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ABSTRACT: A series of titanate cisoid bis(chalcogenidos) (Ch = Te, Se, and S) complexes supported by the $-diketiminate ligand
BDI™ = [ArNC(CH,)],CH (Ar = 2,6-'Pr,C¢H;) are readily assembled via treatment of the Ti'" precursor (BDI)Ti(CH,SiMe;),
with 2.5 equiv of elemental “Ch” source and 1 equiv of reductant in the presence of crown-ether. In the absence of the electride, Te
or S addition to (BDI)Ti(CH,SiMe;), results instead in the isolation of a mononuclear tellurido-tellurolate [(BDI)Ti(=Te)-
(TeCH,SiMe;)] and the bridging sulfido-thiolate complex [(BDI)Ti(SCH,SiMe;)(u-S)],, respectively. In the case of Se, the rare
selenido-perselenoate complex [(BDI)Ti(=Se)(17*-SeSeCH,SiMe;)] was isolated. In addition to crystallographically and
spectroscopically characterizing all of the complexes, we demonstrate the latter species to be likely intermediates in the formation

[l Metrics & More | @ Supporting Information

of [(BDI)Ti(Ch),]” via the addition of electride.

Transition metal bis(chalcogenidos) (TMBCs) are func-
tionalities found in multifaceted areas of chemistry
ranging from biological systems," metal-catalyzed oxidations,”
hydrodesulfurization,” and electronic and energy storage
industries.* For the latter, TMBCs are considered the new
generation of alkali-metal-free anodes for improved battery
technology.” Specifically, attention has been shifted to early
transition metal chalcogenidos composed of Ti (empirical
formula of TiCh,, Ch = Te, Se, and S) since these materials
show promise as anodes for high-capacity and longer life-span
rechargeable batteries that can operate with base metals such
as Zn and under aqueous conditions.” Whereas TiTe,
electrodes offer the prospect of high durability, the TiS,
analogue provide higher voltage, higher energy density, and
is generally considered a more environmentally friendly
candidate.” Our research is aimed at developing a systematic
approach to preparing well-defined models of TiCh, in the
condensed phase, in the form of titanate complexes [(L)Ti-
(=Ch),]” where L = PNP or BDI (PNP~ = N[2-P'Pr,-4-
methylphenyl],; BDI™ = [ArNC(CH;)],CH, Ar =
2,6-Pr,C¢H;), while expanding this motif to its lighter
congeners such as an unknown bis(sulfido) titanate moiety.
To date, our studies have been strictly limited to the chalcogen
Te using various sources such as Te metal, Te/PR;, or
tellurolates.”

Since the late 20th century, a series of TMBCs has been
reported. Parkin, Cotton, and Yoshida described the synthesis
of a trans-M(Ch),(L),, where M = Mo, W; Ch = O, S, Se, Te;
and L = P(CH,), (n = 4), dppe (dppe = Ph,PCH,CH,PPh,, n
= 2), and Meg[16]-aneS, (Meg[16]-aneS, = tetradentate
thioether macrocycle, n = 1) (Figure 1, left).” More recently,
Chirik and co-workers reported on the synthesis and
characterization of bis(chalcogenidos) of vanadium utilizing a
reduced bis(imino)pyridine ligand framework (Figure 1) that
can facilitate a four-electron redox profile via metal—ligand
cooperativity.'” In addition to the aforementioned reports,
other studies outlining terminal tris-chalcogenidos of group 6
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and 7,"" along with terminal monochalcogenido for group 4
and 5, have also been reported.12 However, mononuclear and
terminal bis(chalcogenidos) for transition metals (TMs) earlier
than group 5 remain far more under developed, especially
when invoking 3d transition metals.**” Notably, a systematic
approach to delivering two chalcogenide atoms for not only Te
but also its lighter congeners Se and S is lackluster since S, in
particular, has a greater tendency to catenate and/or bridge via
the more nucleophilic sulfido group."’

Previously, we documented the synthesis and reactivity of
the first 3d transition metal bis(tellurido), (PNP)V(=Te),
(PNP~ = N[2-P'Pr,-4-methylphenyl],, Figure 1), from (PNP)-
V(CH,Bu),'* and Te.** More recently, the bis(telluride)
titanate, [CoCp*,][(L)Ti(=Te),] (L = PNP or BDI) was also
reported.”” Unfortunately, complex [CoCp*,][(BDI)Ti-
(=Te),) is always accompanied with formation of the
ditelluride, [CoCp*,][(BDI)Ti(=Te)(Te,)], due to the
presence of residual Te metal in the mixture and its propensity
to react with the four-coordinate fragment [(BDI)Ti(Te),]”
(Figure 1, right). More recently, we found that formation of
the bis(tellurido) functionality could be extended systemati-
cally to group S TM via the use of a tellurolate reagent
“LiTeCH,SiMe;”.* Since TMBCs are quite scant with 3d
metals and given our breakthrough with vanadium® and
titanium,”® we inquired if low-coordinate bis(tellurido) motifs
could be extended to the other chalcogens that would provide
us access to this rare motif without the deleterious catenated
products. To establish an appropriate synthetic route to the
TMBCs, we focused on a ligand scaffold that was more
resistant to oxidation but which allowed the coordination
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Figure 1. Examples of bis(chalcogenido) complexes.
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number to remain relatively low. As a result, we excluded the
use of PNP and turned our attention to the N-based chelate
BDIL

Treatment of [(BDI)Ti(CH,SiMe;),]"> with 2.5 equiv of
Te solubilized with P(CHj),, followed by reduction with KCyq
and 18-crown-6 (18-C-6) in THF resulted in the isolation of
the Ti'V complex [K(18-C-6)(THF),][(BDI)Ti(=Te),] (1) in
36% yield (Scheme 1a), following workup of the reaction
mixture. Multinuclear NMR spectroscopic studies revealed a
single product corresponding to 1 without evidence of
formation of the ditelluride-tellurido anion [(BDI)Ti(=Te)-

Scheme 1. (a) Synthesis of the Bis(chalcogenido) from the
Bis(alkyl)titanium Precursor to Form Complexes 1, 2, 3;
(b) Synthesis of Complexes 4, S, and 6 and Subsequent
Conversion to the Corresponding Bis(chalcogenido)
Complexes 1-3

2.5 Te/PMe;,

(a) KCé, 18-C-6, THF e
, K(18-C-6)THF),]| _umiTh
- 1/2 (Me3SiCH,),Te / o
N
ArCH,SiMes 1,36%
/ /
— 2.5Se
4 / CH,SiMe;  KCg, 18-C-6 K(18 c6)
N - 1/2(MesSICHp),Se ( /
*@ 2,42%
3/15 N
l KCg, 18-C-6 = T K(18-C-6)
- 1/2 (Me3SiCH,), (N
3,49%
R
~
(b) Te
'I|'i KCs
NN 18-C-6
2.5 Te/PMe; ( / \Te 1
-1/2 R,Te N THF
4,39% c
R Se R
- { -""Se KCqg
\R 2 5 Se (_ / \ / 18 C-6
\ -1/2 ste THF
5, 34% -c
R = CH,SiMe;, R
AN
| KCqg
2.5 N T 18-C-6 3
-12Ry C / THF
N -C
2
6,9%

18496

(Te,)] impurity produced via the original report using Te’/
P(CH;); and reductant [CoCp*,] (vide supra, Figure 1).*
Single-crystal X-ray diffraction studies (scXRD), obtained from
a saturated THF solution at —35 °C, confirm the formation of
a four-coordinate monomeric Ti" complex containing two
terminal tellurido ligands fashioned in a cisoid configuration
about the metal center (Figure 2, left). The structure of 1
reveals Ti—Te bond distances of 2.5271(5) and 2.5002(5) A,
comparable to those recently reported by our group for the
discrete salts ([CoCp*,][(PNP)Ti(=Te),]: 2.5185(6) A;
[CoCp*,][(BDI)Ti(=Te),]: 2.5188(7), 2.4890(7) A).*" Addi-
tionally, the solid-state structure of 1 shows no close contact
pairing of the tellurido ligands and sequestered potassium
[K(18-C-6)(THE),]".

Using our successful approach to preparing 1 directly from
precursor [(BDI)Ti(CH,SiMe,),] with Te and electride,'® we
decided to extend our strategy to Se and S. Accordingly,
treatment of [(BDI)Ti(CH,SiMe;),] with 2.5 equivalents of
Se’ powder, followed by KCg and 18-C-6, resulted in the
formation of the bis(selenido) titanate complex [(BDI)Ti-
(=Se),{K(18-C-6)}] (2) (Scheme 1a) in 42% yield.
Conveniently, PMe; was not needed as a phase-transfer
catalyst for elemental Se. Multinuclear NMR spectroscopy
performed on 2 revealed a C,, symmetric complex (Figure S3)
although no resonances were observed via "’Se{'H} NMR
spectroscopy. Single crystals of 2 could be obtained by DME/
Et,O vapor diffusion at —35 °C, which revealed a four-
coordinate Ti' ate-complex supported by two cis-terminal
selenido ligands which are symmetrically related about a 2-fold
axis (Figure 2, center). The Ti = Se bond lengths in 2, reported
in Table 1, are 2.302(4) and 2.294(4) A, with a Se—Ti—Se
angle of 115.59(2)°. Unlike 1, the cisoid selenido ligands
chelate to a potassium center with Se—K distances of 3.551(5)
and 3.347(5) A (Table 1).

Following the successful recipe for the more nucleophilic
bis(selenido) motif in 2, an analogous titanium product was
obtained by using elemental sulfur. Adding 2.5 equiv of Sg to a
stirring THF solution of [(BDI)Ti(CH,SiMe;),], followed by
addition of KCy/18-C-6 at 25 °C and subsequent recrystalliza-
tion at —3S °C yielded the cisoid bis(sulfido) Ti"V complex
[(BDI)Ti(=S),{K(18-C-6)}] (3) in 49% isolated vyield,
identified by a combination of multinuclear NMR spectrosco-
py (Figures S14 and S1S5) and scXRD (Figure 2, right).
Resonances in "H NMR spectroscopy reveal a C,, symmetric
complex, and the structure of 3 shows short Ti=S bond lengths
of 2.1713(17) and 2.1520(18) A, joining a handful of Ti=S
moieties having been crystallographically character-
ized."*>™ 1718 Akin to 2, the bis(sulfido) ligands chelate a
potassium center with S—K bond lengths of 3.547(2) and
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Figure 2. Solid-state structures of 1 (left), 2 (center), and 3 (right) with thermal ellipsoids at 50% probability. H atoms, residual solvent, and
counterion [K(18-C-6)(THF),]* are omitted for clarity (for complex 1).

Table 1. Selected Bond Lengths and Angles for Complexes
1-3

Complex 1(Te) 2(Se) 3(S)
Ti=Ch (A) 2.5271(5) 2.302(4) 2.1713(17)
2.5002(5) 2.294(4) 2.1520(18)
Ch-Ti—Ch (°) 116.79(2) 115.49(14) 115.20(7)
Ch-K (A4) n/a 3.359(3) 3.126(2)
3.581(5) 3.547(2)

3.126(2) A, and having a similar S—Ti—S angle of 115.20(7)°
(Figure 2, Table 1).

Arnold, McDonald, and Piers have demonstrated the
formation of metal chalcogenides of group 3, 4, and S via
dialkyl- or disil;rlchalcogenide (R,Ch; where Ch = Te, Se, S)
elimination.'”™*' To the best of our knowledge, the formation
of metal bis(chalcogenidos) through R,Ch elimination remains
unknown. To gain insight into the mechanism of formation of
1-3, we explored different conditions in the hopes of isolating
intermediates in these reactions. Thus, we explored the
reactivity of 2.5 equiv of Ch (Ch = Te, Se, S) to
[(BDI)Ti(CH,SiMe;),] in the absence of reductant and
crown-ether.

To a suspension of [(BDI)Ti(CH,SiMe,),] and Te powder
was added 2 drops of P(CH,),, which afforded a dark-red
crystalline material, identified to be [(BDI)Ti(=Te)-
(TeCH,SiMe,)] (4), in 39% yield (Scheme 1b). Multinuclear
NMR spectroscopy of 4 reveals a diamagnetic, C; symmetric
complex (Figure S7) along with a highly upfield tellurolate
5Te{'H} NMR resonance of 112 ppm (Figure S10), when
compared to other reported chemical shifts of Ti tellurolate
complexes ('*Te{'H}, CsDy; 810, 783, 709, 659 ppm).”* A
scXRD study of 4 confirms a monomeric four-coordinate Ti"
complex featuring a terminal tellurido and tellurolate ligand
(Figure 3, left). The tellurido, Ti—Tel bond length of
2.4526(7) A in 4 is the shortest bond length reported to
date when compared to other examples {cf. [(17*-Megtaa)Ti-
(=Te)]: Ti—Te 2.484(2) A (n*-Megtaa®"
octamethyldibenzotetraaza[14]annulene); [CoCp*,][(PNP)-
Ti(=Te),]: Ti—-Te = 2.5185(6) A; ([CoCp*,][(BDI)Ti-
(=Te),]: Ti—Te = 2.5188(7), 2.4890(7) A}.™"*" Interest-
ingly, the Til—Te2 bond of 2.6465(8) A for the tellurolate is
also comparatively shorter than in previously characterized
titanium tellurolate complexes {cf. (4,°:n°>-Pn’),[Ti(TePh)],,
Ti—Te = 2.6866(7) A (Pn'~ = 1,4-{Si'Pr;},CsH,); [Cp,Ti-
{TeSi(SiMe;);},], Ti—Te = 2.788(1) A; [Cp,Ti{ Te(SiMe,),}-

Figure 3. Crystal structures of 4 (left), S (center), and 6 (right) with thermal ellipsoids at 50% probability. H atoms and residual solvent have been

omitted for clarity.
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(P(CH,),)], Ti—Te = 2.8955(30) A; and [Cp,Ti(TeSnPh;)],
Ti—Te = 2.8681 (18) A}*>* but Ionger than the sum of their
double-bond covalent radii (2.45 A).**

To our surprise, exploring similar conditions with [(BDI)-
Ti(CH,SiMe,),] with 2.5 equiv of Se in the absence of
reductant yielded a different outcome. This reaction furnished
dark red crystals of [(BDI)Ti(=Se)(#*-SeSeCH,SiMe;)] (5)
34% yield (Scheme 1b), suitible for scXRD (Figure 3, center).
The solid-state structure of 5 reveals a mononuclear five-
coordinate Ti" complex that features a terminal selenido
ligand and an unprecedented 7>-perselenoate ligand (Figure
3). The Ti=Se motif in § (Ti=Se, 2.2452(4) A) is comparable
to the few other three known crystallographically characterized
examples {cf. [(17*-Megtaa)Ti(=Se)], Ti—Se = 2.269(2) A (i*-
Megtaa®™ = octamethyldibenzotetraaza[14]annulene); [(x’-
Tp)(k*-Tp)Ti(=Se)], Ti—Se = 2.255(1) A (Tp'~ = hydrotris-
(pyrazol-1-yl)borate); and (**‘Guan)(ImP*"N)Ti(=Se), Ti—
Se = 2258(7) A (*'guan™ = [(‘Bu,C=N)C(NDipp),],
ImPPPN~ = 1,3-bis(Dipp)imidazoline-2-iminato, Dipp = 2,6-
diisopropylphenyl)}."*”™ The 7-perselenoate ligand of $
displays Ti—Se bond lengths of 2.4970(4) and 2.6930(4) A in
addition to a Se—Se bond length of 2.3360(3) A, typical for Se-
Se single bond.”** Despite not being able to spectroscopically
identify the Ti=Se and Ti(n*-SeSeCH,SiMe;) motifs, a
resonance at 325 ppm via "’Se{'H} NMR was observed for
the (Me,SiCH,),Se side-product.”’”

In the case of sulfur, addition of 2.5 equiv of its elemental
form to a stirring THF solution of [(BDI)Ti(CH,SiMe;),] and
subsequent work up afforded dark red crystals in low yield
(9%) from a pentane solution (Scheme 1b). A scXRD study of
a single crystal confirms the formation of a dinuclear complex
having bridging sulfido and terminal thiolate ligands, [(BDI)-
Ti(SCH,SiMe;)(u-S)], (6) (Figure 3, right). We speculate
that complex 6 forms as a result of the more nucleophilic
nature of the sulfido ligand when compared to the tellurido
counterpart in 4. Specifically, the scXRD study of 6 features a
highly distorted five-coordinate dimeric (73 = 0.56) Ti'V
complex with bridging Ti—S bond lengths of 2.2723(11) and
2.3385(10) A and thiolate bond of 2.3011(15) A, within the
expected range for similar and previously reported exam-
ples.”**” It was found that dissolving crystalline complex 6 in
C¢D¢ over several minutes resulted in immediate decom-
position via the formation BDI-H® when the mixture is
assayed by '"H NMR spectroscopy. Gratifyingly, immediate
collection of the "H NMR spectrum of the reaction mixture,
without workup, allows for the assignment of the C, symmetric
product, 6, some free BDI-H, and (Me;SiCH,),S.”" Unfortu-
nately, attempts to spectroscopically identify complex 6 in its
pure form via NMR spectroscopy have been unsuccessful.

With complexes 4—6 in hand, addition of 1 equiv of KCq
and 18-C-6 allowed for the isolation of the corresponding
bis(chalcogenidos) 1—3 in near quantitative yields (Scheme
1b) via extrusion of a presumed Me;SiCH,- radical.*>** While
this method may shed light on the possible intermediates
involved in the reaction toward the bis(chalcogenidos), the
one-pot synthesis from the bis(alkyl) titanium is a far more
facile and higher-yielding route. Additionally, the byproducts
formed in the one-pot reaction can be easily washed away with
pentane, leaving the desired product in pure form.

In summary, we have established a synthetic route to
bis(chalcogenidos) of titanium where Ch = Te, Se, S in the
form of either the discrete salts or the ate complexes having the
anion [(BDI)Ti(Ch),] . As the chalcogenido becomes more

nucleophilic, the K(crown-ether)* coordinates as in the case of
the bis(selenido) and bis(sulfido) ate-products. Although the
mechanism to formation of these bis(chalcogenido) complexes
of titanium is not straightforward, we speculate such a process
is bimolecular in nature and likely involves low-valent Ti
species. Using a chalcogen source, a bis(alkyl) titanium
precursor followed by reduction, allows for a facile entry into
these discrete, molecular analogues of TiCh,.
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CoCp*, decamethylcobaltocene; THF, tetrahydrofuran; Te,
elemental tellurium; Se, elemental selenium; S, elemental
sulfur; dipp, 2,6-Pr,C¢H;; PNP~, N[2-P'Pr,-4-methylphenyl),;
BDIT, [ArNC(CH;)],CH, (Ar = 2,6-Pr,C¢H;); scXRD,
single-crystal X-ray diffraction studies
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