

1 **BEVA2.0: Modular Assembly of Golden Gate-Compatible Vectors with Expanded Utility**
2 **for Genetic Engineering**

3
4 Barney A. Geddes^{a*}, Riley Williamson^a, Jake Schumacher^a, Ahmad Ardi^a, Garrett Levin^a, Emily
5 Červenka^b, Rui Huang^b and George C. diCenzo^b

6
7 ^a Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA.
8 ^b Department of Biology, Queen's University, Kingston, ON, Canada.

9
10 * Corresponding Author: Barney Geddes, barney.geddes@ndsu.edu

11
12 **Abstract**

13 This expansion for the modular vector assembly platform BEVA (Bacterial Expression Vector
14 Archive) introduces 11 new BEVA parts including two new cloning site variants, two new
15 antibiotic resistance modules, three new origins of replication, and four new accessory modules.
16 As a result, the modular system is now doubled in size and expanded in its capacity to produce
17 diverse replicating plasmids. Furthermore, it is now amenable to genetic engineering methods
18 involving genome-manipulation of target strains through deletions or integrations. In addition to
19 introducing the new modules, we provide several BEVA-derived Golden Gate cloning plasmids
20 that are used to validate parts and that may be useful for genetic engineering of proteobacteria
21 and other bacteria. We also introduce new parts to allow compatibility with the CIDAR MoClo
22 parts libraries.

23
24 **Keywords**

25 Synthetic biology, Golden Gate cloning, Genetic engineering, Plasmid

26

27 **Introduction**

28 Since its inception, Golden Gate DNA assembly technology has revolutionized the ability to
29 rapidly assemble multiple fragments of DNA in linear orders, facilitating advancements in
30 synthetic biology (Engler *et al.*, 2009). This technique, particularly through the MoClo (Modular
31 Cloning) system, has enabled the hierarchical assembly of genetic constructs using standardized
32 parts, making it a powerful tool for researchers. MoClo's early adoption was largely driven by
33 plant science research, where it was used to develop constructs for plant engineering via
34 *Agrobacterium* tDNA integration (Werner *et al.*, 2012). This led to the creation of extensive
35 parts libraries and kits for plant engineering, such as those available through Addgene, which
36 include promoters, untranslated regions, antigen tags, subcellular localization signals, marker
37 genes, and terminators (Weber *et al.*, 2011; Werner *et al.*, 2012; Engler *et al.*, 2014; Gantner *et*
38 *al.*, 2018), as well as tools for genome editing (Hahn *et al.*, 2020; Grützner *et al.*, 2021;
39 Stuttmann *et al.*, 2021). These resources have significantly accelerated synthetic biology by
40 allowing researchers to rapidly assemble complex constructs using standardized parts.

41 While initially focused on plant engineering, the MoClo system naturally expanded to

42 other organisms, including microorganisms. For example, parts kits have been developed for
43 yeast hierarchical assembly (Lee *et al.*, 2015) and protein expression (Obst, Lu and Sieber,
44 2017), and the CIDAR MoClo Library was developed for bacteria (Iverson *et al.*, 2016), which
45 includes a variety of useful synthetic biology parts sourced from the iGEM Registry of Standard
46 Biological Parts. A CIDAR MoClo Expansion was also released that includes even more
47 promoters, ribosome binding sites, coding sequences, and terminators, further enhancing its
48 utility in synthetic biology. Useful systems for protein expression in *Escherichia coli* have also
49 been developed (Moore *et al.*, 2016; Bentham *et al.*, 2021). However, with the widespread
50 adoption of Golden Gate cloning, and new parts libraries in research labs around the world, there
51 has been a growing need for new Golden Gate-compatible vectors with utility in a wide variety
52 of organisms. To address this, we previously developed the Bacterial Expression Vector Archive
53 (BEVA), a system that enables the assembly of Golden Gate cloning vectors from a library of
54 standardized parts using a MoClo-like hierarchical assembly approach (Geddes, Mendoza-Suárez
55 and Poole, 2019).

56 The field of microbial engineering continually seeks more efficient and versatile methods

57 for designing plasmids to deliver and express genetic cargo. BEVA and the Standard European

58 Vector Architecture (SEVA) (Silva-Rocha *et al.*, 2013), which was recently adapted for Golden
59 Gate cloning (Martínez-García *et al.*, 2023), have emerged as promising tools due to their
60 modular approach and ease of vector design, offering a path toward high-throughput
61 applications. These models streamline the process of assembling complex genetic constructs by
62 providing standardized, interchangeable modules that can be easily arranged in various
63 configurations.

64 In this work, we report the creation of 11 new modules that significantly expand the
65 utility of BEVA. We also generate and validate the performance of several new Golden Gate
66 vectors that utilize the modules. The new vectors expand the utility of BEVA in two ways. First,
67 they increase the capacity to generate useful expression vectors for diverse bacterial taxa by
68 incorporating additional antibiotic resistance genes and broad host range origins of replication.
69 Second, they incorporate modules that allow the generation of vectors useful for bacterial
70 genome engineering, either through homologous or site-specific recombination. Overall, this
71 study not only expands the BEVA toolkit but also contributes to the broader goal of developing
72 versatile and efficient plasmid systems for microbial engineering.

73

74 **Materials and Methods**

75 **Design of new BEVA modules**

76 New BEVA modules were designed based on functional units from pre-existing cloning vectors
77 and synthesized free of internal BsaI, BpiI (BbsI) and BsmBI (Esp3I) sites by Twist Bioscience
78 in the Amp^R backbone “pTwist Amp High Copy”, Cm^R backbone “pTwist Chlor High Copy, or
79 cloned via BsaI into Cm^R pGGAselect (New England Biolabs). In some cases, prototypes were
80 designed by PCR amplification and cloning into pJet1.2, with the resulting vectors then used for
81 generating Level 1 cloning vectors (pQGG002-005). However, these modules were later
82 recloned into pGGAselect or resynthesized in the pTwist Chlor/Amp High Copy plasmids to
83 eliminate a BsaI site from the pJet1.2 backbone that caused cloning efficiency issues.

84

85 *Golden Gate cloning sites*

86 Two new Level 1 cloning site modules were generated by altering the Level 1 cloning site from
87 pOGG004. For pNDGG021 and pNDGG022, we excluded the T0 terminator 3' of the cloning
88 site. For pNDGG022, we further altered the 5' BsmB1(Esp3I) fusion site to CAGA to allow by-

89 passing of the endlinker/terminator modules that include the *rrnB* T1 terminator and to allow for
90 directly connecting these modules to a Position 4 module 3' fusion site, thus completely
91 excluding terminators flanking Level 1 cloning sites.

92

93 *Antibiotic resistance cassettes*

94 Antibiotic resistance modules were flanked by 5' BsmB1(Esp31)-GCAA and 3' ACTA-
95 BsmB1(Esp31) sites to enable cloning as Position 2 modules in BEVA. For the
96 kanamycin/neomycin resistance gene *nptII* (in pNDGG001), we used 1,036 bp from the cloning
97 vector pTH1937 (Milunovic *et al.*, 2014) that included the *nptII* open reading frame and 241 bp
98 upstream which was cloned into pGGAselect via BsaI. For the spectinomycin resistance gene
99 *aadA* (in pNDGG002), we synthesized 1,786 bp from the pHP45Ωspec interposon (Prentki and
100 Krisch, 1984) that contained the *aadA* open reading frame with 516 upstream and 259 bp
101 downstream regions in pTwist Amp High Copy.

102

103 *Origins of replication and transfer*

104 Three new origins of replication and transfer were generated. These modules were each flanked
105 by 5' BsmB1(Esp31)-ACTA and 3' TTAC-BsmB1(Esp31) sites to enable cloning as Position 3
106 modules in BEVA. The sequences of the origins p15A (pNDGG006) and pMB1 (pNDGG007),
107 including their *oriTs*, were derived from 1,492 bp and 980 bp segments from pTH1937
108 (Milunovic *et al.*, 2014) and pUCP30T (Schweizer, Klassen and Hoang, 1996), respectively.
109 pMB1 was cloned into pGGAselect via BsaI, while p15A was synthesized in pTwist Chlor High
110 Copy. The broad host range origin RSF1010 (3,078 bp) was PCR amplified from pRSF-LtetO-
111 GFP (Lee *et al.*, 2019) and combined with a 268 bp *oriT* amplified from pOGG026 (Geddes,
112 Mendoza-Suárez and Poole, 2019) by BsaI Golden Gate cloning into pGGAselect to generate
113 pNDGG005.

114

115 *Accessory modules*

116 Four accessory modules were added, each flanked with 5' BsmB1(Esp31)-TTAC and 3' CAGA-
117 BsmB1(Esp31) sites to enable cloning as Position 4 modules in BEVA. The *sacB* gene enabling
118 sucrose counterselection was designed based off of pJQ200SK (Quandt and Hynes, 1993), and

119 the resulting module in pNDGG008 included 1,944 bp surrounding the *sacB* open reading frame
120 including 446 bp upstream and 76 bp downstream.

121 The *FRT* site-specific Flp recombinase motif
122 (GAAGTTCCATTCCGAAGTTCCATTCTCTAGAAAGTATAGGAACCTTC) was
123 synthesized as a Position 4 module in pNDGG009 with a few extra flanking base pairs to bring
124 the total size to 63 bp. The *attP* φC31 integrase target site
125 (CCCCAACTGGGGTAACCTTGAGTTCTCTCAGTTGGGG) was similarly synthesized as
126 a Position 4 module in pNDGG010. An *attP* motif was also included in pNDGG009 flanked by
127 *BsaI* (5'GCTT and 3'CGCT) sites (CIDAR EF module) such that it could be added to the 3' end
128 of an open reading frame in a Level 1 cloning. Likewise, a *FRT* motif flanked by the same *BsaI*
129 sites (5'GCTT/3'CGCT) was added to pNDGG010.

130 The I-SceI site accessory module in pQGG001 was generated by ligating the I-SceI site
131 as an annealed double-stranded oligomer (5' –
132 TCTGGACTACGGTTCCAAATTACCCCTGTTATCCCTACCTTGGAAATGGTCA - 3' and 5'-
133 TTACTGACCATTCCAAGGTAGGGATAACAGGGTAATTGGAACCGTAGTC - 3') into
134 an *Esp3I*-digested pOGG012 backbone using T4 DNA ligase.

135

136 *CIDAR terminators*

137 Three terminators from CIDAR (T2m, T12m and T15m from CIDAR MoClo Extension Volume
138 I) were adapted such that the 3' fusion site matched BEVA L1 cloning vectors. The fusion site
139 was adapted during cloning as a Level 0 part into pOGG006. The same forward primer was used
140 for all three, which bound upstream of the 5' *BsaI* site and added a *BpiI* fusion site (TGCC) for
141 cloning into pOGG006 (5' - AAAGAAGACAATGCCGGCCGCTTAGAGA-3'). A unique
142 3' primer was used for each, with the binding site anchored in the terminator and an altered 3'
143 *BsaI* fusion site added in the primer along with a *BpiI* fusion site for cloning into pOGG006
144 (T2m = 5'-AAAGAAGACAATCCGGTCTCAAGCGTCTCAAGGGCGCAATAAAA-3';
145 T12m = 5'-AAAGAAGACAATCCGGTCTCAAGCGTTGAGAAGAGAAAAGAAAACCG-
146 3', T15m = 5'-AAAGAAGACAATCCGGTCTCAAGCGGGCAGACCAGAAACAAA-3'.
147 After cloning into pOGG006, the resulting plasmids functioned as Level 0 parts, for BEVA,
148 flanked by *BsaI* and the fusion sites GCTT (5') and CGCT (3').

149

150 **Golden Gate cloning**

151 Golden Gate cloning reactions were performed using forty fmol of plasmid parts in a reaction
152 mix recipe of 1 μ l restriction enzyme (BsmBI-v2, Esp3I, or BsaI-HF-v2) (New England
153 Biolabs), 1.5 μ l bovine serum albumin, 1 μ l T4 DNA ligase (400 units/ μ L; New England
154 Biolabs), and 1.5 μ l 10x T4 DNA ligase buffer, diluted with ddH₂O to a total volume of 15 μ L.
155 Alternatively, NEB Golden Gate Assembly Kits (BsaI-HF-v2 or BsmBI-v2) were used as a pre-
156 mixed reaction mix with the DNA parts and ddH₂O. The Golden Gate cloning reactions were
157 performed in a thermocycler as follows: For BbsI/Esp3I: 30 cycles of 42°C for 1 minute
158 followed by 16°C for 1 minute, with heat inactivation at 60°C for 5 minutes; for BsaI: 30 cycles
159 of 37°C for 1 minutes and 16°C for 1 minute, with heat inactivation at 60°C for 5 minutes. The
160 resulting reaction mixes were stored at -20°C before thawing and using to transform chemically
161 competent *E. coli* DH5 α . Successful transformants were selected using appropriate antibiotics
162 and X-gal (5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside). Successful vector constructions
163 were selected based on blue-colored colonies, while successful Level 1 clonings were selected
164 based on white-colored colonies. Plasmids were verified by diagnostic restriction digest and/or
165 whole plasmid long-read sequencing by Plasmidsaurus.

166

167 **Genetic manipulations**

168 Bacterial strains used in this work are listed in **Table 1**. *E. coli* and *Sinorhizobium meliloti* strains
169 were grown in liquid or solid Lysogeny Broth (LB) medium, supplemented with 0.25 mM
170 MgCl₂ and 0.25 mM CaCl₂ (termed LBmc) for *S. meliloti*. *E. coli* strains were grown at 37°C
171 while *S. meliloti* strains were grown at 28°C. Antibiotics were added to media when necessary
172 for *E. coli* (Ec) or *S. meliloti* (Sm), at the following concentrations: gentamicin 10 μ g/ml (Ec) or
173 60 μ g/ml (Sm), kanamycin 25 μ g/ml (Ec), neomycin 200 μ g/ml (Sm), spectinomycin 50 μ g/ml
174 (Ec) or 100 μ g/ml (Sm), ampicillin 100 μ g/ml (Ec), and tetracycline 5 μ g/ml (Ec or Sm). Sucrose
175 counterselection was performed by adding 10% sucrose to LB medium. Conjugations between *E.*
176 *coli* and *S. meliloti* were performed by triparental mating using *E. coli* MT616 as a helper strain
177 (Finan *et al.*, 1986). Tests for colony antibiotic resistance/sensitivity phenotypes were performed
178 by patching colonies onto replicated agar plates using a sterilized toothpick. Transformation into
179 *E. coli* and conjugation into *S. meliloti* by triparental mating were performed using routine
180 protocols (Finan *et al.*, 1986; Geddes, Mendoza-Suárez and Poole, 2019).

181
182 **Fluorescence measurements by flow cytometry and plate reader assays**
183 Preparation of cells for flow cytometry experiments were conducted as follows. Cells were
184 grown in LB media containing standard working concentrations of the antibiotic corresponding
185 to the plasmid-encoded resistance. Media was inoculated with a single colony and placed on a
186 shake incubator set to 37°C at 215 rpm and grown overnight. One ml of each cell culture was
187 transferred to individual 1.5 ml microtubes, after which their optical density was measured using
188 a spectrophotometer. The tubes were then centrifuged for one minute at 17,000 x g. The
189 supernatant was removed, and the pellet was resuspended in PBS (phosphate-buffered saline) to
190 a final OD600 (optical density at 600 nm) of 1.0. Resuspended cells were further diluted 1:100 in
191 PBS immediately prior to flow cytometry. Tubes containing the diluted samples were placed in
192 the flow cytometer receptacle one at a time. The Beckman Cytoflex S flow cytometer was set to
193 interrogate the cells using yellow and blue lights. The yellow light detectors were set to measure
194 an mScarlet-I band path of 585/42, and the blue light detectors were set to measure both GFP at
195 525/40 and SSC at 488/8. Speed settings were adjusted to reach an average of 1000 events per
196 second. These settings were adjusted depending on each sample but were generally kept at the
197 lowest speed of 10 µl/min. Samples were manually compensated when required.

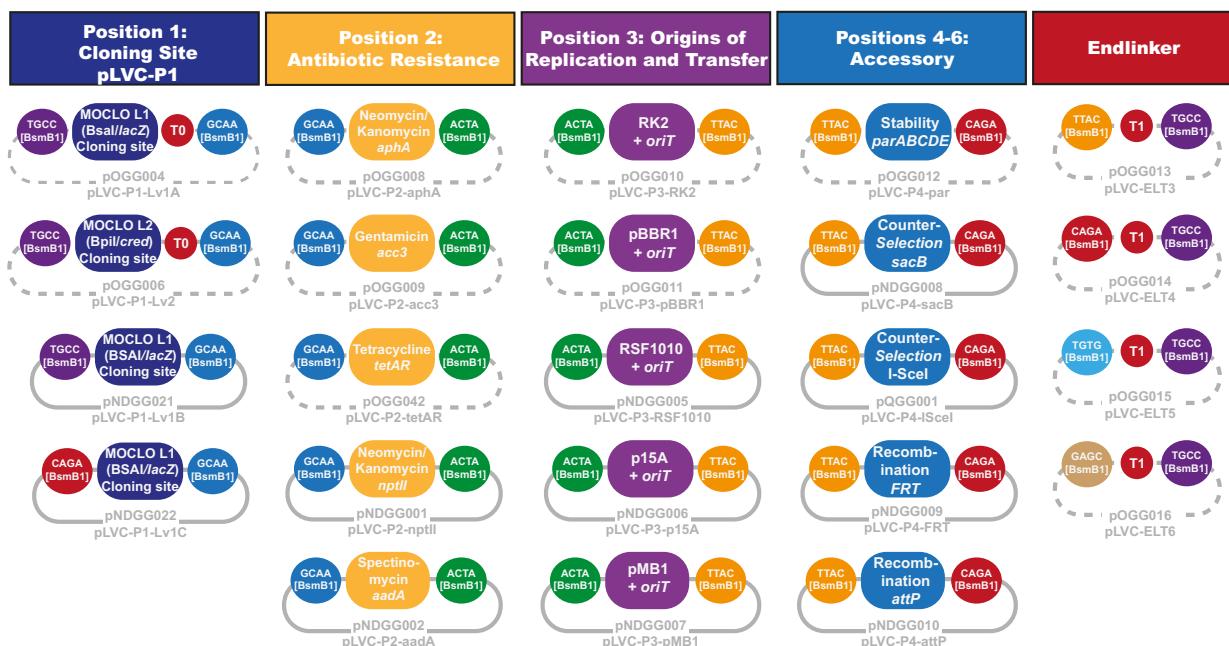
198 For measurements of fluorescence by plate reader, a Cytation 5 was used to quantify
199 fluorescence across a bacterial growth curve. *E. coli* or *S. meliloti* were grown at 37°C and 28°C,
200 respectively, for 24 hours from a starting OD600 of 0.05. The OD600 and fluorescence was
201 measured every 20 minutes. The growth was analyzed using the Growthcurver package in R. The
202 fluorescent values presented are derived from the maximum doubling time in the growth curve.
203 The following parameters were used for fluorescent measurements: cfCFP - excitation 485,
204 emission 475, gain 90; sfGFP - excitation 485, emission 510, gain 60; sfYFP - excitation 510,
205 emission 535, gain 100; mScarlet-I - excitation 569, emission 593, gain 108.

206

207 **Results and Discussion**

208 **Expansion of BEVA with 11 new modules.**

209 We aimed to improve the utility of BEVA for the construction of useful Golden Gate vectors by
210 (1) expanding the potential host range with additional broad host range origin of replication and
211 antibiotic resistance modules, and (2) expand the utility to routinely used vectors for genome


212 manipulations (deletions/integrations) via the addition of narrow host range origins of
213 replication, counters-electable markers, and site-specific recombinase sites. To enable this, we
214 designed 11 new modules that are shown as part of the broader BEVA archive in **Figure 1** and
215 listed in **Table 1**. The rational for inclusion of each of the modules is described below.

216 The initial BEVA was largely designed as a platform for generating expression vectors
217 and hence included the broad host range origins of replication pBBR1 (Antoine and Locht, 1992)
218 and RK2 (Meyer, Figurski and Helinski, 1975) with several options for antibiotic resistance
219 genes that could be tailored to a target strain of interest. To facilitate wider host utility, we added
220 another widely-used broad host range origin of replication, RSF1010 (Guerry, Van Embden and
221 Falkow, 1974; Scholz *et al.*, 1989), as a Position 3 module (vector pNDGG005). We also
222 expanded available antibiotic selection by adding spectinomycin resistance via an *aadA* cassette
223 (Prentki and Krisch, 1984) as a Position 2 module (vector pNDGG002). While a
224 kanamycin/neomycin resistance module (*aphA*-based) was available in the original BEVA, we
225 and others have found this module to be ineffective for neomycin-based selection in
226 *Sinorhizobium meliloti* (personal communication). Therefore, a new kanamycin/neomycin
227 module was added based on the more widely used *nptII* gene (Yenofsky, Fine and Pellow, 1990)
228 (vector pNDGG001).

229 Genome manipulations in model bacteria such as *S. meliloti* 1021 routinely involve the
230 use of integrative, or “suicide”, plasmids that replicate readily in *E. coli* but must integrate into
231 the genome to be maintained in the target microbe (Prentki and Krisch, 1984). Integrations can
232 be catalyzed by cloning a short sequence of the target genome to facilitate integration at a
233 specific genomic locus via homologous recombination. Double homologous recombination can
234 generate deletions in a similar approach by including target-genome sites flanking a region to be
235 deleted and incorporating a counter-selectable marker in the vector backbone to catalyze its
236 excision. An alternative to homologous recombination is to utilize site-specific recombinases to
237 catalyze integration at a target site in the host genome with a compatible recombinase target
238 sequence of an integrative plasmid (diCenzo and Finan, 2018). These approaches can also be
239 combined to catalyze inversions or large deletions between two recombinase sites, following
240 their integration on either side of a target region via two heterologous integrative vector
241 backbones. To facilitate all of these approaches, we added two narrow host range origins (p15A
242 (Chang and Cohen, 1978) and pMB1 (Rossi *et al.*, 1996), vectors pNDGG006-7), two site-

243 specific recombinase sites (*FRT* (Cox, 1983) and *attP* (Kuhstoss and Rao, 1991; Thorpe and
244 Smith, 1998), vectors pNDGG009-10), and two counter-selectable markers (I-SceI and *sacB*,
245 vectors pQGG001 and pNDGG008, respectively). The I-SceI target sequence can be counter-
246 selected through expression of the I-SceI restriction enzyme from an introduced plasmid (Aubert,
247 Hamad and Valvano, 2014), while *sacB* can be counter-selected via sucrose toxicity (Quandt and
248 Hynes, 1993). The *FRT* and *attP* sites facilitate recombination with *FRT* and *attP* sites via Flp
249 recombinase and ϕ C31 integrase, respectively (diCenzo and Finan, 2018). The availability of two
250 heterologous narrow host range origins facilitates introductions of multiple plasmids by
251 homologous recombination (such as for *FRT*-mediated deletions), minimizing the chance for
252 recombination between them (diCenzo and Finan, 2018). To allow further minimization of
253 homology between assembled plasmids, we also introduced two alternate Level 1 cloning sites
254 (pNDGG021-22) that allow exclusion of the 3' T0 terminator or the 5' T1 terminator (via
255 skipping an endlinker) from assembled vectors.

256

257

258 **Figure 1. Diagram of vector modules in the expanded BEVA2.0 vector archive.** Dashed
259 vector backbones reflect modules from BEVA1.0 (Geddes, Mendoza-Suárez and Poole, 2019).
260 Solid vector backbones reflect BEVA2.0 expansion modules presented in this work. Colored
261 rounded rectangles reflect parts, colored by module type. Colored circles reflect sticky overhangs

262 generated by *BsmBI* and ligated by DNA ligase in Golden Gate cloning reactions. Plasmid
263 names are indicated on the backbone with appropriate BEVA nomenclature below.

264

265

266 **A suite of broad host range Golden Gate expression vectors**

267 Using the updated BEVA2.0 parts library, we combined several modules with the aim of
268 developing a flexible broad host range vector suite with varied antibiotic resistance. To this end,
269 we included four antibiotic resistance modules (*aadA* (Sp), *nptII* (Nm/Km), *tetAR* (Tc), and *acc3*
270 (Gm); Position 2) with three broad host range origins of replication (RK2, pBBR1 and RSF1010;
271 Position 3). These were combined in the standard BEVA architecture with a Level 1 Golden
272 Gate cloning site (Position 1), the *par* accessory cluster for stability in the absence of antibiotic
273 selection (Position 4), and an endlinker (ELT4). The resulting vectors, their compositions and are
274 summarized in **Table 1** and **Figure 2A** with appropriate BEVA nomenclature (Geddes,
275 Mendoza-Suárez and Poole, 2019).

276 While the *parABCDE* cluster has been characterized for its ability to stabilize RK2
277 plasmids from which it was derived, we wished to verify the compatibility of this module with
278 the heterologous origins of replication pBBR1 and RSF1010. To do so, we performed an
279 experiment to assess plasmid stability in the absence of antibiotic selection, and compared the
280 stability of plasmids that included the module (Lv1-Gm-pBBR1-par-ELT4, and Lv1-Gm-
281 RSF1010-par-ELT4) to vectors we constructed the excluded the *par* module (Lv1-Gm-pBBR1-
282 ELT3, and Lv1-Gm-RSF1010-ELT3). Single colonies of *E. coli* transformants from each
283 plasmid were used to inoculate an overnight culture in the absence of antibiotics. Following
284 overnight growth and saturation, the culture was plated by serial dilution to single colonies
285 without antibiotic selection, and one hundred resulting colonies were patched onto Gm to assess
286 plasmid maintenance. In this experiment, while the pBBR1 vector showed stability in either the
287 presence or absence of *par*, the RSF1010 plasmid was significantly more stable when including
288 the *par* module (**Figure 2B**).

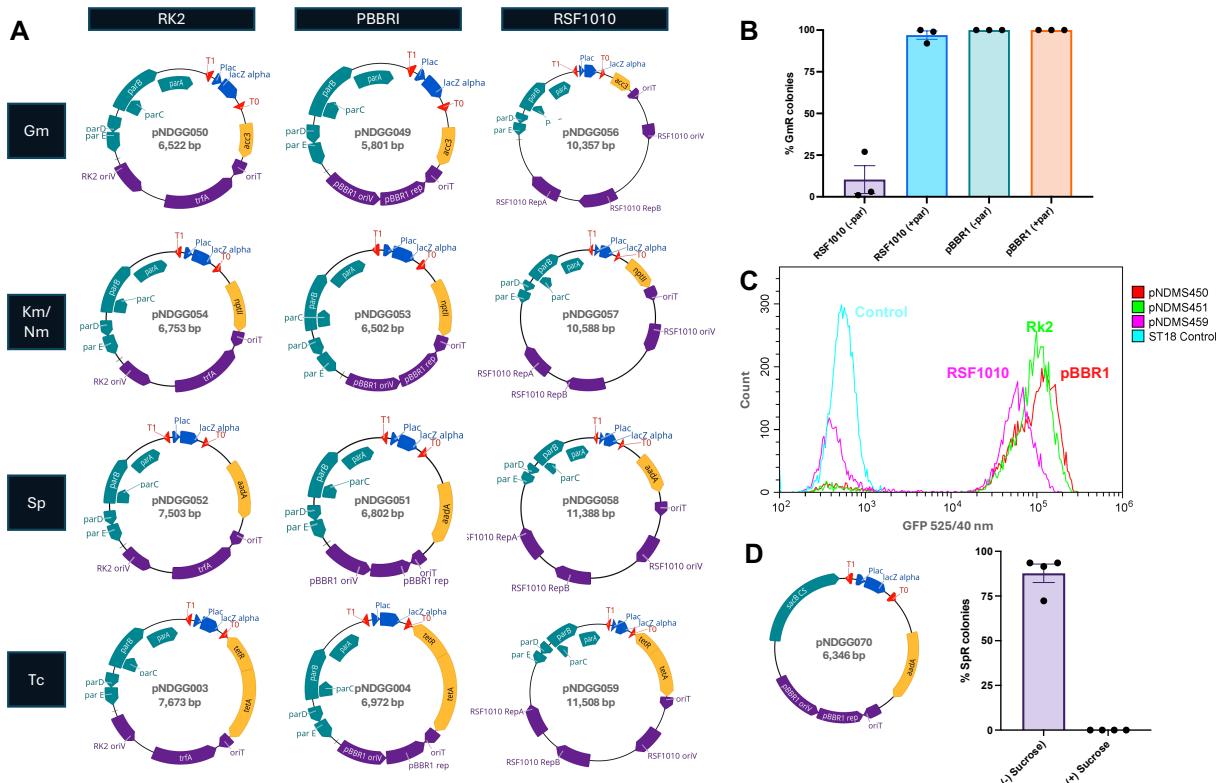
289 To verify Level 1 cloning and suitability of plasmids for expression, one plasmid from
290 each origin of replication from the suite (all Tc^R) were used for Level 1 Golden Gate cloning,
291 wherein we combined sfGFP with a constitutive promoter and ribosome binding site in *E. coli*
292 ST18ALA (**Table 1**). The fluorescence of the resulting plasmids was tested using flow cytometry

293 and we found significant levels of GFP fluorescence in plasmids that contained RK2, pBBR1, or
 294 RSF1010 backbones. While RK2 and pBBR1 plasmids showed similar profiles that were clearly
 295 distinct from non-fluorescent control cells, the RSF1010 backbone yielded a significant
 296 subpopulation of non-fluorescent cells (**Figure 2C**).

297
 298
 299

300 **Table 1. Plasmids used in this work**

Vector Name	BEVA Nomenclature	Description	Citation
Vector construction parts used to assemble BEVA2.0 vectors (pLVC)			
Position 1: cloning sites (pLVC-P1)			
pOGG004	pLVC-P1-Lv1A	BEVA Position 1 Level 1 BsaI cloning site flanked by T0, Sp ^R . Addgene 113979	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG006	pLVC-P1-Lv2	BEVA Position 1 Level 2 BpiI cloning site flanked by T0, Sp ^R . Addgene 113981	(Geddes, Mendoza-Suárez and Poole, 2019)
pNDGG021	pLVC-P1-Lv1B	BEVA2.0 Position 1 Level 1 BsaI cloning site without T0, Amp ^R	This work
pNDGG022	pLVC-P1-Lv1C	BEVA2.0 Position 1 Level 1 BsaI cloning site with alternate CAGA 3' fusion site, without T0, Amp ^R	This work
Position 2: antibiotic resistance cassettes (pLVC-P2)			
pOGG008	pLVC-P2-aphA	BEVA Position 2 Km/Nm antibiotic resistance via <i>aphA</i> , Sp ^R /Km ^R /Nm ^R . Addgene 113982	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG009	pLVC-P2-acc3	BEVA Position 2 Gm antibiotic resistance via <i>aac3</i> , Sp ^R /Gm ^R . Addgene 113983	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG042	pLVC-P2-tetAR	BEVA Position 2 Gm antibiotic resistance via <i>aac3</i> , Sp ^R /Gm ^R . Addgene 113998	(Geddes, Mendoza-Suárez and Poole, 2019)
pNDGG001	pLVC-P2-nptII	BEVA2.0 Position 2 Km/Nm antibiotic resistance via <i>nptII</i> , Cm ^R /Km ^R /Nm ^R .	This work
pNDGG002	pLVC-P2-aadA	BEVA2.0 Position 2 Sp antibiotic resistance via <i>aadA</i> , Amp ^R /Sp ^R	This work
Position 3: origins of replication and transfer (pLVC-P3)			
pOGG010	pLVC-P3-RK2	BEVA Position 3 RK2 broad host range origin of replication with <i>oriT</i> , Sp ^R . Addgene 113984	(Geddes, Mendoza-Suárez and Poole, 2019)

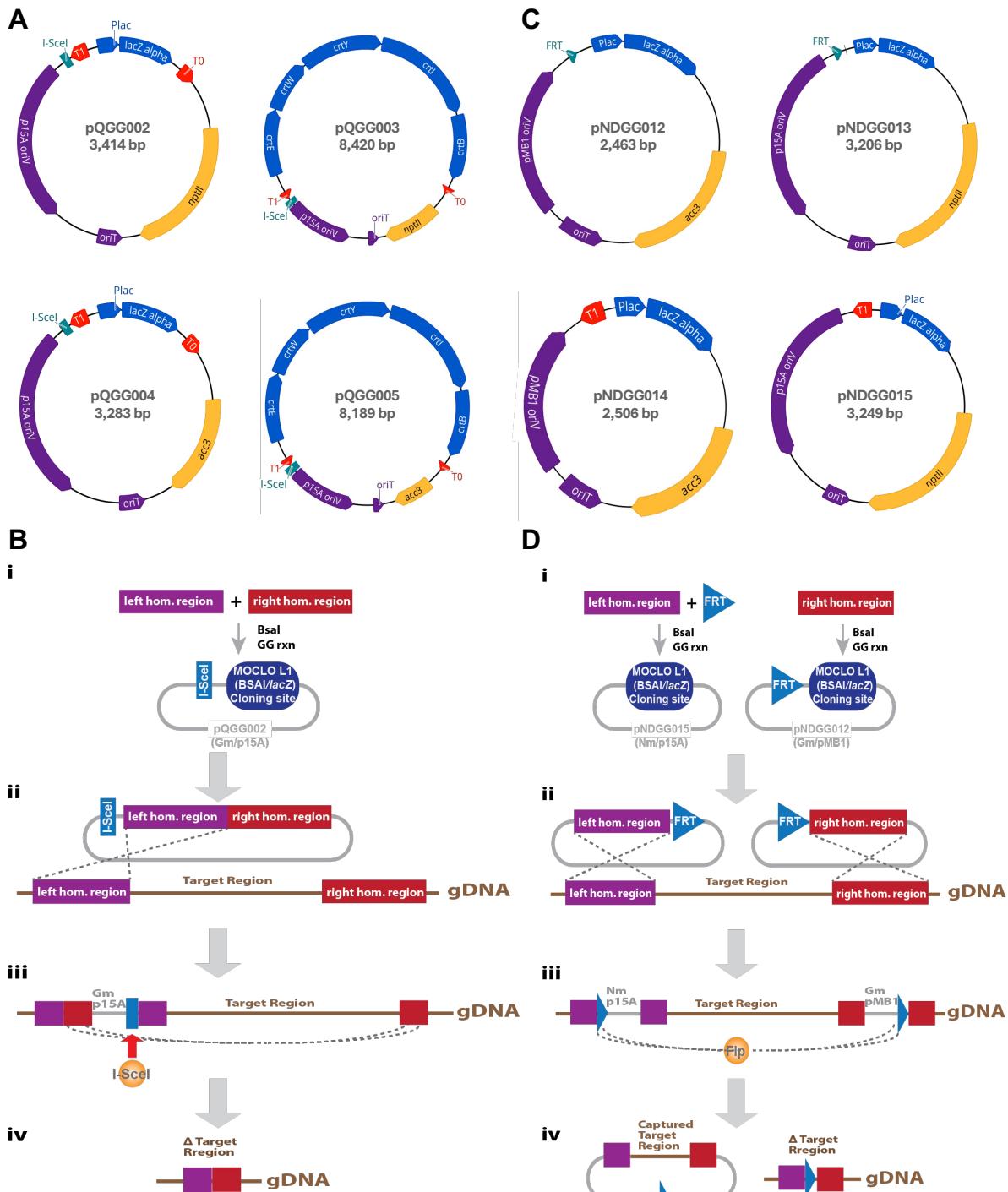

pOGG011	pLVC-P3-pBBR1	BEVA Position 3 pBBR1 broad host range origin of replication with <i>oriT</i> , Sp ^R . Addgene 113985	(Geddes, Mendoza-Suárez and Poole, 2019)
pNDGG005	pLVC-P3-RSF1010	BEVA2.0 Position 3 RSF1010 broad host range origin of replication with <i>oriT</i> , Cm ^R .	This work
pNDGG006	pLVC-P3-p15A	BEVA2.0 Position 3 p15A narrow host range origin of replication with <i>oriT</i> , Cm ^R .	This work
pNDGG007	pLVC-P3-pMB1	BEVA2.0 Position 3 pMB1 narrow broad host range origin of replication with <i>oriT</i> , Cm ^R .	This work
Position 4: accessory modules (pLVC-P4-6)			
pOGG012	pLVC-P4-par	BEVA Position 4 <i>parCDABE</i> stability locus, Sp ^R . Addgene 113986	(Geddes, Mendoza-Suárez and Poole, 2019)
pNDGG008	pLVC-P4-sacB	BEVA2.0 Position 4 <i>sacB</i> sucrose counterselection module, Amp ^R .	This work
pQGG001	pLVC-P4-ISceI	BEVA2.0 Position 4 I-SceI recognition/cut site, Sp ^R .	This work
pNDGG009	pLVC-P4-FRT	BEVA2.0 Position 4 <i>FRT</i> recombinase site, Amp ^R . Also includes <i>attP</i> EF module for L1 GG cloning.	This work
pNDGG010	pLVC-P4-attP	BEVA2.0 Position 4 <i>attP</i> recombinase site, Amp ^R . Also includes <i>FRT</i> EF module for L1 GG cloning.	This work
Endlinkers (ELT)			
pOGG013	pLVC-ELT3	BEVA Position 3 endlinker with T1 terminator, Sp ^R . Addgene 113987	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG014	pLVC-ELT4	BEVA Position 4 endlinker with T1 terminator, Sp ^R . Addgene 113988	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG015	pLVC-ELT5	BEVA Position 5 endlinker with T1 terminator, Sp ^R . Addgene 113989	(Geddes, Mendoza-Suárez and Poole, 2019)
pOGG016	pLVC-ELT6	BEVA Position 6 endlinker with T1 terminator, Sp ^R , Addgene 113990	(Geddes, Mendoza-Suárez and Poole, 2019)
BEVA2.0 vectors used for Level 1 or 2 Golden Gate cloning			
pNDGG003	Lv1A-tetAR-RK2-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG010, pOGG012, pOGG014, pOGG042, and pOGG004, Tc ^R	This work
pNDGG004	Lv1A-tetAR-pBBR1-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG011, pOGG012, pOGG014, pOGG042, and pOGG004, Tc ^R	This work
pNDGG049	Lv1A-aac3-pBBR1-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pOGG009, pOGG011, pOGG012, and pOGG014, Gm ^R	This work
pNDGG050	Lv1A-aac3-RK2-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pOGG009, pOGG010, pOGG012, and pOGG014, Gm ^R	This work

pNDGG051	Lv1A-aadA-pBBR1-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG002, pOGG011, pOGG012, and pOGG014, Sp ^R	This work
pNDGG052	Lv1A-aadA-RK2-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG002, pOGG010, pOGG012, and pOGG014, Sp ^R	This work
pNDGG053	Lv1A-nptII-pBBR1-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG001, pOGG011, pOGG012, and pOGG014, Nm ^R /Km ^R	This work
pNDGG054	Lv1A-nptII-RK2-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG001, pOGG010, pOGG012, and pOGG014, Nm ^R /Km ^R	This work
pNDGG056	Lv1A-aac3-RSF1010-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pOGG009, pNDGG005, pOGG012, and pOGG014, Gm ^R	This work
pNDGG057	Lv1A-tetAR-RSF1010-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pOGG042, pNDGG005, pOGG012, and pOGG014, Tc ^R	This work
pNDGG058	Lv1A-aadA-RSF1010-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG002, pNDGG005, pOGG012, and pOGG014, Sp ^R	This work
pNDGG059	Lv1A-nptII-RSF1010-par-ELT4	BEVA2.0 Broad host range plasmid with stability. Golden Gate assembly from pOGG004, pNDGG001, pNDGG005, pOGG012, and pOGG014, Nm ^R /Km ^R	This work
pNDGG070	Lv1A-aadA-pBBR1-sacB-ELT4	BEVA2.0 Sucrose curable broad host range plasmid. Golden Gate assembly from pOGG004, pNDGG002, pOGG011, pNDGG008, and pOGG014, Sp ^R	This work
pQGG002	Lv1A-nptII-p15A-ISceI-ELT4	BEVA2.0 Narrow host range plasmid with I-SceI counterselectable site. Golden Gate assembly from pOGG004, pNDGG001, pNDGG006, pQGG001, pOGG014, Km ^R /Nm ^R .	This work
pQGG003	Lv2-nptII-p15A-ISceI-ELT4	BEVA2.0 Narrow host range plasmid with I-SceI counterselectable site for BpiI cloning. Golden Gate assembly from pOGG006, pNDGG001, pNDGG006, pQGG001, pOGG014, Km ^R /Nm ^R .	This work
pQGG004	Lv1A-aac3-p15A-ISceI-ELT4	BEVA2.0 Narrow host range plasmid with I-SceI counterselectable site. Golden Gate assembly from pOGG004, pOGG009, pNDGG006, pQGG001, pOGG014, Gm ^R .	This work
pQGG005	Lv2-aac3-p15A-ISceI-ELT4	BEVA2.0 Narrow host range plasmid with I-SceI-ELT4 counterselectable site for BpiI cloning. Golden Gate assembly from pOGG006, pOGG009, pNDGG006, pQGG001, pOGG014, Gm ^R .	This work
pNDGG012	Lv1C-aac3-pMB1-FRT	Narrow host range plasmid with FRT site. Golden Gate assembly from pNDGG022, pNDGG007, pOGG009, pNDGG009, Gm ^R .	This work
pNDGG013	Lv1C-nptII-p15A-FRT	Narrow host range plasmid with FRT site. Golden Gate assembly from pNDGG022, pNDGG006, pNDGG001, pNDGG009, Km ^R /Nm ^R .	This work
pNDGG014	Lv1B-aac3-pMB1-ELT3	Narrow host range plasmid. Golden Gate assembly from pNDGG021, pNDGG007, pOGG009, pOGG013, Gm ^R .	This work
pNDGG015	Lv1B-nptII-p15A-ELT3	Narrow host range plasmid. Golden Gate assembly from pNDGG021, pNDGG006, pNDGG001, pOGG013, Km ^R /Nm ^R .	This work
Level 1 Golden Gate modules (pL1M)			

J23106	pL1M-AB-J23106	CIDAR Medium-strength constitutive promoter from Anderson series, AB module, Amp ^R , Addgene 65992	(Iverson <i>et al.</i> , 2016)
B0032m	pL1M-BC-B0032M	CIDAR Weiss RBS of medium strength, BC module, Amp ^R , Addgene 66020	(Iverson <i>et al.</i> , 2016)
BCD12	pL1M-BC-BCD12	CIDAR BiCistronic RBS of medium-low strength, BC module, Amp ^R , Addgene 66023	(Iverson <i>et al.</i> , 2016)
C3m	pL1M-CD-C3m	CIDAR MoClo Extension volume I, sfGFP, CD module, Amp ^R . Addgene 120956	Gift from Richard Murray via Addgene)
C51m	pL1M-CD-C51m	CIDAR MoClo Extension volume I, sfYFP, CD module, Amp ^R . Addgene 120975	Gift from Richard Murray via Addgene)
C91m	pL1M-CD-C91M	CIDAR MoClo Extension volume I, sfCFP, CD module, Amp ^R . Addgene 120999	Gift from Richard Murray via Addgene)
C88m	pL1M-CD-C88m	CIDAR MoClo Extension volume I, m-Scarlet-I, CD module, Amp ^R . Addgene 121003	Gift from Richard Murray via Addgene)
T2m	pL1M-DE-T2m	CIDAR MoClo Extension volume I, Eck120033736 terminator (nmeth.2515), DE module, Amp ^R . Addgene 121029	Gift from Richard Murray via Addgene)
T12m	pL1M-DE-T12m	CIDAR MoClo Extension volume I, Eck120026300 terminator (nmeth.2515), DE module, Amp ^R . Addgene 121031	Gift from Richard Murray via Addgene)
T15m	pL1M-DE-T15m	CIDAR MoClo Extension volume I, L3S3P11 terminator (nmeth.2515), DE module, Amp ^R . Addgene 121034	Gift from Richard Murray via Addgene)
pOGG037	pL1M-CE-sfGFP	BEVA1.0 sfGFP “SC” model (CE CIDAR extensions), Sp ^R . Addgene 113995	(Geddes, Mendoza-Suárez and Poole, 2019)
pNDGG037	pL1M-DF-T2m	BEVA2.0 T2m terminator with DF extension for CIDAR MoClo Golden Gate Assembly, DF module. Cloned via BpiI GG Assembly of PCR amplicon into POGG006, Sp ^R .	This work
pNDGG038	pL1M-DF-T12m	BEVA2.0 T12m terminator with DF extension for CIDAR MoClo Golden Gate Assembly, DF module. Cloned via BpiI GG Assembly of PCR amplicon into POGG006, Sp ^R .	This work
pNDGG039	pL1M-DF-T15m	BEVA2.0 T15m terminator with DF extension for CIDAR MoClo Golden Gate Assembly, DF module. Cloned via BpiI GG Assembly of PCR amplicon into POGG006, Sp ^R .	This work
Other plasmids			
pDA1-SceI-sacB	NA	pBBR1 broad host range plasmid expressing I-SceI homing endonuclease and <i>sacB</i> counterselectable marker, Tc ^R	(Aubert, Hamad and Valvano, 2014)
pNDMS450	Lv1A-tetAR-RK2-par-ELT4 (J23106-	RK2 broad host range plasmid expressing constitutive sfGFP. GG assembly of pNDGG003_AF, J23106_AB, B0032m_BC, pOGG037_CE, and EF oligo, Tc ^R	This work

	B0032m-sfGFP-oligo)		
pNDMS451	Lv1A-tetAR-pBBR1-par-ELT4 (J23106-B0032m-sfGFP-oligo)	pBBR1 broad host range plasmid expressing constitutive sfGFP. GG assembly of pNDGG004_AF, J23106_AB, B0032m_BC, pOGG037_CE, and EF oligo , Tc ^R	This work
pNDMS459	Lv1A-tetAR-RSF1010-par-ELT4 (J23106-B0032m-sfGFP-oligo)	RSF1010 broad host range plasmid expressing constitutive sfGFP. GG assembly of pNDGG057_AF, J23106_AB, B0032m_BC, pOGG037_CE, and EF oligo , Tc ^R	This work
pNDMS054	Lv1A-tetAR-RK2-par-ELT4 (J23106-BCD12-sfGFP-T2m)	RK2 broad host range plasmid expressing constitutive sfGFP. GG assembly from pNDGG003_AF, J23106_AB, BCD12_BC, C3m_CD, and T2m_DF (pNDGG037), Tc ^R	This work
pNDMS055	Lv1A-tetAR-RK2-par-ELT4 (J23106-BCD12-sfCFP-T2m)	RK2 broad host range plasmid expressing constitutive sfCFP. GG assembly from pNDGG003_AF, J23106_AB, BCD12_BC, C91m_CD, and T2m_DF (pNDGG037), Tc ^R	This work
pNDMS056	Lv1A-tetAR-RK2-par-ELT4 (J23106-BCD12-sfYFP-T2m)	RK2 broad host range plasmid expressing constitutive sfYFP. GG assembly from pNDGG003, J23106_AB, BCD12_BC, C51m_CD, and T2m_DF (pNDGG037), Tc ^R	This work
pNDMS057	Lv1A-tetAR-RK2-par-ELT4 (J23106-BCD12-mScarlet-T2m)	RK2 broad host range plasmid expressing constitutive m-Scarlet-I. GG assembly from pNDGG003, J23106_AB, BCD12_BC, C99m_CD, and T2m_DF (pNDGG037), Tc ^R	This work

301
302 We also demonstrated the flexibility of the BEVA system by cloning an alternate broad host
303 range plasmid that included a module to facilitate its removal rather than promote stability, *sacB*
304 (**Figure 2D**). We used a plasmid (Lv1-Sp-pBBR1-sacB-ELT4) to facilitate curing (i.e., loss) of
305 the difficult to remove pBBR1 plasmids from strains of a *S. meliloti* deletion library (Milunovic
306 *et al.*, 2014) through incompatibility. Thereafter, we found that the BEVA2.0 *sacB* plasmid was
307 efficiently removed by sucrose counterselection (**Figure 2D**). In four replicates, *S. meliloti*
308 bearing the Sp^R *sacB* plasmid were plated onto LBmc or LBmc with 10% sucrose by serial
309 dilution following overnight culturing in the absence of antibiotics. Approximately 50 single
310 colonies from each set of plates were patched onto LBmc Sp to test for plasmid loss. A low rate
311 of plasmid loss was observed in the absence of sucrose selection, while sucrose selection resulted
312 in a complete curing of the plasmid in the population tested.



315 **Figure 2. BEVA2.0 Broad Host Range Vectors. A.** Plasmid maps of broad host range vectors
316 developed using BEVA2.0 parts. **B.** Quantification of pBBR1 or RSF1010 plasmid maintenance
317 with and with-out *par* loci. Data is expressed as the proportion of 100 colonies that grew on LB
318 + Gm plates after patching following antibiotic-free culturing and spread-plating on LB. **C.**
319 Histograms of GFP signal from flow cytometry analysis of *E. coli* ST18ALA bearing RSF1010,
320 pBBR1, or RK2 plasmids expressing sfGFP. **D.** Plasmid map of a curable *sacB*-containing
321 pBBR1 plasmid pNDGG070, and the proportion of plasmid loss following growth on 10%
322 sucrose based on sensitivity when 50 colonies were patched on LB + Sp media.

324 **Golden-Gate compatible vectors for homologous recombination**

325 We also expanded the collection of Level 1 cloning vectors for use in genetic engineering by
326 utilizing integrative plasmid parts from the updated BEVA2.0 parts library (Table 1). Vectors for
327 homologous recombination were constructed using the p15A origin of replication, which
328 generates integrative plasmids in many Gram-negative bacteria due to its inability to be
329 maintained as a replicating plasmid (Quandt and Hynes, 1993) (Figure 3A). To facilitate

330 workflows for constructing deletions by double homologous recombination, we also added an I-
331 SceI recognition site that enables curing through expression of the I-SceI endonuclease. We
332 generated multiple versions including optional antibiotic selection (Gm^R or Nm^R), and two
333 different cloning sites (BsaI or BpiI) to facilitate flexible cloning of chromosomal homologous
334 regions, should one site or the other be present in a target region. These plasmids have been used
335 in workflows to generate deletions in *S. meliloti* and functioned efficiently to generate marked or
336 unmarked deletions. For example, when a pQGG004 derivative was used to create a marked
337 deletion of the *S. meliloti* *phaZ* gene, the efficiency of I-SceI selection for the expected double-
338 recombination was ~14% when averaged across four independent replicates with 17-33 colonies.
339 Surprisingly, the efficiency varied from as low as 3% to up to 19% depending on the trial, which
340 is a result that we have repeatedly observed when selecting for double recombinants using this
341 approach (diCenzo, unpublished). We hypothesize that the efficiency of obtaining double
342 recombinants varies depending on where the initial recombination occurred, and thus we
343 recommend purifying multiple single recombinants for use in downstream steps to optimize the
344 likelihood of obtaining a correct double recombinant.

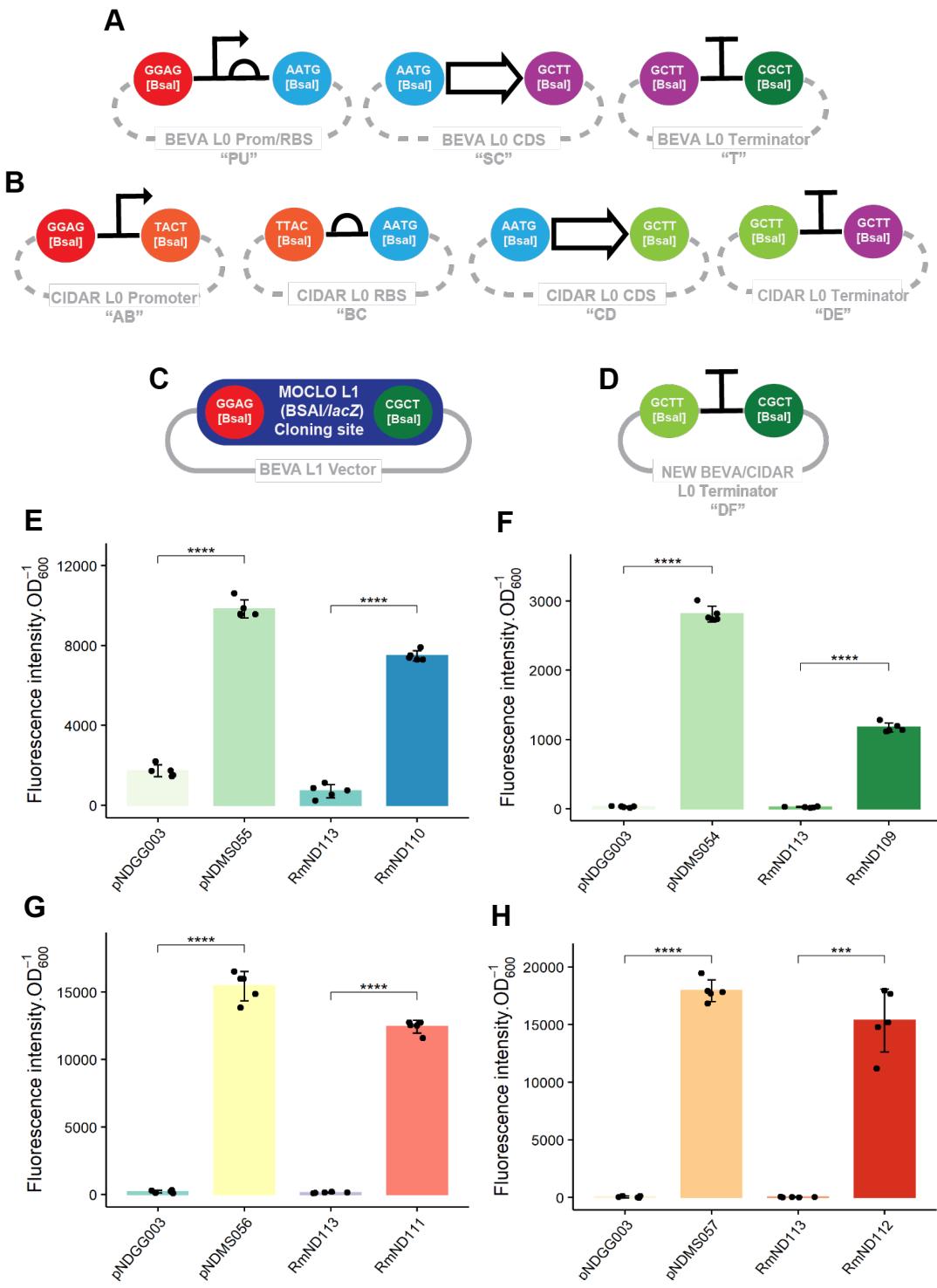
345

346 **Figure 3. BEVA2.0 Genome Manipulation Plasmids. A.** Maps of plasmids developed for the
 347 double homologous recombination deletion method, and **B.** schematic of the plasmids
 348 to delete a target region. Steps involve: **i**) cloning of homologous regions to the left and right of

349 the target region into a BEVA2.0 vector using BsaI or BpiI Golden Gate cloning; **ii)** conjugating
350 the plasmid into the target organism and selecting for integration via single cross-over
351 homologous recombination (using antibiotic resistance on the plasmid); **iii)** introducing a
352 replicating plasmid expressing the I-SceI endonuclease (eg. via pDA1-ISceI-sacB) by
353 conjugation and selecting for its maintenance to select for the second recombination event, in
354 which the BEVA2.0 plasmid backbone is excised from the genome together with the target
355 region; and **iv)** screening resulting colonies for the presence of the deletion (based on PCR and
356 loss of the resistance of the BEVA2.0 plasmid). **C.** Maps of plasmids developed for Flp/*FRT*
357 recombination methods, and **D.** a schematic diagramming their use to excise and capture a target
358 region. Steps involve: **i)** cloning homologous regions to the left and right of the target adjacent to
359 *FRT* site in heterologous BEVA2.0 plasmids via BsaI Golden Gate cloning; **ii)** sequentially
360 integrating the plasmids by conjugating them into the recipient and selecting for the appropriate
361 antibiotic resistances; **iii)** introducing a replicating plasmid containing *flp* recombinase gene (eg.
362 pTH2505) by conjugation and inducing Flp expression to catalyze excision of the target region
363 via *FRT* recombination (optionally also introducing an *E. coli* recipient strain for region capture,
364 and selecting with an alternate media that selects for the recipient with BEVA2.0 plasmids); and
365 **iv)** screening for the resulting deletion by PCR and loss of BEVA2.0 backbone resistance.

366

367 **Adapting the Flp/*FRT* deletion method to Golden Gate plasmid assembly**


368 Another workflow for genetic manipulation involves the use of site-specific recombinases such
369 as FLP, ϕ C31, or Cre to generate deletions, inversions, or integrations (diCenzo and Finan,
370 2018). We have found these particularly useful for deleting or integrating large regions
371 (Milunovic *et al.*, 2014; Geddes *et al.*, 2021). To adapt these workflows to Golden Gate cloning,
372 we generated additional new integrative vectors. Since deletion workflows require sequential
373 integration of recombinase sites flanking either side of a target, it is valuable to have a second
374 heterologous integrative plasmid (diCenzo and Finan, 2018). It is optimal to minimize homology
375 between the two plasmids, therefore in addition to p15A-based plasmids, we also generated
376 integrative plasmids based on another integrative origin of replication, pMB1 and excluded the
377 3' T₀ terminator with an alternate Level 1 Golden Gate cloning site (Vector pNDGG0021). We
378 used another alternate Level 1 Golden Gate cloning site (vector pNDGG0022) that both excluded
379 the 3' T₀ terminator, and replaced the endlinker T1 terminator with an *FRT* site (vector

380 pNDGG009) to further expand the suite of integrative plasmids. We then designed a scheme
381 wherein a *FRT* site can be incorporated into the 5' end of a cloned homologous region from the
382 genome by using the *FRT*-bearing vectors, or to the 3' end of a cloned homologous region during
383 region addition. To facilitate addition of the second *FRT* site, we generated an *FRT* site flanked
384 by BsaI and 5' GCTT and 3' CGCT junctions (Figure 3C). We utilized these plasmids to
385 construct an *idhA* deletion in *S. meliloti* RmP110 (Geddes, unpublished) and found them to
386 function with similar efficiencies to traditional cloning plasmids (diCenzo and Finan, 2018).

387

388 **Linking the CIDAR parts archive to BEVA plasmids.**

389 The recently introduced CIDAR MoClo parts kit and CIDAR MoClo Expansion Volume I
390 libraries (available as Kit 1000000059 and Kit 1000000161 through Addgene) include a wide
391 variety of useful parts for bacterial engineering domesticated as defined parts for Level 1 Golden
392 Gate cloning. Because both systems (CIDAR and BEVA) adopt MoClo (Weber *et al.*, 2011),
393 both systems adopt the same fusion sites for Level 1 cloning and, as such, the systems are
394 generally compatible. However, individual CIDAR Level 0 parts were developed with an
395 alternate Positional architecture than BEVA or MoClo (Weber *et al.*, 2011; Iverson *et al.*, 2016;
396 Geddes, Mendoza-Suárez and Poole, 2019) (**Figure 4A-C**). In particular, while the 5' fusion site
397 GGAG ("A" in CIDAR) is conserved between the two systems and links to the 5' fusion site of
398 promoter parts, the 3' cloning fusion site in BEVA is CGCT ("F" in CIDAR), whereas CIDAR
399 was designed with terminators bearing a 3' fusion site of GCTT ("E"). Therefore, to adapt
400 BEVA to the CIDAR architecture, we recloned several CIDAR terminators to match the 3'
401 fusion site of BEVA plasmids (as "DF" rather than "DE" parts). Using these terminators enables
402 researchers to utilize the wide variety of CIDAR parts for construction of open reading frames in
403 BEVA plasmids. For example, we have cloned a variety of constitutively expressed fluorescent
404 proteins by combining promoters, RBS, and open reading frames from CIDAR into the
405 replicating plasmid pNDGG003 and verified their function in *S. meliloti* (**Figure 4E-H, Table**
406 **1**). To reflect the integration of CIDAR with BEVA we have updated BEVA Level 1 part
407 nomenclature with the CIDAR nomenclature (**Figure 4A, B and D, Table 1**).

408

409 **Figure 4. Parts to link BEVA and CIDAR.** **A.** Diagram of the architecture of BEVA Level 0
 410 parts for open reading frame construction (Geddes, Mendoza-Suárez and Poole, 2019). **B.**
 411 Diagram of the architecture of CIDAR parts for open reading frame construction.

412 **C.** Architecture of a the BsaI multiple cloning site in Level 1 BEVA vectors. **D.** Architecture of
413 BEVA/SEVA “linker” DF terminators. **E.** Fluorescence of BEVA vectors with CIDAR parts.
414 The constitutive promoter J23106 together with the medium-strength RBS BCS12, are used to
415 drive sfCFP (E), sfGFP (F), sfYFP (G) and mScarlet-I (H). The new linker terminator was used
416 to assemble these marker genes in the RK2 BEVA2.0 plasmid pNDGG003. Fluorescence of the
417 cloned plasmids in *E. coli* (pNDMS054-57) is shown next to the empty vector control
418 (pNDGG003) on the left side of the graphs. On the right side of the graphs, *S. meliloti* RmP110
419 containing pNDGG003 (RmND113) is shown compared to RmP110 containing pNDMS054-57
420 (RmND109-112).

421

422 **Conclusions**

423 The original Bacterial Expression Vector Archive has facilitated new synthetic biology
424 approaches for alpha-proteobacteria such as advanced strain barcoding (Mendoza-Suárez *et al.*,
425 2020) and adaption of CRISPR base editing (Wang *et al.*, 2021), and has supported a range of
426 studies by streamlining genetic engineering (Geddes *et al.*, 2019; Haskett *et al.*, 2022, 2023). In
427 addition, adaptations of the BEVA architecture have recently been performed for the
428 development of a suite of plasmids for Tn7 (Jorrin *et al.*, 2024) and mariner transposition
429 (Williamson *et al.* in Preparation). The resources presented here in the BEVA2.0 expansion will
430 further expand the utility of the system by extending the host range of replicating plasmids with
431 new origins of replication and antibiotic resistance modules, introducing resources for genetic
432 engineering by homologous or site-specific recombination, and adapting BEVA plasmids to
433 function with the CIDAR system. We have found these upgrades to streamline genetic
434 manipulation and mutant construction in *S. meliloti*, which is a model organism for studying
435 symbiotic nitrogen fixation, carbon metabolism, genome evolution and sociomicrobiology
436 (Kearsley, Sather and Finan, 2024). Moreover, the nature of the plasmid parts used indicates they
437 should function broadly in bacteria, and have enabled approaches that probe the engineerability
438 of diverse microbes from across the phylogenetic tree (Williamson *et al.* in Preparation). Overall,
439 BEVA and BEVA2.0 represent a significant community resource for bacterial genetics and
440 synthetic biology.

441

442 **Acknowledgements**

443 We thank Megan Ramsett and the Thomas Glass Innovation Core staff (Scott Hoselton and
444 Kaycie Schmidt) in the Department of Microbiological Sciences, North Dakota State University
445 for administrative and technical contributions to this work. BEVA plasmids with the pOGG
446 prefix were a gift from Philip Poole (received from Addgene). CIDAR plasmids were a gift from
447 Douglas Densmore (received from Addgene).

448

449

450 **Funding**

451 This work was supported by a New Innovator in Food & Agricultural Research (FFAR) grant to
452 B. A. Geddes ID: FF-NIA21-0000000061m, an NSF Collaborative Research-PGR grant to B. A.
453 Geddes: Award number 2243818. Research in the G.C.D. laboratory is supported by the Natural
454 Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grants
455 program (grant number RGPIN-2020-07000).

456

457 **Data Availability**

458 Golden Gate cloning plasmids generated in this work and their DNA sequence information have
459 been submitted to Addgene (Deposit 85226, IDs 231305-2131339). Data supporting figures in
460 the manuscript is available upon request.

461

462 **Competing Interests**

463 Barney A. Geddes is a co-founder of Lilac Agriculture Inc.

464

465 **References**

466 Antoine, R. and Locht, C. (1992) 'Isolation and molecular characterization of a novel broad-
467 host-range plasmid from *Bordetella bronchiseptica* with sequence similarities to plasmids from
468 Gram-positive organisms', *Molecular Microbiology*, 6(13), pp. 1785–1799. Available at:
469 <https://doi.org/10.1111/j.1365-2958.1992.tb01351.x>.

470 Aubert, D.F., Hamad, M.A. and Valvano, M.A. (2014) 'A markerless deletion method for
471 genetic manipulation of *Burkholderia cenocepacia* and other multidrug-resistant gram-negative
472 bacteria', *Methods in Molecular Biology* (Clifton, N.J.), 1197, pp. 311–327. Available at:
473 https://doi.org/10.1007/978-1-4939-1261-2_18.

- 474 Bentham, A.R. *et al.* (2021) 'pOPIN-GG: A resource for modular assembly in protein expression
475 vectors'. *bioRxiv*, p. 2021.08.10.455798. Available at:
476 <https://doi.org/10.1101/2021.08.10.455798>.
- 477 Chang, A.C. and Cohen, S.N. (1978) 'Construction and characterization of amplifiable
478 multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid', *Journal of*
479 *bacteriology*, 134(3), pp. 1141–1156.
- 480 Cox, M.M. (1983) 'The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic
481 genetic recombination system in *Escherichia coli*', *Proceedings of the National Academy of*
482 *Sciences*, 80(14), pp. 4223–4227.
- 483 diCenzo, G.C. *et al.* (2019) 'Multidisciplinary approaches for studying rhizobium–legume
484 symbioses', *Canadian Journal of Microbiology*, 65(1), pp. 1–33. Available at:
485 <https://doi.org/10.1139/cjm-2018-0377>.
- 486 diCenzo, G.C. and Finan, T.M. (2018) 'Techniques for large-scale bacterial genome
487 manipulation and characterization of the mutants with respect to in silico metabolic
488 reconstructions', in M. Fondi (ed.) *Metabolic Network Reconstruction and Modeling: Methods*
489 *and Protocols*. New York, NY: Springer, pp. 291–314. Available at: https://doi.org/10.1007/978-1-4939-7528-0_13.
- 491 Engler, C. *et al.* (2009) 'Golden Gate Shuffling: A one-pot dna shuffling method based on Type
492 IIIs restriction enzymes', *PLoS ONE*, 4(5), p. e5553. Available at:
493 <https://doi.org/10.1371/journal.pone.0005553>.
- 494 Engler, C. *et al.* (2014) 'A Golden Gate modular cloning toolbox for plants', *ACS Synthetic
495 Biology*, 3(11), pp. 839–843. Available at: <https://doi.org/10.1021/sb4001504>.
- 496 Finan, T.M. *et al.* (1986) 'Second symbiotic megaplasmid in *Rhizobium meliloti* carrying
497 exopolysaccharide and thiamine synthesis genes', *Journal of Bacteriology*, 167(1), pp. 66–72.
498 Available at: <https://doi.org/10.1128/jb.167.1.66-72.1986>.
- 499 Gantner, J. *et al.* (2018) 'Peripheral infrastructure vectors and an extended set of plant parts for
500 the Modular Cloning system', *PloS One*, 13(5), p. e0197185. Available at:
501 <https://doi.org/10.1371/journal.pone.0197185>.
- 502 Geddes, B.A. *et al.* (2019) 'Engineering transkingdom signalling in plants to control gene
503 expression in rhizosphere bacteria', *Nature communications*, 10(1), pp. 1–11. Available at:
504 <https://doi.org/10.1038/s41467-019-10882-x>.
- 505 Geddes, B.A. *et al.* (2021) 'Minimal gene set from *Sinorhizobium (Ensifer) meliloti* pSymA
506 required for efficient symbiosis with *Medicago*', *Proceedings of the National Academy of
507 Sciences*, 118(2). Available at <https://doi.org/10.1073/pnas.2018015118>.
- 508 Geddes, B.A., Mendoza-Suárez, M.A. and Poole, P.S. (2019) 'A bacterial expression vector
509 archive (BEVA) for flexible modular assembly of Golden Gate-compatible vectors', *Frontiers in*
510 *Microbiology*, 9, p. 3345. Available at: <https://doi.org/10.3389/fmicb.2018.03345>.

- 511 Grützner, R. *et al.* (2021) 'High-efficiency genome editing in plants mediated by a Cas9 gene
512 containing multiple introns', *Plant Communications*, 2(2), p. 100135. Available at:
513 <https://doi.org/10.1016/j.xplc.2020.100135>.
- 514 Guerry, P., Van Embden, J. and Falkow, S. (1974) 'Molecular nature of two nonconjugative
515 plasmids carrying drug resistance genes', *Journal of Bacteriology*, 117(2), pp. 619–630.
- 516 Hahn, F. *et al.* (2020) 'A modular cloning toolkit for genome editing in plants', *BMC plant
517 biology*, 20(1), p. 179. Available at: <https://doi.org/10.1186/s12870-020-02388-2>.
- 518 Haskett, T.L. *et al.* (2022) 'Control of nitrogen fixation and ammonia excretion in *Azorhizobium
519 Caulinodans*', *PLOS Genetics*, 18(6), p. e1010276. Available at:
520 <https://doi.org/10.1371/journal.pgen.1010276>.
- 521 Haskett, T.L. *et al.* (2023) 'Rhizopine biosensors for plant-dependent control of bacterial gene
522 expression', *Environmental Microbiology*, 25(2), pp. 383–396. Available at:
523 <https://doi.org/10.1111/1462-2920.16288>.
- 524 Iverson, S.V. *et al.* (2016) 'CIDAR MoClo: Improved MoClo assembly standard and new *E. coli*
525 part library enable rapid combinatorial design for synthetic and traditional biology', *ACS
526 Synthetic Biology*, 5(1), pp. 99–103. Available at: <https://doi.org/10.1021/acssynbio.5b00124>.
- 527 Jorrin, B. *et al.* (2024) 'Stable, fluorescent markers for tracking synthetic communities and
528 assembly dynamics', *Microbiome*, 12(1), p. 81. Available at: <https://doi.org/10.1186/s40168-024-01792-2>.
530
- 531 Kearsley, J.V., Sather, L.M. and Finan, T.M. (2024) 'Sinorhizobium (*Ensifer*) meliloti', *Trends
532 in Microbiology*, 32(5):515-518. Available at: doi: 10.1016/j.tim.2024.03.004.
- 533 Kuhstoss, S. and Rao, R.N. (1991) 'Analysis of the integration function of the streptomycete
534 bacteriophage φC31', *Journal of molecular biology*, 222(4), pp. 897–908.
- 535 Lee, H.H. *et al.* (2019) 'Functional genomics of the rapidly replicating bacterium *Vibrio
536 natriegens* by CRISPRi', *Nature Microbiology*, 4(7), pp. 1105–1113. Available at:
537 <https://doi.org/10.1038/s41564-019-0423-8>.
- 538 Lee, M.E. *et al.* (2015) 'A highly characterized yeast toolkit for modular, multipart assembly',
539 *ACS Synthetic Biology*, 4(9), pp. 975–986. Available at: <https://doi.org/10.1021/sb500366v>.
- 540 Martínez-García, E. *et al.* (2023) 'SEVA 4.0: an update of the Standard European Vector
541 Architecture database for advanced analysis and programming of bacterial phenotypes', *Nucleic
542 Acids Research*, 51(D1), pp. D1558–D1567. Available at: <https://doi.org/10.1093/nar/gkac1059>.
- 543 Mendoza-Suárez, M.A. *et al.* (2020) 'Optimizing Rhizobium-legume symbioses by simultaneous
544 measurement of rhizobial competitiveness and N₂ fixation in nodules', *Proceedings of the
545 National Academy of Sciences*, 117(18), pp. 9822–9831. Available at:
546 <https://doi.org/10.1073/pnas.1921225117>.

- 547 Meyer, R., Figurski, D. and Helinski, D.R. (1975) 'Molecular vehicle properties of the broad
548 host range plasmid RK2', *Science*, 190(4220), pp. 1226–1228.
- 549 Milunovic, B. *et al.* (2014) 'Cell growth inhibition upon deletion of four toxin-antitoxin loci
550 from the megaplasmids of *Sinorhizobium meliloti*', *Journal of Bacteriology*, 196(4), pp. 811–
551 824. Available at: <https://doi.org/10.1128/JB.01104-13>.
- 552 Moore, S.J. *et al.* (2016) 'EcoFlex: A multifunctional MoClo kit for *E. coli* synthetic biology',
553 *ACS Synthetic Biology*, 5(10), pp. 1059–1069. Available at:
554 <https://doi.org/10.1021/acssynbio.6b00031>.
- 555 Obst, U., Lu, T.K. and Sieber, V. (2017) 'A modular toolkit for generating *Pichia pastoris*
556 secretion libraries', *ACS Synthetic Biology*, 6(6), pp. 1016–1025. Available at:
557 <https://doi.org/10.1021/acssynbio.6b00337>.
- 558 Prentki, P. and Krisch, H.M. (1984) 'In vitro insertional mutagenesis with a selectable DNA
559 fragment', *Gene*, 29(3), pp. 303–313. Available at: [https://doi.org/10.1016/0378-1119\(84\)90059-3](https://doi.org/10.1016/0378-1119(84)90059-3).
- 561 Quandt, J. and Hynes, M.F. (1993) 'Versatile suicide vectors which allow direct selection for
562 gene replacement in Gram-negative bacteria', *Gene*, 127(1), pp. 15–21. Available at:
563 [https://doi.org/10.1016/0378-1119\(93\)90611-6](https://doi.org/10.1016/0378-1119(93)90611-6).
- 564 Rossi, M. *et al.* (1996) 'Characterization of the plasmid pMB1 from *Bifidobacterium longum* and
565 its use for shuttle vector construction', *Research in microbiology*, 147(3), pp. 133–143.
- 566 Scholz, P. *et al.* (1989) 'Complete nucleotide sequence and gene organization of the broad-host-
567 range plasmid RSF1010', *Gene*, 75(2), pp. 271–288.
- 568 Schweizer, H.P., Klassen, T. and Hoang, T. (1996) 'Improved methods for gene analysis and
569 expression in *Pseudomonas*'. in T. Nakazawa, K. *et al.* (ed.) *Molecular Biology of*
570 *Pseudomonads*. Washington, DC: American Society for Microbiology, pp. 229-237.
- 571 Silva-Rocha, R. *et al.* (2013) 'The Standard European Vector Architecture (SEVA): a coherent
572 platform for the analysis and deployment of complex prokaryotic phenotypes', *Nucleic Acids*
573 *Research*, 41(Database issue), pp. D666–D675. Available at:
574 <https://doi.org/10.1093/nar/gks1119>.
- 575 Stuttmann, J. *et al.* (2021) 'Highly efficient multiplex editing: one-shot generation of 8×
576 *Nicotiana benthamiana* and 12× *Arabidopsis* mutants', *The Plant Journal: For Cell and*
577 *Molecular Biology*, 106(1), pp. 8–22. Available at: <https://doi.org/10.1111/tpj.15197>.
- 578 Thorpe, H.M. and Smith, M.C. (1998) 'In vitro site-specific integration of bacteriophage DNA
579 catalyzed by a recombinase of the resolvase/invertase family', *Proceedings of the National*
580 *Academy of Sciences*, 95(10), pp. 5505–5510.

- 581 Wang, L. *et al.* (2021) 'Highly efficient CRISPR-mediated base editing in *Sinorhizobium*
582 *meliloti*', *Frontiers in Microbiology*, 12. Available at:
583 <https://doi.org/10.3389/fmicb.2021.686008>.
- 584 Williamson, R. W. *et al.* (in preparation) 'Evaluation of engineering potential in undomesticated
585 microbes with VECTOR'.
- 586
- 587 Weber, E. *et al.* (2011) 'A modular cloning system for standardized assembly of multigene
588 constructs', *PLoS One*, 6(2), p. e16765. Available at:
589 <https://doi.org/10.1371/journal.pone.0016765>.
- 590 Werner, S. *et al.* (2012) 'Fast track assembly of multigene constructs using Golden Gate cloning
591 and the MoClo system', *Bioengineered Bugs*, 3(1), pp. 38–43. Available at:
592 <https://doi.org/10.4161/bbug.3.1.18223>.
- 593 Yenofsky, R.L., Fine, M. and Pellow, J.W. (1990) 'A mutant neomycin phosphotransferase II
594 gene reduces the resistance of transformants to antibiotic selection pressure.', *Proceedings of the
595 National Academy of Sciences of the United States of America*, 87(9), pp. 3435–3439. Available
596 at: doi: 10.1073/pnas.87.9.3435.

597