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Abstract

We consider two versions of the (stochastic) budgeted Multi-Armed Bandit problem.
The first one was introduced by Tran-Thanh et al. (AAAI, 2012): Pulling each arm incurs
a fixed deterministic cost and yields a random reward i.i.d. sampled from an unknown
distribution (prior free). We have a global budget B and aim to devise a strategy to
maximize the expected total reward. The second one was introduced by Ding et al. (AAAI,
2013): It has the same setting as before except costs of each arm are i.i.d. samples from an
unknown distribution (and independent from its rewards). We propose a new budget-based
regret-analysis framework and design two simple algorithms to illustrate the power of our
framework. Our regret bounds for both problems not only match the optimal bound of
O(lnB) but also significantly reduce the dependence on other input parameters (assumed
constants), compared with the two studies of Tran-Thanh et al. (AAAI, 2012) and Ding
et al. (AAAI, 2013) where both utilized a time-based framework. Extensive experimental
results show the e!ectiveness and computation e”ciency of our proposed algorithms and
confirm our theoretical predictions.

1. Introduction

Multi-Armed Bandit (MAB) models are frequently employed in various real-world scenarios
to manage the balance between exploration and exploitation, e.g., crowdsourcing (Singla &
Krause, 2013; Singla et al., 2015; Sankararaman et al., 2020; Gao et al., 2020), structured
interviewing (Schumann et al., 2019a, 2019b), online advertising (Tran-Thanh et al., 2014;
Jaillet et al., 2017), dynamic pricing (Babaio! et al., 2015; Singla et al., 2015) and task
o#oading in edge computing (Wang et al., 2022). Several variants of the MAB models
have been extensively studied in di!erent application domains. Examples include budgeted
MAB (Tran-Thanh et al., 2012a; Ding et al., 2013): a global fixed budget constraint is
considered during the decision process; bandits with knapsacks (Badanidiyuru et al., 2018a;
Immorlica et al., 2019): one or more limited-supply resources are consumed in each round;
the sleeping bandits (Kleinberg et al., 2010; Li et al., 2019): arms could sometimes be
unavailable; and fair bandits (Li et al., 2019; Patil et al., 2020; Huang et al., 2020; Steiger
et al., 2022): fairness constraints are enforced such that each arm is pulled at least a pre-
specified fraction of times.
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In this paper, we consider two versions of (stochastic) budgeted MAB, namely budgeted
MAB with fixed costs and variable costs, respectively. These two models are inspired by
a variety of practical applications. For instance, in UAV networks, actions such as video
recording or hovering consume energy, thereby limiting the number of actions based on
the UAV’s battery capacity. This situation aligns with the budgeted MAB model with
fixed costs. For another example, in real-time bidding within ad exchanges, the cost of
selecting an arm depends on user behavior and competition from other bidders, making it
more appropriately modeled as a random variable rather than a fixed value. The following
sections provide detailed discussions of the budgeted MAB models with fixed and variable
costs.

Budgeted MAB with Fixed Costs (BMAB-FC). BMAB-FC is first introduced by (Tran-
Thanh et al., 2012a) with the following setting. We have a set J of K arms and a budget B.
Each arm j → J has a deterministic cost cj . During every time (or round),1 pulling an arm
j will incur a cost cj and yield a random reward Vj → [0, 1], and rewards from pulling j over
di!erent time are assumed i.i.d. samples from an unknown distribution with (unknown)
mean vj → [0, 1]. The goal is to devise a pulling strategy such that the expected total
rewards is maximized subject to the budget constraint. Note that in (Tran-Thanh et al.,
2012a), it is assumed that ω

.
= minj cj ↑ 1 and the pulling process should stop whenever

the remaining budget is less than ω.

Budgeted MAB with Variable Costs (BMAB-VC). The work of (Ding et al., 2013)
proposed BMAB-VC which has a similar setting to BMAB-FC. The key di!erence is that
every time pulling an arm j, we see a random cost Cj → [0, 1] and a random reward
Vj → [0, 1]. The random costs and rewards over di!erent time are assumed i.i.d. samples
from two respective unknown distributions with (unknown) means cj → [0, 1] and vj → [0, 1].
The random costs and rewards are assumed independent from each other over all arms and
all rounds. The work of (Ding et al., 2013) considered both settings when ω

.
= minj cj is

either unknown or known as a prior, while the latter is the focus of this paper. Note that
here ω ↓ 1, which di!ers from the previous case. The pulling process will stop if a pulled
arm has a realized cost exceeding the remaining budget.

Throughout this paper, we assume a su”ciently large budget (B ↔ 1), as also assumed
in previous works (Ding et al., 2013; Tran-Thanh et al., 2012a). Specifically, we consider
B >

∑
j→J cj in BMAB-FC and B > K in BMAB-VC, ensuring that the budget B allows for

pulling each arm at least once. According to (Lai & Robbins, 1985; Auer, 2002), the regret
bounds for BMAB-FC and BMAB-VC are lower bounded by $(lnB). The algorithms
proposed in (Ding et al., 2013; Tran-Thanh et al., 2012a) have been shown to achieve
asymptotically optimal bounds of O(lnB). In this paper, we aim to design simple and
e!ective algorithms for BMAB-FC and BMAB-VC that further improve upon the regret
bounds in (Ding et al., 2013; Tran-Thanh et al., 2012a) by reducing the constant factors in
front of the dominant lnB term in the total regret. Detailed discussions can be found in
Section 3.

1The two terms “time” and “round” are used interchangeably throughout this paper.
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Table 1: A glossary of notations.

(a)+
.
= max(a, 0) Max between a generic real number a and 0

cj Cost or the cost mean of arm j
vj Reward mean of arm j
K = |J | Number of all arms
ω

.
= minj cj Min of the cost mean over all arms

εj = vj/cj Density of arm j
j↑(↗) = argmaxjεj Index of arm having the highest density
v↑ Reward mean of arm j↑

c↑ Cost or the cost mean of arm j↑

dj = ε↑ ↘ εj Density gap between arm j and an optimal j↑

ϑj = cj · dj Product of the cost mean and density gap on arm j
d = minj:dj>0 dj Min density gap over all non-optimal arms
Jt Set of arms with costs within the remaining budget at time t

2. Main Techniques

For each j → J , let εj
.
= vj/cj be the density of arm j. Let j↑ = argmaxjεj and we write ↗

short for j↑ when the context is clear. Throughout this paper, we use OPT and E[OPT] to
denote the optimal strategy and the corresponding expected rewards achieved, respectively.
The same for ALG (a generic algorithm). The below lemma gives an upper bound for OPT.

Lemma 1. For BMAB-FC, we have OPT ↓ Bε↑; and for BMAB-VC, we have OPT ↓
(B + 1)ε↑.

The first claim is explicitly stated in the proof of Theorem 1 on page 15 of the full
version (Tran-Thanh et al., 2012b), while the second claim is proved in Lemma 1 of the
work (Ding et al., 2013).2

A Time-based Analysis Framework. Both of studies (Ding et al., 2013; Tran-Thanh
et al., 2012a) apply a time-based framework to analyze the regret. Consider a given algo-
rithm ALG. Let T be the random number of rounds pulled by ALG and j(t) be the choice
of ALG at time t. They tried to decompose the total regret R(ALG) = E[OPT]↘ E[ALG]
as follows.

R(ALG) ↓ Bε↑ ↘
T∑

t=1

E[vj(t)] (1)

= ET [Bε↑ ↘ Tv↑]︸ ︷︷ ︸
Ra(ALG)

+ET
[
Tv↑ ↘

T∑

t=1

E[vj(t)]
]

︸ ︷︷ ︸
Rb(ALG)

. (2)

2Note that for BMAB-VC, the upper bound of (B+1)ω→ is asymptotically tight. Consider a simple case
of BMAB-VC where the budget is an integer B → Z+, and there is a single arm with a Bernoulli random
cost having a mean of ε > 0 and a deterministic reward of ε, with ω→ = 1. In this scenario, any OPT will
continue pulling the arm an expected (B + 1)/ε↑ 1 times, resulting in an expected reward of B + 1↑ ε.
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Under the premise that OPT will always play the optimal arm j↑, we can interpret the two
parts as follows: Ra(ALG) is the expected total regret over those missing rounds played in
OPT but not in ALG; Rb(ALG) is the expected regret over rounds when ALG played on
non-optimal arms.

A Budget-based Analysis Framework. In contrast, we propose a budget-based frame-
work to analyze the regret. Consider a given algorithm ALG. Let B(ALG) be the random
number of budgets used by ALG. For each j → J , let Nj be the random number of pulls on
arm j, and Vj , Cj be the corresponding total (random) rewards and costs involved on j in
ALG. Under the larget budget assumption (B ↔ 1), we can show that

E[Vj ] = E[Nj ] · vj ,E[Cj ] = E[Nj ] · cj . (3)

For any j, let dj
.
= ε↑ ↘ εj be the density gap between j and j↑. We try to decompose the

total regret as follows. Consider, for example, the case of BMAB-FC.

E[OPT]↘ E[ALG] (4)

↓ E
[
Bε↑ ↘B(ALG)ε↑ +B(ALG)ε↑ ↘

∑

j

Vj
]

(5)

= E
[
Bε↑ ↘B(ALG)ε↑ +

∑

j

Cjε↑ ↘
∑

j

Vj
]

(6)

= E[Bε↑ ↘B(ALG)ε↑] +
∑

j

E[Nj ](cj · ε↑ ↘ vj) (7)

= E[Bε↑ ↘B(ALG)ε↑]︸ ︷︷ ︸
Ra(ALG)

+
∑

j:dj>0

E[Nj ] · (cj · dj)

︸ ︷︷ ︸
Rb(ALG)

. (8)

Here we can interpret Ra(ALG) as the expected regret over those budgets wasted in ALG,
and Rb(ALG) as the expected regret over budgets misused on non-optimal arms.

Under the time-based analysis framework, the analyses of Ra(ALG) and Rb(ALG) are
equally technical. In contrast, in the budget-based framework, only the analysis of Rb(ALG)
presents a significant challenge, while that of Ra(ALG) is relatively straightforward. This
shift allows us to focus on upper bounding Rb(ALG)—the total expected regret arising from
misallocated budgets on suboptimal arms. As a result, the budget-based approach nearly
halves the analytical e!ort compared to the time-based approach and reduces potential
regret gaps between the target algorithm and the optimal one. This simplifies the regret
analysis while delivering improved regret bounds.

3. Main Contributions

We acknowledge that the budget-based analysis framework has already been used inexplic-
itly in several prior studies, e.g., (Xia et al., 2015; Rangi et al., 2019a), though none of
them states it in a formal way. Part of our main contributions lies in that we formalize the
budget-based framework for a general setting of budgeted MAB. In addition, we propose
two simple UCB-based algorithms to exemplify the power of the framework. Specifically,
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we propose a UCB-based algorithm UF for BMAB-FC and a UCB-and-LCB-based algo-
rithm ULV for BMAB-VC (Section 4). By using the unifying budget-based framework,
we show that the two algorithms achieve a regret bound of O(lnB) for BMAB-FC and
BMAB-VC, respectively (Sections 5 and 6). Both of our algorithms and the analyses are
featured by their simplicity and generality. Moreover, our regret bounds significantly re-
duce the dependence on input parameters as shown in the two previous works (Tran-Thanh
et al., 2012a) and (Ding et al., 2013), where both utilized the time-based analysis frame-
work. Our improvement in the regret bound highlights the superiority of the budget-based
analysis framework over the time-based version. Table 1 gives a glossary of notations used
throughout this paper. For a generic real number a, let (a)+

.
= max(a, 0).

3.1 Regret Bounds for BMAB-FC

Recall that in BMAB-FC, (a) each arm j has a deterministic cost cj and ω = minj cj ↑ 1;
(b) dj = ε↑ ↘ εj < ε↑ ↓ 1.

Theorem 1. For BMAB-FC, the algorithm UF achieves a regret bound at most

∑

j:dj>0

(8 lnB
cjdj

+ cj + 1
)
+ 1 +

2

B
.

Comparison with the Work (Tran-Thanh et al., 2012a). Our setting of BMAB-FC
is the same as (Tran-Thanh et al., 2012a), which gave an algorithm3 achieving a regret

bound of lnB · H, where H
.
= 8

d2
∑

j

(
(cj↓c→)+

c→
+ (v↑ ↘ vj)+

)
with d = minj:dj>0 dj being

the minimum non-zero density gap. Here we focus only on the dominant part involving lnB
and skip the rest. Note that H = $(K/d2) since for each j ≃= j↑, either cj > c↑ or v↑ > vj .
As shown in Theorem 1, our coe”cient of lnB is H ↔ .

=
∑

j:dj>0
8

cjdj
↓ 8K

d since cj ↑ 1.

By comparing H and H ↔, we see that our regret reduces the dependence on d from d↓2 to
d↓1. What’s more, we completely remove the dependence on gaps of cost and reward means
between optimal and non-optimal arms in the dominant part termed by H. Note that the

gap of cost means,
∑

j
(cj↓c→)+

c→
, can be arbitrarily large, since no upper bound is assumed

on cj .

3.2 Regret Bounds for BMAB-VC

Recall that in BMAB-VC, each arm j has a random cost with an unknown mean cj such
that ω ↓ cj ↓ 1. Let ϑj

.
= cj · dj for all j → J .

Theorem 2. For BMAB-VC, the algorithm ULV achieves a regret bound at most

∑

j:dj>0

(
8 lnB · (2 + ϑj)2

ϑjc2j
+ 1

)
+
(
2 +

4

Bω

)
· ε↑.

Comparison with the Work (Ding et al., 2013). The work of (Ding et al., 2013)
considered BMAB-VC under the same setting with us. They gave an algorithm achieving

3Actually, the work of (Tran-Thanh et al., 2012a) gave two algorithms but here we select the one with
a better regret bound.
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a regret bound of lnB · (H1 + H2), where H1
.
= ω↓2∑

j:dj>0

(
1 + 2/dj + 2/(ωdj)

)2
ε↑ and

H2
.
= ω↓2∑

j:dj>0

(
1 + 2/dj + 2/(ωdj)

)2 · max(v↑ ↘ vj , 0). Again, we focus only on the

dominant part involving lnB. Theorem 2 suggests that our dominant term is lnB · H ↔,
where H ↔ .

=
∑

j:dj>0 8(2 + ϑj)2/(ϑjc2j ). Lemma 2 implies our leading coe”cient H ↔ is at
most a constant factor of 8 of H1, and in the special case when all non-optimal arm has a
density gap ϖ from the optimal, our coe”cient H ↔ improves the dependence of H1 on ϖ and
ω from ϖ↓2ω↓4 to ϖ↓1ω↓3. Furthermore, our regret removes the direct dependence on the
gaps of reward means between optimal and non-optimal arms as H2 did.

Lemma 2. (1) H ↔ ↓ 8H1. (2) Suppose dj = ϖ ⇐ 1 for all dj > 0. We have H ↔ = O( K
ωε3 )

and H1 = $( K
ω2ε4 ).

Proof. We show (1) first.

H1 = ω↓2
∑

j:dj>0

(
1 + 2/dj + 2/(ωdj)

)2
ε↑ (9)

> ω↓2
∑

j:dj>0

(
ε↑ +

1

ω

ε↑
dj

4

ωdj
+

4ε↑

ωdj

)
(10)

>
∑

j:dj>0

1

c2j

(
ϑj +

4

ϑjω
+

4

ω

)
(11)

>
∑

j:dj>0

c↓2
j (ϑj + 4/ϑj + 4) = H ↔/8. (12)

Inequality (11) is due to facts that ω ↓ cj , ε↑ > ε↑ ↘ εj = dj ↑ cjdj = ϑj , ωdj ↓ cjdj = ϑj .
Inequality (12) is due to ω ↓ 1.

Now we show part (2). When dj = ϖ for all dj > 0, we seeH ↔ ↓
∑

j:dj>0 8(2+ϖ)2/(ϖω3) =

O(K/(ϖω3)), since ϑj = cjdj ↓ ϖ and ϑj ↑ ωϖ. In contrast, H1 ↑ ω↓2∑
j:dj>0 4ε↑/(ϖ

2ω2) =

$(K/(ϖ2ω4)).

4. Main Algorithms

Here are a few notations used in our algorithms. Consider a given time t. Let Nj,t be the
(random) number of pulls on arm j before t, Vj,t be the empirical estimate (sample average)
of rewards on j by t and for BMAB-VC only, let Cj,t be the empirical estimate of cost on j by
t. Define the upper and lower confidence bounds of rewards as UVj,t = Vj,t +

√
2 lnB/Nj,t

and LVj,t = Vj,t ↘
√
2 lnB/Nj,t. Similarly, for random costs in BMAB-VC, we define

UCj,t = Cj,t +
√

2 lnB/Nj,t and LCj,t = Cj,t ↘
√
2 lnB/Nj,t.4

Our main algorithms, UF and ULV, are formally stated as below.
Remarks. (1) Note that under the large-budget assumption, we have B >

∑
j→J cj in

BMAB-FC and B > K in BMAB-VC. In other words, budget B will a!ord to pull each arm

4The expressions for the upper and lower confidence bounds on rewards and costs follow the approach
outlined by (Tran-Thanh et al., 2012a); see expression (7) in that paper, which defines the upper confidence
bound on an arm’ density. This is a common practice in regret-bound analysis.
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Algorithm 1: A UCB-based Algorithm for BMAB-FC (UF).

1 Initial.: Pull each arm once during the first K steps;
2 While Jt ≃= ⇒ do: Pull the arm j(t) = argmaxj→JtUVj,t/cj , where Jt is the set of
arms whose costs are no larger than the current remaining budget at t.

Algorithm 2: A UCB-and-LCB-based Algorithm for BMAB-VC (ULV).

1 Initial.: Pull each arm once during the first K steps;
2 While the current remaining budget is a!ordable to pull j(t) do: Pull the
arm j(t) = argmaxjUVj,t/max(LCj,t,ω).

at least once surely. (2) Now, we justify Equation (3) holds for both of the above algorithms.
Consider a given j in UF. Recall that Nj and Vj be the respective total (random) numbers
of pulls and rewards on j. Observe that Vj is a sum of Nj i.i.d. random samples each with
mean vj . What’s more, Nj qualifies as a stopping time according to (Chewi, 2020): for a
given set of cost realizations over all other arms j↔ ≃= j and over all time, we claim that the
event (Nj ↓ N) occurs or not is completely determined by the first N cost samples on j.
Thus, by applying Wald’s equation, we get E[Vj ] = E[Nj ] · vj . We can argue in the same
way for ULV.

5. Regret Analysis for BMAB-FC

We prove the main Theorem 1 here. Throughout this paper, we denote [n] = {1, 2, . . . , n}
for a generic integer n. Observe that UF will surely terminate after at most B rounds
since ω = minj cj ↑ 1. This suggests that Nj,t ↓ B with probability one for all j and t.
We define the clean event CE as follows: for all j → J and all possible integers Nj,t → [B],
vj → (LVj,t,UVj,t).

Lemma 3. Pr[¬CE] ↓ 2B↓2.

Proof. Consider a given j → J and Nj,t → [B]. Observe that

Pr[vj /→ (LVj,t,UVj,t)] (13)

= Pr
[
|Vj,t ↘ vj | ↑

√
2 lnB/Nj,t

]
↓ 2B↓4. (14)

Inequality (14) is due to Hoe!ding’s inequality. By taking union bound over all possible
j → J and Nj,t → [B], we have Pr[¬CE] ↓ K · B · (2B↓4) < 2B↓2. Note that by our
inexplicitly assumption in BMAB-FC, we have B >

∑
j cj ↑ Kω ↑ K. Thus, we establish

our claim.

Now assume CE happens and we apply the budget-based framework to analyze the regret
of UF. Let E[Ra(UF)|CE] and E[Rb(UF)|CE] be the first and second parts of regret of UF
under CE shown in (8).

Lemma 4. E[Ra(UF)|CE] < ω · ε↑ ↓ 1.
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Proof. Let B(UF) be budget used in UF. By the stopping rule of UF, B ↘ B(UF) < ω.
Thus, Ra(UF) = (B ↘B(UF))ε↑ < ωε↑ ↓ v↑ ↓ 1.

Lemma 5. E[Rb(UF)|CE] ↓
∑

j:dj>0

(
8 lnB
cjdj

+ cj + 1
)
.

Proof. All over this proof, we assume CE occurs by default. Consider a given j with dj > 0
and a given optimal arm j↑5. Let Nj be the total number of pulls on j and decompose
Nj = Na

j +N b
j , where Na

j be the number of pulls on j during time t with Jt ⇑ j↑ and N b
j

be that during the time t when j↑ /→ Jt. Observe that j↑ /→ Jt suggests that the remaining
budget is less than c↑ and thus, N b

j < c↑/cj . Now we focus on analyzing Na
j . Let T be the

index of the last time we pull j with BT ↑ c↑. Since Jt ⇑ j↑, we have that

v↑
c↑

<
UV↑,T
c↑

↓ UVj,T

cj
<

vj + 2
√
2 lnB/Nj,T

cj
. (15)

The first and third inequalities are due to the clean event CE; the second one follows from
the rule of UF. Note that dj = v↑/c↑ ↘ vj/cj . Subtracting the term vj/cj from both sides
of Inequality (15), we get Nj,T < 8 lnB/(cjdj)2. Thus,

Nj · (cjdj) = (Na
j +N b

j )(cjdj)

↓ (Nj,T + 1 + c↑/cj)(cjdj)

< 8 lnB/(cjdj) + cjdj + c↑dj

↓ 8 lnB/(cjdj) + cj + 1.

The last inequality above is due to facts dj < ε↑ ↓ 1 and c↑dj < c↑ε↑ = v↑ ↓ 1. By the
definition of Rb(UF), we establish our claim.

Proof of the Main Theorem 1. Let R(UF) be the total expected regret. We have

R(UF) ↓ E[R(UF)|CE] + E[R(UF)|¬CE] Pr[¬CE]
↓ E[Ra(UF)|CE] + E[Rb(UF)|CE] + (Bε↑)(2B

↓2) (due to Lemma 1)

↓
∑

j:dj>0

(
8 lnB/(cjdj) + cj + 1

)
+ 1 + 1/(2B).

6. Regret Analysis for BMAB-VC

We prove the main Theorem 2 here. The whole proofs are essentially the same as those
shown in Section 5. Let T be the random number of rounds played by ULV before termi-
nation. Recall that ω ↓ cj ↓ 1 for all j. Thus, we have E[T ] ↓ B/ω. Consider a given T
and we define the conditional clean event (CE|T ) as follows: for all j → J and all possible
integers Nj,t → [T ], vj → (LVj,t,UVj,t) and cj → (LCj,t,UCj,t).

Lemma 6. Pr[¬CE|T ] ↓ 4 · T ·B↓3.

5There might be multiple optimal arms, and in that case we break ties arbitrarily.
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Proof. Consider a given j → J and Nj,t → [T ]. By applying Hoe!ding’s inequality, we
have Pr[vj /→ (LVj,t,UVj,t)] = Pr

[
|Vj,t ↘ vj | ↑

√
2 lnB/Nj,t

]
↓ 2B↓4. Similarly, we have

Pr[cj /→ (LCj,t,UCj,t)] ↓ 2B↓4. Applying union bounds over all possible j → J andNj,t → [T ],
we have Pr[¬CE|T ] ↓ K · T · (4B↓4) < 4TB↓3.

Consider a given T and assume CE happens. Now we apply the budget-based framework
to analyze the regret of ULV. Let E[Rb(UF)|CE, T ] be the second part of regret of ULV
shown in (8) under a given T and CE. Recall that ϑj = cjdj for every j.

Lemma 7.

E[Rb(ULV)|CE, T ] ↓
∑

j:dj>0 8 lnB · (2 + ϑj)2/(ϑjc2j ).

Proof. Consider a given j with dj > 0. Let Nj,T be the number of rounds we play j,
and let t ↓ T be the last round we play on j. Thus, we have that UVj,t/max(LCj,t,ω) ↑
UV↑,t/max(LC↑,t,ω). Consider Case 1 when cj ↘ 2

√
2 lnB/Nj,t ↓ 0. This suggests that

Nj,t ↓ 8 lnB/c2j . Consider Case 2 when cj ↘ 2
√

2 lnB/Nj,t > 0. Under CE, we have

vj + 2
√
2 lnB/Nj,t

cj ↘ 2
√
2 lnB/Nj,t

>
UVj,t

max(LCj,t,ω)
(16)

↑ UV↑,t
max(LC↑,t,ω)

>
v↑
c↑

. (17)

Inequality (16) is partially due to cj ↘ 2
√
2 lnB/Nj,t < LCj,t under CE; The second

inequality on (17) is partially due to c↑ ↑ ω and c↑ > LC↑,t under CE. Let ϖ
.
= 2

√
2 lnB/Nj,t.

Observe that

vj + ϖ

cj ↘ ϖ
>

v↑
c↑

⇓ vj + ϖ

cj ↘ ϖ
↘ vj

cj
>

v↑
c↑

↘ vj
cj

= dj

⇓ ϖ >
djcj(cj ↘ ϖ)

vj + cj
↑ djcj(cj ↘ ϖ)/2 ⇓ ϖ >

djc2j
2 + djcj

.

Substituting ϖ = 2
√
2 lnB/Nj,t to the above inequality, we have Nj,t ↓ 8 lnB · (2 +

ϑj)2/(ϑjcj)2, where ϑj = dj · cj . Observe that 8 lnB · (2 + ϑj)2/(ϑjcj)2 = (8 lnB/c2j ) ·(
1 + 2/ϑj

)2
> 8 lnB/c2j , where the latter is the upper bound for Nj,t in Case 1. Summa-

rizing the analysis for the two cases, we have

E[Nj,T |CE, T ] = E[Nj,t + 1|CE, T ]
↓ 8 lnB · (2 + ϑj)

2/(ϑjcj)
2 + 1.

Thus, we have

E[Rb(ULV)|CE, T ] =
∑

j:dj>0

E[Nj,T · cj · dj |CE, T ]

↓
∑

j:dj>0

(
8 lnB · (2 + ϑj)

2/(ϑjc
2
j ) + 1

)
.
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Proof of the Main Theorem 2. We analyze the regret of ULV for BMAB-VC. Let R be the
total expected regret of ULV. Following the budget-based framework, we have R = Ra+Rb.
Observe that ULV will end up with at most 1 unit budget unused, which leads to Ra ↓ 2ε↑
(in which case the upper bound of OPT is replaced by ε↑ + Bε↑). Now we focus on the
second part Rb.

Rb ↓ ET [R
b|CE, T ] + ET

[
(Rb|¬CE, T ) Pr[¬CE|T ]

]
(18)

↓ ET [R
b|CE, T ] + ET [B · ε↑ · (4B↓3T )] (19)

↓
∑

j:dj>0

(
8 lnB · (2 + ϑj)

2/(ϑjc
2
j ) + 1

)
+ 4ε↑/(Bω) (20)

Inequality (19) is due to Lemma 6. Summarizing all above analysis yields our result.

7. Experiments

In this section, we describe our experimental results on both BMAB-FC setting and BMAB-VC
setting. In BMAB-FC setting, we test UF against KUBE and fractional KUBE (Tran-Thanh
et al., 2012a); in BMAB-VC setting, we test ULV against UCB-BV1 (Ding et al., 2013).6

The main questions we target to answer in this section are as follows:

• Q1: Does the proposed budget-based analysis framework yield a tighter theoretical
upper bound?

• Q2: Do our algorithms demonstrate superior computational e”ciency compared to
the baseline methods?

7.1 Experiments for BMAB-FC

For BMAB-FC setting, we run three kinds of experiments by varying the total budget B,
the pulling cost for each arm cj , and the minimum density gap over all non-optimal arms
d. The details of the experimental setup are as follows.

Experimental Setup. In the first experiment, we study the gap between the actual regrets
and regret bounds by following the parameter settings in (Tran-Thanh et al., 2012a). We
set the number of arms K = 100. We generate the fixed cost cj for each arm j by selecting
a uniform value from [1, 10]. The reward distribution of each arm j is set to be truncated
Gaussian, with mean reward vj takes a uniform value from [0, 1] and variance ϱ2 = vj/2.
In addition, we vary the total budgets B from 103 to 106. In the second experiment,
we investigate how the regret bounds respond to the gap of cost means,

∑
j(cj ↘ c↑)+,

while fixing the minimum density gap d and the gap of reward means,
∑

j(v↑ ↘ vj)+. We

set K = 10 and the total budget B = 106. We introduce a parameter C and choose
C → {101, 102, 103, 104, 105}. To fix d = 0.5, we first set the mean reward vj for each arm
j as 1, then set the cost for the first arm c1 = 1/(d + 1/C); set the cost for the rest arms
to cj,j ↗=1 = C. In the third experiment, we examine how the regret bounds respond to the

6All experiments are conducted on a PC with Quad-Core Intel Core i7 (2GHz) processor and 8GB
memory.
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Table 2: Parameter settings for BMAB-FC, whereK denotes the number of arms, B denotes
the total budget, C is the parameter to adjust the gap of cost means, d denotes the minimum
density gap, and ς is set to adjust the density gap.

No. of
Experiment

K Cost Setting (Fixed)
Reward

Distribution
B C d ς

1 100 Uniform value from [0, 1]
Truncated
Gaussian

{103, 104,
105, 106} - - -

2 10
c1 = 1/(d+ 1/C)

cj,j →=1 = C
106

{101, 102, 103,
104, 105} 0.5 -

3 10
c1 = 1

cj,j →=1 = c1/(1↘ ς)
100 -

{10↑4, 10↑3,
10↑2, 10↑1} 0.1
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Figure 1: Our method UF enhances the precision of the upper bound without

compromising regret in BMAB-FC setting. Comparison of the actually regrets in-
curred, and regret bounds of UF against KUBE and fractional KUBE.

parameter of the minimum density gap d, while fixing the other parameters. We set K = 10
and B = 100, and vary d → {10↓4, 10↓3, 10↓2, 10↓1} by first fixing the cost means for all
arms as follows: for arm j = 1, we set c1 = 1; for all arms j, j ≃= 1, we set cj,j ↗=1 = c1/(1↘ς),
where ς is set to 0.1 in our experiments. We set a uniform reward means for all arms as
vj = (c1/ς) · d. For each instance, we run all algorithms for 100 times and take the average
as the final performance. The detailed setting is summarized in Table 2.

Results and Discussions. Figures 1 show the e!ectiveness and computation e”ciency of
UF and validate our theoretical analyses. From Figure 1a, we see that the upper bound
of UF always dominates the actual performance of UF. This confirms our theoretical pre-
dictions in Theorem 1. What’s more, our upper bound for UF significantly improves those
for KUBE algorithms from around 107 to 104. This is consistent with our analyses in
Section 3.1. Figure 1a also suggests that for the actually regrets incurred, the three algo-
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Figure 2: Our algorithm UF achieves superior computational e”ciency compared

to baseline methods in BMAB-FC setting. Running time achieved when varying the
total budget B.

rithms perform comparably. When it comes to the running time, however, UF performs
substantially better than fractional KUBE and KUBE, as shown in Figure 2. Note that the
error bars in Figure 1a represent the 95% confidence intervals for the corresponding actual
regrets.

Figure 1b shows the tightness of our upper bound with respect to the parameter of gaps
in cost means. When the gap of cost means (C) increases, the actually regrets incurred
by the three algorithms and our upper bound all increases in a minor way, compared with
upper bounds of KUBE and fractional KUBE. In particular, the upper bound for KUBE
increases most dramatically. The tiny gap between the lower bound (actually regrets)
and upper bound of UF suggests the tightness in our regret analysis with respect to the
parameter of gaps in cost means. There seems little space for improvement on that part.

From Figure 1c, we see that when the minimum density gap d decreases from 10↓1

to 10↓4, the actually regrets incurred by the three algorithms all get reduced instead of
increased, as predicted by the corresponding upper bounds. In spite of that, our upper
bound for UF increases in the most insignificant way compared with the rest two. This is
due to that our upper bound reduces the dependence on d from d↓2 to d↓1. Current results
of Figure 1c suggests the possibility of further improvement over the dependence of d.

7.2 Experiments for BMAB-VC

For BMAB-VC setting, we run three kinds of experiments by varying the total budget B,
the minimum density gap over all non-optimal arms ϖ, and the minimum cost mean over
all arms ω. The details of the experimental setup are as follows.

Experimental Setup. In the first experiment, we study the gap between the actual regrets
and regret bounds by following the parameter settings in (Ding et al., 2013). We set the
number of arms K = 100. We generate the mean cost cj for each arm j by selecting a
uniform value from {0.01, 0.02, ..., 0.99, 1}, and set the cost distribution type as truncated
Gaussian, with mean of cj and variance ϱ2 = cj/2. The reward distribution of each arm j
is set to be Bernoulli, with mean reward vj takes a uniform value from [0, 1]. We vary the
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Table 3: Parameter settings for BMAB-VC, whereK denotes the number of arms, B denotes
the total budget, ϖ denotes the minimum density gap, ω denotes the minimum cost mean,
and ς is the parameter to adjust the density gap.

No. of
Experiment

K
Cost

Distribution
Reward

Distribution
B ϖ ω ς

1 100
Truncated
Gaussian

Bernoulli

{102, 103,
104, 105} - - -

2 10 1000
{10↑4, 10↑3,
10↑2, 10↑1} - -

3 10 100 4
{10↑4, 10↑3,
10↑2, 10↑1} 0.1
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(a) The actual regrets incurred
when varying the total budget
B.
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(b) Results of varying the min-
imum density gap ϖ, fixing the
gap of cost means and reward
means.

��ಜ� ��ಜ� ��ಜ� ��ಜ�

͏

���

���

����

����

����

5
HJ
UH
W

8&%B%9��8SSHU�%RXQG�
8&%B%9�

8/9�8SSHU�%RXQG�
8/9

(c) Results of varying the min-
imum cost means ω, fixing the
minimum density gap and the
gap of reward means.

Figure 3: Our method ULV enhances the precision of the upper bound without

compromising regret in BMAB-VC setting. Comparison of the actually regrets incurred
and regret bounds of ULV against UCB-BV1.

total budgets B from 102 to 105. In the second experiment, we investigate how our regret
bound respond to di!erent minimum density gap ϖ, while fixing the gap of reward means,∑

j(v↑↘ vj)+ and the gap of cost means,
∑

j(cj ↘ c↑)+. We set the number of arms K = 10

and the total budget B = 1000. We vary ϖ → {10↓4, 10↓3, 10↓2, 10↓1} by first fixing the
cost means for all arms as follows: for arm j = 1, we set c1 = 0.5; for all arms j, j ≃= 1, we
set cj,j ↗=1 = c1/(1 ↘ ς), where ς = 0.1. Then we set a uniform reward means for all arms
as vj = (c1/ς) · ϖ. In the third experiment, we examine how our regret bound respond to
the parameter of the minimum cost means over all arms ω, while fixing the rest. We set
K = 10 and B = 100. We vary ω → {10↓4, 10↓3, 10↓2, 10↓1} by first fixing the cost means
for all arms with vj = 0.5. To fix ϖ = 4, we set the mean cost of first arm as c1 = ω; set the
cost of rest arms as cj,j ↗=1 = vj/(vj/ω↘ ϖ). The detailed setting is summarized in Table 3.

Results and Discussions. Figures 3 show our algorithm ULV has a tighter theoretical
upper bound and a lower computation complexity when compared with UCB-BV1. From
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Figure 3a, we observe that although the actual regrets incurred by ULV and UCB-BV1
are comparable, our upper bound significantly improves that for UCB-BV1 from around
1010 to 107. This is consistent with our theoretical analyses in Section 3.2. Note that
UCB-BV1’s actual regrets can outperform ULV when B is smaller than 103. This occurs
because our algorithm is designed based on the assumption of a large budget B ↔ 1. For
the running time, our algorithm beats UCB-BV1 for all instances, specially, our algorithm
is about 3 times faster than UCB-BV1 when B increases to 105, as shown in Figure 4.
Recall that our regret bound improves the dominant term with ϖ and ω from ϖ↓2ω↓4 to
ϖ↓1ω↓3. These improvements can be seen in Figure 3b and Figure 3c, which confirm our
theoretical predictions in Lemma 2 and highlight the superiority of the new budget-based
analysis framework. Additionally, similar to the observation in Figure 1c in BMAB-FC,
the regret bounds continuously increase as ϖ increases while the actual regrets decrease, as
shown in Figure 3b. This implies the possibility of removing the dependence of ϖ to improve
the upper bound.
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Figure 4: Our algorithm ULV achieves superior computational e”ciency com-

pared to baseline methods in BMAB-VC setting. Running time achieved when vary-
ing the total budget B.

8. Other Related Work

Our models belong to the stochastic setting where the random rewards (and costs, if they are
random) associated with each arm are i.i.d. samples from an unknown fixed distribution.
Budgeted MAB under the stochastic setting have been studied extensively during the last
decade, see (Badanidiyuru et al., 2018b) for a detailed survey. Here we list only a few most
relevant to us. The work of (Tran-Thanh et al., 2010) was the first to consider BMAB-FC
and they presented a simple ϖ-first approach that achieves a regret bound of O(B2/3).
Recently, authors in (Rangi & Franceschetti, 2018) generalized BMAB-FC in the way that
each arm has an individual capacity (an upper bound on the number of pulls on it) in
addition to the global budget. The work of (Badanidiyuru et al., 2018b) proposed a general
framework of budgeted MAB: it can be viewed as a generalized version of BMAB-VC where
there are multiple resources and pulling each arm will incur a random vector-valued cost.
The work of (Xia et al., 2015) designed a Thompson-sampling-based algorithm for budgeted
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MAB with variable costs and got distribution-dependent regret bounds. Compared with
that work, both of our algorithm and analysis are much easier to implement and follow up.

There is another independent research line that studies the adversarial setting where
the reward and cost on each arm are pre-arranged by an oblivious adversary during each
round. Here are a few examples (Immorlica et al., 2019; Zhou & Tomlin, 2018). Authors
in (Kesselheim & Singla, 2020) introduced a general framework of online learning with
vector costs and considered both the adversarial and stochastic settings. It can be viewed
as a minimization version of budgeted MAB but without rewards. The work of (Rangi et al.,
2019b) proposed a general algorithm for budgeted MAB that is proved optimal under both
the adversarial and stochastic settings.

9. Conclusion and Future Directions

In this paper, we formally stated a unified budget-based analysis framework for two ver-
sions of budgeted MAB, namely budgeted MAB with fixed and variable costs, respectively.
We proposed two simple UCB-based algorithms to illustrate the power of the framework.
Extensive experimental results show the e!ectiveness and computation e”ciency of our al-
gorithms. Moreover, our upper bounds for the proposed algorithms significantly improve
those for the benchmark algorithms. We observe that when varying the minimum density
gap d, the current regret bounds are much higher than the actual regrets incurred. This
implies the possibility of further improvement over the dependence of d. Another inter-
esting question is, e.g., how to extend our framework to the case when ω is unknown for
BMAB-VC, and/or when each arm has an individual budget in addition to a global budget.
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