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Artificial intelligence-guided closed-loop experimentation has emerged as a

promising method for optimization of objective functions'?, but the substantial
potential of this traditionally black-box approach to uncovering new chemical
knowledge has remained largely untapped. Here we report the integration of
closed-loop experiments with physics-based feature selection and supervised
learning, denoted as closed-loop transfer (CLT), to yield chemical insights in parallel
with optimization of objective functions. CLT was used to examine the factors
dictating the photostability in solution of light-harvesting donor-acceptor molecules
usedinavariety of organicelectronics applications, and showed fundamental
insightsincluding the importance of high-energy regions of the triplet state manifold.
This was possible following automated modular synthesis and experimental
characterization of only around 1.5% of the theoretical chemical space. This
physics-informed model for photostability was strengthened using multiple
experimental test sets and validated by tuning the triplet excited-state energy

of the solvent to break out of the observed plateau in the closed-loop photostability
optimization process. Further applications of CLT to additional materials systems
support the generalizability of this strategy for augmenting closed-loop strategies.
Broadly, these findings show that combining interpretable supervised learning
models and physics-based features with closed-loop discovery processes can rapidly
provide fundamental chemical insights.

Artificial intelligence-guided closed-loop platforms in which predic-
tions, experiments and analyses are automated and connected in
apositive feedbackloop have shown great potential inthe acceleration
of scientific discovery in intractably large search spaces®°. Despite
recent advances, it is not yet possible to leverage closed-loop opti-
mization strategies to elicit fundamentally new chemical knowledge.
At the frontiers of molecular function, such fundamental under-
standing is of equal importance to the practical results of artificial
intelligence-guided optimization strategies and is critical for align-
ing artificial intelligence-guided discovery with the human scientific
process.

Photostability represents a ubiquitous chemical function for
which general chemical design principles are lacking’ ™. This dearth
of chemical knowledge limits progress in the areas of organic photo-
voltaics'**, dyed polymers™, solar fuels*”, photosynthetic systems'®,

electrochromic materials”, organic light-emitting diodes'®, photo-
active coatings' and fluorescent dyes®®?. Previous efforts to under-
stand molecular photostability have focused on the energetics of the
lowest-lying excited triplet state (T;) and its relation to bond dissocia-
tion energy, withlimited success across scattered chemical classes %,
Recent studies have implicated higher energy triplet states (T,, n>1)
for narrow chemical classes***, but general design principles remain
lacking®. Closed-loop paradigms are poised to enable breakthroughs in
photostability in which traditional approaches have failed®. To realize
this vision, new methods of knowledge extraction from closed-loop
strategies are required before artificial intelligence can yield inter-
pretable hypotheses and enhance our fundamental understanding of
photostability and molecular function in general.

Here we report a three-phase approach that demonstrates chemi-
cal knowledge while optimizing molecular function across a broad
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Fig.1| The CLT paradigm. Phase | (ML-driven hypothesis generation, green
orbits) depicts BO-driven rounds of synthesis and characterization with
concurrent use of interpretable ML using physics-based features. Following
theemergence of a physics-based hypothesis via ML, phase Il (hypothesis
testing, orange orbit) experimentally tests the hypothesis, which, if validated,
yields new knowledge thatis exploited in phase 1l (physics-driven discovery,
red orbit) for molecular optimization.

chemical space (Fig.1). Phase lis machine learning (ML)-driven hypoth-
esis generation: apply Bayesian optimization (BO) to improve pho-
tostability until the performance metric plateaus and an ML-derived
hypothesis using physics-based molecular features emerges. Phase Ilis
hypothesis testing: experimentally validate the ML-derived hypothesis
to establish new-found chemical knowledge. Phase Illis physics-driven
discovery: apply the new physics-based knowledge to the chemical
design space in a human-driven campaign to break out of the optimi-
zation plateau.

We show that artificial intelligence-guided closed-loop experi-
mentation leads to the generation of a supervised learning model
that not only identifies highly photostable compounds but also elu-
cidates design rules for molecular photostability owing to interpret-
able physics-informed feature selection. Central to our approach is
aBO-driven closed-loop experimental procedure leveraging automated
modular small molecule synthesis that enables rapid search through
a diverse chemical space to optimize photostability (phasel). The
closed-loop strategy is performed in concert with physics-based mod-
elling and feature selection, resulting in the unexpected finding that
molecular photostability is strongly correlated with the high-energy
portionofthe triplet excited-state manifold—a hypothesis we further
validate using an experimental test set (phase II). These results were
achieved using BO-recommended molecules with no pre-existing
knowledge of the determinants of photostability in organic molecules.
Furthermore, this result launches us into a physics-driven discovery
regime wherein we rationally improve molecular photostability, lev-
eraging the newly discovered degradation pathway via Dexter triplet
energy transfer from the solvent (phase IlI). Our work shows that
interfacing physics-based modelling with the data emerging from
BO-guided closed-loop discovery can deliver physical insights into
frontier molecular functions. We further apply our approach beyond
photostability to generate hypotheses underpinning the design of
organic laser emitters® and stereoselective aluminium complexes
for ring-opening polymerization** (Supplementary Information 1).

We introduce an approach called closed-loop transfer (CLT; Fig. 1)
to extract and test physical insights from a closed-loop optimiza-
tion campaign. CLT is a ‘human-in-the-loop’ approach that leverages
domain expertise at the beginning of a closed-loop process, moni-
toring each optimization round with stopping criteria based on the
simultaneous plateauing of an objective function and identification
of a physics-based hypothesis by on-the-fly generation of interpret-
able ML models. When these criteria are met, an experimental test set
is constructed across the entire chemical design space to assess the
truth of the proposed hypothesis. If validated, this new-found chemical
knowledge then seeds a human-driven campaign to break out of the
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plateauinthe phase I closed-loop optimization stage. A CLT playbook
isprovided in Supplementary Information 1.

Inthis campaign we focus specifically on uncovering the fundamental
determinants of photostability broadly across chemical space. Phase |
integrates BO (GRYFFIN®) in a closed-loop process with automated
modular small molecule synthesis*>® and multidimensional charac-
terization (in this case solution-based, ultraviolet-visible absorbance
and photodegradation in a solar irradiation cell?) run in parallel with
on-the-fly ML modelling and molecular feature generation. This phase
continues until the photostability plateaus and interpretable ML mod-
els using physics-based features emerge viaapredictive model, referred
to as the ‘hypothesis’, which is validated in phase Il. In this work we
focus onthe molecular photostability of conjugated molecules inthe
solutionstate, intentionally avoiding additional complicating factors
associated with film testing (thatis, processing, film morphology and
interfacial effects).

To initialize the CLT process, we first defined the chemical space
(Fig. 2) for the closed-loop procedure (Fig. 3a). We chose the donor-
bridge-acceptor motif, ubiquitous in state-of-the-art light-absorbing
conjugated materials®®*, as a molecular design scaffold that can be
readily modularized into function-infused building blocks amenable
to automated chemical synthesis. The donor and pi-bridge building
blocks were inspired by successful motifs found in molecular electron-
icswhereas the acceptor building blocks were algorithmically chosenin
adown-selection process (Supplementary Information 2), maximizing
molecular diversity within all purchasable (hetero)aryl-halide build-
ing blocks (Extended Data Fig. 1). The resulting modularized chemi-
cal space was thus infused with light-harvesting functionality while
also sampling a diverse chemical space rich with discovery potential.
In total, the chemical space includes three donors, seven pi-bridges
and 100 acceptor blocks, yielding atotal of 2,200 potential molecules
when accounting for symmetry and molecules lacking a pi-bridge. To
facilitate Al-driven BO, the chemical space was featurized using con-
catenations of rapidly calculable structural and electronic descriptors
of the building blocks computed with density functional theory (DFT)
and RDKit** (Supplementary Tables 2 and 3).

Critical toinitialization of the CLT process was an early emphasison
diversity, followed by balanced exploration and exploitationin subse-
quentrounds (Fig. 3b). To initiate the first round, molecular diversity
sampling was utilized to decrease initiation bias in the closed loop
(Supplementary Information 2). The second round contained addi-
tional diversity-selected molecules and BO recommendations. For each
subsequent closed-loop iteration a batch of six molecules was drawn
for uniform sampling, along the domain between fully exploitative
and fully explorative within the BO algorithm®. This strategy ensured
that, although BO was optimizing for photostability, it was concur-
rently diversifying its knowledge of the chemical space to maximally
inform general scientific understanding. At the end of each round of
the closed-loop cycle, experimental photostability data were measured
and passed to the BO model, which then suggested synthetic candidates
for the next round. These molecular targets and a list of their nearest
neighbours in feature space (known as ‘back-ups’in cases in which
the targetis not readily synthesizable or testable; Fig. 3b) were then
automatically populated on a custom-built digital project manager
with aweb-based database and dashboard for subsequent automated
synthesis (Extended Data Fig. 2).

During closed-loop iterations, automated modular small mol-
ecule synthesis was conducted using a version of our iterative C-C
bond-forming robot optimized for reaction reproducibility (Fig. 3cand
Extended Data Fig. 3)*. Initial tests demonstrated that a fully automated
two-step synthesis was feasible. The first step proved to be generally
efficient, whereas the second was initially more challenging and vari-
able due to chemical diversity in the 100 aryl-halide acceptor blocks.
We thus opted forindependent synthesis and scale-up of the first cou-
pling products (donor-bridges; Supplementary Information 3), and
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Fig.2|Amolecularbuilding-block set for light-harvesting small molecules.
a, The modular building blocks considered in this work for the design of new
light-harvesting donor-bridge-acceptor molecules. The full list of 100 acceptor
buildingblocksisshownin Extended DataFig.1.b, Principal component analysis
projection of the feature space (2,200 molecules featurized by concatenated
donor-bridge and donor-acceptor features) used for BO. Alternative uniform
manifold approximation and projections are provided in Supplementary
Fig.22.Shape and colour coding correspond to the structures of the donor and
bridge buildingblocks, respectively. Grey colouring indicates the absence of

separate optimization of the second reaction step using slow-release
cross-coupling®. We found that, using our recently reported general
reaction conditions for heteroaryl cross-coupling discovered via an
artificial intelligence-guided closed-loop process* (general condition 1
(GC1); Fig.3c), and newly discovered anhydrous slow-release coupling
conditions (GC2) (Fig. 3c and Supplementary Information 3)* maxi-
mized the synthetic hit rate (approximately 60%).

Following synthesis, purification, and structural verificationineach
round of the closed loop, the photophysical properties of donor-
bridge-acceptor molecules were characterized via solution-based
photodegradationinasolarirradiation cell (Fig.3d). The photophysical
properties of allmolecules were measured under standardized concen-
trations, in the same solvent (chlorobenzene) and under a controlled
atmosphere, using a glovebox with oxygen and humidity control. We
measured two properties: (1) spectral overlap, defined as the integral of
the normalized overlap of amolecule’s absorbance spectrum and solar
irradiance spectrum, and (2) spectral decay time (T,), defined as the
timerequired for the observed absorbance spectrum to decay to 80%
of itsinitial value under constant irradiation. Given that photodegra-
dation is sensitive to the local environment, an internal standard was
used to ensure consistency (Supplementary Information 4). Based on
afirst-order kinetic model we chose to optimize photostability, defined
as the product of spectral overlap and Ty, (Supplementary Fig. 5).

BO-driven closed-loop experimentation proceeded across five
rounds, automatically synthesizing 30 new donor-bridge-acceptor
light-harvesting molecules (Fig. 4a and Extended Data Table 1), until
saturation of experimental photostability was observed. The first round
of suggestions, relying on diversity-driven selection, resultedin aset of
tenmolecules withlow to moderate photostability. Subsequent rounds
2-4, relying on the BO strategy, probed existing and new regions of

Principal component 2

Principal component 1

abridge block—thatis, molecules thatare donor-acceptor. The principal
componentanalysis projection reveals the primacy of the donor blockin
organizing the chemical space, with benzodithophene (BDT) donor blocks
(circles) inthe top left corner and thiophene-based donor blocks (triangles and
squares) inthe bottomright regions. Similarly, agreater extent of conjugation
inthe bridge blocks correlates with lower values of principal component1and
principal component2 (lower left), further organizing the featurized chemical
space.

functional chemical space, discovering molecules at the extremes of
Tsoand spectral overlap and some that maximized their product. By the
conclusion of the fifth round of the closed loop the average photosta-
bility of the top five molecules had plateaued, signalling the end of the
BO-guided closed-loop process (Fig. 4b). Importantly, an increase of
over 500%inthe average photostability of the top five performers was
achieved by samplingless than1.5% of the total space of 2,200 potential
molecules, aresult consistent with previous theoretical predictions
but hitherto not verified experimentally®.

In conjunction with the progress of the BO experiment, we trained
interpretable ML models drawing on physics-based features follow-
ing each BO round to generate hypotheses relating molecular fea-
tures to photostability. To generate physics-based features we used
whole-molecule, time-dependent DFT calculations** on donor-bridge-
acceptor and donor-acceptor molecules synthesized following each
closed-loop round, and from these results a comprehensive set of
114 physical and chemical molecular features were extracted (Sup-
plementary Tables 2-5). These features were then integrated in support
vector regression (SVR; Supplementary Table 1) following every BO
round to predict experimental Ty, values. SVR models with stepwise
feature selection were selected due to their model interpretability
and trained to predict Ty, separately from spectral overlap due to an
observed inverse relationship between Ty, and spectral overlap (Sup-
plementary Information 2). Spectral overlap was predicted via linear
regressionusing the time-dependent, DFT-predicted absorption spec-
trum, solar simulator emission spectrum and afitted constant energy
shift due to solvent interactions (Supplementary Fig. 4). The best Ty,
model achieved leave-one-out-validation (LOOV) predictive accuracy of
R?=0.86for experimental T, following the fifth round using the triplet
density of states (TDOS: density of triplet excited states ata particular
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Fig.3|Closed-loop optimizationinphasel.a, The majorstepsinthe
optimization portion of CLT phase lunder the guidance of artificial
intelligence-driven BO, and images of the solution characterization process
and automated synthesis equipment. b, Visualization of round 3 of closed-loop
optimizationinwhich six molecules are recommended, balancing exploration
and exploitation, along with back-up molecules. Inround 3 the third-most
explorative molecule (yellow) was unsynthesizable, requiring the use of
aback-up,asshownintheinset.c, Reaction conditions used in the automated

energy above ground state) at 2.6,2.8,3.8,3.9,4.0 and 4.6 eV. We also
explored all possible SVR models (12,996) using two-feature combina-
tions of the 114-feature set and LOOV performance metric (Extended
Data Fig. 5a). Unexpectedly our results showed that, as opposed to
the conventional T, energy descriptor of photostability, high-energy
TDOS emerged as a primary determinant of molecular photostability
across the entire chemical space (high Tz, LOOV R%; Supplementary
Fig.9). Thisinsight emerged following the fourth round of BO and was
confirmed following the fifth (Supplementary Table 1). Because the ML
models’ convergence coincided with the plateau of molecular photo-
stability, this signalled the end of our BO experiment. It isimportant
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synthesis of roughly 60% of molecules recommended by BO. d, Example data
generated by solution characterization, showing the fresh absorbance and
solarsimulatorirradiance spectrum used to calculate spectral overlap, the
decay of absorbance over time for arepresentative molecule (inset) and a plot
ofthe decay of the absorption spectrum over time, which is used to calculate
Tso foreachmolecule with measurable absorbance. a.u., arbitrary units;

C, coupling; D, deprotection; P, purification; THF, tetrahydrofuran; TMSOK,
potassiumtrimethylsilanolate.

tonotethat the positive aspect of CLT in thiswork is inherently linked
to BO recommending molecules with sufficient representativeness for
identification of ageneral physics-based hypothesis, which may occur
either quickly or slowly (Supplementary Information1).

Wethen examined all 234,136 four-feature SVR models containing the
most predictiveregion of the TDOS at 4.0 eV or T, energy, and plotted
thedistribution of performance (R* Extended Data Fig. 5b). Our results
show a marked difference in the predictive capabilities of supervised
ML models using the high-energy region of TDOS as opposed to T,.
Importantly, thisknowledge emerged a prioriacross abroad chemical
space, with equal weight given to all possible hypotheses described
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by 114 physiochemical descriptors. This data-driven physical insight
suggests that a more nuanced understanding of the role of the triplet
state manifold in molecular photostability is required that extends
beyond simple T, energetics.

Because learning in the low-data limit can induce spurious cor-
relations in supervised ML models, phase Il of the CLT experiment
involved construction of anindependent experimental test set to vali-
date the hypothesis that high-lying triplet states influence molecular
photostability. The best T, SVR model trained on six values of TDOS
(Supplementary Fig. 9) was used to predict Ty, across the entire set of
2,200 molecules (Fig. 4c). The predicted Ty, value of each molecule
was then multiplied by its predicted spectral overlap value to obtain
predicted photostabilities across the entire set of 2,200 molecules.
Using these predictions we formed two batches of seven molecules,
one high performing (top seven) and one low performing (bottom
seven), to serve asexperimental validation sets (Supplementary Fig.11).
These two batches possessed the following statistical features (Sup-
plementary Information 2): (1) identical average spectral overlap
within the 5.5-9.0% SO region (which emphasizes the effects of T, 0n
photostability) and (2) similar standard deviation for the predicted
Tso (Which permits broader chemical diversity). We then synthesized

80

eachmoleculeis plotted against four triplet TDOS energies relevant to the
prediction task. This model, along with spectral overlap criteria, was used to
select the top seven and bottom seven molecules for hypothesis testingin
phasell.

and characterized the photophysical properties of the top seven and
bottom seven batches. We observed a statistically significant photo-
stability difference between these groups in the predicted direction
(Fig. 5a; average Ty, X spectral overlap =165 for the top seven versus
average Ty, x spectral overlap = 97 for the bottom seven, P=0.026,
Spearman R? = 0.54), validating our CLT-derived hypothesis that the
triplet manifoldis a key descriptor of molecular photostability. Interest-
ingly, one outlier inthe bottom seven showed surprisingly high photo-
stability; subsequent analysis demonstrated that this quinone-based
molecule (acommon motifintriplet quenchers) exhibited high TDOS
while maintaining a low structural complexity—a feature unseenrela-
tive to the 30 molecules synthesized in the five closed-loop rounds
(Extended DataFig. 4).

Using the full experimental photostability dataset generated by the
CLT campaign (44 molecules; Extended Data Fig. 6a), we performed
a final retraining of supervised ML models to confirm and refine
our photostability hypothesis. Strikingly, following retraining of all
12,996 two-feature SVR models when considering the full experimental
dataset, high-energy TDOS emerged even more strongly as a critical
determinant of molecular photostability across the synthesized chemi-
cal space (high Ty, LOOV R% Fig. 5b) and a superior descriptor relative
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the centre. These values demonstrate a statistically significant differencein
performance between the two sets of molecules, with the outlier high performer
(bottom two) as described in the text. b, All two-feature SVR LOOV results

for prediction of Ty, on the entire 44-molecule dataset from two-feature
combinations. E, energies; OS, oscillator strengths; S, singlet energies; T, triplet
energies.c, Comparison of the prediction strength of all possible four-feature

to conventional T, energy (Fig. 5¢). A total of 2.5 million four-feature
SVRmodels were trained to identify the most common features present
in the most predictive Ty, models (R? > 0.70) across all descriptors
(Supplementary Fig. 12). The two most common features, present in
around 30% of the most predictive models, were TDOS at 4.0 eV and
the number of heteroatoms. Whereas the number of heteroatoms
may be attributed to the reliably poor Ty, of the benzodithiophene
donor, the observed correlation between a high TDOS at 4.0 eV and a
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models containing either TDOS at 4.0 eV or T, energy in predicting T, for

the entire 44-molecule dataset. Comparison of the plotsinb,c with Extended
DataFig.5shows theimproved predictive strength of TDOS at 4.0 eV over all
other features, in particular T,, following the validation dataset. d, Physical
mechanismderived fromthe CLT phase Il hypothesis, demonstrating how
alow TDOS at 4.0 eVreduces the frequency of Dexter energy transfer
followingintersystem crossing (ISC), imparting enhanced photostability to
pentathiophene-C12 (DB_11_A_002).S,, singlet ground state; S, the lowest
energy singlet excited state.

low Ty, consolidates closed-loop-derived chemical knowledge that the
high-lying TDOS is a critical determinant of molecular photostability.

Because high-lying TDOS will be only transiently populated by inter-
system crossing via direct excitationin the singlet manifold of the mol-
ecules, we posited that the photodegradation mechanismis mediated
by chlorobenzene solvent (Fig. 5d) viaresonant Dexter energy transfer.
Theresonance of the T, state of chlorobenzene (4.1 eV) is near that of the
CLT-identified TDOS region at 4.0 eV, implying that the solvent could



act as an efficient sensitizer for populating the triplet states of DBA
molecules, similar to work showing that Dexter transfer between the
T, state of one molecule the excited triplet manifold of another leads
to efficient triplet state transfer®. These high-lying triplet states are
thenanticipated torelax to the T, state in which any number of poten-
tial degradation mechanisms could be active. We anticipate the role
of high-lying triplet states to be important in many multicomponent
organic systems under solar irradiation. Beyond organic photovol-
taics***, these may also include dyed polymers™, solar fuels®** and
photosynthetic systems™.

To apply this new-found chemical knowledge towards improvement
of photostability, in phase Il we tested three molecules with varying
TDOS at4.0 eVintoluene (amore chemically stable solvent than chlo-
robenzene with comparable T, energy) and decane (with aninaccessible
T, greater than 7 eV) to intentionally remove the potential for Dexter
tripletenergy transfer from the solvent. The photostability of allmol-
ecules improved by 90-150% in toluene, with an additional 10-100%
improvementindecane and greaterimprovements for molecules with
higher TDOS at 4.0 eV (Extended DataFig. 6¢). Furtherimprovements
and understanding of photostability were achieved by the addition of
atriplet-quenching molecule to the solvent, yielding (1) 20% improve-
mentin chlorobenzene, as well as direct chemical bonding of atriplet
quencher to the highest-performing molecule via a hexyl linker, and
(2) 75% poorer photostability in chlorobenzene via a hypothesized
double-Dexter transfer mechanism (Extended Data Fig. 6d). These
results are fully consistent with the proposed solvent sensitization
mechanism for photostability (Fig. 5d and Supplementary Figs. 71-74),
and demonstrate multiple phase lll hypothesis-driven strategies to
improve the photostability of light-absorbing molecules beyond the
initial chemical space.

Conclusion

The closed-loop experiment reported here, augmented by inter-
pretable ML models using physics-based features, elucidated fun-
damental chemical knowledge regarding molecular photostability
while simultaneously optimizing towards high-function molecular
targets. The marked efficiency with which our human-in-the-loop,
artificial intelligence-guided campaign yielded our hypothesis
(only 30 molecules) resulted from the combination of an artificial
intelligence-guided balance of exploration and exploitation with
interpretable physics-based modelling. CLT is shown to be broadly
applicable to other frontier applications and fields of inquiry, in par-
ticular tolow-dataregimes and multidimensional molecular properties
that are challenging to predict a priori. We believe that CLT will serve
asaplaybookfor harnessing the strengths of BO in hypothesis-driven
discovery investigations, reinforced by physics-based insights.
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experimental photostability measurement data for all molecules syn-
thesized in this work, DFT-and RDKit-derived molecular featurizations
and predicted photostabilities across the full space of 2,200 molecules.
Regression models and scripts used to train and perform all analysis
with the associated data are also provided. Datasets are available at
Zenodo (https://doi.org/10.5281/zenodo.11580889)*. Source Data
are provided with this paper.
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github.com/TheJacksonLab/ClosedLoopTransfer). Gryffinis available
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Extended Data Table 1| Characterized SO, T, and Photostability (SO*Ts,) of synthesized molecules from Rounds 1-5 and the
validation set (Top7 and Bot7)

Round-ID DBA_Name SO (%) Tso (hours) SO0*Tso
1-d1 DB_01_A_010 0.8 n/a n/a
1-d2 DB_19_A_021 12.3 3 36.8
1-d3 DB_15_A_053 2.88 5 14.4
1-d8 DB_18_A_094 12.2 1.5 18.3
1-d9 DB_05_A_073 0.1 n/a n/a
1-d10 DB_20_A_017 2.35 3.5 8.2
2-1 DB_05_A_089 0.1 n/a n/a
2-2s11 DB_13_A_100 6.1 51.7 315.4
2-3s3 DB_08_A_018 3.65 48 175.2
2-4 DB_19_A_025 14.6 15 21.9
2-d5s1 DB_20_A_027 4.55 15 68.2
2-d8s13 DB_17_A_069 6.84 10.6 72.5
2-d9 DB_12_A_022 5.55 5 27.8
2-d10 DB_16_A_061 4.46 1.9 8.47
3-1 DB_15_A_088 5.19 9.3 48.3
3-2 DB_11_A_002 15.2 38.7 587.7
3-3s1 DB_20_A_012 2.4 9.7 23.3
3-4 DB_06_A_049 1.23 78.3 96.3
3-6 DB_08_A_034 6.08 2.36 14.4
41 DB_22_A_046 5.88 10.5 61.7
4-3 DB_22_A_083 6.66 23.1 153.8
4-4 DB_05_A_002 0.1 n/a n/a
4-5 DB_01_A_002 0.33 101.1 33.4
4-6 DB_06_A_002 1.8 103.9 187.0
5-1 DB_10_A_007 10.8 10.5 112.8
5-2 DB_11_A_007 13.7 8.87 1215
5-3s4 DB_10_A_091 7.87 19.5 153.3
5-4s7 DB_10_A_084 8.92 15.6 139.5
5-5 DB_10_A_002 12.4 8.64 106.9
5-6s2 DB_09_A_002 7.89 7.86 62.0
Top7-1 DB_04_A_046 6.36 24.9 158.4
Top7-2 DB_04_A_070 8.23 31.9 262.9
Top7-3 DB_13_A_009 242 32.2 77.8
Top7-4 DB_13_A_031 3.95 10.8 42.7
Top7-5 DB_13_A_044 5.45 45.0 245.0
Top7-6 DB_13_A_071 4.82 68.4 329.5
Top7-7 DB_13_A_080 6.1 6.67 40.7
Bot7-1 DB_08_A_096 71 71.9 510.4
Bot7-2 DB_15_A_066 5.46 5.34 29.2
Bot7-3 DB_17_A_029 7.48 2.42 18.1
Bot7-4 DB_22_A_007 3.4 9.15 31.1
Bot7-5 DB_22_A_018 3.14 9.77 30.7
Bot7-6 DB_22_A_023 4.3 4.8 20.6
Bot7-7 DB_22_A_063 3.67 10.9 39.9

Molecules are numbered by their round number and intra-round ID, where ‘s’ indicates substitute, and ‘d’ indicates selected via diversity. For molecules recommended by BO (e.g. Rounds 2
through 5 without a ‘d’ label) a lower intra-round ID corresponds to a more explorative recommendation, a higher number corresponds to more exploitative recommendation.
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