
Findings of the Association for Computational Linguistics: ACL 2025, pages 4604–4621
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

SMART: Self-Aware Agent for Tool Overuse Mitigation

Cheng Qian1*, Emre Can Acikgoz1∗, Hongru Wang1†, Xiusi Chen1, Avirup Sil2,
Dilek Hakkani-Tür1, Gokhan Tur1, Heng Ji1†

1University of Illinois Urbana-Champaign, 2IBM Research AI
{chengq9, acikgoz2, hengji}@illinois.edu

Abstract

Current Large Language Model (LLM) agents
demonstrate strong reasoning and tool use ca-
pabilities, but often lack self-awareness, fail-
ing to balance these approaches effectively.
This imbalance leads to Tool Overuse, where
models unnecessarily rely on external tools
for tasks solvable with parametric knowl-
edge, increasing computational overhead. In-
spired by human metacognition, we introduce
SMART (Strategic Model-Aware Reasoning
with Tools), a paradigm that enhances an
agent’s self-awareness to optimize task han-
dling and reduce tool overuse. To support this
paradigm, we introduce SMART-ER, a dataset
spanning three domains, where reasoning al-
ternates between parametric knowledge and
tool-dependent steps, with each step enriched
by rationales explaining when tools are nec-
essary. Through supervised training, we de-
velop SMARTAgent, a family of models that
dynamically balance parametric knowledge and
tool use. Evaluations show that SMARTA-
gent reduces tool use by 24% while improving
performance by over 37%, enabling 7B-scale
models to match its 70B counterpart and GPT-
4o. Additionally, SMARTAgent generalizes to
out-of-distribution test data like GSM8K and
MINTQA, maintaining accuracy with just one-
fifth the tool calls. These highlight the poten-
tial of strategic tool use to enhance reasoning,
mitigate overuse, and bridge the gap between
model size and performance, advancing intelli-
gent and resource-efficient agent designs. All
the data and codes are released1.

1 Introduction

Recent advancements in Large Language Models
(LLMs) (Ouyang et al., 2022; Team et al., 2023;
Dubey et al., 2024) have led to remarkable improve-
ments in reasoning capabilities, driving progress

* Indicates equal contribution.
† Mentorship
1
https://github.com/qiancheng0/Open-SMARTAgent

Figure 1: An illustration of human metacognition: The
user recalls Tim Cook’s role from prior knowledge (a
slow-changing fact), but uses online search to find the
latest chip info (a fast-changing fact).

in diverse domains such as coherent text composi-
tion (Wei et al., 2022a), code generation (Gao et al.,
2023; Wang et al., 2025b; Pan et al., 2024), com-
plex logical deduction (Yao et al., 2023, 2024), and
nuanced natural language understanding (Wang
et al., 2023; Yu et al., 2024; Wu et al., 2025). How-
ever, challenges remain, such as the inability to han-
dle real-time information (Yu and Ji, 2024), model
real-world challenges (Qian et al., 2025b), provide
accurate mathematical results (Lu et al., 2022), and
fully comprehend human intentions (Qian et al.,
2024b). These limitations highlight the need for
LLMs to leverage external tools (Schick et al.,
2023; Qin et al., 2023; Yuan et al., 2024; Qian et al.,
2024a), enabling them to function as agents capa-
ble of assisting users in diverse tasks (Qin et al.,
2024; Xi et al., 2023). Effective tool use and rea-
soning are thus complementary, each enhancing
the other to overcome current shortcomings.

Therefore, in problem-solving, a language agent
often combines reasoning with tool use, following
a ReACT-style approach (Yao et al., 2023), where
the model alternates between thought processes and
actions to derive solutions. This enables the core
agent to apply its parametric knowledge to advance
task-solving while using external tools to address
its limitations. However, this interplay raises a
critical question: when should the agent rely on
external tools versus its own knowledge?

To investigate this, we first conduct a preliminary

4604

https://github.com/qiancheng0/Open-SMARTAgent

study on both LLMs and LM-driven agent systems
to assess their ability to dynamically and effectively
switch between external tool use and parametric
knowledge-driven reasoning. Our empirical results
reveal a consistent bias, with LLMs unnecessarily
invoking tools over 30% of the time, and agent sys-
tems exhibiting similar behavior even when their
parametric knowledge alone would suffice. We
identify this phenomenon as Tool Overuse, which
arises from the model’s inability to recognize when
its internal knowledge is sufficient. This not only
leads to unnecessary resource consumption but can
also confuse the model, ultimately degrading per-
formance. This observation highlights the need for
better calibration of an agent’s self-awareness, en-
suring it can discern when to rely on tools versus
its own knowledge. Striking this balance is cru-
cial for enhancing efficiency, scalability, and user
experience as LM-driven agents are increasingly
deployed in real-world applications.
To address this challenge, we propose SMART

(Strategic Model-Aware Reasoning with Tools),
which draws inspiration from human decision-
making to calibrate self-awareness in agent models
for effective tool use and reasoning. In Metacog-
nitive Theory (Schraw and Moshman, 1995), psy-
chology highlights humans’ awareness of their
thought processes, including when to apply spe-
cific problem-solving strategies (Livingston, 2003).
As Figure 1 illustrates, this implicit heuristic al-
lows dynamic balancing between external strate-
gies and internal knowledge (Minsky, 1986). Simi-
larly, agents need metacognition to optimize tool
usage. By aligning the model’s subjective percep-
tion with its knowledge boundary, we enable agents
to make more informed decisions on when to rely
on external tools or internal knowledge.
We adopt a data-driven approach to calibrate

model decision-making by constructing SMART-
ER (SMART-Enhanced Reasoning), a dataset span-
ning three domains—Math, Time, and Intention. It
addresses key LLM limitations, including computa-
tional accuracy (Hendrycks et al., 2021), outdated
knowledge (Vu et al., 2023), and user preference
awareness (Qian et al., 2024b). Specifically, each
question in SMART-ER combines sub-questions
the model handles well (e.g., simple arithmetic,
static facts, commonsense) with those it struggles
with (e.g., complex math, dynamic facts, user-
specific intentions). We break down each question
into reasoning steps, categorizing them as either
parametric knowledge-driven or tool-dependent.

For parametric steps, we provide reasoning based
on internal knowledge. For tool-dependent steps,
we map them to appropriate tools, execute them,
and integrate the results into the reasoning process.
Finally, inspired by metacognitive heuristics, we
refine each step with explicit justifications, clari-
fying when parametric knowledge suffices or ex-
ternal tools are needed. By transforming implicit
decision-making heuristics into explicit language-
based reasoning, we guide the model to develop
calibrated awareness of its knowledge boundaries.

Leveraging SMART-ER, we develop SMARTA-
gent, a family of agent models designed to dy-
namically balance reasoning between parametric
knowledge and external tools. Empirical results
show that SMARTAgent reduces tool use by 24%
while improving overall performance by over 37%,
effectively mitigating tool overuse. Notably, it en-
ables 7B-scale models to match the performance of
GPT-4 and 70B models, bridging the gap between
model size and capability. Additionally, SMARTA-
gent efficiently handles out-of-distribution (OOD)
tasks, requiring only one-fifth the number of tool
calls while preserving accuracy. Finally, analysis of
SMARTAgent’s confidence through logits reveals
more certain reasoning-tool-switching decisions,
further validating our approach in calibrating the
agent’s self-awareness. In summary:
• We identify and define the issue of Tool Overuse,
emphasizing that strategically balancing the com-
plementary strengths of knowledge-driven rea-
soning and external tool calls can mitigate this
problem in both LLMs and agent systems.

• We introduce SMART-ER, a multi-domain
dataset designed to address key limitations of
agent models by integrating metacognitive heuris-
tics to better help them recognize and adapt to
their knowledge boundaries.

• We develop SMARTAgent, a family of agents
that intelligently balances parametric reason-
ing and tool use, achieving improved perfor-
mance, reduced tool overuse, and more confident
decision-making in tool utilization.

2 Related Work

LM Knowledge Boundary. Recent studies high-
light that while LMs excel at standard tasks, they
struggle to recognize and acknowledge the lim-
its of their knowledge (Yin et al., 2023; Qian
et al., 2023b; Kadavath et al., 2022). To address
this gap, the concept of knowledge boundary has

4605

been introduced to define the limits of knowl-
edge in LLMs (Li et al., 2024; Amayuelas et al.,
2023). Building on this, some research evaluates
LMs’ self-awareness of their knowledge bound-
ary through verbal probing (Kadavath et al., 2022)
and fine-grained benchmarks (Yin et al., 2024),
enabling LMs to determine whether a question
is answerable. Other work focuses on mitigating
hallucinations arising from the model’s unaware-
ness of its limits through data augmentation (Chen
et al., 2023, 2024b), retrieval augmentation (Ren
et al., 2023), and confidence calibration (Xue et al.,
2024). Additionally, Chen et al. (2024a) and Zhang
et al. (2024) trained LLMs to express their knowl-
edge boundaries, enabling them to answer known
questions and admit ignorance for unknown ones.
Recently, reinforcement learning has been increas-
ingly explored as a means to help models recognize
their knowledge boundaries to guide more efficient
decisions (Qian et al., 2025a; Wang et al., 2025a).
Our work aligns with these studies and focuses on
enhancing agents’ awareness for wiser tool use.

LM Tool Use. Integrating tool use into LLMs
has gained significant attention as a way to comple-
ment parametric knowledge and enhance decision-
making (Qin et al., 2023; Qu et al., 2025). Some
research focuses on enabling LLMs to access exter-
nal tools to overcome knowledge limitations (Qin
et al., 2024; Qian et al., 2024d), including up-to-
date information (Vu et al., 2023; Wang et al.,
2024b) and domain-specific expertise (Ling et al.,
2023; Wang et al., 2024a). Others explore tool
creation (Qian et al., 2023a; Cai et al., 2024) and
external module integration (Qian et al., 2024c) to
improve tool learning robustness. Despite these,
a key challenge lies in evaluating and enhancing
LLMs’ ability to determine when and which tools
to use. Benchmarks like MetaTool (Huang et al.,
2023) and WTU-EVAL (Ning et al., 2024) high-
light LLMs’ struggles with unnecessary or incor-
rect tool usage, while dynamic frameworks (Wang
et al., 2024c; Shen et al., 2024) propose adaptively
invoking tools based on internal uncertainty thresh-
olds. Unlike prior works, SMART rigorously de-
fines tool overuse and addresses it by optimizing
the balance of internal knowledge and tool use.

3 Preliminaries

To investigate how models decide between invok-
ing tools and relying on their own knowledge, we
conduct a preliminary study on both LLMs and

Figure 2: Statistics on Llama and Mistral’s tool overuse.

Table 1: Statistics on XAgent and AgentGPT’s tool
overuse. Both agents invoke tools multiple times across
50 samples, despite ideally requiring zero tool usage.

LM-driven agent systems. Our findings reveal both
LLMs and agent systems’ strong tendency for ex-
cessive tool use, which we define as Tool Overuse,
leading to unnecessary resource overhead.

Definition of Tool Overuse. Tool overuse refers
to the excessive reliance on external tools when
an agent model could have successfully completed
the task using its parametric knowledge alone. For-
mally, let Q be the total set of questions, and let
P be the subset of questions that the model can
correctly answer without using any tools. The
model’s intrinsic reasoning capability is then given
by α = |P |

|Q| . Now, suppose that when provided
with access to tools, the model chooses to invoke
at least one tool on a fraction β of these questions
in P . The Tool Overuse Rate is then defined as:

O = α · β
which quantifies the proportion of all questions
where tool use is unnecessary, highlighting ineffi-
ciencies in the model’s decision-making process.

Experiments on LLMs. We first experiment
with Llama-3.1-8B (Dubey et al., 2024) and
Mistral-7B (Jiang et al., 2023) on the GSM8K test
set (Cobbe et al., 2021). Each test question is pre-
sented under two conditions: i) the model reasons
through the question normally and provides a final
answer without using tools, and ii) the model has
access to tools and independently decides whether
to use them (see Appendix A.2). The statistics in
Figure 2 reveal two key insights. First, both models
exhibit significant tool overuse, with Llama’s rate
exceeding 50%. Second, in some cases, tool use
leads to incorrect answers, even for questions the
model could have solved correctly without external

4606

Figure 3: Example cases on XAgent and AgentGPT’s
tool overuse.

assistance. This highlights how excessive reliance
on tools can introduce unnecessary complexity and
degrade performance.

Experiments on LM-driven Agents. In addition
to LLMs, we also experiment with two agent sys-
tems: XAgent (Team, 2023) and AgentGPT (Team,
2024), both designed for complex problem-solving
and driven by closed-source GPT models. We
sampled 50 queries from the GSM8K test set that
can be answered correctly without tools (see Ap-
pendix A.1) and instructed the models to use tools
only when necessary. The results in Table 1 show
that, despite being equipped with various tools,
both agent systems still tend to use them unneces-
sarily, significantly slowing down problem-solving
(about 10x slower than using GPT alone). We fur-
ther provide a case study in Appendix A.1 high-
lighting issues such as XAgent redundantly saving
results to files and AgentGPT unnecessarily invok-
ing a code-writing tool after generating an answer.
These observations underscore the need to address
our core research question: How can we calibrate
agent models to balance tool use and parametric
reasoning, mitigating tool overuse while preserv-
ing utility?

4 Method

To address the challenge of tool overuse, we draw
inspiration from how humans balance internal
knowledge and external tools. Metacognitive the-
ory (Schraw and Moshman, 1995) suggests that
human decision-making relies on an implicit aware-
ness of knowledge boundaries, enabling strategic,
step-by-step problem-solving (Livingston, 2003).

Figure 4: Three example queries and their reason-
ing chains from each domain. The inherent compo-
sitionality of a query naturally divides reasoning into
knowledge-driven steps and tool-reliant steps.

Inspired by this, we aim to equip agent models with
a similar capability—calibrating their metacogni-
tion to optimize reasoning and tool use.
To address this, we propose SMART, a data-

driven approach that enhances self-awareness in
agent models. While LLMs acquire broad knowl-
edge from large-scale corpora (Wang et al., 2022),
they are not explicitly trained to recognize their
own strengths and limitations. To bridge this gap,
we introduce SMART-ER, the first dataset contrast-
ing areas where models excel versus struggle. Cov-
ering three domains with 3K+ questions and struc-
tured reasoning chains, SMART-ER helps agents
strategically decide when to rely on internal knowl-
edge or external tools.

4.1 Data Collection

To train agents to strategically balance paramet-
ric knowledge and external tools within a sin-
gle reasoning chain, questions must be composi-
tional—blending aspects the model excels at with
those it struggles with. Building on prior stud-
ies (Hendrycks et al., 2021; Vu et al., 2023; Qian
et al., 2024b), we identify three key limitations
in LMs: i) math reasoning, where models strug-
gle with complex computations requiring precise
answers; ii) temporal knowledge, as LMs lack ac-
cess to up-to-date facts beyond their training cut-
off; and iii) user intent understanding, where im-
plicit preferences cannot be inferred without direct
queries. All these challenges necessitate a smarter
integration of external tools with the model’s rea-

4607

Figure 5: The data pipeline to get SMART-ER. We divide the whole pipeline into several stages for better control
and quality of the generated reasoning chain.

Table 2: Statistics for SMART-ER. T/K Ratio denotes
the ratio of tool-reliant to knowledge-driven steps.

soning ability. Building on this insight, we con-
struct data of three domains:
• Math: Adapted from MATH (Hendrycks et al.,
2021), each query incorporates both challenging
math deductions and simple arithmetic to contrast
reasoning capabilities.

• Time: Adapted from FreshQA (Vu et al., 2023),
each query ensures a mix of fast-changing and
slow-changing factual knowledge.

• Intention: Adapted from Intention-in-Interaction
(IN3) (Qian et al., 2024b), each query requires ex-
plicit user intent while remaining solvable within
the model’s capabilities.

This compositional approach helps models cali-
brate their decision-making by distinguishing when
to rely on external tools versus when internal
knowledge is sufficient. To illustrate this, we
present three example queries from each domain in
Figure 4. For details on the question selection and
adaptation process, please refer to Appendix B.1.

4.2 Reasoning Chain Construction

As shown in Figure 5, each queryQ is decomposed
into a structured reasoning plan with n subgoals,
S = {s1, s2, . . . , sn}. This decomposition is en-
abled by the compositional nature of our queries
and is empirically achieved using GPT-4o, an aux-
iliary model in our pipeline, later denoted as M .
Next, for each si, we determine whether it requires
tool use (A(si) = 1) or can be resolved with

parametric knowledge alone (A(si) = 0). Using
ground truth from existing source data as heuris-
tics, we guide M to annotate each subgoal. During
this process, we also discard those queries where all
subgoals rely exclusively on either tools or paramet-
ric knowledge. After annotating the entire chain,
we process each subgoal iteratively, starting from
s1. For each subgoal si where A(si) = 1, we as-
sign an appropriate tool ti from a predefined tool
set using a mapping function T (·):

ti =

{
T (si), if A(si) = 1

∅, otherwise

where ti = ∅ indicates the model relies solely on
its parametric knowledge for reasoning. Empiri-
cally, our tool set consists of Code, Search, and
AskUser, covering all designed domains.

Next, we proceed with the reasoning process
using M . If A(si) = 0, M reasons over si, pro-
ducing a reasoning step ki based on its parametric
knowledge. Otherwise, we promptM to generate
the necessary parameters pi for tool invocation, re-
trieving the tool output oi. The resulting outcome
for each step is formulated as:

ri =

{
(pi = M(si), oi = ti(pi)), if A(si) = 1

(ki = M(si)), otherwise

where ti(·) represents the invocation of tool ti. The
iterative process also enables M to incorporate in-
formation from prior steps and tool outputs when
processing subsequent subgoals, ensuring a coher-
ent and context-aware reasoning flow.

Inspired by metacognitive heuristics that implic-
itly guide human reasoning, we refine the reasoning
chain ri by explicitly incorporating justifications
for whether parametric knowledge suffices or exter-
nal tool use is necessary. Specifically, we prompt
M to generate a justification ji = M(si, A(si)),
conditioned on the subgoal si and its annotation

4608

A(si). This approach emulates human metacogni-
tion by transforming implicit heuristics into explicit
natural language explanations, thus enhancing in-
terpretability. Similar to Chain-of-Thought (Wei
et al., 2022b) leverages the cumulative probability
nature of autoregressive models to guide reasoning,
ji helps the model calibrate its decision-making,
improving its ability to strategically balance inter-
nal knowledge and external tools.
Finally, by integrating all subgoals, we

obtain the complete reasoning chain R =
{(r1, j1), . . . , (rn, jn)} for query Q, where each
step ri is either (ki), indicating a parametric
knowledge-driven step, or (pi, oi), representing a
tool-reliant step. Our method dynamically inte-
grates these steps, ensuring an adaptive balance be-
tween internal reasoning and external tool use. To
ensure quality, we conduct human supervision on
5% of the data for each step involvingM , achiev-
ing a pass rate of over 95%. Please refer to Ap-
pendix B.2 for details.

4.3 Agent Training Implementation

We partition SMART-ER into training and test
splits with statistics in Table 2. For each (Q,R′) in
the training set, we generate multiple input-output
pairs for instruction tuning. The input comprises
{Q, (r1, j1), . . . , (rxi , jxi)}, while the output
consists of {(rxi+1, jxi+1), . . . , (rxi+1 , jxi+1)}},
where xi indexes the tool-reliant steps. This setup
ensures iterative reasoning, allowing the agent to
leverage prior steps until the next tool invocation
or final solution. The number of input-output pairs
per (Q,R′) also equals the number of tool-reliant
steps, facilitating interactive inference.
Using these instruction pairs, we finetune the

Llama-3.1 8B and 70B instruct models (Dubey
et al., 2024) as well as the Mistral 7B, Nemo(12B)
and Small(24B) instruct models (Jiang et al., 2023),
adapting them into a family of SMARTAgent.
These agent models enable interactive tool use,
recognizes its own limitations, and balances tool
reliance with parametric knowledge-driven reason-
ing to prevent tool overuse. See Appendix B.3 for
training details and hyper-parameters.

5 Experiment

In this section, we present results demonstrat-
ing SMARTAgent’s effectiveness in reducing tool
overuse while enhancing reasoning performance.

5.1 Settings

Data. For in-domain testing, we evaluate
SMARTAgent using the test split of adapted
SMART-ER data across three domains: Math
(MATH), Time (FreshQA), and Intention (IN3).
For out-of-distribution (OOD) testing, we assess
performance on GSM8K (Cobbe et al., 2021) and
MINTQA (He et al., 2024), which test logical rea-
soning and real-world knowledge.

Baselines. We incorporate three main baselines:
i) Normal Reasoning Trained: For each domain,
we train the model using the training set queries
to perform reasoning without tools, leveraging the
original solution chain or ground truth. ii) Base
Model Reasoning Prompt: We directly prompt the
model to apply chain-of-thought reasoning without
tools to solve the problem. iii) Base Model Tool
Prompt: We provide the model with all available
tools and their usage but allow it to decide indepen-
dently whether and when to use them.

Inference. For reasoning without tools, the
model generates a response including the final an-
swer. For tool-reliant reasoning, the inference is
interactive: in each round, if a tool call is detected,
we parse and execute it, integrating the tool’s out-
put and reasoning into the input. This repeats until
the final answer is reached. See Appendix C for
details.

Metrics. We use two main evaluation metrics:
Tool Used, which measures the average number of
times a tool is leveraged during reasoning, and Ac-
curacy, which evaluates the average performance
across queries. For the IN3 dataset, where answers
depend on user preferences and lack a single cor-
rect response, we adopt the original paper’s metrics:
Missing Details Recovery, assessing whether miss-
ing details in vague instructions are recovered, and
Summarized Intention Coverage, assessing whether
the final response covers all user-stated preferences.

5.2 Main Results

We present the main results in Table 3, along with
the baseline performance of GPT-4o and GPT-4o-
mini for comparison. We also present the OOD
results for Mistral-7B and Llama-3.1-8B in Sec-
tion 5.1, highlighting the following key findings.

SMARTAgent solves tasks efficiently. Com-
pared to the base model in Table 3, which
autonomously decides whether to use tools,

4609

Method Model Math (MATH) Time (FreshQA) Intention (Intention-in-Interaction)

Tool Used↓
(Times)

Accuracy↑
(%)

Tool Used↓
(Times)

Accuracy↑
(%)

Tool Used↓
(Times)

Missing Details Recovery↑
(Lv3 / Lv2, %)

Summarized Intention
Coverage↑ (%)

Open-Source

Normal
Reasoning Trained

Mistral-7B 0.00 17.00 0.00 48.00 0.00 41.86 / 43.84 -
Llama-3.1-8B 0.00 41.00 0.00 48.00 0.00 38.37 / 42.49 -

Base Model
Reasoning Prompt

Mistral-7B 0.00 17.25 0.00 29.00 0.00 37.21 / 33.06 -
Llama-3.1-8B 0.00 53.00 0.00 26.00 0.00 40.70 / 25.76 -
Mistral-Nemo(12B) 0.00 47.00 0.00 33.00 0.00 44.19 / 28.37 -
Mistral-Small(24B) 0.00 72.25 0.00 34.00 0.00 41.86 / 31.82 -
Llama-3.1-70B 0.00 70.00 0.00 36.00 0.00 41.86 / 29.24 -

Base Model
Tool Prompt

Mistral-7B 3.90 13.25 1.67 49.00 3.80 48.84 / 21.70 63.04
Llama-3.1-8B 1.93 51.00 2.05 56.00 3.77 54.76 / 25.90 70.20
Mistral-Nemo(12B) 2.35 46.00 1.19 59.00 1.80 31.35 / 5.82 59.27
Mistral-Small(24B) 1.55 76.00 1.73 62.00 2.52 45.74 / 33.62 78.20
Llama-3.1-70B 3.53 67.50 2.08 63.00 2.71 45.74 / 35.96 61.68

SMARTAgent

Mistral-7B 0.60↓3.30 22.75↑5.50 1.00↓0.67 64.00↑15.00 3.60↓0.20 74.42↑25.58 / 65.44↑21.60 81.76↑18.72
Llama-3.1-8B 0.88↓1.05 54.75↑1.75 1.05↓1.00 67.00↑11.00 3.80↑0.03 81.40↑26.64 / 67.41↑24.92 78.28↑8.08
Mistral-Nemo(12B) 0.82↓1.53 49.50↑2.50 1.00↓0.19 70.00↑11.00 3.34↑1.54 77.91↑33.72 / 62.15↑33.78 82.30↑23.03
Mistral-Small(24B) 0.79↓0.76 69.75↓6.25 1.00↓0.73 66.00↑4.00 3.89↑1.37 74.42↑28.68 / 68.87↑35.25 84.99↑6.79
Llama-3.1-70B 0.94↓2.59 72.50↑2.50 1.01↓1.07 66.00↑3.00 3.51↑0.80 68.60↑22.86 / 58.15↑22.19 86.09↑24.41

Tool Used Macro-Average Decrease (%) 24.00 Performance Macro-Average Increase (%) 37.10

Closed-Source

Base Model
Reasoning Prompt

GPT-4o-mini 0.00 73.00 0.00 44.00 0.00 45.35 / 32.41 -
GPT-4o 0.00 79.50 0.00 47.00 0.00 38.37 / 28.54 -

Base Model
Tool Prompt

GPT-4o-mini 2.55 54.50 1.06 56.00 1.91 50.00 / 26.90 76.44
GPT-4o 0.27 79.25 1.01 65.00 1.17 40.70 / 15.61 86.80

Table 3: SMARTAgent’s performance on the test split across three in-domain task categories. The green and red
arrows indicate better or worse performance compared to the best baseline method. Its strong performance and
fewer tool calls highlight SMARTAgent’s efficient and strategic tool use.

Dataset GSM8K MINTQA

Metrics Tool Used↓
(Times)

Accuracy↑
(%)

Tool Used↓
(Times)

Accuracy↑
(%)

Llama-3.1-8B

Normal Reasoning Trained 0.00 80.29 0.00 21.65
Base Model Reasoning Prompt 0.00 82.26 0.00 12.37
Base Model Tool Prompt 2.53 83.17 4.03 16.49
SMARTAgent 0.76↓1.77 83.40↑0.23 1.06↓2.97 29.90↑8.25

Mistral-7B

Normal Reasoning Trained 0.00 58.68 0.00 21.65
Base Model Reasoning Prompt 0.00 50.57 0.00 19.59
Base Model Tool Prompt 3.56 55.34 6.46 10.31
SMARTAgent 0.45↓3.11 58.98↑0.30 0.99↓5.47 25.77↑4.12

Table 4: SMARTAgent’s performance on out-of-
distribution tasks compared with baseline methods. Re-
sults show SMARTAgent can successfully generalize.

SMARTAgent reduces tool usage time per query by
24% on average. At the same time, its performance
improves by over 37% across models compared
to the best baseline. This demonstrates SMARTA-
gent’s efficiency in tool use, achieving higher re-
sults while relying less on external resources.

7B-scale SMARTAgent can outperform GPT-4o
baselines. Despite being much smaller, the 7B-
and 8B-scale SMARTAgent models can outper-
form GPT-4o and its 70B counterpart in Time and

Intention domains while using fewer tool calls,
showcasing their efficient tool use. In Math, where
reasoning scales with model size, SMARTAgent
lags behind larger models but remains competi-
tive against baselines using the same architecture.
These results demonstrate that strategic tool use
can bridge the gap between model size and perfor-
mance, making SMARTAgent a resource-efficient
yet powerful alternative.

SMARTAgent generalizes to OOD settings. As
shown in Section 5.1, SMARTAgent effectively
reduces tool calls while achieving better overall
performance on OOD test benchmarks. Notably,
SMARTAgent makes only one-fifth the number of
tool calls compared to the base model in MINTQA,
where tool prompting often leads to excessive re-
liance and decreased accuracy.

Improper tool uses degrade performance. In
the MINTQA and Math domain data, we find that
arbitrary tool use can degrade performance com-
pared to standard chain-of-thought reasoning. This
aligns with our argument in Section 3 that exces-
sive tool reliance can introduce unpredictable side
effects, causing models to struggle with interactive
tool calls. As a result, inference may become pro-

4610

Figure 6: Confidence analysis shows that SMART effec-
tively enhances the model’s decision-making confidence
in selecting the correct reasoning approaches.

longed over multiple rounds, ultimately leading to
incorrect answers. Additionally, we observe that
larger-scale models, including GPT-4o, use tools
less frequently in the Intention domain data, result-
ing in a greater performance drop than even the
7B-scale SMARTAgent. This may stem from their
overconfidence in assisting users, leading them to
overlook specific user preferences.

SMARTAgent achieves near-optimal tool use.
Datasets such as Time and MINTQA contain up-
to-date knowledge necessitating tool use. Ideally,
at least one tool call per query is required for
a correct answer, and SMARTAgent consistently
maintains an average close to one, reflecting near-
optimal efficiency. Similarly, in the Intention do-
main, where queries contain two to four missing
details, SMARTAgent invokes tools three times per
query, aligning with the expected need.

5.3 Analysis and Case Studies
SMARTAgent effectively reduces tool overuse.
Beyond measuring tool use per query, we calculate
the tool overuse rate, as defined in Section 3, and
report results in Section 5.2 for GSM8K and Math
domain test data. Notably, SMARTAgent reduces
unnecessary tool calls by up to 50% compared to
prompting the base model with tool access. How-
ever, despite this reduction, tool overuse persists,
which we further examine in error analysis.

Error analysis. We provide error analysis in Ta-
ble 5, highlighting common failure causes. Tool
prompting leads to errors across all categories,
while SMARTAgent reduces repetitive calls and
improves argument accuracy. However, feedback
neglect still causes tool invocation failures, partic-
ularly with the Code tool, and excessive caution
in ensuring calculation accuracy adds overhead.
This mirrors human task-solving, where we some-
times rely on calculators despite knowing the steps.

Future work may explore balancing convenience,
budget, and efficiency to enhance decision-making.

Case Study. In Figure 7, we compare the solu-
tion chains of SMARTAgent and the base model
with tool prompting. SMARTAgent demonstrates
logical planning, context corroboration, and an
awareness of its limitations and knowledge bound-
aries, with clear justifications for its decisions. This
metacognitive approach closely mirrors human rea-
soning processes, making SMARTAgent’s reason-
ing more interpretable and significantly reducing
tool use overhead.

Confidence Validation Experiment. To evalu-
ate SMARTAgents’ ability to choose between in-
ternal reasoning and tool invocation, we conducted
experiments using special tokens to analyze deci-
sion confidence. Specifically, we trained the model
on Time and Intention domains, introducing spe-
cial tokens: “[[Reasoning]]” for internal reasoning,
“[[AskUser]]” for the AskUser tool, and “[[Search]]”
for the Search tool. These tokens, prepended at
each step, guided decision-making during training
(see Appendix C.5). For evaluation, we sampled
50 decision steps from both domains’ test splits,
measuring confidence via token logits. Decisions
were categorized as correct or incorrect based on
alignment with ground truth. As shown in Figure 6,
the model exhibited higher confidence in correct de-
cisions, demonstrating SMART’s effectiveness in
boosting confidence and distinguishing between
internal knowledge and tool use.

6 Discussions

Agent’s improper tool usage. Our empirical
analysis reveals a notable phenomenon of tool
overuse, where agents frequently rely on external
tools even when internal knowledge is sufficient.
This over-reliance likely arises from two factors:
i) the agent’s uncertainty about its own capabili-
ties, and ii) the perceived ease of external lookups
compared to internal reasoning. We also observe
instances of tool underuse, especially in large-scale
models like GPT-4o and Llama-70B, where agents
neglect to call essential tools, possibly due to mis-
judging the complexity of the task. Both overuse
and underuse contribute to concerns over compu-
tational efficiency and solution accuracy. Future
research could explore methods to better balance
these trade-offs, such as by introducing explicit
resource constraints or budgets for tool calls.

4611

Table 5: Error analysis of common task failure causes, with explanations and examples.

Figure 7: Case study comparing the performance of Tool Prompting and SMARTAgent.

Table 6: Statistics on tool overuse, defined in Section 3.

Mechanisms behind human and LM’s decision–
making. Cognitive science suggests that human
decision-making arises from both intuitive judg-
ments and reflective strategies. Similarly, in lan-
guage models (LMs), problem-solving is influ-
enced by implicit heuristics (e.g., memorized pat-
terns) and explicit tool-using behaviors. When
tools are available, LMs often default to external
queries, akin to humans seeking external confir-
mation when uncertain. However, unlike humans,
LMs lack self-monitoring and rely on external or
data-driven cues to determine when to trust their
internal knowledge. Developing frameworks that
integrate implicit heuristics with explicit reasoning
could lead to more adaptive and efficient decision-
making in LMs.

Enhancement of model’s self-awareness. Our
data-driven calibration strategy, which provides
explicit rationales for when to rely on internal
knowledge versus external tools, shows promis-
ing results. Other approaches, such as confidence

probing via logits, integration of specialized self-
checking modules, or reinforcement learning from
feedback, might also refine tool usage thresholds.
Future research could investigate how these signals
affect the model’s internal distributions and iden-
tify representations that capture the awareness of
boundaries. Additionally, iterative or in-context
learning could allow real-time metacognitive cali-
bration, offering a more efficient safeguard against
both overuse and underuse of resources.

7 Conclusion

Inspired by human metacognition in decision-
making, we propose the SMART paradigm for
agent reasoning, where agents recognize their
knowledge boundaries to decide when to use tools
or parametric knowledge. Specifically, SMART-
ER refines this decision boundary by incorporating
questions that highlight areas where current LMs
excel and struggle. Using these curated reasoning
chains, we train SMARTAgent to better balance
tool use and parametric knowledge, reducing tool
overuse. Our results show that a simple data-driven
approach can effectively calibrate model awareness,
paving the way for efficient, low-resource agent
development where “smartness” stems from both
performance and metacognitive ability to optimize
the reasoning strategy.

4612

Limitations

Our study focuses on three key domains where
LLMs explicitly struggle—Math, Intention, and
Time—building on insights from existing litera-
ture. However, LLMs also face challenges in areas
such as long-tail knowledge and domain-specific
expertise, where external resources are essential.
Expanding SMART-ER to these domains could fur-
ther refine model self-awareness and improve cal-
ibration in knowledge boundary, complementing
the strong OOD performance that SMARTAgent
has already demonstrated. Additionally, while we
evaluate our approach on two major model families,
extending our analysis to a broader range of archi-
tectures, including Qwen, DeepSeek, and varying
model sizes, could further validate and enhance the
generalizability of our findings.

Acknowledgment

This research is based upon work supported
DARPA ITM Program No. FA8650-23-C-7316,
DARPA ECOLE Program No. #HR00112390060
and the Molecule Maker Lab Institute: an AI re-
search institute program supported by NSF under
award No. 2019897. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References
Alfonso Amayuelas, Kyle Wong, Liangming Pan,

Wenhu Chen, and William Wang. 2023. Knowledge
of knowledge: Exploring known-unknowns uncer-
tainty with large language models. arXiv preprint
arXiv:2305.13712.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2024. Large language models as
tool makers. In The Twelfth International Conference
on Learning Representations.

Lida Chen, Zujie Liang, Xintao Wang, Jiaqing Liang,
Yanghua Xiao, Feng Wei, Jinglei Chen, Zhenghong
Hao, Bing Han, and Wei Wang. 2024a. Teach-
ing large language models to express knowledge
boundary from their own signals. arXiv preprint
arXiv:2406.10881.

Xiusi Chen, Jyun-Yu Jiang, Wei-Cheng Chang, Cho-Jui
Hsieh, Hsiang-Fu Yu, and Wei Wang. 2024b. Min-

Prompt: Graph-based minimal prompt data augmen-
tation for few-shot question answering. pages 254–
266, Bangkok, Thailand.

Xiusi Chen, Yu Zhang, Jinliang Deng, Jyun-Yu Jiang,
and Wei Wang. 2023. Gotta: generative few-shot
question answering by prompt-based cloze data aug-
mentation. In Proceedings of the 2023 SIAM Inter-
national Conference on Data Mining (SDM), pages
909–917. SIAM.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Jie He, Nan Hu, Wanqiu Long, Jiaoyan Chen, and Jeff Z.
Pan. 2024. MINTQA: A multi-hop question answer-
ing benchmark for evaluating llms on new and tail
knowledge. arXiv preprint arXiv:2412.17032.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. arXiv preprint
arXiv:2310.03128.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El-Showk,
Andy Jones, Nelson Elhage, Tristan Hume, Anna
Chen, Yuntao Bai, Sam Bowman, Stanislav Fort,
Deep Ganguli, Danny Hernandez, Josh Jacobson,
Jackson Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know. arXiv preprint arXiv:2207.05221.

4613

https://openreview.net/forum?id=qV83K9d5WB
https://openreview.net/forum?id=qV83K9d5WB
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16
https://doi.org/10.18653/v1/2024.acl-long.16

Moxin Li, Yong Zhao, Yang Deng, Wenxuan Zhang,
Shuaiyi Li, Wenya Xie, See-Kiong Ng, and Tat-Seng
Chua. 2024. Knowledge boundary of large language
models: A survey. arXiv preprint arXiv:2412.12472.

Chen Ling, Xujiang Zhao, Jiaying Lu, Chengyuan Deng,
Can Zheng, Junxiang Wang, Tanmoy Chowdhury,
Yun Li, Hejie Cui, Xuchao Zhang, et al. 2023. Do-
main specialization as the key to make large language
models disruptive: A comprehensive survey. arXiv
preprint arXiv:2305.18703.

Jennifer Livingston. 2003. Metacognition: An
overview.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and
Kai-Wei Chang. 2022. A survey of deep learn-
ing for mathematical reasoning. arXiv preprint
arXiv:2212.10535.

Marvin Minsky. 1986. The Society of Mind. Simon &
Schuster.

Kangyun Ning, Yisong Su, Xueqiang Lv, Yuanzhe
Zhang, Jian Liu, Kang Liu, and Jinan Xu. 2024.
Wtu-eval: a whether-or-not tool usage evaluation
benchmark for large language models. arXiv preprint
arXiv:2407.12823.

Mathematical Association of America (MAA). 2023.
American mathematics competitions.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024.
Training software engineering agents and verifiers
with swe-gym. In arxiv.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang,
Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur, and
Heng Ji. 2025a. Toolrl: Reward is all tool learning
needs. arXiv preprint arXiv:2504.13958.

Cheng Qian, Hongyi Du, Hongru Wang, Xiusi Chen,
Yuji Zhang, Avirup Sil, Chengxiang Zhai, Kathleen
McKeown, and Heng Ji. 2025b. Modelingagent:
Bridging llms and mathematical modeling for real-
world challenges. arXiv preprint arXiv:2505.15068.

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023a. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
6922–6939.

Cheng Qian, Peixuan Han, Qinyu Luo, Bingxiang He,
Xiusi Chen, Yuji Zhang, Hongyi Du, Jiarui Yao, Xi-
aocheng Yang, Denghui Zhang, et al. 2024a. Es-
capebench: Pushing language models to think outside
the box. arXiv preprint arXiv:2412.13549.

Cheng Qian, Bingxiang He, Zhong Zhuang, Jia Deng,
Yujia Qin, Xin Cong, Zhong Zhang, Jie Zhou,
Yankai Lin, Zhiyuan Liu, et al. 2024b. Tell me
more! towards implicit user intention understand-
ing of language model driven agents. arXiv preprint
arXiv:2402.09205.

Cheng Qian, Shihao Liang, Yujia Qin, Yining Ye,
Xin Cong, Yankai Lin, Yesai Wu, Zhiyuan Liu,
and Maosong Sun. 2024c. Investigate-consolidate-
exploit: A general strategy for inter-task agent self-
evolution. arXiv preprint arXiv:2401.13996.

Cheng Qian, Chenyan Xiong, Zhenghao Liu, and
Zhiyuan Liu. 2024d. Toolink: Linking toolkit cre-
ation and using through chain-of-solving on open-
source model. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
831–854.

Cheng Qian, Xinran Zhao, and Sherry Tongshuang Wu.
2023b. "merge conflicts!" exploring the impacts of
external distractors to parametric knowledge graphs.
arXiv preprint arXiv:2309.08594.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023. Tool
learning with foundation models. arXiv preprint
arXiv.2304.08354, 10.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li,
Zhiyuan Liu, and Maosong Sun. 2024. Toolllm: Fa-
cilitating large language models to master 16000+
real-world apis. In The Twelfth International Confer-
ence on Learning Representations.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2025. Tool learning with large language mod-
els: A survey. Frontiers of Computer Science,
19(8):198343.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023. Investigating the fac-
tual knowledge boundary of large language mod-
els with retrieval augmentation. arXiv preprint
arXiv:2307.11019.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539–68551.

4614

https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

Gregory Schraw and David Moshman. 1995. Metacog-
nitive theories. Educational psychology review,
7:351–371.

Yuanhao Shen, Xiaodan Zhu, and Lei Chen. 2024.
Smartcal: An approach to self-aware tool-use eval-
uation and calibration. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing: Industry Track, pages 774–789.

AgentGPT Team. 2024. Agentgpt.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving. XAgent blog.

Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry
Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny
Zhou, Quoc Le, et al. 2023. Freshllms: Refreshing
large language models with search engine augmenta-
tion. arXiv preprint arXiv:2310.03214.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025a. Otc: Optimal
tool calls via reinforcement learning. arXiv preprint
arXiv:2504.14870.

Hongru Wang, Rui Wang, Boyang Xue, Heming Xia,
Jingtao Cao, Zeming Liu, Jeff Pan, and Kam-Fai
Wong. 2024a. Appbench: Planning of multiple apis
from various apps for complex user instruction. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages
15322–15336.

Hongru Wang, Boyang Xue, Baohang Zhou, Rui Wang,
Fei Mi, Weichao Wang, Yasheng Wang, and Kam-
Fai Wong. 2024b. UniRetriever: Multi-task candi-
dates selection for various context-adaptive conver-
sational retrieval. In Proceedings of the 2024 Joint
International Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024), pages 17074–17086, Torino, Italia.
ELRA and ICCL.

Hongru Wang, Boyang Xue, Baohang Zhou, Tianhua
Zhang, Cunxiang Wang, Huimin Wang, Guanhua
Chen, and Kam-Fai Wong. 2024c. Self-DC: When to
reason and when to act? self divide-and-conquer for
compositional unknown questions. arXiv preprint
arXiv:2402.13514.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wen-
jun Zeng, and S Yu Philip. 2022. Generalizing to
unseen domains: A survey on domain generalization.
IEEE transactions on knowledge and data engineer-
ing, 35(8):8052–8072.

Xingyao Wang, Boxuan Li, Yufan Song, Xiangru
Tang, Frank F. Xu, Bowen Li, Jiayi Pan, Mingchen
Zhuge, Niklas Muennighoff, Yizhe Zhang, Ren Ma,
Hoang H. Tran, Yanjun Shao, Bill Qian, Fuqiang
Li, Jaskirat Singh, Yueqi Song, Mingzhang Zheng,
Binyuan Hui, Junyang Lin, Robert Brennan, Hao
Peng, Heng Ji, and Graham Neubig. 2025b. Open-
hands: An open platform for ai software developers
as generalist agents. In Proc. The Thirteenth Inter-
national Conference on Learning Representations
(ICLR2025).

Zekun Wang, Ge Zhang, Kexin Yang, Ning Shi,
Wangchunshu Zhou, Shaochun Hao, Guangzheng
Xiong, Yizhi Li, Mong Yuan Sim, Xiuying Chen,
et al. 2023. Interactive natural language processing.
arXiv preprint arXiv:2305.13246.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022a. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Shujin Wu, May Fung, Cheng Qian, Jeonghwan Kim,
Dilek Hakkani-Tur, and Heng Ji. 2025. Aligning llms
with individual preferences via interaction. In Proc.
The 31st International Conference on Computational
Linguistics (COLING2025).

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen
Ding, Boyang Hong, Ming Zhang, Junzhe Wang,
Senjie Jin, Enyu Zhou, et al. 2023. The rise and
potential of large language model based agents: A
survey. arXiv preprint arXiv:2309.07864.

Boyang Xue, Fei Mi, Qi Zhu, Hongru Wang, Rui Wang,
Sheng Wang, Erxin Yu, Xuming Hu, and Kam-Fai
Wong. 2024. Ualign: Leveraging uncertainty esti-
mations for factuality alignment on large language
models. arXiv preprint arXiv:2412.11803.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Xunjian Yin, Xu Zhang, Jie Ruan, and Xiaojun Wan.
2024. Benchmarking knowledge boundary for large
language model: A different perspective on model
evaluation. arXiv preprint arXiv:2402.11493.

4615

https://github.com/reworkd/AgentGPT
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/
https://aclanthology.org/2024.lrec-main.1483/

Zhangyue Yin, Qiushi Sun, Qipeng Guo, Jiawen Wu,
Xipeng Qiu, and Xuan-Jing Huang. 2023. Do large
language models know what they don’t know? In
Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 8653–8665.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou
Wang. 2024. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39.

Pengfei Yu and Heng Ji. 2024. Information associa-
tion for language model updating by mitigating LM-
logical discrepancy. In Proceedings of the 28th Con-
ference on Computational Natural Language Learn-
ing, pages 117–129, Miami, FL, USA. Association
for Computational Linguistics.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung,
Hao Peng, and Heng Ji. 2024. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. In Proc. The Twelfth International Confer-
ence on Learning Representations (ICLR2024).

Hanning Zhang, Shizhe Diao, Yong Lin, Yi Fung, Qing
Lian, Xingyao Wang, Yangyi Chen, Heng Ji, and
Tong Zhang. 2024. R-tuning: Instructing large lan-
guage models to say ‘i don’t know’. In Proceedings
of the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Pa-
pers), pages 7106–7132.

4616

https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10
https://doi.org/10.18653/v1/2024.conll-1.10

Appendix

A Preliminary Study Details

A.1 Agent Experiment Details

The system instruction that we provide to both the
XAgent and AgentGPT is:

Prompt for Agent Preliminary Study

Solve the following task accurately, and use tools to
help you only if necessary.

For LM-driven agent systems, we first prompt
GPT-4o with all the questions from the GSM8K
test set without using any tools. We then filter out
only the questions that GPT-4o can correctly an-
swer through pure text-based reasoning. From this
refined dataset, we randomly sample 50 questions
to evaluate AgentGPT and XAgent’s performance.
Surprisingly, despite the core model being capable
of solving all sampled questions without external
tools, it still heavily relies on tools during reason-
ing, leading to tool overuse.

A.2 Model Experiment Details

For both Llama-3.1-8B-Instruct and Mistral-7B-
Instruct-v0.3, we prompt the model to do inference
two times for each question from GSM8K’s test set.
The first time we instruct the model to reason nor-
mally to solve the query with the following system
instruction:

Prompt for Model Preliminary Study (Normal)

You are an advanced assistant designed to solve tasks
autonomously using your knowledge and reasoning.
Clearly articulate your thought process and reasoning
steps before presenting the final response to ensure
transparency and accuracy.

The second time, we give the model access to
tools and instruct it to independently decide when
to use them based on the following system instruc-
tion:

Prompt for Model Preliminary Study (Tool)

Task
You are a highly capable assistant designed to solve
tasks effectively using your knowledge and available
tools.

Principles
1. Reason Independently:
• Leverage your own knowledge to analyze and solve
reasoning steps whenever possible. Use external tools
only when necessary.
2. Tool Usage:
• Use code snippet “‘python ... “‘ to write, execute a
python code snippet, and retrieve the result from its
printed output.
3. Step-by-Step Approach:
• Work through reasoning systematically, breaking
down the task into manageable steps. Rely on your
knowledge until a gap is identified that requires tool
support. Employ tools to address gaps and integrate
the findings into your solution.
4. Goal-Oriented Resolution:
• Conclude your reasoning process by achieving a
clear, accurate, and succinct solution based on your
independent analysis and insights gained from tools.

Output Guidelines
• If you need to use the code tool, please wrapped
it “‘python ... “‘ and write the code snippet inside.
Make sure you include all the packages necessary and
the code is executable. And then you should stop
generating.
• If you just begin to generate reasoning steps, please
directly reason after "### Reasoning Steps".
• If you are generating after the output of a code
snippet, please continue to do the reasoning in your
output, you can still call the tool if necessary.
• Finally you should give a succinct and accurate final
response to directly address the task after "### Final
Response".

We provide a code-writing and execution envi-
ronment, specifically designed to assist with com-
plex math tasks and calculations. Whenever the
model generates a code snippet in its output, we
parse and execute it, returning the result. The
model then continues reasoning based on its pre-
vious steps and the executed output. This process
iterates until a final response is reached.

B Data Construction Details

B.1 Data Selection

For the Math domain, we first collect questions
that the current GPT model answers incorrectly,
ensuring their inherent difficulty. We then decom-
pose the ground truth reasoning chain to assess
the complexity of each step, selecting questions
that contain both straightforward and challenging
aspects to provide a balanced reasoning task.

For the Time domain, we filter out all questions

4617

explicitly labeled as involving fast-changing facts.
Given the limited number of such questions, we
further augment the dataset using a self-instruct ap-
proach, prompting the GPT model to generate addi-
tional queries related to rapidly evolving informa-
tion. To introduce compositional reasoning, each
generated query is expanded with an additional sub-
question involving well-established, slow-changing
facts, forming multi-hop queries that require a nu-
anced understanding of temporal knowledge.
For the Intention domain, we filter out all

queries labeled as vague in task definition, par-
ticularly those requiring explicit user clarification.
To ensure that each query remains solvable with-
out tool reliance, we probe GPT to verify that the
model can generally answer each selected question
without application of tools. This filtering process
refines the dataset to only include queries where
the model’s performance is not hindered by a lack
of inherent capability but rather by the absence of
user-provided intent.
The data adaptation process is fully automated,

with manual checks conducted on 5% of the sam-
ples at each stage to ensure the quality of the final
filtered questions.

B.2 Reasoning Chain Construction

Empirically, we incorporate three tools in our con-
structed tool set:

• Code: An environment for code writing and exe-
cution, enhancing the model’s capability in com-
plex calculations, equation solving, and related
tasks. To use this tool, the model must gener-
ate an executable code snippet within ”’python
<code> ”’ and print the output to obtain the exe-
cution results.

• Search: A real-time web search tool for re-
trieving the most up-to-date factual knowledge
or information beyond the model’s parametric
knowledge. To invoke this tool, the model
should provide a search query in the format
Search(<query>) to obtain relevant search en-
gine results. We empirically use the Serper API
as the backend search engine.

• AskUser: A tool for querying the user to clarify
intentions, preferences, or general inquiries. This
tool enables the model to retrieve user-provided
responses by issuing a user-oriented query in the
format AskUser(<query>). To simulate user re-
sponses in our experiments, we employ a GPT
model as the backend.

From the constructed reasoning chains, we empiri-
cally observe that the Code tool is mainly used in
the Math domain, the Search tool is mainly uti-
lized in the Time and Intention domains, while the
AskUser tool is mainly employed in the Intention
domain.
For each step involving the auxiliary modelM ,

we manually verify data quality to ensure: i) tasks
are decomposed into fine-grained, reasonable sub-
goals, ii) tool-calling formats are correct, and iii)
justifications align with labels and accurately ex-
plain why parametric knowledge suffices or a spe-
cific tool is required. Through iterative optimiza-
tion of instructions to M , we achieve a final pass
rate exceeding 95%.

Hyperparameter Value

Models Llama-3.1-8B, Mistral-7B
Fine-tuning Method SFT
PEFT LoRA
LoRA Rank 16
LoRA Alpha 32
LoRA Dropout 0.05
LoRA Target All Layers
Sequence Length (cutoff_len) 4096 tokens
Batch Size (Per Device) 2
Gradient Accumulation Steps 4
Learning Rate 1e-4
Learning Rate Scheduler Cosine
Warmup Ratio 0.1
Number of Epochs 3
Precision bfloat16

Table 7: Hyperparameters during Fine-Tuning.

B.3 Training

For fine-tuning, we used Llama-3.1-8B-Instruct2,
Llama-3.1-70B-Instruct, Mistral-7B-Instruct-
v0.33, Mistral-Nemo-Instruct-24074, and
Mistral-Small-24B-Instruct-25015 as base
models. We applied supervised fine-tuning
(SFT) in the Alpaca instruction-following format
(Instruction-Input-Output), computing the loss
only on tokens in the Output field.
Training was conducted on 4 NVIDIA A40

GPUs using LoRA (Low-Rank Adaptation) with
a rank of 16 and an alpha of 32, applied across
all model layers. The maximum sequence length

2https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

3https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

4https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

5https://huggingface.co/mistralai/
Mistral-Small-24B-Instruct-2501

4618

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501
https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501

was set to 4096 tokens, and models were trained
for 3 epochs with a learning rate of 1e-4, using a
cosine learning rate scheduler with a 10% warmup
ratio. To manage memory constraints, we set a
per-device batch size of 2 and applied gradient ac-
cumulation over 4 steps. Training used bfloat16
(bf16) precision, with evaluations every 100 steps,
using 1% of the dataset for validation. Fine-tuning
hyperparameters are detailed in Table 7.
The system instruction for finetuning is pre-

sented in the following:

System Instruction for Training

You are a highly capable assistant designed to solve
tasks effectively using your knowledge and available
tools. Follow these principles:

1. Reason Independently: Leverage your own
knowledge to analyze and solve reasoning steps
whenever possible. Use external tools only when
necessary.
2. Tool Usage:
<Specific Tool Description>
3. Step-by-Step Approach:
• Work through reasoning systematically, breaking
down the task into manageable steps.
• Rely on your knowledge until a gap is identified that
requires tool support.
• Employ tools to address gaps and integrate the
findings into your solution.
4. Goal-Oriented Resolution:
Conclude your reasoning process by achieving a clear,
accurate solution based on your independent analysis
and insights gained from tools. After your reasoning,
provide your response to directly address the task.

Your reasoning should be transparent, logical,
and concise. Stop and document the reasoning
whenever you need to use a tool to gather more
information. Continue until you reach the final
solution and give final response.

C Experiment Details

C.1 Data Setting
For in-domain testing, we use a subset of adapted
SMART-ER data. Specifically, for the Math do-
main, we randomly sample 400 test instances from
MATH, ensuring coverage of all testing categories
(algebra, geometry, number theory, etc.), while
spanning five difficulty levels. For the Time do-
main, we select 100 randomly sampled adapted
data points from FreshQA, ensuring that each in-
stance incorporates both fast-changing and slow-
changing aspects. For the Intention domain, we
randomly sample 100 data points from Intention-in-
Interaction, ensuring that all selected instructions
are vague and require specific user preferences to
resolve.

For out-of-domain testing, we directly use the
full test set of GSM8K without modifications. For
MINTQA, due to its large size, we randomly sam-
ple 10% of the data points that meet the following
criteria: the question requires multi-hop reasoning
and contains both old and new knowledge. This se-
lection ensures a challenging test set that evaluates
the model’s ability to generalize beyond in-domain
tasks while maintaining a focus on complex reason-
ing and real-world knowledge retrieval.

C.2 Baselines

For the baseline Normal Reasoning Trained, we
train a separate model for each domain. Specifi-
cally, for Math, Time, and Intention, we use the
same queries as in the SMART-ER training set.
In the Math domain, we leverage existing solution
chains from the MATH dataset as training data. For
the IN3 and Time domains, we use GPT-4o to gen-
erate normal reasoning chains, guided by existing
annotations on final answers or missing details as
heuristics. These domain-specific solution chains
are then used to train the model.

For the baseline Base Model Reasoning Prompt,
we use the following system instruction to evaluate
the model’s performance:

Base Model Reasoning Prompt

You are an advanced assistant designed to solve tasks
autonomously using your knowledge and reasoning.
Clearly articulate your thought process and reasoning
steps before presenting the final response to ensure
transparency and accuracy.
In the field ’### Reasoning Steps’, clearly articulate
your thought process and reasoning steps towards the fi-
nal answer. Then you should present a succinct and ac-
curate final response in the field ’### Final Response’.

For the baseline Base Model Tool Prompt, we
use the same system prompt as in appendix A.2,
allowing the model to access tools and freely decide
whether and when to use them.

C.3 Interactive Inference

For both the baseline Base Model Tool Use and our
SMARTAgent, we adopt an interactive approach for
inference. Specifically, we first prompt the target
model with the query and obtain its output. In this
output, we use a rule-based natural language match-
ing method to determine whether a tool call or a
final answer is present (e.g., detecting whether “###
Final Response” appears in the output to identify
the final response).
If the final response is found, we extract it and

4619

terminate the iterative process. If a tool call is
detected, we parse the parameters provided by the
model to execute the tool call. Based on the specific
tool’s name, we invoke the corresponding API and
integrate its output into the model’s response. Next,
we append the model’s reasoning before the tool
call, the tool call itself, and its output to the model’s
input. We then re-prompt the model to continue
reasoning, given the previously executed tool call
and its result.
This iterative process continues until the final

response is successfully parsed and retrieved, form-
ing the complete interactive inference process.

Below, we illustrate the respective input and out-
put in an iterative inference process consisting of
two iterations:

Interactive Inference

——— Iterate 2 Input Begin ———

— Iterate 1 Input Begin —
Task
<target task>
Reasoning Steps
— Iterate 1 Input End —

== Iterate 1 Output Begin ==
- Step 1: <title>, general reasoning
<reasoning>
- Step 2: <title>, tool: <tool name>
<tool call parameter>
== Iterate 1 Output End ==
- Output: <tool execution output>

——— Iterate 2 Input End ———

====== Iterate 2 Output Begin ======
- Step 3: <title>, general reasoning
<reasoning>
- Step 4: ...
...
...
Final Response
<final answer>
====== Iterate 2 Output End ======

C.4 Additional Results

We also provide results from the latest Llama-3.3-
70B-Instruct6 model in Appendix C.3, comparing
its performance with the Llama-3.1-70B-Instruct-
based SMARTAgent. Although Llama-3.3 is the
newest version, we use the 3.1 series to maintain
consistency with the 8B model, which is also from
the 3.1 version. Empirically, we found no signifi-
cant difference in performance between the 3.3 and

6https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct

3.1 versions of the 70B model.

C.5 Confidence Validation

We independently train the Llama-3.1-8B-Instruct
and Mistral-7B-Instruct models with the added spe-
cial tokens. At each reasoning step, we prepend
a special token at the very beginning to indicate
the model’s chosen approach—whether it relies on
external tools (e.g., “[[AskUser]]” or “[[Search]]”)
or its own parametric knowledge (e.g., “[[Reason-
ing]]”).

By analyzing the probability of generating each
special token, we can assess the model’s confidence
in its decision-making process. Apart from the
added special tokens, the rest of the original rea-
soning chain remains unchanged, maintaining the
following structured format:

Step Format

- Step <index>: [[Special Token]] <title>
<content>
- Step <index>: ...

We train the model using the exact same hyper-
parameter setting introduced in Appendix B.3. Dur-
ing inference, we randomly sample 50 decision-
making steps from the test split of both the
Time and Intention domains. A decision-making
step refers to the final action in a reasoning se-
quence—given the previous n− 1 steps, we evalu-
ate whether the model correctly decides between
using a tool or relying on its parametric knowl-
edge for the nth step. This evaluation is performed
within the context of the full solution chain, which
consists ofm steps in total (m ≥ n).

D Additional Evaluation and Analysis

To address concerns regarding dataset and model
selection, we conducted additional experiments
targeting two key areas: (1) the applicability of
SMARTAgent on more complex reasoning bench-
marks beyond GSM8K, and (2) the behavior of
o1-like models with respect to tool use.

D.1 Evaluation on Advanced Reasoning
Dataset

To assess SMARTAgent’s performance on more
challenging reasoning tasks, we evaluated it on
the AMC’23 benchmark (of America , MAA), a
dataset known for its mathematical complexity and
nuanced problem-solving requirements.

4620

https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct

Method Model Math (MATH) Time (FreshQA) Intention (Intention-in-Interaction)

Tool Used↓
(Times)

Accuracy↑
(%)

Tool Used↓
(Times)

Accuracy↑
(%)

Tool Used↓
(Times)

Missing Details Recovery↑
(Lv3 / Lv2, %)

Summarized Intention
Coverage↑ (%)

Open-Source

SMARTAgent Llama-3.1-70B 0.94 72.50 1.01 66.00 3.51 68.60 / 58.15 86.09
Llama-3.3-70B 0.61 76.25 1.00 65.00 3.15 61.63 / 59.01 84.45

Table 8: Performance of SMARTAgent when using Llama-3.3-70B-Instruct as the base model, compared to the
original results with its Llama-3.1-70B-Instruct counterpart.

We tested two base models: Llama-3.1-8B-
Instruct and Mistral-Nemo-Instruct. We compared
SMARTAgent against a baseline tool prompting
strategy where the tool is always made available
without dynamic control.

Method Llama-3.1-8B-Instruct Mistral-Nemo-Instruct

Tool Prompt Baseline 12.50 15.00
SMARTAgent 17.50 20.00

Table 9: Accuracy (%) on AMC (2023) benchmark.

Table 9 shows that SMARTAgent outperforms
the baseline across both model backbones, high-
lighting its ability to handle complex tasks with
improved reasoning-tool use balance.

D.2 Behavior of o1-like Models

To further investigate different model’s tool use
behavior, we conducted experiments on Deepseek-
R1-Distilled variants of Llama and Qwen. Surpris-
ingly, these models exhibited a tendency toward
tool underuse, contrary to the overuse issue our
paradigm primarily targets.

Model Time AMC (2023)

Deepseek-R1-Distilled-Llama 60.00 12.50
Deepseek-R1-Distilled-Qwen 72.00 37.50

Table 10: Tool Underuse Rate (%) on Time and AMC
tasks.

We define tool underuse as the rate at which a
model fails to invoke a tool in scenarios where
tool use would be expected. As shown in Ta-
ble 10, both distilled models significantly underuti-
lize tools, which we attribute to potential overfitting
to parametric reasoning, a phenomenon aligned
with “overthinking” reported in prior literatures.

D.3 SMARTAgent Adaptation for Distilled
Models

To further test the adaptability of SMARTAgent, we
fine-tuned these distilled models using our SMART

paradigm and evaluated them on a time-domain QA
benchmark.

Method Distilled-Llama Distilled-Qwen

Base Model Reasoning Prompt 30.00 12.00
Base Model Tool Prompt 36.00 26.00
SMARTAgent 40.00 52.00

Table 11: Accuracy (%) on Time-domain QA with Dis-
tilled Models.

Table 11 shows that SMARTAgent enhances
both models’ performance, demonstrating its ef-
fectiveness not only in mitigating overuse but
also in addressing underuse by promoting strate-
gic tool engagement. These findings reinforce
SMART’s broader applicability across diverse rea-
soning paradigms and model types.

4621

