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Abstract
This paper presents a novel approach for predicting Power Conver-
sion Efficiency (PCE) of Organic Photovoltaic (OPV) devices, called
GLaD: synergizing molecular Graphs and Language Descriptors
for enhanced PCE prediction. Due to the lack of high-quality ex-
perimental data, we collect a dataset consisting of 500 pairs of OPV
donor and acceptor molecules along with their corresponding PCE
values, whichwe utilize as the training data for our predictivemodel.
In this low-data regime, GLaD leverages properties learned from
large language models (LLMs) pretrained on extensive scientific lit-
erature to enrich molecular structural representations, allowing for
a multimodal representation of molecules. GLaD achieves precise
predictions of PCE, thereby facilitating the synthesis of new OPV
molecules with improved efficiency. Furthermore,GLaD showcases
versatility, as it applies to a range of molecular property prediction
tasks (BBBP, BACE, ClinTox and SIDER [45]), not limited to those
concerning OPV materials. Especially, GLaD proves valuable for
tasks in low-data regimes within the chemical space, as it enriches
molecular representations by incorporating molecular property
descriptions learned from large-scale pretraining. This capability
is significant in real-world scientific endeavors like drug and ma-
terial discovery, where access to comprehensive data is crucial for
informed decision-making and efficient exploration of the chemical
space.

CCS Concepts
• Computing methodologies → Feature selection; • Applied
computing → Chemistry.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3680103

Keywords
Organic Photovoltaics, Power Conversion Efficiency Prediction,
Graph Neural Network, Large Language Models

ACM Reference Format:
Thao Nguyen, Tiara Torres-Flores, Changhyun Hwang, Carl Edwards, Ying
Diao, and Heng Ji. 2024. GLaD: Synergizing Molecular Graphs and Lan-
guage Descriptors for Enhanced Power Conversion Efficiency Prediction
in Organic Photovoltaic Devices. In Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management (CIKM ’24),
October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3627673.3680103

1 Introduction
In materials science, the design of novel materials for organic solar
cells (OSCs) is a vibrant area of research, as OSCs offer advantages
such as being low-cost, flexible, and lightweight; unfortunately,
they also suffer from drawbacks such as limited lifespan and poor
stability [1, 6, 24]. Addressing these drawbacks necessitates the op-
timization of materials for OSCs, which requires quick and accurate
prediction of Power Conversion Efficiency (PCE) in OSC devices to
assess the quality of new candidates.

Various machine learning algorithms have been used to predict
PCE of OPV devices using different datasets. Notably, the Harvard
Clean Energy Project Database (CEPDB) [20] and the Harvard Or-
ganic Photovoltaic Dataset (HOPV) [31] are among the most signifi-
cant public datasets in this domain. Previous studies have primarily
utilized CEPDB, which comprises 2.3 million donor molecules and
their corresponding PCE values calculated using Scharber’s model.
While training with computationally derived PCEs offers the ad-
vantage of large, standardized datasets with controlled parameters,
these values often poorly correlate with experimental measure-
ments, diminishing their practicality [16]. The HOPV dataset con-
tains experimental PCE data for 350 different OPV donors that have
been collected from various studies in the literature by Lopez et
al [31], yet it lacks data on newer OPV molecules introduced after
2015, a period during which significant advancements in OPV tech-
nology achieved PCE values of up to 20% [8, 11, 14, 18]. Therefore,
to expedite the development of cutting-edge OPV materials, this
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Figure 1: Overview of the GLaD PCE prediction framework.

Table 1: Statistics of our collected dataset

All Train Val Test
#samples (D-A pairs) 500 400 50 50

#molecules
All 403 338 61 58
Donor 203 165 36 32
Acceptor 252 212 31 34

#functional
modules

All 250 231 68 68
Donor 149 136 38 38
Acceptor 192 174 43 43

Tanimoto
distance

All 0.67 0.67 0.69 0.67
Donor 0.65 0.64 0.65 0.69
Acceptor 0.59 0.59 0.64 0.63

PCE range [2.5,
19.6]

[2.5,
19.6]

[6.0,
18.69]

[5.1,
17.1]

study concentrates on predicting the experimental PCE values of
recently developed OPV devices only.

In this work, we present a novel approach, named GLaD, for
accurately predicting PCE of OPV devices based on pairs of donor
and acceptor molecules. To achieve this, we collected a dataset
comprising 500 pairs of donors and acceptors from the literature
for training our models.

GLaD addresses a key challenge in predicting PCE of OPV de-
vices: the need for a comprehensive understanding of molecular
function-structure relationships. To tackle this, chemists typically
focus on the functional modules of a molecule and rely on supple-
mentary sources like textbooks for a more comprehensive under-
standing of the molecule’s properties. Inspired by these insights, we
decompose molecules into their functional modules and integrate
structural descriptors extracted by a Graph Neural Network (GNN)
with textual descriptions generated by LLMs trained on extensive
scientific literature. This approach aims to provide a comprehensive
representation of the functional modules. After acquiring the struc-
tural and textual descriptors of the those modules, we fuse them to
form a multimodal representation. Subsequently, representations
of functional modules are fed into a molecule-level GNN model to
predict PCE. Figure 1 illustrates the overview of GLaD in the PCE
prediction task.

We assessed the performance of GLaD using our collected dataset,
HOPV and the MoleculeNet benchmark [45]. Our results demon-
strate that GLaD accurately predicts PCE values for OPV devices.
Notably, incorporating textual descriptors alongside structural de-
scriptors enhances the model’s performance, with the coefficient of

determination (R2) score increasing by 0.103 (± 0.04) in our collected
dataset. For HOPV dataset, we obtain an R2 score improvement
of 0.135 compared to the baseline [10], showcasing state-of-the-
art performance on this dataset. Furthermore, GLaD exhibits high
accuracy in predicting molecular properties across various tasks
(such as BBBP, BACE, ClinTox and SIDER [45]), suggesting its ap-
plicability beyond OPV-related tasks.
Our contributions are summarized as follows:

• We curate an up-to-date dataset comprising 500 pairs of
donor and acceptor molecules for PCE prediction task.

• We develop a novel method, GLaD, that leverages learned
knowledge from pretrained LLMs to generate textual de-
scriptions for functional modules (molecular fragments) and
integrates them with structural descriptors to enrich mole-
cule representation. This approach accurately predicts PCE,
achieving high R2 scores in both our dataset and the HOPV
dataset.

• GLaD is the first model to use a hierarchical GNN approach
to integrate textual descriptions of molecular fragments
(functional modules) rather than entire molecule descrip-
tions. This improves the robustness and flexibility of our
approach on unknown molecules. We conducted a study of
language model-generated textual descriptions and found
88% of them to be accurate when evaluated by PhD-level
domain experts.

• Our method exhibits promising results in other molecular
property prediction tasks, indicating its broad applicability
beyond PCE prediction.

2 Background
OSCs represent a promising class of emerging photovoltaic tech-
nologies that generate electricity from sunlight using multiple lay-
ers. In these cells, excitons (hole-electron pairs) are produced at the
interface of the active layer, typically composed of a donor-acceptor
(D-A) material blend of carbon-based molecules or polymers. The
donor material absorbs light and generates excitons, while the ac-
ceptor material facilitates their dissociation into free charge carriers.
D-A molecules thus play a crucial role in determining PCE of OPV
devices by influencing light absorption, exciton dissociation, charge
transport, and active layer morphology [50]. Optimizing molecu-
lar combinations can achieve broad absorption spectra, efficient
exciton separation, balanced charge mobility, and ideal nanoscale
phase separation, all of which enhance PCE.

Traditional methods for designing D-A combinations focus on
a limited range of chemistries and typically require expert knowl-
edge, restricting the potential for high-throughput screening [20].
However, computational modeling and machine learning offer a
powerful alternative by accurately predicting the PCE of new D-A
materials through the analysis of their molecular properties. This
accelerates the discovery of high-performance OPV materials and
broadens the range of structures explored for improved efficiency
and stability.
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Thiophene is known for its good electronic properties, contributing to enhanced π-π stacking interactions, which improve
charge carrier mobility. Thiophene units can also increase the absorption range, enhancing light harvesting in the solar
spectrum.

The structure contains benzene ring, indicating an extended conjugated system. Conjugation is crucial for efficient light
absorption and charge transport. Aromatic systems contribute to the stabilization of charges through delocalization.

The cyano group (C#N) is strongly electron-withdrawing, affecting the electronic structure of the molecule. It can stabilize
negative charges and lower the LUMO energy level, which is beneficial for electron transport.

The ester group (C(=O)O) can participate in hydrogen bonding and dipole-dipole interactions, influencing the solubility
and film-forming properties. It also affects the molecule's overall polarity and can impact the dielectric constant of the
material.

The long alkyl chain increases solubility in organic solvents, aiding in the solution processing of the material. It can improve
the flexibility and processability of the polymer but may reduce crystallinity, affecting charge transport properties.

The vinyl group (C=C) is an electron-donating group through conjugation. It can participate in π-π interactions, potentially
aiding in charge transfer and molecular packing.

Figure 2: Examples of functional module descriptions generated by ChatGPT 3.5.

3 Related Work
3.1 PCE Prediction
The prediction of PCE has drawn considerable interest, particularly
with the emergence of large datasets like CEPDB [20] and the ex-
perimental dataset HOPV [31]. Various methods are employed for
this task, including quantum chemical calculations and machine
learning (ML) techniques. Quantum chemical methods estimate
PCE using Scharber’s model [38]. This model predicts PCE of a
specific OPV design based on parameters calculated by density
functional theory (DFT). However, DFT calculations require signifi-
cant computational time, which makes them unsuitable for quick
screening [2], and there is a discrepancy between the predictions
of Scharber’s model and actual experimental results [16]. On the
other hand, ML techniques are commonly used to explore the rela-
tionships between OPV performance and material properties more
quickly and accurately [17, 44].
Many studies have focused on predicting PCE determined by Schar-
ber’s model, utilizing either the complete dataset or subsets of
CEPDB [10, 23, 32, 35, 40]. Neural network architectures, including
Artificial Neural Networks (ANN), Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), and Graph Neural Net-
works (GNN), have demonstrated superior capability in learning
from large datasets like CEPDB, yielding an impressive maximum
R2 score of 0.996 [10].

While some studies achieve high predictive accuracy on com-
putational datasets, less attention is paid to the suitability of these
datasets and their agreement with experimental PCEmeasurements.
In a previous work [10], the authors investigate the impact of train-
ing data choice and conclude that while current MLmodels perform
well on large computational datasets like CEPDB, fitting on smaller
and experimental datasets proves challenging due to numerous de-
grees of freedom, such as experimental setups and minor device de-
sign factors. Moreover, discrepancies between computational PCE
based on Scharber’s model and experimental PCE are noted [16, 20],
prompting efforts to collect new OPV datasets [17, 34, 42, 44]. No-
tably, Greenstein et al. constructed a new dataset comprising 1001
unique donor/non-fullerene acceptor pairs, and an ensemble of
random forest and neural network models predicting PCE achieves
an R2 of 0.4 [17].

Our work extends the research on PCE prediction for OPV de-
vices by gathering up-to-date OPV data from the literature and
developing a novel predictive model. Unlike previous studies focus-
ing solely on donor molecules [20, 31], our dataset encompasses a
diverse range of donor and acceptor molecules. Each molecule is de-
composed into functional modules, and an Attentive FP [46] model
is employed to extract structural features from each functional mod-
ule, complemented by textual descriptions generated by an LLM.
This approach yields a multimodal dataset providing both structural
and property knowledge of molecular functional modules, enabling
precise PCE prediction with an R2 of 0.747 (±0.04). This method
also facilitates modular synthesis of new OPV molecules and sheds
light on the relationship between molecular structure and PCE of
OPV devices.

3.2 Multimodal Representation of Molecules:
Graph Structure and Textual Descriptions

LLMs have emerged as powerful tools for molecular captioning,
even from SMILES strings—compact textual representations of
molecular structures [9, 19, 29]. Models like GPT (Generative Pre-
trained Transformer) [36] variants can analyze these strings, gen-
erating detailed textual descriptions of molecules. Through fine-
tuning on large chemical text datasets, LLMs become proficient
at understanding molecular structures encoded in SMILES strings
and producing coherent captions [9]. In this study, we harness the
capacity of LLMs to generate structural, physical, chemical, and
photovoltaic descriptions of functional modules commonly found
in OPV molecules. This allows us to furnish insights into molecular
properties that may not be apparent in a molecular graph with-
out background contextual information. Additionally, this method
enhances the factual correctness of the generated text, given the rel-
ative ease with which LLMs generate captions for shorter SMILES
strings (molecular substructures) compared to longer ones (the
entire molecule). We note that functional modules are molecular
subgraphs often referred to as fragments in other work [12].

Several previous studies have focused on incorporating SMILES
strings and textual descriptions to enhance molecular understand-
ing tasks. In earlier works [30, 49], a unified representation of text
and SMILES was created by replacing chemical compound names
in text with SMILES strings. Other studies [7, 26, 27, 39, 51] aligned

4779



CIKM ’24, October 21–25, 2024, Boise, ID, USA Thao Nguyen et al.

Figure 3: Pairs of fragments that are close in the text embedding
space, indicating shared properties or functions. Fragments with sim-
ilar structures, such as side chains containing ester groups (C(=O)O)
and cyano groups (C#N), are clustered together in the embedding
space, reflecting their structural similarities.

SMILES strings and textual descriptions through contrastive learn-
ing or cross-modal projection to ensure that their representations
are close in the representation space. Both methods achieved high
performance in molecular understanding tasks, with MolXPT [30]
achieving state-of-the-art results in MoleculeNet tasks [45].

While several studies have combined knowledge graphs and
text descriptions to enhance the representations of either modality
or both [21], no prior research has integrated textual data into
graphs of molecular fragments (functional modules). In this study,
for the first time, we integrate structural embeddings obtained from
a GNN model and text embeddings obtained from LLMs to form a
multimodal representation of such functional modules. By doing so,
our model can make predictions based on information from both
modalities, ultimately enhancing its performance on a wide variety
of prediction tasks.

4 OPV Dataset Collection
Due to the lack of curated high-quality experimental data, we cu-
rated an OPV dataset to train our PCE prediction model. The dataset
consists of 500 pairs of donor and acceptor molecules employed in
bulk heterojunction (BHJ) and bilayer OPV devices collected from
literature from 2012 to 2023.

In this dataset, there are a total of 403 molecular entities (com-
prised by 10 atoms: C, H, O, N, S, Si, Se, Cl, Br, F), including 203
donor molecules and 252 acceptor molecules (with 52 molecules
that can be either donor or acceptor in a device). It includes prop-
erties of OPV devices such as PCE, open circuit potential (V𝑜𝑐 ),
short circuit current density (J𝑠𝑐 ), and fill factor (FF) for each donor-
acceptor pair. Table 1 provides the statistics of the collected dataset.
Compared to the HOPV dataset [31], our dataset demonstrates su-
perior diversity, encompassing a significantly larger portion of the
chemical space. We attribute this to five key differences:

(1) It contains pairs of donor-acceptor molecules, instead of
solely donor molecules as in HOPV;

(2) It includes up-to-date data of OPV devices with a higher PCE
range, from 2.5% to 19.6%, compared to 0.0005% to 10.2% in
HOPV;

(3) It comprises molecules of greater diversity, reflected in a
lower average Tanimoto distance [3] of 0.67, compared to
0.8 in HOPV;

Figure 4: Proposed model architecture (TD: Textual descriptors of a
functional module).

(4) It contains a more diverse range of atom types (10 atoms)
compared to the 8 atom types present in HOPV (C, H, O, N,
F, S, Si, and Se);

(5) It contains a larger number of samples (500 samples com-
pared to 350 in HOPV).

Each molecule in the dataset is further decomposed into func-
tional modules, also referred to as fragments, for additional pro-
cessing. A total of 250 different functional modules result from the
decomposition of the 403 molecules in the dataset.

With this dataset, our objective is to construct machine learning
models capable of accurately predicting the PCE score based on
pairs of donor and acceptor molecules. A robust PCE prediction
model is characterized by a high coefficient of determination (R2),
lowMean Square Error (MSE), and lowMean Absolute Error (MAE).

5 Fusing Text with Molecular Structure
In this section, we detail our approach, GLaD, for extracting struc-
tural and textual descriptors for each functional module, and then
fusing them to form the multimodal representation of those mod-
ules. Figure 4 illustrates the architecture of our proposed model.
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Table 2: PCE prediction results on the collected dataset with differ-
ent GNN architectures (average of 30 runs).

Hierarchical
GNN

Molecule-
Level
GNN

Donor-only
GNN

Acceptor-only
GNN

MSE 3.58 4.61 10.18 6.65
95% CI [2.81, 4.41] [3.82, 5.31] [8.69, 11.79] [5.67, 7.41]

MAE 1.461 1.792 2.726 2.162
95% CI [1.28, 1.66] [1.62, 1.95] [2.45, 2.95] [1.99, 2.33]

R2 0.644 0.534 0.398 0.428
95% CI [0.59, 0.68] [0.48, 0.59] [0.34, 0.45] [0.38, 0.48]

5.1 Modeling Molecular Structure
After collecting the SMILES strings of OPV molecules, we con-
struct molecular graphs and employ a molecular decomposition
algorithm to decompose them into constituent functional mod-
ules. This algorithm breaks down molecules at C-C single bonds
between conjugated backbone rings and their corresponding side
chains. This approach harnesses modular synthesis, wherein com-
plex molecules are iteratively assembled from smaller constituent
functional modules [5, 15, 25].

Fragment-level graphs representing functional modules will un-
dergo processing by a GNN model to produce structural descrip-
tors. Various GNN architectures, including Graph Convolutional
Networks (GCN) [22], Graph Attention Networks (GAT) [41], and
Attentive FP [46], are employed to extract structural descriptors
from molecular graphs. Subsequently, these structural descriptors
of each functional module will be fused with textual descriptors to
create a multimodal representation of each functional module.

5.2 Generating Textual Descriptions for
Functional Modules

For each functional module, ChatGPT-3.5 [33] is utilized to gener-
ate descriptions including their structural, physical, chemical, and
photovoltaic properties. A total of 250 descriptions are produced.
These descriptions then undergo manual evaluation to ensure the
factual accuracy of the generated text. A subset of 60 functional
modules and their descriptions is manually evaluated, revealing
that 88% (53 out of 60) are correct. Figure 2 exemplifies a result
generated by GPT-3.5.

To generate text descriptions for functional modules, we use
their SMILES string to query ChatGPT-3.5 [33] with this prompt:
Generate descriptions of this molecular fragment: [𝑆𝑀𝐼𝐿𝐸𝑆] focus-
ing on its structural, physical, chemical, and photovoltaic properties.
Descriptions should be specific and tailored for organic photovoltaic
(OPV) material research. Avoid neutral information.

5.3 Modeling Textual Descriptions
Textual descriptions of functional modules are fed into a frozen
Scibert [4] model to extract text embeddings. We assessed the effi-
cacy of combining descriptions for each property with structural
descriptors to identify those yielding improvements, which will be
retained for the generation of textual descriptors.

In order to evaluate the quality of textual descriptors, we ran-
domly selected data points that are close to each other in the text

embedding space. Outcomes (depicted in Figure 3) show that func-
tional modules with similar structures tend to cluster together in
the text embedding space, suggesting that textual descriptors ef-
fectively capture information regarding the similarity of molecular
fragments.

5.4 Fusion Approaches
After generating both structural and textual descriptors for func-
tional modules, we combine them using fusion operators. We eval-
uate two fusion operators: average + concat and attention + concat.

The first approach computes an embedding for the entire text
description by averaging all the word embeddings, and then con-
catenates this with the structural embedding to form a multimodal
representation of the functional module, denoted as v.

The attention-based module comprises learnable query (W𝑄 ),
key (W𝐾 ), and value (W𝑉 ) matrices to learn the cross-attention
score between the structural embedding vector s of a functional
module and the word embedding vectors t of its description. The
attention weight is calculated by Equation 1.

𝛼 = softmax

(
QK𝑇√︁
𝑑𝑘

)
V (1)

Here, 𝛼 represents the cross-attention score between s and t, where
Q = W𝑄 · t, K = W𝐾 · s, and V = W𝑉 · s. The term 𝑑𝑘 denotes the
dimensionality of the key s.

The embedding of the entire text description is computed as the
weighted average of word embeddings, with the attention scores
from the structural embedding serving as the weights, as shown in
Equation 2.

t′ =
𝑁∑︁
𝑖=0

𝛼𝑖 · t𝑖 (2)

Here 𝑁 represents the length of the text description.
Finally, the structural and textual embeddings are concatenated

to create a multimodal representation of each functional module v,
expressed as v = concat(s, t′).

After fusion, each functional module is represented by a vector v,
representing a node in the molecule-level graph. The edges of this
graph are defined by the bonds connecting the functional modules.
This graph is input to themolecule-level GNNmodel, which outputs
a predicted PCE score for the input donor-acceptor pair.

6 Experiments
6.1 Experimental Settings
Datasets and evaluation metrics.We conduct an evaluation of
GLaD across multiple datasets, including our collected OPV dataset,
the HOPV dataset [31], and several tasks from the MoleculeNet
benchmark dataset (BBBP, BACE, ClinTox, and SIDER) [45]. To
evaluate the efficacy of our proposed method across both com-
putational and experimental data, we assess its performance on
the HOPV dataset for experimental PCE and PCE computed using
Scharber’s model [38]. We utilize three commonly used metrics:
R2, MSE, and MAE for PCE prediction task. Meanwhile, for the
MoleculeNet tasks, we employ the AUC-ROC metric to evaluate its
performance.
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Table 3: PCE prediction results on the collected dataset of the baseline model (hierarchical GNN without incorporating textual descriptors)
and models incorporated with different kinds of textual descriptors.

Baseline
Full

description Structural Physical Chemical Photovoltaic
Physical+
Chemical

MSE Avg 3.583 2.878 2.66 2.561 2.308 3.317 2.327
95% CI [2.81, 4.412] [1.282, 3.51] [1.445, 4.283] [1.883, 3.322] [1.851, 2.858] [2.579, 4.176] [1.584, 3.186]

MAE Avg 1.461 1.32 1.289 1.231 1.218 1.367 1.194
95% CI [1.282, 1.664] [1.174, 1.482] [1.053, 1.563] [1.059, 1.42] [1.08, 1.366] [1.171, 1.56] [0.985, 1.479]

R2
Avg 0.644 0.703 0.725 0.732 0.735 0.659 0.747
(↑) - ↑ 0.059 ↑ 0.081 ↑ 0.088 ↑ 0.091 ↑ 0.015 ↑ 0.103
95% CI [0.658, 0.757] [0.688, 0.759] [0.694, 0.774] [0.688, 0.779] [0.611, 0.703] [0.703, 0.794] [0.698, 0.787]

Table 4: PCE prediction results on theHOPV dataset of the proposed
method and SVR model [10]

w/o text w/ text SVR

MSE Avg 2.598 2.321 2.687
± 0.524 0.487 0.487

MAE Avg 1.233 1.034 1.132
± 0.146 0.136 0.095

R2 Avg 0.492 0.588 0.453
± 0.109 0.115 0.109

Table 5: Results of predicting computational PCE on the HOPV
dataset, using computational PCE obtained from Scharber’s model
with a selection of four functionals (B3LYP, BP86, M06-2X, and
PBE0).

B3LYP BP86 M06-2X PBE0
w/o text w/ text w/o text w/ text w/o text w/ text w/o text w/ text

MSE Avg 0.064 0.035 3.487 0.188 2e-4 1e-4 0.036 0.003
± 0.022 0.01 1.185 0.064 8e-5 2e-5 0.011 6e-4

MAE Avg 0.182 0.136 1.354 0.273 0.031 0.005 0.133 0.038
± 0.025 0.014 0.191 0.035 0.002 0.001 0.019 0.004

R2 Avg 0.943 0.968 0.935 0.964 0.966 0.974 0.951 0.996
± 0.02 0.019 0.018 0.02 0.019 0.021 0.017 8e-4

Table 6: Results of GLaD on four common MoleculeNet tasks com-
pared to other GNN-based models. Evaluation metric: ROC-AUC(%)

Dataset BBBP BACE ClinTox SIDER
#molecules 2039 1513 1478 1427
#tasks 1 1 2 27

D-MPNN [47] 71.0 (0.3) 80.9 (0.6) 90.6 (0.6) 57.0 (0.7)
AttentiveFP [46] 64.3 (1.8) 78.4 (0.02) 84.7 (0.3) 60.6 (3.2)
GROVER𝑙𝑎𝑟𝑔𝑒 [37] 69.5 (0.1) 81.0 (1.4) 76.2 (3.7) 65.4 (0.1)
MolCLR [43] 72.2 (2.1) 82.4 (0.9) 91.2 (3.5) 58.9 (1.4)
GraphMVP [28] 72.4 (2.1) 81.2 (0.9) 79.1 (2.8) 63.9 (1.2)
GEM [13] 72.4 (0.4) 85.6 (1.1) 90.1 (1.3) 67.2 (0.4)
HiMo𝑠𝑚𝑎𝑙𝑙 [48] 71.3 (0.6) 84.6 (0.2) 70.6 (2.1) 62.5 (0.3)
HiMo𝑙𝑎𝑟𝑔𝑒 [48] 73.2 (0.8) 84.3 (0.3) 80.8 (1.4) 61.3 (0.5)
GLaD (w/o text) 82.8 (1.2) 82.1 (0.8) 85.6 (1.7) 64.3 (0.9)
GLaD (w/ text) 86.4 (1.5) 85.7 (0.9) 87.3 (1.2) 68.1 (1.3)

Data split. In accordance with the experimental setups in pre-
vious work [10], we split the two OPV datasets into training, val-
idation, and test sets with a ratio of 80:10:10. Similarly, for the
MoleculeNet tasks, we split the dataset into training, validation,
and test sets with ratio of 80:10:10, respectively, following previous

research [52].
GLaD’s model architecture. We evaluate various model archi-

tectures by experimenting with the following setups, testing their
performance on the collected dataset:

• Different GNNs (including a GNN that takes a molecular
graph as input and directly outputs predictions of PCE, ver-
sus a hierarchical GNN including a fragment-level GNN
that extracts structural descriptors of functional modules
followed by a molecule-level GNN that takes multimodal
representations of fragments as input);

• Different kinds of textual descriptions (structural, physical,
chemical, photovoltaic property descriptions, and descrip-
tions of all properties).

6.2 Main Results
Results on the collected dataset: The results of using a molecule-
level GNN and a hierarchical GNN (without text) are described
in Table 2. According to our findings, using a hierarchical GNN
architecture that combines fragment-level andmolecule-level GNNs
results in a significant improvement in the R2 score of 0.11 (± 0.04)
when compared to using onlymolecule-level GNN.We also examine
the effectiveness of using only donor or acceptor molecules as input
for the hierarchical GNNmodel. We find that R2 score can be greatly
increased by using pairs of donor and acceptor molecules as input.
This leads to an R2 score of 0.644 (± 0.05), whereas models that use
either only donor or only acceptor molecules have R2 of 0.398 and
0.428, respectively.
Table 3 shows experimental results of incorporating various kinds
of textual descriptors with structural descriptors obtain from the
fragment-level GNN. We observe that using textual description of
all properties improve predictive performance from 0.015 to 0.103 in
R2 score, with the highest improvement from physical and chemical
descriptions, and the combination of both.

Results on the HOPV dataset. The results from experiments
employing the proposed GLaD model on the HOPV dataset are
presented in Table 4 and Table 5. These results demonstrate that
GLaD outperforms another method using the SVR model by 0.135
in R2 score in the task of predicting experimental PCE. Table 5 also
demonstrates GLaD’s ability to accurately predict computational
PCE, achieving the highest R2 score of 0.996. It is worth noting
that complementing structural descriptors with textual descriptors
consistently improves the predictive performance of the model,
both in the collected dataset and HOPV dataset.
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Table 7: PCE prediction results by GLaD (with textual descriptors
being physical + chemical property descriptions) using various GNN
models for fragment-level and molecule-level GNNs (first column:
fragment-level GNN + molecule-level GNN).

MSE MAE R2

Avg Std Avg Std Avg Std

GAT + GAT 4.617 0.811 1.7 0.122 0.564 0.083
GCN + GCN 5.924 1.08 1.94 0.19 0.407 0.128
Attentive FP + GAT 4.424 0.517 1.59 0.115 0.564 0.084
GAT + Attentive FP 4.064 0.657 1.674 0.135 0.598 0.097
Attentive FP + GCN 3.481 0.922 1.457 0.181 0.648 0.091
GCN + Attentive FP 5.715 0.978 1.82 0.242 0.476 0.098
GAT + GCN 3.884 0.791 1.621 0.221 0.603 0.092
GCN + GAT 4.672 0.98 1.734 0.133 0.559 0.105
Attentive FP + Attentive FP 2.327 0.801 1.194 0.141 0.747 0.088

Table 8: GLaD’s PCE prediction results on the collected dataset
using average + concat (Avg) and attention + concat (Att) as fusion
operators.

Full description Structural Physical Chemical Photovoltaic Physical + Chemical
Avg Att Avg Att Avg Att Avg Att Avg Att Avg Att

MSE 2.437 2.878 3.346 2.66 2.762 2.561 2.541 2.308 4.274 3.317 2.343 2.327
MAE 1.293 1.32 1.464 1.289 1.276 1.231 1.311 1.218 1.507 1.367 1.253 1.194
R2 0.712 0.703 0.634 0.725 0.712 0.732 0.705 0.735 0.622 0.659 0.719 0.747

Results on the MoleculeNet datasets. Table 6 shows the re-
sults of using GLaD to solve four classification tasks with small
datasets in MoleculeNet [45]. GLaD outperforms other GNN-based
models on 3 out of 4 tasks, achieving a significant margin in the
BBBP task with a gap of 13.2 (± 1.5)% compared to the second-best
method (HiMo [48]). These results demonstrate GLaD’s ability to
excel in tasks beyond PCE prediction, proving particularly valuable
for low-resource tasks where data collection is challenging. This
demonstrates incorporating fragment-level text descriptions can
significantly enrich molecule representation.

7 Ablation Study
GNN architectures for fragment-level GNN and molecule-
level GNN. We experimented with various setups for two GNN
models: the fragment-level GNN and the molecule-level GNN. The
results are shown in Table 7, indicating that using Attentive FP for
both levels gave us the best predictions, scoring an impressive R2
of 0.747 (± 0.04).

Fusion methods. For the fusion block, we utilize average +
concat and attention + concat as fusion methods and present the
results in Table 8. Experimental results show that attention + concat
proves more robust than average + concat in 5 out of 6 setups. Hence,
for GLaD, we opt for attention + concat over average + concat as
the fusion method for integrating structural descriptors and textual
descriptors of functional modules.

Node features for fragment-level GNN. We also evaluate the
effectiveness of utilizing various atomic properties as node features
for the fragment-level GNN in GLaD. Experimental results shown
in Table 9 demonstrate that solely employing electronegativity as
a node feature yields the highest R2 score of 0.747 (± 0.04). Con-
sequently, we opt for the electronegativity of atoms as the node
attribute for GLaD.

Table 9: Experimental results of using different kinds of atomic
properties as node features for the fragment-level GNN in GLaD,
with textual descriptors being physical and chemical property de-
scriptions.

Features MSE MAE R2

Avg Std Avg Std Avg Std

Atomic number 3.343 1.03 1.353 0.159 0.679 0.107
Mass 3.513 0.948 1.467 0.173 0.664 0.108
Electronegativity (EN) 2.327 0.8 1.194 0.141 0.747 0.088
EN + hybridization 2.865 0.516 1.357 0.118 0.731 0.061
EN + degree 3.197 0.787 1.405 0.162 0.676 0.074
EN + formal charge 2.554 0.371 1.352 0.09 0.743 0.046
EN + implicit &
explicit valance 2.951 0.532 1.337 0.129 0.7 0.069

EN + is aromatic 3.199 0.803 1.366 0.171 0.668 0.084
All 2.59 0.42 1.322 0.117 0.736 0.052

8 Conclusion & Future Work
In this study, we introduce a new dataset and present a novel ap-
proach for predicting PCE in OPV devices. Our approach leverages
the learned properties of LLMs to enrich molecular representations
at the level of functional modules (molecular fragments). This repre-
sentation enables accurate prediction of the PCE of OPV devices, as
well as other property prediction tasks. However, to apply PCE pre-
diction to high-throughput screening of OPV materials, enhancing
prediction reliability is crucial. To achieve this, we plan to incorpo-
rate uncertainty quantification methods at both the molecular and
functional module levels into our future work. By doing so, we aim
to further strengthen our predictions and advance the field of OPV
material screening.
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