
Electronic Journal of Statistics
Vol. 19 (2025) 240–290
ISSN: 1935-7524
https://doi.org/10.1214/24-EJS2341

Regression analysis of semiparametric
Cox-Aalen transformation models with

partly interval-censored data
Xi Ning1, Yanqing Sun∗2, Yinghao Pan2, and Peter B. Gilbert3,4

1Department of Statistics, Colby College,
e-mail: xning@colby.edu

2Department of Mathematics and Statistics, University of North Carolina at Charlotte,
e-mail: yasun@charlotte.edu; ypan8@charlotte.edu

3Department of Biostatistics, University of Washington,
4Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson

Cancer Center,
e-mail: pgilbert@scharp.org

Abstract: Partly interval-censored data, comprising exact and interval-
censored observations, are prevalent in biomedical, clinical, and epidemio-
logical studies. This paper studies a flexible class of the semiparametric Cox-
Aalen transformation models for regression analysis of such data. These
models offer a versatile framework by accommodating both multiplicative
and additive covariate effects and both constant and time-varying effects
within a transformation, while also allowing for potentially time-dependent
covariates. Moreover, this class of models includes many popular models
such as the semiparametric transformation model, the Cox-Aalen model,
the stratified Cox model, and the stratified proportional odds model as
special cases. To facilitate efficient computation, we formulate a set of esti-
mating equations and propose an Expectation-Solving (ES) algorithm that
guarantees stability and rapid convergence. Under mild regularity assump-
tions, the resulting estimator is shown to be consistent and asymptotically
normal. The validity of the weighted bootstrap is also established. A supre-
mum test is proposed to test the time-varying covariate effects. Finally,
the proposed method is evaluated through comprehensive simulations and
applied to analyze data from a randomized HIV/AIDS trial.
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1. Introduction

Partly interval-censored data commonly arise in biomedical, clinical, and epi-
demiological studies. This type of data comprises a mixture of exact and interval-
censored observations, with some failure times being exactly observed, whereas
others are only known to fall within specific time intervals. Despite the influx
of research on purely interval-censored data without exact observations (Finkel-
stein, 1986; Huang, 1996; Huang and Rossini, 1997; Cai and Betensky, 2003;
Zeng, Cai and Shen, 2006; Sun, 2006; Wang et al., 2016), regression analysis of
partly interval-censored data remains relatively underdeveloped, with a predom-
inant focus on multiplicative hazards models; for instance, Kim (2003) consid-
ered maximum likelihood estimation, and Pan, Cai and Wang (2020) adopted a
Bayesian approach by incorporating a nonhomogeneous Poisson process for the
proportional hazards model (Cox, 1972; Andersen and Gill, 1982). In contrast
to multiplicative hazards models, additive hazards models (Aalen, 1980, 1989;
Lin and Ying, 1994) provide an important alternative by assuming an additive
relationship between covariates and the baseline hazard function. Within this
framework, Li and Ma (2019) proposed a maximum penalized likelihood method
to analyze partly interval-censored data.
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To enhance modeling capacity, researchers have also proposed models that
combine both multiplicative and additive effects of covariates within a unified
framework. Examples of such multiplicative-additive models include those pro-
posed by Lin and Ying (1995), Martinussen and Scheike (2002), Scheike and
Zhang (2002) and Zeng and Lin (2007). In particular, Scheike and Zhang (2002)
introduced the Cox-Aalen model, which extends the proportional hazards model
by replacing the baseline hazard function with Aalen’s additive model. However,
existing methods for interval-censored data (Boruvka and Cook, 2015; Shen and
Weng, 2019) rely on the assumption of fixed covariates and cannot readily ac-
commodate time-varying covariates.

Recently, there has been increased attention towards transformation models.
Zeng and Lin (2006) proposed a class of transformation models, which expands
upon the linear transformation models (Dabrowska and Doksum, 1988; Fine,
Ying and Wei, 1998) to account for time-varying covariates. In the sequel, we
refer to this class of transformation models as the ZL model to avoid confusion.
For interval-censored data, Zhang et al. (2005) proposed an estimating equa-
tion approach for linear transformation models, and Zeng, Mao and Lin (2016)
developed a nonparametric maximum likelihood estimator for the ZL model us-
ing an EM algorithm. For partly interval-censored data, Wang, Jiang and Song
(2022) proposed a Bayesian approach with a monotone spline approximation
for linear transformation models, while Zhou, Sun and Gilbert (2021) studied
nonparametric maximum likelihood estimation of the ZL model. It is worth not-
ing that proportional hazards and proportional odds models are special cases
of linear transformation and ZL models. Recently, Zhu et al. (2021) developed
a maximum likelihood estimation procedure for fitting the proportional odds
model to partly interval-censored data.

However, one limitation of the ZL model is its assumption of identical baseline
hazard functions across individuals and that all covariate effects are multiplica-
tive within the transformation function. Such an assumption is too restrictive in
some applications. One example is the data analyses of the AIDS Clinical Trials
Group 175 trial (Hammer et al., 1996; Zhou, Sun and Gilbert, 2021). This trial
enrolled persons living with HIV-1 who received one of four antiretroviral regi-
mens, with one regimen as the control and the remaining three regimens as the
active treatment. The overall objective is to evaluate the association between
antiretroviral treatment and the time to composite endpoint of CD4 cell count
failure, AIDS, or death which is partly interval-censored. Participants were also
categorized into two groups based on their prior antiretroviral therapy (ART)
status: the ART-experienced and ART-naïve groups. Zhou, Sun and Gilbert
(2021) considered two approaches: (1) fitting the ZL model to the full cohort,
assuming a shared baseline hazard function for the ART-experienced and ART-
naïve groups; (2) fitting the ZL model to the ART-experienced and ART-naïve
groups separately. The first approach is questionable since participants in the
ART-experienced group often develop drug resistance and thus have a differ-
ent baseline hazard than the ART-naïve group. On the other hand, the second
approach is valid but results in a loss of statistical power. It is desirable to de-
velop new statistical methods for partly interval-censored data that can both
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incorporate heterogeneity and enhance statistical power.
In this paper, we study a flexible class of the Cox-Aalen transformation mod-

els of Ning et al. (2023) that allows the baseline hazard function to depend
on covariates, thereby incorporating both multiplicative and additive covari-
ate effects within a transformation. This flexibility enables us to capture more
nuanced hazard structures and enhance statistical power. The proposed model
includes many popular models, such as the ZL model, the Cox-Aalen model, the
stratified Cox model and the stratified proportional odds model, as special cases.
To the best of our knowledge, there is currently no research addressing the use
of the Cox-Aalen transformation models for partly interval-censored data. To
facilitate efficient computation, we formulate a set of estimating equations and
employ an Expectation-Solving (ES) algorithm that guarantees stability and
rapid convergence. In addition, we rigorously establish the asymptotic proper-
ties of the resulting estimators via modern empirical process techniques. The
proposed estimator is a Z-estimator; therefore, we cannot directly rely on the
consistency proofs provided in Zeng, Mao and Lin (2016) and Zhou, Sun and
Gilbert (2021), as those proofs are specifically tailored to their M-estimators.
Instead, we utilize the implicit function theorem (Schwartz, 1969, p. 15) to es-
tablish the consistency results. This theoretical development is interesting in its
own right, requiring a delicate connection between the proposed estimator and
a nonparametric maximum likelihood estimator, which constitutes an original
contribution. A supremum test is proposed to test the time-varying covariate
effects. Finally, we evaluate the performance of the proposed procedure through
comprehensive simulation studies and apply it to the ACTG 175 trial.

2. Cox-Aalen transformation models

Let T be the failure time of interest, and X(·) and Z(·) be a q×1 and d×1 vector
of potentially time-dependent covariates, respectively. We investigate a broad
class of the Cox-Aalen transformation models which structures the cumulative
hazard function for T , conditional on X(·) and Z(·), as:

Λ(t | X(·), Z(·)) = G
[ ∫ t

0
exp{β�Z(s)}dΛX(s)

]
, (1)

where β is a d×1 vector of unknown regression parameters, ΛX(s)=
∫ s

0 X�(v)α(v)
dv is an unspecified increasing function which depends on X(·) and a vector of
unknown regression functions α(t) = (α1(t), . . . , αq(t))�, and G(·) is a prede-
termined transformation function that is strictly increasing and thrice contin-
uously differentiable with G(0) = 0, G′(0) > 0 and G(∞) = ∞. Hereafter,
G′(x) = dG(x)/dx. Let A(t) =

∫ t

0 α(s)ds = (A1(t), . . . , Aq(t))� be a vector of
cumulative regression functions with Aj(t) =

∫ t

0 αj(s)ds (j = 1, . . . , q). In addi-
tion, the first component of X(·) is fixed at 1 so that α1(t) can be interpreted
as a reference level of the risk.

Model (1) has two main advantages due to its flexibility and generality. First,
it accommodates both multiplicative and additive covariate effects within a
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transformation, i.e., the parametric component β quantifies the multiplicative
effect of Z(·) while the nonparametric component α(·) tracks the additive effect
of X(·). As a result, the proposed model allows for different baseline cumula-
tive hazards across individuals or groups. Note that, to ensure identifiability,
X(·) and Z(·) should not overlap, i.e., for a single covariate, its effect is either
multiplicative or additive, but not both. Second, it offers a wide range of flexi-
ble models, encompassing several popular models as special cases. For instance,
when G(x) = x, the right-hand side of the model (1) simplifies to∫ t

0
exp{β�Z(s)}X�(s)dA(s), (2)

which indicates that the Cox-Aalen model (Scheike and Zhang, 2002) is a special
case of proposed model. When X represents a vector designed for categories,
model (2) further reduces to the stratified Cox model (Kalbfleisch and Prentice,
2002). Additionally, in the case where X = 1, i.e., q = 1, model (1) reduces to
the ZL model (Zeng and Lin, 2006), where the cumulative hazard function takes
the form

G
[ ∫ t

0
exp{β�Z(s)}dA1(s)

]
. (3)

It is noteworthy that the choices G(x) = x and G(x) = log(1 + x) in model (3)
yield the proportional hazards model and proportional odds model, respectively.

Following the previous work of Zeng, Mao and Lin (2016) and Zhou, Sun and
Gilbert (2021), we consider a class of frailty-induced transformation functions
as

G(x) = − log
∫ ∞

0
exp(−xξ)f(ξ)dξ, (4)

where f(ξ) is the density function of a nonnegative random variable ξ on support
[0, ∞). A widely used choice of f(ξ) is the gamma density with mean 1 and
variance r, which generates the logarithmic transformations G(x) = r−1 log(1 +
rx) (r ≥ 0). Notably, if r = 0, then G(x) = x. Another popular choice, i.e., the
positive stable distribution with parameter ρ (0 ≤ ρ < 1), yields the class of
Box-Cox transformations, G(x) = ρ−1{(1 + x)ρ − 1}. The incorporation of (4)
into the ZL model has been widely employed across diverse contexts, driven by
the development of EM algorithms (Liu and Zeng, 2013; Mao and Lin, 2017;
Gao, Zeng and Lin, 2018).

3. Model estimation

3.1. Data and likelihood

Consider a random sample of n individuals subject to partly interval censoring.
For the ith individual, we denote the failure time as Ti. If Ti is observed exactly,
we set Δi = 1. Otherwise, we set Δi = 0, and denote the sequence of examination
times undergone by individual i as Ui1, Ui2, . . . , UiKi , where 0 < Ui1 < Ui2 <
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· · · < UiKi < ∞, and Ki is the total number of examinations. We set Ui0 = 0
and Ui,Ki+1 = ∞. In addition, for Δi = 0, we define (Li, Ri] to be the smallest
interval that encloses Ti. The left endpoint Li of this interval is the maximum
value of Uik for k = 0, 1, . . . , Ki such that Uik < Ti. Similarly, the right endpoint
Ri is the minimum value of Uik for k = 1, . . . , Ki + 1 such that Uik ≥ Ti.
Note Li = 0 and Ri = ∞ correspond to a left- and right-censored observation,
respectively, while 0 < Li < Ri < ∞ indicates a typical interval-censored
observation. Therefore, the observed data can be written as follows:

Oi = {Δi, ΔiTi, (1 − Δi)Li, (1 − Δi)Ri, Xi, Zi} (i = 1, . . . , n), (5)

where Xi and Zi denote the covariates for the ith individual.
Suppose that the total number and the sequence of examination times are

independent of the failure time conditional on the covariate histories. Under
model (1), the observed-data likelihood function based on (5) takes the form

n∏
i=1

(
Λ

′

Xi
(Ti)eβ�Zi(Ti)G

′
{∫ Ti

0
eβ�Zi(s)dΛXi(s)

}
exp

[
−G

{∫ Ti

0
eβ�Zi(s)dΛXi(s)

}])Δi

(
exp

[
−G

{∫ Li

0
eβ�Zi(s)dΛXi(s)

}]
− exp

[
− G

{∫ Ri

0
eβ�Zi(s)dΛXi(s)

}])1−Δi

(6)

where Λ′

X(·) and G
′(·) denote the derivatives of ΛX(·) and G(·), respectively.

To motivate our approach, we start by considering the nonparametric maximum
likelihood estimation of β and ΛX(·), and then develop an EM algorithm tailored
to a special case where X is designed for categorical data. To facilitate efficient
computation, we propose an alternative estimating equation approach that is
applicable to a broader range of scenarios. Intriguingly, these two approaches
coincide in the aforementioned special case, as we will demonstrate later.

3.2. Nonparametric maximum likelihood estimation

In this subsection, we employ the nonparametric maximum likelihood estimation
(NPMLE) method. Specifically, let 0 = t0 < t1 < · · · < tm < ∞ denote the
ordered unique values in the collection of {ΔiTi, (1 − Δi)Li, (1 − Δi)RiI(Ri <
∞), i = 1, . . . , n}. Assume that the cumulative regression function Aj(t) (j =
1, . . . , q) is a step function with jump size ajk at tk (k = 1, . . . , m) with aj0 =
0. It is noted that dΛXi(t) = X�

i (t)dA(t), which implies that ΛXi(t) is also
a step function with jump size X�

i (tk)ak at time tk, and ΛXi(0) = 0. Here,
ak = (a1k, . . . , aqk)�(k = 1, . . . , m). Thus, the likelihood given in (6) can be
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written as
n∏

i=1

(
ΛXi{Ti}eβ�Zi(Ti)G

′
{ ∑

tk≤Ti

(X�
ikak)eβ�Zik

}
exp

[
− G

{ ∑
tk≤Ti

(X�
ikak)eβ�Zik

}])Δi

(
exp

[
− G

{ ∑
tk≤Li

(X�
ikak)eβ�Zik

}]
− exp

[
− G

{ ∑
tk≤Ri

(X�
ikak)eβ�Zik

}])1−Δi

,

(7)

where ΛXi{Ti} denotes the jump size of ΛXi(·) at Ti, Xik = Xi(tk) and Zik =
Zi(tk).

Let θ = (β�, a�
1 , . . . , a�

m)� be the parameter of interest. Maximizing the like-
lihood function (7) with respect to θ based on the observed data (5) can be a
daunting task due to the high dimensionality of the parameter space. Conse-
quently, performing this maximization directly may not be feasible or practical.
Based on the class of frailty-induced transformation functions given in (4), we
easily obtain that exp{−G(x)} =

∫∞
0 exp(−xξ)f(ξ)dξ and exp{−G(x)}G′(x) =∫∞

0 ξ exp(−xξ)f(ξ)dξ. By utilizing these expressions, it can be shown that the
likelihood function (7) is equivalent to

n∏
i=1

[
ΛXi{Ti}eβ�Zi(Ti)

∫
ξi

ξi exp
{

− ξi

∑
tk≤Ti

(X�
ikak)eβ�Zik

}
f(ξi)dξi

]Δi

(∫
ξi

[
exp

{
−ξi

∑
tk≤Li

(X�
ikak)eβ�Zik

}
− exp

{
−ξi

∑
tk≤Ri

(X�
ikak)eβ�Zik

}]
f(ξi)dξi

)1−Δi

.

(8)

Next, we introduce latent variables Wik (i = 1, . . . , n; k = 1, . . . , m) which,
conditional on ξi, are a class of independent Poisson variables with means
ξi(X�

ikak) exp(β�Zik). This approach is similar to those used in previous works,
including Wang et al. (2016), Zeng, Mao and Lin (2016), and Zhou, Sun and
Gilbert (2021). Define Ai = Δi

∑
tk<Ti

Wik, Bi = Δi

∑
tk=Ti

Wik, Ci = (1 −
Δi)

∑
tk≤Li

Wik and Di = (1 − Δi)I(Ri < ∞)
∑

Li<tk≤Ri
Wik (i = 1, . . . , n).

Suppose that the observed data for individual i (i = 1, . . . , n) consist of{
(Ti, Xi, Zi, Ai = 0, Bi = 1) if Δi = 1,
(Li, Ri, Xi, Zi, Ci = 0, Di > 0) if Δi = 0.

(9)

Notice that when Δi = 1, Ai = 0 and Bi = 1 indicate that Wik = 0 for tk < Ti

and Wik = 1 for tk = Ti. In addition, when Δi = 0, Ci = 0 and Di > 0 imply
that Wik = 0 for tk ≤ Li and at least one Wik ≥ 1 for Li < tk ≤ Ri with
Ri < ∞. Using the independent properties of Wik (i = 1, . . . , n; k = 1, . . . , m),
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we calculate that Pr(Ai = 0 | ξi) = exp
{

− ξi

∑
tk<Ti

(X�
ikak) exp(β�Zik)

}
.

Applying this similar idea, the likelihood (8) can be represented with the data
in (9) as

n∏
i=1

{∫
ξi

Pr
( ∑

tk<Ti

Wik = 0 | ξi

)
Pr
( ∑

tk=Ti

Wik = 1 | ξi

)
f(ξi)dξi

}Δi

[ ∫
ξi

Pr
( ∑

tk≤Li

Wik=0 | ξi

){
1−Pr

( ∑
Li<tk≤Ri

Wik=0 | ξi

)}I(Ri<∞)
f(ξi)dξi

]1−Δi

.

(10)

Therefore, maximizing the likelihood function (7) based on the observed data
in (5) is equivalent to maximizing the likelihood function (10) based on the data
in (9).

We propose to maximize (10) through an EM algorithm by treating Wik and
ξi as missing data. The complete-data loglikelihood is given by

n∑
i=1

( m∑
k=1

I(tk ≤ R∗
i )
[
Wik log{ξi(X�

ikak) exp(β�Zik)}

− ξi(X�
ikak) exp(β�Zik) − log Wik!

]
+ log f(ξi)

)
,

(11)

where R∗
i = ΔiTi + (1 − Δi) {LiI(Ri = ∞) + RiI(Ri < ∞)}. In the E-step, we

calculate the conditional expectation of the complete-data loglikelihood (11),
given the observed data. This is equivalent to evaluating the posterior means of
Wik and ξi, denoted by Ê(Wik) and Ê(ξi), respectively. See the next subsection
for details. In the M-step, we maximize the conditional expectation of (11) with
respect to θ. Specifically, we set the derivatives of the conditional expectation
of (11) with respect to ak (k = 1, . . . , m) and β to zero, respectively, i.e.,

n∑
i=1

I(tk ≤ R∗
i )
{ Ê(Wik)

X�
ikak

− Ê(ξi) exp(β�Zik)
}

Xik = 0 (k = 1, . . . , m), (12)

n∑
i=1

m∑
k=1

I(tk ≤ R∗
i )
{

Ê(Wik) − Ê(ξi)(X�
ikak) exp(β�Zik)

}
Zik = 0. (13)

However, the dimension of θ could potentially match or exceed the sample size
n due to the nature of the partly interval-censored data. As a result, solv-
ing equations (12) and (13) simultaneously becomes difficult and computation-
ally intensive, as they constitute a large system of nonlinear equations. In the
Appendix A.1, we demonstrate that explicit formulae can be derived for ak

(k = 1, . . . , m) for fixed β in (12), when X represents levels in a set of factors.
Once these high-dimensional parameters are fixed in (13), the low-dimensional
parameter β can be solved using any root-finding algorithm, such as the Newton-
Raphson method. We iterate between E- and M-steps until the convergence
criterion is achieved. Nevertheless, for more general scenarios, explicit forms
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for ak (k = 1, . . . , m) are not readily available, and hence computational chal-
lenges still hinder the implementation of the EM algorithm. To overcome this,
we adopt an estimating equation approach and develop an ES algorithm for
simple computations.

3.3. Estimating equations

By exploiting the fact that Wik (i = 1, . . . , n; k = 1, . . . , m) conditional on ξi are
independent Poisson random variables with mean ξi(X�

ikak) exp(β�Zik), we con-
struct a collection of complete-data estimating equations U(θ) = (Ua1 , . . . , Uam ,
Uβ) = 0, where⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ua1 =
∑n

i=1 I(t1 ≤ R∗
i )
{

Wi1 − ξi(X�
i1a1) exp(β�Zi1)

}
Xi1

...
Uam =

∑n
i=1 I(tm ≤ R∗

i )
{

Wim − ξi(X�
imam) exp(β�Zim)

}
Xim

Uβ =
∑n

i=1
∑m

k=1 I(tk ≤ R∗
i )
{

Wik − ξi(X�
ikak) exp(β�Zik)

}
Zik.

(14)

Conditional expectation arguments easily establish that (14) is a system of un-
biased estimating equations.

We propose to estimate θ through an ES algorithm by treating Wik and ξi as
missing. Within the E-step, we compute the posterior means of Wik and ξi given
the observed data. Within the S-step, we solve the estimating equations (14)
after replacing Wik and ξi by corresponding conditional expectations. The ES
algorithm is an extension of the EM algorithm, allowing us to handle general
estimating equations beyond those derived from the loglikelihood (Elashoff and
Ryan, 2004). The detailed calculations are outlined below:

E-step. Evaluate the posterior means Ê(Wik) and Ê(ξi) given the observed
data. When Δi = 1, the posterior density function of ξi given the observed data
is proportional to ξi exp(−ξiSiT )f(ξi), where SiT =

∑
tk≤Ti

(X�
ikak) exp(β�Zik).

Hence, we calculate

Ê(ξi) = G
′
(SiT ) − G

′′(SiT )
G′(SiT ) ,

where G′′(x) is the second derivative of G(·) with respect to x. When Δi = 0, it is
easy to see that the posterior density of ξi given the observed data is proportional
to {exp(−ξiSiL) − exp(−ξiSiR)}f(ξi), where SiL =

∑
tk≤Li

(X�
ikak) exp(β�Zik)

and SiR =
∑

tk≤Ri
(X�

ikak) exp(β�Zik). We then obtain

Ê(ξi) = exp{−G(SiL)}G′(SiL) − exp{−G(SiR)}G′(SiR)
exp{−G(SiL)} − exp{−G(SiR)} .

For the posterior mean of Wik, when Δi = 1, we observe (Xi, Zi, Ai = 0, Bi =
1). Thus, Ê(Wik) = 0 for all tk < Ti and Ê(Wik) = 1 for tk = Ti. When Δi =
0, we observe (Li, Ri, Xi, Zi, Ci = 0, Di > 0). Thus, Ê(Wik) = E(Wik|Ci =
0, Di > 0, Xi, Zi) = 0, for tk ≤ Li. And for Li < tk ≤ Ri with Ri < ∞,

Ê(Wik) = Eξi {E(Wik|ξi, Ci = 0, Di > 0) | Ci = 0, Di > 0}
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= Eξi

[
ξi(X�

ikak) exp(β�Zik)
1 − exp{−ξi(SiR − SiL)} | Ci = 0, Di > 0

]
= (X�

ikak) exp(β�Zik)
exp{−G(SiL)} − exp{−G(SiR)}

×
∫

ξi

ξi{exp(−ξiSiL) − exp(−ξiSiR)}
1 − exp{−ξi(SiR − SiL)} f(ξi)dξi

= (X�
ikak) exp(β�Zik)

exp{−G(SiL)} − exp{−G(SiR)}

∫
ξi

ξi exp(−ξiSiL)f(ξi)dξi

= (X�
ikak) exp(β�Zik)

exp{−G(SiL)} − exp{−G(SiR)} exp{−G(SiL)}G′(SiL).

S-step. Solve for θ using (14) with Wik and ξi replaced by Ê(Wik) and Ê(ξi).
Note that (14) is a large-dimensional nonlinear equation, which is not easily
solved simultaneously. To circumvent this, we propose the following nonlinear
Gauss-Seidel method (Ortega and Rheinboldt, 1970; Ortega, 1972). In Step 1,
we fix β and update ak (k = 1, . . . , m) by solving⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑n
i=1 I(t1 ≤ R∗

i )
{

Ê(Wi1) − Ê(ξi)(X�
i1a1) exp(β�Zi1)

}
Xi1 = 0

...∑n
i=1 I(tm ≤ R∗

i )
{

Ê(Wim) − Ê(ξi)(X�
imam) exp(β�Zim)

}
Xim = 0.

(15)
It is important to note that for fixed β, the above system of equations is linear
with respect to ak (k = 1, . . . , m). We can therefore obtain

ak=
{ n∑

i=1
I(tk≤R∗

i )Ê(ξi) exp(β�Zik)XikX�
ik

}−1{ n∑
i=1

I(tk ≤ R∗
i )Ê(Wik)Xik

}
.

In Step 2, with a1, . . . , am fixed, we update β by solving the following equation
via the Newton-Raphson method:

n∑
i=1

m∑
k=1

I(tk ≤ R∗
i )
{

Ê(Wik) − Ê(ξi)(X�
ikak) exp(β�Zik)

}
Zik = 0. (16)

The proposed ES algorithm iterates between the E- and S-steps until con-
vergence. We compute the maximal relative change in the parameter estimates
between two successive iterations to determine convergence, and the ES algo-
rithm terminates when this value is below a small threshold, such as 5 × 10−3.
Additionally, the S-step alternates between Steps 1 and 2 until the sum of the ab-
solute differences of the estimates at two successive iterations is less than a small
positive number, such as 10−3. Other small numbers were also tested, and similar
results were obtained. We denote the final estimator as θ̂ = (β̂�, â�

1 , . . . , â�
m)�.

For estimating A(t), a natural choice is the estimator Â(t) =
∑

tk≤t âk.
There are several advancements in the proposed ES algorithm. First, it derives

the closed-form expressions for the posterior means of Wik and ξi in the E-step,
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and the high-dimensional parameters ak (k = 1, . . . , m) are updated explicitly
in the S-step. These features make the algorithm highly versatile and applicable
in various scenarios. Second, the resulting estimator is efficient when X is a
vector of design variables for categories. This efficiency arises because, for fixed
β, equations (12) and (15) share the same solution in terms of ak (k = 1, . . . , m):
hence the ES algorithm coincides with the EM algorithm in Section 3.2. The
details are provided in the Appendices. Similarly, when X = 1, i.e., q = 1, it can
be shown that the proposed ES algorithm is equivalent to the EM algorithm
proposed by Zhou, Sun and Gilbert (2021) for partly interval-censored data.
Furthermore, when G(x) = x, model (1) yields the Cox-Aalen model. To the
best of our knowledge, our methods provide a solution for estimating the Cox-
Aalen model from partly interval-censored data with time-dependent covariates,
thereby filling a gap in the existing literature. Lastly, it is worth mentioning
that (15) can be interpreted as a weighted version of (12), where each subject i
receives a weight X�

ikak.

3.4. Variance estimation

We propose a weighted bootstrap procedure to estimate the distribution and
the variance of the proposed ES estimator. Let e1, . . . , en be i.i.d exponen-
tial random variables with mean one, which are independent of the observed
data O = (O1, . . . , On). Let e = n−1∑n

i=1 ei and ẽi = ei/e. In addition, let
Ũ(θ) be the weighted version of U(θ), where each subject i (i = 1, . . . , n)
in (14) receives weight ẽi. The final estimator that solves Ũ(θ) = 0, denoted
as θ̃ = (β̃�, ã�

1 , . . . , ã�
m)�, can be obtained through the proposed ES algorithm

in Section 3.3 with only trivial modifications. Specifically, in the E-step, we com-
pute the posterior means of Wik and ξi (i = 1, . . . , n; k = 1, . . . , m), denoted
as Ẽ(Wik) and Ẽ(ξi), respectively. These expressions are the same as Ê(Wik)
and Ê(ξi) described in Section 3.3. In the S-step, with fixed β, we update ak

(k = 1, . . . , m) using the explicit formula:

ak=
{ n∑

i=1
I(tk≤R∗

i )ẽiẼ(ξi) exp(β�Zik)XikX�
ik

}−1{ n∑
i=1

I(tk≤R∗
i )ẽiẼ(Wik)Xik

}
.

Then, for fixed a1, . . . , am, we solve for β using the Newton-Raphson method
through the following equation:

n∑
i=1

m∑
k=1

I(tk ≤ R∗
i )ẽi

{
Ẽ(Wik) − Ẽ(ξi)(X�

ikak) exp(β�Zik)
}

Zik = 0.

One can generate a set of bootstrap weights for each bootstrap replicate and run
the revised ES algorithm to obtain θ̃. The distribution of the ES estimator, and
its variance in particular, can be estimated by, say, 1000 bootstrap replicates.
The covariance matrix of θ̂ can be estimated by the sample variance of those
θ̃’s.
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4. Asymptotic theory

We establish the asymptotic properties of the proposed ES estimator and the
validity of the weighted bootstrap under the following regularity conditions:

Condition 1. With probability one, the vectors X(t) and Z(t) are uniformly
bounded with uniformly bounded total variation over [0, τ ]. Here, τ denotes the
duration of participant follow-up in the study, which is finite.

Condition 2. Let B be a compact set of Rd and BV [0, τ ] be the class of func-
tions with bound variation over [0, τ ]. The true parameter (β0, A0) belongs to
B × BV q[0, τ ] with β0 an interior point of B and A0(t) = (A01(t), . . . , A0q(t))�

is continuously differentiable over [0, τ ] with A0(0) = 0. Here, BV q[0, τ ] denotes
the product space BV [0, τ ] × · · · × BV [0, τ ].

Condition 3. 0 < Pr(Δ = 0) < 1. For Δ = 0, the number of monitoring times,
K, is positive, and E(K) < ∞. In addition, there exists some constant c > 0
such that pr(Uj+1 − Uj ≥ c | K, X, Z, Δ = 0) = 1 (j = 1, . . . , K − 1). The con-
ditional densities of (Uj , Uj+1) given X, Z and K, denoted by gj(u, v|X, Z, K)
(j = 1, . . . , K), have continuous second-order partial derivatives with respect to
u and v when v − u > c and are continuously differentiable with respect to X
and Z.

Condition 4. The transformation function G is thrice continuously differen-
tiable on [0, ∞) with G(0) = 0, G′(x) > 0 and G(∞) = ∞.

Condition 5. If there exists a vector η and a deterministic function η0(t) such
that η0(t) + η�X(t) = 0 for all t ∈ [0, τ ] with probability one, then η0(t) = 0 for
all t ∈ [0, τ ] and η = 0.

Remark 1. Conditions 1–2 state the boundedness of the covariates and the
compactness of the Euclidean parameter space, which are standard in survival
analysis. Condition 3 is a conventional assumption for interval-censored data,
which requires that the two adjacent monitoring times are separated by at least
c. Condition 3 also ensures that the proportion of exact observations is non-
negligible. The smoothness condition for the joint density of (Uj , Uj+1) is used
to prove the Donsker property of some function classes. Condition 4 ensures
that the transformation function G is strictly increasing on [0, ∞). Condition 5
ensures the existence and uniqueness of the jump sizes ak (k = 1, . . . , m).

The parameter of interest is ϑ = (β, A), where β ∈ R
d and A = (A1, . . . , Aq)

consist of q infinite-dimensional cumulative regression functions. It is easy to
see that A = (A1, . . . , Aq) is in the Banach space BV q[0, τ ]. The norm for
A is defined as the summation of the norm of each component, i.e., ‖A‖ρ =∑q

j=1 ‖Aj‖v, where ‖Aj‖v is the sum of the absolute value of Aj(0) and the total
variation of Aj on [0, τ ]. Let F = B × BV q[0, τ ]. The norm for ϑ ∈ F is defined
as ‖ϑ‖Θ = ‖β‖d + ‖A‖ρ, where ‖ · ‖d is the Euclidean norm: ‖β‖d =

√∑d
j=1 β2

j .
Let ϑ̂ = (β̂, Â) be the proposed ES estimator and ϑ̃ = (β̃, Ã) the bootstrap

estimator, where Ã(t) =
∑

tk≤t ãk for t ∈ [0, τ ]. Let ϑ0 = (β0, A0) be the
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true value of (β0, A0) under model (1). The asymptotic results of the proposed
estimator are given in the following theorems.

Theorem 4.1. Under Conditions 1–5, the proposed estimator (β̂, Â) is strongly
consistent to (β0, A0) in B × BV q[0, τ ].

Theorem 4.2. Under Conditions 1–5, n1/2(β̂ − β0, Â − A0) converges weakly
to a zero-mean Gaussian process in B × BV q[0, τ ].

Theorem 4.3. Under Conditions 1–5, the conditional distribution of n1/2(β̃ −
β̂, Ã − Â) given the data converges weakly to the asymptotic distribution of
n1/2(β̂ − β0, Â − A0) in B × BV q[0, τ ].

Detailed proofs of the above theorems are presented in the Appendices.

Remark 2. Note that the proposed estimator (β̂, Â) is a Z-estimator. To prove
Theorem 4.1, we cannot directly rely on the consistency proofs provided in Zeng,
Mao and Lin (2016) and Zhou, Sun and Gilbert (2021), as those proofs are
specifically tailored to their M-estimators. Instead, we utilize the implicit func-
tion theorem (Schwartz, 1969, p. 15) to establish the consistency results. One
major challenge in proving Theorems 4.1–4.2 is verifying that the Fréchet deriva-
tive map corresponding to the proposed ES estimator is continuously invertible.
By uncovering a connection between the proposed ES estimator and the NPMLE,
we are able to address this challenge. See Lemma A.3 of the Appendices for de-
tails. The involved theoretical development is interesting in its own right.

5. Model inference

Statistical inference for covariate effects is important for data applications. Hy-
pothesis testing for the parametric effects can usually be conducted using Wald
tests or Chi-square tests by contrasting the estimated effects with their esti-
mated covariance matrix. However, hypothesis testing of the time-dependent
effects requires additional work. We propose a supremum test procedure to
test the regression function Aj(t) under the null hypothesis H0 : Aj(t) ≡ 0,
0 ≤ t ≤ τ , where 1 ≤ j ≤ q. Testing of this hypothesis can be used to determine
whether the baseline cumulative hazards vary between groups. We consider the
supremum test statistic S = sup0≤t≤τ |√nÂj(t)|. By Theorem 4.3, the critical
value of the test can be approximated by using the weighted bootstrap proce-
dure for large samples. Specifically, the critical value of the test at significance
level α can be estimated by the (1 − α) quantile of the bootstrap values of S∗ =
sup0≤t≤τ |√n(Ãj(t) − Âj(t))| based on, say 1000, weighted bootstrap samples.
The null hypothesis is rejected if the test statistic S exceeds the critical value.
This test procedure is readily adapted to test multiple regression functions.

6. Simulation studies

We conducted extensive simulations to access the finite sample performance of
the proposed estimator. We generate T from the following Cox-Aalen transfor-
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mation model

Λ(t) = G

[∫ t

0
exp{β1Z1(s) + β2Z2}dΛX(s)

]
,

where Z1(t) = B1I(t ≤ V ) + B2I(t > V ) with B1 and B2 being indepen-
dent Ber(0.5), and V ∼ Unif(0, 3), Z2 ∼ Unif(0, 1). We consider the class of
logarithmic transformations G(x) = r−1 log(1 + rx) with r = 0, 0.5 and 1,
where r = 0 yields the Cox-Aalen model. We set β1 = 0.5 and β2 = −0.5,
and consider three numerical settings for ΛX(s) =

∫ s

0 X�(u)dA(u) with A(t) =
(A1(t), . . . , Aq(t))�:

Scenario 1. X = (1, X2)� with X2 ∼ Ber(0.4), A1(t) = log(1 + t/2) and
A2(t) = 0.1t.

Scenario 2. X = (1, X2)� with X2 ∼ Unif(0, 1), A1(t) = log(1 + t/2) and
A2(t) = 0.1t.

Scenario 3. Let J be a categorical variable that takes values in {1, 2, 3} with
equal probability. X = (1, X2, X3)�, where X2 = I(J = 2), X3 = I(J = 3),
A1(t) = log(1 + t/2), A2(t) = 0.1t and A3(t) = 0.05t.

We let τ = 5 years be the duration of study follow-up, beyond which no
examinations occurred. For each study participant, we generate at least two
monitoring times U1 ∼ Unif (0, τ/2) and U2 ∼ min {0.1 + U1 + Unif(0, τ/2), τ}.
If U2 < τ , we proceed to generate the third monitoring time U3 ∼ min {0.1 +
U2 + Unif(0, τ/2), τ}, and if U3 < τ , we generate one last monitoring time U4 ∼
min {0.1+U3 +Unif(0, τ/2), τ}. Thus, the time axis (0, ∞) is partitioned into at
least three and at most five intervals. We let (L, R] be the smallest interval that
brackets the failure time T . In particular, if R = ∞, we set Δ = 0. Otherwise, we
generate Δ ∼ Ber (γ). If Δ = 1, the failure time is exactly observed. Additionally,
γ is the proportion of exactly observed failure observations among those that
are not right-censored. We consider four values for γ: 0.25, 0.5, 0.75, and 1.
The value γ = 1 corresponds to purely right-censored data, while the other
values simulate partially interval-censored data, including exact, left-, interval-,
and right-censored observations. The right-censoring rates, on average, range
from 25% to 45% across all setups. For each scenario, we applied the proposed
ES algorithm by setting the initial value of β to 0 and the initial value of
ak (k = 1, . . . , m) to (1/m, 0, . . . , 0). The estimates were found to be robust
with respect to the choice of the initial values. The variance was estimated
using 1000 weighted bootstraps as described in Section 3.4. The sample size n
was set to 200, 500, and 1000. We performed 1000 replicates to obtain reliable
results.

The performance of β̂ and Â(t) at fixed points t is measured through the bias
(Bias), empirical standard error of the estimator (SE), mean of the estimated
standard errors (SEE), and the 95% empirical coverage probability (CP). Ta-
ble 1 summarizes the parameter estimation results for Scenario 1. The proposed
methods perform well across all values of γ. This is evidenced by several facts:
the parameter estimators exhibit minimal bias, their bootstrapping variance es-
timators are quite close to the empirical variance, and the confidence intervals
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Table 1

Estimation results for the regression parameter β under Scenario 1. Bias, SE, SEE, and CP
stand, respectively, for the bias, empirical standard error, mean of the estimated standard

errors, and empirical coverage probability of the 95% confidence interval. Each entry is
based on 1000 simulations and 500 bootstraps.

β1 = 0.5 β2 = −0.5
r n γ Bias SE SEE CP Bias SE SEE CP
0 200 0.25 0.007 0.185 0.185 0.943 −0.002 0.292 0.293 0.955

0.5 0.005 0.177 0.177 0.946 −0.002 0.290 0.290 0.956
0.75 0.003 0.171 0.171 0.951 −0.003 0.290 0.288 0.951
1 0.003 0.166 0.167 0.948 −0.000 0.287 0.287 0.954

500 0.25 0.002 0.113 0.115 0.958 0.004 0.178 0.184 0.953
0.5 0.001 0.110 0.111 0.950 0.004 0.177 0.183 0.954
0.75 0.001 0.107 0.108 0.948 0.003 0.176 0.182 0.954
1 0.002 0.105 0.106 0.949 0.003 0.175 0.181 0.951

1000 0.25 0.005 0.081 0.081 0.951 −0.006 0.129 0.130 0.947
0.5 0.003 0.079 0.078 0.948 −0.005 0.128 0.129 0.945
0.75 0.002 0.077 0.076 0.954 −0.005 0.129 0.129 0.950
1 0.003 0.075 0.075 0.954 −0.004 0.128 0.128 0.950

0.5 200 0.25 0.003 0.235 0.228 0.948 0.015 0.378 0.385 0.960
0.5 0.001 0.225 0.215 0.940 0.017 0.373 0.378 0.955
0.75 −0.002 0.218 0.207 0.939 0.019 0.369 0.375 0.954
1 −0.002 0.213 0.200 0.942 0.018 0.367 0.372 0.961

500 0.25 0.001 0.136 0.140 0.954 0.004 0.237 0.240 0.944
0.5 −0.001 0.132 0.134 0.960 0.006 0.235 0.237 0.948
0.75 −0.001 0.127 0.130 0.956 0.007 0.233 0.236 0.948
1 0.001 0.125 0.127 0.953 0.006 0.232 0.235 0.944

1000 0.25 0.000 0.100 0.098 0.951 −0.001 0.170 0.170 0.951
0.5 −0.002 0.097 0.095 0.942 0.000 0.169 0.168 0.952
0.75 0.000 0.093 0.092 0.949 −0.002 0.169 0.167 0.945
1 0.002 0.091 0.090 0.945 −0.002 0.169 0.167 0.953

1 200 0.25 0.005 0.270 0.260 0.946 0.023 0.446 0.455 0.956
0.5 0.001 0.252 0.243 0.939 0.025 0.442 0.446 0.954
0.75 −0.000 0.248 0.232 0.938 0.020 0.438 0.442 0.960
1 −0.001 0.238 0.224 0.940 0.021 0.434 0.438 0.958

500 0.25 −0.008 0.155 0.159 0.953 0.009 0.286 0.285 0.946
0.5 −0.008 0.149 0.152 0.949 0.013 0.283 0.281 0.940
0.75 −0.003 0.144 0.147 0.958 0.012 0.278 0.279 0.948
1 −0.002 0.140 0.142 0.962 0.010 0.278 0.277 0.941

1000 0.25 −0.004 0.114 0.112 0.951 0.002 0.206 0.201 0.941
0.5 −0.004 0.111 0.108 0.946 0.004 0.205 0.199 0.939
0.75 0.000 0.105 0.104 0.949 0.003 0.204 0.198 0.937
1 0.001 0.103 0.101 0.943 0.000 0.203 0.197 0.945

have proper coverage probabilities. As expected, the variance estimates tend to
decrease as the sample size increases and the proportion of exact observations
increases. Additionally, we display the estimation results for A1(·) and A2(·) in
Figure 1, which further confirms the reliability of the proposed estimation pro-
cedures. The estimation results for Scenarios 2–3 can be found in Appendix A.4.
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Fig 1. Estimation results for (a) A1(t) = log(1 + t/2) and (b) A2(t) = 0.1t in Scenario 1
with γ = 0.5, under the logarithmic transformation G(x) = r−1 log(1 + rx) with r = 0. The
dotted, dashed and solid lines are for data sets with n = 200, 500, 1000, respectively. Bias,
SE, SEE, and CP stand, respectively, for the bias, empirical standard error, mean of the
estimated standard errors, and empirical coverage probability of the 95% confidence interval.
The figures are based on 1000 simulations and 1000 bootstraps.

The finite sample performance of the supremum test is examined under Sce-
nario 1, except we set A2(t) = κ · 0.1t with κ being a constant. We considered
testing A2(t) = 0. To examine the size of the test, we generated the data under
the null model with A2(t) = 0 (κ = 0). To examine the power of the test, we
generated the data under the alternative models with A2(t) 
= 0, using κ = 0.5,
1 and 1.5. We reject the null hypothesis at significance level 0.05 if the test
statistic S = sup0≤t≤τ |√nÂ2(t)| is greater than 0.95 quantile of 500 bootstrap
values of S∗ = sup0≤t≤τ |√n(Ã2(t) − Â2(t))|. The size and power of the test is
the percentage of rejection in 1000 simulations under the null model and alter-
native models, respectively. Table 2 shows satisfying finite sample performance.
The size of the test is approximately 0.05, the model (κ = 0) with a larger
r (r = 2) may require a larger sample size for better convergence. The power
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Table 2

Simulation results for the size and power of the supremum test at significance level 0.05
under a similar setting as Scenario 1 except for A2(t) = κ · 0.1t, where κ = 0 is for the null
model while κ = 0.5, 1 and 1.5 correspond to the alternatives. Each entry is based on 1000

simulations and 500 bootstraps.
n κ r = 0 r = 1 r = 2

500 0 0.047 0.024 0.017
0.5 0.268 0.069 0.019
1 0.746 0.234 0.063

1.5 0.966 0.473 0.138

1000 0 0.053 0.045 0.029
0.5 0.562 0.217 0.109
1 0.978 0.626 0.333

1.5 1.000 0.891 0.623

Table 3

Simulation results for estimation of the regression parameters with a misspecified r = 0
while the data is generated from rtrue value for Scenario 1, under the logarithmic

transformation G(x) = r−1 log(1 + rx). Here, rtrue can be any value from {0, 0.5, 1, 1.5, 2,
2.5, 3}. Bias, SE, SEE, and CP stand, respectively, for the bias, empirical standard error,

mean of the estimated standard errors, and empirical coverage probability of the 95%
confidence interval. Each entry is based on 1000 simulations and 1000 bootstraps.

β1 = 0.5 β2 = −0.5
γ n rtrue Bias SE SEE CP Bias SE SEE CP

0.5 500 0 0.001 0.110 0.111 0.950 0.004 0.177 0.183 0.954
0.5 −0.067 0.115 0.118 0.912 0.097 0.193 0.195 0.918
1 −0.112 0.122 0.125 0.863 0.151 0.207 0.206 0.883

1.5 −0.141 0.124 0.131 0.820 0.183 0.213 0.217 0.865
2 −0.160 0.131 0.137 0.789 0.207 0.225 0.225 0.843

2.5 −0.179 0.139 0.142 0.755 0.223 0.231 0.233 0.832
3 −0.193 0.148 0.146 0.751 0.239 0.240 0.241 0.833

0.5 1000 0 0.003 0.079 0.078 0.948 −0.005 0.128 0.129 0.945
0.5 −0.069 0.085 0.083 0.861 0.091 0.138 0.138 0.895
1 −0.109 0.090 0.088 0.759 0.144 0.149 0.146 0.831

1.5 −0.135 0.092 0.092 0.699 0.178 0.155 0.153 0.786
2 −0.156 0.097 0.096 0.623 0.199 0.163 0.159 0.779

2.5 −0.174 0.100 0.100 0.589 0.218 0.169 0.165 0.728
3 −0.184 0.104 0.103 0.556 0.229 0.176 0.170 0.712

increases as the sample size and κ increase.
We also conducted simulation studies to investigate the sensitivity of the

proposed estimator under the misspecification of the transformation function
within the class of logarithmic transformation functions, i.e., G(x) = r−1 log(1+
rx) (r ≥ 0). Table 3 reports the parameter estimation results under Scenario 1
with r misspecified as 0 while the data are generated from rtrue value, with the
proportion of exactly observed failure observations among those that are not
right-censored being 50%, i.e., γ = 0.5. The rtrue is taken from {0, 0.5, 1, 1.5, 2,
2.5, 3}. Biases are less than 0.1 for rtrue = 0.5. The misspecification of r values
led to increased biases and lower coverage probabilities than the nominal levels
as rtrue increases from 0.5 to 3.0. However, the proposed variance estimators
track the true variations well.
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Moreover, we demonstrate the better performance of the proposed method,
which accommodates different baseline cumulative hazard functions, over the
method in Zhou, Sun and Gilbert (2021) that assumes the same baseline cu-
mulative hazard across all individuals, through a simulation example. Specif-
ically, we generated the data from the Cox-Aalen transformation model with
two different baseline cumulative hazard functions. Ignoring the difference and
erroneously assuming the same cumulative hazard function, it results in biased
estimation of the survival function and cumulative hazard. Therefore, the pro-
posed method is more adept at capturing complex cumulative hazard functions.
See Appendix A.4 for details.

7. Application

The AIDS Clinical Trials Group (ACTG) 175 trial enrolled a cohort of 2467
persons living with HIV-1 (PLWH) whose CD4 cell counts ranged from 200 to
500 per cubic millimeters (Hammer et al., 1996). These patients included those
who had received antiretroviral therapy prior to the study (ART-experienced)
and those who had not (ART-naïve). The primary objective of the study was to
compare the efficacy of four antiretroviral regimens – zidovudine only, zidovu-
dine + didanosine, zidovudine + zalcitabine, and didanosine only – in reducing
mortality or AIDS morbidity among PLWH (Hammer et al., 1996). Patients in
the trial were randomly assigned to one of the antiretroviral regimens and un-
derwent examinations at weeks 2, 4, and 8, followed every 12 weeks thereafter.
Their CD4 cell counts were measured within 30 days before randomization and
at each follow-up visit from week 8 onwards. The primary endpoint of the study
was a composite outcome defined as the first event among (1) CD4 failure: a
CD4 cell count at or below 50 percent of the average of two pre-treatment/base-
line counts that is confirmed by a second count obtained within 3 to 21 days; (2)
AIDS: development of the acquired immunodeficiency syndrome (AIDS) defined
by the 1987 Centers for Disease Control criteria (CDC, 1987); and (3) death. If
the first event is death, it is observed exactly. If the first event is CD4 failure or
AIDS, the exact failure time is unknown due to periodic examinations, resulting
in an interval-censored observation. If none of the three event types occurred by
the last examination, a right-censored observation is obtained.

After excluding 10 participants without CD4 cell count measurements, 2457
PLWH were included in the full cohort for analysis. Among them, 1396 (56.82%)
were in the ART-experienced group, while 1061 (43.18%) were in the ART-naïve
group. A total of 306 primary endpoints (12.45%) were recorded in the full
cohort, with 230 CD4 failure or AIDS events (9.36%) and 76 deaths (3.09%).
More specifically, we observed 215 cases in the ART-experienced group, with
167 CD4 failure or AIDS events and 48 deaths, while 91 cases occurred in the
ART-naïve group, with 63 CD4 failure or AIDS events and 28 deaths.

We consider the following Cox-Aalen transformation model

Λ(t | X, Z(·)) = G
[ ∫ t

0
exp

{
β1Z1(s) + β2Z2 + β3X2Z2

}
dΛX(s)

]
, (17)
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Fig 2. Estimated survival probabilities for the ART-experienced and ART-naïve groups using
the full cohort under model (17) for the ACTG 175 trial. Here, S25, S50 and S75 represent
the 25th, 50th and 75th percentile of log10 (CD4), respectively. Moreover, Z0 and Z1 stand
for the control and treatment groups, respectively.

where β1, β2 and β3 are unknown regression coefficients. In this model, Z1(s)
is the time-dependent covariate log10(CD4), and Z2 denotes the treatment
indicator, i.e., 1 = three regimens pooled (zidovudine + didanosine, zidovu-
dine + zalcitabine, didanosine only) and 0 = zidovudine only. In addition,
ΛX(t) = A1(t) + A2(t)X2, where X2 takes on values of 1 or 0 depending on
whether the patient is in the ART-experienced or ART-naïve group, respectively.
Since CD4 cell counts were only measured at scheduled times, linear interpo-
lation was used to create CD4 cell count curves by connecting their values at
measurement times. We fitted model (17) with the logarithmic transformation
G(x) = r−1 log(1 + rx). To choose the optimal value of r, we plotted the log-
likelihood against r, with values of r from 0 to 3 in increments of 0.1, as shown
in Figure 3. Based on this plot, we selected r = 2 as the best-fit value. Table 4
presents the estimation results for the selected model, including estimates of the
model parameters and their standard errors. For comparison, we also report the
estimation results for r = 0 and r = 1.

From the upper panel of Table 4, a lower value of log10(CD4) is associated
with a significantly higher risk of the composite endpoint in all models con-
sidered. The treatment is significant under the model r = 0 and marginally
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Fig 3. Log-likelihood function for the estimated model under G(x) = r−1 log(1 + rx) with r
values in the interval [0, 3] and a step size of 0.1.

Table 4

Regression analysis results for the ACTG 175 trial. Est and SE stand for the estimates of
the regression parameters and the estimated standard errors, respectively. The selected r
values for the full cohort, ART-naïve group (using the ZL model) and ART-experienced

(ART) group (using the ZL model) are 2, 2.8 and 1.7, respectively.

r = 0 r = 1 Selected r
Covariates Est SE p-value Est SE p-value Est SE p-value

Full cohort under model (17)
log10 (CD4) −2.749 0.119 0.000 −3.538 0.160 0.000 −4.050 0.187 0.000
Treatment −0.524 0.224 0.019 −0.440 0.258 0.088 −0.388 0.281 0.167
Treatment · ART 0.621 0.281 0.027 0.678 0.335 0.043 0.641 0.369 0.082

ART-naïve
log10 (CD4) − 2.811 0.207 0.000 −3.607 0.310 0.000 −4.497 0.415 0.000
Treatment −0.533 0.232 0.022 −0.439 0.262 0.094 −0.342 0.306 0.264

ART
log10 (CD4) −2.717 0.142 0.000 −3.503 0.193 0.000 −3.867 0.218 0.000
Treatment 0.094 0.169 0.578 0.232 0.212 0.274 0.245 0.230 0.287

significant under the model r = 1. Notably, the treatment effect varies between
the ART-experienced and ART-naïve groups. The estimated coefficient for treat-
ment is negative in the ART-naïve group, indicating that the treatment group
(Z2 = 1) has a significantly lower risk of the composite endpoint. In contrast,
the estimated coefficient is positive in the ART-experienced group, suggesting
that the control group (Z2 = 0) has a lower risk. The estimated effect for the
interaction term between Treatment and ART-experienced status is significant
for r = 0 and r = 1 and marginally significant for r = 2. Figure 2 supports these
findings.

We also conducted separate analyses of the ART-experienced and ART-naïve
groups using the ZL model, and compared the results with those obtained us-
ing the proposed model. From the lower two panels of Table 4, we found that
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Fig 4. Estimated cumulative regression functions for the ART-experienced and ART-naïve
groups in the ACTG 175 trial, represented by Â1(t) + Â2(t) and Â1(t), respectively. Here,
G(x) = r−1 log(1 + rx) with r = 0, 1, and 2 (selected).

the estimated effects of log10(CD4) and Treatment are similar, while the SE
using the ZL model are larger with slightly larger p-values. However, one ben-
efit of using the proposed model is the assessment of the interaction between
Treatment and ART-experienced status. The result shows that the treatment
effect is significantly different for the ART-experienced and ART-naïve groups.
Additionally, Figure 4 provides further insight into the estimated baseline cu-
mulative regression functions in the ART-experienced and ART-naïve groups
using the proposed model. The figure illustrates that the risk of the composite
endpointcrosses, i.e., patients in the ART-experienced group have a higher risk
than those in the ART-naïve group at the beginning of the study and through an
earlier stage; however, after a certain point, the risk is higher in the ART-naïve
group. Given patients were not randomized to the ART-experienced vs. ART-
naïve group, it is challenging to interpret the crossing risk curves. The explana-
tion may have to do with the differential timing of drug resistance in the two
groups and/or correlations of ART-experienced status with prognostic factors.

Although Figure 4 shows that Â2(t) is distinct from 0 for r = 0, 1 and 2,
the hypothesis testing of A2(t) = 0 does not indicate a significant difference in
the cumulative baseline hazard functions for the ART-experienced and ART-
naïve groups. The p-values are 0.338, 0.315 and 0.364, respectively, for r = 0,
1 and 2. The diagnostics plot given in Figure 5 shows Â2(t) versus 50 weighted
bootstraps of Ã2(t)− Â2(t) for r = 0, 1 and 2 (selected), which shows that Â2(t)
does not deviate from the reference distribution generated by the bootstrap
samples. The large variability in Â2(t) could have contributed to the lack of
clear evidence for rejecting the null hypothesis. Nevertheless, the ACTG 175
trial example demonstrates the utility of the proposed statistical methods for
Cox-Aalen transformation models with partly interval-censored data and its
potential in enhancing statistical power for discovering treatment effects. Table 4
shows reduced estimation standard errors by allowing different baseline hazard
functions for the ART-experienced and ART-naïve groups even though there is
a lack of statistical significance.
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Fig 5. A diagnosis plot that shows Â2(t) versus 50 weighted bootstraps of Ã2(t) − Â2(t) for
r = 0, 1 and 2 (selected) under the logarithmic transformation G(x) = r−1 log(1 + rx) for the
ACTG 175 trial.

8. Discussion

The maximum likelihood approach has yet to be thoroughly explored for addi-
tive hazards models. The existing literature often uses the least squares principle
(Aalen, 1980, 1989; Huffer and McKeague, 1991; Scheike and Zhang, 2002) to
estimate the cumulative effect of covariates. Most recently, Boruvka and Cook
(2015) proposed semiparametric maximum likelihood estimation for the Cox-
Aalen model with fixed covariates from interval-censored data. Nevertheless,
performing maximum likelihood estimation with additive components can be
highly challenging, and we propose an alternative estimating equation approach
that is fast and stable with theoretical guarantees. Note that the theoretical de-
velopment in this paper is for partly interval-censored data. For purely interval-
censored data, we conjecture that Â would converge to A0 slower than the
parametric rate, and it would require new arguments to finish the proof. We
leave this for future research.

For real data applications, one must assess the adequacy of the prespecified
function G as misspecifying this function can result in erroneous inferences.
Chen, Lin and Zeng (2012) considered appropriate time-dependent residuals and
constructed various graphical and numerical procedures for model assessment. In
the analysis of the ACTG 175 trial, we assumed that the function G is indexed
by a parameter r, and selected the value that maximizes the estimated log-
likelihood function. Model fitting based on this process of selecting r is known
to generate the post-model-selection inference problem. Further research would
be of interest to investigate other approaches such as sample-splitting and cross-
fitting to allow valid inference (Zhang, Khalili and Asgharian, 2022). It would be
worthwhile to develop formal diagnostic procedures to check the appropriateness
of the G function and other model assumptions. In addition, determining the
appropriate additive and multiplicative covariates can also be a challenging task,
especially when prior knowledge is limited. One approach to address this issue
is to evaluate different combinations of additive and multiplicative covariates,
calculate the AIC for each model, and select the model with the lowest AIC as
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the best fit (Qu and Sun, 2019; Yu et al., 2019). However, rigorous evaluation
methods are still needed, which are left for future work.

In addition, because the ART-experienced vs. ART-naïve group was not ran-
domized, the analysis should adjust for potential confounders of the effect of
ART-experienced status on the composite endpoint. Being ART experienced
during the time of the ACTG 175 trial would likely mean receipt of zidovu-
dine (AZT) monotherapy, for which drug resistance mutations rapidly develop.
Therefore, the subsequent use of ART, especially AZT monotherapy, is hypoth-
esized to place ART-experienced individuals at greater risk of the composite
endpoint compared to ART-naïve individuals whose viral populations were not
under selection pressure for the acquisition of resistance.

Lastly, while the proposed framework could potentially be extended to handle
competing risks, this extension is not straightforward. Exploring this direction
in future research would be of interest.

Appendices

In Section A.1, we give the details of the M-step for nonparametric maximum
likelihood estimator (NPMLE) when X is a vector of design variables for cate-
gories. In Section A.2, we show that the ES algorithm proposed in Section 3.3
and the EM algorithm in Section 3.2 are equivalent when X is a vector of de-
sign variables for categories. In Section A.3, we provide detailed proofs of Theo-
rems 4.1–4.3 in Section 4. Additional simulation results are given in Section A.4.

A.1. The proposed NPMLE in a special case

In Section 3.2, we derived a nonparametric maximum likelihood estimator (NPMLE)
for the proposed model with partly interval-censored data. Specifically, the
NPMLE can be obtained via an EM algorithm where we solve the following
set of equations (12) and (13) in the M-step of the main paper.

Here, we demonstrate that (12) and (13) for the NPMLE can be efficiently
solved in the special case when X is a vector of design variables for cate-
gories. Let J be a categorical variable with q levels. Without loss of generality,
we assume that J takes values in {1, . . . , q}. Let X = (1, X2, . . . , Xq) where
X2, . . . , Xq are group indicators, i.e., X2 = I(J = 2), . . . , Xq = I(J = q). Here,
J = 1 is considered as the reference group. We propose the following Gauss-
Seidel method to jointly solve (12) and (13). Start with some initial values of
the unknown parameters.

Step 1. Fixing β, we update ak = (a1k, . . . , aqk)�(k = 1, . . . , m) by solv-
ing (12). Note that for a fixed k, (12) can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
i=1 I(Ji = 1)I(tk ≤ R∗

i )
{

Ê(Wik)
a1k

− Ê(ξi) exp(β�Zik)
}

= 0∑n
i=1 I(Ji = 2)I(tk ≤ R∗

i )
{

Ê(Wik)
a1k+a2k

− Ê(ξi) exp(β�Zik)
}

= 0
· · ·∑n

i=1 I(Ji = q)I(tk ≤ R∗
i )
{

Ê(Wik)
a1k+aqk

− Ê(ξi) exp(β�Zik)
}

= 0.
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Hence, we obtain that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1k =
∑n

i=1 I(Ji=1)I(tk≤R∗
i )Ê(Wik)∑n

i=1 I(Ji=1)I(tk≤R∗
i )Ê(ξi) exp(β�Zik)

a2k =
∑n

i=1 I(Ji=2)I(tk≤R∗
i )Ê(Wik)∑n

i=1 I(Ji=2)I(tk≤R∗
i )Ê(ξi) exp(β�Zik) − a1k

· · ·
aqk =

∑n
i=1 I(Ji=q)I(tk≤R∗

i )Ê(Wik)∑n
i=1 I(Ji=q)I(tk≤R∗

i )Ê(ξi) exp(β�Zik) − a1k.

(A.1)

Step 2. Fixing a1, . . . , am, we update β by solving (13) using the Newton-
Raphson method. We iterate between Steps 1 and 2 until convergence.

A.2. Equivalence between the proposed ES and EM estimators in a
special case

In this subsection, we show that when X is a vector of design variables for
categories, the ES algorithm proposed in Section 3.3 coincides with the EM
algorithm proposed in Section 3.2. To show this, it suffices to prove that for a
fixed β, equations (12) and (15) in the main paper share the same solution in
terms of ak (k = 1, . . . , m).

Let J be a categorical variable with q levels, as defined in Appendix A.1. It
is worth noting that for a fixed k, equation (15) for the ES estimator can be
expressed as follows:

n∑
i=1

I(tk ≤ R∗
i )
{

Ê(Wik) − Ê(ξi)(X�
ikak) exp(β�Zik)

}
Xik = 0,

which in this special case is equivalent to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑n
i=1 I(Ji = 1)I(tk ≤ R∗

i )
{

Ê(Wik) − Ê(ξi) exp(β�Zik)a1k

}
= 0∑n

i=1 I(Ji = 2)I(tk ≤ R∗
i )
{

Ê(Wik) − Ê(ξi) exp(β�Zik)(a1k + a2k)
}

= 0
· · ·∑n

i=1 I(Ji = q)I(tk ≤ R∗
i )
{

Ê(Wik) − Ê(ξi) exp(β�Zik)(a1k + aqk)
}

= 0.

(A.2)
It is evident that (A.1) is the unique solution to (A.2) and, consequently, the
unique solution to equation (15). Furthermore, in Section A.1, we demonstrated
that (A.1) is also the unique solution to equation (12) in this particular case.
Thus, when X represents a vector of design variables for categories, the ES and
EM estimators coincide with each other.

A.3. Proofs of Theorems

Lemmas used in the proofs of Theorem 4.1–4.3 in Sections A.3.1–A.3.3 are given
in Section A.3.4.



264 X. Ning et al.

A.3.1. Proof of Theorem 4.1

For convenience, we may drop the i from {Δi, Ti, Li, Ri, Xi, Zi, ξi, Wik, tik} when
it does not cause confusion. Let

ρ0(t; ϑ) =
∫ t

0
exp{β�Z(s)}X�(s)dA(s)

and
ρ1(t; ϑ) =

∫ t

0
exp{β�Z(s)}Z(s)X�(s)dA(s).

In addition, let g1(·) = G′(·)−G′′(·)/G′(·). Setting t = tk, from the deviations in
E-step in Section 3.3, the posterior mean of the latent Poisson random variable
Wik given the observed data can be written as

ΔI(T = t)+(1−Δ)I(L < t ≤ R)I(R < ∞)H1(L, R; ϑ) exp{β�Z(t)}X�(t)dA(t),

where

H1(L, R; ϑ) = exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)}
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞) ,

and the posterior mean of ξ can be written as

Ê(ξ) = Δg1{ρ0(T ; ϑ)} + (1 − Δ)H2(L, R; ϑ),

where

H2(L, R; ϑ)

= exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)} − exp[−G{ρ0(R; ϑ)}]G′{ρ0(R; ϑ)}I(R < ∞)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞) .

Let P and Pn denote the true probability measure and empirical measure,
respectively. The proposed ES estimator ϑ̂ = (β̂, Â) is a Z-estimator solving the
following observed-data estimating equation

Pn

(
Φ1(ϑ)

Φ2(ϑ)(t)

)
= 0 for all t ∈ [0, τ ], (A.3)

where

Φ1(ϑ)
= ΔZ(T )

+ (1 − Δ)H1(L, R; ϑ)
∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�Z(t)Z(t)X�(t)dA(t)

−
[
Δg1{ρ0(T ; ϑ)} + (1 − Δ)H2(L, R; ϑ)

]∫ τ

0
I(t ≤ R∗)eβ�Z(t)Z(t)X�(t)dA(t)

(A.4)
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and

Φ2(ϑ)(t) = ΔX(t)I(t = T ) − ΔI(t ≤ R∗)g1{ρ0(T ; ϑ)}eβ�Z(t)X(t)X�(t)dA(t)

+ (1 − Δ)H1(L, R; ϑ)I(L < t ≤ R)I(R < ∞)eβ�Z(t)X(t)X�(t)dA(t)

− (1 − Δ)I(t ≤ R∗)H2(L, R; ϑ)eβ�Z(t)X(t)X�(t)dA(t). (A.5)

There are an infinite number of estimating equations in (A.3). To resolve this,
we consider

Φ1(ϑ)[h0]

= Δh�
0 Z(T )−Δg1{ρ0(T ; ϑ)}

∫ τ

0
I(t ≤ R∗)eβ�Z(t){h�

0 Z(t)}X�(t)dA(t)

+(1−Δ)H1(L, R; ϑ)
∫ τ

0
I(L<t≤R)I(R<∞)eβ�Z(t){h�

0 Z(t)}X�(t)dA(t)

−(1−Δ)H2(L, R; ϑ)
∫ τ

0
I(t≤R∗)eβ�Z(t){h�

0 Z(t)}X�(t)dA(t), (A.6)

where h0 ∈ R
d, and

Φ̃2(ϑ)[h]

= Δh(T ) ◦ X(T ) − Δg1{ρ0(T ; ϑ)}
∫ τ

0
I(t ≤ R∗)eβ�Z(t){h(t) ◦ X(t)}X�(t)dA(t)

+ (1 − Δ)H1(L, R; ϑ)
∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�Z(t){h(t) ◦ X(t)}X�(t)dA(t)

− (1 − Δ)H2(L, R; ϑ)
∫ τ

0
I(t ≤ R∗)eβ�Z(t){h(t) ◦ X(t)}X�(t)dA(t). (A.7)

Here, h = (h1, . . . , hq)� is a vector of q functions, where each hj (j = 1, . . . , q)
belongs to the space of all functions of bounded variation over [0, τ ] with a bound
equal to 1, denoted as BV1[0, τ ]. The notation a ◦ b represents the component-
wise product of two vectors a and b of the same size. Hence, h ∈ BV q

1 [0, τ ],
where BV q

1 [0, τ ] stands for the product space BV1[0, τ ] × · · · × BV1[0, τ ]. It is
easy to see that PnΦ̃2(ϑ)[h] = 0 for every h ∈ BV q

1 [0, τ ] is equivalent to

PnΦ2(ϑ)[h] = 0 for every h ∈ BV q
1 [0, τ ],

where

Φ2(ϑ)[h]

=
q∑

j=1
Δ
[
hj(T )Xj(T ) − g1{ρ0(T ; ϑ)}

∫ τ

0
I(t ≤ R∗)eβ�Z(t)hj(t)Xj(t)X�(t)dA(t)

]

+
q∑

j=1
(1 − Δ)H1(L, R; ϑ)

∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�Z(t)hj(t)Xj(t)X�(t)dA(t)

−
q∑

j=1
(1 − Δ)H2(L, R; ϑ)

∫ τ

0
I(t ≤ R∗)eβ�Z(t)hj(t)Xj(t)X�(t)dA(t). (A.8)
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Therefore, the equations PnΦ1(ϑ) = 0 and PnΦ2(ϑ)(t) = 0 for every t ∈ [0, τ ]
in (A.3) are equivalent to equations PnΦ1(ϑ)[h0] = 0 for every h0 ∈ R

d and
PnΦ2(ϑ)[h] = 0 for every h ∈ BV q

1 [0, τ ], respectively. Several research studies
have used similar techniques to develop and analyze Z-estimators, including the
works of van der Vaart and Wellner (1996, Section 3.3.1) and Gao, Zeng and
Lin (2017) among others. Thus, the proposed ES estimator ϑ̂ is equivalent to
the solution of the estimating equation

PnΦ(ϑ)[h̃] ≡ PnΦ1(ϑ)[h0]+PnΦ2(ϑ)[h], for every h̃ = (h0, h) ∈ R
d × BV q

1 [0, τ ].
(A.9)

Let H = Rd × BV q[0, τ ]. We define the norm ‖h̃‖H = ‖h0‖d +
∑q

j=1 ‖hj‖v,
where ‖hj‖v is the sum of absolute value of hj(0) and the total variation of hj

on [0, τ ]. In addition, let H be a subset of H with ‖h̃‖H ≤ M < ∞, and �∞(H)
be the collection of all bounded functions from H to R.

Let h̃ = (h0, h) ∈ H. It is easy to note that the function PnΦ(ϑ)[h̃] is a map
from R

d × BV q[0, τ ] to l∞(H). Let Bδ(ϑ0) = {ϑ = (β, A) : ‖β − β0‖d + ‖A −
A0‖ρ < δ}, where δ > 0. For any ϑ in Bδ(ϑ0), we write Ψ(ϑ)[h̃] = PΦ(ϑ)[h̃]
and Ψn(ϑ)[h̃] = PnΦ(ϑ)[h̃]. Note that Ψ(ϑ)[h̃] and Ψn(ϑ)[h̃] depend on h̃. To
suppress notations, we write Ψ(ϑ) and Ψn(ϑ) for Ψ(ϑ)[h̃] and Ψn(ϑ)[h̃], respec-
tively, when there is no confusion. We prove the local consistency of ϑ̂ = (β̂, Â)
by verifying the three conditions in Theorem 1.20 (the implicit function theo-
rem) (Schwartz, 1969). These conditions are (1)Ψn(ϑ)[h̃] is Fréchet-differentiable
in Bδ(ϑ0) with some δ > 0; (2) the corresponding Fréchet derivative map de-
pends continuously on ϑ in Bδ(ϑ0); (3) this map evaluated at ϑ0 is a bounded
linear map with a bounded linear inverse. We verified the first two conditions
in Lemma A.2 and the third condition in Lemma A.4 in Section A.3.4.

By Lemma A.1, the class {Φ(ϑ)[h̃] : ϑ ∈ Bδ(ϑ0), h̃ ∈ H} is a Donsker class
for some δ > 0. The class {Φ(ϑ0)[h̃] : h̃ ∈ H} is also Donsker via Theorem 2.10.1
in van der Vaart and Wellner (1996) because the latter class is a subset of the
former class. By Donsker properties,

PnΦ(ϑ0)[h̃] − PΦ(ϑ0)[h̃] = op(1),

or equivalently, Ψn(ϑ0) − Ψ(ϑ0) = op(1). In addition, Ψ(ϑ0) = PΦ(ϑ0)[h̃] = 0
can be easily checked by double expectation properties. Therefore, Ψn(ϑ0) =
op(1). By Lemmas A.2 and A.4, we verified all three conditions of the implicit
function theorem (Schwartz, 1969), and hence it yields that Ψn(ϑ) is a one-to-
one map from Bδ(ϑ0) onto a neighborhood of zero for large n and sufficiently
small δ > 0. As a result, for an arbitrary small δ > 0 and large n, there exists
ϑ̂ = (β̂, Â) with (‖β̂ − β0‖d + ‖Â − A0‖ρ) < δ and Ψn(ϑ̂) = PnΦ(ϑ̂)[h̃] = 0 for
any h̃ ∈ H. This proves the consistency of ϑ̂ = (β̂, Â).
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A.3.2. Proof of Theorem 4.2

We establish the asymptotic normality of ϑ̂ = (β̂, Â) by applying Theorem 3.3.1
and Lemma 3.3.5 of van der Vaart and Wellner (1996). Let

GnΦ(ϑ)[h̃] = n1/2
{

Ψn(ϑ)[h̃] − Ψ(ϑ)[h̃]
}

,

where Ψn(ϑ)[h̃] = PnΦ(ϑ)[h̃] and Ψ(ϑ)[h̃] = PΦ(ϑ)[h̃]. We begin by showing
that GnΦ(ϑ0)[h̃] converges in distribution to a tight random element W in
l∞(H). By Lemma A.1, the class {Φ(ϑ)[h̃] : ϑ ∈ Bδ(ϑ0), h̃ ∈ H} is P-Donkser.
It follows that the class {Φ(ϑ0)[h̃] : h̃ ∈ H}, as a subset of a Donsker class, is also
Donsker (van der Vaart and Wellner, 1996, Theorem 2.10.1). We note that the
function Φ(ϑ)[h̃] involves the terms g1{ρ0(T ; ϑ)}, H1(L, R; ϑ) and H2(L, R; ϑ),
of which the denominators are all bounded away from 0 as argued in Lemma A.1.
Then, under Conditions 1–5, we have

sup
h̃∈H

‖Ψ(ϑ0)[h̃]‖ < ∞.

Hence, GnΦ(ϑ0)[h̃] = n1/2
{

Ψn(ϑ0)[h̃] − Ψ(ϑ0)[h̃]
}

converges weakly to a zero-
mean Gaussian process W in l∞(H).

By Lemma A.2, the Fréchet-differentiablility of Ψ(ϑ) at ϑ = ϑ0 can be checked
straightforwardly. In particular, we consider one-dimensional submodels η →
ϑ0 + η(ϑ − ϑ0) and calculate the Fréchet derivative Ψ̇ϑ0(ϑ − ϑ0) using the the
weaker form

Ψ̇ϑ0(ϑ − ϑ0) = dΨ(ϑ0 + η(ϑ − ϑ0))
dη

∣∣∣∣
η=0

= Q�
1 [h̃](β − β0) +

∫ τ

0
Q2[h̃](t)d(A(t) − A0(t)).

Detailed calculations and expressions for Q1[h̃] and Q2[h̃](·) are given in Lemma
A.2. In particular, Q1[h̃] and Q2[h̃](·) are given by (A.13). Furthermore, Lemma
A.3 establishes the invertibility of the Fréchet derivative map Ψ̇ϑ0 .

Next, we verify condition (3.3.4) of Theorem 3.3.1 (van der Vaart and Wellner,
1996), which is sufficient to verify the conditions in Lemma 3.3.5 of van der
Vaart and Wellner (1996). Since the classes

{
Φ(ϑ)[h̃] : ϑ ∈ Bδ(β0, A0), h̃ ∈ H

}
and {Φ(ϑ0)[h̃] : h̃ ∈ H} are both Donsker classes, the class {Φ(ϑ)[h̃]−Φ(ϑ0)[h̃] :
ϑ ∈ Bδ(β0, A0), h̃ ∈ H} is also P-Donsker for some δ > 0 because the sum of
two bounded Donsker classes is still a Donsker class (van der Vaart and Wellner,
1996, Example 2.10.7). Under Conditions 1–5, it easy to note that Φ(ϑ)[h̃] is a
continuous function over ϑ. In addition, h̃(t) has bounded total variation over
[0, τ ]. Hence, Φ(ϑ)[h̃] converges to Φ(ϑ0)[h̃] pointwise and uniformly in h̃. By
the dominated convergence theorem,

sup
h̃∈H

P{Φ(ϑ)[h̃] − Φ(ϑ0)[h̃]}2 → 0,
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as ϑ → ϑ0 (van der Vaart and Wellner, 1996, p. 317). The consistency of ϑ̂ has
been proved, i.e., ϑ̂ converges to ϑ0 almost surely. Hence, applying Lemma 3.3.5
(van der Vaart and Wellner, 1996), we have

‖Gn(Φ(ϑ̂) − Φ(ϑ0))‖ = op∗(1 + n1/2‖ϑ̂ − ϑ0‖), (A.10)

where op∗(1) denotes convergence to zero in outer probability. Note that equa-
tion (A.10) can be written as

n1/2(Ψn − Ψ)(ϑ̂) − n1/2(Ψn − Ψ)(ϑ0) = op∗(1 + n1/2‖ϑ̂ − ϑ0‖).

In brief, we have shown that (1) GnΦ(ϑ0)[h̃] converges in distribution to a
tight random element W; (2) the continuous invertibility of the operator Ψ̇ϑ0 ;
(3) condition (3.3.2) of van der Vaart and Wellner (1996, Theorem 3.3.1); (4)
Ψ(ϑ0) = 0 and Ψn(ϑ̂) = 0. The last statement is a trivial result by the definitions
of ϑ0 and ϑ̂. According to Theorem 3.3.1 of van der Vaart and Wellner (1996),
we obtain

n1/2Ψ̇ϑ0(ϑ̂ − ϑ0) = −n1/2(Ψn − Ψ)(ϑ0) + op∗(1).

Finally, the continuous mapping theorem implies

n1/2(ϑ̂ − ϑ0) � −Ψ̇−1
ϑ0

W.

This proves the asymptotic normality of ϑ̂.

A.3.3. Proof of Theorem 4.3

Let e1, . . . , en be positive i.i.d random variables with a standard exponential
distribution. Hence, μ = E(e1) = 1 < ∞, σ2 = var(e1) = 1 < ∞ and
‖e1‖ < ∞, where ‖e1‖ =

∫∞
0

√
P (|e1| > x)dx. The last inequality is satisfied

because the (2 + ε) moment of a standard exponential distribution exists for
any ε > 0 (Kosorok, 2008, p.20). In addition, we assume that e1, . . . , en are in-
dependent of the observed data Oi = {Δi, ΔiTi, (1 − Δi)Li, (1 − Δi)Ri, Xi, Zi}
(i = 1, . . . , n).

Let ẽi = ei/ē, where ē = n−1∑n
i=1 ei. Let P̃nf = n−1∑n

i=1 ẽif(Oi) denote
the weighted bootstrapped empirical process for any measurable function f .
Let Ψ̃n be Ψn but with Pn replaced by P̃n and ϑ̃ = (β̃, Ã) be the weighted
bootstrap estimator that solves Ψ̃n(ϑ) = 0. Let Ψ̃(ϑ) = P

(
ẽ · Φ(ϑ)[h̃]

)
, where

ẽ be a generic version of ẽ1. By Lemma A.1, the class of functions
{

Φ(ϑ)[h̃] :
ϑ ∈ Bδ(ϑ0), h̃ ∈ H

}
is P-Donsker for some fixed δ > 0. Hence, so is the class{

ẽ · Φ(ϑ)[h̃] : ϑ ∈ Bδ(ϑ0), h̃ ∈ H
}

via the multiplier central limit theorem
(Kosorok, 2008, Theorem 10.1). We also note that P

(
ẽ · Φ(ϑ)[h̃]

)
= P

(
Φ(ϑ)[h̃]

)
,

which implies Ψ̃(ϑ) = Ψ(ϑ). Trivially, the consistency of ϑ̃ holds by similar
arguments in proving Theorem 4.1.
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The weighted bootstrap empirical process is defined as

G̃nΦ(ϑ)[h̃] = n1/2
{
P̃nΦ(ϑ)[h̃] − PnΦ(ϑ)[h̃]

}
.

Applying the Taylor series expansion, we have

0 = P̃nΦ(ϑ̃)[h̃] − P̃nΦ(ϑ̂)[h̃] + P̃nΦ(ϑ̂)[h̃] − PnΦ(ϑ̂)[h̃]

=
(

∂P̃nΦ(ϑ)[h̃]
∂ϑ

∣∣∣∣
ϑ=ϑ̂

)
(ϑ̃ − ϑ̂) + (P̃n − Pn)Φ(ϑ̂)[h̃] + op(‖ϑ̃ − ϑ0‖ + ‖ϑ̂ − ϑ0‖)

(A.11)

By Theorem 2.6 of Kosorok (2008), the conditional distribution of (P̃n−Pn)Φ(ϑ̂)[h̃]
given the data is asymptotically equivalent to the distribution of (Pn−P )Φ(ϑ̂)[h̃]
by the fact that μ = σ2 = 1 with a sequence of i.i.d standard exponential random
variables. Hence, (A.11) can be written as

n1/2Ψ̇ϑ0(ϑ̃ − ϑ̂) = −n1/2(P̃n − Pn)Φ(ϑ̂)[h̃] + op(1)

= −n1/2(Pn − P )Φ(ϑ̂)[h̃] + op(1)

= −GnΦ(ϑ0)[h̃] + op(1).

Thus, Lemma A.3 and the continuous mapping theorem give

n1/2(ϑ̃ − ϑ̂) � −Ψ̇−1
ϑ0

W.

We conclude that n1/2(ϑ̃− ϑ̂) converges to a zero-mean Gaussian process. More-
over, n1/2(ϑ̃ − ϑ̂) and n1/2(ϑ̂ − ϑ0) have the same asymptotic distribution.

A.3.4. Lemmas for Theorem 4.1–4.3

This subsection presents the lemmas used in the proof of Theorem 4.1–4.3 along
with their proofs.

Lemma A.1. Under Conditions 1–5, the class of functions {Φ(ϑ)[h̃] : ϑ ∈
Bδ(ϑ0), h̃ ∈ H} is P-Donsker for some fixed δ > 0.

Proof of Lemma A.1. To show the class{
Φ(ϑ)[h̃] = Φ1(ϑ)[h0] + Φ2(ϑ)[h] : ϑ ∈ Bδ(ϑ0), h̃ = (h0, h) ∈ H

}
is P-Donsker for some δ > 0, we need to show that each component is Donsker.
Then the desired conclusion follows by the Donsker preservation properties
(Kosorok, 2008, Corollary 9.32), i.e., the summation and multiplication of P-
Donsker classes are also P-Donsker classes.

By Condition 1, X(t) and Z(t) are uniformly bounded with uniformly bounded
total variations over [0, τ ]. Trivially, the classes {X(t) : t ∈ [0, τ ]} and {Z(t) :
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t ∈ [0, τ ]} are Donsker by Theorem 2.7.5 (van der Vaart and Wellner, 1996)
and Example 19.11 (van der Vaart, 1998). The classes {X(T )} and {Z(T )}
are also Donsker classes because they are subsets of some Donsker classes. The
classes {Δ} and {1 − Δ} are both P-Donsker because they are bounded and
square-integrable (van der Vaart, 1998, p.270). Condition 2 indicates that the
class {β ∈ B} is a Donsker class, and so is {β�Z(t) : t ∈ [0, τ ], β ∈ B} as
the product of two bounded Donsker classes is also a Donsker class. The class
{eβ�Z(t), β ∈ B, t ∈ [0, τ ]} is P-Donsker since exponentiation is Lipschitz con-
tinuous on compact sets.

Note that

ρ0(T ; ϑ) =
∫ T

0
exp{β�Z(s)}X�(s)dA(s) =

q∑
j=1

∫ T

0
exp{β�Z(s)}Xj(s)dAj(s).

Under Condition 2, each Aj(t) (j = 1, . . . , q) has bounded total variation over
[0, τ ]. By Theorem 7.2.4 in Dudley (2002), we can find two nondecreasing func-
tions Aj1(t) and Aj2(t) such that Aj(t) = Aj1(t) − Aj2(t). Thus,∫ T

0
eβ�Z(s)Xj(s)dAj(s) =

∫ T

0
eβ�Z(s)Xj(s)dAj1(s)−

∫ T

0
eβ�Z(s)Xj(s)dAj2(s).

Following Zeng, Mao and Lin (2016), the class {
∫ T

0 eβ�Z(s)Xj(s)dAj1(s) : ϑ ∈
Bδ(ϑ0)} is a Donsker class because it is a convex hull of functions {I(T ≥
s) exp{β�Z(s)}Xj(s)}. Likewise, the class {

∫ T

0 eβ�Z(s)Xj(s)dAj2(s) : ϑ ∈ Bδ(ϑ0)}
is P-Donsker. Hence, the class {

∫ T

0 eβ�Z(s)Xj(s)dAj(s) : ϑ ∈ Bδ(ϑ0)} is P-
Donsker because the sum of bounded Donsker classes is also Donsker. It follows
that the class {Δρ0(T ; ϑ) : ϑ ∈ Bδ(ϑ0)} is a Donsker class. Similarly, the follow-
ing classes

{(1 − Δ)ρ0(L; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

(1 − Δ)
∫ L

0
eβ�Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}
{(1 − Δ)ρ0(R; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

(1 − Δ)
∫ R

0
eβ�Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}
{Δρ1(T ; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

Δ
∫ T

0
eβ�Z(s)Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}
{(1 − Δ)ρ1(L; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

(1 − Δ)
∫ L

0
eβ�Z(s)Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}
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{(1 − Δ)ρ1(R; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

(1 − Δ)
∫ R

0
eβ�Z(s)Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}
{(1 − Δ)ρ1(R∗; ϑ) : ϑ ∈ Bδ(ϑ0)}

=
{

(1 − Δ)
∫ R∗

0
eβ�Z(s)Z(s)X�(s)dA(s) : ϑ ∈ Bδ(ϑ0)

}

are all Donsker classes. By Condition 4, G(x) is thrice continuously differen-
tiable on [0, ∞) and G′(x) > 0 for any x ∈ [0, ∞), then the functions g1[ρ0(T ; ϑ)],
exp[−G{ρ0(L; ϑ)}]G′{(ρ0(L; ϑ)} and exp[−G{ρ0(R; ϑ)}]G′{(ρ0(R; ϑ)}I(R < ∞)
are all bounded for any ϑ ∈ Bδ(ϑ0). Notice that the denominators of

H1(L, R; ϑ) = exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)}
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

and

H2(L, R; ϑ)

= exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)} − exp[−G{ρ0(R; ϑ)}]G′{ρ0(R; ϑ)}I(R < ∞)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

are

exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞),

which is bounded away from zero under Conditions 3–4. Since any continuously
differentiable function is locally Lipschitz, the classes {Δg1{ρ0(T ; ϑ)} : ϑ ∈
Bδ(ϑ0)}, {(1 − Δ)H1(L, R; ϑ) : ϑ ∈ Bδ(ϑ0)} and {(1 − Δ)H2(L, R; ϑ) : ϑ ∈
Bδ(ϑ0)} are all Donsker classes due to the preservation of the Donsker property
under Lipschitz-continuous transformations by Theorem 9.31 (Kosorok, 2008).
Now we conclude that the class {Φ1(ϑ)[h0] : ϑ ∈ Bδ(ϑ0), h0 ∈ R

d} is a Donsker
class since Φ1(ϑ)[h0] depends on h0 linearly by Theorem 2.10.6 of van der Vaart
and Wellner (1996).

The class {hj : hj ∈ BV1[0, τ ]} (j = 1, . . . , q) is a Donsker class, according to
Theorem 2.7.5 (van der Vaart and Wellner, 1996) and Example 19.11 (van der
Vaart, 1998). Thus, the class {hj(T ) : hj ∈ BV1[0, τ ]} (j = 1, . . . , q) as a class
of functions of T is also P-Donsker. Now we only need to show the class{∫ (·)

0
eβ�Z(t)hj(t)Xj(t)X�(t)dA(t) : ϑ ∈ Bδ(ϑ0), hj ∈ BV1[0, τ ]

}
,

is a Donsker class since finite summation of Donsker classes are still Donkser
class. This follows because the class of functions with an upper bound of their
total variations is Donsker by Example 19.11 and Theorem 19.5 of van der Vaart
(1998) under Conditions 1–5. To this end, we conclude that under Conditions
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1–5, the class of functions
{

Φ(ϑ)[h̃] : ϑ ∈ Bδ(ϑ0), h̃ ∈ H
}

is P-Donsker for some
δ > 0 because the sums and products of bounded Donsker classes are Donsker
classes.

Lemma A.2. Under Conditions 1–5, the map Ψ: Rd × BV q[0, τ ] → l∞(H) is
Fréchet-differentiable at ϑ = ϑ0, with derivative

Ψ̇ϑ0(ϑ − ϑ0) = Q�
1 [h̃](β − β0) +

∫ τ

0
Q2[h̃](t)d(A(t) − A0(t)), (A.12)

where

Q1[h̃] = B�
1 h0 +

q∑
j=1

∫ τ

0
B2,j(t)hj(t)dA0(t),

Q2[h̃](t) = h�
0 B3(t) + B4[h](t).

(A.13)

The expressions of B1, B2,j(t), B3(t), and B4[h](t) are given in (A.25), (A.26),
(A.27) and (A.28), respectively, in Section A.3.5. The map Ψn has the same
properties and similar Fréchet derivative map at ϑ = ϑ0, denoted as Ψ̇ϑ0,n by
replacing the expectations E in the terms B1, B2,j(t), B3(t), and B4[h](t) with
the empirical measure Pn. Furthermore, both Ψ̇ϑ and Ψ̇ϑ,n depend continuously
on ϑ.

Proof of Lemma A.2. Consider the one-dimensional submodels η → ϑ0 + η(ϑ −
ϑ0). The Fréchet derivative Ψ̇ϑ0(ϑ − ϑ0) can be computed based on the weaker
form

Ψ̇ϑ0(ϑ − ϑ0) = dΨ(ϑ0 + η(ϑ − ϑ0))
dη

∣∣∣∣
η=0

= Q�
1 [h̃](β − β0) +

∫ τ

0
Q2[h̃](t)d(A(t) − A0(t)).

(A.14)

It can be easy to show that Q1[h̃] = B�
1 h0 +

∑q
j=1

∫ τ

0 B2,j(t)hj(t)dA0(t) and
Q2[h̃](t) = h�

0 B3(t) + B4[h](t), where B1 is a d × d matrix, B2,j(·) and B3(·)
are d × q matrices, and B4[h](·) is a 1 × q vector of functions. The detailed cal-
culations are provided in Section A.3.5. It can be shown that ||Ψ(ϑ) − Ψ(ϑ0) −
Ψ̇ϑ0(ϑ − ϑ0)|| = o(||ϑ − ϑ0||) as ϑ → ϑ0. Hence, Ψ(ϑ) is Fréchet-differentiable
at ϑ0. The Fréchet derivative of Ψn(ϑ) = PnΦ(ϑ)[h̃] with respect to ϑ at
ϑ = ϑ0, denoted as Ψ̇ϑ0,n, can be derived closely. In particular, we replace
Ψ with Ψn in (A.14) and the expectations E in the terms B1, B2,j(t), B3(t),
and B4[h](t) with the empirical measure Pn to obtain Ψ̇ϑ0,n. Then one can show
that ‖Ψn(ϑ) − Ψn(ϑ0) − Ψ̇ϑ0,n(ϑ − ϑ0)‖ = o(‖ϑ − ϑ0‖) as ϑ → ϑ0. Hence, Ψn(ϑ)
is also Fréchet-differentiable at ϑ0. Clearly, both maps Ψ̇ϑ and Ψ̇ϑ,n depend
continuously on ϑ in Bδ(ϑ0).

Lemma A.3. Under Conditions 1–5, the map Ψ̇ϑ0 is continuously invertible.
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Proof of Lemma A.3. To show the invertibility of the map Ψ̇ϑ0 , we start by
establishing the relationship between the maximum likelihood estimator and
the proposed ES estimator. The observed-data likelihood function for a single
subject takes the form

l(β, A) =
(

Λ
′

X(T )eβ�Z(T )G
′
{∫ T

0
eβ�Z(s)X�(s)dA(s)

}
× exp

[
− G

{∫ T

0
eβ�Z(s)X�(s)dA(s)

}])Δ

(
exp

[
− G

{∫ L

0
eβ�Z(s)X�(s)dA(s)

}]
− exp

[
− G

{∫ R

0
eβ�Z(s)X�(s)dA(s)

}])1−Δ
,

(A.15)

where Λ′

X(·) and G
′(·) denote the derivatives of ΛX(·) and G(·), respectively.

We consider the submodels βη = β + ηh0, and Aj,η(t) =
∫ t

0 (1 + ηhj(s))dAj(s)
(j = 1, . . . , q), where h̃ = (h0, h) ∈ H, h = (h1, . . . , hq)�. Here, we use Aη

to represent that each Aj is replaced with Aj,η. Then the derivatives of the
observed data log-likelihood for a single subject along the submodels are

Φ∗
1(ϑ)[h0] = d log l(βη, A)

dη

∣∣∣∣
η=0

= Δ
[

G′′{ρ0(T ; ϑ)}
G′{ρ0(T ; ϑ)} − G′{ρ0(T ; ϑ)}

]
h�

0 ρ1(T ; ϑ) + Δh�
0 Z(T )

+ (1 − Δ)h�
0

exp[−G{ρ0(R; ϑ)}]G′{ρ0(R; ϑ)}ρ1(R; ϑ)I(R < ∞)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

− (1 − Δ)h�
0

exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)}ρ1(L; ϑ)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

(A.16)

and

Φ∗
2(ϑ)[h]

= d log l(β, Aη)
dη

∣∣∣∣
η=0

= Δ
[

G′′{ρ0(T ; ϑ)}
G′{ρ0(T ; ϑ)} − G′{ρ0(T ; ϑ)}

]
ρ2(T ; ϑ)[h] + Δ(h(T ) ◦ X(T ))�A{T}

X�(T )A{T}

+ (1 − Δ)exp[−G{ρ0(R; ϑ)}]G′{ρ0(R; ϑ)}ρ2(R; ϑ)[h]I(R < ∞)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

− (1 − Δ) exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)}ρ2(L; ϑ)[h]
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞) ,

(A.17)
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where A{T} denotes the jump size of A(·) at T and

ρ2(t; ϑ)[h] =
q∑

j=1

∫ t

0
eβ�Z(s)hj(s)Xj(s)dAj(s).

Let Φ∗(ϑ)[h̃] = Φ∗
1(ϑ)[h0] + Φ∗

2(ϑ)[h], for any h̃ = (h0, h) ∈ H. Therefore, the
maximum likelihood estimator (β̂MLE, ÂMLE) can be obtained by solving the
following equation

PnΦ∗(ϑ)[h̃] ≡ PnΦ∗
1(ϑ)[h0] + PnΦ∗

2(ϑ)[h] = 0 for every h̃ = (h0, h) ∈ H.

It can be shown that Φ1(ϑ)[h0] = Φ∗
1(ϑ)[h0] for every h0 ∈ R

d, and Φ2(ϑ)[h]
can be rewritten as follows:

Φ2(ϑ)[h] = Δ
[

G′′{ρ0(T ; ϑ)}
G′{ρ0(T ; ϑ)} − G′{ρ0(T ; ϑ)}

]
ρ3(T ; ϑ)[h] + Δ

q∑
j=1

hj(T )Xj(T )

+ (1 − Δ)exp[−G{ρ0(R; ϑ)}]G′{ρ0(R; ϑ)}ρ3(R; ϑ)[h]I(R < ∞)
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞)

− (1 − Δ) exp[−G{ρ0(L; ϑ)}]G′{ρ0(L; ϑ)}ρ3(L; ϑ)[h]
exp[−G{ρ0(L; ϑ)}] − exp[−G{ρ0(R; ϑ)}]I(R < ∞) ,

(A.18)

where

ρ3(t; ϑ)[h] =
q∑

j=1

∫ t

0
eβ�Z(s){hj(s)Xj(s)}X�(s)dA(s).

Let Φ(ϑ)[h̃] = Φ1(ϑ)[h0] + Φ2(ϑ)[h] for any h̃ = (h0, h) ∈ H. Recall that the
proposed ES-estimator solves

PnΦ(ϑ)[h̃] = PnΦ1(ϑ)[h0] + PnΦ2(ϑ)[h] = 0, for every h̃ = (h0, h) ∈ H.

Next, we establish the relationship between Φ(ϑ)[h̃] and Φ∗(ϑ)[h̃], where
Φ(ϑ)[h̃] is the estimating equation constructed to estimate the parameters us-
ing an ES algorithm, and Φ∗(ϑ)[h̃] is the score equation calculated by taking
the derivatives of the log-likelihood function along the submodels. Let h̃∗

j (t) =
(h0/q, h∗

j (t)), where h∗
j (t) = (hj(t)Xj(t), . . . , hj(t)Xj(t)) for j = 1, . . . , q. Now

we verify that

Φ(ϑ)[h̃] =
q∑

j=1
Φ∗(ϑ)[h̃∗

j ]. (A.19)

To begin, we observe that:

ρ2(t; ϑ)[h∗
1] =

q∑
j=1

∫ t

0
eβ�Z(s)h1(s)X1(s)Xj(s)dAj(s)

=
∫ t

0
eβ�Z(s)h1(s)X1(s)X�(s)dA(s).
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Therefore, ρ3(t; ϑ)[h] =
∑q

j=1 ρ2(t; ϑ)[h∗
j ]. Hence, Φ2(ϑ)[h] =

∑q
j=1 Φ∗

2(ϑ)[h∗
j ],

which implies (A.19) holds.
The Fréchet derivative map of Ψ(ϑ) = PΦ(ϑ) at ϑ0, denoted as Ψ̇(ϑ0) =

P Φ̇(ϑ0), takes the form shown in (A.13) in Lemma A.2. Similarly, the Fréchet
derivative map of Ψ∗(ϑ) = PΦ∗(ϑ) at ϑ0, denoted as Ψ̇∗(ϑ0) = P Φ̇∗(ϑ0), can be
calculated via a similar weaker form as shown in (A.14) using equations (A.16)
and (A.17). The details have been omitted due to the similarity of the calcula-
tions involved. From Lemma A.2, Ψ̇(ϑ0)[h̃] is a linear operator. To show that
Ψ̇(ϑ0)[h̃] is continuously invertible, it is sufficient to prove that Ψ̇(ϑ0)[h̃] is a
one-to-one map and then it is invertible (Rudin, 1973). If h̃ = 0, it is easy to
note that Ψ̇(ϑ0)[h̃] = 0 for any ϑ in the neighborhood of ϑ0. Additionally, from
equation (A.19), we have the following

Ψ̇(ϑ0)[h̃] = P Φ̇(ϑ0)[h̃] =
q∑

j=1
P Φ̇∗(ϑ0)[h̃∗

j ] = −
q∑

j=1
P{Φ∗(ϑ0)[h̃∗

j ]}2, (A.20)

where the last equality holds due to the loglikelihood property. Hence, Ψ̇(ϑ0)[h̃] =
0 implies that, for each j (j = 1, . . . , q), Φ∗(ϑ0)[h̃∗

j ] = 0 with probability 1. Fi-
nally, we show that Φ∗(ϑ0)[h̃∗

j ] = 0 (j = 1, . . . , q) implies that h0 = 0 and
h(t) = (h1(t), . . . , hq(t)) = 0 for any t in [0, τ ]. We use Condition 3 and choose
Δ = 1. By (A.16) and (A.17), Φ∗(ϑ0)[h̃∗

1] = 0, where h̃∗
1(t) = (h0/q, h∗

1(t)) with
h∗

1(t) = (h1(t)X1(t), . . . , h1(t)X1(t)), implies the following equations:

h�
0

([
G′′{ρ0(T ; ϑ0)}
G′{ρ0(T ; ϑ0)} − G′{ρ0(T ; ϑ0)}

]
ρ1(T ; ϑ0) + Z(T )

)
= 0 for any T ,

and
q∑

j=1

∫ T

0

[
G′′{ρ0(T ; ϑ0)}
G′{ρ0(T ; ϑ0)} − G′{ρ0(T ; ϑ0)}

]
eβ�

0 Z(s)h1(s)X1(s)Xj(s)dA0j(s)

+
q∑

j=1

h1(T )X1(T )Xj(T )A0j{T}
X�(T )A0{T} = 0 for any T .

Hence, we obtain that h0 = 0 and∫ T

0

[
G′′{ρ0(T ; ϑ0)}
G′{ρ0(T ; ϑ0)} − G′{ρ0(T ; ϑ0)}

]
eβ�

0 Z(s)h1(s)X1(s)X�(s)dA0(s)

+ h1(T )X1(T ) = 0,

(A.21)

which is a linear Volterra integral equation with a unique solution (Polyanin
and Manzhirov, 2008). Note that (A.21) holds for any T . Hence, h1(t) = 0 for
any t ∈ [0, τ ] since X(·) does not have any component that is identically zero
for all t ∈ [0, τ ]. By applying similar arguments for j = 2, . . . , q, we obtain that
h2(t) = · · · = hq(t) = 0 for any t ∈ [0, τ ]. Consequently, Ψ̇(ϑ0)[h̃] is continuously
invertible.
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Lemma A.4. Under Conditions 1–5, the map Ψ̇ϑ0,n is invertible for larger
enough n.

Proof of Lemma A.4. The expressions of Ψ̇ϑ are given in Lemma A.2 and Sec-
tion A.3.5 below; see (A.12), (A.13), (A.14), (A.23), and (A.24). Following the
similar steps as in the proof of Lemma A.1, we can show that

Ψ̇ϑ(ϑ∗)[h̃] − Ψ̇ϑ,n(ϑ∗)[h̃] = op(1) (A.22)

uniformly in (ϑ, ϑ∗, h̃) in Bδ(β0, A0) × (Rd × BV q[0, τ ]) × (Rd × BV q
1 [0, τ ]) for

some δ > 0. By Lemma A.3, the map Ψ̇ϑ0 is invertible. Following Lemma 6.16
in Kosorok (2008), there exists a constant c1 > 0 such that ‖Ψ̇ϑ0(ϑ − ϑ0)‖ ≥
c1‖ϑ − ϑ0‖ for all ϑ in R

d × BV q[0, τ ]. Combining it with (A.22), there exists a
positive constant c2 such that∥∥∥∥ Ψ̇ϑ0,n(ϑ − ϑ0)

‖ϑ − ϑ0‖

∥∥∥∥ =
∥∥∥∥Ψ̇ϑ0,n

(
ϑ − ϑ0

‖ϑ − ϑ0‖

)∥∥∥∥
=
∥∥∥∥Ψ̇ϑ0

(
ϑ − ϑ0

‖ϑ − ϑ0‖

)
+ op(1)

∥∥∥∥ ≥ c1 + op(1) ≥ c2,

as n → ∞ for any ϑ in Rd × BV q[0, τ ]. Thus, ‖Ψ̇ϑ0,n(ϑ − ϑ0)‖ ≥ c2‖ϑ − ϑ0‖ as
n → ∞ for any ϑ in R

d × BV q[0, τ ]. By applying Lemma 6.16 (Kosorok, 2008)
again, Ψ̇ϑ0,n is invertible for larger enough n.

A.3.5. Additional details on the Fréchet derivative map for Lemma
A.2

This subsection provides additional details on the Fréchet derivatives used in
Lemma A.2 and its proof. We provide the calculations of the Fréchet derivative
of Ψ(ϑ) = PΦ(β, A). The Fréchet derivative of Ψ(ϑ) at ϑ0 is given by the map

Ψ̇ϑ0(ϑ − ϑ0) = dΨ(ϑ0 + η(ϑ − ϑ0))
dη

∣∣∣∣
η=0

= Q�
1 [h̃](β − β0) +

∫ τ

0
Q2[h̃](t)d(A(t) − A0(t)),

(A.23)

where

Q1[h̃] = B�
1 h0 +

q∑
j=1

∫ τ

0
B2,j(t)hj(t)dA0(t),

Q2[h̃](t) = h�
0 B3(t) + B4[h](t).

(A.24)

Here, B1 is a d × d matrix, B2,j(·) and B3(·) are d × q matrices, and B4[h](·) is
1 × q vector of functions. Then we show the calculations of the aforementioned
terms in (A.24). To simplify the notations, let g2(x) = exp{−G(x)} and g3(x) =
exp{−G(x)}G′(x). Then we can write
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H1(L, R; ϑ) = g3{ρ0(L; ϑ)}
g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

and
H2(L, R; ϑ) = g3{ρ0(L; ϑ)} − g3{ρ0(R; ϑ)}I(R < ∞)

g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞) .

We note that g′
2(x) = −g3(x) and g′

3(x) = exp{−G(x)}[G′′(x) − {G′(x)}2].
In addition, since g1(x) = G′(x) − G′′(x)/G′(x), we have g′

1(x) = G′′(x) −
G(3)(x)/G′(x) + {G′′(x)/G′(x)}2, where G(3)(x) is the thrice derivative of G(x)
with respect to x. Let a⊗2 = aa� for any column vector a. Since β belongs to
the Euclidean space R

d, B1 can be easily obtained by taking the derivative of
PΦ1(ϑ) with respect to β, i.e.,

B1 = ∂PΦ1(ϑ)
∂β�

∣∣∣∣
ϑ=ϑ0

= −E

[
Δg1{ρ0(T ; ϑ0)}

∫ T

0
eβ�

0 Z(t){Z(t)}⊗2X�(t)dA0(t)

+ Δg′
1{ρ0(T ; ϑ0)}{ρ1(T ; ϑ0)}⊗2

]
+ E

[
(1 − Δ)

{∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�

0 Z(t)Z(t)X�(t)dA0(t)
}

× M�
1 (L, R; ϑ0)

]
+ E

[
(1 − Δ)H1(L, R; ϑ0)

∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�

0 Z(t){Z(t)}⊗2

× X�(t)dA0(t)
]

− E

[
(1 − Δ)

{∫ τ

0
I(t ≤ R∗)eβ�

0 Z(t)Z(t)X�(t)dA0(t)
}

M�
2 (L, R; ϑ0)

]
− E

[
(1 − Δ)H2(L, R; ϑ0)

∫ τ

0
I(t ≤ R∗)eβ�

0 Z(t){Z(t)}⊗2X�(t)dA0(t)
]
,

(A.25)

where

M1(L, R; ϑ)

= ∂H1(L, R; ϑ)
∂β

= g′
3{ρ0(L; ϑ)}ρ1(L; ϑ)

g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

+
g3{ρ0(L; ϑ)}

[
g3{ρ0(L; ϑ)}ρ1(L; ϑ) − g3{ρ0(R; ϑ)}ρ1(R; ϑ)I(R < ∞)

][
g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

]2 ,
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and

M2(L, R; ϑ) = ∂H2(L, R; ϑ)
∂β

= g′
3{ρ0(L; ϑ)}ρ1(L; ϑ) − g′

3{ρ0(R; ϑ)}ρ1(R; ϑ)I(R < ∞)
g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

+ g3{ρ0(L; ϑ)} − g3{ρ0(R; ϑ)}I(R < ∞)
[g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)]2

×
[
g3{ρ0(L; ϑ)}ρ1(L; ϑ) − g3{ρ0(R; ϑ)}ρ1(R; ϑ)I(R < ∞)

]
.

Moreover, we calculate

∂PΦ2(ϑ)[h]
∂β

∣∣∣∣
ϑ=ϑ0

= −
q∑

j=1
E

[
Δg1[ρ0(T ; ϑ0)]

∫ T

0
eβ�

0 Z(t)Xj(t)hj(t)Z(t)X�(t)dA0(t)
]

−
q∑

j=1
E

[
Δg′

1{ρ0(T ; ϑ0)}
{∫ T

0
eβ�

0 Z(t)Xj(t)hj(t)X�(t)dA0(t)
}

ρ1(T ; ϑ0)
]

+
q∑

j=1
E

[
(1 − Δ)

{∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�

0 Z(t)hj(t)Xj(t)X�(t)dA0(t)
}

× M1(L, R; ϑ0)
]

+
q∑

j=1
E

[
(1 − Δ)H1(L, R; ϑ0)

∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�

0 Z(t)hj(t)

× Xj(t)Z(t)X�(t)dA0(t)
]

−
q∑

j=1
E

[
(1 − Δ)

{∫ τ

0
I(t ≤ R∗)eβ�

0 Z(t)hj(t)Xj(t)X�(t)dA0(t)
}

M2(L, R; ϑ0)
]

−
q∑

j=1
E

[
(1 − Δ)H2(L, R; ϑ0)

∫ τ

0
I(t≤R∗)eβ�

0 Z(t)hj(t)Xj(t)Z(t)X�(t)dA0(t)
]
.

Hence,

B2,j(t) = −E
[
Δg1[ρ0(T ; ϑ0)]I(t≤T )eβ�

0 Z(t)Xj(t)Z(t)X�(t)
]

− E
[
Δg′

1{ρ0(T ; ϑ0)}I(t≤T )eβ�
0 Z(t)Xj(t)ρ1(T ; ϑ0)X�(t)

]
+ E

[
(1 − Δ)I(L<t ≤ R)I(R<∞)eβ�

0 Z(t)Xj(t)M1(L, R; ϑ0)X�(t)
]

+E
[
(1−Δ)H1(L, R; ϑ0)I(L<t≤R)I(R<∞)eβ�

0 Z(t)Xj(t)Z(t)X�(t)
]
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−E
[
(1 − Δ)I(t≤R∗)eβ�

0 Z(t)Xj(t)M2(L, R; ϑ0)X�(t)
]

−E
[
(1−Δ)H2(L, R; ϑ0)I(t≤R∗)eβ�

0 Z(t)Xj(t)Z(t)X�(t)
]

. (A.26)

Additionally, we can use ρ0(t; β, A) =
∫ t

0 eβ�Z(s)X�(s)dA(s), to derive the fol-
lowing result:

∂ρ0(t; β, A + ηA∗)
∂η

∣∣∣∣
η=0

= ρ0(t; β, A∗).

By applying the chain rule, we obtain
∂H1(L, R; β, A + ηA∗)

∂η

∣∣∣∣
η=0

= g′
3{ρ0(L; ϑ)}ρ0(L; β, A∗)

g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

+g3{ρ0(L; ϑ)} [g3{ρ0(L; ϑ)}ρ0(L; β, A∗)−g3{ρ0(R; ϑ)}ρ0(R; β, A∗)I(R<∞)]
[g2{ρ0(L; ϑ)}−g2{ρ0(R; ϑ)}I(R<∞)]2

= M3(L, R; ϑ)ρ0(L; β, A∗) − M4(L, R; ϑ)ρ0(R; β, A∗),

where

M3(L, R; ϑ)= g′
3{ρ0(L; ϑ)}

g2{ρ0(L; ϑ)}−g2{ρ0(R; ϑ)}I(R<∞)

+ [g3{ρ0(L; ϑ)}]2

[g2{ρ0(L; ϑ)}−g2{ρ0(R; ϑ)}I(R<∞)]2
,

and
M4(L, R; ϑ) = g3{ρ0(L; ϑ)}g3{ρ0(R; ϑ)}I(R < ∞)

[g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)]2
.

Using the same technique, we obtain
∂H2(L, R; β, A + ηA∗)

∂η

∣∣∣∣
η=0

= g′
3{ρ0(L; ϑ)}ρ0(L; β, A∗) − g′

3{ρ0(R; ϑ)}ρ0(R; β, A∗)I(R < ∞)
g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

+ [g3{ρ0(L; ϑ)} − g3{ρ0(R; ϑ)}I(R < ∞)] g3{ρ0(L; ϑ)}ρ0(L; β, A∗)
[g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)]2

− [g3{ρ0(L; ϑ)} − g3{ρ0(R; ϑ)}I(R < ∞)] g3{ρ0(R; ϑ)}ρ0(R; β, A∗)I(R < ∞)
[g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)]2

= {M3(L, R; ϑ) − M4(L, R; ϑ)} ρ0(L; β, A∗) − M5(L, R; ϑ)ρ0(R; β, A∗),

where

M5(L, R; ϑ) = g′
3{ρ0(R; ϑ)}I(R < ∞)

g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)

+ [g3{ρ0(L; ϑ)} − g3{ρ0(R; ϑ)}I(R < ∞)] g3{ρ0(R; ϑ)}I(R < ∞)
[g2{ρ0(L; ϑ)} − g2{ρ0(R; ϑ)}I(R < ∞)]2

.
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Thus,

∂Φ1(β, A + ηA∗)
∂η

∣∣∣∣
η=0

= −Δg′
1{ρ0(T ; ϑ)}ρ1(T ; ϑ)

∫ τ

0
I(t ≤ T )eβ�Z(t)X�(t)dA∗(t)

− Δg1{ρ0(T ; ϑ)}
∫ τ

0
I(t ≤ T )eβ�Z(t)Z(t)X�(t)dA∗(t)

+ (1 − Δ)I(R < ∞) {ρ1(R; ϑ) − ρ1(L; ϑ)} M3(L, R; ϑ)ρ0(L; β, A∗)
− (1 − Δ)I(R < ∞) {ρ1(R; ϑ) − ρ1(L; ϑ)} M4(L, R; ϑ)ρ0(R; β, A∗)

+ (1 − Δ)H1(L, R; ϑ)
∫ τ

0
I(L < t ≤ R)I(R < ∞)eβ�Z(t)Z(t)X�(t)dA∗(t)

− (1 − Δ)ρ1(R∗; ϑ) {M3(L, R; ϑ) − M4(L, R; ϑ)} ρ0(L; β, A∗)
+ (1 − Δ)ρ1(R∗; ϑ)M5(L, R; ϑ)ρ0(R; β, A∗)

− (1 − Δ)H2(L, R; ϑ)
∫ τ

0
I(t ≤ R∗)eβ�Z(t)Z(t)X�(t)dA∗(t).

Hence,

B3(t) = − E
[
Δg′

1{ρ0(T ; ϑ0)}ρ1(T ; ϑ0)I(t ≤ T )eβ�
0 Z(t)X�(t)

]
− E

[
Δg1{ρ0(T ; ϑ0)}I(t ≤ T )eβ�

0 Z(t)Z(t)X�(t)
]

+ E
[
(1 − Δ)I(R < ∞){ρ1(R; ϑ0) − ρ1(L; ϑ0)}

× M3(L, R; ϑ0)I(t ≤ L)eβ�
0 Z(t)X�(t)

]
− E

[
(1 − Δ)I(R < ∞){ρ1(R; ϑ0) − ρ1(L; ϑ0)}

× M4(L, R; ϑ0)I(t ≤ R)eβ�
0 Z(t)X�(t)

]
+ E

[
(1 − Δ)H1(L, R; ϑ0)I(L < t ≤ R)I(R < ∞)eβ�

0 Z(t)Z(t)X�(t)
]

− E
[
(1 − Δ)ρ1(R∗; ϑ0){M3(L, R; ϑ0) − M4(L, R; ϑ0)}

× I(t ≤ L)eβ�
0 Z(t)X�(t)

]
+ E

[
(1 − Δ)ρ1(R∗; ϑ0)M5(L, R; ϑ0)I(t ≤ R)eβ�

0 Z(t)X�(t)]

− E
[
(1 − Δ)H2(L, R; ϑ0)I(t ≤ R∗)eβ�

0 Z(t)Z(t)X�(t)
]
. (A.27)

Lastly, since ρ3(t; ϑ)[h] =
∑q

j=1
∫ t

0 eβ�Z(s)hj(s)Xj(s)X�(s)dA(s), we can ob-
tain

∂Φ2(β, A + ηA∗)[h]
∂η

∣∣∣∣
η=0
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= −Δg′
1{ρ0(T ; ϑ)}ρ3(T ; ϑ)[h]

∫ τ

0
I(t ≤ T )eβ�Z(t)X�(t)dA∗(t)

− Δg1{ρ0(T ; ϑ)}
q∑

j=1

∫ τ

0
I(t ≤ T )eβ�Z(t)hj(t)Xj(t)X�(t)dA∗(t)

+ (1 − Δ)I(R < ∞) {ρ3(R; ϑ)[h] − ρ3(L; ϑ)[h]} M3(L, R; ϑ)ρ0(L; β, A∗)
− (1 − Δ)I(R < ∞) {ρ3(R; ϑ)[h] − ρ3(L; ϑ)[h]} M4(L, R; ϑ)ρ0(R; β, A∗)

+(1−Δ)H1(L, R; ϑ)
q∑

j=1

∫ τ

0
I(L<t≤R)I(R<∞)eβ�Z(t)hj(t)Xj(t)X�(t)dA∗(t)

− (1 − Δ)ρ3(R∗; ϑ)[h] {M3(L, R; ϑ) − M4(L, R; ϑ)} ρ0(L; β, A∗)
+ (1 − Δ)ρ3(R∗; ϑ)[h]M5(L, R; ϑ)ρ0(R; β, A∗)

− (1 − Δ)H2(L, R; ϑ)
q∑

j=1

∫ τ

0
I(t ≤ R∗)eβ�Z(t)hj(t)Xj(t)X�(t)dA∗(t).

Hence,

∂PΦ2(β, A + ηA∗)[h]
∂η

∣∣∣∣
η=0,A∗=A−A0,ϑ=ϑ0

=
∫ τ

0
B4[h](t)d(A − A0)(t),

where

B4[h](t)

= −E
[
Δg′

1{ρ0(T ; ϑ0)}ρ3(T ; ϑ0)[h]I(t ≤ T )eβ�
0 Z(t)X�(t)

]
−

q∑
j=1

E[Δg1{ρ0(T ; ϑ0)}I(t ≤ T )hj(t)eβ�
0 Z(t)Xj(t)X�(t)

]
+ E

[
(1 − Δ)I(R < ∞){ρ3(R; ϑ0)[h] − ρ3(L; ϑ0)[h]}

× M3(L, R; ϑ0)I(t ≤ L)eβ�
0 Z(t)X�(t)

]
− E

[
(1 − Δ)I(R < ∞){ρ3(R; ϑ0)[h] − ρ3(L; ϑ0)[h]}

× M4(L, R; ϑ0)I(t ≤ R)eβ�
0 Z(t)X�(t)

]
+

q∑
j=1

E
[
(1 − Δ)I(R < ∞)H1(L, R; ϑ0)I(L < t ≤ R)eβ�

0 Z(t)hj(t)Xj(t)X�(t)
]

− E
[
(1 − Δ)ρ3(R∗; ϑ0)[h]{M3(L, R; ϑ0) − M4(L, R; ϑ0)}I(t ≤ L)eβ�

0 Z(t)X�(t)
]

+ E
[
(1 − Δ)ρ3(R∗; ϑ0)[h]M5(L, R; ϑ0)I(t ≤ R)eβ�

0 Z(t)X�(t)
]

−
q∑

j=1
E
[
(1 − Δ)H2(L, R; ϑ0)I(t ≤ R∗)eβ�

0 Z(t)hj(t)Xj(t)X�(t)
]
. (A.28)
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Table A.1

Estimation results for the regression parameter β under Scenario 2. Bias, SE, SEE, and CP
stand, respectively, for the bias, empirical standard error, mean of the estimated standard
errors, and empirical coverage percentage of the 95% confidence interval. Each entry is

based on 1000 simulations and 1000 bootstraps.

β1 = 0.5 β2 = −0.5
r n γ Bias SE SEE CP Bias SE SEE CP
0 200 0.25 0.001 0.180 0.179 0.954 0.014 0.294 0.288 0.943

0.5 −0.005 0.176 0.173 0.945 0.007 0.288 0.286 0.946
0.75 −0.001 0.172 0.169 0.945 0.008 0.286 0.285 0.944
1 −0.001 0.169 0.166 0.945 0.009 0.283 0.285 0.944

500 0.25 0.009 0.113 0.116 0.950 −0.004 0.181 0.189 0.956
0.5 0.003 0.109 0.111 0.944 0.001 0.177 0.184 0.953
0.75 0.000 0.106 0.108 0.948 0.003 0.175 0.181 0.954
1 0.001 0.104 0.105 0.947 0.004 0.173 0.179 0.956

1000 0.25 0.006 0.081 0.081 0.954 −0.009 0.129 0.131 0.952
0.5 0.004 0.078 0.078 0.949 −0.006 0.128 0.129 0.948
0.75 0.004 0.077 0.076 0.946 −0.005 0.128 0.128 0.942
1 0.004 0.076 0.074 0.948 −0.005 0.128 0.127 0.946

0.5 200 0.25 −0.011 0.226 0.214 0.936 0.030 0.380 0.364 0.940
0.5 −0.001 0.222 0.210 0.933 0.020 0.376 0.370 0.947
0.75 −0.006 0.210 0.203 0.936 0.026 0.366 0.367 0.949
1 −0.002 0.207 0.199 0.946 0.020 0.364 0.370 0.952

500 0.25 0.012 0.141 0.141 0.956 −0.008 0.242 0.242 0.944
0.5 0.002 0.133 0.133 0.950 0.002 0.235 0.236 0.947
0.75 0.001 0.129 0.129 0.952 0.007 0.230 0.234 0.954
1 −0.001 0.126 0.126 0.957 0.007 0.229 0.234 0.946

1000 0.25 0.003 0.101 0.097 0.937 −0.004 0.172 0.169 0.945
0.5 −0.000 0.097 0.094 0.937 0.001 0.169 0.167 0.945
0.75 0.000 0.094 0.091 0.945 0.001 0.169 0.166 0.946
1 0.002 0.091 0.089 0.949 −0.002 0.168 0.166 0.951

1 200 0.25 −0.005 0.258 0.244 0.931 0.074 0.447 0.424 0.931
0.5 −0.003 0.258 0.235 0.931 0.032 0.443 0.431 0.945
0.75 −0.001 0.248 0.229 0.934 0.025 0.434 0.434 0.958
1 −0.002 0.238 0.222 0.941 0.023 0.432 0.436 0.954

500 0.25 −0.007 0.158 0.159 0.947 0.014 0.289 0.284 0.939
0.5 −0.001 0.152 0.151 0.961 0.008 0.284 0.279 0.944
0.75 −0.007 0.144 0.146 0.952 0.011 0.276 0.277 0.950
1 −0.003 0.139 0.142 0.953 0.010 0.275 0.277 0.949

1000 0.25 0.006 0.112 0.111 0.939 0.003 0.204 0.200 0.941
0.5 −0.002 0.110 0.107 0.944 0.007 0.203 0.198 0.942
0.75 −0.001 0.104 0.103 0.953 0.006 0.202 0.197 0.944
1 0.002 0.102 0.101 0.956 0.000 0.201 0.197 0.947

A.4. Additional simulation results

In this subsection, we provide additional simulation results for Scenarios 1–3
described in Section 6. Specifically, Tables A.1 and A.2 showcase the estimation
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Table A.2

Estimation results for the regression parameter β under Scenario 3. Bias, SE, SEE, and CP
stand, respectively, for the bias, empirical standard error, mean of the estimated standard
errors, and empirical coverage percentage of the 95% confidence interval. Each entry is

based on 1000 simulations and 1000 bootstraps.

β1 = 0.5 β2 = −0.5
r n γ Bias SE SEE CP Bias SE SEE CP
0 200 0.25 0.001 0.190 0.186 0.950 −0.016 0.300 0.291 0.931

0.5 −0.003 0.183 0.176 0.934 −0.012 0.294 0.287 0.940
0.75 −0.007 0.174 0.170 0.944 −0.012 0.292 0.284 0.937
1 −0.005 0.172 0.165 0.938 −0.009 0.289 0.282 0.939

500 0.25 −0.001 0.112 0.114 0.956 −0.010 0.187 0.183 0.947
0.5 −0.001 0.109 0.110 0.955 −0.010 0.184 0.181 0.945
0.75 −0.004 0.107 0.107 0.954 −0.010 0.182 0.180 0.949
1 −0.003 0.103 0.104 0.955 −0.007 0.181 0.179 0.942

1000 0.25 0.003 0.081 0.080 0.940 −0.007 0.128 0.129 0.946
0.5 0.002 0.078 0.077 0.946 −0.007 0.127 0.128 0.947
0.75 0.003 0.077 0.076 0.945 −0.005 0.127 0.127 0.950
1 0.004 0.076 0.074 0.946 −0.003 0.126 0.126 0.947

0.5 200 0.25 −0.005 0.230 0.231 0.948 −0.013 0.380 0.383 0.958
0.5 −0.011 0.222 0.214 0.940 −0.006 0.374 0.374 0.952
0.75 −0.007 0.214 0.205 0.941 −0.008 0.370 0.369 0.955
1 −0.008 0.210 0.197 0.933 −0.005 0.366 0.366 0.956

500 0.25 −0.006 0.141 0.140 0.951 −0.013 0.238 0.239 0.949
0.5 −0.006 0.135 0.134 0.941 −0.009 0.235 0.236 0.951
0.75 −0.007 0.130 0.129 0.944 −0.008 0.231 0.234 0.957
1 −0.006 0.126 0.126 0.945 −0.007 0.231 0.232 0.951

1000 0.25 0.002 0.099 0.098 0.955 −0.003 0.163 0.168 0.954
0.5 0.001 0.096 0.094 0.953 0.002 0.160 0.166 0.960
0.75 0.004 0.094 0.091 0.935 0.003 0.161 0.165 0.947
1 0.004 0.091 0.089 0.943 0.003 0.161 0.164 0.958

1 200 0.25 0.003 0.274 0.265 0.941 0.015 0.449 0.456 0.963
0.5 −0.002 0.257 0.243 0.934 0.021 0.437 0.443 0.957
0.75 −0.003 0.250 0.230 0.936 0.022 0.433 0.436 0.959
1 0.000 0.242 0.221 0.931 0.021 0.432 0.432 0.958

500 0.25 −0.001 0.160 0.159 0.946 0.013 0.284 0.283 0.950
0.5 −0.004 0.149 0.151 0.953 0.009 0.276 0.278 0.951
0.75 −0.003 0.145 0.146 0.950 0.012 0.272 0.275 0.946
1 0.000 0.139 0.141 0.955 0.011 0.273 0.274 0.949

1000 0.25 0.000 0.111 0.111 0.948 0.001 0.200 0.199 0.947
0.5 0.000 0.107 0.107 0.949 0.004 0.199 0.196 0.949
0.75 0.002 0.103 0.103 0.952 0.006 0.200 0.195 0.952
1 0.003 0.101 0.100 0.950 0.003 0.199 0.195 0.946

results of β for Scenarios 2 and 3. Figures A.1 and A.2 display the estimation
results for the cumulative regression functions corresponding to Scenarios 2–3,
respectively.

Moreover, we considered Scenario 4 to compare the proposed approach, which
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Figure A.1. Estimation results for (a) A1(t) = log(1 + t/2) and (b) A2(t) = 0.1t in Scenario
2 with γ = 0.5, under the logarithmic transformation G(x) = r−1 log(1+rx) with r = 0.5. The
dotted, dashed and solid lines are for data sets with n = 200, 500, 1000, respectively. Bias,
SE, SEE, and CP stand, respectively, for the bias, empirical standard error, mean of the
estimated standard errors, and empirical coverage probability of the 95% confidence interval.
The figures are based on 1000 simulations and 1000 bootstraps.

accounts for different baseline cumulative hazard functions, with the method in
Zhou, Sun and Gilbert (2021), which assumes the same baseline cumulative
hazard function for all individuals. In particular, in Scenario 4, the failure time
T is generated from the following Cox-Aalen transformation model

Λ(t | X, Z) = G
{∫ t

0
exp(β1Z1)X�dA(s)

}
, (A.29)

where β1 = 1, Z1 ∼ Ber(0.5) and X(t) = (1, X2)� with X2 ∼ Ber(0.4). A1(t) =
0.16t + 0.0256t2 and A2(t) = 0.56t − 0.0384t2 for 0 ≤ t ≤ 5. The partly interval
censoring is generated the same as for Scenarios 1-3 in Section 6 with τ = 5.
We fitted model (A.29) by correctly specifying two different baseline cumulative
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Figure A.2. Estimation results for (a) A1(t) = log(1+t/2), (b) A2(t) = 0.1t and (c) A3(t) =
0.05t in Scenario 3 with γ = 0.5, under the logarithmic transformation G(x) = r−1 log(1+rx)
with r = 1. The dotted, dashed and solid lines are for data sets with n = 200, 500, 1000,
respectively. Bias, SE, SEE, and CP stand, respectively, for the bias, empirical standard
error, mean of the estimated standard errors, and empirical coverage probability of the 95%
confidence interval. The figures are based on 1000 simulations and 1000 bootstraps.

hazards (varying according to the value of X2). As a comparison, we analyze
the data using the method in Zhou, Sun and Gilbert (2021) that assumes the
same baseline cumulative hazard across all individuals. Figures A.3 and A.4
show that ignoring the different cumulative hazard functions, as done in Zhou,
Sun and Gilbert (2021), leads to biased predictions of survival probabilities
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Figure A.3. Predicted survival probabilities under Scenario 4 with r = 0 and n = 500 based
on the proposed model and the method in Zhou, Sun and Gilbert (2021), when the proportion
of exactly observed failure observations among those that are not right-censored is 50%, i.e.,
γ = 0.5.

and cumulative hazards, whereas the proposed method accurately captures the
survival probabilities and cumulative hazards. Therefore, the proposed method
is more adept at capturing complex scenarios.
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