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Global Product Design
Platforming: A Comparison
of Two Equilibrium Solution
Methods

Global product platforms can reduce production costs through economies of scale and
learning but may decrease revenues by restricting the ability to customize for each
market. We model the global platforming problem as a Nash equilibrium among oligopo-
listic competing firms, each maximizing its profit across markets with respect to its
pricing, design, and platforming decisions. We develop and compare two methods to iden-
tify Nash equilibria: (1) a sequential iterative optimization (SIO) algorithm, in which each
firm solves a mixed-integer nonlinear programming problem globally, with firms iterating
until convergence; and (2) a mathematical program with equilibrium constraints (MPEC)
that solves the Karush Kuhn Tucker conditions for all firms simultaneously. The algorithms’
performance and results are compared in a case study of plug-in hybrid electric vehicles
where firms choose optimal battery capacity and whether to platform or differentiate
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1 Introduction strategies for global platforming, they will need to weigh the
factors of differing consumer preferences, market sizes, and compe-
tition with other companies across different countries with the
potential cost savings from commonality. Thus, finding profit-
optimal platforming decisions in the context of a market (Nash)
equilibrium is needed.

Solving an optimal platforming problem for firms in equilibrium
is challenging because (1) the mathematical relationships between
firm profits, component design decisions, and product attributes
of interest to consumers frequently involve continuous variables
and nonlinear and non-convex functions, and (2) the decision of
whether to create a common platform across products in different
markets is discrete. So, choosing whether or not to create a platform
and finding optimal design decisions generally constitutes a non-
convex mixed-integer nonlinear programming (MINLP) problem
for each firm, where each firm’s optimization problem depends
on the decisions of competing firms.” Existing product platform
optimization approaches do not determine market equilibrium solu-
tions [1,10-20,23], and existing equilibrium approaches typically
assume continuity or linearity and are not applicable to platform
problems where each firm’s profit optimization is MINLP [24—40].

Increased globalization has provided opportunities for companies
to reduce costs by creating common platforms across products sold
in different countries [1]. Examples of product platforms include the
Black & Decker universal motor, which is used across 122 products
available globally [2,3], Sony’s Walkman portable audio player [4],
Intel’s microprocessor platform [5], HP’s Deskjet printer platform
[6], and passenger vehicle models sold in different countries that
are built with the same chassis and transmissions but have different
engines to better fit differing consumer preferences or regulations
across countries [7-9]. Such product platforming can lower produc-
tion costs by taking advantage of cost reductions that are possible
with increased production quantity. A profit-maximizing firm
must determine whether the cost reductions of choosing a
common platform outweigh the loss of market share that may
result from limiting customization for each market.

Existing literature on product platforming has developed
methods to solve individual firm platforming problems [1,10-21]
but they do not account for the interaction with competing firms,
which affect the conditions under which platforming is profit-
optimal [22]. In order for companies to determine profit-optimal
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“Certain product platforming problems can be represented in less complex forms
such as INLP problems or those having convex design spaces, which we consider to
be special cases. The algorithmic approaches we develop can be used to solve for
these special cases as well, but we focus on an MINLP problem in this study.
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Table 1 Categories of relevant design optimization studies that address product platforming

and/or competing firms in equilibrium

Single firm

Multiple firms in equilibrium

No platforming decisions
Optimal product platform

Many examples [45-55]

[1,10-21,23]

Product platform optimization

Product line oligopoly studies [22,26,27,30—40]
This paper

We develop two approaches of solving for optimal platforming
equilibria: (1) an iterative procedure solves each firm’s profit max-
imization problem conditional on the decisions of other firms using
a global MINLP solver, and the algorithm iterates each firm’s profit
optimization sequentially with competitors fixed until no firm can
improve their profits given the decisions of competitors (called
sequential iterative optimization (SIO)) and (2) the Karush Kuhn
Tucker (KKT) conditions of all firms’ profit maximization problems
are solved directly for all possible combinations of platforming
decisions (a mathematical program with equilibrium constraints
(MPEC)). We compare the algorithms’ performance and results in
a case study of plug-in hybrid electric vehicles (PHEV) where
each firm chooses whether or not to platform the battery pack
design across the US and Chinese markets and chooses the
optimal battery capacity, which determines the vehicle’s all-electric
range (AER). In the PHEV case, economies of scale are small at
current battery production volumes [41], so we focus on quantity-
based cost reductions from learning-by-doing that decrease costs
as the plant gains experience producing the batteries [42—44].
Optimal platforming depends on the learning rate as well as the dif-
ference between consumers’ willingness to pay (WTP) for AER
across countries. Results show that the optimum for each firm is
to platform when learning rates are high or the difference
between consumer willingness to pay for AER in each market is rel-
atively small. Outside of these cases, the optimum is to not platform
and instead to produce a low-range PHEV in China and a high-
range PHEV in the US.

1.1 Literature Review. Our problem addresses optimal
product platform decisions among competing firms in equilib-
rium. We reviewed the literature in engineering, economics,
operations research, and marketing and could not find any
prior work that addresses this scope. The most closely related
work can be grouped into two approaches: (1) optimal product
platform problems for a single firm or decision-maker that do
not account for competing firms [1,10-21,23] and (2)

oligopolistic equilibrium of competing firms designing product
lines without platforming, often restricted to linear programming
problems [26,27] or only continuous decision variables
[22,30,40]. See Table 1 for a summary of this literature and
the contribution of our approach.

Studies in the first category that optimize product platforms typ-
ically either use stochastic methods like genetic algorithms to iden-
tify which sets of components should be common across product
variants [10,14,20], or nonlinear programming (NLP) formulations
in which the decision of whether components should be common
across product variants is set exogenously or relaxed to a continu-
ous approximation [1,11-13,15-17,19,21,23]. These studies focus
on an individual firm without accounting for the strategic interac-
tion of competing firms in equilibrium. There are a few studies
that incorporate an equilibrium solution into platform design, but
the equilibrium of interest in these studies is between players inter-
nal to the firm, rather than between competing firms [17,18,21]. See
Table 2 for a summary of this category of literature.

It is interesting to note that platforming studies in this category of
literature do not model quantity-based cost reductions as dependent
on sales (which is a function of product design decisions and
pricing). Instead, they implicitly model quantity-based cost reduc-
tions as resulting from the similarity among product variant
designs. This simplification misses an important mechanism of
quantity-based cost reductions: all else equal, designing a product
so that consumer sales will be higher can lead to cost reductions,
e.g., though economies of scale or learning-by-doing. This creates
a tradeoff within the platforming problem between the quantity
gains from using common components and the quantity losses
from lower sales because the product is not customized for each
market. Thus, approaches that do not account for the implications
of platforming on sales risk recommending platforming when it is
not profit-optimal.

In the second category of literature, equilibrium among compet-
ing firms is found but the approaches do not include platforming
decisions or allow the firms’ problems to be MINLP. Methods of
solving for market (Nash) equilibrium in this literature either use

Table 2 Examples of product platform and portfolio optimization in the engineering design literature

Study Case study

Description

General aviation aircraft and
universal electric motor
General aviation aircraft

Simpson et al. [1]

Simpson and Dsouza [10]

Product platform concept exploration method

Multiobjective two-level genetic algorithm

Martin and Ishii [11]

Messac et al. [12]

Fellini et al. [13]

Kumar et al. [14]

deWeck et al. [15]
Gonzalez-Zugasti et al. [16]
Khire and Messac [23]
Khajavirad and Michalek [19]

Khajavirad et al. [20]
Duetal. [17]

Miao et al. [18]
Moon and McAdams [21]

Water cooler

Universal electric motor

Race car

Universal electric motor
Vehicles

Spacecraft

Active building envelope system
Bathroom scale

Universal electric motor
Universal electric motor

Gear reducer
Vehicle design

Generational variety index between products, coupling index between components

Product family penalty function

Multiobjective Pareto problem

Segmented market-driven product family design

Two-level platform/product formulation

Common platform compared against performance and budget constraints
Relaxes MINLP to NLP using variable segregating mapping function
Relaxes MINLP to NLP using commonality index, enforces platforming via
analytical target cascading

Multiobjective genetic algorithm determining platform selection and design in

addition to variant design

Two-level Stackelberg model coupling module selection and module design scaling
Two-level genetic algorithm coupling platform and customization optimization

Cooperative game between products in a single firm
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Table 3 Examples of product line optimization methods that find market equilibrium with either genetic algorithm, integer linear
programming (ILP), NLP, or formulations of MPECs restricted to continuous variables

Study Case study

Description

Liu et al. [26]

Liu et al. [27]

Shiau and Michalek [30]
Shiau and Michalek [22]
Whitefoot et al. [31]
Whitefoot and Skerlos [32]
Whitefoot et al. [33]
Michalek et al. [34]
Shiau and Michalek [35]
Shiau et al. [36]

Choi et al. [37]

Horsky and Nelson [38]
Rhim and Cooper [39]
Luo et al. [40]

Mobile phones
Vehicle design
Vehicle design
Vehicle design
Vehicle design
Vehicle design
Vehicle design

Vehicle design
Pain reliever
Vehicle design
Liquid detergents
Angle grinder

Generic representative product

Pain reliever, weight scale, and power grinder

Integer nonlinear programming

Integer nonlinear programming

MPEC restricted to continuous variables
MPEC restricted to continuous variables
NLP restricted to continuous variables
NLP restricted to continuous variables
NLP restricted to continuous variables
NLP restricted to continuous variables
MPEC restricted to continuous variables
MPEC restricted to continuous variables
MPEC restricted to continuous variables
MPEC restricted to continuous variables
Genetic Algorithm

MPEC restricted to continuous variables

a genetic algorithm approach that does not guarantee convergence
to an optimum or they restrict the firm’s problem so that it is not
MINLP. These restrictions include solving the firm’s problem as
an integer nonlinear programming (INLP) problem [24,26,27] or
an NLP problem [31-33] or solving for equilibrium using an
MPEC where the first order conditions for optimality of each firm
are restricted to continuous variables [22,30-40]. See Table 3 for
a summary of this category of literature.

Solving platforming problems in equilibrium is complicated by
the lack of equilibrium solution methods (even outside of the
context of product design) that allow firm problems to be
MINLP. Existing methods of solving for equilibrium with
mixed-integer approaches require simplifying assumptions that do
not often apply to the platforming problem. For example, equilib-
rium methods developed for supply chain design and electricity
markets allow for integer variables but assume properties like line-
arity or convexity [24,26,27]. Methods developed to solve for nego-
tiations of competitive players, e.g., in cases of customer allocation
or contract negotiations, use MINLP approaches to solve for equi-
librium, but these approaches require specific cooperative behavior
among players such that the equilibrium conditions can be repre-
sented by a “Nash product,” which allows them to be solved as a
single MINLP problem rather than representing competing firms
as solving their own MINLP problems [25].

We extend the prior literature by developing approaches to solve
equilibrium for competing firms where each firm’s profit

maximization problem is MINLP. Specifically, we build upon
prior work that developed approaches to solving equilibrium for
product design problems (especially [30,33]) to propose two
approaches to solving equilibrium problems that involve both
mixed-integers and non-convex functions: an SIO that sequentially
solves each firm’s optimization problem as an MINLP using a
global solver (while holding decisions of other firms fixed) until
convergence, and an MPEC approach that—for each combination
of the integer variables—searches for points that simultaneously
satisfy the first order optimality conditions with respect to continu-
ous variables for all firms and checks each candidate point to verify
Nash conditions.

2 Platform Optimization Problem

We represent the global platforming problem as a set of firms
each deciding design variables and prices for a set of products
sold in multiple markets and determining whether or not to
produce each product on a common global platform. Once these
decisions are made, they are fixed for a time period of T years.
Firms choose the decisions that will maximize the net-present
value of profits gained from these products over the T years. The
profit maximization problem for a single firm is defined as
follows in Eq. (1):

Maximize the net present value of future profit (discounted revenue less cost)

T
(pij — Cij)qije
Il = — = (1
,V/*"t/vl’rrf}gv)‘%EJk k Z Z Z (1 + r)t ¢ )

JET iEM; =1

subject to
XMmiN < X;j < Xmax Vie M, je Ji
g(x,j)fo ViEM,jGJk

. (& =xp)=0 | .
[y,—O]v[ Vi.ieM Vi€ Tk
where
Giic = q:(pij» Xij» pij> Xiy Vj € J)
cijr = yjc(Xij, Qijr)
Qi =08, + (1 = O
O =1 diie

t
ZI =X > qijc
=1/eM

p[/'EIR VieM,je T
x; ER" VieM,je T,

platform

platform (when y;=1)

yje{O,l} Vjejk

Design variables are within simple bounds
A vector of engineering constraints is satisfied for each product j in each market i
For each product, either there is no platform or platform variables are common across markets

Demand for product j in market i depends on the price and design variables of all products
Cost for product j in market i in year ¢ depends on design variables and cumulative production volume

Cumulative production volume across all markets is used for products on a common platform, and
cumulative production volume within a single market is used for products that do not share a common

Each product has a real-valued price for each market
Each product has a vector of n design variables that must match across markets when sharing a common

Each product has the option to build all markets on a common platform y;= 1 or not y;=0

Journal of Mechanical Design
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In this formulation, i € M; indexes the set of markets in which
product j is sold; j € J indexes the set of products, including the
subset of products J; C J produced by firm k; re {1, 2, ..., T}
indexes time in years; II; is the net present value of profit for
firm k; p;; is the price of product j in market i; x;; is a vector of
design variables for product j in market i; y; is a binary variable
that is one when product j uses a common platform across
markets and zero otherwise; r is the discount rate; g(x;) is a
vector of engineering design inequality constraints that must be sat-
isfied; ¢, is a function that computes demand for one product in one
market at time ¢ given the prices and design variables of all products
in that market; Q;; is the cumulative demand for product j at time ¢
for market i, depending on whether the product is on a common
platform O, or not Q7i; and ¢ is a function that computes unit pro-
duction cost as a function of product design variables and cumula-
tive production volume i. If the product uses a common platform
(y;=1), the cumulative production volume includes production in
all markets; if not, only market i is counted toward cumulative pro-
duction volume.

Straightforward extensions of this core model may include: (1)
additional design variables that can be differentiated across
markets even when sharing a common platform; (2) price and/or
design variables that can vary over time; (3) demand models
whose parameters vary over time; (4) cost models that vary over
time for reasons other than cumulative production volume; (5)
options to use a common platform across a subset of markets
rather than a single global platform; (6) platforms that impose con-
straints other than equality of design variables; and (7) engineering
design constraints that vary across products and/or markets.

Note that the disjunction in the formulation in Eq. (1) requires
that when a product is built on a common platform, its design
variables must match across markets. This constraint can be
implemented in a number of ways, including representing it directly
as a disjunction (where branching in a branch-and-bound-
based algorithm occurs directly on the logical cases); using “the
Big M reformulation™; or using “the convex hull reformulation,”
among other approaches [56]. We adopt the Big M refor-
mulation, which represents the disjunction as the con-
straint: —=(1 —y)M < (x; —xy)) < (1 —y)m Vi,i' e M, je Ty,
where m is a constant large enough such that the constraint is dom-
inated and non-binding when y;=0. We choose to set
m=2(XpMax — XMIN)-

To complete the formulation for a particular instance, the demand
function Q(pjyj, Xij, piy, Xiy Vj € J) and the cost function
c(x;j, Q;) must be defined. In our case study, consumers in the
same market are modeled using a multinomial logit model [57].
Demand is thus computed using Eq. (2)

eVi

AYt—)/ Vi,j,[
"o+, Zj'ejk e

qijt = q(pij, Xi, piy, Xy Vj € J) =

(@3

where s;, is the fixed size of market i in time #; the deterministic
portion of consumer utility, v; = a;(p;; + yl.Tz(x,-j)), follows Helves-
ton et al. [58]; a is the scale parameter; 7y; is a vector of average
WTP coefficients per unit increase in each of the product attributes
z; each element in z is a function of x;;, and @ is the exponentiated
utility of the outside good, representing all other options beyond the
products offered by the oligopoly firms.

Note that production quantity in each year is a function of
product prices and design decisions made at r=0. While in
general firms may adjust product prices between redesign cycles,
in the case of products like automobiles, these changes are small,
often on the order of 1% or less [59,60].

2.1 Solution Methods. There are several possible methods for
numerically solving an equilibrium problem in which multiple firms
in competition simultaneously maximize Eq. (1). We investigate

061702-4 / Vol. 145, JUNE 2023

two: an SIO approach and an MPEC approach. In the SIO approach,
each firm in sequence solves Eq. (1) using a global MINLP algo-
rithm, holding the decisions of other firms fixed at their most
recent values, until no firm can unilaterally improve their profits.
In the MPEC approach, for each permutation of the binary platform-
ing decision variables, an MPEC is solved searching the remaining
continuous variables to find points that satisfy the KKT conditions
of Eq. (1) for all firms simultaneously. Each candidate solution is
then checked with one iteration of a global solver per firm to
verify the Nash criteria that the MPEC point found is a global solu-
tion for each firm, conditional on the decisions of other firms. In
both approaches, we use multistart with a grid of starting points
to search for multiple equilibria. A flowchart of the two algorithm
approaches can be seen in Fig. 1.

2.1.1 Sequential Iteration Optimization Approach. For the SIO
approach, branch-and-reduce optimization navigator (BARON)
software was chosen to solve the inner-loop of each firm’s optimi-
zation problem. BARON is a global optimization algorithm that
solves non-convex MINLP problems using convexification. In con-
trast to other MINLP algorithms [61,62] and stochastic approaches
[63], convexification-based branch and bound algorithms are guar-
anteed to converge to global optima within termination tolerances
even when the problem is non-convex, so long as certain criteria
are met (e.g., factorable functions, bounded domains, etc.) [61].

In the SIO algorithm, optimal decisions found using BARON to
solve Eq. (1) are then used to calculate demand for products in com-
petition with the products of the next firm. Each firm’s optimization
problem is then solved in sequence repeatedly until each firm’s
profits in its latest turn differ from its profits in its previous turn
by less than a relative iterative tolerance ¢. (Pseudocode for the
SIO approach for the case study problem is presented in the SI avail-
able in the Supplemental Materials on the ASME Digital
Collection.)

(a) (b)
Com

For each grid point |_
of starting values, |

For each
combination of
firms' platforming |

{ strategies,
Solve profit max| l
MINLP problem | |«
for Firm 1 . .
For each grid point
.L of starting values,
Solve profit max|
MINLP problem l
for Firm 2
Solve MPEC

Solve profit max
MINLP problem
for Firm K

Check firm’'s optimization
problem, and discard
solutions that do not

satisfy Nash conditions

Is difference in each

firm's profits from
. \—N @quilibrium solution(s)
[}

preyious iteration lower’
than tolerance?”

Yes

(Equilibrium solution(s))

Fig.1 (a) Flowchart of the operation of the SIO algorithm and (b)
flowchart of the operation of the MPEC algorithm (extended from
Shiau and Michalek [30])
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A potential drawback of the iterative approach is that the condi-
tions under which it is guaranteed to find multiple equilibria if they
exist are not known (to the authors). Because of this potential draw-
back, we compare results to those of the alternative MPEC
approach.

2.1.2  Mathematical Program With Equilibrium Constraints
Approach. The MPEC approach solves the first-order necessary
KKT conditions of Eq. (1) for each firm simultaneously. A potential
advantage of this approach is the potential to search more efficiently
in a single run in the multi-dimensional space that includes decision
variables of all firms to identify first-order points that are candidates
for Nash equilibrium, rather than repeatedly alternating search
among orthogonal subspaces that represent each firm’s decisions.
Potential disadvantages include: (1) KKT conditions apply only
to the continuous variables for each fixed combination of discrete
variables, so the discrete platform variables must be enumerated
exhaustively, resulting in multiple MPEC problem instances; (2)
computational effort may be wasted finding first-order points that
are not Nash equilibria; (3) searching a higher-dimensional space
can introduce computational and memory challenges, and (4)
KKT conditions are only necessary conditions under certain con-
straint qualification conditions, so it is possible that this approach
could miss any equilibria at points that do not satisfy constraint
qualification.

We analytically derive the KKT conditions of each profit-
maximizing firm’s platform and design optimization problem that
hold at equilibrium (under assumptions of regularity, continuity,
and smoothness [64,65]) for each discrete combination of platform-
ing decisions. KKT conditions for a related problem in which a firm
has no ability to platform have been derived by Yip et al. [66] and
are extended here for the platforming problem in Eq. (1). In this for-
mulation, we derive stationarity conditions separately for each pos-
sible value of the platforming variable y.

The first-order Lagrangian stationarity conditions of Eq. (1) with
respect to the firm’s vehicle prices are

0q opy  Ocyy
R ] ety
r apyy Y v v opy i opy i) 0

D

=1 jeli ieM;
. .
vj € Jy, Vi’ € M;

(a)

It should be noted that in most formulations of a firm profit func-
tion, cost is not dependent upon price (of either the same product or
other products), and thus the Ocj/Op; term drops out [66].
However, when costs reduce with production volume (via
learning-by-doing or economies of scale) and quantity is dependent
upon price (of the same and other products in the market), this
derivative is not equal to zero. Thus, it is necessary for us to
retain this term in our formulation.

The first-order Lagrangian stationarity conditions of Eq. (1) with
respect to design decisions of the firm’s products, using matrix cal-
culus notation, are

8q,-j, oc ijt

t
t=1 jel; ieM; (1+n

Rj=0 Vj €T Vi eM

6x,_-,- (3b)

where p;; is the vector of Lagrange multipliers associated with the
constraints g. The partial derivatives of g; and c;, shown in the
equations are presented in the SI available in the Supplemental
Materials.

Finally, feasibility, positivity, and complementarity require the
following conditions for all of the firm’s products

g(x;) <0 Vje Ji, Vie M; 3o)

Journal of Mechanical Design

R; =0 YeTLVieM, (3d)

nigx)=0 Vje T Vie M, (3e)

At the Nash equilibrium, the KKT conditions defined above in
Egs. (3a)-3(e) will hold simultaneously for every firm [67].

When the complementarity conditions in Eq. (3e) are treated as
constraints in an equilibrium problem, they violate constraint qual-
ifications at every feasible point—a fundamental challenge for
MPECs. Several solution strategies have been developed in order
to address this issue, most commonly by relaxing the constraint
[68]. We utilize an approach analyzed by Scholtes [69], in which
Eq. (3e) can be relaxed as follows:

p;g(xij) <@ VjeJiVieM, 3

where ¢ is a relaxation parameter, which allows solutions of Eq. (3)
to approach solutions of Eq. (1) as ¢ — 0 while avoiding the con-
straint qualification implications of the MPEC’s complementarity
constraint.

In our case study, we solve the MPEC problem using the interior
point method implementation of the fmincon function in the MATLAB
optimization toolbox.

3 Plug-In Hybrid Battery Case

We model the learning associated with producing a PHEV Li-ion
battery with prismatic cells over a 5-year time period, which is a
typical time period of automotive design cycles before a major rede-
sign occurs [70]. We model automakers as choosing the battery
capacity for each of their vehicle models by scaling up a modular
battery pack; this is done implicitly by drawing from a cost
model in which electrode dimensions, the number of electrodes
per cell, and the number of cells in each pack can be adjusted to
reach the desired battery capacity [71]. The chosen battery capaci-
ties may be the same or differentiated across the US and Chinese
markets depending on the automakers’ battery platforming deci-
sions. Once these battery platforming and design decisions are
made by the automakers at time =0, they are considered fixed
over the 5-year time period. When an automaker chooses to plat-
form battery designs across global markets, production of these bat-
teries is assumed to occur in the same facility (operated by either the
automaker or a supplier). When the automaker chooses not to plat-
form and instead customizes the battery designs for different
markets, production of the different battery designs is assumed to
occur in different facilities. We assume that the different facilities
share the same operating conditions—including processing, labor,
machine, and facility characteristics and costs—but production
cost reductions that occur with increased experience producing a
particular battery design does not transfer to a different facility pro-
ducing a different battery design.’

3.1 Sources of Quantity-Based Cost Reductions. In this
section, we review PHEV Li-ion battery production and identify
potential sources of quantity-based cost reductions in the battery
production process. Battery cell and pack production consist of
the following sequence of steps: preparation of coated-electrode
sheets; electrode slitting and drying; stacking, welding, enclosing,
and sealing of electrodes into cells; charge retention testing; assem-
bly of cells into modules; final assembly of modules into packs;
pack testing; and shipping [41]. Each of these steps involves
labor, energy use, and equipment and maintenance costs; all of
which can potentially incur cost reductions as gains in production
efficiency accrue.

3Prior work investigating cost reductions as a result of learning-by-doing indicates
that learning can transfer (or “spillover”) between technologies that are sufficiently
similar [72,73], but this effect is smaller than cost reductions due to learning within
the same product design.
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The product platforming algorithms we develop are generally
applicable to any source of quantity-based cost reductions of the
same subsystem design, including economies of scale and
learning-by-doing. However, prior work estimates that the effects
of PHEV Li-ion battery economies of scale are small at current pro-
duction volumes, even when considering only the production
volume for vehicles in the US PHEV market alone [41,74] or the
Chinese PHEV market alone [41,75]. This implies that over a
S-year period where the battery design parameters are held fixed,
economies of scale are not the driving factor of cost reductions
that may be possible through platforming. Thus, we focus on
another source of quantity-based cost reduction that has the potential
to significantly influence PHEV Li-ion battery platforming deci-
sions: learning-by-doing.

Learning-by-doing is the phenomenon by which the unit cost of a
product decreases at a decreasing rate as manufacturers produce
more of it [44]. The types of learning that can occur within a
fixed battery pack design produced over a 5-year time period
consist of major changes in the production process, such as
changes in equipment or equipment processing parameters requir-
ing significant expense, and minor changes to the production
process, such as labor learning, improved use of tooling, and stan-
dardization of production steps, requiring comparatively less
expense [76,77]. Empirical estimates of these sources of learning
have found that, in certain industries, major changes only account
for 20-25% of learning while the rest is made up of minor
changes requiring significantly less investment, including labor
learning and improvements in tooling [78]. Examples of these
cheaper efficiency improvements within battery production may
include increased efficiency of laborers operating electrode slitting
machines and the use of improved tooling that could make enclos-
ing cells easier [41]. Examples of major changes within battery pro-
duction may include the improvement of capital equipment such as
material mixers and cell control laboratories, resulting in cheaper
equipment costs or more efficient equipment use [41].

Learning that occurs as a result of major changes to the produc-
tion process or changes in the battery cell design is out of scope of
this work. This includes production changes that require large scale
investment, such as significantly increasing automation of produc-
tion or changing production steps from batch to continuous process-
ing. We also do not consider learning associated with improvements
in the battery chemistry or type of cell (i.e., changing from prismatic
cells to different geometries) as the battery design is considered
fixed over the 5-year time period.

Recent work has highlighted that material costs serve as a floor
on pack cost in the near-term that is not itself subjected to the
cost effects of learning-by-doing as much as other aspects of pack
assembly [79]. As such, we model material costs as not subject to
cost-reductions through learning.

3.2 Modeling Cost Reductions From Learning. Following
Schmidt et al. [80], learning is modeled as a power curve relating
the percentage of cost reductions to the learning rate, k

a= AQlogz(l—k) (4)

where Q is the cumulative quantity produced, A is a parameter that
represents the unit cost of producing the first unit, and a is the unit
cost of producing the Qth unit. Notice that each individual unit pro-
duced incrementally reduces in cost according to the learning curve.
In our case, we are interested in calculating a firm’s total produc-
tion costs over a fixed time period of battery pack production incor-
porating the effects of learning. This can be approximated as the
integral under the curve from the cumulative production quantity
of that firm at the beginning of the time period to the end:
gTa(Q)dQ = AfQT 0¢0-940Q  To calculate this quantity, we
define &= f o égZ("")dQ and the average of this integral,
E=E/(Qr — 81), such that A€ is the average unit cost produced
over the time period. As such, £ represents the average fraction of
unit costs that were cut via learning over the time period relative
to the first unit produced.

061702-6 / Vol. 145, JUNE 2023

The average fraction unit cost reduction over the time period ¢ is
as follows:

J’Qw logz(l—x)dq

Oije-1) q
= 5)
gﬂ (gijr) (

where Q;;, is the cumulative production volume of battery pack j for
market i at the end of time period ¢, g, is the annual production
volume, each product j sells in a set of markets M;, and « is the
learning rate—i.e., for every doubling of Qy,, the cost of the
battery pack decreases by 100k%. We assume that if a firm is plat-
forming, learning transfers perfectly across all production of the
same platformed product components, since production is
assumed to occur in the same facility, as defined in Eq. (1). In
this way, the cost reductions incurred by platforming represent a tra-
deoft against the increased market share incurred by product cus-
tomization as described by Eqgs. (1) and (2).

Research on EV battery learning following similar formulations
has reported learning rates from 4.4% to 21% [79-81].* Since plat-
forming across markets allows a firm to sell greater quantities of the
same product component, learning-based reductions in cost are an
incentive for firms to platform in our case study. Learning is not
assumed to cross firms or other battery designs within the firm in
the case study—empirical estimates have found that knowledge
transfer across firms and products is less significant than learning
within the product [44,82].

3.3 Derivation of Cost Function. PHEV production costs
depend on battery pack attributes as well as production quantity.
Yuksel et al. [71] provide PHEV battery pack cost estimates as a
function of PHEV AER based on a detailed process-based model
of production costs that used equipment, materials, and labor data
from Argonne National Laboratory’s BatPaC model [83]. In their
model, Yuksel et al. represent the production cost implications of
increasing battery capacity by scaling up a modular battery pack
where electrode dimensions, the number of electrodes per cell,
and the number of cells in each pack can be adjusted to reach the
desired battery capacity. We fit a second-order polynomial® to
these data modeling the battery pack production costs as follows:

CSACK = /))22,2,’ +Pzi+hy Vij (6)

where z; is the AER of vehicle model j sold in market 7, which is a
function of battery capacity, x;;.
The unit cost of the PHEV can then be calculated as follows:

¢y ¥y» Qi) = d + max + bl KE (v, Q) Vi j ()

where c;; is the unit cost of the PHEV depending on whether or not it
has a global battery pack platform, y;. The parameter d represents the
production cost for all non-battery pack vehicle components and
assembly. The second term, mux;;, represents the battery material
costs that scale with the battery capacity, and are not subject to learn-
ing. The final term in Eq. (7) represents the portion of costs of the
battery pack that are influenced by learning. We use the normaliza-
tion factor b to calibrate the total unit battery pack costs estimated

“These learning rates had widely ranging methods of estimation, some of which
simply tracked aggregate drops in battery costs over time with respect to increasing
production across the entire market. We would not anticipate that these estimates
would necessarily reflect the estimates of within plant or firm learning. However,
because there is a lack of empirical estimates of these learning rates, we take the
approach of scenario analysis where we analyze the optimal platform and battery
design variables across a wide range of possible learning rates.

*Because Yuksel et al. [71] only estimate production costs for three different values
of AER, it is difficult to know the functional form of this relationship. Based on evi-
dence that battery production costs can increase at an increasing rate with AER
[71,84], we choose a second-order polynomial as our primary specification. We addi-
tionally fit a linear form of the relationship to the data from Yuksel et al. and re-ran our
model. The estimates of the linear cost model and equilibrium results of the platforming
problem using this linear model are presented in the SI available in the Supplemental
Materials.
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in Yuksel [71] to those of the 2019 Toyota Prius Prime as a case study
vehicle (hereafter referred to as the “Prius Prime”) [85]. In effect, b
positions the battery pack costs on the point on the learning curve
that corresponds to the cumulative production quantity of battery
packs for the Prius Prime in 2019. The term Eij then accounts for
further cost reductions from moving further down the learning
curve as cumulative production quantity continues to increase.

Note that the inclusion of E,:,- in the cost model means that firm
decisions that increase the production quantity of the same battery
design, including product prices and design decisions, put down-
ward pressure on costs through learning-by-doing. If the firm
chooses to platform products across global markets, then the mag-
nitude of this effect increases because of the larger combined market
size for the global platform. (In practice, platforming across geo-
graphic boundaries may incur transport costs and regulatory or
other factors complicating learning transfer, however, we leave
these out of the scope of our study. These factors could moderate
the cost reduction incurred by platforming on products that
require extra transportation or regulatory costs to sell the platformed
product in multiple markets.)

We calibrate the vehicle base cost d by subtracting an assumed
20% markup from the manufacturers’ suggested retail price
(MSRP) of $24,945 for a 2019 Prius Prime [85,86], and further
subtracting a contemporary estimate of pack-specific cost for
Li-ion EV batteries of $156/kWh [79] scaled to the vehicle’s
battery capacity of 8.8 kWh [85] minus material costs of $50/
kWh [79]. Finally, we calibrate the normalization factor of the
cost function b by calculating Eq. (7) minus d, dependent on
2019 production quantity and the AER for the example vehicle,
and scaling b so that it matches the estimate of pack-specific cost
of $156/kWh [79]. A table summarizing case study parameters
can be seen in Table 4. We perform sensitivity analyses on each
parameter in the Supplementary Material.

3.4 Simulations. We conduct multiple simulations of the
PHEV platforming and design equilibrium under different condi-
tions. In our baseline case, two firms each produce one PHEV
model (based on the Prius Prime), which is optimized with

respect to its battery capacity in kWh, x;;, and the decision to plat-
form or not, such that the vehicle’s profits are maximized across
China (i = 1) and the US (i = 2). This is equivalent to assuming
either (1) the PHEV is the only product being produced by each
firm, or (2) each firm has chosen to design and price the PHEV to
maximize the profits associated with that vehicle, not considering
any effects on the profits of the other vehicles they produce. We
conduct additional simulations where the number of firms and
number of vehicles per firm is increased (see details in the
Supplementary Material).

For all simulations, we draw on a demand model from Helveston
et al. [58]. The demand model contains estimates for consumers in
the US and China of price coefficients and partworth WTPs for mul-
tiple values of PHEV AER in miles [58]. We run a linear regression
on the partworth estimates to determine WTP (y;) as a continuous
linear function of AER (z;), rather than use a partworth model. In
this formulation, y; is the consumer WTP for an increase in the
PHEV’s AER by one mile, holding all other vehicle attributes
fixed. For example, if y; is $80, vehicle j in market i could increase
in price by $80 for each increase in AER of 1 mile and it would
receive the same level of demand. Values for the estimated linear
parameters (y; for China and y, for the US) of this function are
reported in Table 4.

To determine AER as a function of battery capacity, we use a
model from Shiau et al. [86]. In Shiau et al. [86], the AER is formu-
lated as a cubic function of relative engine and electric motor peak
power as well as battery capacity and swing, which was estimated
from vehicle simulation data. We hold battery swing fixed within
the metamodel to values matching the specifications of a 2019
Prius Prime [85]. For simplicity, we also hold engine and motor
sizes (both measured by peak power) fixed at the level of the Prius
Prime. One might expect that the engine and motor size would be
determined jointly with the battery size by automotive manufacturers
[87]. To the extent that fixing engine and motor size significantly
increases costs or limits AER, our results may underestimate the
value of differentiating battery capacities across markets.

PHEVs currently on the market have battery capacities between
3 kWh and 34 kWh due to requirements on PHEV battery capacity
including the necessity for the ability to sustain an all-electric mode

Table 4 Base parameters for PHEV case study

Parameter Description Value Source
K Number of firms 2 —
g1 Capacity lower bound 3kWh [88]
2 Capacity upper bound 34 kWh [88]
5 Market size, China 2.37x 10’ [91]
K Market size, US 7.00% 10° [90]
[ Exponentiated utility of outside good 251 Calibrated based on [92]
a Price sensitivity, China —-33 USD/USD [58]
a Price sensitivity, US —52 USD/USD [58]
71 WTP for increases in all-electric range, China 79 USD/mi [58]
72 WTP for increases in all-electric range, US 82 USD/mi [58]
o Standard error for all-electric range WTP, 65 USD/mi [58]

China
0> Standard error for all-electric range WTP, US 56 USD/mi [58]
r Discount rate 10% [87]
b Normalization factor of cost function 1.98 Calibrated based on [79]
K Learning rate 0.09 Calibrated based on [79]
Pa Second-order coefficient of attribute cost 0.487 USD/mi> [71]

function
P First-order coefficient of attribute cost function 5.38 USD/mi’ [71]
Po Zeroth-order coefficient of attribute cost 2171.9 USD [71]

function
d Base cost 1.83x 10* USD Calibrated based

on [79,85,86]

Modify capacity-to-all-electric Engine peak power 71 kW [85]
range metamodel coefficients Motor peak power 53 kW [85]

Battery swing 0.43 [85]

Journal of Mechanical Design
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at the lower end of capacity, and weight and packaging constraints
at the upper end of capacity [88,89], so we impose these as lower
and upper bounds respectively on capacity as a decision variable.

The market size is specified as 7 million in the US and 24 million
in China per passenger car sales in 2018 [90,91]. We include an
outside good in the case study to represent a composite of all
other vehicles that consumers could purchase other than the
PHEVs of interest. The utility of the outside good is calibrated
such that sales calculated following Eq. (1) match sales of the
Prius Prime in the US and China in 2018 [92]. Under a homogenous
preference logit model, this lumped composite calibration of the
outside good is equivalent to modeling all of the other vehicle
options available assuming that their designs and prices remain
fixed over the time period of interest [66].

Whether or not firms choose to platform their battery packs
across the two markets is influenced by the cost and consumer
demand implications of producing customized products with differ-
ent battery capacities. To understand how platforming is affected by
these cost and consumer factors, we run each set of simulations
across multiple scenarios where we vary two parameters: WTP
for PHEV AER in China (which we vary relative to that in the
US), and the learning rate. The WTP in China has varied over 12
linearly spaced points within its 95% confidence interval of (0,
208.16)° USD/mi [58], and learning-related costs were modified
by varying & from 1% to 35% over 15 linearly spaced points, for
a total of 180 scenarios. All other parameters were held fixed
across these scenarios at the values reported in Table 4.

Because the MPEC approach cannot guarantee that it finds a
global maximum (only KKT points) for each firm’s profit maximi-
zation problem, multiple start points were used for each platforming
decision scenario and these candidate solutions are then tested to
verify which ones satisfy the Nash equilibrium criteria. A total of
16 start points for price were generated in a grid across the design
space, with a minimum price guess of $0 and a maximum of
$200,000 for both markets. Start points for battery capacity were
similarly generated in a grid between 3 kWh and 34 kWh.

For both algorithms, the KKT conditions were verified for each
solution to ensure they are profit maxima for each firm conditional
on the other’s decisions. All solutions found by both algorithms
across all scenarios were found to satisfy all KKT conditions.

4 Results and Discussion

We first compare the results of the two algorithmic approaches to
examine whether multiple equilibria exist to the platforming
problem, and compare the computational performance of each
approach. We then discuss the optimal platforming and battery
design solutions.

4.1 Computational Performance of Two Algorithms. To
compare the solutions generated by the two algorithmic approaches,
differences in a firm’s profits at the solution from each algorithm are
shown in Fig. 2 across a 15 by 12 grid of different WTPs for AER in
China (while holding the same WTP fixed in the US at $82/mi) and
different learning rates. The tolerances and convergence criteria are
reported in Table 5 for reference.

The difference in profits between the two approaches is in per-
centage terms, calculated by subtracting profit of the MPEC solu-
tion from profit of the SIO solution and then dividing by profit
of the SIO solution. In all scenarios, the profit discrepancy
between the two approaches is within +0.0001%, which is compa-
rable to the convergence criteria and constraint tolerances for both
approaches, as can be seen in Table 5. (Profits are typically on
the order of $1 billion, and profit differences between the two

The estimated 95% confidence interval in Helveston et al. [58] included WTPs
below 0 USD/mi, however these were omitted as consumers are assumed to simply
be unwilling to pay for increases in AER at a WTP of 0 USD/mi.

Learning rates of up to 33% have been reported for other electrical energy storage
technologies [80].
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Fig.2 Difference between total profits calculated using the iter-
ative SIO approach and the MPEC approach over a parameter
sweep varying learning rate x and WTP for all-electric range in
China y,4

approaches are on the order of $1000 as shown in Fig. 2, resulting
in the discrepancy of +0.0001%.) Sales for each PHEV across the
US and China are in the tens of thousands.

For all points on the grid of different learning rates and WTP for
AER in China, solutions generated using the two algorithms have
identical platforming decisions and the same optimal battery capac-
ities to within +0.014 kWh.

We additionally compare the CPU time difference across the
WTP and learning rate parameter grid between the two approaches
when they are each given 16 starting points. These results are shown
in Fig. 3.

For the SIO approach, we find that the CPU time to find equilib-
rium using each of 16 starting points is between roughly 1 s and 7 s
in all cases across the parameter grid, while for the MPEC approach,
we find that the CPU time to find equilibrium is between 78 s and
126 s. As shown in Fig. 4, this translates to the SIO approach typ-
ically being 98.5% faster than the MPEC approach.

We further investigate the performance of the MPEC approach
for different types of specifications for the starting points.
Because the profit function flattens out at the extremes of vehicle
prices, when high prices are used as starting points, the algorithm
can converge to spurious solutions that are not equilibrium solutions
[94]. Because the likelihood of the algorithm converging to spur-
ious solutions rather than valid equilibrium solutions is influenced
by the range of initialized prices and the value of the optimal
price, we examine two scenarios: one where the optimal price is rel-
atively low ($53,000 in China and $44,000 in the US, which occurs
when k =35% and WTP for AER in China = $5/mi), and one where
the optimal price is relatively high ($66,000 in China and $48,000
in the US, which occurs when x = 1% and WTP for AER in China =
$208/mi). Algorithm runs for each scenario are repeated for eight
different cases where a grid of different starting points with differ-
ent ranges of starting values for price. In each case, the minimum
initial price is $0. The maximum initial price varies from $25,000
up to $200,000. In all cases, the initial battery capacity is set
either to 3, 17, or 34 kWh. This results in 576 total runs of the algo-
rithm per scenario.

We first examine the probability of a researcher randomly select-
ing starting points will get a solution that is a valid equilibrium and
how this probability varies with the number of starting points and
the maximum possible initial price. This is equivalent to the
researcher randomly selecting points from a subgrid of the complete
set of starting points where the maximum initial price defines the
subgrid. The probability of getting at least one successful equilib-
rium solution from the selected starting points thus follows a Ber-
noulli distribution where the probability that, o starting points
contain at least one valid solution is 1 — (];—3 , where h,, is the
number of reported failures in the subgrid @, and s,, is the total
number of starting points in the subgrid. Note that the equilibrium
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Table 5 Tolerances and convergence criteria for both approaches

MPEC approach

SIO approach

Solver absolute tolerance N/A
Solver relative tolerance N/A
Solver constraint tolerance 1x1078
Convergence criteria N/A

Approach-specific criteria p=1x1078

1x107° (on Eq. (1) scaled by 1/1 x 10%)

1x107°

1x107

1x 1077 (on relative average firm profits between iterations)
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Fig. 3 (a) CPU time to find equilibrium solutions for all scenar-
ios in a parameter sweep varying learning rate x and WTP for all-
electric range in China y,, when the MPEC approach was given 16
starting points with varying guesses for battery capacity and
vehicle price and (b) the same for the SIO approach (All experi-
ments have been run on the same x64 Windows machine with
at least 10 GB of memory and a 3.9 GHz processor)

algorithm itself is deterministic and so the probability occurs as a
result of the chance of choosing a good starting point, not from
any stochasticity in the algorithm.

Results are shown in Fig. 5(a). The probability of finding an equi-
librium in both cases increases when the starting points have lower
values of the maximum price guess. In both scenarios, the probabil-
ity of finding equilibrium is 100% for price guesses between $0 and
$75,000 with even only one starting point, but when using initial-
ized prices between $0-$100,000 and $0-$200,000, the probability
of success with one starting point is approximately 60% and 20%,
respectively. This probability rises to 98% after using about 5 and
25 starts respectively.

We also show the relationship between the range of initialized
prices to the CPU time in Fig. 5(b). As the figure shows, shrinking
the range of initialized prices increases the chances of finding a
valid equilibrium solution, as the maximum initialized prices in
the smaller ranges were the closest to the equilibrium prices of
this scenario. We find that 81 of 576 points found the equilibrium,
or 14%. Of those, starting points having initial prices between $0
and $75,000 always found the equilibrium and were also generally
the fastest, with CPU times between 1.2 s and 6.7 s.

Because the MPEC approach is instructed to terminate after
10,000 function evaluations if local maxima are not found for
firm profits, we would expect that starting points that fail to find

Journal of Mechanical Design
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Fig. 4 Histogram of the difference between CPU time to find
equilibrium solutions for all scenarios in a parameter sweep
varying learning rate x and WTP for all-electric range in China
y1 calculated using the iterative SIO approach and the MPEC
approach, normalized to the CPU time taken by the MPEC
approach

equilibria will result in longer CPU times. We plot the CPU time
in the low-price scenario separately for runs that successfully find
an equilibrium solution and those that do not in Fig. 5(c), and
find that the median CPU time for successful solutions is 3.4 s
with a range between 1.2 s and 14 s whereas the median CPU
time for unsuccessful terminations is 6.1 s with a range of 1.4-15 s.

For the high-price scenario, we find that the median CPU time for
successful solutions is 3.1 s with a range of 1.4-12 s, whereas the
median CPU time for unsuccessful terminations is 6.7 s with a
range of 1.2-13 s. As Fig. 5(b) shows, shrinking the range of initial-
ized prices decreases the speed of finding a valid equilibrium solu-
tion. We find that 102 of 576 points found the equilibrium, or 18%.
Of those, starting points having initial prices between $0 and
$75,000 always found the equilibrium and were also generally the
fastest, with CPU times between 1.4 s and 6.7 s. As such, the prob-
ability of finding an equilibrium in this scenario is reportedly 100%
for price guesses of between $0 and $75,000, whereas using initial-
ized prices between $0-$100,000 and $0-$200,000, the probability
increases to 98% after selecting about 3 and 20 starts respectively.

4.2 Optimal Design Decisions. Equilibrium battery capacity
and platforming solutions (using the SIO approach) are shown in
Figs. 6-8. Figures 6 and 7 show the values of the optimal battery
capacity for the US and China at market equilibrium and Fig. 8
shows the optimal platforming decisions at market equilibrium.
In each figure, optimal solutions at equilibrium are shown for the
different scenarios of learning rates and the difference between
the WTP for PHEV AER in China and the US.® The horizontal
line in the figures represents the fixed US WTP for AER at $81.8/
mi. We find that all equilibria are symmetric, meaning that the

8A total of 180 scenarios are considered with the learning rate varying from 1% to
35% in roughly 4% increments and WTP for AER in China varying from about $5-210
per mile in roughly $20 per mile increments.
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Fig. 5 For the low-price scenario (left) and the high-price scenario (right): (a) the probability of finding an equilibrium
with an increasing number of starting guesses, (b) box plot of CPU time to find an equilibrium as associated with the
maximum price guess of each starting point, and (c) box plot of CPU time to either find an equilibrium or exit the algo-

rithm for each starting point

optimal solutions for each firm in each scenario are identical.” For
abbreviation, we present the results for Firm 1 since Firm 2’s solu-
tions are the same.

9As shown in Shiau et al. [22], and Yip et al. [55], the symmetry of firms’ optimal
solutions is a consequence of using the logit model for demand and identical product
design tradeoffs and constraints for all firms. The SIO and MPEC algorithmic
approaches are capable of accommodating heterogeneous design tradeoffs and con-
straints across firms as well as alternate demand models such as mixed-logit, which
may result in assymetric solutions, but these are not the focus of this study.

061702-10 / Vol. 145, JUNE 2023

As shown in Figs. 6-8, the solution space can be divided into five
different regions: (1) low learning rates and high WTP in China, (2)
low learning rates and similar WTP in both markets, (3) low learn-
ing rates and low WTP in China, (4) high learning rates and low
WTP in China, and (5) high learning rates and high WTP in
China. Regions can be distinguished from one another by virtue
of having differing optimal platforming solutions, or having interior
optimal capacity solutions or solutions that are constrained by the
maximum capacity constraint. We discuss each of these regions
in more detail below.
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Optimal Battery Capacity for PHEVs sold in China
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Fig. 6 Optimal battery capacity in China calculated using the
SIO approach, and varying learning rate x and WTP for all-electric
range in China y, (for this case study having two firms, both firms
made identical decisions)

4.2.1 Low Learning Rates and High Willingness to Pay in
China. At very low learning rates (close to or below 4%), and
WTP for AER in China between $20 and $120 above that in the
US, the solution is not to platform and to set battery capacity for
the US at a smaller level than battery capacity for China. In this
case, consumers in China have a WTP for AER sufficient to
balance costs for increasing AER to a higher level than consumers
in the US. This can be seen more closely in Fig. 9. When WTP in
China is approximately $110/mi or higher than in the US, the
optimal capacity solution in the US is 11 kWh, and in China, it is
34 kWh. Thus, gains in profit that occur as a result of tailoring
product variants to each specific market outweigh reduced costs
due to platforming, so the equilibrium strategy for both firms is
not to platform. In this case, optimal battery capacity in the US
faces further downward pressure because it has a smaller market
size, which means the effects of learning are smaller than for the
Chinese market, and so battery production costs per kilowatt hour
are higher for the US market than for the Chinese market when
firms do not have global platforms.

4.2.2 Low Learning Rates and Similar Willingness to Pay in
Both Markets. At very low learning rates (close to or below 4%),
and WTP for AER in both markets that are within about +$20/mi
from each other, the solution is to platform and to set battery capac-
ity for both markets at the same level. In this case, the cost reduc-
tions that can occur as a result of platforming outweigh the
potential gains in sales made by customizing battery packs across
markets because of two factors. First, the benefit of customizing
the battery packs is relatively small because the two markets have
similar WTP for battery capacity. Second, learning rates are low,
and so the extent to which cost reductions are possible for custom-
ized products sold within each market alone is limited. Combining
the market size by platforming increases the total production

Optimal Battery Capacity for PHEVs sold in the U.S.
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Fig. 7 Optimal battery capacity in the US calculated using the
SIO approach, and varying learning rate x and WTP for all-electric
range in China 7,
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Fig. 8 Optimal platforming decision across markets found
using the SIO approach, and varying learning rate x and WTP
for all-electric range in China y,

quantity, allowing for further cost reductions through learning by
experience.

4.2.3 Low Learning Rates and Low Willingness to Pay in
China. When learning rates are relatively low and the WTP for
AER in China is also low (at approximately $40/mi or lower), the
cost of increasing AER is higher than the WTP for the increase in
China. In the US, consumers have a high enough WTP for AER suf-
ficient to balance costs for increasing AER up to an intermediate
level within the constraint boundaries. However, the optimal
battery capacity for China is the smallest capacity possible. This
set of scenarios is driven by Chinese consumers’ relatively low val-
uation of battery capacity compared to the increased costs of achiev-
ing this capacity, and the relatively high difficulty of reducing
battery production costs (indicated by low learning rates). In this
region, firms choose a strategy in which they do not platform.
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Fig. 9 Firm 1 (a) optimal battery capacity in China and (b)
optimal battery capacity in the US, calculated using the SIO
approach and varying learning rate x and WTP for all-electric
range in China y; (for this case study having two firms, both
firms make identical decisions). Zoomed-in view of Region 1 in
Fig. 8 shows where the optimal decision is not to platform.
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4.2.4 High Learning Rates and Low Willingness to Pay in
China. When learning rates are high and consumer WTP for
AER in China is low relative to the US, firms do not platform,
and instead produce a high electric range vehicle for the US and a
low electric range vehicle for China. This region is marked by a
WTP for AER in China (y;) of approximately $50/mi or lower,
which is roughly $11/mi less than that in the US (3,). In this case,
consumers in China do not have a WTP that is higher than the
costs of increasing AER, but consumers in the US do. In this
case, the optimal battery capacity in the US is at or near the
upper bound, and the optimal battery capacity in China is at the
lower bound. Additionally, because learning rates are relatively
high, firms can achieve substantial cost reductions over time even
within a single market, lowering the incentive to platform across
markets. Therefore, the benefits of customizing the battery capacity
for each market outweigh the additional costs of producing separate
battery pack designs.

4.2.5 High Learning Rates and High Willingness to Pay in
China. When learning rates are high and the WTP for AER in
China is approximately equal to the US or higher, equilibrium solu-
tions are to platform and set battery capacity to the largest possible
capacity. In this region, consumers’ WTP for increased AER in both
markets is larger than the cost to increase it. Thus, the optimal
battery capacity for each market is the same—at the upper bound
—and firms choose to platform these vehicles to further reduce
costs.

4.2.6  Sensitivity to the Outside Good and Other Parameters.
Problem parameters affect the equilibrium platforming strategy
and optimal design in the case study. We conduct sensitivity anal-
yses for all parameters defined in the problem, shown in Table 4.
The results are presented in the Supplementary Material. We sum-
marize below sensitivity of the results to four key parameters—the
utility of the outside good, the number of firms competing in each
market, the number of vehicles per firm, and vehicle markups.
Further details are available in the Supplementary Material.

We conduct a sensitivity analysis of results to the exponentiated
outside good utility, . We vary € from 0.01 to 546, where 251 is the
value of our baseline case, which is the value at which expected
sales for each PHEV match the sales of the Prius Prime in 2019.
Smaller values of # occur when the total number of vehicle offerings
in the market, including traditional gasoline vehicles as well as elec-
trified vehicles (other than those modeled) decrease, or consumer
utility for those vehicles declines. Larger values represent an expan-
sion of competing vehicle offerings or an increase in consumer
utility for those vehicles. When € varies, we see the same general
five regions described above but their sizes change. When 0 is
smaller, both regions where firms do not platform shrink so that
firms are platforming in more scenarios of WTP and learning rate
compared to when 6 is larger. This occurs because the market
share of each firm increases in both countries due to the smaller
utility of the outside good, and so the gain in production volume
from platforming is larger. Thus, the benefits of platforming out-
weigh the benefits of customizing battery packs across countries
in more scenarios.

We also perform sensitivity analyses of the number of competing
firms and the number of vehicles per firm in each market. In the
former analysis, we increase the number of firms from two up to
ten firms, each producing one PHEV each. We do not find that
this increase affects the platforming decision, however, the sensitiv-
ity analysis on € indicates that platforming regions may expand
when the number of firms is increased further, due to the shrinking
market share available to each individual firm.

In the latter analysis, we allow each firm to produce ten PHEVs
for which firms may choose the price, platforming, and battery
capacity decisions for each vehicle in each market. We find that
this affects decision variables very little across the scenarios,
except when the learning rate is below 6% and the WTP for AER
in China is at least $100/mi. Outside of this region, design decisions

061702-12 / Vol. 145, JUNE 2023

are unchanged, but prices see downward pressure, with a price drop
in the US of about $100 per vehicle and a drop in China of between
about $150 and $300.

Additionally, we conduct a sensitivity analysis of the vehicle pro-
duction cost. Specifically, we vary d, the production cost of the
vehicle without powertrain components, which was calibrated to
$18,300 in the base case using an assumed markup of 20%. We
vary d from $15,500 to $100,000 to incorporate uncertainty in the
markup rate as well as production costs of a wide-range of
vehicle types, including luxury vehicles [95]. In general, for high
production costs, the optimal solution is to platform. When d is
below roughly $60,000 and WTP for AER in China is sufficiently
low relative to WTP in the US, the cost reductions incurred by plat-
forming are no longer attractive enough to offset the high base cost
and the loss in market share due to not customizing vehicles to their
respective markets.

Sensitivity analyses for other parameters of the model are
described in the Supplementary Material available on the ASME
Digital Collection. In general, we find that when any parameter is
changed that increases the battery pack cost of the vehicle, the
region where the optimum is to platform expands to cover addi-
tional scenarios of WTP and learning rate.

4.3 Implications. From the results, we see that when the learn-
ing rate is sufficiently high and/or the difference in preferences
across markets is sufficiently small, firms have an incentive to plat-
form across the markets to take advantage of the cost reduction of
selling common components. In our PHEV case study based on
the Prius Prime, we see that this occurs when the WTP for AER
in China is no less than $77/mi below that of the US, when the
US WTP is held fixed at $81/mi.

As expected, because cost savings through technology learning
can be obtained by platforming battery packs across the different
markets, firms have an incentive to platform whenever consumer
preferences affecting battery size in both markets are also similar
and within boundary constraints. Given the calculation of AER fol-
lowing Ref. [86] and pack costs following Ref. [71], we find that for
a base case with learning rates below 4%, this occurs when WTP for
AER in both markets are no different than +$20/mi from each other.
(Estimates for learning rates for Li-ion battery technologies have
ranged from 4.4% to up to 20% by some measurements [80,81].)
By comparison, when the aggregated WTP across markets is not
sufficient to balance the cost of the optimal attribute level when plat-
forming, the optimum is to not platform.

5 Conclusion

We investigate profit-optimal platforming and design optimiza-
tion of product components considering market equilibrium. We
develop two approaches to solve the problem: an algorithm that iter-
atively solves each firm’s MINLP profit optimization problem until
convergence to an equilibrium (SIO algorithm), and an algorithm
that solves for the KKT conditions of all firms simultaneously
(MPEC algorithm). We compare results for a case study where
two firms produce PHEVs sold in China and the US where firms
can choose optimal battery capacity and whether to platform the
battery packs. In the case study, production costs decrease with
increased quantity sold through learning-by-doing.

Solutions calculated using both approaches satisfy KKT condi-
tions in all cases, and solutions calculated using the MPEC algo-
rithm satisfy all post-hoc checks for at least one of 16 starting
points in all scenarios. When MPEC results pass all post-hoc
checks, they imply a single equilibrium solution for each case.
We find that the SIO approach has better computational perfor-
mance compared to the MPEC algorithm for the MINLP platform-
ing problem formulation in this study, where the MPEC algorithm
requires 98.5% more computational time than the SIO approach on
average.
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Results show that when consumer willingness to pay for PHEV
all-electric range in China is low relative to the US, firms choose
not to platform. The optimum is to produce a small-range PHEV
in China, and a high-range PHEV in the US. With exceptions at
low learning rates, the optimum is for firms to platform the
battery pack and have the same battery capacity and same range
in both markets.

Funding Data

e This research was supported by a grant from the Wilson
E. Scott Institute for Energy Innovation, a Doctoral Fellowship
from the Steinbrenner Institute for Environmental Education
and Research, and Carnegie Mellon University.

Conflict of Interest

There are no conflicts of interest.

Data Availability Statement

The datasets generated and supporting the findings of this article
are obtainable from the corresponding author upon reasonable
request.
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= unit cost to product Qth unit

normalization factor of cost function

base cost of vehicle sans battery pack
inequality constraint function

reported number of failed starts in a subgrid
market number

index of the set of all products

product number of a specific firm

firm number

materials cost per kilowatt hour

big M parameter

inequality constraint number

number of randomly selected starts from a subgrid
= price

continuous quantity index

time period index

product utility

iteration counter

decision variable

binary variable indicating platform decision
product attribute

= parameter that calibrates unit cost to produce first unit
set of markets

total number of firms

market size

set of inequality constraints

probability that consumer chooses a product
discount rate

number of starts in a subgrid

total number of time periods

set of markets

= set of all products

= cost of product j in market i at time ¢
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q; = rate of production of product j in market
x) = non-platformable decision variable
x; = platformable decision variable
Jr = set of products belonging to firm k
Qi = cumulative production quantity of product j in market i at
the end of time period ¢
cPACK = cost of battery pack sans material costs

Yy . .
a = price coefficient
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= cost function coefficients

willingness to pay

tolerance

= fraction of unit cost reduction achieved via learning over
some time period, relative to the first unit produced
= exponentiated utility of outside good

learning rate

Lagrange multipliers

profit

continuous time index

MPEC relaxation parameter

= subgrid index
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