvey = (18 - S1) = (P ).

)
P[/,/—H

CSU(Z) = ((Stot’ Sfot’ S’[Zot> )

1
=25 - S,+1+2

(20)

where P[/; +17 here is the spin-1/2 permutation operator

between sites j andj + 1, i.e.,

P(2)+1] loo’ >[,J+1 |U/U>[j,j+l]a (21
and the {S{,} are the total spin operators. (This bond
algebra contains the Heisenberg Hamiltonian reviewed in
Appendix A.) As we will see, the expression in terms of
the permutation operators is more convenient for solv-
ing the corresponding super-Hamiltonian and in this form
the treatment immediately generalizes to bond algebras
for SU(g) symmetry for any g > 2, which are generated
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by permutation operators for g-level systems, which we

denote by PE].q; Ly

In the following, we denote the permutation oper-
ators without superscripts to mean that they hold for
any ¢ and that ¢ =2 corresponds to the SU(2) case.
Using (P j+11)* = 1, the super-Hamiltonian associated

with {P}; ; 117} in the ladder representation has the form

Psugy = 22(1 = P j+11:4Pp j+110)

=220 -y @)
where P[] j+1] 1s the permutation operator for the rungs

rung

jandj +1,ie, P; 7y

oo’ > | oo >
/ - / .
TT . 't [ .
UJ+1] [J+1]

Note that this can also be viewed as the permutation

operator P[/qJ ‘17 acting on the g*-level systems associ-

ated with each of the rungs j and j + 1. The permutation
operator P(q j+1] Possesses an SU(¢%) symmetry and the

super-Hamﬂtoman PSU(q) is then equivalent to a chain
of g*-level systems with nearest-neighbor ferromagnetic
SU(g?)-invariant interactions.

The ground states of PsU(q) are the ferromagnetic states
of this chain of g*-level systems, which can be tabulated as
follows. Given a fixed number of on-site states of each type
Ni,Np,...,Np with constraint V; —|—N2 + “+Np = L,
tion of all p0551ble configurations with precisely the given
number of on-site states of each type. This is analogous
to the spin-1/2 ferromagnetic multiplet that appears as the
ground state of the super-Hamiltonian in the U(l) case.

These states are invariant under permutations P[(]q -y andit
is easy to prove that they completely span the ground-state
manifold of Psy,). Their count is

L
dim(Csy(g) = Z 3N, Nyt N p =L
N1,Np,...,N =0
L+q¢*—1
_ ( 4 ) (23)
q* —1

which, for the ¢ = 2 case, precisely matches the known
description of the commutant for the SU(2) symmetry
[25,32].

B. Hilbert-space fragmentation

We now turn to examples of HSF, where the dimen-
sion of the commutant scales exponentially with the sys-
tem size [25,71,72], which leads to exponentially many
disconnected Krylov subspaces [18,19,21-23], which are

analogues of quantum number sectors for conventional
symmetries.

We start with an example of classical fragmentation, the
t — J; model [73—75], which is a model of two species
of spins, 1 and |, which are allowed to hop but are not
allowed to cross. Schematically, there are three possible
states at any given site—spin 1, spin |, and the vacant site
0—and the allowed “moves” can be denoted as 1 0 <> 0 1
and | 0 <> 0 |. These moves satisfy a conservation of
the full pattern of spins (i.e., 1 and |, ignoring the 0)
in one dimension, which results in a fragmented Hilbert
space with exponentially many Krylov subspaces corre-
sponding to exponentially many allowed patterns [24,25].
In Ref. [25], we have shown that these exponentially many
subspaces are attributed to exponentially many conserved
quantities in the commutant algebra.

Specifically, the bond algebra corresponding to the ¢ —
J. model, when viewed as a hard-core bosonic model for
simplicity, is given by [25]

A = (T b AT b ST,
?EJ+1] = (lo 0)(0 o] +h.c)p 411
S;= AN =1 24
where o € {1,!}, and the {77 ;. ,;} are the nearest-

neighbor hopping terms for the spin of type o. The
corresponding commutant, derived in Ref. [25], reads

Ci—j, = span{N°12"% k =0,1,...,L},
N DL NN N g e it
J1<j2<-<Jk

(25)

Note that most of the conserved quantities in the commu-
tant C,_,, are functionally independent from the two obvi-
ous U(1) symmetries, N° = Zj N?,o0 € {1, |}, which are
the separate particle-number conservations of 4 spins and
| spins. The commutant C,_,, can be generated by a dis-
tinct set of nonlocal operators, referred to as statistically
localized integrals of motion (SLIOMs) [24,25]; however,
for our purposes, working with the linearly independent
basis for C,_, is more convenient.

We can construct the super-Hamiltonian using the gen-
erators of A,_, to understand the operators in C,_;, as its
ground states. We first note that the super-Hamiltonian is
of the form

= (S, =S+ ZF<{ T o)), (26)

J

Prs.

where F ({/7\‘[; J +1]-£}) is the positive-semidefinite part of
the super-Hamiltonian that comes from the generators

{ G i+1] } of A,_;.. We now observe that the first sum in
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Eq. (26) enforces that the ground states |W) of P J, sat-
isfy % i W) = ‘;b |W); hence the ground states lie in the
subspace spanned by product states of composite spins,
defined here as

1) Bef8) [ £)

It is easy to check that these composite spins are left
invariant under the action of P,_;. and that the effective
Hamiltonian in this subspace reads

Pt—lecomp—z Z ( 5))

J.oe{td}

x (01— (06 (28)

)
UJ+1]

where we have used the expression for 77 G417 10 Eq. (24).
This resembles the form of the ferromagnetlc Heisenberg
Hamiltonian in Eq. (18) and, in fact, as we discuss in Sec.
V B 2, there is a mapping between eigenstates of P;_ . |comp
and those of the Heisenberg model discussed in Appendix
A. For the purposes of the ground states, it is easy to show
that they must have equal amplitudes on a// product states
that are “connected” by the nearest-neighbor “hops” of
the composite spin . An orthogonal basis for the ground
states is formed by states that are equal-weight superpo-
sitions of all spin configurations with a fixed pattern of
composite spins 4 and }. For example, the ground states
of P,_;, with ordinary boundary conditions (OBCs) read

|Go1k) = Z lo1(1) 02(72) -+

J1<j2<-<Jk

orGu)),  (29)

where the notation 4;(j;) indicates that the composite spin
oy is at site j; and the remaining sites are implicitly assumed
to be 0. We note that this form of the ground state is a
consequence of the fact that P,_;, of Eq. (28) is of the
Rokhsar-Kivelson (RK) form [also referred to as stoquastic
or stochastic-matrix-form (SMF) decomposable] [76,77].
Such superoperators often appear in systems with “classi-
cal” symmetries, i.e., where all the symmetry operators are
diagonal in the product-state basis, and we discuss these
connections in Appendix B. Note that the symmetry of the
action of the super-Hamiltonian P,_j,|comp On 1 and | in
Eq. (28) is in fact a composite-spin SU(2) symmetry. As a
consequence, P,_ . |comp has the same form when written in
terms of composite spins = and <= in the X basis defined
in Eq. (13), i.e., when 6 € {=, <} in Eq. (28).

We can map the ground states of P,_, to operators
by noting that a composite-spin configuration [5);, s €
{1,0, ]}, maps to on-site projectors [|s)(s|);. The ground
states of 73;, s, then correspond to the projectors onto the
Krylov subspaces of the # — J. model, which are spanned

by all configurations with a fixed pattern of spins. Thus,
the ground-state space of P,_,, is equivalent to the sub-
space spanned by these projectors, which, one can argue,
is the same as the subspace spanned by the (nonorthogo-
nal) operators N°1°2"%; hence it precisely reproduces the
commutant algebra C,_;, of Eq. (25).

C. Quantum many-body scars

We finally analyze the commutants of QMBSs [17—
20], using the super-Hamiltonian picture. In Ref. [31], we
have built on several earlier works [26,78,79] to show that
QMBSs can be defined as singlets of locally generated
algebras. By this we mean that there are local operators
such that their common eigenstates are the QMBSs. A
simple example is when the QMBS eigenstates are simul-
taneous eigenstates of a set of strictly local operators;
without loss of generality, projectors {Ry;} acting of a few
sites neighboring j (with the range bounded by some fixed
number) that annihilate the QMBSs, as proposed by Shi-
raishi and Mori in Ref. [26]. We denote the common kernel
of {R[j]} as

span{|®,)} ;== {[¥) : Ry [¥) =0 Vj},  (30)

where {|®,)} is an orthonormal basis for the kernel, and
these are the QMBS eigenstates. Several known examples
of QMBSs, including embedded matrix product states [26],
towers of states in the spin-1 XY [80], and the Hubbard
model [78,79,81,82], as well as those in the Affleck-
Kennedy-Lieb-Tasaki (AKLT) models [27,29,83,84], can
be understood to be of this form.

For simplicity, we restrict ourselves to spin-1/2 sys-
tems. As discussed in Ref. [31], we expect the bond and
commutant algebra

Ascar = <<{RD]GI?: ke Aja a = OaX,y,Z})),
Cscar = (<{|Cbn>(®m|})), (31)

where the {0} are the on-site Pauli matrices with a,? =1,
Ry;7 is a projector acting on few sites near j, and the index
k Tuns over a set of sites A; that does not have overlap
with the support of R[;; but is in the vicinity [85]. Note that
there are many different choices of generators for Agcy,
which then determine the super-Hamiltonian, and we have
chosen one set that is convenient for calculations. The
algebra Ay, is claimed to be the exhaustive algebra of
operators with {|®,)} as degenerate eigenstates with eigen-
value 0; i.e., any such operator can be expressed as sums of
products of generators of Ag.,,. We will verify this claim
using the super-Hamiltonian formalism for specific exam-
ples below. In examples of towers of QMBSs, a “lifting”
term [81,83] can be added to the generators of these alge-
bras to obtain the exhaustive algebra of operators {|®,,)} as
nondegenerate eigenstates (for more details, see Ref. [31]).
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Following Eq. (7), the expression for the super-
Hamiltonian Py, reads

Pscar = Z[R[j];t + R[/];b - 2R[i];fR[f]§b naogfglgb]’

J ko
= 4Z(R[f]:t — Ry1)* + SZR[/‘];tR[/];b[l — |0 (I ]k,
J ik ok

(32)

where for simplicity we have assumed that RE] = Ryj
(equivalently, Rj;; = Ry;)) in the computational basis, and

J

we have defined n° = n* = = 1 and ¥ = —1, and the

state
_ L[ \:
=5 (/] >+' e

Note that |¢), is identical to the composite spin |=); of
Eq. (13) and hence in the operator language it maps onto
%5|]1)k~

Since all the individual terms in Eq. (32) are positive
semidefinite, any ground state |¥) of Pk, should satisfy

(R — Ryj1)* 1W) =0 = Ry W) = Ryjpp| W), (34)

Ry1Ryys[1 — 10 (e [¥) =0 = Rppe[l — [0) (tl]x [¥) = 0, (35)

where £ € {£,b}, k € A;, and we have used Eq. (34) in the
second step of Eq. (35). Using these equations, it is easy
to see the presence of the following two types of ground
states:

G} = 1P, @ @1y, 1Gr) = Q) lh. (36)
k

In the operator language, |Gy, ,) maps onto ||®,,)(P,|)
(using |®,) with real-valued amplitudes in the compu-
tational basis corresponding to the earlier assumption of
real-valuedness of Ry;j in this basis) and |Gy) is propor-
tional to the global identity operator |1). These operators
are all in the commutant Cg,, shown in Eq. (31).

1. Isolated QMBS's

Proving that these are the only ground states of 7’5Scar
is more challenging and we do that in specific cases
in Appendix E. There, we consider an example of an
isolated QMBS [19], where Rj;:=R; = (1 — 07)/2 =
[1)({|;; hence, following Eq. (30), the only scar state is

) =111 ... 1). (37

We start with a set of bond generators of the form of
Eq. (31) with A; = {j — 1,j + 1} and follow Eq. (32) to
construct the super-Hamiltonian 73150 corresponding to this
case [see the explicit expression in Eq. (E2)]. As we show
in Appendix E 1, in the same composite-spin subsector of

(

interest, we obtain the spin model
Pisoleomp = 2y _[(1 = Z)(1 = X; 1)
J

+ (1 =X)(1=Z], (38)

where the {)?j , Z,-} are the composite-spin Pauli operators
also used in Eq. (18). As we show in Appendix E 1, this
Hamiltonian can be mapped to a frustration-free model that
lies on the so-called Peschel-Emery line in the vicinity of
a transverse-field Ising model [86—88]. From these studies,
this is known to possess only two ground states both in
periodic boundary conditions (PBCs) and OBCs, which in
the composite-spin language read

~ o~

~ o~ 1
G =155 - 3 3) = 1),
2

|Gomes) = |1 £ -+ £ 1) = [|®)(@])).  (39)

This proves the above claim and hence shows the existence
of the following pairs of algebras of the form of Eq. (31)
that are centralizers of each other:

Ciso 1= ({|P)(P])).
(40)

Aiso == ({Rj0 1,07 R;11})),

Any operator constructed out of the generators of Ajs, con-
tains the state |®) as an eigenstate, which can be a QMBS
if it is in the bulk of the spectrum [31].

Finally, in Appendix C3, we consider the relation
between the ground-state manifold and the inherited for-
mal symmetries of the super-Hamiltonian in this case.
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2. Tower of QMBSs
Similarly, as an example of a_tower of QMBSs,
we consider Rpjj:=R; ;41 = % =8-S = %(ITi,) —
LD = (41D j+1, where the common kernel con-

tains the entire ferromagnetic tower of states as scars
[89]:

Se)" 1T 1),

0<n<lI,

(41)

o

=

<

Il
S|~
PR
S N~
~—
Nl_

where St is the total spin lowering operator in the Z direc-
tion. We again start with bond generators of the form of Eq.
(31) with A; € {j — 1,j + 2} and follow Eq. (32) to con-
struct the super-Hamiltonian ﬁower corresponding to this
case [see the explicit expression in Eq. (E13)] and then
solve for all of its ground states to show the existence of
the following pairs of algebras that are centralizers of each
other:

-Atower = (({RjJ+1 42,0 — le,]+1}>>

Ctower = (({|(Dn,0>( m,0|}>> (42)
Any operator constructed out of the generators of Aower
contains the ferromagnetic multiplet as degenerate QMBSs
[31]. These results also generalize to algebras correspond-
ing to the case in which the QMBSs are nondegenerate
towers. However, we discuss this case in Appendix H, due
to more care being required in the Brownian-circuit setup
and analysis.

—~ . 0= ~
10t + AD) = & Zala Labt5(p))

=10() +iAtY JPL,|0) —

where L, is the Liouvillian corresponding to H,, defined
in Eq. (4). If the {J{"} at different times # are chosen to be
uncorrelated random variables, and we are only interested
in ensemble-averaged quantities that are linear in the oper-
ator O(t) e.g., correlatlon functions such as Tr(ATO(t) 00)
for some fixed operator 4 and density matrix py, we can
average the operator over the probability distribution of the
random variables directly. Using Gaussian distributions for
o,

202 ~ At “@4)

T2 2k
P({J}) ~ exp (— u) o’ :t,

to

IV. SUPER-HAMILTONIAN SPECTRUM:
APPROXIMATE SYMMETRIES AND SLOW
MODES

While the ground states of the superoperator P corre-
spond to the symmetry operators in the commutant algebra,
we now show that the low-energy excitations correspond
to operators that are “approximate” symmetries until long
times under local dynamics. To_make this idea precise,
we show that the superoperator P acts as a dissipator for
operators in ensemble-averaged noisy Brownian circuits.
Several types of Brownian circuits have been studied in
the literature, e.g., in the context of information scrambling
[43—45], the SYK model [47-50,52], in quantum general-
izations of certain classical processes such as the symmet-
ric simple exclusion process (SSEP) [38,39,41,42,90], and
in the context of transport with symmetries [51,62]; and
similar connections between superoperators and ensemble-
averaged dissipative dynamics of operators have been
noted in some of them.

A. Algebra-based Brownian circuits

Given a bond algebra A = (({ﬁa})), we consider an
associated Brownian circuit that consists of time evolution
with the Hamiltonian H = Y J"H, for a short time of
At. At each time step, the {J{7} are chosen to be uncor-
related random variables from a fixed distribution and we
are eventually interested in ensemble-averaged quantities
such as correlation functions. Operators under this circuit
evolve in the adjoint language as

(A1)? O 7OF A5 3
D Il LLpl0M) + O((AD?), (43)

a.p

(

where o is the variance of J{”, we obtain

0+ A1) = [0() — ArY kL LalOM) + O(AD?),

(45)

where “~~ denotes the average over all the {J{"} performed
1ndependently at all times ¢ and we have used the properties
that J\" = 0, JOE’)J;/) = 028440, and also the Hermitic-
ity of the super-Hamiltonian with respect to the Frobenius
scalar product of Eq. (3). Note that in the continuous time
limit when At — 0, the distribution of Eq. (44) is referred
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to as shot noise [91] and the Brownian circuits can be
understood using the language of stochastic processes and
It6 calculus [92,93], which we will not discuss here. For
our purposes, it is sufficient to note that in the continuous
time limit, we obtain

d =~ B EBR
d_llO(t)) = —ZKaﬁlﬁz”O(t))

— |0(1) = e*P0(0)), (46)

where for simplicity we assume k, = k, we use that
0(0) = 0(0), since it is independent of all the J, and
P is defined in Egs. (5) and (7). Ensemble-averaged quan-
tities linear in the time-evolved operator O(¢), e.g., two-
point correlation functions with a fixed second operator,
can then be expressed in terms of the ensemble-averaged

operator |0(t)) We note in passing that ensemble aver-
ages of higher-order functionals of the operator O(t)

e.g., higher-point correlation functions or Rényi entropies,

can also be studied using similar methods; these usually
involve studying effective Hamiltonians on more copies or
replicas of the original Hilbert space (for discussions of
such techniques, see, e.g., Refs. [47,50]).

B. Correlation functions

With this understanding, ensemble-averaged correlation
functions can also be studied using the eigenstates and
spectrum of . The two-point dynamical correlation func-
tions of operators 4 and B at infinite temperature are
defined as [94]

1 A~ A 1 o~ -~
Cpa(0) == BTr(B(O)TA(t)) = B(B(O)IA(f)), (47)

where D := Tr(1) = dim(H). After ensemble averaging,
this can be written in terms of eigenstates of P as

1o~ =— 1 5~
Cpalt) = [, (BO)I4(0) = B(B(O)Ief’cptlA(O))

1 ~ —~
= BDBM,L)(MA)e—W

= _Ze—mZ(BmE () (o (B)A),  (48)

ve=1

where the {|A,,)} are the orthonormal eigenstates of P with
eigenvalues {p,}, with real p, > 0, since P is positive
semidefinite. In the last step, we have reorganized the sum
in terms of energy eigenvalues of P and their degenera-
cies, where the {|A,;(£))} are eigenstates with eigenvalue
E and Ng is the degeneracy at that energy; this form is con-
venient to work with in examples that we study in Sec. V.

As t — oo for a finite system size L, we obtain the equilib-
rium value of the ensemble-averaged two-point correlation
function,

- - 1 ~ ~
C(00) = Jim Cp3() = 5 8, 0(B1,) Guyl ).
"
(49)

The information of the late-time transport associated with
the symmetry is stored in the nature of the approach to the
infinite-time quantity, which for a finite system is given
by C3;(#) — C34(00). However, for such purposes, we are
usually interested in the L — oo, in which case we usually
have C37(00) — 0 and it is sufficient to focus on C35(7).

C. Autocorrelation functions and Mazur bounds

With the understanding of correlation functions, we
illustrate a novel interpretation for the Mazur bounds of
autocorrelation functions, studied extensively in the litera-
ture [24,25,53,54,95-98]. The autocorrelation function of
an operator 4 is defined as

I ~  ~
Ci(0) == S (0)|4(), (50)

and using Eq. (48) its ensemble-averaged value can be
written as

1 ~ 5~ 1 ~
G = B(A(O)Ie_KP’IA(O)) = BZI(MIA)IZe_”’"’

= Z e D(AUE(ENAM 1)

UEl

W4 (E):=

where in the second line we have expressed the sum in
terms of energies (possibly degenerate) and corresponding
eigenstates of P, similar to Eq. (48). Note that W;(E) can
also be viewed as the weight of the state |4) in the subspace
spanned by energy eigenstates {|A,, (£))}, i.e., the degener-
ate subspace of eigenstates with eigenvalue £. This shows
that only eigenstates |A,) that have nonzero overlap with
the operator |A) contribute to C5(7) 5(0). Att = 0, this is simply
the total weight of the initial operator 4(0), given by

1 A~
C10) = S () = ) W5(E). (52)
E

For operators of interest, such as a local operator, this starts
at a value of O(1); e.g., for a Pauli matrix in a spin-%
system, we have (Z;1Z;)/D =1 in our definition of the
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operator scalar product. As t — oo for a finite system size
L, its equilibrium value is

. ~
C3(00) = lim G50 = Z—DZS,,M,OKM AP (53)
%

Noting that {|A,,)},=o, 1.€., the ground states of P among
the above eigenstates, is an orthonormal basis for the
commutant algebra C, the right-hand side of Eq. (53) is
precisely the Mazur bound [25,53,54]. Hence the Mazur
bound can also be interpreted as the saturation value of the
ensemble-averaged autocorrelation function in Brownian
circuits, in addition to the conventional interpretation as a
lower bound for the time-averaged autocorrelation func-
tion for a static Hamiltonian. Note that there is an extra
factor of (1/D) in Eq. (53) due to the different definition
of operator overlap in Eq. (3) from that commonly used in
the related literature.

The nature of decay of the autocorrelation to the Mazur
bound of Eq. (53) also reveals information about the slow-
est operators or hydrodynamic modes in the system. The
deviation of the autocorrelation function from the Mazur
bound for a finite system is C;(f) — C;(c0). Unlike the
Mazur bound, which is usually computed for finite L, in
the decay of autocorrelations we are usually interested in
the limit L — oo and finite but long times ¢. Since the
Mazur bound C;(o0) vanishes in the L — oo limit for all
the examples that we study, we can still restrict our study to
%. In this limit, it is clear that the behavior is dominated
by the nature of the low-energy excitations of P. However,
the precise behavior also depends on their degeneracies
as well as the weights of the operator of interest on these
eigenstates.

If P is gapped in the thermodynamic limit, with gap
Emin :=min, E, >0, using Egs. (52) and (51), and
assuming C;(c0) = 0 in the thermodynamic limit, we
obtain that m < C5(0) exp(—k Emint); hence it decays
exponentially fast, with a rate proportional to the inverse
gap. When P is gapless, i.e., when Epy, — 0 as L — oo,
we need to be more careful in deriving the form of the
decay. Since P is a local superoperator, the low-energy
excited states are usually quasiparticles such as spin waves
with dispersion relations of the form E(k) ~ k7. If the full
weight of the operator A, or at least a majority of it lies
within this quasiparticle band of states, we can heuristi-
cally write Eq. (51) as C3(f) ~ [ dk e “E®! ~ =(1/7) A
we will see with concrete examples in Sec. V, for many
conventional symmetries such as U(1) or SU(2), we obtain
E(k) ~ k* and hence we obtain a power-law decay of the
autocorrelation function, i.e., % ~ (1/4/f). However,
note that this argument is not rigorous and if the weight
of the operator does not lie fully in the lowest quasiparticle
band, this argument may not lead to the correct form of the
late-time C;(#); we demonstrate this with an example of

Hilbert-space fragmentation in Sec. V. Hence, when P is
gapless, it is important to carefully study the nature of the
operator weight distribution W4 (E) in Eq. (51) across the
spectrum.

D. Approximate block-diagonalization

While exact symmetries lead to exact block diagonal-
izations of operators with those symmetries [25,32], it is
natural to ask if approximate symmetries lead to approxi-
mate block diagonalizations of operators. While we have
not been able to establish this in complete generality, here
we nevertheless make some simple observations in this
direction. R

Given a super-Hamiltonian P of the form of Eq. (5) and
a subspace K of the Hilbert space with dimension Dy, the
“energy” of its projector [1x under P is a measure of how
connected this subspace is to the rest of the Hilbert space
under the action of the terms {ﬁa}. To see this, note that
the energy of Il is given by

(| P|Tk)
& = ———————
(M |Tk)

2 /\2 —~ —~~
= 5 2 (Tl Tc] = T MicHy TicHo])
K o

2 -~ ~
= l)—K: Xa:Tr[HICHaHKZLHOt]’ (54)

where 11 is the projector onto the subspace orthogo-
nal to . The last line in Eq. (54) is precisely the sum
of the norms of the “block off-diagonal” parts of the H,,
i.e., the sums of squares of matrix elements between states
in K and K. This is consistent with the fact that if /C is
a symmetry sector or a closed Krylov subspace, [T has
zero energy under P, which implies that /C is completely
disconnected from the rest of the Hilbert space.

Hence the existence of a basis in which all the f-\la
have an “approximate block diagonal structure” [in the
sense that e of Eq. (54) is small] implies the existence
of low-energy excitations in the corresponding super-
Hamiltonian. Likewise, the existence of a projector that
has a small energy under P implies the existence of a
basis in which ﬁa (and hence the Hamiltonians formed
by their linear combinations) have approximate block-
diagonal forms. However, the existence of general low-
energy excitations of the super-Hamiltonian, which is what
we show for a number of cases in Sec. V B, does not itself
guarantee the existence of low-energy projectors in gen-
eral. We defer a careful exploration of this issue for future
works.

V. EXAMPLES OF LOW-ENERGY EXCITATIONS

In this section, we construct the low-energy excited
states of the super-Hamiltonian P for several of the
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examples discussed in Sec. III and discuss corollaries for
dynamical properties. We illustrate examples of gapped
and gapless super-Hamiltonians separately, since they lead
to qualitatively different physics. Again, we restrict explicit
illustrations to 1D systems, but the results carry over to
higher-dimensional systems mutatis mutandis. Note that
while the low-energy spectra depend on the precise choice
of generators of the bond algebras A that leads to the
super-Hamiltonians P, the qualitative aspects should not
depend on these details despite some choices leading to
extraneous features that allow more tractability, as we
argue in Appendix D.

A. Gapped super-Hamiltonians
1. Z, symmetry

We begin by considering an example from Sec. [II A 1.
Since Pz, of Eq. (10) is a commuting projector Hamilto-
nian, it is easy to see that it is gapped, since the lowest-
energy excitations can be constructed only by “unsatis-
fying” one of the terms Z;.;Z;., or X,/ X;.pX;11.:X; 1.5
For example, one of the lowest excited states can be con-
structed by “destroying” a single composite spin—say, at
the rung jo—by acting the operator Xj ., on either of the
ferromagnetic ground states |G_.) or |G._) of Eq. (13).
The resulting excitation “violates” the Z;,.;Z; ., term and
hence the energy of the excitation from Eq. (10) is 4.
In the original operator language, these excitations can
be written as |Xj,) and |iY]-q ]_[j Zio Z), respectively (omit-
ting numerical factors), which commute with all {X;X; 1}
terms and all {Z;} in the generators of the bond alge-
bra Ajz,, except with Z;. Hence they can be also viewed
as “local-charge-insertion” operators for the original Z,
symmetry generated by ]_[j Z;.

Another type of excitation can be constructed by vio-
lating one of the X;..X; ,X;1..Xj 1,5 terms, which corre-
sponds to a domain wall between the two ferromagnetic
configurations |G._) and |G-, ). For a system with OBCs,
such excitations have the same energy as the ones in the
previous paragraph, whereas for PBCs, they have twice the
energy, since domain walls necessarily appear in pairs in
this case. In the operator language, considering OBCs for
simplicity, we obtain operators of the form | [ [, <jo Zk) and
I TTie o Zy), which can be viewed as operators that create
a charge of the “dual Z, symmetry” obtained by applying
a Kramers-Wannier duality transformation on the original
system [99]. These are operators that commute with all the
generators of Az, except X; X, ;1. Both types of the low-
energy excitations can be viewed as operators that create
either a Z, charge or a dual Z, charge as discussed in
Ref. [99] (note that the authors’ convention has Z and X
interchanged compared to our Sec. III A 1). In the “holo-
graphic” view of symmetry in 1D [§8,99], these charge
creation operators in turn correspond to e or m particles
of the 2D toric code and it would be interesting to make

further connections between their view of symmetries and
our super-Hamiltonian perspective.

Finally, we note that the gapped nature following from
the commuting-projector property of Pz, extends to super-
Hamiltonians for all Pauli-string algebras, which usually
correspond to discrete symmetries. Hence this feature also
carries over to higher-dimensional super-Hamiltonians
corresponding to such symmetries, which can be inter-
preted as commuting projector Hamiltonians on a bilayer
geometry.

2. Isolated QMBS

The case of an isolated QMBS, discussed in Sec. 1II C,
also gives rise to a gapped super-Hamiltonian Pjs, cor-
responding to the algebra Ajs, of Eq. (40). This super-
Hamiltonian, restricted to the composite-spin sector, is
shown in Eq. (38). An intuition for the gap is that P,
has exactly two linearly independent ground states shown
in Eq. (39) and that there is no natural “smooth” low-
energy excitation on top of the two ground states. While
this model is not solvable, it is frustration free and has
been studied in the earlier literature, and it has been proven
to be gapped with OBCs [87]. We also numerically find
evidence that it is gapped with PBCs (for more details,
see Appendix E). We expect that similar phenomenology
holds for other examples of isolated QMBSs and it would
be interesting to prove this in general, perhaps using some
of the mathematical physics methods developed for such
purposes [100—103].

B. Gapless super-Hamiltonians

We now move on to demonstrate interesting examples of
gapless super-Hamiltonians, which lead to slowly relaxing
hydrodynamic modes associated with the symmetry.

1. UQ1) symmetry

We start with the case of U(1) symmetry. As discussed
in Sec. IIT A, the ground states of the super-Hamiltonian
Puay of Eq. (17) are in the composite-spin sector, obtained
by minimizing the energy under the rung terms {1 —
Z;+Z;»} defined on rungs of the ladder in Eq. (11). Since
each of the rung terms {1 — Z;,,Z; ,} commutes with all
the terms in Eq. (17), any state not in the composite-spin
sector has an energy of at least 4; hence we expect the
lowest excited states of Py to be within the composite-
spin sector. Within this sector, the effective Hamiltonian
maps onto the ferromagnetic Heisenberg model of Eq. (18)
and, as discussed in Appendix A, the lowest-energy eigen-
states are spin waves on top of the ferromagnetic multiplet,
shown in Eq. (A6). The energies of these states are given
by 32 sin? (k/2), where k is quantized as shown in Eq. (A7)
or Eq. (A8), and hence the gap of Py scales as approx-
imately 1/L?, showing that it is gapless. When mapped to
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the operator language, using Eq. (14), the spin-wave states
of Eq. (A6) translate to

i) = = )

’"k11< <jm

(35)

(Zcu k> Z, -+ Z;,)

where ¢; ; is the form of the orbitals given in Eqs. (A7)
and (A8) for PBCs and OBCs and M, ; is a normalization
factor shown in Eq. (A9).

With the exact form of the excited states, we can com-
pute the ensemble-averaged correlation functions of local
operators Cp73(7) and C;(7), shown in Egs. (48) and (53).
We study correlators of the on-site operators {Z; }, which in
the composite-spin language read

1Z)=2313 . 33 .. 3).

j (56)

Using this expression, it is clear that all the weight of
this operator belongs to the Hilbert space spanned by the
one-spin-flip spin waves {|1; )} of Eq. (55), including the
k = 0 case, which belongs to the ground-state manifold
(for more details, see Appendix A), and |Z;) is orthogo-
nal to every other eigenstate of 73(](1), both in and outside
the composite-spin sector. Hence the full time evolution
of ensemble-averaged correlation functions C 2 () and
C7 (1) can be computed just using these one-spin-flip spin
waves.

The overlap of these operators on the single spin-wave
eigenstates reads

¢t 2H2 |

cixl?
(MilZ) = L , =laxlZ))? = L

— ]2
Ml,k - |Cj,k| .
(57)

When k = 0, the last expression is precisely the Mazur
bound, CZj (00) = 1/L, which has also been computed in
Ref. [25]. From now on, we specialize to PBCs for sim-
plicity [104]. Using Eqgs. (51) and (57), and the PBC
parameters discussed in Appendix A, the time dependence
of the autocorrelation reads

1 32 sin? (& T dk
0=y (2)f=/ =

716}{[17008(/()]1‘

p 0
= e 1T (16K 1) ~ ; at large ¢
V2w x 16kt ’

(58)

where & in the first sum is quantized as 27n/L for 0 <
n < L — 1 and we have taken the L — oo limit to go from
the sum to the integral, and Z, is the modified Bessel
function of the first kind. Note that the late-time depen-
dence can also be easily recovered by simply substituting

the “slow-mode” dispersion to be approximately k*, which
leads directly to Cz, () ~ (1/ /1), consistent with diffusive
systems.

It is also possible to recover the Gaussian spatial spread-
ing nature of the two-point correlation of Eq. (48), which
in the L — oo limit leads to the integral

- 2 dk
Cz.z, () = / —e
0

—16K[1—cos(k)]teik(j -

2
T (16c1) (59)
_G=i"?
mzl /OO % efgxkzteik(/fj’) — ﬂ, (60)
N NeZTT

where in the second line Z, is the modified Bessel func-
tion of the first kind of index v = j — j’, while the last line
shows the behavior for «¢ 3> 1. The Gaussian nature of the
correlation function in Eq. (60), with a variance growing
linearly in ¢, is consistent with the prediction of diffusion.

It is easy to see that similar results hold in higher
dimensions and the complete weight of the local spin oper-
ator |Z;) is within the one-spin-flip spin-wave band. This
allows us to compute the ensemble-averaged correlation
functions, recovering the standard results expected from
diffusion, e.g., the decay of autocorrelations as approxi-
mately =/ in d dimensions.

Moreover, as discussed in Appendix D, the super-
Hamiltonian can be different if one starts with a different
set of generators of the bond algebra A1) and it need
not be solvable or SU(2) symmetric. However, the ground
states are always the same by construction and on physical
grounds we expect the approximately k> dispersion of the
low-energy excitations to be the same as long as the gener-
ator set is chosen to be local, since it still represents a U(1)
symmetric Brownian circuit. Indeed, the gap in longer-
range Hamiltonians with this set of ground states has been
studied numerically in Ref. [59] and has been shown to be
consistent with approximately 1/L? scaling for a system of
size L, and the approximately k*> form of low-energy exci-
tations has been argued based on mappings to a field theory
[105].

2. Hilbert-space fragmentation

We now discuss the low-energy excitations of the super-
Hamiltonian P;_;, of Eq. (26) in the case with ¢ — J; frag-
mentation and we show that its low-energy excitations can
be used to understand slow modes and late-time behavior
of the ¢ — J, model. Due to the conservation of the pat-
tern of spins, the # — J,; model at late times is expected to
exhibit tracer diffusion for typical initial states [106,107],
which is the phenomenology exhibited in one dimension
by a single “tracer” particle that is not allowed to cross its
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1
neighbors [108—110]. This leads to an approximately ¢ 4

prediction for the nature of decay of spin autocorrelation
functions at late times [111].

To determine the low-energy excitations, it is sufficient
to work in the composite-spin sector defined by spins of
the form of Eq. (27), since there is necessarily a gap to
other sectors due to the first term in Eq. (26). The super-
Hamiltonian restricted to composite spins, P;_,jcomp Of
Eq. (28), in the ket-bra notation then closely resembles
the Heisenberg Hamiltonian Pycomp of Eq. (18). In fact,
apart from the degeneracies, the spectra of these Hamilto-
nians are identical. To see that, we first note that P;_ . comp
acting on states with n “spinful particles” in OBCs pre-
serves the pattern of spins 61, 63, . . ., 6, on these particles,
ordered from left to right. Workmg in a sector with such a
fixed pattern, the action of Pt Jz|comp does not differentiate
in any way between the spins 1 and ] on these particles
and we can simply label the states in this sector by mark-
ing each particle location as “state” 1, obtaining a Hilbert
space of L qubits 1/0 with precisely # qubits in state 1.
The 0 and 1 can further be mapped onto the Hilbert space
of spins 1 and | and the Hamiltonian P,_ . comp of Eq. (28)
after these identifications precisely maps to the ferromag-
netic Heisenberg model Hyeis of Eq. (A2), up to an overall
factor. Once the eigenstates of the Heisenberg model are
written in terms of the spins 1 and |, they can first be
mapped to 0 and 1, respectively, and then the 1 can be
replaced by the spemﬁc pattern of spins in the given sector
in the 7 — J. model, i.e., ? and i, to obtain an eigenstate of
Pi—.jcomp> and hence that of P,_,.. Hence any eigenstate
of the Heisenberg model with n 1 and (L —n) | cor-
responds to 2" degenerate eigenstates of P,_;,. This also
maps the L + 1 ground states of the ferromagnetic Heisen-
berg model in Eq. (A5) to the total of Y-_ 2" = 2L+ — |
ground states of ﬁt_ J-lcomp 10 Eq. (29). Moreover, due to the
composite-spin SU(2) symmetry of 7/31_ Jlcomp discussed in
Sec. III B, this mapping also holds in terms of composite-
spin states {=, <} defined in Eq. (13) instead of {f, };
this is useful in the discussion in Appendix F. The entire
list of mappings can be summarized as follows:

(1/1,0)/(5/,0) < (1,0) < (I, 1)/ (<=, —),
(61)

where the leftmost states are in the ¢t — J, composite-spin
Hilbert space and the rightmost ones are in the spin-1/2
Hilbert space.

To understand the behavior of autocorrelation functions,
we restrict to a local operator 4 = S7, defined in Eq. (24).

We then need to compute the behavior of CS/z (1), which

according to Eq. (51) requires the computation of the over-
laps between S]Z and the eigenstates of P,_;,. First, since

the ground states of 7/5,_ s, are precisely the operators of

the commutant C,_,, the total weight of |Sj) on all these
ground states is the Mazur bound. This bound has been
computed exactly for the spin operator S; in Ref. [25] and
it has been shown to decay with the system size as approx-
imately (1/ VL) for OBCs in the bulk of the chain and
remain O(1) at the boundaries, even as L. — 00. Since we
are interested in the bulk transport properties, we focus on
the behavior of Csz (?) at large ¢ for j in the middle of the
chain as L — oo.

We discuss the computation of the overlap with other
low-energy eigenstates of P;_;, in Appendix F. Unlike the
case for U(1) symmetry discussed in Sec. V B 1, where the
weight of the local spin operator was completely within
the spin-wave band of excitations of Py, the weight
distribution of the S; operator seems to be significantly
more complicated; in particular, a significant portion of
the weight appears to lie in states of higher energy. Since
the operator |S7) corresponds to the composite spin 1<),
on the ladder, it is easy to see that it has nonzero over-
lap only on the eigenstates of P,_, comp. Although the
Heisenberg model, and hence ﬁ,_ J.|comp»> 1S completely
integrable, its eigenstates do not have a simple form, which
hinders a fully analytical computation of these overlaps.
Nevertheless, with a combination of analytical and numer-
ical results, we are able to deduce the existence of tracer
diffusion from the spectrum of P,_;, |comp-

We first express C;(#) from Eq. (51) as

Q
Ci(H) = / dE w3(E) e = / dE ddEA e,

1 ,

wi(E) = Jim —— 37 W3(E),
E'e€(E,E+AE)

Q(E) = / dE" wi(E") = ) W3(E)), (62)

E'<E

where w;(E) can be interpreted as the “density” of the
weight at a given energy £ and Q7;(£) is the cumulative
weight on eigenstates at energies below E. This expression
is valid for finite sizes with discrete levels (possibly degen-
erate but all are included in the formal sum) but it is written
in anticipation of the thermodynamic limit L — oo where,
for a local observable 4, we expect Q;(E) to converge to
an L-independent function that, at £ — oo, gives the total
weight (1/D) (A |A), which is a fixed O(1) number. Note
that, in fact, we expect most of the weight to be spread over
a finite range of E, since |4) for any strictly local operator
A can be viewed as a result of an action of a superoperator
|A) (1| that is strictly local in the ladder formulation on one
of the ground states |1) of the super-Hamiltonian, which
can deposit only finite energy of the latter. As an exam-
ple of immediate interest to us, a simple calculation gives
(S IPsIS)/(S]1S) = 4/3.
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FIG. 2. The cumulative weight Q(F) of the operator |Sj ),
with j = ((L + 1)/2) in the middle of an OBC chain, on the
eigenstates of the super-Hamiltonian P;_j,comp of Eq. (28) as
a function of the energy for various system sizes L. Note that
Q(E) appears to be converging to an L-independent function. At
large E, it approaches the total weight of the operator, which is %
With our choices of overall factors in 73,, J.lcomp» the Heisenberg
model to which it maps has a one-magnon bandwidth of 8 and a
total bandwidth of O(2.6L), which are the natural energy scales
to judge the horizontal axis. The inset shows the same plot on a
log-log scale to extract its scaling as £ — 0. The form appears
to be Q(E) ~ EY, with y € [0.25,0.3].

We can then use the behavior of Q3(E) at small E to
deduce the behavior of C;(f) at large ¢. For example, if
we have Q5(E) ~ EY as E — 0, according to Eq. (62) we
have

Ci(t) ~y / dE E" '™ E ~ 7 forlarget. (63)

For the operator |S7), the weights on the eigenstates of

7/5;_ J.comp can formally be written down in terms of eigen-
states of the Heisenberg model; we present the details in
Appendix F. The cumulative weight distribution ngz (E)
can then be computed numerically and its form for j =
((L + 1)/2) and odd system sizes with OBCs is shown in
Fig. 2. The nature of this distribution as £ — 0 is consis-
tent with y € [0.25,0.3] in Eq. (63), which is consistent
with the scaling expected from the tracer diffusion [107].

3. Asymptotic QMBS

We now demonstrate that asymptotic QMBS, introduced
in Ref. [55], can be understood in terms of low-energy
excitations of the super-Hamiltonians corresponding to
towers of QMBSs, e.g., Pscar of Eq. (32) for the bond alge-
bra of Eq. (42). In models with a tower of exact QMBSs,

asymptotic QMBSs are low-entanglement states orthogo-
nal to exact QMBSs that have a vanishing energy variance
in the L — 00. As a consequence of their low variance,
their relaxation time diverges with the system size, a prop-
erty that does not happen for generic low-entanglement
states under local Hamiltonian dynamics [112].

Simple examples of asymptotic QMBSs [55] in the con-
text of models with the ferromagnetic tower of QMBSs,
which correspond to the algebras of Eq. (42), are

1
Nk

[ D) = S [ Pur10), 1=n<L-1, (64)

where S, :=) . ¢ S;, with ¢;x chosen such that
(D 4| Pw o) = 8nm ko and the variance of |, ;) decreases
with increasing system size L, and \, is a normalization
constant that can be tedious to compute. A simple way to
satisfy these conditions is to choose |®,) to be a spin
wave on top of the ferromagnet, with £ < 27 such that
k — 0as L — oo; hence the similarity between |®,, ;) and
A5, 1) of Eq. (A6). For example, the use of (c; , k) of the
form of Eq. (A7) with k = (2m /L) leads to an energy vari-
ance of approximately 1/L? and a fidelity-relaxation time
scale of approximately L, similar to the example discussed
in Ref. [55].

We now show that the behavior of asymptotic QMBSs
of the form of Eq. (64) can be understood from the low-
energy excitations of the super-Hamiltonian Pigye, for the
tower of QMBSs. We start with a subspace of states of the
form [v/), ® |®,,0),, where the state on the bottom leg of
the ladder is |®,, ), an exact QMBS shown in Eq. (41).
Using the fact that R 4136 |®Pmo), = 0 and Rﬁ.ﬁl];@ =

Ry j+13:65 ’fjtower of the form of Eq. (32) keeps this subspace
invariant and acts within it as

7/)\tower = 8X:R[j,/'+l];t =2L— SZ(:S};I : 3vj+1;t)a (65)

J J

which, up to an overall factor, is simply the ferromagnetic
Heisenberg Hamiltonian of Appendix A, acting on the top
leg. Hence, excitations within this subspace are spin waves
on the top leg of the ladder of the form
|cbn,k>t &® |q)m,0)}, - ||q>n,k>(q>m,0|)s (66)
where |®, ;) is a spin wave on top of the Heisenberg fer-
romagnet, e.g., as defined in Eq. (64). These states on the
ladder have energy as shown in Eq. (A10); in particular, the
dispersion scales as approximately k>. Hence the relaxation
of the autocorrelation function of any operator to its Mazur
bound is expected to occur on time scales of approximately
L?, provided that the operator has a nonzero overlap with
the slowly relaxing mode.
To apply the general theory of autocorrelation func-
tions to study the asymptotic QMBSs, we first note some
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general properties that hold for an initial state |i) evolv-
ing under a Brownian circuit corresponding to an algebra
/./fl = (({ﬁa})). The autocorrelation function of an operator
A = |Y){Y|, for any normalized state | '), is given by

Tr{A(0) A(=0)] = (W (O |¥ @) (YOI (©),  (67)

where 4 (—1) can be viewed as the time-evolved operator
under the Brownian circuit with bond generators of oppo-
site sign; in this context, A(—7) = [ (1)) (Y (¢)], with | (¥))
and | Y (7)) being the time-evolved states under a single
realization of the Brownian-circuit couplings {J’} (for
precise details, see Appendix G). Given that the algebra
A admits a singlet |Y), i.e., that is an eigenstate of each
of the {ﬁa} (so that | Y (£)) = e ™| (0)) for some ¢ that,
in general, depends on the random couplings), we can use
Eq. (67) to lower bound the ensemble-averaged fidelity as
follows:

Iz

F(t) := [ O) [y @) 1> = (¥ )]y @)

- 2 —_—2
> (Y O]y (n)e! Z‘Tr[A(O)TA(—t)] - (68)

In the case of asymptotic QMBSs, we can choose A=
|Dyk) (Pl With normalized [Py, o) and D, ), which sat-
isfy the required conditions. This operator |4) is precisely
that in Eq. (66) and is hence an eigenstate of the super-
Hamiltonian Piower With eigenvalue p; = 8[1 — cos(k)].
Using Eq. (68), we have

—_—2
(@i (0)| @i (D) > > |(AO)[A(—1)| = e P (69)

Thus, the average fidelity decays on a time scale of approx-
imately L. This qualitatively recovers that the fidelity
of asymptotic QMBSs decays on time scales that grow
with the system size. However, note that this scaling dif-
fers quantitatively from the approximately L scaling of the
fidelity-decay time scale seen in Hamiltonian systems with
asymptotic QMBSs [55]. We hypothesize on reasons for
this difference between the Brownian-circuit and Hamilto-
nian systems in Appendix G and it appears to be related
to the quantum Zeno effect due to stochasticity in the
Brownian circuit.

The behavior of the overlap in Eq. (69) can also be
understood from a direct analysis of the evolution of states
under Brownian-circuit dynamics, which we discuss in
Appendix G. Considerations discussed there also lead us
to the following conjecture on the existence of asymptotic
QMBS in Hamiltonians with exact QMBS.

Conjecture 1. Consider a space S = span{|®,)} that
can be expressed as the exhaustive common kernel of
a set of strictly local projectors. Any local Hamiltonian
that realizes this subspace as the exact QMBS subspace

also has asymptotic QMBSs if S cannot be expressed as
the ground-state space of a gapped frustration-free Hamil-
tonian. Furthermore, the gapless excitations of any such
Hamiltonian are the asymptotic QMBSs.

The same phenomenology generalizes to cases in which
the QMBSs are nondegenerate and we discuss this in more
detail in Appendix H.

Finally, we remark that even though one can construct
low-energy excitations of Piower With dispersion approxi-
mately k? that is similar to the dispersion of the low-energy
excitations of Py in the U(1)-symmetry case, there is
generally no diffusion of local operators in systems with
only QMBS:s. This is due to the exponentially small over-
lap of local operators on these low-energy modes, similar
to the result that QMBSs have an exponentially small con-
tribution to the Mazur bound of general local operators, as
demonstrated in Ref. [31].

4. Other continuous symmetries

The strategy of studying the low-energy excitations of
the super-Hamiltonians can be applied to more general
symmetries and we briefly discuss two cases here.

First, this can be applied to non-Abelian symmetries
such as SU(g) for ¢ > 2. As discussed in Sec. III A 3, the
simplest super-Hamiltonians in such cases are Heisenberg-
like models with SU(4?) symmetry [see Eq. (22)] and
the ground states are SU(g*) ferromagnets. We can then
straightforwardly also obtain exact low-energy excitations
of such Hamiltonians by creating spin waves on top of
these generalized ferromagnetic states, e.g.,

k "',"/ - - ~ ~ ~
e’]SjmIm,...,m,m,m,...,m), (70)

L
=1

J

where S/'-"’m/ is the operator that changes the state on the
(rung) site j from 7/ to 7. This state can be shown to
have energy 4(1 — cos(k)) ~ k? at small k, similar to the
spin waves of the spin-1/2 Heisenberg model. This enables
computations of various correlation functions, including
autocorrelation functions of local operators similar to the
U(1) case discussed in Sec. VB 1, and we get similar
answers, e.g., diffusion due to the similar nature of the
super-Hamiltonians in both cases.

Second, the analysis simplifies in the case of “classical”
symmetries, where the super-Hamiltonians map onto RK-
type Hamiltonians, as discussed in Appendix B. Similar
RK-type Hamiltonians appear in the study of spectral form
factors in Floquet random circuits with symmetries or con-
straints [59,113,114], and the Thouless time is determined
by the scaling of the inverse of the gap of the correspond-
ing Hamiltonian with the system size. For example, RK-
type Hamiltonians that appear in the context of dipole and
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multipole symmetries have been studied in Ref. [59]. Their
low-energy physics can be understood using Lifshitz-
like field theories, which leads to an approximately k*
dispersion of the low-energy mode for dipole-moment-
conserving systems, and approximately K2+ for systems
conserving the mth moment. With the appropriate choice
of bond generators, the same set of RK-type Hamiltonians
would appear as super-Hamiltonians in our analysis [115]
and using heuristic arguments based on the dispersion
relation of the low-energy modes, we obtain that autocor-
relations should decay as approximately 1/#¢/Gm+D) jp
d-dimensional systems with mth-multipole-moment con-
servation, indicating subdiffusion. This Brownian-circuit
approach to determine transport phenomena has also
recently been applied to short-range and long-range dipole-
conserving Hamiltonians [62], where the low-energy exci-
tations of the effective super-Hamiltonians (referred to
there as Lindbladians) have yielded results consistent with
those obtained from other methods [58,59,63,64].

We close this discussion with a general remark on the
low-energy excited states of general super-Hamiltonians.
Note that the identity operator |1) is always a ground
state of any super-Hamiltonian, since it always belongs
to the commutant algebra. In the ladder language, this
corresponds to a “homogeneous” product state, e.g.,
| =5 ... ) for spin-1/2 systems. Given that the super-
Hamiltonian is a local superoperator, it is natural to expect
that its low-energy spectrum should be well approximated
by a “quasiparticle” trial state that aids in determining the
late-time transport. This happens in all of the cases that
we have studied; however, exploring the validity of this
statement or coming up with counterexamples would be
an interesting avenue for future work.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have shown that many examples of
both conventional and unconventional symmetries can
be understood as ground states of local superoperators
interpreted as Hamiltonians acting on a doubled ladder
Hilbert space; hence we have referred to them as “super-
Hamiltonians.” This originates from the understanding of
symmetries as commutants of bond algebras generated
by local operators, as illustrated in Refs. [25,31-33]. For
conventional symmetries such as Z,, U(1), SU(2), the
symmetry algebras can be interpreted as various kinds
of ferromagnetic states of appropriate super-Hamiltonians.
Unconventional symmetries such as fragmentation and
QMBSs have also led to frustration-free Hamiltonians with
solvable ground states.

We have then shown that the low-energy spectra of
the super-Hamiltonians can be interpreted as approxi-
mate symmetries associated with the exact symmetries.
We have done this by showing that super-Hamiltonians
obtained in this way are effective Hamiltonians that

describe noise-averaged dynamics in noisy symmetric
Brownian circuits constructed using the bond-algebra gen-
erators. This gives a physical interpretation for the super-
Hamiltonians and connects their low-energy excited states
to slowly relaxing hydrodynamic modes of the symmetric
Brownian circuits. This also gives a novel interpretation
for the Mazur bound [53,54], usually interpreted as a lower
bound for the time-averaged autocorrelation function, as
the saturation value of the ensemble-averaged autocorrela-
tion function of Brownian circuits. The approach to this
saturation value is governed by the low-energy spectra
of the super-Hamiltonians; hence their low-energy eigen-
states beyond the ground states have interpretations as
approximate symmetries.

We have then explicitly solved for the low-energy spec-
tra of the super-Hamiltonians and discussed the dynamical
consequences of the associated slowly relaxing modes.
Using this framework, we have first recovered well-known
facts that while conventional discrete symmetries such as
Z, have gapped super-Hamiltonians, and hence no asso-
ciated slow modes, conventional continuous symmetries
such as U(1) and SU(2) have gapless super-Hamiltonians
and the corresponding slow modes lead to diffusion. How-
ever, we have shown that this framework works much
more generally, for understanding slow modes associated
with unconventional symmetries such as fragmentation
and QMBSs as well. While isolated QMBSs have gapped
super-Hamiltonians and hence no associated slow modes,
towers of QMBSs have asymptotic scars of the type dis-
cussed in Ref. [55] as slow modes. Hilbert-space frag-
mentation in the ¢ — J, model has slow modes, which can
be used to understand tracer diffusion in such systems,
as pointed out in earlier works [106,107]. On a technical
note, the quantitative understanding of the slow relaxation
of certain observables in some cases, such as the t — J;
fragmentation, has required a careful analysis of the full
low-energy spectrum (including appropriate weights for
observables), rather than the simple scaling of the gap
that has been sufficient for such purposes in earlier works
[59,62]. In all, our work connects studies of the commutant
algebra focusing on exact conserved quantities (ground
states of the corresponding super-Hamiltonians) to stud-
ies of hydrodynamic and transport properties controlled
by approximately conserved quantities (low-lying excita-
tions of the super-Hamiltonians) in symmetric systems.
While we have restricted illustrations to 1D systems, the
results and phenomenology generalize straightforwardly to
higher-dimensional systems.

It would be interesting to explore the applicabil-
ity of this method to other generalized symmetries
being studied in the literature, e.g., subsystem symme-
tries [60,116—119], spatially modulated symmetries [61],
and categorical or MPO symmetries [11,12,120], and
understand if they can be viewed as ground states of
local super-Hamiltonians. The low-energy spectrum of the
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corresponding super-Hamiltonians should reveal the late-
time dynamical properties of such systems and of the
associated hydrodynamic modes, which would also be
interesting to explore in other models of Hilbert-space
fragmentation [21,25,72,121-124], and lattice gauge the-
ories with strictly local symmetries [125,126]. It would
also be interesting to try to reproduce in this language
the sector-dependent hydrodynamic behavior observed in
many models of HSF based on pattern conservation or
“irreducible strings” [106,127]. Of course, strictly speak-
ing, some symmetries, such as dynamical symmetries
[32,128], are not ground states of local Hermitian super-
operators, since they correspond to algebras generated by
also including extensive local terms (for more details, see
Ref. [32]) but we hope that a generalization of this story
might capture many more examples. In addition, lattice
symmetries or those that appear in the context of integra-
bility [129] have so far not been explored in the commutant
framework, which would be an interesting direction to
pursue.

The fact that the super-Hamiltonians can be understood
as frustration-free Hamiltonians—and, morecover, of the
RK form in many cases—also opens up many directions
of exploration. First, such Hamiltonians are easy to ana-
lyze and this method might provide a better systematic
approach to prove the exhaustion of commutant algebras,
which has turned out to be tedious using brute-force meth-
ods [31,32]. Second, they are also amenable to standard
techniques for proving gaps or their absence [100—103,
130-132] and the understanding of which symmetries have
a gap is important for understanding the nature of late-time
transport in symmetric systems. Third, RK Hamiltonians
have connections to several standard concepts in classi-
cal master equations and also to spectral graph theory
[59,76,77,133], and it would be interesting to exploit this
property to study the low-energy excited states using exist-
ing methods such as classical stochastic circuits, similar to
those used in the literature [58,72,134,135], and potentially
also quantum Monte Carlo techniques [136]. Finally, many
of these super-Hamiltonians also have interesting contin-
uum limits and their low-energy physics can be understood
in terms of field theories. For example, several types of
RK Hamiltonians map onto Lifshitz field theories that are
easy to analyze [59,137—139]. Given that many general-
ized symmetries are studied in the context of quantum field
theories in the continuum [1,2], it is natural to wonder
if the novel symmetries there, e.g., noninvertible symme-
tries understood via category theory, can be understood as
“ground states” in any sense. Some aspects of the super-
Hamiltonian constructions, e.g., working in a doubled
Hilbert space and studying the low-energy physics, resem-
ble the Schwinger-Keldysh formalism [140—143] and it
would be useful to elucidate these connections further.

More speculatively, connecting symmetry algebras to
ground states should also help impose some general

constraints on symmetry operators, e.g., perhaps they nec-
essarily have MPO forms or some restrictions on their
operator entanglement. Moreover, the fact that symmetry,
which is a property of the Hilbert space, is connected to
ground-state properties of a local operator, is consistent
with the conjecture that symmetries are related to topo-
logical orders—a ground-state property—in one higher
dimension [8,99,144]. The commutant framework along
with this ground-state mapping might be a framework in
which to make such a correspondence more precise in
lattice systems.

The language of super-Hamiltonians also introduces a
precise language with which to discuss approximate sym-
metries. While we have illustrated this only for approx-
imate symmetries that accompany exact symmetries, it
would be very interesting to identify bond algebras with-
out exact symmetries, but with approximate symmetries
that appear as low-energy excited states of the super-
Hamiltonians, which could lead to slow dynamics and
phenomena such as prethermalization. Furthermore, as
we have shown in Sec. IV D, approximate symmetries
are also potentially related to approximate block-diagonal
structures and hence the language of super-Hamiltonians
might help explain the origin of approximate symmetries
in certain systems in the literature; e.g., the so-called PXP
model [17] is known to exhibit approximate QMBS and
approximate block-diagonal structures [145].

On a different note, since algebra-based Brownian cir-
cuits have played a crucial role in understanding and/or
interpreting the super-Hamiltonian spectrum, this seems
like a useful setting to explore more. For example, it is
likely that several results on Haar-random circuits can be
reproduced using the seemingly more tractable Brown-
ian circuits and, indeed, there have been many interest-
ing works studying the properties of “generic” Brownian
circuits using “effective Hamiltonians,” which are super-
Hamiltonians of the kind we study in this work [43,45,
47]. On the other hand, Brownian circuits with symme-
tries have been much less studied and the large class of
“algebra-based” circuits that we have introduced in this
work, which are defined using the bond algebra corre-
sponding to the symmetry, might prove to be useful toy
models that are easier to study than symmetric Haar-
random circuits for a number of reasons. First, defining
the latter requires knowledge of the irreducible represen-
tations [113,146—148], i.e., the block-diagonal structure
of each gate, whereas Brownian circuits only require the
generators of the corresponding bond algebra. Second, in
contrast to rigid Haar-random circuits, the class of Brow-
nian circuits that we study possesses a lot of tunable
parameters in the choice of their generators, which might
lead to more analytically tractable super-Hamiltonians that
provide better physical insights. Finally, while compu-
tations in Haar-random circuits map onto questions in
classical statistical mechanics, computations in Brownian
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circuits map onto the low-energy physics of effective
super-Hamiltonians, which, although they are equivalent
to questions in classical statistical mechanics, are nev-
ertheless more directly accessible using analytical and
numerical treatments developed in the context of quan-
tum many-body systems. For example, the hydrodynamic
modes associated with the symmetries arise more “natu-
rally” as “low-energy excitations” on top of simple ground
states, which can be studied using a variety of variational
methods. Hence this should be a nice analytical tool with
which to explore the physics of symmetric systems, includ-
ing those with unconventional symmetries, and this can be
contrasted from the physics of systems without any sym-
metry, by studying bond-algebra generators that have a
trivial commutant of only the identity operator.

Finally, it is important to better understand the precise
connections between the dynamics of Brownian circuits
and more general Hamiltonian or Floquet systems. While
the microscopic physics is expected to be different, uni-
versal properties such as hydrodynamic modes, that arise
solely due to the symmetry and locality of the systems,
should appear in both kinds of systems, even though they
are analytically tractable only in Brownian circuits. It
would be interesting to check if these modes survive under
“relaxation” of the structure of Brownian circuits and mak-
ing this closer to non-Markovian Hamiltonian systems in
various ways, €.g., by incorporating temporally correlated
noise.
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APPENDIX A: THE FERROMAGNETIC
HEISENBERG MODEL

In this appendix, we define a canonical form for the fer-
romagnetic Heisenberg model and set the conventions we
use to describe it and its eigenstates. This appears repeat-
edly in the analysis of various super-Hamiltonians that we

have studied in the main text. It is a spin—% Hamiltonian
acting on a system of size L, with the local degrees of
freedom |1); and | ); in the Z basis or |—); and [<-); in
the X basis. We use the convention that these are related as

1) + ) 1y, = 1) — )
Vi ’ J Vﬁ .

The standard forms of the Heisenberg Hamiltonian that we
use in this work are given by

|_>>_j = (A1)

Lmax

Hyeis = Y _(I14) —

j=1

AN = (D 411

Lmax

= Z(|—> <«~) =
j=l1

| <= D= <= (<=Dp,+1

Lmax

=Y a-r2)
j=l1

Lmax

= _2[1
—2%[ /+1},

where the {X;,Y;,Z;} are the Pauli operators on site j,
(s*, 8 S7} are the spin operators on site j which are the

70
Pauli matrices multiplied by a factor of , and P(i) 41 18
the operator that permutes the states on snes jandj +1
defined in Eq. (21). Moreover, Ly,x = L — 1 with OBCs
and Ly, = L with PBCs, with the subscripts taken to be

modulo L. We also define raising and lowering operators,

+Y Y +2ZZ )]

(A2)

L
Sor =257 =Y [t
j=1 j=1
L L
Sir= Y ST =) |« )=l
j=1 j=1

St =)' Sl =) (A3)
all of which commute with Hygjs.

This Hamiltonian has (L + 1)-fold degenerate frustration-
free ground states, which we often refer to as the “ferro-
magnetic multiplet.” To obtain an orthonormal basis for
this multiplet, we can start with the fully polarized state

with all spins in either the +Z or +x direction, which read
[FG) =111 1), |Fp) =

and repeatedly act with the corresponding lowering opera-
tors, S, or Si,; of Eq. (A3), respectively, to obtain L + 1
linearly independent states of the form

|>— - =), (Ad)
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1 o — QO — o — o
I3 = —= SESETLSUIFY), 0<m<L, ac{za) (AS)

B

Beyond the ground-state space, the low-energy excitations of Hyejs are well known to be spin waves. These spin waves
are (L — 1)-fold degenerate (corresponding to degeneracy of a multiplet with total spin of L/2 — 1) and a complete
orthonormal basis for these degenerate eigenstates can be chosen as

1 - - oL — o
wn,k):m > [(Zcﬂ,k)g‘{ S |Fo>}, l<m<L-1, aclizx}, (A6)
m, =1

J1<<Jm

where £ labels orthonormal “orbitals” ¢;  in the single-magnon problem, e.g., k is the plane-wave momentum in the PBC
case,

1 .. 2
e o, k=T 1<n<L-1 (A7)

or k is the appropriate standing-wave “momentum” in the OBC case,

2
e = \/;cos[k(j -1/2)], k= ? l<n<L-—1. (A8)

Further unpacking Eq. (A6), integer | < m < L — 1 labels states in the given SU(2) multiplet with fixed £ and M, is
a normalization factor chosen so that |4, ;) is normalized, with the precise form shown in Eq. (A9) below. However, for
much of the description, we can keep the spin-wave orbitals general by only requiring orthonormality among themselves
as well as orthogonality to a completely uniform “k = 0 orbital,” obtained for convenience by setting £ = 0 in Eq. (A7)
or Eq. (A8) for PBCs or OBCs, respectively. The states in Eq. (A6) formally corresponding to the latter in fact belong to
the ferromagnetic multiplet, i.e., the ground states of the Heisenberg model, and we have |A] o) = |F};) of Eq. (AS). In
all, the normalization factor reads

(:73), ifk#£0,
Moy = i (A9)
2 (h), ifk=0.

The above spin-wave excitation solutions are directly obtained by solving the Heisenberg Hamiltonian in the one-spin-
flip Hilbert space spanned by the states of the form |[? --- | % -+ M) or|—> .-+ — <« — ... —), which gives
|A74) or [A7 ), respectively, with total spin L/2 — 1 for k # 0, and then by repeatedly acting with the lowering operator

St on the state |A‘{‘,k) for o € {z,x}. The energies of these states are given by

k
Hieis| 22 ;) = 4sin’ (§> %0, l<m<L—1, ¢z} (A10)

hence the gap of Hyeis is given by 4 sin’(;r/2L) or 4 sin® (7t /L) for OBCs or PBCs. This gap scales as approximately 1/L?,
showing that Hy.js is gapless in the thermodynamic limit.

Moreover, the Hyeis is known to be completely integrable and the expressions for the eigenstates can in principle be
derived using the Bethe ansatz. However, they are in general not simple to use for our purposes and we refer interested
readers to one of the numerous review articles on the subject for more details [149—151].

APPENDIX B: ROKHSAR-KIVELSON-TYPE SUPER-HAMILTONIANS FROM CLASSICAL
SYMMETRIES

In this appendix, we discuss cases in which the superoperator Pisan RK-type Hamiltonian, also known as a stochastic-
matrix-form (SMF) decomposible or stoquastic Hamiltonian. Abstractly, these are Hamiltonians that are defined over a
Hilbert space spanned by a set of classical configurations, which could be a set of product states or something more
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complex, such as nonintersecting dimer coverings of a lattice. Given this configuration space, one can define a set of local
transitions that relate two different configurations; this defines a local Hamiltonian. With these sets of local configurations
and transitions defined, a simple RK-type Hamiltonian is defined as

Hyg = Y Oce. Oce = (I0) —1C)) («C1 = (C1), (B1)

()

where “(C, C")” in the sum indicates that the configurations C and C’ are connected by some local moves. Noting that
each term Q¢ ¢ in Hyy is positive semidefinite, it is easy to solve for its ground states {|G*))}, which are given by

1
JN_KDQ,

Cek

Occ(IO)+1C) =0,VC,C = |GO) = (B2)

where K defines a Krylov subspace of Ny configurations connected by the local moves and there is one ground state
corresponding to each Krylov subspace. As a simple example, the ferromagnetic Heisenberg Hamiltonian of Eq. (A2)
is a Hamiltonian of the RK form of Eq. (B1), where the configuration space is the space of all product states, and the
local moves that connect different configurations are given by nearest-neighbor swap 1| <> |1 in the Z basis or — <«
<> <— in the X basis. The (L + 1) ferromagnetic ground states of the Heisenberg model are also ground states of
the form of Eq. (B2), where each Krylov subspace /C consists of product states with the same total spin (since they
can all be connected via the aforementioned local moves, assuming a connected lattice of sites) and there are (L + 1)
such Krylov subspaces. Such RK-type Hamiltonians have been extensively studied in the literature and they naturally
appear in several different physically relevant contexts. Examples include dimer models [138,152,153], Markov processes
satisfying detailed balance [76,137], and in the study of various kinds of random circuits [59,113,114,154]. There are also
generalizations of Hamiltonians of this type and we refer readers to Ref. [76] for further discussions.

Turning to the problem of finding commutant algebras, here we consider families of Hamiltonians defined on a g-level
Hilbert space, which are comprised of terms that relate some set of classical product-state configurations {|C)} that form
a basis of the Hilbert space. In particular, we work with strictly local terms defined as

155 = (DT + [TV EDpjams S =) solo)ol, 1<0<q, Nijg= 10yl (B3)

o

where S; is spin operator and s, is the spin of level o and (7,7') denotes a pair of strictly local (» + 1)-site orthogonal
product configurations that are “connected” according to some local rules that we leave general in this appendix. The
generators of several standard examples of bond algebras can be cast in this form, e.g., X;X; 1 +Y;Y; 11 =2 TE.TJL_’&IT]).
With these definitions, we can write down classical bond and commutant algebras as

A = (USLATTN), Ca = (UFUSEHD), (B4)

Uy+r]

where {F,(---)} denotes some set of polynomials [that depends on the specific set of connections (7, T’) in A ], essen-
tially stating that the operators in the commutant C; are diagonal in the computational basis. Note that the diagonal
form of operators in C directly follows from the inclusion of {S7} in the generators of the bond algebra, as we have
shown in Appendix A of Ref. [25] (here, implicitly assuming that powers of % on a qubit generate the space of all ¢ x ¢
diagonal matrices). We refer to commutants of the form of C,; as classical symmetries, since they lead to block decom-
positions of Hamiltonians in 4 that are completely understood in the product-state basis. The super-Hamiltonian of Eq.
(7) corresponding to A is then of the form

= 2 7,7 N2 7,7 2 7,7') 7,7)
Pa = Z(Sf;t N 8;;17) + Z [(]E'J+r];t) + (TEJ‘JH];b) N 27@J+r];t]([/'zi+r];b]
J EGE)
2 7 % z 7 7)) AT
=2 =S+ ) [N§J+r];t NG jerte + N s + Ny s — 2TE/‘J+r];tTE/’J+r];b]' (B3)
J 7@
The minimization of energy under the first term in Eq. (B5) ensures that the ground state is in the subspace spanned

by composite spins defined on the rungs of the ladder (or bilayer) as |o) := Z > P restricted to this composite-spin
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subspace then reads

Pateom =2 3 [ DVFlg 40+ 1) F Ny = Bl an = 1) Flgjn]
7@

—2Z<|r ENE = (T Dy (B6)

@7

where |?) is the (r + 1)-site composite-spin configuration that contains identical T placed on both the top and bottom legs
of the ladder (similar to |6)). Note that several superoperators studied in the main text can be brought to this form [see,
e.g., Egs. (18) and (28)]. Equation (B6) can alternatively be expressed in terms of overall classical product configurations
{IC)} as

Pagonp = 3 (18— IEN(TI — @, @::jg), (87)

(C,C)

which is precisely a Hamiltonian of the RK form of Eq. (B1), and the corresponding analysis of the ground states can be
immediately reused with tildes playing a dummy role (since the C are in one-to-one correspondence with the C). Hence
the ground states of P, are of the form of Eq. (B2) and the number of ground states is the number of Krylov subspaces
of classical configurations connected by the moves 7 <> 7’. In the operator language, noting that the composite spins |5)
map onto projectors ||o) (o), the ground state |[GM) ~ 3~ - |C) of Peljcomp Maps onto |Px), where Py is the projector
onto the Krylov subspace K. In the case of classical conventional symmetries such as U(1), these Krylov subspaces are
equivalent to conventional symmetry quantum number sectors.

APPENDIX C: FORMAL SYMMETRIES OF SUPER-HAMILTONIANS

In this appendix, we discuss some additional formal properties of the constructed super-Hamiltonians viewed as lad-
der bilayer systems, as described in Sec. I1C and Eq. (7). By construction, such super-Hamiltonians have symmetries
that descend directly from the symmetries of the bond algebra terms {H }: Using Eq. (7), it is easy to see that for any
CecC (i.e., the commutant of the algebra A = (( {H ), we have that C, ®1,and 1, ® C commute with the super-
Hamiltonian. In studies of Lindbladians [155,156], these symmetries associated 1ndependent1y with each leg or layer are
often referred to as strong symmetries, which commute with all the jump operators.

There are additional symmetries of the super-Hamiltonian that do not play significant roles in our analysis, e.g., the
super-Hamiltonians also commute with an antiunitary operator composed of the exchange operation between the two
legs and complex conjugation in the computational basis. While there seem to be no other obvious symmetries, for each
C e, the corresponding |C) is an exact zero- eigenvalue eigenstate of each L,; hence the |C)(C'| with C,C € C are
additional conserved quantities of the super-Hamiltonians, which can be understood by thinking about symmetries in
terms of {£,}. This character of the physical symmetries |C) with respect to families of super-Hamiltonians resembles
exact scar states [31] but here occurring in the superoperator space.

Furthermore, since the super-Hamiltonians contain only positive-semidefinite terms {ZLEQ}, they have an additional
“quantitative feature” that all |C) are exact ground states by the very construction. As we discuss below, in examples with
conventional Abelian symmetries, this quantitative feature leads to the symmetries being broken in the ground states in a
particular way that preserves some combinations of the symmetries; i.e., the super-Hamiltonians can be loosely viewed
as being in a particular partial symmetry-breaking phase. Below, we will illustrate the formal symmetries and their fate
in the ground states of the super-Hamiltonians for several conventional symmetries from Sec. III and we also discuss the
extension of the concepts to the unconventional case of isolated QMBS.

1. Global Z, symmetry

We start with the case of the global Z, symmetry considered in Sec. III A 1. Here, the inherited “strong” symmetries
can be expressed in terms of unitaries U.? = [1;Z and Ufz :=[1; Z;», which are Z, symmetries associated with
each individual leg. The two exact ground states |G_, ) and |G._) of Eq. (15) break the individual Z, symmetries while
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preserving the combined symmetry U-2 Uf 2
U1G-) =1Go), UZIGo)=1G=), Leftb  UPURIG) =1G), ae{=,<) (€

Alternatively, this Z, symmetry breaking can be detected by checking if the ground-state space contains states from both
+1 and —1 quantum numbers of the symmetry, which is satisfied by U,Z 2 and Uf 2. This symmetry breaking is also detected
by a local order parameter X;..X; , (charged under both U,Z % and UZZ), which clearly has perfect long-range order in |G_,)
and |G_). On the other hand, the combined symmetry U,Z 2 Ufz in fact acts as an identity in the entire composite-spin
sector, so it is not broken in this sector and hence in the ground states. While we can loosely say that this pattern of the
(Z3); x (Z), symmetry breaking down to a single remaining Z, is responsible for the appearance of the 2D ground-state
manifold, further structures or energetics in the super-Hamiltonian by construction are responsible for the specific ground-
state wave functions and their exact degeneracy at finite system sizes, landing the system at a “fine-tuned point” inside of
this particular symmetry-breaking phase.

2. Global U(1) symmetry

We next consider the case of the global U(1) symmetry from Sec. III A2. Here, the inherited strong symmetries
of the super-Hamiltonians are U(1) symmetries associated with each individual leg, which can be implemented with
unitaries U,U(l)(e,) = exp(ib; Zj Z; ) and UbU(l)(Ob) = exp(ifp Zj Z;») with 6,0, € [0,27). The ground states of the
super-Hamiltonian form the ferromagnetic manifold of the composite spins and these U(1) symmetries act nontrivially
in this manifold, e.g., in the case of the basis |0;) ~ |F;,) of Eq. (19), and are hence broken. Alternatively, consider a
different ground-state basis {|F7)}, i.e., a composite-spin version of the ferromagnetic states in Eq. (A5) with polarization
axis ¢ = z. The inherited U(1) symmetries act on these as

UV (0)F2) = L2 E2y - ¢ e {1,b) (C2)

and the presence of such nontrivial eigenvalues in the ground-state manifold signifies U(1) symmetry breaking. On the
other hand, the combined symmetry UtU m(@)UZJ M (—0) acts trivially in the composite-spin subspace and hence in the
ground-state manifold; hence it is not broken, i.e., we have only partial breaking of the formal U(1); x U(1), symmetry.
In physical terms, this symmetry breaking represents a quantum phase in which the charges from the top and bottom legs
are bound and the resulting composite particle is condensed, while they are individually gapped.

To give a more precise description of the character of the condensate, we note that |F7,) is an equal-weight superpo-
sition of all configurations with m bosonic composite particles represented by the | composite spins in the “vacuum”
of 1 composite spins, and that such a wave function represents a “perfect superfluid”— i.e., a Bose-Einstein condensate
(BEC)—of such bosons. Indeed, correlations of a local order parameter Sf = SftSfb = |1) (]| [charged with respect to
both U(1)] in terms of the boson density p read

() mL—m) 1-n

m
0 =I0-D p(l—p), p=—. (C3)

L

Tz ot o— Tz
(FlS; S |Fy) =

The key observation is that this is nonzero for any 0 < p < 1 and is independent of the separation between the points j
and j', and this is true in any dimension. This is unlike generic superfluid wave functions, where the correlations would
approach the nonzero limit in a power-law fashion in dimension d > 1. A related BEC versus generic superfluid difference
also shows up in the excitation spectrum: quadratically dispersing excitations for our super-Hamiltonians as discussed in
Sec. VB 1 versus linearly dispersing Goldstone modes in generic superfluids.

The perfect superfluid order revealed by all these perspectives, as well as the exact degeneracy among the ground
states, are due to the further structures or energetics present in the super-Hamiltonian by construction, as discussed in the
introductory part of this appendix.

3. Isolated QMBS

It is also curious to examine the fate of the inherited symmetries in the case of the isolated scar of Sec. III C 1. Here,
the inherited symmetries can be viewed as highly nonlocal Z, symmetries associated with each leg and specified by
unitaries U}° 1= (1 — 2|®)(P|); ® 1 and U;° := 1, ® (1 — 2|P)(®P]|),. Simple analysis shows that in the ground-state
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manifold spanned by the (nonorthonormal) basis of Eq. (39), both Ui*® and U}f‘3 take eigenvalues +1, while U'*° U}f" acts
trivially (true in the full composite-spin sector). This structure of the eigenvalues of the symmetries is similar to the super-
Hamiltonians constructed in the case of the global Z, symmetry considered in Sec. C 1 and one may loosely say that Uis°
and US° are broken while U°U° is preserved. However, in this case there is no local order parameter that would have
nontrivial charge under these symmetries and that could detect this “symmetry breaking,” which is then not a very useful
concept here.

APPENDIX D: EXTRANEOUS FEATURES OF SPECIFIC SUPER-HAMILTONIANS

Many of the super-Hamiltonians in the main text have some additional extraneous features, sometimes allowing full
or partial solvability beyond the expected exact ground states. These features in fact depend on the specific choice of the
bond-algebra generators {H,} used to define the super-Hamiltonian Pin Eq. (5) and in this appendix we comment on this
dependence.

Most importantly, for a fixed bond algebra A, the formal superoperator-space symmetries of the set of the Liouvil-
han superoperators {[, } can depend on the choice of the generators {H }. That is, for different sets of generators of

(({H W = (({Hﬂ})) the corresponding sets of the Liouvillian superoperators {E } and {L’ } can generate different
superoperator algebras and their commutants can be different and larger than the set of formal symmetries discussed in
Appendix C, which are always present. Examples of this include instances in which the composite-spin subspace is invari-
ant under the action of the super-Hamiltonians (many cases in the main text), the appearance of the SU(2) symmetry in
the case of PU(1)|comp in Eq. (18), or the appearance of the SU(¢g?) symmetry in the case of PSU(q) in Eq. (22). Furthermore,
the couplings with which {22} enter in P also matter for some extraneous features as well as for lattice symmetries of the
super-Hamiltonians. Nevertheless, for the problem of finding the commutant of .4, we are guaranteed that the commutant
is the exact ground-state manifold of any super-Hamiltonian constructed from any set of generators of A, so there is no
issue here.

On the other hand, one may worry whether the low-energy spectra of such specific “more symmetric” super-
Hamiltonians correspond to slow dynamical modes in more generic systems. We expect that this is true, namely, that
possible additional features in the super-Hamiltonians do not change the qualitative character of the low-energy excita-
tions, which we think is tied to the structure of the exact ground-state space, and we demonstrate this in some cases in the
main text, while here we provide more general comments.

First, in all cases, we can progressively suppress the additional features by adding more terms from the bond
algebra (e.g., combining different sets of generators) and this would add more positive-semidefinite terms to the super-
Hamiltonian. By construction, the exact ground-state manifold would remain unchanged, while all excitation energies
would only increase. In particular, the gapped cases would remain gapped (which we can then consider as a proof of a
generic gap), while in the gapless cases the presented low excitation energies of specific super-Hamiltonians would at
least provide exact lower bounds on the excitation energies of the modified super-Hamiltonians. We further expect that
the corresponding specific eigenstates could be used as trial states and would also provide variational upper bounds on
the excitation energies of the modified super-Hamiltonians that would retain the same qualitative character as before, e.g.,
would give similar dispersion laws. In the main text, we have shown evidence for this in the case of Pyy1). In some cases,
the additional features allowing solvability beyond the exact ground states are like the integrability of the Heisenberg
chain. It is well established that low-energy excitations of such integrable models capture qualitatively the physics of
more generic models in the same phase.

Finally, our main confidence that the additional features are not qualitatively important comes from the fact that the
specific super-Hamiltonians arise naturally as descriptions of properties of concrete Brownian circuits that by themselves
do not look fine tuned, e.g., each random instance is not solvable or special in any way. The additional features in the
super-Hamiltonians can be loosely thought of as coming from some choices of taking the simplest generators as well as
convenient distributions of the random couplings, and such choices should not affect qualitative long-time hydrodynamic
properties in the Brownian circuits.

APPENDIX E: DETAILS ON QUANTUM MANY-BODY SCAR SUPER-HAMILTONIANS

In this appendix, we provide some details on the ground states of the super-Hamiltonians ﬁscar that appear in the study
of QMBS.
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1. Isolated QMBS

In the case of a single isolated QMBS given by |®) = |1 1 ... 1), we can choose Rjj; :=R; = (1 —07)/2 = [{){{];-
It is easy to see that the common kernel of the R; contains a single state |®). We start with the bond algebra

Aiso 1= <<{Rjo']+1a0"aRj+l})>s (ET)

where for simplicity we choose PBCs for the bond-algebra generators, although similar results carry forward for the OBC
case. The full super-Hamiltonian of Eq. (32) reads

Piso = 8) Ry — Ryp)? +82 Ry Ryp[1 = 10 (el ] er 4 [1 = [ (el Ry 1R 115)
J
—2Z<o —07,)’ +8Z Dl (= 10 e+ = 106, D Gl WD (). (B2)

Note that the (o7, — ajz;b)2 terms enforce that the ground state is in the sector of composite spins defined in Eq. (11),
similar to the Z, and U(1) cases.

a. Ground states

We do not need to use the full structure of the super-Hamiltonian to obtain the ground states. According to Eq. (35), the
ground-state space satisfies

el = 10 @l 1) =0, [T — [l ) (L ls1e [¥) =0, € € {t,b}
= 1L, S Sy W) =0, |, NS, 1 W) =0, (E3)

where in the second line we have expressed the conditions in terms of composite spins defined in Egs. (11) and (14),
and in replacing [1 — |¢){(t|] by | <=)(<=| we have used that the ground states |W) are in the composite-spin sector. These
conditions highly constrain the structure of | V). In particular, suppose that | W) is decomposed as

= Z|ua>[]’J+l] ® |va>resta (E4)

where the supports of each part of the wave function along the ladder are indicated in the subscript, with “rest” denoting
the complement to [j,;j + 1], and {|v®),.s} form a linearly independent set. Such a decomposition always exists, Schmidt
decomposition being one example, but we will only require the linear independence of {|v*),} and not orthonormality.
The conditions of Eq. (E3) and the linear independence of {|vZ )} imply that both of the following should hold:

rest)
XL Syt 600 =0, 1S IXE e 10510 = 0
= [u*);;1 € span{|t, 1) 41,15, )41} (ES)
Hence, |¥) can be written as
W) = 1%, 1)1 ® 1 Whrest + 15, 5)741 ® 10)ests (E6)

with some states, |1 )rest and |®)yest, on the complement to [,/ + 1]. Moving on to requiring Eq. (ES) on the next pair
of sites [j + 1,/ + 2], since |1); and |=); are linearly independent, we can apply a similar argument independently to

|$)j+1 ® |T)rest and | =)/ 41 ® |O)yest. For example, we obtain that

1141 @ 1 Threst = 115 1) 41742 @ 1 hrest + 15, ) 41542 © 1O et
- |'T\>j+l ® |T>rest = |:T:a $>j+l,j+2 02 |T/>rest/a (E7)

where we have used linear independence of |$)_,~+1 and |=); 41 and “rest” denotes the complement to [,/ + 1,/ + 2].
In all, requiring Eq. (E5) on all pairs of neighboring sites, we can conclude that |W) is spanned by |£,1,...,{) and
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|=,=,...,>), which correspond to operators |1) and ||®)(®|). In the original language, this means that the commutant
of Eq. (E1) is given by

Ciso = ((|PN(P)), (E8)

where the 1 is implicit in the notation ({- - - )). Note that while we have included two types of bond-algebra generators in
Eq. (E1), it is usually possible to choose a subset of them and still recover the same commutant of Eq. (E8), although the
analytical analysis might not be so straightforward.

b. Gap and low-energy excitations
We then study the low-energy spectrum of ﬁso of Eq. (E2). Since (07, — o7, ,)* commutes with all other terms in the

Hamiltonian, configurations of composite spins form a closed subspace for 73iso. The violation of such a composite spin
costs a constant amount of energy; hence we can work in the space of composite spins to determine if Pjs, may have a
smaller gap. Restricted to the space of composite spins, the action of P;, reads

7/)\isolcomp = 22[(1 - Z)(l _j;j—b—l) + (1 _)}j')(l _Z+1)]a
J
Z:=NF-10dL, X =1nd+ DAL (E9)
This can be simplified to

Pisolcomp = 22[2 - ()?] +Z +)?}+1 +Z+1) +X}Z+1 +Zj}j+l]
J

=23 -V AR+ T =TT K= T O V=T @)
J

where in the second step we have performed a basis transformation for the composite spins. For even system size and
PBC:s, this further maps to

~

I 1 v YAy,
Pisoieomp =4 | L =~2) X/ + 23 (XX + V7,0 |, (E11)
J J

where we have used the bipartiteness of the lattice to transform spins on even sites such that 7]’ — (=1y 7’; by rotating
around the X' axis. Note that this is simply the antiferromagnetic XX model with a longitudinal field with the specific value
or, equivalently, the transverse-field Ising model with nearest-neighbor interactions with the specific field and interaction
values, such that the product states | = --- =) and |f £ --- 1) (in the original X, Z axes) are exact ground states.

This model has in fact been studied in the earlier literature. For example, Eq. (E11) is known to be dual to the well-
studied axial next-nearest-neighbor Ising (ANNNI) models and in the phase diagram obtained in Ref. [157], this appears
to be in the gapped ferromagnetic phase. Our own exact diagonalization study of the specific model in Eq. (E11) in PBCs
indeed finds that there are two exactly degenerate ground states that spontaneously break the Z, symmetry generated by
]_[j )N(j’, separated by a gap between 0.5 and 1. from the rest of the spectrum (thus, the lowest-energy excitation of Pig,
indeed lies in the composite-spin sector). Moreover, the Hamiltonian of Eq. (E10) exactly maps onto a frustration-free
model that lies on the so-called Peschel-Emery line [86,88]. A relatively recent work [87] proves that the OBC version
of the Hamiltonian in Eq. (E10) is gapped, by performing a Jordan-Wigner mapping to an interacting Majorana chain in
OBCs and exhibiting a deformation path to a gapped free-fermion Hamiltonian without closing a gap. The same argument
can also be carried out directly in the spin model in the PBC system as well.

2. Tower of QMBSs
We now illustrate the example of the ferromagnetic tower of QMBSs. Consider Rjjj :=R; ;41 = }—1 — 3} -§j+1 =
%(|T¢> —NMDHUN =AM D)j+1 = %(1 - Pﬁ) +1)» Where the target scar manifold contains the entire ferromagnetic
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tower of QMBSs [®,,) ~ (S)” [T 1 ... 1), 0 <n < L. We start with the bond algebra similar to Eq. (E1),

Atower = <<{R],/+l 42> 'a_le,H»l}))a (Elz)

and for simplicity choose PBCs for the bond-algebra generators. Any operator constructed out of the generators of Aower
contains the ferromagnetic multiplet as degenerate QMBS [31].
The full super-Hamiltonian in this case reads

Poower = 8 (Ryjj+110 = Ry +11)> + 8 (R j+13Ry g1 = 10 W1 + 11— 10 @Y Ry41 23Ry 1174210).
j j
(E13)

. 2
Since (Ry, 4110 — Ry j+11)> = 5(1 = P[7)

. : i+l tP(2 [7j+11,5)> the ground states must be symmetric under exchange of the states
on the nearby rungs:

rung rung _ rung _ p® (2)
Py W) =1W) = [1 =Py m g1 =0, Py my = Pyl s (E14)

Furthermore, according to Eq. (35), the ground-state space satisfies
Ry el = 104tll42 1) = 0, [1 = [0} Rys1 425 1¥) = 0, £ € {1,b). (E15)

As in the isolated QMBSs, these conditions highly constrain the structure of the wave function |W). Generalizing Eq. (E4),
given a region 4 and its complement 4, suppose that we decompose |V) as

Zlu ® [v%) 4c, (E16)

where the supports of each part of the wave function are indicated in the subscript and the {|v*) 4} are linearly independent.
Then, if | V) is annihilated by some operators acting entirely within the region 4, it follows that each |u*)  is annihilated
by the same operators and we can write

=D 1) ® W )4, (E17)
Y

where {|e”) 4} is a complete basis in the common kernel of the annihilators acting within 4 and the {|w") ,.} are some new
states on A° that are not required to be linearly independent. The above are precise statements about the constraints on
local “parts” of such a |¥) and are used repeatedly (often implicitly) below.

Before proceeding with proofs, we introduce some shorthand notation. On a segment [j,j + 7], we denote the common
kernel of all {Ry;113.c} with support completely within the segment as K|; ;.. It is easy to see that it is spanned by
UPm)y j4r1 B 1Pu)yj 4430} Where {[ @)y 4,9} 1s the full QMBS set in the original problem on the segment [/,j + r].
We further denote a complete basis of K[; ;1,1 as {|[['“)[; ; 4,1} On the same segment, the common kernel of all {[1 — |¢) (¢[]«}

acting within the segment is spanned by a single state, for which we introduce a shorthand [¢); ;9 ®2_ [0)k

Lemma 1. The common kernel of R; j+17.¢ and [1 — [¢)(¢|]x is trivial for any £ € {z, b} if k € {j,j + 1}. As corrollaries,
Ry j+11 10 j41 7 0and |0); ;4 ¢ Kjj 4 for any r.
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Proof. We illustrate the proof for k = j; the proof for k = j + 1 follows in the same way. Any state [v})[; ;,} on rungs
J andj + 1 in the kernel of [1 — [¢){¢|]; can, without loss of generality, be expressed as

|U)[”'+1] = |‘)j ® |T>j+1;e ® |WT>]‘+1;Z + |‘)j ® |\L>j+1;£ ® |Wl>_/+1;Zs (E18)

where [w') 1T and the [w') ;4+1:7 are some states on the site (j + 1;¢), where ¢ is the complement of £ in {z, b}. The action
of Ryj j+13:¢ on [v); ;47 of this form reads

1
Ry jeaye 0)gyn = 5= (100 = g4 ® (— )7 @ Wz + 112 © w0 (E19)

It is then easy to see that Ry ;11),¢ vanishes on [v); 44y only if [w'), ., 7 =[w¥); ;7 =0, which in turn means that
V) i+ = 0.

It then directly follows that Ry; ;117 [t); ;117 # O, since [¢)y; ;417 is clearly in the kernel of [1 — |¢)(¢|;]. This can also be
directly verified; a simple calculation gives Ry; ;13 [0)[j j41] = }‘ 1) +11¢ @ IS)j i +110 7 0, where [S) is a singlet state

for two spins involved. This also means that [¢)(; ;,1 € K[j 11, and [¢); ;1 is linearly independent from {|T"“); ;). W
Lemma 2. All the states satisfying Eqs. (E14) and (E15) in region [, + 7] are in span{|T'®)[; i 1,9, )] j ++)-

Proof. Clearly, {|F5J+r])} and |t)[; ;4,1 are annihilated by all {1 — Pg;_%l} and {Rps+13.6(1 — [0){t])k4+2} acting within
the segment; hence they satisfy Eqs. (E14) and (E15). We now show that any other state |W) satisfying these conditions
is spanned by the above states.

rung

Starting with » = 1, i.e., two rungs of the ladder atj,j + 1, we show that just requiring annihilation by [1 — P; .~ /]
enforces |W) to lie in the span of Kj; ;117 and |¢); ;1. The kernel of [1 — ij;il]] is ten-dimensional, consisting of all
states that are symmetric under the rung exchanges, and its complete basis is {| 7)[; j 413, @ | Tn)jj j 13 - Mo 1 € {0, £1}} U
ISV j+11: @ 1S)[j i +17:» Where | T,) and |S) are, respectively, triplet and singlet states for two spins involved. For two spins,
the triplet space {|7,); j41)} is the same as {[®Py,)[; ;41;}, so the nine states {|Tn)(; ;1174 ® 1Ta)(; j 4135} can be replaced by
{IT)jj+17)- Since [¢)}; ;417 is also annihilated by [1 — P?;il]] and is linearly independent of {|I";)[; ; 413}, it can replace
1)) j 415 ® 18); 415 in the constructed complete basis of the kernel of 1 — P;¥,.

Moving to r = 2, for the appropriate parts of |W), we can write

W)y 21 = Z TV 411 @ V)2 + 10 411 ® W) 12, (E20)

where {|v);,} and {|w);,} are some states on the rung at j + 2. Now consider annihilation by Ry; j+13.¢(1 — [¢){c]); 42
Since Ry; j+13,¢ annihilates all {{T"“)}; ;,1;}, we deduce that

Ry (L= [0 {Dj42 10 j411 ® W) 42 = 0. (E21)

However, since R(; j 1130 [t)[; ;417 7 O following Lemma 1, we have [w); , = c|i); 4,; hence
D AT ® )2 = [y 42 — €0y 12 (E22)
a

Since |¢); ;4 must be symmetric under the exchange of rungs j + 1 and j + 2 according to Eq. (E14), and |¢); ;12
clearly is, the left-hand side should be symmetric under this and all other rung exchanges in [j,j + 2]. Since the left-hand
side is annihilated by Ry; ; 1),¢, it must then also be annihilated by R; 11,12, i.€., it belongs to the span of {|T'y); 12}
This completes the proof for the segment [7,; + 2].

Essentially the same steps can then be used for an inductive proof going from [j,j + 7] to [j,j + » + 1], considering
annihilation by Ryj—1;+:(1 — [0)(t])j +r+1 to peel off the [¢)}; ;4,41 contribution, and then for the remainder deducing
the symmetry under the rung exchange atj 47 andj + r 4 1 and proving that it belongs to K[; j 1,413 |
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Hence the only states on the full chain satisfying Egs. (E14) and (E15) are
1
(W) = @), @ [Pn)y = [|Pn)(Pul) OF W) =@ |1); = 2—L|]l)- (E23)
2

In the original language, this means that the commutant of Eq. (E1) is given by

Ctower = ((“d)m)(d)n”))’ (E24)

where the 1 is implicit in the notation ({- - - )).

APPENDIX F: EIGENSTATES OF THE ¢ — J, SUPER-HAMILTONIAN

In this appendix, we provide details on the eigenstates of the super-Hamiltonian 7’5,_ s, and on the computation of the
weights of the operator |S7) on these eigenstates. As discussed in Sec. V B 2, understanding the cumulative weight function
ngz (E) is key to understanding the late-time behavior of the ensemble-averaged autocorrelation function CS]z (). However,
we are only able to analytically determine the weights corresponding to the ground states and the “spin-wave” excited
states, both of which ultimately vanish in the thermodynamic limit. It is then crucial to include contributions from the
higher excited states to analytically reproduce the results of Fig. 2; hence we also discuss the general setup for this weight
calculation, although we are only able to implement this numerically in general.

1. General setup

To determine the low-energy excitations of 7/3:, s, that have a nonzero overlap on |Sf ), it is sufficient to work in the
composite-spin sector on the ladder (for discussions on this, see Sec. V B 2). A convenient computational basis in terms
of the composite spins {1, |, 0} defined in Eq. (27) is of the form

1) +13)
~75

(FVE2 .2 0 e (3, T, 1) =

J1 2 (F1)

where the subscripts indicate the positions of the 7 and the rest of the sites are assumed to be occupied by the 0.
Note that we are working in the basis with the spins = and <= instead of 1 and |, since we are ultimately interested in

the overlap with the operator |S7), which maps onto the composite spin |Z)j on the ladder. The ground-state space of

7/?;_ J-lcomp> Shown in Eq. (29), in this basis is spanned by the equal-weight superpositions of the states with fixed pattern
2 (m) 5
EARI A A NN

RO ~(1)  =(m)
G = g, 2

m
J1<-=<im

In the operator language, these ground states are the “words” defined in Appendix B in Ref. [25], which have been shown
to form an orthogonal basis for the commutant algebra C,_,, for OBCs and have been used to compute exact Mazur
bounds.

We then study the excited states of P;_.|comp in the computational basis of Eq. (F1). We start with an eigenstate of the
Heisenberg model Hyis of Appendix A with m |, that has the form

my = Y Cho g by ) (F3)
<2< <m
where A denotes the energy and m denotes the number of | in the eigenstate, the subscripts of the | denote their positions,

and the rest of the sites are assumed to be 1. Utilizing the mapping between Hiis and Py, comp and summarized in Eq.
(61), we can write down 2™ degenerate eigenstates of the latter corresponding to each eigenstate |A;m) of the former;
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these are of the form

. (m) (1) ~(m) ©)
At = Y G 5w 1O e (s, (F4)
J1<<Jm
labeled by the fixed pattern 7V, 7®, ..., 7™ In all, given that there are (") Heisenberg eigenstates with m |, we obtain

a total of an:o m (an) =3t eigenstates of 73;_ J.lcomp> Which, as expected, covers the entire Hilbert space of the composite
spins.

To compute the overlap between these eigenstates and the operator |S7), we note that this operator maps onto the
following state on the ladder:

j—1
157) = 1g;) H(f|—>k+|0k)®f|<— ® 1‘[<I|—>k+|0 0- (F3)
k=j+1
The only configurations |7,'(1) . tjf'")) with which [¢;) has nonzero overlap are the ones where j, = j forsome 1 < £ < m,

with 7® =<« and t¥ =— for k # £. Hence the only eigenstates of the form of Eq. (F4) that have a nonzero overlap
with [¢;) are those of the form

N By — E A 553 S S
M"_) = )_ C‘]‘l,..A,]'a+/3+1|_)J1 _)Ja(_]a+1_)1a+2 _)Jot+/5+l>’

(Fo)

J1<<Jo+B+1

where the sum is over {j;} for 1 < £ < & + B + 1 and “7¥” in the pattern label for t € {—, <} denotes that 7 is repeated
k times. That is, in an m-spin pattern, there is precisely one <« the position of which is parametrized by o, § with @ + 1 +
B = m. This is a total of _-_, m(~) = L x 2! eigenstates that can have a nonzero overlap with the |¢;). We find that
the overlap is generically nonzero for all such states and that such eigenstates are not necessarily only in the very low-
energy part of the spectrum, e.g., in the one-magnon band. Using Eqgs. (F5) and (F6), the weight of |;) on the eigenstate
|A; —%<«—P) is given by [for the definition, see Eq. (51)]

1 B2 2a+ﬂ+1 N
3G 1As =T =R = 3L Z C/1~---Ja+ﬁ+1(sfa+1=f : (F7)

3 . -
1< <Jatpr1

We are unable to use Eq. (F7) to proceed analytically without any approximations. However, given the eigenstates of the
Heisenberg model numerically, it is easy to use this expression to numerically compute the weights. We have employed
this method to compute the cumulative weight ngz (E) shown in Fig. 2.

2. Spin-wave contribution

We apply the results of Sec. F 1 to compute the overlap of |S7) on the spin-wave excited states of 7)\[7.]_7|00mp- In the
notation of Eq. (F3), the spin-wave excited states for the OBC Heisenberg model, shown in Eq. (A6), read

1 m
|)\-ka . m Z chek |»l/]1 ‘le e ‘L1m> — C!])\lk:;]m = \//Tm’k X ;Cfésk’ (F8)

J1<-<jmt=1

where k € (wn/L) for 1 <n <L —1, and ¢;,x and M,,; are shown in Eqs. (A8) and (A9), respectively. The corre-
sponding eigenstates of P,_ _J.comp are of the form [A; T -+ - ™), which can be explicitly written down using Eq. (F4).
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To compute the weight in Eq. (F7), we first compute
B M o
GJ('X’k T Z cjl:"':jﬂl+ﬂ+161a+]’/
J1< o <Jatp+l
1

a a+p+1
=, 2 (z%“+%“*23%0

AL gy <o fa i =1 [ Sar2 < o pr1 SL =1 t=a+2

- [ () re (L) () + ()
=— | F ; F , F9
Marsin |: ak B +¢ix o 8 + o Bk (F9)

where we have defined

Fp= ) (Z%k) = (n::DZc,-g,k. (F10)

lfjl <-<fm<r \L=1 jg:l

Using Egs. (F9) and (F10) and the OBC expression for ¢; x in Eq. (A8), we obtain, for k£ # 0,

Flr — 2 o sin(kr) — sin(k(/ — 1)) 5 (,, _ l>
VL 2sin(%) ’
V)

X
VL X Meagpiik

while for £ = 0 we have

m—1

B
Gif -

o  sin[k(G — D] o1
|:2(], 1 sin(%‘) + cos |:k(1 —5)]4-

B . sin(kL). — sin(kj) , (F11)
2(L—)) sin(%)

2 -1
" —£(r—1+1>x(r ) Giico =

V()
Fni—o = JL m—1 -

o

VL X Meipiik=o

For simplicity, we henceforth assume that L is odd and that j = ((L 4+ 1)/2). We then set kK = (nz /L) and compute the
total weight of the state |¢(z+1)/2)) on all eigenstates of the form |A;; —%«<——F) for all values of & and B. Using Eq. (F7),
this weight is

x [a+1+8]. (F12)

nw 1 a+p+1 B2
5 (k T) = 3_La_05_02 |G°‘L2j,k|
17 lf”l = O,
Ll il ot (5502 i
e e PRGN N
= " 7 X\ T-D@+p+D)’ n ) (F13)
a=08=0 X (a+ﬁ+1)

2a—p)? 20ky
T-hi—a—p-narpsn ot (3), ifnodd,

where we have used Eq. (F11) and the normalization factors of Eq. (A9). Note that Wg:

L+1)/2

Mazur bound computed in Ref. [25], done here in the composite-spin language. e
The expression in Eq. (F13) for general k can be analyzed in detail using a saddle-point analysis for large L, similar
to the calculation for the Mazur bound demonstrated in Ref. [25], but for our purposes it is sufficient to schematically
extract the L dependence. To obtain this, we substitute « = Lp and 8 = Lqg to convert the sums into integrals over p and
q. In Appendix G of Ref. [25], the expression for the Mazur bound Wg: (k = 0) has been shown to be of the form

(L+D)/2)
(the computation has been done there for a general x = j /L, whereas here we will set x = 1/2 and remove it from the

(k = 0) is the same as the
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arguments of the functions involved)

27 C(pos, o)

VL detH (po, qo)

where C(p, ) and F(p, q) are some L-independent functions, and a saddle-point approximation has been performed in
the second step, which we unpack below. H (p, ¢) is the Hessian of F'(p, ¢) and the “saddle” is given by the point at which
((3F /0p), (OF /39))| (p.q=(po.q0) = (0,0), which turns out to be at (po,q9) = (3, 1). It also turns out that F(pg, go) = 0;

W, (k=0)=L / : / * dp dg Cp, q) exp (LF(p, ) ~ exp (LF(poq0)),  (F14)
2 0 0

1
hence we obtain the Mazur-bound scaling of approximately L™ 2 [25]. Note that both H (p, ¢) and (po, o) are completely
determined by F(p, q).

Since the n # 0 expressions in Eq. (F13) differ from the n = 0 case only by factors that are polynomial in L, we can
express them in terms of p and g and, analogously, write down the form of the leading-order terms in the saddle-point
approximation:

nm 2w C(po, qo)
Wey,, (k="7)~ P00 expy (LF (o, q0))
5 L VL detH (po, q0)
%, if n # 0 even,
x (F15)

2(po—q0)* 20ky
L(l—Po—Oqo%(()Poﬂ-qo) cot (5)’ if n odd,
where the saddle (po, go) is unchanged, since the function F'(p, ¢) in the exponent is unchanged from the n = 0 case.
We can then use Eq. (F15) with the fact that F'(pg, gg) = 0 to determine the scaling of Wg: (k). For n # 0 even, we

((L+1)/2)
3
obtain a scaling of approximately L™ 2 and adding the contributions over all even n, we obtain a total scaling of approx-
1
imately L™ 2. For n odd, since py = g, the leading-order term shown in Eq. (F15) vanishes. Since the subleading terms
5
in the saddle-point approximation are suppressed by a factor of L, we obtain a scaling of approximately L™ 2 cot?(k/2).
i

Adding these contributions over all odd » = 2/ + 1, we obtain approximately L_% ZE(:L(;I)/ 2 cot?[(l + %)(n /D]~ L2,
since it is dominated by a few values of k close to 0, where cot?(k/2) ~ k~2. In all, the total weight of the operator
S{(L+1)2) on the ground states and the “single-magnon” spin-wave states scales as approximately Lfé, which is vanishing
in the thermodynamic limit. This completes the demonstration that the contribution from these excitations to ngz (E) of
Eq. (62) vanishes when L — oo and more complicated excitations need to be considered to understand its form, which at
present we have only done numerically.

APPENDIX G: ASYMPTOTIC QMBSs IN BROWNIAN CIRCUITS

In this appendix, we discuss asymptotic QMBSs in Brownian circuits with exact QMBSs. We start with the assumption
that there is a set of local projectors {R[;1} such that the common kernel of these projectors is spanned by the exact QMBS
{|D,)}; this is sometimes referred to as the Shiraishi-Mori condition [26,31]. In other words, the subspace spanned by
these QMBS states can be expressed as the exhaustive ground-state space of a frustration-free Hamiltonian, i.e.,

DRjlY) =0 <= |¥)eS=span{|D,)}. (G1)
J

Several examples of QMBSs, including those in the spin-1 XY model [80], the Hubbard model and its deformations
[81,82], and also those in the spin-1 AKLT model [27] can be understood in this way [19,20,31]. With this, we can
generically write down a bond algebra Aj,, of the form of Eq. (42), which has generators of the form {R[;;o'}, such that
its centralizer is Cyc,r spanned by {|®,,)(®,|} (for a precise statement, see Ref. [85] ). This structure guarantees that the
QMBSs are degenerate eigenstates of all operators constructed out of the generators of Agca;.

Here, we consider Brownian circuits built out of the generators of A, and directly work with the evolution of states
under this circuit, as opposed to operators discussed in Sec. IV A. Exact QMBSs are stationary states under such circuits,
since they are by definition eigenstates of each “gate” of the circuit. Here, we show that working with states directly also
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shows the existence of asymptotic QMBSs that relax slowly in such circuits. Denoting the generators of the bond algebra
to be {H,}, the time evolution of a state | (f)) by a time step At can be written, in direct analogy to Eq. (43), as

W+ AD) = e T Badt [y (1)) = |y (1) — iArY SO H, ()

_ (@

52 I Hally [ (0) + O((A0?), (G2)

a.p

After ensemble averaging with the distributions of Eq. (44), the expression for the state in the continuum time limit reads,
in analogy to Eq. (46),

Oy =T y©), =  FOO) = YOy 0), P—ZHZ (G3)

As a consequence, the decay of the ensemble-averaged overlap is governed by the spectrum of P. While we are unable to
directly compute the ensemble-averaged fidelity using this approach, it can be lower bounded in terms of the overlap as

2
FO=10ONOF = [FOVO) - (G4)

We now restrict to specific examples of QMBSs, where bond generators are of the form of Eq. (31). Then, we have

P=Y" (Ryo CZR[,], (G5)

J ko

where C is an overall constant that depends on the number of « and £ in the generators (assumed to be the same for each j
for simplicity) and we have used the fact that Ry;} is a projector. Strikingly, one can see that this is precisely the frustration-
free Hamiltonian that has appeared in Eq. (G1). This already shows that exact QMBSs never decay, since they are ground
states of P. The slowly relaxing states, or the asymptotic QMBSs, are then the low-energy excitations of P, prov1ded that it
is gapless. In the case of the ferromagnetic tower of QMBSs discussed in Sec. III C 2, we have Rj;; = S SJH, hence
Pis just the ferromagnetic Heisenberg model of Eq. (A2) up to an overall factor. The asymptotic QMBSs {|®,x)} are then
simply spin waves on top of the ferromagnet shown in Eq. (A6); this explains their form in Eq. (64). Since these states
with small k have energy approximately p; ~ k> under P, their ensemble- averaged overlap (®,4(0)|P,4(?)) decays on
time scales of approximately L?, which due to Eq. (G4) is also a lower bound for the time scale for the fidelity, consistent
with Eq. (69). This method hence more directly reproduces the asymptotic QMBSs found from the super-Hamiltonian
perspective in Sec. V B3 and explains the significance of the corresponding super-Hamiltonian eigenstates, i.e., those
associated with spin waves on only one leg of the ladder that appeared there.

The appearance of the frustration-free Hamiltonian of Eq. (G1) in Eq. (G5), and the physical interpretation of its
eigenstates as the decay modes of the overlap in Eq. (G3), leads us to the Conjecture 1 on the conditions for the existence
of asymptotic QMBS, restated here for clarity.

Conjecture 2. Consider a space S = span{|®, )} that can be expressed as the exhaustive common kernel of a set of
strictly local projectors. Any local Hamiltonian that realizes this subspace as the exact QMBS subspace also has asymp-
totic QMBSs if S cannot be expressed as the ground-state space of a gapped frustration-free Hamiltonian. Furthermore,
the gapless excitations of any such Hamiltonian are the asymptotic QMBSs.

One might also note that the form of the decay of the overlap of the asymptotic QMBSs obtained using Eq. (G3)
is necessarily a simple exponential of the form exp(—ct/L?), where the asymptotic QMBS is an eigenstate of P with
eigenvalue approximately k*> ~ ¢/L?. Since the ensemble-averaged fidelity is lower bounded by this [see Eq. (68)], this
predicts a fidelity-decay time scale that scales as approximately L. This is different from the fidelity-decay time scale
of asymptotic QMBSs predicted and observed in Hamiltonian systems in Ref. [55]. The fidelity of an initial state under
Hamiltonian evolution at short times is of the form exp(—AH?#) [158], where AH? is the variance of the energy in the
initial state, AH? = |v) H? (Yo| — (|1Wo) H (¥o|)?. Given that the variance of asymptotic QMBS scales as AH? ~ 1/L?
[55], the fidelity decay is of the form exp(—c'#?/L?), which predicts a decay time scale approximately L. The fidelity in
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the Brownian circuits hence decays parametrically slower than in the Hamiltonian evolution. This is reminiscent of the
quantum Zeno effect, where unitary evolution is suppressed by external factors such as repeated measurements or fast-
fluctuating stochasticity. It would be interesting to make this connection precise in future work, while here we can give
a rough argument showing the reconcilability of these results, which also sheds some light on the quantitative relations
between the Brownian-circuit and Hamiltonian dynamics.

Note that the derivation of the ensemble-averaged state dynamics from Eqs. (G2)«G3) has formally required taking
At — 0 limit while taking the variance of the couplings J{” to diverge as 07 = 2« /At at fixed k. We can, in fact, also
use the obtained results in the circuit setups, where orJ2 is kept fixed while we take At sufficiently small—which, however,
then enters the characteristic rate « in all results: ¥ = o7 At/2. This already shows that if the applied Hamiltonians have
typical couplings of a given strength of approximately o, and hence typical dynamic rates of approximately o, changing
the Hamiltonian randomly after every small time interval A¢ suppresses the dynamic rates to approximately «k ~ o - o7 Af,
assuming that o; At << 1. For an initial state |4 (0)) that is an eigenstate of P of Eq. (G3) with a bounded eigenvalue p:
P [ (0)) = p |¥(0)), the ensemble-averaged Eq. (G2) gives

A 2 A 2 At
e o}p>|w<0)> —= o~ (1_ﬁa}p> W O) ~ e 2T A 0y, (G)

[V (AD) ~ (1 - >

which matches the result in Eq. (G3) with k = %U}At as claimed, and the approximations used are controlled as long as
(A% /2)0fp < 1.

This is also roughly consistent with the expected fidelity decay under a fixed Hamiltonian, controlled by its variance
AH? in the state [158], which we expect to apply for individual evolution steps over time At:

(P ()Y (ADY > = e A0 AH? .= (y(0)| H? [1(0)) — (¥ (0)| H [1(0))? . (G7)

With H =Y, J"H,, an elementary calculation averaging over the independent Gaussian J” with variance o7 gives
[Wro) H? (o] = a} |1//0)’15(1//0| = a}p if ﬁh/fo) = p |¥o). This upper bounds the ensemble-averaged variance of the

energy, AH?2, and can be viewed as a reasonable estimate of a typical value of the variance of the energy in |v) for

Hamiltonians drawn from this distribution. We can then recover the qualitative form of Eq. (G6) if we conjecture that the

result of the multiple time steps of the Brownian circuit is to have roughly the same fidelity-suppression factor for each
2 2

step At: in this case, the total suppression factor is o~ AMliyp(AD7(/AD qualitatively matching Eq. (G6).

While this is not a precise quantitative argument, we can justify using the same suppression factor after each time step

At as follows. At any given instance of the Brownian circuit, we have

[¥(AD) = [¥(0)) (¥ (0¥ (AD) + 18Y ), (G8)

where the first term is the projection onto |1 (0)), while |§¢ 1) is the deviation. While the asymptotic QMBS property
of [ (0)) is common for all H® (i.e., is essentially nonrandom across them), the deviation |8 ) is particular to the
Hamiltonian applied at that step, which is hence random across different steps, and it is plausible that the chances of the
|8v+) part returning close to | (0)) under the subsequent steps are small. For the purposes of calculating the fidelity, we
are only interested in keeping track of the |y (0)) projection and we obtain a similar suppression factor at each step.

Finally, note that the presentation here has focused on the asymptotic QMBSs appearing due to exact towers of QMBSs,
where the p ~ 1/L? scaling of the super-Hamiltonian energy of an initial state implies the divergence of its fidelity decay
time. Mathematically, the same arguments also go through in the case of exact isolated QMBSs such as those in Sec.
V A 2, where the super-Hamiltonian energy of any initial state | (0)) orthogonal to the exact QMBS is at least a constant,
implying a constant fidelity decay time. Nevertheless, this still signifies some hidden “nonthermalness” in the “thermal”
sector that occurs even due to a single exact scar state [159,160], although it is less dramatic than in the asymptotic
QMBSs. It would be interesting to understand whether this framework can be used to quantify such nonthermalness in
more detail.

APPENDIX H: SUPER-HAMILTONIANS FOR EQUALLY SPACED TOWER OF QMBSs

We now discuss different choices of super-Hamiltonians suitable for analyzing cases with a tower of QMBSs and we
show that the physics of asymptotic QMBSs is captured in this setup. As discussed in Ref. [31], we can describe such a
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tower of exact ferromagnetic scar states split in energy by the Zeeman-field term using the algebras

Atower-lift = <<{RJJ+1 j+2: 1R1J+1 ZU 5 Ctower-lift = (<{|(Dn,0)<q>n,0|}>)- (Hl)

This seems to necessarily require the addition of an extensive-local term Zy := Z % to the generators of Awer. In
order to capture the commutant Cowersifr @s the ground states of a super—Hamlltonlan we need to sacrifice either locality
or Hermiticity of the super-Hamiltonian and we discuss both options below.

1. Nonlocal super-Hamiltonian

We can naively follow the discussion in Sec. I B and construct a super-Hamiltonian using Eq. (5). While the resultmg
super-Hamiltonian Ptower it 1s Hermitian, it becomes nonlocal, with the addition of the term [ Z ( O, b)] This

term changes the energy of theAground states |D,,0) ® |Ppo) of 73tower from 0 to (m — n)>. Hence the ground states
of the new super-Hamiltonian Pioyer-iie With this nonlocal term now require m = n and are hence {|®,), ® [D,0),},
which shows that the above algebras are indeed centralizers of each other. The operators |®,, ) (P, | are still exact low-
energy eigenstates of Ptower lie With eigenvalue py = 8[1 — cos(k)], which allows us to understand the asymptotic QMBSs.
Equation (69) holds for A= |P,x) (Prol, since |D,0) is still a singlet of Aoweriit, Which rigorously lower bounds the
fidelity decay time in the case of nondegenerate towers as well.

Note that this quantity is not straightforward to bound from the direct consideration of the dynamics of states discussed
in Appendix G. The effective Hamiltonian P shown in Eq. (G3) acquires an additional term (Z 2)2, which then shows
that

(@£ (0)[ @y (1)) = e *lowtL=2n1 (H2)

which decays rapidly when n # (L/2), i.e., when the eigenvalue Zi,s = L — 2n # 0. This is also the case for the overlap
(D,,0(0)|D,0(F)), even though | P, ) is an exact QMBS, and it is an effect of averaging over the random phases acquired
by the action of Zi;. While these are mathematically correct properties of the Brownian circuit with a random fluctuating
Zeeman field, they are not useful for understanding the fidelity properties of the asymptotic QMBS.

2. Non-Hermitian super-Hamiltonian

We now discuss an alternative super-Hamiltonian for the algebra of Eq. (H1) that preserves locality but sacrifices
Hermiticity. This naturally appears in a Brownian circuit where the coefficient of the magnetic field is constant and not
random. We can then redo the analysis of Eqs. (43)+46) to derive an effective Hamiltonian that describes the ensemble-
averaged operator dynamics. Given a Brownian circuit evolving under a set of operators {H,} with random coefficients
{JD} chosen from the distribution of Eq. (44), and an operator G with a constant O(1) coefficient K, analogous to Eq.
(45), we obtain

|0( + A1) = [0(1) + IAKL|0(0)) — ArY_kaLLLa|O() + O(AD), (H3)

where E@ = 6, ®R1,—1,® @, is the Liouvillian corresponding to G (assumed to be Hermitian and real valued in the
working basis for simplicity). In the continuous time limit, we then obtain

d%|%) = - [Zxafifa - iKEa] 0(), = 10() = &~ “P=KE"0(0)).

Hence the physics of this system can be understood using the non-Hermitian super-Hamiltonian Pon =P — ZKE@.
Operators in the commutant Cext.loc Of the algebraAAext loc = (({H 1, )) are guaranteed to have zero eigenvalue under
Ph-h- Moreover, any zero-eigenvalued operator of Pn n 18 in the commutant Coxtloc: A simple proof'is as follows. Starting
from Pn n|W) = 0, we have (\IJIPn W) = K(\Il|73|\l!) zK(\II|£G|\IJ) = 0, which, since P and EG are Hermitian, means
that (lIf|77|lIf) =0 and (\I/|£G|‘~If) — 0. Since P is positive semidefinite, we can conclude that Pl\ll) = 0, which also
means that £G|\I/) = 0, showing that |¥) is in the commutant Ceyq joc.
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Applying this to asymptotic QMBSs, where the {H,} are
the generators of Aiower of Eq. (42) and G = Z] o7, we
have E =) (o] o7). Since P has the form of the
d1ss1pator ofa Llndblad master ‘equation [see Eq. (8)] with
jump operators {H,}, the full P n_has the form of a full
Lindbladian with the Hamiltonian G and the jump opera-
tors {H }. Hence the eigenvalues of the Pn h are guaranteed
to have non-negative real parts. It is easy to verify that the
eigenstates |®,x), ® |, 0), of P, discussed in Eq. (66),
continue to be eigenstates of 73n_h, and we have

Pl | ©ni) (@rrol) = [ieps + 2iK (1 — m)]|| i) (o),
(H4)

where p; = 8[1 — cos(k)] and we have used that |, )
and |®, ) are eigenstates of Z, with eigenvalue L — 2n.
We can then follow the same arguments as in Sec. VB3
to obtain exact results—lower bounds—for the ensemble-
averaged fidelity, by relating it to the autocorrelation func-
tion of an operator 4 = |®,, ;) (P, 0], which leads to Eq.
(69), consistent with the expected slow decay of asymp-
totic QMBS:s.
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