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Closed-loop transfer enables artificial 
intelligence to yield chemical knowledge

Nicholas H. Angello1,2,3,16, David M. Friday1,2,3,16, Changhyun Hwang2,3,4,16, Seungjoo Yi2,3,5,16, 
Austin H. Cheng6,7, Tiara C. Torres-Flores2,3,4, Edward R. Jira2,3,4, Wesley Wang1,2,3,  
Alán Aspuru-Guzik6,7,8,9,10,11,12 ✉, Martin D. Burke1,2,3,13,14,15 ✉, Charles M. Schroeder1,2,3,4,5 ✉, 
Ying Diao1,2,3,4 ✉ & Nicholas E. Jackson1,2,3 ✉

Artificial intelligence-guided closed-loop experimentation has emerged as a 
promising method for optimization of objective functions1,2, but the substantial 
potential of this traditionally black-box approach to uncovering new chemical 
knowledge has remained largely untapped. Here we report the integration of 
closed-loop experiments with physics-based feature selection and supervised 
learning, denoted as closed-loop transfer (CLT), to yield chemical insights in parallel 
with optimization of objective functions. CLT was used to examine the factors 
dictating the photostability in solution of light-harvesting donor–acceptor molecules 
used in a variety of organic electronics applications, and showed fundamental 
insights including the importance of high-energy regions of the triplet state manifold. 
This was possible following automated modular synthesis and experimental 
characterization of only around 1.5% of the theoretical chemical space. This 
physics-informed model for photostability was strengthened using multiple 
experimental test sets and validated by tuning the triplet excited-state energy  
of the solvent to break out of the observed plateau in the closed-loop photostability 
optimization process. Further applications of CLT to additional materials systems 
support the generalizability of this strategy for augmenting closed-loop strategies. 
Broadly, these findings show that combining interpretable supervised learning 
models and physics-based features with closed-loop discovery processes can rapidly 
provide fundamental chemical insights.

Artificial intelligence-guided closed-loop platforms in which predic-
tions, experiments and analyses are automated and connected in  
a positive feedback loop have shown great potential in the acceleration 
of scientific discovery in intractably large search spaces3–6. Despite 
recent advances, it is not yet possible to leverage closed-loop opti-
mization strategies to elicit fundamentally new chemical knowledge. 
At the frontiers of molecular function, such fundamental under-
standing is of equal importance to the practical results of artificial 
intelligence-guided optimization strategies and is critical for align-
ing artificial intelligence-guided discovery with the human scientific 
process.

Photostability represents a ubiquitous chemical function for 
which general chemical design principles are lacking7–11. This dearth 
of chemical knowledge limits progress in the areas of organic photo-
voltaics12,13, dyed polymers14, solar fuels3,15, photosynthetic systems16, 

electrochromic materials17, organic light-emitting diodes18, photo-
active coatings19 and fluorescent dyes20,21. Previous efforts to under-
stand molecular photostability have focused on the energetics of the 
lowest-lying excited triplet state (T1) and its relation to bond dissocia-
tion energy, with limited success across scattered chemical classes22–29. 
Recent studies have implicated higher energy triplet states (Tn, n > 1) 
for narrow chemical classes30,31, but general design principles remain 
lacking32. Closed-loop paradigms are poised to enable breakthroughs in 
photostability in which traditional approaches have failed23. To realize 
this vision, new methods of knowledge extraction from closed-loop 
strategies are required before artificial intelligence can yield inter-
pretable hypotheses and enhance our fundamental understanding of 
photostability and molecular function in general.

Here we report a three-phase approach that demonstrates chemi-
cal knowledge while optimizing molecular function across a broad 
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chemical space (Fig. 1). Phase I is machine learning (ML)-driven hypoth-
esis generation: apply Bayesian optimization (BO) to improve pho-
tostability until the performance metric plateaus and an ML-derived 
hypothesis using physics-based molecular features emerges. Phase II is 
hypothesis testing: experimentally validate the ML-derived hypothesis 
to establish new-found chemical knowledge. Phase III is physics-driven 
discovery: apply the new physics-based knowledge to the chemical 
design space in a human-driven campaign to break out of the optimi-
zation plateau.

We show that artificial intelligence-guided closed-loop experi-
mentation leads to the generation of a supervised learning model 
that not only identifies highly photostable compounds but also elu-
cidates design rules for molecular photostability owing to interpret-
able physics-informed feature selection. Central to our approach is  
a BO-driven closed-loop experimental procedure leveraging automated 
modular small molecule synthesis that enables rapid search through 
a diverse chemical space to optimize photostability (phase I). The 
closed-loop strategy is performed in concert with physics-based mod-
elling and feature selection, resulting in the unexpected finding that 
molecular photostability is strongly correlated with the high-energy 
portion of the triplet excited-state manifold—a hypothesis we further 
validate using an experimental test set (phase II). These results were 
achieved using BO-recommended molecules with no pre-existing 
knowledge of the determinants of photostability in organic molecules. 
Furthermore, this result launches us into a physics-driven discovery 
regime wherein we rationally improve molecular photostability, lev-
eraging the newly discovered degradation pathway via Dexter triplet 
energy transfer from the solvent (phase III). Our work shows that 
interfacing physics-based modelling with the data emerging from 
BO-guided closed-loop discovery can deliver physical insights into 
frontier molecular functions. We further apply our approach beyond 
photostability to generate hypotheses underpinning the design of 
organic laser emitters33 and stereoselective aluminium complexes 
for ring-opening polymerization34 (Supplementary Information 1).

We introduce an approach called closed-loop transfer (CLT; Fig. 1) 
to extract and test physical insights from a closed-loop optimiza-
tion campaign. CLT is a ‘human-in-the-loop’ approach that leverages 
domain expertise at the beginning of a closed-loop process, moni-
toring each optimization round with stopping criteria based on the 
simultaneous plateauing of an objective function and identification 
of a physics-based hypothesis by on-the-fly generation of interpret-
able ML models. When these criteria are met, an experimental test set 
is constructed across the entire chemical design space to assess the 
truth of the proposed hypothesis. If validated, this new-found chemical 
knowledge then seeds a human-driven campaign to break out of the 

plateau in the phase I closed-loop optimization stage. A CLT playbook 
is provided in Supplementary Information 1.

In this campaign we focus specifically on uncovering the fundamental 
determinants of photostability broadly across chemical space. Phase I 
integrates BO (GRYFFIN35) in a closed-loop process with automated 
modular small molecule synthesis36–38 and multidimensional charac-
terization (in this case solution-based, ultraviolet-visible absorbance 
and photodegradation in a solar irradiation cell12) run in parallel with 
on-the-fly ML modelling and molecular feature generation. This phase 
continues until the photostability plateaus and interpretable ML mod-
els using physics-based features emerge via a predictive model, referred 
to as the ‘hypothesis’, which is validated in phase II. In this work we 
focus on the molecular photostability of conjugated molecules in the 
solution state, intentionally avoiding additional complicating factors 
associated with film testing (that is, processing, film morphology and 
interfacial effects).

To initialize the CLT process, we first defined the chemical space 
(Fig. 2) for the closed-loop procedure (Fig. 3a). We chose the donor–
bridge–acceptor motif, ubiquitous in state-of-the-art light-absorbing 
conjugated materials39–41, as a molecular design scaffold that can be 
readily modularized into function-infused building blocks amenable 
to automated chemical synthesis. The donor and pi-bridge building 
blocks were inspired by successful motifs found in molecular electron-
ics whereas the acceptor building blocks were algorithmically chosen in 
a down-selection process (Supplementary Information 2), maximizing 
molecular diversity within all purchasable (hetero)aryl-halide build-
ing blocks (Extended Data Fig. 1). The resulting modularized chemi-
cal space was thus infused with light-harvesting functionality while 
also sampling a diverse chemical space rich with discovery potential. 
In total, the chemical space includes three donors, seven pi-bridges 
and 100 acceptor blocks, yielding a total of 2,200 potential molecules 
when accounting for symmetry and molecules lacking a pi-bridge. To 
facilitate AI-driven BO, the chemical space was featurized using con-
catenations of rapidly calculable structural and electronic descriptors 
of the building blocks computed with density functional theory (DFT) 
and RDKit42 (Supplementary Tables 2 and 3).

Critical to initialization of the CLT process was an early emphasis on 
diversity, followed by balanced exploration and exploitation in subse-
quent rounds (Fig. 3b). To initiate the first round, molecular diversity 
sampling was utilized to decrease initiation bias in the closed loop 
(Supplementary Information 2). The second round contained addi-
tional diversity-selected molecules and BO recommendations. For each 
subsequent closed-loop iteration a batch of six molecules was drawn 
for uniform sampling, along the domain between fully exploitative 
and fully explorative within the BO algorithm35. This strategy ensured 
that, although BO was optimizing for photostability, it was concur-
rently diversifying its knowledge of the chemical space to maximally 
inform general scientific understanding. At the end of each round of 
the closed-loop cycle, experimental photostability data were measured 
and passed to the BO model, which then suggested synthetic candidates 
for the next round. These molecular targets and a list of their nearest 
neighbours in feature space (known as ‘back-ups’ in cases in which 
the target is not readily synthesizable or testable; Fig. 3b) were then 
automatically populated on a custom-built digital project manager 
with a web-based database and dashboard for subsequent automated 
synthesis (Extended Data Fig. 2).

During closed-loop iterations, automated modular small mol-
ecule synthesis was conducted using a version of our iterative C–C 
bond-forming robot optimized for reaction reproducibility (Fig. 3c and 
Extended Data Fig. 3)4. Initial tests demonstrated that a fully automated 
two-step synthesis was feasible. The first step proved to be generally 
efficient, whereas the second was initially more challenging and vari-
able due to chemical diversity in the 100 aryl-halide acceptor blocks. 
We thus opted for independent synthesis and scale-up of the first cou-
pling products (donor–bridges; Supplementary Information 3), and 
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Fig. 1 | The CLT paradigm. Phase I (ML-driven hypothesis generation, green 
orbits) depicts BO-driven rounds of synthesis and characterization with 
concurrent use of interpretable ML using physics-based features. Following 
the emergence of a physics-based hypothesis via ML, phase II (hypothesis 
testing, orange orbit) experimentally tests the hypothesis, which, if validated, 
yields new knowledge that is exploited in phase III (physics-driven discovery, 
red orbit) for molecular optimization.
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separate optimization of the second reaction step using slow-release 
cross-coupling43. We found that, using our recently reported general 
reaction conditions for heteroaryl cross-coupling discovered via an 
artificial intelligence-guided closed-loop process4 (general condition 1 
(GC1); Fig. 3c), and newly discovered anhydrous slow-release coupling 
conditions (GC2) (Fig. 3c and Supplementary Information 3)37 maxi-
mized the synthetic hit rate (approximately 60%).

Following synthesis, purification, and structural verification in each 
round of the closed loop, the photophysical properties of donor–
bridge–acceptor molecules were characterized via solution-based 
photodegradation in a solar irradiation cell (Fig. 3d). The photophysical 
properties of all molecules were measured under standardized concen-
trations, in the same solvent (chlorobenzene) and under a controlled 
atmosphere, using a glovebox with oxygen and humidity control. We 
measured two properties: (1) spectral overlap, defined as the integral of 
the normalized overlap of a molecule’s absorbance spectrum and solar 
irradiance spectrum, and (2) spectral decay time (T80), defined as the 
time required for the observed absorbance spectrum to decay to 80% 
of its initial value under constant irradiation. Given that photodegra-
dation is sensitive to the local environment, an internal standard was 
used to ensure consistency (Supplementary Information 4). Based on  
a first-order kinetic model we chose to optimize photostability, defined 
as the product of spectral overlap and T80 (Supplementary Fig. 5).

BO-driven closed-loop experimentation proceeded across five 
rounds, automatically synthesizing 30 new donor–bridge–acceptor 
light-harvesting molecules (Fig. 4a and Extended Data Table 1), until 
saturation of experimental photostability was observed. The first round 
of suggestions, relying on diversity-driven selection, resulted in a set of 
ten molecules with low to moderate photostability. Subsequent rounds 
2–4, relying on the BO strategy, probed existing and new regions of 

functional chemical space, discovering molecules at the extremes of 
T80 and spectral overlap and some that maximized their product. By the 
conclusion of the fifth round of the closed loop the average photosta-
bility of the top five molecules had plateaued, signalling the end of the 
BO-guided closed-loop process (Fig. 4b). Importantly, an increase of 
over 500% in the average photostability of the top five performers was 
achieved by sampling less than 1.5% of the total space of 2,200 potential 
molecules, a result consistent with previous theoretical predictions 
but hitherto not verified experimentally35.

In conjunction with the progress of the BO experiment, we trained 
interpretable ML models drawing on physics-based features follow-
ing each BO round to generate hypotheses relating molecular fea-
tures to photostability. To generate physics-based features we used 
whole-molecule, time-dependent DFT calculations44 on donor–bridge–
acceptor and donor–acceptor molecules synthesized following each 
closed-loop round, and from these results a comprehensive set of 
114 physical and chemical molecular features were extracted (Sup-
plementary Tables 2–5). These features were then integrated in support 
vector regression (SVR; Supplementary Table 1) following every BO 
round to predict experimental T80 values. SVR models with stepwise 
feature selection were selected due to their model interpretability 
and trained to predict T80 separately from spectral overlap due to an 
observed inverse relationship between T80 and spectral overlap (Sup-
plementary Information 2). Spectral overlap was predicted via linear 
regression using the time-dependent, DFT-predicted absorption spec-
trum, solar simulator emission spectrum and a fitted constant energy 
shift due to solvent interactions (Supplementary Fig. 4). The best T80 
model achieved leave-one-out-validation (LOOV) predictive accuracy of 
R2 = 0.86 for experimental T80 following the fifth round using the triplet 
density of states (TDOS: density of triplet excited states at a particular 

a b

… 100 diverse acceptors

Fig. 2 | A molecular building-block set for light-harvesting small molecules. 
a, The modular building blocks considered in this work for the design of new 
light-harvesting donor–bridge–acceptor molecules. The full list of 100 acceptor 
building blocks is shown in Extended Data Fig. 1. b, Principal component analysis 
projection of the feature space (2,200 molecules featurized by concatenated 
donor–bridge and donor–acceptor features) used for BO. Alternative uniform 
manifold approximation and projections are provided in Supplementary 
Fig. 22. Shape and colour coding correspond to the structures of the donor and 
bridge building blocks, respectively. Grey colouring indicates the absence of  

a bridge block—that is, molecules that are donor–acceptor. The principal 
component analysis projection reveals the primacy of the donor block in 
organizing the chemical space, with benzodithophene (BDT) donor blocks 
(circles) in the top left corner and thiophene-based donor blocks (triangles and 
squares) in the bottom right regions. Similarly, a greater extent of conjugation 
in the bridge blocks correlates with lower values of principal component 1 and 
principal component 2 (lower left), further organizing the featurized chemical 
space.



354  |  Nature  |  Vol 633  |  12 September 2024

Article

energy above ground state) at 2.6, 2.8, 3.8, 3.9, 4.0 and 4.6 eV. We also 
explored all possible SVR models (12,996) using two-feature combina-
tions of the 114-feature set and LOOV performance metric (Extended 
Data Fig. 5a). Unexpectedly our results showed that, as opposed to 
the conventional T1 energy descriptor of photostability, high-energy 
TDOS emerged as a primary determinant of molecular photostability 
across the entire chemical space (high T80 LOOV R2; Supplementary 
Fig. 9). This insight emerged following the fourth round of BO and was 
confirmed following the fifth (Supplementary Table 1). Because the ML 
models’ convergence coincided with the plateau of molecular photo-
stability, this signalled the end of our BO experiment. It is important 

to note that the positive aspect of CLT in this work is inherently linked 
to BO recommending molecules with sufficient representativeness for 
identification of a general physics-based hypothesis, which may occur 
either quickly or slowly (Supplementary Information 1).

We then examined all 234,136 four-feature SVR models containing the 
most predictive region of the TDOS at 4.0 eV or T1 energy, and plotted 
the distribution of performance (R2; Extended Data Fig. 5b). Our results 
show a marked difference in the predictive capabilities of supervised 
ML models using the high-energy region of TDOS as opposed to T1. 
Importantly, this knowledge emerged a priori across a broad chemical 
space, with equal weight given to all possible hypotheses described 
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by 114 physiochemical descriptors. This data-driven physical insight 
suggests that a more nuanced understanding of the role of the triplet 
state manifold in molecular photostability is required that extends 
beyond simple T1 energetics.

Because learning in the low-data limit can induce spurious cor-
relations in supervised ML models, phase II of the CLT experiment 
involved construction of an independent experimental test set to vali-
date the hypothesis that high-lying triplet states influence molecular 
photostability. The best T80 SVR model trained on six values of TDOS 
(Supplementary Fig. 9) was used to predict T80 across the entire set of 
2,200 molecules (Fig. 4c). The predicted T80 value of each molecule 
was then multiplied by its predicted spectral overlap value to obtain 
predicted photostabilities across the entire set of 2,200 molecules. 
Using these predictions we formed two batches of seven molecules, 
one high performing (top seven) and one low performing (bottom 
seven), to serve as experimental validation sets (Supplementary Fig. 11). 
These two batches possessed the following statistical features (Sup-
plementary Information 2): (1) identical average spectral overlap 
within the 5.5–9.0% SO region (which emphasizes the effects of T80 on 
photostability) and (2) similar standard deviation for the predicted 
T80 (which permits broader chemical diversity). We then synthesized 

and characterized the photophysical properties of the top seven and 
bottom seven batches. We observed a statistically significant photo-
stability difference between these groups in the predicted direction 
(Fig. 5a; average T80 × spectral overlap = 165 for the top seven versus 
average T80 × spectral overlap = 97 for the bottom seven, P = 0.026, 
Spearman R2 = 0.54), validating our CLT-derived hypothesis that the 
triplet manifold is a key descriptor of molecular photostability. Interest-
ingly, one outlier in the bottom seven showed surprisingly high photo-
stability; subsequent analysis demonstrated that this quinone-based 
molecule (a common motif in triplet quenchers) exhibited high TDOS 
while maintaining a low structural complexity—a feature unseen rela-
tive to the 30 molecules synthesized in the five closed-loop rounds 
(Extended Data Fig. 4).

Using the full experimental photostability dataset generated by the 
CLT campaign (44 molecules; Extended Data Fig. 6a), we performed 
a final retraining of supervised ML models to confirm and refine 
our photostability hypothesis. Strikingly, following retraining of all 
12,996 two-feature SVR models when considering the full experimental 
dataset, high-energy TDOS emerged even more strongly as a critical 
determinant of molecular photostability across the synthesized chemi-
cal space (high T80 LOOV R2; Fig. 5b) and a superior descriptor relative 
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to conventional T1 energy (Fig. 5c). A total of 2.5 million four-feature 
SVR models were trained to identify the most common features present 
in the most predictive T80 models (R2 > 0.70) across all descriptors 
(Supplementary Fig. 12). The two most common features, present in 
around 30% of the most predictive models, were TDOS at 4.0 eV and 
the number of heteroatoms. Whereas the number of heteroatoms 
may be attributed to the reliably poor T80 of the benzodithiophene 
donor, the observed correlation between a high TDOS at 4.0 eV and a 

low T80 consolidates closed-loop-derived chemical knowledge that the 
high-lying TDOS is a critical determinant of molecular photostability.

Because high-lying TDOS will be only transiently populated by inter-
system crossing via direct excitation in the singlet manifold of the mol-
ecules, we posited that the photodegradation mechanism is mediated 
by chlorobenzene solvent (Fig. 5d) via resonant Dexter energy transfer. 
The resonance of the T1 state of chlorobenzene (4.1 eV) is near that of the 
CLT-identified TDOS region at 4.0 eV, implying that the solvent could 
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Fig. 5 | Hypothesis testing in phase II. a, Photostability of molecules in the 
experimental validation test set, their average, standard deviation (depicted  
as error bars) and associated P value from a Mann–Whitney test plotted in  
the centre. These values demonstrate a statistically significant difference in 
performance between the two sets of molecules, with the outlier high performer 
(bottom two) as described in the text. b, All two-feature SVR LOOV results  
for prediction of T80 on the entire 44-molecule dataset from two-feature 
combinations. E, energies; OS, oscillator strengths; S, singlet energies; T, triplet 
energies. c, Comparison of the prediction strength of all possible four-feature 

models containing either TDOS at 4.0 eV or T1 energy in predicting T80 for  
the entire 44-molecule dataset. Comparison of the plots in b,c with Extended 
Data Fig. 5 shows the improved predictive strength of TDOS at 4.0 eV over all 
other features, in particular T1, following the validation dataset. d, Physical 
mechanism derived from the CLT phase II hypothesis, demonstrating how  
a low TDOS at 4.0 eV reduces the frequency of Dexter energy transfer  
following intersystem crossing (ISC), imparting enhanced photostability to 
pentathiophene-C12 (DB_11_A_002). S0, singlet ground state; S1, the lowest 
energy singlet excited state.
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act as an efficient sensitizer for populating the triplet states of DBA 
molecules, similar to work showing that Dexter transfer between the 
T1 state of one molecule the excited triplet manifold of another leads 
to efficient triplet state transfer45. These high-lying triplet states are 
then anticipated to relax to the T1 state in which any number of poten-
tial degradation mechanisms could be active. We anticipate the role 
of high-lying triplet states to be important in many multicomponent 
organic systems under solar irradiation. Beyond organic photovol-
taics46–48, these may also include dyed polymers14, solar fuels3,15 and 
photosynthetic systems16.

To apply this new-found chemical knowledge towards improvement 
of photostability, in phase III we tested three molecules with varying 
TDOS at 4.0 eV in toluene (a more chemically stable solvent than chlo-
robenzene with comparable T1 energy) and decane (with an inaccessible 
T1 greater than 7 eV) to intentionally remove the potential for Dexter 
triplet energy transfer from the solvent. The photostability of all mol-
ecules improved by 90–150% in toluene, with an additional 10–100% 
improvement in decane and greater improvements for molecules with 
higher TDOS at 4.0 eV (Extended Data Fig. 6c). Further improvements 
and understanding of photostability were achieved by the addition of 
a triplet-quenching molecule to the solvent, yielding (1) 20% improve-
ment in chlorobenzene, as well as direct chemical bonding of a triplet 
quencher to the highest-performing molecule via a hexyl linker, and 
(2) 75% poorer photostability in chlorobenzene via a hypothesized 
double-Dexter transfer mechanism (Extended Data Fig. 6d). These 
results are fully consistent with the proposed solvent sensitization 
mechanism for photostability (Fig. 5d and Supplementary Figs. 71–74), 
and demonstrate multiple phase III hypothesis-driven strategies to 
improve the photostability of light-absorbing molecules beyond the 
initial chemical space.

Conclusion
The closed-loop experiment reported here, augmented by inter-
pretable ML models using physics-based features, elucidated fun-
damental chemical knowledge regarding molecular photostability 
while simultaneously optimizing towards high-function molecular 
targets. The marked efficiency with which our human-in-the-loop, 
artificial intelligence-guided campaign yielded our hypothesis 
(only 30 molecules) resulted from the combination of an artificial 
intelligence-guided balance of exploration and exploitation with 
interpretable physics-based modelling. CLT is shown to be broadly 
applicable to other frontier applications and fields of inquiry, in par-
ticular to low-data regimes and multidimensional molecular properties 
that are challenging to predict a priori. We believe that CLT will serve 
as a playbook for harnessing the strengths of BO in hypothesis-driven 
discovery investigations, reinforced by physics-based insights.
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experimental photostability measurement data for all molecules syn-
thesized in this work, DFT- and RDKit-derived molecular featurizations 
and predicted photostabilities across the full space of 2,200 molecules. 
Regression models and scripts used to train and perform all analysis 
with the associated data are also provided. Datasets are available at 
Zenodo (https://doi.org/10.5281/zenodo.11580889)49. Source Data 
are provided with this paper.

Code availability
All supervised learning model codes are available at GitHub (https://
github.com/TheJacksonLab/ClosedLoopTransfer). Gryffin is available 
at GitHub (https://github.com/aspuru-guzik-group/gryffin). Codes 
are available at Zenodo (https://doi.org/10.5281/zenodo.11580889)49.
 
49.	 TheJacksonLab. TheJacksonLab/ClosedLoopTransfer: ClosedLoopTransfer v1.0. Zenodo 

https://doi.org/10.5281/zenodo.11580889 (2024).

Acknowledgements This work was supported by the Molecule Maker Lab Institute, an AI 
Research Institutes programme supported by the US National Science Foundation under grant 
no. 2019897 (to N.E.J., Y.D., C.M.S. and M.D.B.). A.A.-G. and A.H.C. acknowledge support from 
the Canada 150 Research Chairs Program and the Acceleration Consortium at the University of 
Toronto, as well as the generous support of A. G. Frøseth. T.C.T.-F., Y.D. and C.M.S. acknowledge 
support by the IBM–Illinois Discovery Accelerator Institute. Any opinions, findings and 
conclusions or recommendations expressed in this material are those of the authors and do 
not necessarily reflect those of the US National Science Foundation.

Author contributions N.H.A., D.M.F., C.H. and S.Y. contributed equally to this project. A.H.C. 
and T.C.T.-F. contributed equally to this project. The project was designed by N.H.A., D.M.F., 
C.H., S.Y., E.R.J., A.A.-G., M.D.B., C.M.S., Y.D. and N.E.J. Molecule synthesis was conducted by 
N.H.A., S.Y., T.C.T.-F., E.R.J. and W.W. Solution testing was conducted by C.H. BO and regression 
model training was conducted by D.M.F. and A.H.C. N.H.A., D.M.F., C.H., S.Y., A.A.-G., M.D.B., 
C.M.S., Y.D. and N.E.J. wrote the manuscript with contributions from all authors.

Competing interests The University of Illinois has filed patent applications related to MIDA and 
TIDA boronates with M.D.B., N.H.A. and W.W. as inventors.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-024-07892-1.
Correspondence and requests for materials should be addressed to Alán Aspuru-Guzik, 
Martin D. Burke, Charles M. Schroeder, Ying Diao or Nicholas E. Jackson.
Peer review information Nature thanks Brett Savoie and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/TheJacksonLab/ClosedLoopTransfer
https://doi.org/10.5281/zenodo.11580889
https://github.com/TheJacksonLab/ClosedLoopTransfer
https://github.com/TheJacksonLab/ClosedLoopTransfer
https://github.com/aspuru-guzik-group/gryffin
https://doi.org/10.5281/zenodo.11580889
https://doi.org/10.5281/zenodo.11580889
https://doi.org/10.1038/s41586-024-07892-1
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Chemical design space of acceptor moieties. Chemical diversity down-selected set of acceptor blocks used in populating the design 
space for the D-B-A motif utilized in this work.



Extended Data Fig. 2 | Digital project manager. Visualization of Streamlit web app used in this work showcasing integration of the Gryffin Bayesian optimizer, 
building block fragment assembler, and suggestion window for similar molecules as synthetic backups.
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Extended Data Fig. 3 | The small molecule synthesizer used in this work. a, Picture of the hardware. b, Design schematic.



Extended Data Fig. 4 | Triplet Density of States (TDOS) for all experimentally measured molecules. DB08_A096 (the high performer in the predicted Bottom 
7) is shown in red. All others are in gray, with the highest T80 in darker colors, and the lowest T80 in lighter colors.
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Extended Data Fig. 5 | Results from CLT phase I. a, All support vector regression 
leave-one-out validation (LOOV) results for predicting T80 of the 30 molecules 
characterized in Phase I from 2-feature combinations. b, Comparison of the 

prediction strength of all possible 4-feature models containing either the 
TDOS at 4.0 eV or the T1 energy. Compare to Fig. 5b & c.



Extended Data Fig. 6 | Physics-driven discovery in phase III. a, The distribution 
of photostabilities of the 44 molecules synthesized through Phase II of the CLT 
campaign. b, The best 4 feature model for predicting T80 from Phase II. Note the 
similarities of the TDOS features to those in the original physics based T80 
model c, The relative photostability of 3 molecules in CB, toluene, and decane, 
showing the improved photostability for all molecules in the absence of Dexter 

energy transfer, and that the improvement correlates with the TDOS at 4.0 eV. 
d, The impact of adding cyclooctatetraene (COT) triplet quencher to the CB 
solution (red) and chemically attaching it to DB_11_A_002 (blue). The structure 
shown is DB_11_A_002 (the highest performing molecule in Fig. 4a, the control), 
with the dodecyl side chain replaced with a hexyl-COT side chain. Results 
support the Dexter energy transfer hypothesis as explained in SI Section 6.
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Extended Data Table 1 | Characterized SO, T80, and Photostability (SO*T80) of synthesized molecules from Rounds 1–5 and the 
validation set (Top7 and Bot7)

Molecules are numbered by their round number and intra-round ID, where ‘s’ indicates substitute, and ‘d’ indicates selected via diversity. For molecules recommended by BO (e.g. Rounds 2 
through 5 without a ‘d’ label) a lower intra-round ID corresponds to a more explorative recommendation, a higher number corresponds to more exploitative recommendation.
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