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Abstract

The main computational challenge in Bayesian inference is to compute integrals against
a high-dimensional posterior distribution. In the past decades, variational inference (VI) has
emerged as a tractable approximation to these integrals, and a viable alternative to the more
established paradigm of Markov Chain Monte Carlo. However, little is known about the ap-
proximation accuracy of VI. In this work, we bound the TV error and the mean and covariance
approximation error of Gaussian VI in terms of dimension and sample size. Our error analysis
relies on a Hermite series expansion of the log posterior whose first terms are precisely cancelled
out by the first order optimality conditions associated to the Gaussian VI optimization problem.

1 Introduction

A central challenge in Bayesian inference is to compute integrals against a posterior distribution 7
on R?. The classical approach is to sample the posterior using Markov Chain Monte Carlo (MCMC),
in which a Markov chain designed to converge to 7 is simulated for sufficiently long time. However,
MCMC can be expensive, and it is notoriously difficult to identify clear-cut stopping criteria for
the algorithm [6]. An alternative, often computationally cheaper, approach is variational inference
(VI) [4]. The idea of VI is to find, among all measures in a certain parameterized family P, the
closest measure to w. While various notions of proximity have been proposed since the introduction
of VI [7, 8], we employ here KL divergence, which is by far the most common choice. Typically, the
family P is selected so that integrals against measures in the family are either readily available or
else easily computable. In this work, we consider the family of Gaussian distributions. We define

# = N(m,S) € argmin KL(p || 7), (1.1)
PEPGauss

where Paauss denotes the family of non-degenerate Gaussian distributions on R?. With the Gaus-
sian approximation # in hand, we can now approximate [ gdm using [ fdx. For certain g (e.g.
polynomials), the latter integral can be computed in closed form in terms of 7 and S. Otherwise,
Gaussian sampling can be employed, which is much cheaper than MCMC for the original measure.

A key difference between MCMC and VI is that unbiased MCMC algorithms yield arbitrarily
accurate samples from 7 if they are run for long enough. On the other hand, the output of a
perfect VI algorithm is 7, which is itself only an approximation to w. Therefore, a fundamental
question in VI is to understand the quality of the approximation 7 &~ 7. In this work, we bound
the approximation error f gdm — f gdw for a wide class of functions g, as well as several particular



metrics of interest: the TV error TV (w,7) and the mean and covariance errors ||/ — m|| and
|5 — 2||, where m, X are the true mean and covariance of 7, respectively.

Of course, we cannot expect an arbitrary, potentially multimodal 7 to be well-approximated
by a Gaussian distribution. In the setting of Bayesian inference, however, the Bernstein-von Mises
theorem (BvM) guarantees that under certain regularity conditions, a posterior distribution con-
verges to a Gaussian density in the limit of large sample size [27, Chapter 10]. To understand why
this is the case, consider a generic posterior m = 7, with density of the form

n

(0 | 21.) x v(0) Hpg(l‘i) (1.2)
i=1
Here, v is the prior, pyg is the model density, and x1., = x1, ..., x, are i.i.d observations. Provided

v and py are everywhere positive, we can write m,, as

n
—nop (0 — _l ) l

m(0) x e ), v (0) == - ;logpg(xz) - log v(0). (1.3)
As n increases, we expect that v, approaches v, the m-independent negative population log
likelihood, a.k.a. the cross-entropy. Therefore, if n is large and vy, has a unique global minimum,
then 7, will place most of its mass in a neighborhood of this point. In other words, m, is effectively
unimodal, and hence a Gaussian approximation is reasonable in this case. This reasoning drives a
second strategy to approximate posterior, whereby 7, is a Gaussian centered at the global minimizer
of v,. While the accuracy of the Laplace approximation has been the subject of many works,
including recent ones (see below), no comparable results exist for Gaussian VI. The main goal of
this paper is to establish such approximation error bounds.

Main contributions In our above heuristic justification of a Gaussian approximation to m = m,,
we considered a sequence of functions v, converging to some vy, as n — co. However, our results
do not require this setup. Instead, we simply consider a target measure of the form 7 o ™™ with
v € C*(R?), and we impose a requirement on the triple (v,d,n). Namely, we assume az(v)d//n is
smaller than a certain constant and az(v)d//n + a4(v)d?/n < 1, where az(v) and a4(v) bound the
size of the third and fourth derivatives of v (see Assumption 2 for the precise definition). Our error
bounds are in line with this condition on (v,d,n), in the sense that the errors are small provided
az(v)d/v/n + as(v)d?/n is small. Up to this restriction, v is free to depend on both d and n.
Assuming also that v has a unique global minimizer m*, that ||V3v|| and || V*v|| grow at most
polynomially away from m*, and that v grows at least linearly away from m*, we show the following

error bound for a wide class of functions g:
<o V1V Var(g) { (d/\/n)?, g even about m, (1.4)

‘/ gdﬁ_/ "= (d/v/n)?, g linear.

We have hidden the v-dependent factors as(v),as(v) within the <, symbol for maximal clarity,
though these factors may in principle affect the order of magnitude of the upper bound. See
Theorem 2.1 for the precise statement of the result and observe that the mean a posteriori, i.e.
Bayes estimator, is approximated at the fastest of these three rates. The second bound in (1.4) is
enabled by a leading order expansion of the error. Namely, we show that

d 2
/gdw - /gdfr = /deﬁ+ Remy, |Remg| Sy v/1V Varz(g) <\/ﬁ) , (1.5)

d/\/m,
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where @) is a certain cubic polynomial which is odd about m. Thus if ¢ is even about m, then
the leading order term [ gQd# vanishes. Similarly, the third bound in (1.4) is enabled by a higher
order expansion of the error. We note that having derived the leading order term not only provides
valuable insight into the error, but also opens the door to correcting the Gaussian measure 7 to get
the more accurate approximation (1+ Q)7. However, we do not delve into this possibility here and
postpone it for future research. The benefit of improving a Gaussian posterior approximation via
a multiplicative correction was already studied in [19], but for a different, Laplace approximation
to the posterior (defined in (1.8)).

This main result (1.4) gives us a bound on [ gdm — [ gd& which is tailored to the observable g.
We can also apply the result to derive error bounds for common Bayesian quantities of interest. For
example, the following TV bound quantifies the error in using 7 to construct approximate credible
sets for m: p

TV(m,7) <y % (1.6)
We also bound the mean and covariance approximation errors. The posterior mean holds par-
ticular significance in Bayesian inference, since it is the Bayes-optimal estimator of the unknown
parameter with respect to the squared error risk. The posterior covariance is another measure of
the uncertainty in the posterior which can be used in addition to credible sets. To account for the
vanishing variance (on the order of n™!) of 7 oc e, we rescale the below approximation errors
appropriately:

d d

VAl — ] <, (ﬁ) nll$ - 31 S, (ﬁ) (17)

Together, the bounds (1.4), (1.6), and (1.7) give us a comprehensive understanding of the error
induced by using 7 as a proxy for 7 in computing all of the relevant quantities of interest in Bayesian
inference. In Section 3, we apply the general theory to formulate high-probability bounds on the
VI approximation error for a posterior arising from logistic regression with Gaussian design.

Laplace approximation as benchmark for comparison As mentioned above, the Laplace
method is another Gaussian approximation to 7 that is widespread in practice for its computational
simplicity. We use it as a benchmark to put the above error bounds into context. The Laplace
approximation to 7w oc e~ is given by

m = N(m*, (nV?0(m*)) ™), (1.8)

where m* is the global minimizer of v. This approximation simply replaces v by its second order
Taylor expansion around m*. In recent work [19], the first author shows that the TV error and
covariance error of the Laplace approximation are of the same order as that of VI, in terms of both
the d and n dependence. However, the VI mean error is two orders of magnitude smaller than that
of Laplace: (d/y/n)3 for VI vs. d//n for Laplace. See Section 2.3 for a more detailed comparison
of the approximation accuracy of the two methods.

We emphasize that our aim in the present work is not to make a value judgment about Gaussian
VI in comparison to the Laplace approximation. Indeed, the accuracy of a method is not the only
axis on which to judge its overall performance. An overall comparison of the two methods is a del-
icate undertaking that involves computational considerations and varies according to downstream
statistical tasks. It is beyond the scope of the present work to produce a full comparison analysis
but the approximation results should certainly be useful to consider in certain scenarios.

Instead, the main contribution of our work is to supply precise statements of Gaussian VI’s
approximation accuracy, an understanding of which has been virtually nonexistent, lagging far



behind algorithmic developments in the literature. We compare VI to Laplace simply because the
Laplace approximation is another popular approach to ease posterior computation via a Gaussian
fit.

Another way in which the Laplace approximation is relevant to VI is that the proof techniques
developed by the first author in [18] to bound the Laplace approximation error also play a crucial role
in the present work. Specifically, notice that the bounds (1.4), (1.6), and (1.7) are all small provided
d? < n. This dependence on dimension is an improvement over the condition d® < n required in
a long line of work on the BvM and the Laplace approximation accuracy [13, 24, 23, 10, 15, 25].
Since then, the recent works [16] and [18] have developed new proof techniques which reduced the
dependence to d? < n, though only the latter work’s proof techniques are flexible enough to derive
leading order asymptotics in terms of d/+/n.

We employ these same techniques in the present work. In addition, our proof is based on
crucial new insights into why minimization of the KL objective (1.1) leads to good approximation
properties. We now briefly summarize these insights.

First-order optimality conditions and Hermite series expansion Our analysis of the ap-
proximation accuracy of Gaussian VI rests on a remarkable interaction between first-order opti-
mality conditions and a Hermite series expansion of the potential v.

Hereafter, we replace § by x and let V = nv, m o< e~V. The focal point of this work are the
first order optimality equations for the minimization (1.1):

Vin,sKL(N (m, S) || 7)| =0.

(m,S)=(1,5)
This is also equivalent to setting the Bures-Wasserstein gradient of KL(p || 7) to zero at p =
N (m, S) as in [20]. Explicitly, we obtain that (m,S) = (m, S) is a solution to

E[VV(m+S8Y22) =0, E[V*V(m+5/22) =571, (1.9)

where Z ~ N(0, 1) and S'/2 is the positive definite symmetric square root of S; see [20] for this
calculation. In some sense, the fact that # = N (rh, S ) minimizes the KL divergence to m does not
explain why 7 approximates m well. Rather, the true reason has to do with properties of solutions
to the fixed point equations (1.9).

To see why, consider the function Vo(z) = V(1 + §/2z). If 7 x e~V is close to the density of
N (m, S”), then p oc e="° should be close to the density of N'(0, ;). In other words, we should have
that Vo(x) ~ const. + ||z||?/2. This is ensured by the first order optimality equations (1.9). Indeed,
note that (1.9) can be written in terms of Vj as

E[VVo(Z)] =0,  E[VVo(2)] = L. (1.10)

As we explain in Section 4.2, the equations (1.10) set the first and second order coefficients in the
Hermite series expansion of Vj to 0 and Iy, respectively. As a result, Vo(x)—||x||?/2 = const.+73(x),
where r3 is a Hermite series containing only third and higher order Hermite polynomials. The
accuracy of the Gaussian VI approximation for integrating linear and quadratic functions stems
from the fact that the Hermite remainder r3 is of order 73 ~ 1/y/n, and the fact that r3 is orthogonal
to linear and quadratic functions with respect to the Gaussian measure. See Section 4.2 for a high-
level summary of this Hermite series based error analysis.



Related Work The literature on VI can be roughly divided into statistical and algorithmic
works. Works on the statistical side have focused on the contraction of variational posteriors around
a ground truth parameter in the large n (sample size) regime. (We use “variational posterior” as an
abbreviation for variational approximation to the posterior.) For example, [28] prove an analogue
of the Bernstein-von Mises theorem for the variational posterior, [30] study the contraction rate
of the variational posterior around the ground truth in a nonparametric setting, and [2] study the
contraction rate of variational approximations to tempered posteriors, in high dimensions.

A key difference between these works and ours is that here, we determine how well the statistics
of the variational posterior match those of the posterior itself, rather than those of a limiting
(n — oo) distribution. We are only aware of one other work studying the problem of quantifying
posterior approximation accuracy of VI. In [14], the authors consider using the mean m of the
mean-field variational posterior as a proxy for the maximum likelihood estimate in a Bayesian
latent variable model. They show that \/n|[/i — MLE|| < 1/n!'/4.

On the algorithmic side of Gaussian VI, we refer the reader to the works [20, 12] and references
therein. These works complement our analysis in that they provides rigorous convergence guaran-
tees for several algorithms that solves the optimization problem (1.1). See also the discussion in
Section 2.3.

Next, we mention a closely related approximation method called expectation propagation (EP).
In Gaussian EP, one attempts to minimize the KL divergence KL( 7 || p) over all Gaussian measures
p. (Note that the order of 7 and p has been switched relative to (1.1).) Minimizing this objective
amounts to matching the first and second moments of p to those of 7. It is not possible to minimize
this objective directly without resorting to computing integrals against w. So instead, EP works
by iteratively constructing hybrids between the Gaussian distribution and 7, and matching the
moments of the hybrid (which are easier to compute) to those of m. The works [9] and [11] studied
the mean and covariance approximation accuracy of EP with respect to n. Interestingly enough, the
authors showed EP has the exact same mean and covariance accuracy as shown here for traditional
Gaussian VI: ||/ —m| < n 2 and ||S —%|| < n~2 (compare to (1.7)). Whether this is a coincidence
or a result of a deeper connection between the two methods is an interesting avenue to explore.

Finally, we note that [29] also uses Hermite polynomials to provide an approximation to the
posterior. The approximation, given by an Edgeworth series, is effectively a perturbation of a Gaus-
sian measure. The coefficients of the series depend on the cumulants of the posterior distribution.
Thus writing down the series requires computing cumulants, which come from integrals against the
posterior. Therefore, the expansion cannot itself be directly used as a tool to help approximate
integrals against the posterior, which is the goal in our work.

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we state our assumptions and main results
on the Gaussian VI approximation accuracy. In Section 3, we apply the general theory to a logistic
regression posterior. In Section 4, we outline the proof of the main theorems. Finally in Section 5,
we prove the existence and uniqueness of solutions to the first-order optimality conditions (1.9).
Omitted proofs can be found in the Appendix.

Notation

The notation a < b means there is constant C' > 0 such that a < Cb. Unless indicated otherwise, the
suppressed constant is absolute. We let v denote the density of the standard Gaussian distribution
N(0,1;) in d dimensions, and we write either [ fdvy or E[f(Z)] or v(f) for the expectation of f



under . We write Z to denote a standard multivariate Gaussian random variable Z ~ ~ in R%.

We let Varz(f) = [(f — #(f))%d#, and || f|2 = (] f2dy)"/2.
A tensor T of order k is an array T = (E1i2---ik)§l1,...,ik:1- For two order k tensors 17" and S
we let (T,S) be the entrywise inner product. We say T is symmetric if T;, ;, = T}, ,, for all
permutations ji ... jg of iy ... .
Let H be a symmetric positive definite matrix. For a vector z € R? we let ||z|/z denote
||| = VT Hx. For an order k > 2 symmetric tensor 7', we define the H-weighted operator norm
of T' to be

IT||g = sup (T,u®F). (1.11)

By Theorem 2.1 of [31], for symmetric tensors, the definition (1.11) coincides with the standard
definition of operator norm:

sup (Tour® - @u) = ||T|g= sup (T,u®").

luillar==luxllz=1 l[ull =1

When H = I, the norm ||T'||;, is the regular operator norm, and in this case we omit the subscript.

2 Statement of Main Results

In light of the centrality of the fixed point equations (1.9), we begin the section by redefining
(1h, S) as solutions to (1.9) rather than minimizers of the KL divergence objective (1.1). These
definitions diverge only in the case that V is not strongly convex. Indeed, if V is strongly convex
then KL(- || 7) is strongly geodesically convex in the submanifold of Gaussian distributions; see,
e.g., [20]. Therefore, in this case, KL(- || 7) admits a unique minimizer 7 over this submanifold,
corresponding to a unique solution (77, S ) € R% x Sff_ 4 to (1.9). In general, however, there spurious
solutions (m, S) o the first order equations (1.9) that may have poor approximation properties. To
see this, consider the equations in the following form, recalling that v = V/n:

E[Vo(m+SY22)] =0,  SE[VZo(m+ SY22)] = %Id. (2.1)

Let x # my be a critical point of v, that is, Vu(z) = 0, and consider the pair (m,S) = (z,0). For
this (m, S) we have

E[Vo(m+ SY22)] = Vu(z) =0,  SE[VZu(m+SY22)] =0~ -1,

S|

Thus (z,0) is an approximate solution to (2.1), and by continuity, we expect that there is an exact
solution nearby. In other words, to each critical point x of v is associated a solution (m, S) =~ (x,0)
of (2.1). The solution (m,S) of (2.1) which we are interested in, then, is the one near (m.,0).
Lemma 2.1 below formalizes this intuition; we show there is a unique solution (m,.S) to (1.9) in
the set

Ry = {(m,S) eRIxSL, S =< 2H Y | HYPSY2 + || HY P (m —m)|)? < 8}, (2.2)

where Hy = V2V (m.) = nV?v(m,). Note that due to the scaling of Hy with n, the set Ry
is a small neighborhood of (m.,0). We call this unique solution (m,S) in Ry the “canonical”
solution of (1.9). We expect the Gaussian distribution corresponding to this canonical solution
to be the minimizer of (1.1), although we have not proved this. Regardless of whether it is true,



we will redefine (12, S) to denote the canonical solution. Indeed, whether or not # = N (1, S)
actually minimizes the KL divergence or is only a local minimizer is immaterial for the purpose of
approximating 7.

In the rest of this section, we state our assumptions on v, a lemma guaranteeing a canonical
solution m, S to (1.9), and our main results on the approximation accuracy of Gaussian VI .

2.1 Assumptions on the potential

Assumption 1 (Regularity and unique strict minimum). The potential v € C*, with unique global
minimizer * = m*, and H, = VZv(m*) > 0.

Assumption 2 (Polynomial growth of || V*v| g,, k = 3,4.). There is some ¢, a3, as > 0 such that

IV 0(2) |1, < ax (1 v /njd||z — m*HHU)q Vo eRY, k=34, (2.3)
d d &

— < C — — <1 2.4

03\/5_ (q), Ct:s\/ﬁﬂLCMn_ (2.4)

for a certain constant C(q) < 1 depending only on q.
The y/n/d factor in (2.3) is there to “zoom in” on the \/d/n scale, which is the scale at which

the measure m < e~ ™ concentrates.

Assumption 3 (Lower bound on growth of v). There exists ¢y > 0 such that

cov/d/nllx —m*||g, < v(x) —v(m®) Vo |z —m"||g, > 1\/d/n. (2.5)

See Section 2.3 for a discussion of the assumptions.

2.2 Main Results

We are now in a position to state our main results. In this section, we use the notation € = d/\/n.
First, we characterize the Gaussian VI parameters (m, S):

Lemma 2.1. Let Assumptions 1 and 2 be satisfied and let Hy = V2V (m.) = nV2v(ms). Then
there exists a unique (m,S) = (m, S) in the set

Ry = {(m, S)eRIx 8%, + S =20, |Hy2SY2 + || Hy Y2 (m —my)|* < 8}

which solves

E[VV(m+SY22) =0, E[V*V(m+5Y%22) =51

Moreover, S satisfies
2.1 & -1
3y XS =X2H,". (2.6)
For the proof of this lemma, see Section 5. We now state our bounds on the error in using
7 = N(m,S) to approximate expectations under the true measure 7. The main theorem is the

following.

Theorem 2.1. Suppose v satisfies Assumptions 1, 2, and 3, and let m, S be as in Lemma 2.1. Let
g be a function satisfying the following inequality for some Ry > 0:

l9() —/gdﬁ'| < exp (coﬁux—m §_1/4), Va o — g > RyVd. (2.7)



Then
‘/gdﬂ - /gdfr’ < (1 +Var;r(g)%) (aze + ase?) (2.8)
If additionally, g is even about m, then

’/gdﬂ—/gdfr

Finally, if g is linear, then

gdr — [ gdi| < 1+Var7;(g)% a3 + azay) € + aiet) . (2.10)
Jain = Joi] = ( ) (e + 00) €+ )

< (1 + Varﬁ(g)%> (a3 + aq)€>. (2.9)

In all the above bounds, the suppressed constant is an increasing function of q, cal, and Ry.

The improved bound (2.9) actually holds for a somewhat wider class of functions g; see Re-
mark 2.1. For a discussion of the condition (2.7), see Section 2.3.

Theorem 2.2 (Leading order term in VI approximation error). Suppose v satisfies Assump-
tions 1, 2, and 3. Define the function

Qz) = <IE xa[PV(X)], 5o - i) @8 (o~ m)®3> . (2.11)
If g satisfies (2.7), then

’/gdw—/gdfr—/g@dfr

The suppressed constant is an increasing function of q, cgl, and Ry.

< (1 + Varﬁ(g)%> (a3 + aq)é?. (2.12)

See Section 2.3 for further insight into the leading order term [ gQd#.
Remark 2.1. Note that the bound (2.9) from Theorem 2.1 is an immediate corollary of Theorem 2.2,
since [ gQdr = 0 if g is even about 7.

Next, we bound the TV error. Let B(R?) be the set of all Borel sets of R, and Sy, (R?) be the
set of Borel sets symmetric about .

Corollary 2.1 (TV error). Suppose v satisfies Assumptions 1, 2, and 3. Then
sup () — #(A)] S age + are?,
AeB(RY)

sup  |m(A) — 7(A)| < (a3 + aq) €
AESy;, (RY)

(2.13)

The suppressed constant is an increasing function of ¢ and cal.

Corollary 2.2 (Mean and covariance error). Let m = [zdr(z) be the mean of w, and ¥ =
[(z—m)(xz—m)Tdr(z) be the covariance of . Suppose v satisfies Assumptions 1, 2, and 3. Then

1712 (m —m)|| < (a3 + azaq) € + ale,

. a A 2.14
15712(2 - §)S~ 2| < (a3 + a4) €. (2.14)

The suppressed constant is an increasing function of ¢ and 051.



Remark 2.2. Recall from (2.6) that S is equivalent to H~! with respect to the positive definite ma-
trix ordering. Therefore, given a lower bound na < H, we can translate the bounds in Corollary 2.2
into analogous, unweighted bounds:

N

[m = 7|

_ (a§+a3a4)d—3+aid—4
Vn ny/n n?|’

1 d?
Y-S <= [(a? -
RENPS aﬂ%+w)n]

2.3 Discussion

Assumptions on v and g Recall that in Bayesian inference, v is the normalized negative log
posterior, taking the form (1.3), where the x; are i.i.d. In typical situations, we expect that when
n is large, the prior has negligible effect and v(f) ~ —E log pp(X), in which case v depends only
on d. However, our results do not only apply to this typical regime. The function v is allowed to
depend on both n and d, so that the constants from the assumptions — as, a4, q, co — may also
depend on both n and d. Our results hold as long as these quantities and d and n are constrained
by (2.4). However, for the logistic regression example, we will see that as, a4, g, co can all be chosen
to be absolute constants.

When v is convex, Assumption 3 automatically follows from (2.4). Indeed, we have the following
lemma.

Lemma 2.2. Let v be conver and suppose a3(1+(1/2)?)+/d/n < 3. Then v satisfies Assumption 3
with co = 1/8.

See Appendix A for the proof. If v is not convex, note that the condition (2.5) is a nontrivial
requirement only for larger z. To see this, fix the largest possible r such that asr(14+r?)/d/n < 3/2.
Then a straightforward Taylor expansion shows that

1 1 /d
v(@) —v(m?) = Jlle = m|F, > 8\/;”33 —m*|u,

for all x such that (1/2)\/d/n < ||z — m*| g, < rv/d/n. Therefore, (2.5) need only be checked for

o = m*|, > rv/d/n.

Next, let us discuss the condition (2.7) on the function g in Theorem 2.1. The condition is
easiest to check when g is of the form g(z) = f(S~1/2(z — )). In this case, we have the following
sufficient condition.

Lemma 2.3. Let g(x) = f(S~/2(z — 1)) and suppose [ satisfies
() = FO)] < OV vy € RY, (2.15)

for some 0 < o < 1 and Cy > 0. Then for some function Ry = Ry(Cf, «, cal) which is increasing
in each of the variables, the condition (2.7) is satisfied.

See Appendix G for the proof.



Leading order term: VI vs Laplace We can gain insight into the difference between the
Laplace and VI approximations by considering the respective leading order terms (LOTs) of the
difference [ gdm — [ gd#, where 7 is either the Laplace or VI Gaussian approximation. To make
this comparison, we first make note of an alternative representation of the VI leading order term
[ 9Qdr. Let

Vo(z) = V(n+S8Y%),  f(z)=g(in+S"%), (2.16)

and let H3 be the tensor of third order Hermite polynomials. See Appendix E for a primer on Her-
mite polynomials in dimension d > 1. Let As(f) = E[f(Z)H3(Z)] and A3(Vp) = E [Vo(Z2)H3(2)] =
E [V3V5(Z)], where the second representation is by Gaussian integration by parts. (We don’t write
A3(f) this way because f need not be C3.) It can be shown (see Theorem 4.1 and Remark 4.1)

that
1

[ 9Qai =~ (M), Aa(1)) = —5 (B [V*W(2)] B [F(2)Ha(2)]).

In contrast, it is shown in [19] that the leading order term of the difference [ gdm — [ gd for
the Laplace approximation # = N'(m*, H;') takes the form —+(V3V%(0),E [f(2)Z%3]) where now
Vo, f are defined as

Vo(z) = V(m* + H,%z),  f(x) = g(m* + H,"?2). (2.17)

To summarize, we have the following errors, informally:

2
[ain~ [t =~ & (V@) 5 F@EE) +0 (%) v
/gdﬂ— /gdfr = —% (V*V5(0), E [f(2)Z2%%]) + O (‘f) (Laplace)

Here, Vp, f are given by (2.16) in the first line, and by (2.17) in the second line. The remainder
term also depends on v and g, but we have written O(d?/n) for brevity. We now compare the two
approximation errors for various functions f. The most natural way to do so is to compare the two
LOTs for the same function f, keeping in mind that this f corresponds to two different functions
g for the two methods.

Both of the two LOTs can be shown to have order d/+/n, generically. In particular, if f is
an indicator, then neither LOT vanishes. This explains why TV (m, %) < d/y/n for both VI and
Laplace. Both the VI and Laplace LOT vanish when f is even. In particular, this explains why
the Laplace and VI covariance errors are both bounded by d?/n.

Finally, the key difference between Laplace and VI is that for functions f which are orthogonal
to all third order Hermite polynomials but which are not even, the VI LOT vanishes while the
Laplace LOT does not. Probably the most important example of such a function is f(z) = z. This
explains VI's superior mean approximation accuracy. (The fact that the error is O((d/+/n)?) rather
than O((d//n)?) stems from a cancellation in the next order term.) Another example of such an
f is a fifth order Hermite polynomial.

We remark that having the LOT allows one to prove lower bounds in addition to upper bounds.
In [19], we showed that for a posterior stemming from logistic regression, the Laplace mean approx-
imation error is lower-bounded by d/+/n, giving definitive proof that the VI mean approximation
error is better in general. See Section 2.2 of [19] for the precise statements of the Laplace error
bounds summarized above.
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Solution to first-order optimality conditions (1.9) vs solution to (1.1) Recall that in
our results, (171, S) is a solution to (1.9) for which 7 is in a neighborhood of m*, the mode of the
posterior 7. In the case that the posterior is multimodal, (1, S ) may not be the global minimizer of
the KL objective (1.1). This may occur if the posterior landscape has a single, “correct” dominant
mode as well as a “false” second mode with a larger density value, but which is nevertheless a
low probability region. Such a low probability mode could arise due to outliers in the data, for
example. In this setting, the solution to (1.9) would lie near the false mode, while the solution
to (1.1) would lie near the correct mode. It would therefore be useful to study the global minimizer
of the KL objective in this regime, rather than the critical point near the highest mode, as we do
in the present work. Moreover, this is potentially a case in which VI may be preferable over the
Laplace approximation. Intuitively, we expect that VI is stable to low probability perturbations,
while Laplace is not.

We leave the question of VI's performance under this kind of multimodality to future work.
Note that our assumptions do allow for multimodality, as long as the negative log posterior grows
linearly away from the minimum. Our results show that in this case, the solution to (1.9) near
the mode is a good approximation to the posterior, whether or not this solution coincides with the
global minimizer of the KL objective.

Computation Although the computational side of Gaussian VI is not our focus, for the sake of
completeness we summarize the known computational guarantees on Gaussian VI algorithms. The
typical algorithm iteratively updates the mean and covariance matrix according to some optimiza-
tion procedure. For example, [20] studies the discretization of an ODE evolving (my, ), which
corresponds to a Wasserstein gradient flow on KL( - || 7) constrained to the submanifold of normal
distributions. The authors show that if V' is strongly convex, then the gradient flow (as well as its
discretization) converges exponentially fast in Wasserstein distance to 7 of (1.1), in this case the
unique minimizer of KL( - || 7) over Gaussians. In the nonconvex case, [12] obtains a stationarity
point guarantee for a “forward-backward” algorithm, involving a gradient step and a proximal step.
The update step in [20] involves inverting a d x d matrix, while that of [12] involves computing
the square root of a d x d matrix. The update step of both algorithms also involve computing
a Gaussian expectation or else drawing a single Gaussian sample, in which case the algorithm is
stochastic.

A cheaper algorithm whose complexity scales linearly with dimension is mean-field Gaussian VI,
in which the objective (1.1) is minimized only over Gaussians with diagonal covariance matrices.
See [5] for a discussion of the computational complexity of a whole range of Gaussian VI variants,
from diagonal to full covariance matrix. However, the accuracy of Gaussian mean-field VI is not
currently known.

3 Logistic regression with (GGaussian design

In logistic regression, we generate n feature vectors X; € R? and observe their corresponding labels
Y; € {0,1}. The distribution of the labels given the features is modeled as

p(Yi | Xi,0) = exp (YiX[ 0 —(X]0)), (3.1)

where ¥(t) = log(1 + €') and 6 is the unknown coefficient vector. Note that (3.1) is just the
probability distribution for Bern(a(X7'0)), where o(t) = ¢'(t) = (1 +e7*)~! is the sigmoid. We
assume the model is well-specified, so that there is a true 8y € R? such that

Y; ~ Bern(o (X[ 6p)).

11



We assume the features are generated from a standard Gaussian distribution:
X; KN, L), i=1,...,n.

We consider a Gaussian prior 6 ~ A(0,Y) on the coefficient vector . The posterior distribution
of 6 given the labels Yj is then 7(8) o e () where

1
v(6) = £(0) + —eTz—le,

(3.2)
Zw(ﬁ 0)

z:l

£(0) :—meng\XZ,e ——9T[ ZYX

=1

Here, ¢ is the negative normalized log likelihood, and #7%~/2n is the contribution from the log
prior. Formally, ¥~ = 0 corresponds to the case of a flat prior. Note that the distribution of the
X, does not enter into the posterior.

3.1 Checking the assumptions

To verify Assumption 1, we need to prove there is a unique global minimizer 6* of v. To do so,
we first show there is a unique global minimizer 6; of £. It is straightforward to check that / is
strictly convex provided the features X; span R¢, and this occurs with probability 1. Therefore, if
Vi(6;) = 0 for some 6}, then this point must be the unique global minimizer of £. To show ¢ has a
critical point, we will use the following lemma with f = ¢ and 6 = 6.

Lemma 3.1 (Corollary F.6 in [17] with A = I;). Let f € C?>(R%). Suppose there is a point 6 such
that for some A, s > 0, the following holds:
v2f(9) = )\Id7
IVFO)] < 2As, (3.3)
A

IV2F0) = V2FOl <5 VIle =0l <s.

Then there exists 0% such that V f(6}) =0 and [|6F — 0] < s.

Of course, ¢ is a random function, so (3.3) cannot hold deterministically for f = ¢. Instead, we
bound from below the probability that (3.3) holds.

Lemma 3.2. Suppose d/n < 1/10 and n > 13. Then the event
Ey = {[|Ve(6o) | < 8(d/vn)"/?}

has probability at least 1 — e~™* — n=%* under the ground truth distribution: X; ~ N(0,14),Y; |
X; ~ Bern((a(X[6y)), and (X;,Y:),i=1,...,n are i.i.d.

The proof of the lemma is similar to that of Lemma 4.2 in [17], but we include the proof in
Appendix B for the sake of completeness.

Lemma 3.3 (Adapted from Lemma 7, Chapter 3, [26]). Suppose d < n. Then the event
E2 = {éﬂE )\min (VQE(G)) Z T(C) Ve 2 0} (34)

has probability at least 1 — 4e=C™ for an absolute constant C. Here, T : [0,00) — (0,00) is a
universal non-increasing function.
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We note that the function ¢ actually considered in Lemma 7 in [26] relates to our ¢ by a /n
rescaling. We have translated the statement of the result in terms of our function /.

Lemma 3.4. Suppose d < n. Then there exist absolute constants Cs, Cy, C' such that the event
Es =< sup |[VEUO)|| < Cp, k=34 (3.5)
HeR?

has probability at least 1 — exp(—C(nd)'/?).

See Appendix B for the proof, which follows almost immediately by an application of Theorem
4.2 in [1]. We can now apply Lemma 3.1 to prove ¢ has a unique global minimizer #7. This
then also implies v has a unique global minimizer nearby, by another application of Lemma 3.1.
Lemmas 3.2, 3.3, 3.4 also give us the necessary ingredients to check the other assumptions.

Corollary 3.1. Suppose ||6o| < C, [|X7Y| < C and that d//n and n~' are smaller than a
sufficiently small absolute constant. Then with probability at least 1 — exp(—C/(nd)'/?) — n=4/* —
5¢=C"  the following statements all hold:

1. The functions £ and v have unique global minimizers 0] and 6%, respectively, with ||0; —0g|| S
Va/n and ||0* — 05| <t In particular, Assumption 1 is satisfied.

2. We have ||6*]| < C and Amin(Hy) = Amin(VZ0(0%)) > 7(C).

3. We have supgpega ||VF0(0)||n, < C for k = 3,4. In particular, (2.3) of Assumption 2 is
satisfied with ¢ = 0 and a3 = aqg = C. Furthermore, (2.4) of Assumption 2 is also satisfied
provided d/\/n is smaller than some fized deterministic absolute constant.

4. Assumption 3 is satisfied with co = 1/8.

See Appendix B for the proof.

3.2 Application of results in Section 2 to logistic regression

We first compute the function @ in the leading order term. Now, one can check that
1 n
3 T 3
V() = ;w"%e X)X,
1=

and recall that V' = nv. Therefore,

Eour[VPV(0)] =) 0:i(0) X2,
i=1
where
bi(0) =Egur [v"(07X,)] . (3.6)
Using the definition (2.11) of @ and the above expression for E g [V3V ()], we get
- 1 A 1
Q) = 3 0) | {XE (O - m)XTSX; - §(XT(0 - )’ (3.7
i=1
We now summarize the results from Section 2 applied to logistic regression. We assume the set-up
from the beginning of the section: well-specified model, i.i.d. Gaussian design, bounded ground

truth ||6]| < C, and Gaussian or flat prior N'(0,X), with ||| < C. In this setting, Corollary 3.1
shows that Assumptions 1, 2, 3 are satisfied, and that ¢ =0,a3 = a4 = C.
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Theorem 3.1. Suppose d//n and n=' are smaller than certain absolute constants. On an event
of probability at least 1 — exp(—C(nd)Al/g) —5e=C" — =/ the following results hold.

There exists a unique solution M, S to (1.9) in the region Ry . Furthermore, if g satisfies (2.7)
with co = 1/8, then

d
\/ﬁ’

d 2
SR, (1+ Varz(g)?) n) :

|[gdn — [ gdi| S, 1+ Vars()?)

‘/gdﬂ'—/gdﬁ—/g@dﬁ

where Q is defined in (3.7) and (3.6). If g is even about m, then

=

)/gdw—/gdﬁ <r, (1+ Vars(g)?) (\%)2. (3.9)
If g is linear, then ;
)/gdw—/gdﬁ <r, (1+ Vars(g)?) (\jﬁ) . (3.10)

Next, we have

d
sup |r(A) - #(A)| § =
AeB(RY) Vn
g\2 (3.11)
s feld) - 74| S ()
AGBS’m(Rd) \/ﬁ

Finally, let 6 = [ 0dn(0) be the mean of m and ¥ = [(0 — 0)(0 — 0)Tdn(6) be the covariance of .
Then

Vil — il < (jﬁ)g

. d \?2
y_g< (&L
n|| 5||N<\/ﬁ>

In (3.11) and (3.12), all suppressed constants are absolute.

(3.12)

The proof follows immediately from Corollary 3.1 and the results in Section 2.

3.3 Numerical Simulation

We confirm some of the theoretical results —specifically, the bounds (3.12) — in a numerical simu-
lation. The numerical results are displayed in Figure 1. We take d = 2 and n = 100, 200, . . ., 1000,
and a flat prior on 6. For each n, we draw ten sets of covariates x;,i = 1,...,n from N (0, I ),
yielding ten posterior distributions 7, (- | 1.,). We then compute the Laplace and VI mean and
covariance approximation errors for each n and each of the ten posteriors at a given n. The solid
lines in Figure 1 depict the average approximation errors over the ten distributions at each n. The
shaded regions depict the spread of the middle six out of ten approximation errors. See Appendix B
for details about the simulation.

In the left panel of Figure 1 depicting the mean error, the slopes of the best fit lines are —1.04
and —2.02 for Laplace and Gaussian VI, respectively. For the covariance error in the righthand
panel, the slopes of the best fit lines are —2.09 and —2.12 for Laplace and Gaussian VI. This
confirms that our bounds on VI, as well as the Laplace bounds, are tight in their n dependence.
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Mean approx. error ||m — m. || Covariance approx. error ||S — S, ||

107!+
—=— 9= (nV?(m.,))"" (Laplace)

10724 ; —e— S =5, (Gaussian VI)

10774
1073

—=— m = m, (Laplace)

1074 —e— m =1, (Gaussian VI)

107
107
1070 10-5

102 10% 102 10%
n n

Figure 1: Gaussian VI yields a more accurate mean estimate than does Laplace, while the two
covariance estimates are on the same order. Here, 7, is the likelihood of logistic regression given
n observations in dimension d = 2. For the left-hand plot, the slopes of the best-fit lines are —1.04
for the Laplace approximation and —2.02 for Gaussian VI. For covariance: the slopes of the best-fit
lines are -2.09 for Laplace, -2.12 for VI.

4 Proof of Theorems 2.1 and 2.2

In this section we explain the main steps in the proof of Theorems 2.1 and 2.2. We take Lemma 2.1
as given; its proof is outlined in Section 5.

4.1 Reduction to comparison with a standard Gaussian

Recall that # = N (1, S), where 7m, S are the solutions to (1.9) furnished by Lemma 2.1. We are
interested in the difference [ gdm — [ gdr, but we can always change variables via a bijection T,
writing this difference in the form

/gdﬂ'—/gdfr:/de#ﬂ—/de#fr, f=goT L (4.1)

For convenience, we choose T' so that T @ = v is the standard Gaussian distribution. Specifically,
we let
T(z) = S7V2(z — ), (4.2)

and we define p = Tlum o e~ 0, where
Vo(z) == V(i + §Y2%z) = V(T (x)). (4.3)
Next, we reformulate Theorems 2.1 and 2.2. To do so, define Az = E [V3V(Z)] and
pa() = ¢ (As, Hy(x)) = <A3, 2% oe Id> |

Here, H3(z) is the d x d x d tensor of third order multivariate Hermite polynomials; see Section 4.2
and Appendix E for more details.
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Theorem 4.1. Let f = go T, where T is as in (4.2), and let g satisfy (2.7). Also, let p oc e=%0
as in (4.3), and Ay = [ fdp — [ fdvy. Then under the conditions of Theorem 2.1, it holds

A7l S L+l foll2) (aze + ase®) (4.4)
87 [ epn| 5 0+ 1fola)a +a @5)
If f is orthogonal to all third order Hermite polynomials (in particular, if f is even), then
|Af| S (1+ [ foll2) (a3 + aa)é®. (4.6)
If f is linear, then
A7l S L+l foll2) (a5 + asas) € + afe?). (4.7)

In all of the above bounds, the suppressed constant is an increasing function of q, cal, Ry.

The bounds (4.4), (4.6), and (4.7) correspond to (2.8), (2.9), and (2.10) of Theorem 2.1, respectively.
This immediately follows from (4.1) and the fact that Varz(g) = Var(f) = || fol|3. The bound (4.5)
corresponds to (2.12) of Theorem 2.2. This is because [ f(—p3)dy = [ gQd, as a short calculation
in Appendix G shows.

4.2 Proof Outline

We now outline the proof of the equivalent Theorem 4.1. The proof is based on several key
observations. First, note that the optimality equations (1.9) and the definition (4.3) of Vj imply

E[VV(Z2)] =0, E[V*Vo(Z2)] =14 (4.8)

The proof exploits (4.8) through six further observations.

1) The optimality conditions (4.8) imply that the Hermite series expansion of Vj is of the form
Vo(z) = const. + 3|z||? + r3(z), where

ra(a) = %<Ak7 H(z)). (4.9)

k>3

In particular, dp oc e="0 o e "3dry.

2) Since r3 contains only third and higher order Hermite polynomials, r3 is orthogonal to all poly-
nomials of degree 2 or lower, with respect to the Gaussian measure. In other words, [ frsdy for
all quadratic f. As a special case (taking f = 1), we see that [ rsdy = 0.

3) Let p3 = %<A3,H3> be the third order Hermite polynomial contribution to Vj, and write
rg3 = p3 + r4, where 74 is the Hermite series remainder of order 4. The change of variables via the
transformation 7" ensures that rg ~ pg ~ n~ Y2 and rqy ~ n~1
4) Let fo = f —~(f), so that Ay = [ fodp. Using that dp o e "3dy, that rs ~ n~2, and that
[ fody = [r3dy =0, we have

_ S feeTmdy [ fo(L=r3+7r3/24+O0(m7?)) dy
Af = /fodp - fe—’rg,dry - f(l —rg 4 O(n—l))d,y (4 10)
S fo(=rs+r3/2+0(n72)) dy '
B 1+0(n1)
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5) For a generic f, the order of Ay is that of the first remaining term in the numerator on the
second line: Ay ~ [ forzdy ~ n~1/2. But if f is linear or quadratic, then [ forsdy = 0, since 73 is

orthogonal to quadratic polynomials. Therefore, Ay is at most of order [ for3dy ~n=L.

6) By writing r3 = p3+74 = O(n~'/2) + O(n~') and therefore r3 = p2 + O(n~3/?), we can get even
more refined estimates. Namely, we have

A~ /fo <_T3 + ;7%) dy = /fo(—P3)d’Y+/fo <—r4 + ;p%) dy +0(n=3/?).

-~

O(n=1/2) O(n=1)

From this decomposition, we see that if f is orthogonal to third order Hermite polynomials then
[ fopsdy = 0, and hence Ay ~ O(n™1) in this case. If f(x) = a’z+bthen 0 = [ fopsdy = [ forady
automatically, but we also have [ fop3dy = 0 since fo(z) = a’x is odd and p3 is even. Hence both
the O(n~!/2) term and the O(n™!) term vanish, so that Ay ~ n=3/2,

This is the essence of the proof. Now that we have given this overview, let us go into a few
more details about the above points. To explain 1), recall that the Hermite series expansion of Vj
is defined as -

1
Vo) = 3 —(AR(V0) Hy()),  Ax(Vo) == E [Vo(Z)Hy(2)] (4.11)

k=0
Here, the Ay (Vo) and Hy(x) are tensors in (R%)®*. Specifically, Hy(z) is the tensor of all order k

Hermite polynomials, enumerated as H ,Ea), o € [d]* with some entries repeating. For k = 0,1,2,
the Hermite tensors are given by

Ho(z) =1, Hi(z) =2, Hy(z)=a22" — I, (4.12)

See Appendix E for further details on Hermite series and polynomials. Distinct Hermite polynomials
are orthogonal to each other with respect to the Gaussian weight. Using the representation

Hy ()e”1o1°/2 = (—1)hyhelel®/2, (4.13)

we obtain a useful, “Gaussian integration by parts” identity for a k-times differentiable function f.
Namely,

E[f(Z2)Hi(2)] = E[V* f(2)]. (4.14)
This is a generalization of Stein’s identity, E[Z;f(Z)] = E[0;f(Z)]. Since Vp is at four times
differentiable, we can use Gaussian integration by parts to write A1, Ao as

A1(Vo) := E[Vo(2)H1(2)] = E[VVo(2)] = 0,

) (4.15)
As(Vo) == E [Vo(2)Ho(2)] = E[V2Vo(2)] = 14,

where the last equality in each line comes from the optimality conditions (4.8). Therefore the
Hermite series expansion of Vg takes the form

Vo(z) = (Ao(Vo), Ho) + (0, Hi(z)) + %Uw Hy(2)) + r3(z)
(4.16)

2
x
ot ),

= const. +

17



where 73 is the third order remainder (4.9). Here, we recall from (4.12) that Hy(z) = za® — I,.
This explains point 1), and point 2) is a direct application of the orthogonality of distinct Hermite
polynomials.

For a heuristic proof of point 3), recall that Vo(z) = V(i + SY/2z), that V = nv, and that
SY2 ~ p~Y2 Therefore by the chain rule, V3Vy ~ n~Y2, and V4V ~ n~1. Hence

ps = (As, Hy) = (E[V*V;(2)], Hg) ~ n~ '/
and for k£ > 4, we can apply “partial” Gaussian integration by parts to express Ay as

Ay = E[H(2)Vo(2)] = E[H-4(2) @ VVo(Z)] ~ 0

Therefore 14 ~ n~1.

Remark 4.1. Recall that in the statement of Theorem 4.1, we defined A3 as Az = E [V3V;(2)].
We now see that Ag = A3(Vp) is precisely the third order coefficient tensor in the Hermite series
expansion of Vj. Furthermore, we can now explain the formulation of the leading order term given
in Section 2.3. Letting A3(f) be the third order coefficient tensor in the Hermite series expansion
of f, we can write

[ vt = 5 (A, [ Bty ) = g (AalVe), sl

4.2.1 Dimension dependence

So far, we have only discussed the n dependence of our bounds. We now also briefly discuss the d
dependence. As point 6) shows, in the typical case the leading order term is Ay ~ f fopsdry, which
by Cauchy-Schwarz is bounded as || fo||2||p3]l2- In [18], we showed that for a symmetric d x d x d
tensor 7', it holds
E (7. H3(2))] < GiE (7. Ha(2))’]"” < G, (d| )" (4.17)

for even p. Therefore, if | T|| ~ 1/4/n, then we get the desired dependence on € = d/+/n.

Another difficulty that arises is in bounding ||74]|,. Intuitively, r4(x) is dominated by the fourth
order polynomial (A4, Hy(z)), so we expect that

E(lra(2)[") ~ E [[(Ag, Hai(2))["] ~ (d*/n)P, (4.18)

since Ay ~ n~! and E[|Z]||*?] ~ d?’. However, with only a series representation of |||, it is
difficult to translate this intuition into a formal bound. We therefore derive the following explicit
formula for the Hermite series remainder:

Proposition 4.1. Assume Vo € CK. Let Vo(z) = .22, 5 (A, H;(x)) be the Hermite series

§=0 31
expansion of Vy, and define ’
=1
ri(x) = Volz) — p_ (A, H;(2)). (4.19)
=07
Then for all k < K, it holds
L1kt k
0 - .

Note that (4.20) is analogous to the integral form of the remainder of a Taylor series. See
Lemma E.3 in Appendix E.3 for the proof of this proposition. The formula (4.20) is known in one
dimension; see Section 4.15 in [22]. However, we could not find the multidimensional version in the
literature, so we have proved it here. Using this formula, we show that the heuristic argument (4.18)
is essentially correct in that it gives the right scaling with d and n.
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4.3 Key Lemmas

Now that we have outlined the steps of the proof informally, we turn to the rigorous proof. We
formulate a sequence of lemmas from which Theorem 4.1 will follow. The omitted proofs can be
found in Appendix D.

First, we define a few quantities.

Definition 4.1. Let 73 be as defined in (4.19), and let E := [ (e7"3 — 1 + r3) dv. Also, for a function

f e L?(v), let
/f0<—r3+ >d% E(f)Z/fo< —1+r3—2>d7

In the next lemma, we write [ fdp — [ fdvy suggestively as L(f) plus a remainder term.

Lemma 4.1. It holds
\/ﬂm/EMLwﬂgumwun+wu» (1.21)

Proof. Recall from the proof outline that [ fdp— [ fdy = [ foe "dv/ [ e "d~, and that [ fody =
[ r3dy = 0. Therefore, we see that

/fdp /fd 1—|—E(f)' (4.22)

Furthermore, 1 + E = [ e "dy > 1 by Jensen’s inequality, since [(—r3)dy = 0. Subtracting L(f)
from both sides of (4.22) and bounding the resulting righthand side gives (4.21). O

Consider the definition of L(f), E(f), and E. Since r3 ~ n~ /2, we expect that L(f) ~ n~1/?,
E ~n~' and E(f) ~n~3/2. This is confirmed in the next lemma.

Lemma 4.2. Let f = go T~ ', as in Theorem /4.1. Then under the conditions of Theorem 2.1, it
holds

IL(F)| S I foll2 (ase + ase?)
|E| S (age + ase®), (4.23)

3
BN S (4[| foll2) (aze + ase®)”,
where the suppressed constant is an increasing function of q, 051, and R,.

Lemmas 4.1 and 4.2 immediately give the following corollary, which shows that [ fdp— [ fdy =
L(f) +O(n=3/2).

Corollary 4.1. In the same setting as Lemma 4.2, it holds
[ 10 [ i 20| £ @ ol e+ anc)’, (124)

where the suppressed constant is an increasing function of q,cy U and R,.

Thus it remains to study the term L(f). By writing r3 = p3 + r4, we break down L(f) into a
term of order O(n~1/?), a term of order O(n~'), and a remainder of order O(n=3/2).
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Lemma 4.3. Let p3(z) = 3;(As3,Hs(z)) and r4 = r3 — ps. In the same setting as Lemma /.2, it
holds

L(f) = /fo(—ps)dW + /fo <—?”4 + 129:2»,) dy+ R,

2
where
‘/fo(—p:a)dv‘ Sq 1 foll2aze, (4.25)
L5 9 9
fol —ra+ 5173 dvy| Sq llfoll2(a3 + aq)e”, (4.26)
|R| Sq [l foll2 (a3ase® + afe?) . (4.27)

Combining Lemma 4.3 with Corollary 4.1, we can now prove Theorem 4.1.

Proof of Theorem /.1. To get (4.4), we add the bound (4.24) to the bound on |L(f)|, which is given
by the sum of (4.25), (4.26), and (4.27). To get (4.5), we add up (4.24), (4.27) and (4.26), omitting
the bound (4.25) which gets incorporated into the lefthand side. Similarly, if f is orthogonal to all
third order Hermite polynomials then [ fopsdy = 0, so the bound (4.6) stems from adding up (4.24),
(4.26) and (4.27), again omitting (4.25). Finally, if f(x) = a”x + b then [ fopsdy = [ forady = 0.
Furthermore, fo(z) = a’z, which is odd, so [ fopidy = 0. So we get (4.7) by adding (4.24)
and (4.27), omitting both (4.25) and (4.26). O

5 Existence of unique solution to stationarity conditions
As in the proof of Theorem 2.1, our first step in proving Lemma 2.1 will be to reformulate the
lemma in a scale-free way. We will use the notation
B,(0,0) = {(m,0) € RT x R™? : |lo|* + [|m]|* <},
B, = {oc e R : ||o| <7}, (5.1)
Sereo ={0 € Si celyg o < ely})

In particular, note that Sy, C B,.

5.1 Change of coordinates
Recall that m* is the unique minimizer of V = nv, and that Hy = V2V (m*). Define
W(x) = V(m* + H, " x). (5.2)

Remark 5.1. Note that this change of variables is different from the one in Section 4. The change
of variables (4.3) in that section already presumes existence and uniqueness of 7 and S, which is
precisely what we will prove in the present section. The transformation V' +— W in (5.2) simply
recenters the minimum to be at zero, and rescales the Hessian at the minimum to be the identity
matrix.

Lemma 5.1. Let W be as in (5.2) for V. = nv, where v satisfies Assumptions 1 and 2. Then there
exists a unique pair (m,o) € B, 5(0,0) N R? x S, 3 Satisfying

E[VW(m+0oZ)] =0, (5.3)
E[V2W (m +0Z)] = (coT)7L.
and this pair is such that o € S\/% Nt
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Using this lemma, a rescaling argument easily proves Lemma 2.1; see Appendix G.

Remark 5.2. The relationship between (m, o) and (12, S) is as follows:

N

m=m*+H,*m,  §=H,"o0TH,". (5.5)

5.2 Proof of Lemma 5.1

We first sketch the proof of Lemma 5.1, and then formally state the lemmas from which the result
will follow. The proofs of the lemmas can be found in Appendix F.

Let f : R? x R4 — R be given by f(m,0) = E[VW(m + 0Z)]. Note that £(0,0) = 0, so
by the Implicit Function Theorem, there exists a map m(o) defined in a neighborhood of o = 0
such that f(m(o),0) = 0. In Lemma 5.3, we make this statement quantitative, showing that for
r = 2v/2 we have the following result: for every o € B, /2 there is a unique m = m(o) such that
(m,o) € Br(0,0) and f(m,0) = 0. Since Sy, /2 C B, /3, we have in particular that any solution
(m,o) to (5.3) in the region B,(0,0)NR? X S, 5 is of the form (m(c), o). Thus it remains to prove
there exists a unique solution o € Sy, /5 to the equation E [V2W (m(c) +0Z)] = (co)~".
To do so, we rewrite this equation as F'(0) = o, where

F(o) =E[V*W(m(o) + 0Z))~V/2.

We show in Lemma 5.4 that I is well-defined on S, /5, a contraction, and satisfies F'(Sy,/2) C
Sey,ea C So,r/2- Thus by the Contraction Mapping Theorem, there is a unique o € S,/ satisfying
F(0) = 0. But since F' maps S /2 to S, c,, the fixed point o necessarily lies in S, ,. This finishes
the proof.

Using a quantitative statement of the Inverse Function Theorem given in [21], the following lemma
determines the size of the neighborhood in which the map m(o) is defined.

Lemma 5.2. Let f = (f1,..., f1) : REx R4 5 R? pe C3, where R¥9 is the set of d x d matrices,
endowed with the standard matriz operator norm. Suppose f(0,0) =0, V,f(0,0) =0, V,,f(m, o)
is symmetric for all m,o, and V,, f(0,0) = I4. Let r > 0 be such that

1
sup  [[Vf(m, o) = VF(0,m)llop < 7. (5.6)
(m,0)€B(0,0)

Then for each o € R¥9 such that ||o|| < r/2 there exists a unique m = m(o) € R? such that
f(m(o),0) =0 and (m(c),0) € B-(0,0). Furthermore, the map o — m(o) is C?, with

1
§Id = vmf(ma U)‘m

IVomn(o)]lop < 1.

3
:m(a.) j §Id7

(5.7)

See Appendix F for careful definitions of the norms appearing above, as well as the proof of the
lemma.

Lemma 5.3. Let f : RY x R4 — R be given by f(m,o) = E[VW(cZ +m)]. Then all the
conditions of Lemma 5.2 are satisfied; in particular, (5.6) is satisfied with r = 2v/2. Thus the
conclusions of Lemma 5.2 hold with this choice of r.

21



Lemma 5.4. Let 7 = 2v/2 and o € Sorj2 = m(o) € R? be the restriction of the map furnished by
Lemmas 5.2 and 5.3 to symmetric nonnegative matrices. Then the function F given by

F(o) =E[V*W(m(o) + 0 Z)] /2
is well-defined and a strict contraction on Sy, /o. Moreover,
F(Sor/2) € Serea € So.r/25 where ¢ =\/2/3, ca=V2=r/2.

This lemma concludes the proof of Lemma 5.1 since by the Contraction Mapping Theorem
there is a unique fixed point o € Sy, /3 of F, and F(0) = o is simply a reformulation of the second
optimality equation (5.4). We know o must lie in S, ., since F' maps Sy, /o to this set.
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We review some notation used throughout the appendix. For a function f : R — R such that

[ |fIPdy < oo, we define
1l = </|f|pdv>p-

For any other measure )\, we indicate the dependence of the p-norm on A explicitly. In particular,
we let

1A llzr ey = ( / |frPdA>’1’, Var(f) = / (f = A(f))?dA.

A Proofs from Section 2

Proof of Corollary 2.1. Let g = 14. Note that |g(z) — 7(g)| < 1 for all x, so g satisfies (2.7) with
R, = 0. Also, Varz(g) < 1. We now apply (2.8) and (2.9) of Theorem 2.1 to conclude. O

Proof of Corollary 2.2. Fix ||lu|| = 1, and let g,(z) = u”S~/2(z — 1n). We have

||S‘—1/2(m—m)|y = sup /gudw—/gudfr.

lufl=1
Now, gu(z) = fu(S~Y2(x —m)), where f,(y) = uly. We have
[Fuly) = FO) < [yl < I vy e R,

so f satisfies (2.15) with @ = 1/2 and Cf, = 2. Therefore by Lemma 2.3, we have that g,
satisfies (2.7) with R, = C(cy"') (note Cj, and « are absolute constants, so we don’t include
them). Finally, note that Varz(g,) = Var(u’ Z) = 1 for all ||u|| = 1. An application of (2.10) from
Theorem 2.1 concludes the proof of the bound on the mean error. Since R, depends only on ¢y L
the suppressed constant depends only on cj Land q.
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To bound the covariance error, we consider the function g2, which is even about 7. Now,

||Sf—1/2(2 _ S’)S'—l/QH = H51H1£)1 |VarXN7r(gu(X)) - 1‘

su ~TT u - su " 2
= ||u||£1}EX [g (X) ] 1‘ +Hu||£1E[g () (A.1)

/ﬁm—/ﬁﬁ

For the bound on || S~'/2(m —m)|2, we use the mean error we have just proved. For the bound on
[ g2dr — [ g2dw, we use that g2(z) = fu,(S™V/?(x —m)), where f,(y) = (u"y)?. We have

= sup + 15712 (m —m)|?

[[uf| =1

fuly) — FO)] < ly)® < eI vy e RY,

so f satisfies (2.15) with a = 1/4 and Cy, = 4. Therefore by Lemma 2.3, we have that g2
satisfies (2.7) with Cy2 = C(cqy 1) (note O, and « are absolute constants, so we don’t include them).
Finally, note that Varz(g2) = Var((u?Z)?) < 3 for all |jul| = 1. The bound on [ g2dm — [ g2dx
now follows from (2.9) of Theorem 2.1. Since Cy2 depends only on ¢y ! the suppressed constant
depends only on c; Land g. O

Proof of Lemma 2.2. Let x be such that ||[x — m*||g, = (1/2)\/d/n for some r > 0. A Taylor

expansion of v around m* gives

o(w) = vm®) = 3z~ m*, + 31Vl (2~ m") )

1 * 1 *
> gle =l (1= 310 lalle — 'l (A2)
> |l —m* 4 N} >z —m*
> Sl —m |, (1= VA +(1/2)1) = gl —m*|lh,

using the assumption az(1+ (1/2)9)y/d/n < 3 to get the last inequality. Therefore,

inf v(z) —v(m*) S 1

—t 2 > —\/d/n A3
lz—m* ||, =(1/2)\/d/m T —m* |, — 8 / (4.3)

Now, since v is convex, we have

U(y)—U*(m ) > inf U(y:x)—*v(m ) > 1\/d/7n
ly = m*|a, e =120 /am 12— m*||m, 8

for all ||y — m*||g, > (1/2)\/d/n. O

For the proof of Lemma 2.3, see Section G.

B Logistic Regression Example

Details of Numerical Simulation

For the numerical simulation displayed in Figure 1, we take d = 2 and n = 100, 200, ...,1000. For
each n, we draw ten sets of covariates z;,7 = 1,...,n from N(0, \2I;) with A = v/5, yielding ten
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posterior distributions 7, (- | 1.,). For each m, we compute the ground truth mean and covariance
by directly evaluating the integrals, using a regularly spaced grid (this is feasible in two dimensions).
The mode my of 7, is found by a standard optimization procedure, and the Gaussian VI estimates
m, S are computed using the procedure described in [20]. We used the authors’ implementation
of this algorithm, found at https://github.com/marc-h-lambert/W-VI. We then compute the
Laplace and VI mean and covariance approximation errors for each n and each of the ten posteriors
at a given n. The solid lines in Figure 1 depict the average approximation errors over the ten
distributions at each n. The shaded regions depict the spread of the middle eight out of ten
approximation errors.

Verifying the Assumptions

Proof of Lemma 3.2. Let S =137 (V; —E[Y; | X;]) and N be a 1/2-net of the sphere in R?, so
that inf,en ||lu — w| < 1/2 for all ||w|| = 1. Standard arguments show we can take A to have at
most 5% elements. For some s > 0, we have

P(||S|| > 2sy/d/n) < P(sleljp\)/uTS > sy/d/n) < 5% sup P(ulS > s\/d/n) (B.1)

[[ul|=1

using a union bound and the fact that |A/| < 5. For a fixed unit vector u, we have

P(ulS > sv/d/n) =E :IP’ (UTS > S\/d/7 | {Xi}?:1>:|
—E |P <Z(Y ~E[Y; | Xi])u" X; > sv/nd | {Xi}?—1>] (B.2)

=1

<@ oo (o] -2 oo ()|

In the last line, Z ~ N(0, I,,). To get the third line, we used Hoeffding’s inequality. Now, we have

2snd n s
. {exp (‘szﬂ <P(|Z] > 2v/n) + exp (—s7d/2) < e 2 4 e, (B.3)

Combining (B.1), (B.2), (B.3) gives
P(HSH > 28\/6%) < ed10g57n/2 +ed(log5732/2) (B4)
Taking s = logn gives

P(HSH > 210gn /d/n) < edlog5—n/2 +ed(10g5—%log2n)
e /4 +efd(logn)2/4 < e 4 4 pmd/d

IN

using that log 5 — % log?n < —% log? n when n > 13, and that dlog5—n/2 < —n/4 when d/n < 0.1.
Finally, note that

1 1 1
~—— 2logn (d \* 8log(n'/%) [ d \?2 d\?
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Proof of Lemma 3.4. First, note that VFv(#) = 1 3% | P*) (XiTH)XZ@k for k = 3,4. Therefore,

[VEu(0)] < 1+”s1”1p —Z|UTX 1Y, k=34 (B.5)
uli= =1

< 1. Now, we apply the following result.

~

Theorem B.1 (Adapted from Theorem 4.2 in [1]). Let Xi,...,X, be i.i.d. standard Gaussian.
There exist absolute constants C,C" such that if Ct3[log(2t?)]% < n/d? then

using also that [|1)*) ||

sup — Z WXt < 4 (B.6)
llull=1"T

with probability at least 1 — e—CtVd,

We apply the theorem with ¢t = ¢(n/d?)'/?. Let M = n/d? and suppose M > 1. The con-
dition Ct8[log(2t?)]® < n/d? can then be written as Cc®log(2¢2M?/?) < M'/? and this can be
satisfied by taking ¢ a small enough absolute constant. Thus the probability that (B.6) holds
is 1 — exp(—C"(nd)'/?) for some other absolute constant C” > 0. Combining (B.6) with (B.5)
concludes the proof. ]

Proof of Corollary 3.1. We claim the statements hold on the event £ = FEy N Ey N E3, where
Eq, Ey, E3 are defined in Lemmas 3.2, 3.3, 3.4, respectively. Note that P(E) satisfies the desired
lower bound. Now, on E, we have ||V£(6)|| < 8(d//n)'/? and V2£(6y) = 7(||60||)Ig. Furthermore,
if |0/ — 6g|| < s, then ||[V20(0") — V20(8)| < Css. Let A = 7(||6g|) and s = 4(d//n)V2/X\. If
(d//n)/? < X2/(16C3) = 7(||6o||)?/(16C53), then the inequalities (3.3) are all satisfied for f = ¢
and 6 = 6. We therefore conclude that there exists a unique global minimizer 6; of £, which
satisfies

16; — 6ol < (4/7(l6o]1))(d/v/n)!/? < C(d/v/n)'/?

Next, note that on F, we have
V(@) = IV€(6;) +n~ 'S5 = n~H =707 S n |16

and
V30(6;) = V2(0;) = 7(C) I,

since [|07]| < C(d/y/n)"/? + ||6p]| < C. Furthermore, supy [|V3v(0)| < Cs, since V3v = V3/.
Therefore, since n~! is assumed to be sufficiently small, we can use Lemma 3.1 to conclude v
has a critical point (and therefore a unique global minimizer) 6%, and ||6* — 65| < n~!. That
16*|] < C is bounded follows from the bounds on ||6q||, |67 — 6o, ||6* — 6;|]. Furthermore, we have
Amin(Hy) > Amin(V20(6%)) > 7(C) using the definition of event Fy. To prove point 3, we use the
lower bound on Ay (H,) from point 2, combined with Lemma 3.4 and the fact that VEv = VFe,
k > 3, to get

IV*0(0)ll1, < Aumin(Ho) /2| V50 (6)]| < C (B.7)

on event F. Finally, point 4 is satisfied by convexity of v, using Lemma 2.2 and the boundedness
of a3 (needed to verify the assumption of the lemma). O
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C Properties of W and V

In this section, we prove several key properties of the rescaled functions W(z) = V(m* + H,, 1/2 x)
and Vp(z) = V(i + SY2z) = V(T~'(x)). These properties are used in the proofs in Sections 4
and 5. First, note that for a measure A on R?, we have

e, = (/19 werae)”.

where the norm inside the integral is the standard tensor operator norm

Lemma C.1. If v satisfies Assumptions 1, 2, 3 then 0 is the unique global minimizer of W, with
V2W(0) = I, and

5 (14 ||=/Vd||9), VaeR?
fﬁ (1)

IVAW ()] < ;(1 +[le/Vd||?), VeeR?

IVEW ()| <

Furthermore,

W(z) —W(0) <1+ |z|PT? Vo eRY, (C.2)
2
W(z) = W(0) > coVd||z|| V|| > \/;\/a (C.3)
Finally, for m € R%, o € R¥?, we have

[NA][F—— f( + /v + o))
N W o oy S (14 Ilm/ VT + l]l?)

See the end of the section for the proof. Next, we collect properties of the function Vjy(x) =
V(i + §Y2z) = V(T (z)) used in the proof of Theorem 4.1. Here, 7i, S are the solutions to the
first-order optimality conditions from Lemma 2.1. We first rewrite V in terms of W. To do so, let
mo = m, g = o, where (m, o) is the unique solution to (5.3), (5.4) furnished by Lemma 5.1 (these
are just the rescaled optimality conditions). Using the relationship (5.5) between (m, o) = (mqg, 6¢)
and (1, 5/2) given in Remark 5.2, it is straightforward to show that

Vo(z) = V(i + SY2z) = W (i + 60z). (C.5)

Also, recall from Lemma 5.1 that

2
ol €2v2, 2150 < VL ©6)

We now have the following properties of Vj.

Lemma C.2. It holds

[Vo(x) = Vo(0)] Sl + [l2[*+? va € R, (C.7)

Cmf

Vo(z) = Vo(0) = lz = C(a) Vil = Vd +8V2. (C.8)
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Furthermore, if 0 < s <1, then

152Vl o a2y S f(1+||u/\f 7). (C.9)
Vol sy Sa e (1 ll/ V) (C.10)
In particular,
d[[IVVollll Lo pro.21,y) Sa ase; (C.11)
IV Vollll oo w021,y Sa aa€?, (C.12)

where € = d//n.

We now prove Lemmas C.1 and C.2.

Proof of Lemma C.1. We first note that
IV*W ()| = n' 2|V 0(m* + H, e /v/n) |, - (C.13)
Now, using Assumption 2, we have
IV¥W (@) | = n' 2|V o(m* + H,V2) |,
Zk_l [1 + (Wllm* + H, P/ /n - m*HHv)q] (C.14)

nz22

e L+ eVl

nz

as desired. To prove (C.2) we Taylor expand W about 0 and apply (C.1). We get

2 L v (1), 229)
2 3! ’
xr 2 X
L L N
<1t el

W(z) — W(0) =
(C.15)

recalling ag/v/n < 1 by (2.4). The inequality (C.3) follows from the definition of W and (C.13).
To prove (C.4), we use (C.1) to get

E(IV*W(m+02)|7) < (a3/vn)"E [L+ (lm + 02| /V/d)]

(C.16)

S (as/v/m)" (14 m/ V™ + o))

We take the pth root to conclude. The bound on E [[|VAW (m + ¢ Z)||P] is shown analogously. [

Proof Lemma C.2. Recall the expression (C.5) for Vj in terms of W. We start by bounding
W (1) — W(0). A Taylor expansion, the fact that ||[7ig| < 2v/2, and (2.4), gives

0 < Wiing) — w(0) < W0l ol as(L+ o/ vl

=" 3! Jn < Cla)
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Now we prove (C.7). Using (C.2) and (C.6), we have

[Vo(z) — Vo(0)| = |W (1o + Gox) — W ()| < [W (1o + Gox) — W(0)| + C(q)
S 1+ [[rig + 60|79 + C(q) (C.17)
Sq LA+ [|z]PT

To prove (C.8), fix ||z|| > v/d + 9. Then

. . . . R . 2 1
Io + 6oz = [[Goz]| — |0l = Amin(G0) ]| — [Ioll = \/;Ilfll -2v2> 5\/&

Hence
Vo(x) — Vo(0) = W (1o + 60z) — W (i)
= W (o + 6oz) — W(0) + W(0) — W (o)
C()\/gHmo + 5’033” + W(O) - W(mo)

(C.18)
eoVd (ﬁnwu - M) - Clg)

> SV~ C().

v

v

To get the last line, we used that \/2/3||z|| —2v/2 > ||z||/2 when ||z|| > 9. This concludes the proof
of (C.8). To prove (C.9), we use the boundedness of ||| to get that

IV*Vow) || S IVEW (1o + 6oy, k = 3,4. (C.19)

Therefore,
E [IV*VoW)[P] S E [IVPW (o + 60Y)|IP] . (C.20)

Now, mg+69Y = my +&O(M+Sl/2Z) = m+0Z, where m = g + 6op and o = 6095/2. Note that
lm|| < 2v2 4+ V2||p|| and |o|| < v/2s < v/2. Therefore, applying (C.4) from Lemma C.1, we get

ISVl uery o e (1 + s Val?)

The bound (C.10) on H||V4‘/OHHLP(N(H s)) is analogous. The bounds (C.11), (C.12) follow immedi-
ately from (C.9) and (C.10). O

D Proofs from Section 4
For the equivalence of (4.5) and (2.12), see Section G. Here, we prove the key lemmas from Sec-
tion 4.3. We start by making two observations: first, if g satisfies (2.7) and f(z) = g(T~Y(z)) =
g(n + SY/2z), then f satisfies
co
fo@)] = 1(2) = 4(NI < exp (PValal)  Vlall = RyVd. (D.1)
Second, using (4.16) from the proof outline, note that

Vo(x) = Vo(0) = 8+ r3(x) — ||=[|*/2

28



for some constant §. Taking x = 0 in this equation, we get that 0 = 6 +r3(0), i.e. § = —r3(0). But
r3(0) = %<A3, H3(0)) 4 r4(0) = r4(0). Therefore, § = —r4(0), i.e. we have

V()(.TU) — Vb(O) = —T4(0) + 7’3(.18) + Hx2”2 (D.Q)

Now, to prove Lemma 4.2, we prove a number of supplementary lemmas. The overall proof
structure is similar to that of [18]. The outline given in Section 4.3 of that work may be useful to
follow the below proofs.

Lemma D.1. Let g, R, be as in Theorem 2.1, and f = goT. Let R > max(Rgy,1+ 8,/2/d) and
U(R) = {||z|| < RVd} Then

B g (14 e DL, ) 1 ollo sl + T(R, 9+ 3, 0/4),

, (D.3)
’E’ Sq (1 + He_r3 ]lZ/[(R)HQ) HT3H4 + I<R7 6+ 2Q7 60/2)7
where . -
I(Ropb) = —— / o|PetVall g (D4

See the end of this section for the proof. We see that we need to bound I(R,p,b), He‘” Ly(r) H4,
and ||73]|p. The bounds on the first two quantities are stated in the next two lemmas. The bound
on ||73]p is given in Lemma E.6 in Section E.4.

Lemma D.2 (Bound on tail integral). There is some C, depending only on p such that if R >
Cp(1Vb™1)?2 then I(R,p,b) <p e B2 In particular,

I(R,9+3q,c0/4) VI(R,6 +2q,c0/2) Sq e BB if R>C(q)(1Veyh)?
for some C(q) depending only on q.
See Section G for the proof.
Lemma D.3 (Bound on exponential integral in U(R)). Let R > 1. Then
e Ly(mylla < exp (C(q) R w),
where w = ase + as€?.

See the end of this section for the proof. With these lemmas in hand, as well as a bound on
|73]]p in Lemma E.6 below, we can now prove Lemma 4.2.

Proof of Lemma 4.2. We have

LL(HT < L follz(llrsll2 + lI7sl13) <q 1 foll2w, (D.5)

using Lemma E.6 and the fact that w < 1 by (2.4). Next, let R > C := max(Ry,, 14+8+/2/d, C(q)(1V
cg')?). We can then use (D.3) from Lemma D.1 to bound |E| and |E(f)|. Furthermore, for this
choice of R we can use Lemma D.2 to get that the tail integrals I(R,9 + 3¢,co/4) and I(R,6 +
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2¢, ¢g/2) are both bounded by e~ /8 Finally, Lemma D.3 bounds ||e~"3 Iy4(R)ll4, and Lemma E.6
bounds |[|r3||,. Combining all of these bounds, (D.3) reduces to

Rcg d

|E| <, w?exp (C’(q)R4+qw) +e 8
Rcg

(D.6)
[E(f)] Sq Hfonw3 exp (C(q)R4+qw) +e 89

Now, if w = 0 then we get |E|, |E(f)| < e_%d, and we can take R — oo to conclude |E|, |E(f)| = 0.
If w > 0 then by (2.4), we know 0 < w < 1. Let

R = max <C_’, L log(w3)> , (D.7)
cod

so that exp(—(Rco/8)d) < w?. Furthermore, using that log(1/w)*™w < C(q) since w < 1, we have
that for R as in (D.7), the exponent C(q)R**% in (D.6) is bounded above by some fixed function
C(Ry, cal, q). Using these bounds, we get

Bl < Clg,cg" Ro)w?, BN < Cla,cq", Ry) (1 + | foll2)e? (D-8)

Note that this bound is still valid if w = 0. Finally, recalling the definition of w concludes the
proof. O

Next, we prove Lemma 4.3, which follows immediately from Lemma E.6 and a few algebraic
manipulations.

Proof of Lemma 4.3. We have

L(f) +/f0p3d7+/f0 (T4_ ;Iﬁ) d’YZ/fO <[—T3+;T§] +r3 — ;p%) dry

1

= Q/fo((pg +74)% — p3)dy = /fopgmd'y + % / foridy.

Next,

1
[ it 5 [ fortan| < ol Qsbalialla -+ )

< Il foll2 (azease® + (ase?)?)

< Ml foll2 (a3a4e3 + aie4) .

Next, we have

1
[ 0(rs= 5% 2] < Ul rll -+ IalB) < W foltad + an)

Finally,
‘ / fpzdv‘ < Iollalipsllz < Ifollaase.
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Proof of Lemma D.1. A Taylor remainder argument shows that
e — Ty —13/2] < fraff o frafe .

Therefore,
B < [l + [ 1ellreay
= [1nlmafar+ b umdy+ [ Iplinferd )

U(R)

< Iolelralito(d + e tuml) + [ ollrl®e
U(R)e
In the third line we used generalized Holder with powers 2,4,4. Next, by (D.2) we have
e—rg(;r)d,y(l,) _ e—r4(0)(27r)—d/2eVo(0)—Vo(1’)dl,‘

We now apply the bound (C.8) on V(0) — V() in the region ||z|| > RvVd > v/d + 8V/2, to get the
following bound on the tail integral:

. —74(0) )
/ | follrs[Pe ™ dy(z) = . / | fol a2 @~ Vo@) g
U(R) (21):;0) U(R) D10)
S [ Il VAR
(2m)2 Ju(r)e

Next, we have by (D.2) that |r3(z)| < |Vo(z) — Vo(0)| + |r4(0)| + ||z||>. Therefore, by the first bound
in Lemma C.2 we have
r3(2)° < [Vo(@) = Vo(0)]® + [ra(0)° + [l|®
Sq L+ |22+ [|2]|° + ra (0) (D.11)
<q e‘r4(0)|HxH9+3q-

We have used that ||z| > Rv/d > 1. Finally, note that |fo(z)| < exp(coVd||z||/4) for x € U(R),
since ||z|| > RvVd > RyV/d. Substituting this bound and (D.11) into (D.10), and then substituting
the resulting bound into (D.9) gives

B S Lollllrslfol0 + e Tagl) + 20 on) 8 [ asiee= 30z, (D12

Next, note that using Lemma E.5 and (2.4), we have |r4(0)| < C(q)ase® < C(q). Using this bound
in (D.12), as well as the definition of I(R, p,b) with p = 9+ 3¢ and b = ¢y /4 finishes the proof. The
bound on |E| is shown analogously. O

Proof of Lemma D.3. Recall that Az = E[V3V;(Z)], and that r3 = §;(As, Hs(z)) + r4(z). Hence

e Tymylla < sup e‘”(x)l’!67%<A3’H3>1U(R)H4
|| <RVd (D-13)

< LRI a1 | o= (A Hy) Ly llas
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using the pointwise bound on |r4| from Lemma E.5 to get the second line. To bound ]]675<A3’H3>

we use that if the restriction of f to an open set U is Lipschitz has Lipschitz constant L, then

/efd”y' < exp (CL?* + L| f]1)
u

for some absolute constant C'. This follows from Proposition 5.4.1 in [3] and the fact that ~ satisfies
a log Sobolev inequality with an absolute constant. We apply this result with f = —%<A3, Hs).
We have

1
IVF @)l = 5 I(As, w2 — )| S R2d||As]| Sg RPaze, ]| < RVd.

The bound on d||As|| is by (C.11) of Lemma C.2. Therefore, f has Lipschitz constant L =
C(q)R%aze when restricted to U(R). Furthermore, ||(As, Hs)||1 < d||4s]| < age by (E.32). There-
fore,

1
H€7§<A3’H3>1L{(R)”4 < exp (C(q)R4(a36)2) .
Substituting this bound into (D.13), we get

e Vg4 < exp (Cla) [R*1asé® + R'(as6)?]) < exp (Cg)R™iw),  (D.14)

where w = age + ase?. Here we used that R* < R**7 and (ase)? < age by (2.4). O

E Hermite Series Remainder

E.1 Brief Primer

Here is a brief primer on Hermite polynomials, multinomials, and series expansions. We let Hy :
R — R, £k = 0,1,2,... be the kth order probabilist’s Hermite polynomial. We have Hy(z) =
1,Hi(z) = =, Ho(z) = 2? — 1, H3(z) = 23 — 3z. For all k > 1, we can generate Hj,; from the
recurrence relation

Hyi1(z) =xHg(z) — kHg—1(x), k>1. (E.1)

In particular, Hy(x) is an order k polynomial given by a sum of monomials of the same parity as k.
The Hy, are orthogonal with respect to the Gaussian measure; namely, we have E [Hy(Z2)H;(Z)] =
K'9;,. We also note for future reference that

E(ZHW(Z) Hy1 ()] = B [(Hyo1(2) + kHi 1(2)) Hin (2)] = (K + 1), (£:2)
using the recurrence relation (E.1).

The Hermite multinomials are given by products of Hermite polynomials, and are indexed by
v€{0,1,2,...}¢ Let vy = (y1,...,7q), with v; €{0,1,2,...}. Then

d
H,y(.’lfl, ey CEd) = H H’Yj (.’L']),
i=1

which has order |y| := Z?:1 7v;. Note that if |y| = k then H,(x) is given by a sum of monomials

of the same parity as k. Indeed, each H., (z;) is a linear combination of :L‘;j_gp, p < /2]

32

Ly(ryllas



Thus H,(x) is a linear combination of monomials of the form H?Zl x;j_Qp 7, which has total order
k—2 Zj p;. Using the independence of the entries of Z = (Z1,...,Z;), we have

d
E [H"/(Z)H’Y'(Z)] - 7' H 5'yj,'y§.7

j=1
where ! := H;lzl v;!. The H, can also be defined explicitly as follows:
el () = (—1)Plo (efuxn?/z) 7 (E.3)
where 97 f(z) = 071 ... 03¢ f(x). This leads to the useful Gaussian integration by parts identity,
E[f(2)H,(Z)] =E[0"f(2)}, if f € CPI(RY).
The Hermite polynomials H.,, v € {0,1,...}¢, form a complete orthogonal basis of the Hilbert

space of functions f : RY — R with inner product (f, g) = E[f(Z)g(Z)]. In particular, if f : R? = R
satisfies E [f(Z)?] < oo, then f has the following Hermite expansion:

f@)= Y —a(DHG). o) =Ef(2)H,2) (E4)
~e{0,1,... }@ v
Let 1
@) = f@) = Y ~a (N H, (@) (E5)

be the remainder of the Hermite series expansion of f after taking out the order < k—1 polynomials.
We can write i, as an integral of f against a kernel. Namely, define

Kle) = 3 H,@)Hy() (E6)
Iv|<k—1
Note that )
E[f(Z)K(x,Z)] = ) ;%(f)Hw(l‘)
lyl<k-1 "

is the truncated Hermite series expansion of f. Therefore, the remainder r; can be written as

re(x) = fz) —E[f(2)K(z, 2)] = E[(f(2) - f(2))K(z, Z)],

using that E [K(z, Z)] = 1.

E.2 Exact Expression for the Remainder
Lemma E.1. Let k > 1 and 1, K, be as in (E.5), (E.6), respectively. Assume that f € C', and
that |V f(z)|| < ell=I* for some 0 < ¢ < 1/2. Then
re(z) =E[(f(z) - f(£))K(z, Z)]
(E.7)

1 d
= [ % RO 02+ t0) (Hyre (0)H(2) — Hyse (2 H @)
i=1 |y|=k—1
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The proof relies on the following identity:

Lemma E.2. For eacht=1,...,d, it holds that

K(,y) = —— 3 2 (Hyrei @) (y) — oo, (9) Hy () (£:3)
Ti — Yi =1 v

The proof of this identity is given at the end of the section.

Proof of Lemma FE.1. Write

1
f@)=12) = [ (= 2)TVH(1 =07 +12)ar
d 1 (E.9)
- Z/ (xi — Z:)0i f(1 — 1) Z + tz)dt,
i=170

so that, using (E.8), we have
E[(f(z) = f(Z2)K(x, Z)]

d 1 1
= —E [ / B (1= 1)Z + t2) (Hyse, () Ho(Z) — Heyso,(Z)Hy(z)) dt|
i=1 |y| v 0

By assumption,

sup |9;f (1 =) Z + tx)[ (|Hy(2)] + [Hy1e; (2)])
t€[0,1] (E.11)
< exp (cllZ])* + 2¢| Z|[zll) (1Hy(2)] + | Hote, (2)])

for some 0 < ¢ < 1/2. The right-hand side is integrable with respect to the Gaussian measure, and
therefore we can interchange the expectation and the integral in (E.10). Therefore,

E[(f(x) = [(2)K(z, Z)]

d

1
= [ F B0 07+ 10) (e () (2) — Hyse (D), @)

i=1 |y|=k—1

(E.12)

O]

Proof of Lemma E.2. Without loss of generality, assume ¢ = 1. To simplify the proof, we will also
assume d = 2. The reader can check that the proof goes through in the same way for general d.
By the recursion relation (E.1) for 1d Hermite polynomials, we get that

H’71+1,’72 (x) - le’YlﬂQ (x) - 71H71—1,’Y2 (x)’

where x = (21, 22). Multiply this equation by H,(y) (where y = (y1,y2)) and swap = and y, to get
the two equations

H71+1,’Y2 (l')H’n,'m (y) = :L'lH'ﬂ,’yz (x)H71;72 (y) - '71H71*1,’Yz (aj)Hvl,’m (y)7

(E.13)
H’YlJrl,’yQ (y)H'YL’YQ (l’) = ylH’Y1,’Y2 (ZE)H’YL’}'Q (y) - rylH'Yl*L’YZ (y)H'Yl,’YQ (l’)
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Let
S’Yl:'YZ = H’71+17’72 ('T)H’Ylﬁz (y) - H71+1,’Y2 (y)H71,72 (33)

Subtracting the second equation of (E.13) from the first one, and using the S, ,, notation, gives

Sy e = (w1 — yl)H'nﬁz (x)H'nﬂz (y) + 71571—1,72

and hence

Sy = ( )H’Ylﬁz () Hyi 70 (y) + T
Y1ly2! Y1172 (71 = 1)ly2!
Iterating this recursive relationship v; — 1 times, we get

-

mn—1
Sy e (z1 —y1) Z Hy o (@) Hry s (y) | S0
Y1lye!

=0 (")/1 — j)")/Q' 0"}’2'

Now, we have

S0,y = Hiy, (2)Ho iy (Y) — Hiy, (y) Ho y (2)
= Hy(x1)Hy, (22) Hy, (y2) — Hi(y1) Hyy (y2) Hy, (72)
= (z1 — y1)Hyp (22) Hoy (y2)
= (21 — Y1) Ho o (%) Hoy, (Y)-
Therefore,
Hoyy—jiys (@) Hy — s ()
(m = J)!!

50772 _ (

Ol = (71~ Y1) ; Jj=m

so (E.15) can be written as

.
S"/1,72 _ (xl — 1) 21: Hy i, (x)Hﬂq—jﬁz (y)
Y11y2! = (11 = J)!!

and hence

1 S’nﬁz _ - H’Yl*jﬂz(x)H’Yl*jfm(y)
Loy el v oy

1! — !
k-1 2 k1 =0 (71 =)t

— Z Hyy o (2) Hyy 15 (y) = K(z,y),

- Ty |
it ya<k—1 T2

using the observation that

{(i=de) m+7=k-1,0<j<v}
={(7,72) +72<k-1}h

Substituting back in the definition of S,, ,, gives the desired result.

35

(E.14)

(E.15)

(E.16)

(E.17)

(E.18)



E.3 Hermite Series Remainder in Tensor Form

Using (E.7), it is difficult to obtain an upper bound on |rg(z)|, since we need to sum over all 7 of
order k — 1. In this section, we obtain a more compact representation of r; in terms of a scalar
product of k-tensors. We then take advantage of a very useful representation of the tensor of order-
k Hermite polynomials, as an expectation of a vector outer product. This allows us to bound the
scalar product in the r; formula in terms of an operator norm rather than a Frobenius norm (the
latter would incur larger d dependence).

First, let us put all the unique kth order Hermite polynomials into a tensor of d* entries, some
of which are repeating, enumerated by multi-indices a = (a1, ..., o) € [d]*. Here, [d] = {1,...,d}.
We do so as follows: given a € [d]¥, define v(a) = (y1(a),...,va(a)) by

k

vila) = 1{ay = j},

(=1

i.e. 7;j(a) counts how many times index j appears in a. For this reason, we use the term counting
index to denote indices of the form v = (v1,...,74) € {0,1,2,...}4, whereas we use the standard
term “multi-index” to refer to the a’s. Note that we automatically have |y(a)| = k if o € [d]*.
Now, for 2 € R?, define Hy(z) = 1 and Hy(z), k > 1 as the tensor

Hy.(z) = {H,(a) (@) }agpqr, = €R%

When enumerating the entries of Hy, we write H ,ia) to denote H,(,). Note that for each v with
|7| = k, there are (5) a’s such that y(a) = 7.

Ezample E.1. Consider the o = (i, j, 7, k, k, k) entry of the tensor Hg(z), where i, j, k € [d] are all
distinct. We count that 7 occurs once, j occurs twice, and k occurs thrice. Thus

HYWP MR () = Hy (a5)Ho () Ha () = 24(22 — 1) (2 — 3a,).
The first two tensors Hy, Hy can be written down explicitly. For the entries of H;, we simply have
Hfl)(m) = Hi(x;) = x4, i.e. Hi(xz) = . For the entries of Hy, we have Hém) (r) = Ho(z;) = 22 — 1
and Héw)(x) = Hy(z;)Hy(z;) = z;zj, i # j. Thus Hy(z) = 22T — I,.

We now group the terms in the Hermite series expansion (E.4) based on the order |y|. Consider
all v in the sum such that |y| = k. We claim that

> e @ = g 3 e @), (E.19)

lyl=k " " aegld]k

Indeed, for a fixed v such that |y| = k, there are (5) «’s in [d]* for which v(a) = 7, and the
summands in the right-hand sum corresponding to these o’s are all identical, equalling a~ (f)H~(x).
Thus we obtain (:) copies of a,(f)H,(z), and it remains to note that (';) [kl =1/~

Analogously to Hy(z), define the tensor Ay € (R?)®* whose a’th entry is

A = a0y = Ef(2)Hyo)(2)] = E[f(2)H(2).

We then see that the sum (E.19) can be written as 7 (Ay, Hg(z)), and hence the series expansion
of f can be written as

F@) =3 (A, Hu@)),  Aw(f) = E[f(2)H(2)] (E.20)
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Lemma E.3. Let f satisfy the assumptions of Lemma E.1, and additionally, assume f € CF.
Then the remainder ri, given as (E.7) in Lemma E.1, can also be written in the form

(1)t k
() :/ oY g Kv FIA—DZ +tx), Hy(z) - Z@Hk_l(x)ﬂ (E.21)
o (k—=1)!
Proof. Recall that 97 := 9" ... 9], and that
HW(Z)Q*HZIIZ/2 = (=)Mo (e 17”72y,
We then have for |y| =k — 1,

E[0:f((1-0)Z +tx)Hy(2)] = (1 - )" E[97 f],

E0:f(1 =t)Z +tx)Hyte,(Z2)] = (1 — IR (97 7)), (E.22)

using the fact that f € C*. We omitted the argument (1 —¢)Z + tx from the right-hand side for
brevity. To get the second equation, we moved only v of the v + e; derivatives from e~ lI217/2 onto
8, f, leaving —8;(e~I117/2) = 2;. Substituting these two equations into (E.7), we get

1) - /()R (o 2)
1
- / DS S AR (0 ) (e (0) — 20 (@)

i=1 pyj=h-1 | (E.23)
1 ' k 1 : -1 Y+ei
-G L a- E;I 3 1( @) )~ Zit
i=1 |y|=k—
Now, define the sets
A={(i,y+e) : izl,...,dd, ve{0,1,...}% |y| =k -1}, (E24)
B={(,%) : y€{0,1,...}% A=k, % = 1}.
It is straightforward to see that A = B. Therefore,
3> (R EAERNE
=1 |y|=k—1
SPOD Ol (g BUHTHE
=k izl Z (E.25)
PP : ) E (07 ] (2)
|¥|=Fk i:y:=>1
( JEW )i @) = (B941), Fule)

Ql

Next, note that

k-1 »
> (" Doasme = @ 0w ),

|v|=k—1
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and therefore
d 1
> ( y )E (874 ) 2 H, () = E[(V* £, Z © Hy_y ()] (E.26)
i=1 |y|=k-1

Substituting (E.25) and (E.26) into (E.23) gives
re(x) =E[(f(z) - [(2))K(z, 2)]

:/01 (1"5 A E (V5 (1=1)Z +12), Hie) - Z @ He 1 (2))] (8.27)

O]

In the next section, we obtain a pointwise upper bound on |ri(z)| in the case f = Vj. In order
for this bound to be tight in its dependence on d, we need a supplementary result on inner products
with Hermite tensors. To motivate this supplementary result, consider bounding the inner product
in (E.21) by the product of the Frobenius norms of the tensors on either side. As a rough heuristic,
V¥ fllp ~ d*/2|| V¥ f||, where recall that || V¥ || is the operator norm of V¥ f. Therefore, we would
prefer to bound the inner product in terms of |[V¥f|| to get a tighter dependence on d. Apriori,
however, this seems impossible, since Hy(x) is not given by an outer product of k vectors. But the
following representation of the order £ Hermite polynomials will make this possible.

Hy(z) = E[(z +i2)%"], (E.28)

where Z ~ N(0,1;). Using (E.28), we can bound scalar products of the form (V¥ f, Hy(z)) and
(VFf,Z @ Hj_1(z)) in terms of the operator norm of V*f. More generally, we have the following
lemma.

Lemma E.4. Let T € (R)®* be a k-tensor, and v € RY. Then for all 0 < ¢ < k, we have
(T, v © Hx_o(@))| Sk TN o]l e~ + a2,
Proof. Using (E.28), we have
(T, v®* @ Hy_y(2)) = E[(T, v®* @ (x +i2Z)®*0)]
and hence
(T, v® © Hy_g(2))| S E[(T, 0¥ & (x +i2)** )
<TI0 E [llz +iz]*~] (£.29)

_ k—¢
Sk TNl Ul ]*4 + vVd ™).

E.4 Hermite Remainder Formula Applied to V}

We now consider the case f = Vj, where V} is defined in (C.5) and satisfies the properties stated
in Lemma C.2. Recall that

e
N
| =

re(z) = Vo(z) — (Aj, Hj(z)), (E.30)

1l

.
Il
o
M

where A; = E [Vo(Z2)H,(Z)] = E[VIVy(Z)], and the second equality holds provided V; € C7. We
first prove a pointwise bound on r4, and then bound the LP(+y) norm of r3 and ry4.
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Lemma E.5. It holds
G4
ra(@)] S 5 (ol + @+ Vallz|*) (0 + llo/Vd|?).
Proof. Let V*V{ be shorthand for V¥V((1 —t)Z + tz). Using (E.21) for f = Vj, we have
1
|ra(z)] g/ E [|[(V*Vo, Hy(z) — Z ® Hs())|] dt
0

1
S /0 E (9%l (l2]* + a2 + | 2] (o> + d¥/%)) | at

S (IIwH‘* +d*+ x/?inxu?’) /1 VE [[V*Vo((1 — )Z + to)||2]dt (E31)
0

1
= (le* + @ + Val|*) /0 VAol 22 e, 1210y 2
a
<o % (Il + @+ Valla]) (1 + o/ V)

In the second line we used Lemma E.4, and in the third line we used Cauchy-Schwarz and the fact
that E [||Z||*] <g d*/2. To get the fifth line, we used (C.10) of Lemma C.2 O

The d-dependence in the bound on ||73]|, in the next lemma relies on Lemmas 2.1, C.2 and C.1
of [18]. Combined, the three lemmas give that for a symmetric d x d x d tensor T, it holds

(T, Hi3)[|or Sk [T Ha)ll2 S T < 4T (E.32)
Lemma E.6. Let p3(x) = %(Ag, Hs) (). It holds

||7"4”p Sp,q a462
Hp3”p Sp,q ase,
||r3||p Spig A3€ + a462 = w,

where € = d/\/n.

Proof. For the bound on ||74]p, we use Lemma E.5 which gives

E (ra(2)) Spa (%) E [(120° + & + VAIZIP) Q4+ 12/ ] Spg (52)" a2

n

Taking the pth root gives |74, <pq aad?/n = ase?. To bound ||ps]|,, we use (E.32) and (C.11) of

Lemma C.2:
Ipsllp < I1(As, Hs)l, Sp dl|As|| < dE[|V*Vo(2)]] <4 ase. (E.33)

Finally, note that r3 = p3 + r4, and the bound on ||r3]|, follows. O

F Proofs from Section 5: existence and uniqueness of solutions to
stationarity conditions

For the proof of Lemma 2.1 using Lemma 5.1, see Section G. In this section, we prove Lemma 5.1
via the auxiliary lemmas outlined in Section 5.2. The proofs rely on tensor-matrix and tensor-
vector scalar products. Let us review the rules of such scalar products, and how to bound the
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operator norms of these quantities. Let v € R%, A € R™4 and T € R¥¥*4 We define the vector
(T, A) € RY and the matrix (T, v) € R™*? by

d
<T7 A>’L = Z EjkA]ka 1= 17 .. ‘7d7

Jk=1
p (F.1)
<T7 v)lj = ankvka ihj=1,...,d.
k=1
We will always sum over the last two or last one indices of the tensor. Note that the norm of the
matrix (T, v) is given by [[(T,v)|| = Supjjy|=uw|=1 u? (T, v)w, and we have
d d
ul (T, v)w = Z UW; ZT,-jkvk = (T, u@wauv) <|T||v|.
i,j=1 k=1

Therefore, [[(T, )| < | T][le].

We also review the notion of operator norm for derivatives of a function, and note the distinction
between this kind of operator norm and the standard tensor operator norm. Specifically, consider
a C? function f = (f1,..., f1) : R x R4 - RY where R¥? is endowed with the standard matrix
norm. Then V, f(m,0o) is a linear functional from R%¥*? to R?, and we let (V, f(m,o), A) € R?
denote the application of V, f(m, o) to A. Note that we can represent V, f by the d x d x d tensor
(Vo fl)f k=1, 50 that (Vs f(m, o), A) coincides with the definition given above of tensor-matrix
scalar products. However, ||V, f|lop is not the standard tensor operator norm. Rather,

IVofllop =" sup  [(VofA)l=  sup  (Vof, A®u).
AeRdxd || Al|=1 AeR¥%d || A||=1,
ueR?, [luf|=1

We continue to write ||V, f|| to denote the standard tensor operator norm, i.e.
Vo fll = sup (Vof,u®v@w).
u,v,wERY,

ull=llvll=[lw|=1

Note also that V,, f € R¥? is a matrix, and that

max ( 190 £(m.0) oy » (Vo fom, a)!\op)
< IV Fm.0)lop < V0 £(ms )l + [ Vonf (s ).

(F.2)

Finally, recall the notation
B,(0,0) = {(m,0) € R x B! : [jg|2 4 [lm]2 < 12},
B, ={o e R : |o|| <r}, (F.3)
Seico ={0 € Si sl 2o < ealy}.
The proof of Lemma 5.2 uses the following lemma.

Lemma F.1 (Lemma 1.3 in Chapter XIV of [21]). Let U be open in a Banach space E, and let
f:U — E be of class C'. Assume that f(0) =0 and f'(0) = I. Letr > 0 be such that B.(0) C U.

If
[f'(z) = f'(@)| <5, Vz,2 € B(0)

T
for some s € (0,1), then f maps B,(0) bijectively onto B(l—s)r(o)'
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Proof of Lemma 5.2. Let ¢ : R? x R¥4 — R? x R4 be given by ¢(m, o) = (f(m,o),0), so that
$(0,0) = (0,0), and

Vo(m, o) = <me om) Vefm 0)> , (F.4)

For each (m, o), (m/,0’) € B,(0,0), we have

[96(m, o) — Vo', )lop = V4 () = ¥ £, )l
<2 s [Vf(m.o) - VA0.0)p < 5 (£:5)
(m,o)€B-(0,0)

Note also that V¢(0,0) is the identity. Thus by Lemma F.1, we have that ¢ is a bijection from
B(0,0) to B, /s(¢(0,0)) = B,2(0,0). Now, fix any o € R such that |lo| < r/2. Then
(0,0) € B,/2(0,0), and hence there exists a unique (m, o’) € B,(0,0) such that (0,0) = ¢(m,0’) =
(f(m,o’),0"). Thus 0 = ¢’ and f(m,o) = 0. In other words, for each o such that ||o| < r/2 there
exists a unique m = m(o) such that (m(o),o) € B,(0,0) and such that 0 = f(m, o).

The map o +— m(o) is C? by standard Implicit Function Theorem arguments. To show that
the first inequality of (5.7) holds, note that we have

IV f(m(o),0) = Vi f(0,0)lop < IV Ff(m(a),0) = VF(0,0)]lop < 1/4 < 1/2
by (5.6) since we know that (m(o),0) € B,(0,0). Thus,

I; = V2W(0) = V,,£(0,0)

1 3 (F.6)
= §Id 2 Vi f(m(o),o) = §Id.
To show the second inequality of (5.7), we first need the supplementary bound
IVef(m(o),o)llop = Vo f(m(o),0) = Vo f(0,0)]lop < 1/2 (F.7)

which holds by the same reasoning as above. Now,
0o ;m = =V f(m, a)*la(,].kf(m, o) € R?

by standard Implicit Function Theorem arguments, where V,, f(m, o) is a matrix, 9y, f(m, o) is
a vector, and V,m, V, f are linear maps from R?*? to R?. Hence by the first inequality in (5.7)
combined with (F.7) we have

IVorn(o)llop = sup [[(Vom(o), A}l
[Al=1

d
= sup |V f(m, o)™ Y Oy f(m, o) Aji|

1A =1 k=1 (F.8)
= sup ||[Vif(m, o) YV, f, Al
1Al =1

_ 1
<Vt (m, ) Vo fllop <2 5 = 1.
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Proof of Lemma 5.3. Note that f is C? thanks to the fact that W is C% and VW grows polynomially
by Assumption 2 (since the third derivative tensor grows polynomially). We then immediately have
£(0,0) = VW (0) =0, V, f(m,0) = E[V2W(m + 0Z)] is symmetric for all m,o, and V,,f(0,0) =
V2W(0) = I;. To show V,f(0,0) = 0, we compute the i, j, k term of this tensor:

Oy fi = 0 E[OW (m + 02)] = E[05W (m + 02) 24,

so that 9,,, fi(0,0) = E [8sz(O)Zk] = 0. Tt remains to show that for r = 2v/2 we have

1
Sup va(ma U) - Vf(O,O)”op < Z (Fg)
(m,0)€B;-(0,0)
First, note that
sup [|[Vf(m,0) = VF(0,0)lop < sup  [[VZf(m,0)lop, (F.10)
(m,0)€B(0,0) (m,0)eB,(0,0)

where V2 f(m, o) is a bilinear form on (R? x R¥*?4)2 and we have

IV2£(m, 0)llop < V5 £(m,0)llop + 2[IVo Vi f (12, ) [lop + IV, f (112, ) . (F.11)

For f(m,o) =E[VW (cZ + m)], these second order derivatives are given by
02 m f(m,0) =E[07;VW(m + 0Z)],

my, M
Om, 0o, f(m, ) = E[07 ;YW (m + 02) Zy), (F.12)
0. o0y f (M, 0) = E[0F NW(m + 02) Z1 Z,),

each a vector in R%. From the first line, we get that

I92,£(m. ) lop < EIVAW(m+ 0 2)]| = [[IV*WI | 2 oo (F.13)
where |[V3W || is the standard tensor norm. From the second line, we get
vavaf(m7 U)HOP
=  sup E Z 02 ; VW ( m+UZ)kaiAjk] ’
[All=1,]|=]|=1 ”,k 1
= sup |E Z 02 VW (m + 0 Z)x:(AZ); ] ‘
[All=1,]|=]|=1 ij=1 (F.14)
= sup E <V3W(m+aZ),:c®AZ>} H
[All=t]lz=1 1L
< B[ lelAZI W+ o)

3
< Vd|[|v Wl L2 (v mioor)
A similar computation gives

IVaf(m,o)lop < sup  E[JAZ||BZ|||V*W (m+oZ)]|]
l4l=1,[Bl=1 (F.15)
< 2dHHV3WHHL2(

N(m,ooT))
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Using (F.13), (F.14), and (F.15) in (F.11) gives

IV2f (m. o)llop < (2d+2Vd+ D) [[IV* W 2 m.0o)

F.16
<sd s IS sy o
m,o)ebr(0,
Substituting (F.16) into (F.10) with 7 = 24/2 and then using (C.4) of Lemma C.1, we get
sSup ”Vf(ma J) - Vf(O, O)HOP
(m,0)€B,, /5(0,0)
<tov2d s [IVWI 2 pmoor
(m,0)€B,,/5(0,0 . ) (F.17)
d 1
< — < -
< Clg)as RS T
The last line holds provided asd/+/n < 1/4C(q), which is ensured by (2.4). O

Proof of Lemma 5.4. First, let G(o) = E[V*W (m(c) + 0Z)] and f(m,o) = E[VW(m + 0Z)] as
in Lemma 5.3. Note that V,, f(m,0) = E[V?*W (0 Z +m)], so that G(0) = Vi f(m, 0)| (o) and
hence by (5.7) of Lemma 5.2 we have

1 3
ild = G(O’) = §Id, Vo € SO,T/Q' (F18)

But then G(o) has a unique invertible symmetric positive definite square root, and we define
F(0) = G(c)~ /2 to be the inverse of this square root. Moreover, using (F.18), it follows that

c1lg X F(o) = caly, Vo € So,/2;

where ¢; = 1/2/3 and ¢3 = v/2 = r/2. In other words, F(So/2) © Seyyes € Sorj2- It remains to
show F'is a contraction on Sy, /o. Let 01,02 € S 5. We will first bound [|G(01) — G(02)||. We
have

1G(01) = G(oa)|| < [low — o2l sup [[VoG(0)]|op,

o (F.19)
and
1V5G(@)llop = sup [[{V+G(o), 4)]
(F.20)
T E<V3W’ (4, Vo (m(o) +UZ)>>H'
Here, the quantities inside of the || - || on the right are matrices. Indeed, (V,G, A) denotes the

application of V,G to A. Since G sends matrices to matrices, V,G is a linear functional which
also sends matrices to matrices. In the third line, V,(m(o)+ 0Z) should be interpreted as a linear
functional from R?*? to R?, so (A, V,(m(c)+0Z)) is a vector in R, and the inner product of this
vector with the d x d x d tensor V3W is a matrix. Using that |[(T,z)|| < |[|T||||z||, as explained at
the beginning of this section, we have

<V3W, (A, Vo (m(0) + 02) >>

< [IVPW Vo (m(o) +o2)lop
= [V*W[[Vom(a) + Z @ Lallop < [IVWI|(L + [ Z]])-

<||V*W| 1A, Vo (m(o) + 0 2))]|

(F.21)
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To get the last bound, we used that ||V,m(0)|op < 1, shown in Lemma 5.3. We also use the fact
that [|Z @ Lallop = supjaj=1 | (4, Z @ Ia) || = supj =1 [AZ]| = [|Z]|. (Recall that since Z @ Iy is
part of V,m, we are considering Z ® I; as an operator on matrices rather than as a d x d x d tensor,
and this is why we take the supremum over matrices A.)

Substituting (F.21) back into (F.19), we get

IG(1) = Gloo)|| < llor — o2l sup E [[[V*W (m(0) + o Z)| (1 +[|1Z]])]

0'6507\/5
: (F.22)

d
< —o2||C —-< — —
< o1 — o2 (Q)as\/;_ 2\/§H01 oa|

The second inequality is by Cauchy-Schwarz and (C.4) of Lemma C.1. The third inequality holds
if az\/d/n < 1/(2v/2C(q)), which is ensured by (2.4) of Assumption 2. Now, note that thanks
to Lemma 5.3, both Apin(G(01)) and Amin(G(02)) are bounded below by 1/2. Using Lemma F.2
and (F.22), we therefore have

1F(01) = Floo)|| < V2[|G(01) — G(ov)]
(F.23)

IN

g g2l
2 1 2

Hence F' is a strict contraction. O]

Lemma F.2. Let Ag and A1 be psd, and A(l)/z, Ai/Q their unique psd square roots. Assume without

loss of generality that Amin(Ao) < Amin(A1). Then
_ _ Ar — Aol
A1/2_A1/2<H1 ol
H 1 0 H — 2)\min(AO)3/2

Proof. First note that
~1/2 ~1/2 —1/2, 41/2 1/2\ ,—1/2
A / — 4 / =4 /(Ao/ _Al/ )4 /

and hence 1/2 /2
—1/2 —1/2 S1/200 A—1/201 41/2 1/2 AT —A
JATY2 A 2 < AT A Ay — a2y < A= A
)\mln(AO)
Now, define Ay = Ag + t(A; — Ap) and let By = Ai/ 2, where B; is the unique psd square root of

A;. We then have HAi/2 - A(l)/2H < SUPyefo1] || Bt||. We will now express B; in terms of A; and B;.

Differentiating B? = A;, we get
BB, + BB, = Ay = A — Ay. (F.24)

Now, one can check that the solution By to this equation is given by
o
By = / e SBH(Ay — Ag)e*Prds
0

and hence - 4 A 4 4
1Bl < s = Aol [ feegpar = L2 =2l - IO Al
0

22min(Bt) 24/ Amin(Ar)

N(?w note that Amin(A¢) > Amin(Ao), since A; is just a convex combination of Ay and A;. Hence
| Be|l < [|A1 — Aoll/2+/ Amin(Ao) for all ¢ € [0, 1]. Combining all of the above estimates gives

_ _ A1 — Ayl
AU 412 A1 — Ag ‘
|| 1 0 H - 2)\min(A0)3/2
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G Auxiliary proofs

We first prove the two change-of-variables results from the paper and then two other postponed
lemmas, the proofs of which involve some technical calculations which are not particularly inspiring.

First, we show the equivalence of (4.5) and (2.12). It suffices to show [ f(—ps)dy = [ ¢Qdr.
Recall that 7 = Ty and g = f o T. Therefore, [ f(—p3)dy = — [ gps o Td, so it suffices to show
pgoT = —Q. Now,

p3(z) = <]E [V?’VO(Z)] , ém@)g - %x ® Id>
<]E [V3V( 51/22)} é(sﬂ/%)% - %(Sl/%) ®5*> (G.1)

1,4 1 - .
= <IE x~i [VAV(X)], 6(51/%:)@3 - 5(Sl/%:) ® S> .
Therefore,

(p3 o T)(x) = p3(S~*(x — )

_ <E xor [VAV(X)] é(x —)E - ® s> — _Q(a),
as desired.

Next, we assume the conclusion of Lemma 5.1 to prove Lemma 2.1.

Proof of Lemma 2.1. Let m, o be the solution from Lemma 5.1. Then

—E[VW(m +02)] = H;,*E [vv (m* + H Y (m o+ aZ))} ,

(coT) P =E[V*W(m+0Z)] = H\;l/QE [VV (m* * H‘;lm(m + JZ))} H‘;l/Q

Let R
m=m*+H,*m,  §=H," o0TH,"?.
We conclude that
—E[VV (i + H, 0 2)),

. (G.2)
ST =E V¥V (i + H,,*02)]

Now, we can replace H,, 125 (an asymmetric square root of 5') in the above equations with S1/2
(the symmetric square root of S) and the equations will still hold. Thus 77, S satisfies (1.9).
Furthermore, since (m, o) € By, 5(0,0) and o € S\/%,\/i’ we get that

1/2 & ¢71/2 1/2, 4
|2 SH |+ [ H 2 0= )2 = oo™ || + [m]2 = || + [[m]|? < 8, (G-3)

and
H'=8=H,"%c0"H,"? <20

Wl N
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It remains to show that i, S is the unique solution satisfying (1.9) in the region Ry . To show this
is the case, note that if (m, S) is a solution to (1.9) in Ry, then (HY2(m — m*), (HY/2SH'Y/?)Y/2) ¢
B, (0,0)N R? x S, /3 1s a solution to (5.3), (5.4). Furthermore, the map

(m, S) — (Hl/Q(m —m"), (H1/2SH1/2)1/2>

is injective. Since we know solutions to (5.3), (5.4) in B, 5(0,0) N RY x So.y5 are unique by
Lemma 5.1, it follows that solutions to (1.9) in Ry must also be unique. O

We now turn to the technical calculations.

Proof of Lemma 2.3. If g(z) = f(S™/2(x — m)) then (2.7) is satisfied provided |f(y) — v(f)| <
eVl for all |yl > RyVd. We now find R, to ensure this inequality on f is satisfied. Suppose
WLOG that f(0) =0, and |f(y)| < exp(CVd||y||*) for all y € RL. We first bound (| f|). We have

(£ < max !f(y)!+(27f)d/2/ exp (CpVd|lyl —llyl*/2) dy. (G.4
lyll<(4C;+2v2)Vd lyll>(4C+2v2)Vd ( ! ) G4

Now, we bound the two summands separately. For the first summand, we have

K = max fly
||ZJH§(4Cf+2\/§)\/E‘ )

exp(Cy(4Cy +3)*(Vd)' ™) (G:5)

exp(C(4C + 3)%d) =: 7%,

AN

where B
C:= Cf(4Cf + 3)04'

For the second summand in (G.4), we have

Ky = (27)9/2 / e~ lul2/4 g,
llyll>(4Cs+2v2)Vd

< 2% (2m) 2 / e~ l912/2g,, (G.6)
lyll>2vd
d d
<2272 < 1.
In the second line, we used that Cyvdlly|| — lyl?/2 < [lylI*/4 — [lyl|*/2 = —ly[*/4 when |ly] >
+ . Using (G.0) an .06) In (G.4), we get
(4C + 2v/2)V/d. Using (G.5) and (G.6) in (G.4)
Y(If]) < K1 + Kz < 292 (G.7)
Now, if Ry > % (C’ + log 4), then
= ]_ C 1 C
()] < 277 < SeF Pt < —e BV v|je| > R,V

Next, we bound |f(y)|. Note that if ||ly|| > R4v/d and R, > 1, then
CrVd log2> ™

+
yllt== "yl

CpVd log 2

< ( = ) lyl (G-8)
Rg \/g Rg\/a

(Cy +log2)Vd
Ry

CyVd|ly||® +log2 = (

c
< lyll < - Vallyl
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1

as long as R, > Cs +log2 =% We then have
g !

4
co
1 C
)] < exp(CVly|®) < Sexp (DVlyl) Vil = BV

Combining all of the above estimates, we get that

) =7 W]+ (1) < exp (TVAlyl) ¥yl = Byvd
as long as

1
4 1-a 4
R, > max <[1\/C(C’f—i—log2)} ,C(Cf(4Cf+3)a+log4)> :
0 0

This is a function of C, ar, ¢y which is increasing with Cy, o, and ¢y 1 as desired. O

Proof of Lemma D.2. Lemma E.3 of [18] shows that if Rb > 1+ p/d, then
I(R,p,b) < (eR)Pdz " exp ([2 +log R — Rb] d> (G.9)

Massaging this upper bound, we get

[MIS]

I(R,p,b) <p RPq5H! exp (B +logR — Rb} d> < dzH exp <[Z +(p+1)logR — Rb] d> .

Now, we have

Rb
(p+1)logR=(2p+2)logVR < (2p+2)VR < T
provided R > (8p + 8)2b2. Therefore,
3 3 3 1
2 NlogR—Rb< > —° Rb< —1— -
2+(p—|— )log R — Rb < 5 4Rb_ 2Rb

for R > 10b~'. Thus I(R,p,b) <, datle—d—Rbd/2 <p e Bbd/2 - The lower bounds on R are met
provided
R >max ((1+p)b ", (8p+8)% 2,106 1),

which can be achieved by taking R = Cp(1V b~1)? for some C, depending only on p. O
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