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Let E ⊂ Rn be a compact set, and f : E → R. How can 
we tell if there exists a convex extension F ∈ C1,1(Rn) of f , 
i.e. satisfying F |E = f |E? Assuming such an extension exists, 
how small can one take the Lipschitz constant Lip(∇F ) :=
supx,y∈Rn,x�=y

|∇F (x)−∇F (y)|
|x−y| ? We provide an answer to these 

questions for the class of strongly convex functions by proving 
that there exist constants k# ∈ R and C > 0 depending only 
on the dimension n, such that if for every subset S ⊂ E, #S ≤
k#, there exists an η-strongly convex function F S ∈ C1,1(Rn)
satisfying F S |S = f |S and Lip(∇F S) ≤ M , then there exists 
an η

C
-strongly convex function F ∈ C1,1

c (Rn) satisfying F |E =
f |E , and Lip(∇F ) ≤ CM2/η. Further, we prove a Finiteness 
Principle for the space of convex functions in C1,1(R) and 
that the sharp finiteness constant for this space is k# = 5.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

Let C1,1
c (Rn) be the space of convex, differentiable functions with Lipschitz contin-

uous gradient. We say that a function F : Rn → R is η-strongly convex, for η ≥ 0, 
if the function F (x) − η

2 |x|2 is convex. Let E ⊂ Rn be compact and f : E → R. In 
this paper, we provide an answer to the following questions: Under what conditions 
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on η and f does there exists an η-strongly convex function F ∈ C1,1
c (Rn) that is an 

extension of f , i.e., satisfying F |E = f |E? Assuming such an extension exists, how 
small can one take the Lipschitz constant Lip(∇F ) for an η-strongly convex exten-
sion F of f? Recall the Lipschitz constant of a function G : Rn → Rd is defined as 
Lip(G) := supx,y∈Rn,x �=y

|G(x)−G(y)|
|x−y| . We prove the following result:

Theorem 1. Let E ⊂ Rn be compact, the constants η, M satisfy M > η > 0, and the 
function f : E → R. There exist k# ∈ N and C > 0 depending only on the dimension n
such that the following holds: Suppose that for all S ⊂ E satisfying #S ≤ k#, there exists 
an η-strongly convex function F S ∈ C1,1

c (Rn) satisfying F S |S = f |S and Lip(∇F S) ≤ M . 
Then for any p, q ∈ (1, ∞) satisfying 1

p + 1
q = 1, there exists an η/p2-strongly convex 

function F ∈ C1,1
c (Rn) satisfying F |E = f |E, and Lip(∇F ) ≤ C1q2M2/η.

Fix a constant C0 > C1q2 and p, q ∈ (1, ∞) satisfying 1
p + 1

q = 1; suppose the 

hypotheses of Theorem 1 are satisfied by E, f, M , and η ∈ (C1q2

C0
M, M). Then Theorem 1

produces an η/p2-strongly convex extension of f , F ∈ C1,1
c (Rn) satisfying Lip(∇F ) ≤

C0M . But if instead the hypotheses are satisfied by E, f, M , and η much smaller than M
(η ∈ [0, C1q2

C0
M)), we expect this theorem is not optimal. We conjecture that satisfaction 

of the hypotheses of Theorem 1 ensures the existence of a strongly convex extension of 
f , i.e. F ∈ C1,1

c (Rn) satisfying Lip(∇F ) ≤ CM , where C depends on n, p, and q, but 
not on η or M . Indeed this is true in dimension n = 1, which is our second result:

Theorem 2. Let E ⊂ R be compact, the constants η, M satisfy M > η ≥ 0, and the 
function f : E → R. Suppose for every S ⊂ E satisfying #S ≤ k#

1 = 5, there exists an 
η-strongly convex function F S ∈ C1,1

c (R) satisfying F S |S = f |S and Lip(∇F S) ≤ M . 
Then there exists an η-strongly convex function F ∈ C1,1

c (R) satisfying F |E = f |E and 
Lip(∇F ) ≤ 5M .

Remark 1.1. In Theorem 2, no constant smaller than k#
1 = 5 will suffice (the sharp

finiteness constant for C1,1
c (R) is k#

1 = 5). To see this, consider the following example: Let 
E ⊂ R be E := {−2, −1, 0, 1, 2}; for x ∈ E, let f(x) := |x|. For every set S ⊂ E satisfying 
#S ≤ 4, one can construct a convex function F S ∈ C1,1

c (R) satisfying F |S = f |S , but 
any convex extension of f , F : R → R must satisfy F (x) = |x| for x ∈ [−2, 2], which is 
not differentiable at x = 0. Thus, we must have k#

1 > 4.

Our results are the first attempt to understand the constrained interpolation problem 
for convex functions in C1,1

c (Rn).2 We build on techniques used to understand whether 
a function has a smooth extension despite obstacles to their direct application.

Let X(Rn) ⊂ C(Rn) be a complete semi-normed space of continuous functions. Given 
a compact set E ⊂ Rn and a function f : E → R, how can we tell if there exists 

2 The constrained interpolation problem where the interpolating function is required to be non-negative 
has been studied by C. Fefferman, A. Israel, and K. Luli in [8], and K. Luli, and F. Jiang in [12] and [13].
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F ∈ X(Rn) extending f , that is satisfying F |E = f |E? In [14,15], Pavel Shvartsman 
answered this question for the linear space X(Rn) = C1.1(Rn) through a Finiteness 
Principle.

We say that there is a Finiteness Principle for X(Rn) if there exist k ∈ N, C > 0
depending on X(Rn) such that given E ⊂ Rn finite and f : E → R, if we assume for 
every S ⊂ E satisfying #S ≤ k, there exists F S ∈ X(Rn) satisfying F S |S = f |S and 
‖F S‖X(Rn) ≤ 1, then there exists F ∈ X(Rn) such that F |E = f |E and ‖F‖X(Rn) ≤ C.

Further, P. Shvartsman proved that the sharp finiteness constant for C1,1(Rn) is 
k = 3 · 2n−1, and conjectured with Yuri Brudnyi that Finiteness Principles for the linear 
spaces Cm(Rn) and Cm−1,1(Rn) would hold in [3,4]. In [5,6] Charles Fefferman proved 
Finiteness Principles for these spaces (Cm−1,1(Rn) and Cm(Rn)).

Theorems 1 and 2 are progress toward the proof of a Finiteness Principle for the 
non-linear space of smooth convex function C1,1

c (Rn). Our hope is this work and the 
continued study of finiteness principles for smooth convex functions allow the devel-
opment of algorithms for constructing smooth, convex extensions of a function (or its 
approximation) analogous to the work by C. Fefferman and Boaz Klartag in [9,10] for 
Cm(Rn).

Our proofs of Theorems 1 and 2 rely on an inequality relating the jets of a convex 
function in C1,1

c (Rn). Let P be the space of real-valued affine (degree one) polynomials. 
For F ∈ C1(Rn), we define the jet of F at x, JxF ∈ P as JxF (y) := F (x) +〈∇F (x), y−x〉. 
Let the function F ∈ C1,1

c (Rn) be convex; as a consequence of Taylor’s inequality,

F (x) − JyF (x) ≥ 1
2 Lip(∇F ) |∇F (x) − ∇F (y)|2 (x, y ∈ Rn).

In Section 2.1, we prove this inequality. In [2,1], Daniel Azagra, Erwan Le Gruyer, and 
Carlos Mudarra proved a partial converse to this inequality, criteria for convex C1,1-
extension of degree one polynomials defined on a closed set E ⊂ Rn, which is a key 
component of our proofs:

Theorem 3 (D. Azagra, E. Le Gruyer, and C. Mudarra [1], Theorem 2.4). Let E ⊂ Rn

be closed and the polynomials (Px)x∈E ⊂ P satisfy for all x, y ∈ E,

Px(x) − Py(x) ≥ 1
2M

|∇Px − ∇Py|2. (1.1)

Then there exists a convex function F ∈ C1,1
c (Rn) satisfying JxF = Px for all x ∈ E

and Lip(∇F ) ≤ M .

We now give a sketch of the proof of Theorem 1. We write c, C, C ′, etc. to denote con-
stants dependent only on the dimension n. By appealing to the Arzelà-Ascoli Theorem, 
we reduce to the case E ⊂ Rn finite. In Proposition 2.6, we prove that if (Px)x∈E satisfy 
(1.1) and
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Px(y) + η

2 |y − x|2 ≤ Py(y) for all x, y ∈ E, (1.2)

then the conclusions of Theorem 3 hold for a strongly convex function F ∈ C1,1
c (Rn)

satisfying Lip(∇F ) ≤ CM . Thus, given f : E → R, we aim to find (Px)x∈E ⊂ P
satisfying Px(x) = f(x) and the inequalities (1.1) and (1.2) with uniform constants M
and η for all x, y ∈ E. To do this, we introduce an approximation of the set of prospective 
jets of strongly-convex C1,1

c (Rn) extensions of f . For x ∈ E, η > 0, let ΓE
η (x) ⊂ P be

ΓE
η (x) := {P ∈ P : P (x) = f(x) and P (y) + η

2 |y − x|2 ≤ f(y) for all y ∈ E \ {x}}.

Immediately, we see for an η-strongly convex extension F ∈ C1,1
c (Rn) satisfying F |E =

f |E and Lip(∇F ) ≤ M , we have JxF ∈ ΓE
η (x) for all x ∈ E. We prove we can choose 

(Px)x∈E ⊂ P so that

Px ∈ ΓE
η (x) (x ∈ E), and (1.3)

sup
x,y∈E,x �=y

{
|∇Px − ∇Py|

|x − y|

}
≤ C ′M. (1.4)

Together (1.3) and (1.4) imply

f(y) − Px(y) ≥ η

2 |y − x|2 ≥ η

2(C ′M)2 |∇Px − ∇Py|2 (x, y ∈ E).

Hence, this choice of (Px)x∈E satisfies (1.1) with a constant (C ′M)2/η, and we can apply 
Proposition 2.6.

To prove we can choose (Px)x∈E satisfying (1.3) and (1.4), we use Helly’s Theorem, 
(following P. Shvartsman in [14], [15], and C. Fefferman in [5], [6]) and a Finiteness 
Principle for Smooth Selection proved by C. Fefferman, Arie Israel, and Kevin Luli in 
[7]; see also C. Fefferman and P. Shvartsman’s results in [11].

Theorem 4 (Helly, see e.g. [17]). Let J be a finite family of convex subsets of Rd, and 
suppose every (d +1) elements of the family has non-empty intersection. Then the entire 
family has non-empty intersection. If J is infinite, the sets must also be compact for the 
result to follow.

For D ≥ 1, let C0,1(Rn, RD) denote the Banach space of all RD-valued Lipschitz 
functions F on Rn, for which the norm ‖F‖C0,1(Rn,RD) = supx∈Rn{|F (x)|} + Lip(F ), is 
finite.

Theorem 5 (C. Fefferman, A. Israel, and K. Luli (Theorem 3(B) of [7])). There exist 
k#

s = k#
s (n, D) ∈ N and C# = C#(n, D) > 0 such that the following holds: Let E ⊂ Rn

be arbitrary. For each x ∈ E, let K(x) ⊂ RD be a closed convex set. Suppose that for each 
S ⊂ E with #S ≤ k#

s , there exists F S ∈ C0,1(Rn, RD) with norm ‖F S‖C0,1(Rn,RD) ≤ 1, 
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such that F S(x) ∈ K(x) for all x ∈ S. Then there exists F ∈ C0,1(Rn, RD) with norm 
‖F S‖C0,1(Rn,RD) ≤ C#, such that F (x) ∈ K(x) for all x ∈ E.

We assume the following Finiteness Hypothesis: for every S ⊂ E, #S ≤ k#, 
there exists an η-strongly convex function F S ∈ C1,1

c (Rn) satisfying F S |S = f |S and 
Lip(∇F S) ≤ M , with k# = k#

s (n + 2) + 1 and k#
s = k#

s (n, n) from Theorem 5. Using 
this hypothesis, we can apply Helly’s Theorem to show the hypotheses of Theorem 5 are 
satisfied for the family of convex sets (K(x) = {∇P : P ∈ ΓE

η (x)})x∈E in Rn. Thus, we 
can apply Theorem 5 to produce a Lipschitz selection G ∈ C0,1(Rn, Rn) from (K(x))x∈E

satisfying Lip(G) ≤ C ′M . For x ∈ E, we let Px(x) := f(x) and ∇Px := G(x), and as 
promised, (Px)x∈E satisfies (1.3) and (1.4).

This concludes our sketch of the proof of Theorem 1. The rest of the paper is organized 
as follows: In Section 2, we adapt Theorems 3 and 5 to our setting and analyze sets 
approximating the set of jets of smooth convex extensions of the function f , including 
ΓE

η (x). In Section 3, we prove Theorem 1 for dimension n ≥ 1. In Section 4, we detail 
technical estimates that hold only in dimension n = 1, and prove Theorem 2.

1.1. Acknowledgments

The author is grateful to Arie Israel for providing valuable comments on an early draft 
of this paper and the National Science Foundation for its generous support.

1.2. Notation

Let E ⊂ Rn, f : E → R. We use the following notation:

|x| := |x|2 = (|x1|2 + · · · + |xn|2)1/2 (x = (x1, . . . , xn) ∈ Rn);

B(y, R) := {x ∈ Rn : |x − y| < R} (y ∈ Rn, R ≥ 0);

Df
xy := f(y) − f(x)

y − x
(x, y ∈ E, x �= y, E ⊂ R).

Let Ω ⊂ Rn be a domain (i.e., a non-empty, connected open set), and let the vector-
valued function F : Ω → RD. The Lipschitz constant of the function F is

Lip(F ; Ω) := sup
x,y∈Ω,x �=y

|F (x) − F (y)|
|x − y| .

Where the domain Ω is evident, we write Lip(F ) in place of Lip(F ; Ω).
For m = 0 or m = 1, let Cm(Ω) denote the Banach space of real-valued Cm functions 

F on Ω for which the norm

‖F‖Cm(Ω) = sup max |∂αF (x)|

x∈Ω |α|≤m
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is finite, and Cm,1(Ω) denote the Banach space of real-valued Cm functions F on Ω with 
Lipshitz continuous gradient for which the norm

‖F‖Cm,1(Ω) = ‖F‖Cm(Ω) + Lip(∇mF ; Ω)

is finite.
For D ≥ 1, let Cm,1(Rn, RD) denote the Banach space of vector-valued Cm functions 

F on Rn, for which the norm

‖F‖Cm,1(Rn,RD) = sup
x∈Rn

max
|α|≤m

|∂αF (x)| + Lip(∇mF ;Rn)

is finite.
Let Cm,1

loc (Ω) denote the space of functions F on Rn satisfying ‖F‖Cm,1(Ω′) < ∞ for 
all bounded open sets Ω′ ⊂⊂ Ω.

Let Ω ⊂ Rn be a convex domain. Let C1,1
c (Ω) ⊂ C1,1

loc (Ω) denote the space of convex, 
differentiable functions with Lipschitz continuous gradient.

Let P be the space of real-valued affine (degree one) polynomials. For F ∈ C1(Rn), 
we define the jet of F at x, JxF ∈ P as

JxF (y) := F (x) + 〈∇F (x), y − x〉.

For each x ∈ Rn, the jet product 
x on P is defined by

P 
x Q := Jx(P · Q) (P, Q ∈ P).

Let Rx = (P, 
x) be the ring of 1-jets of functions at x ∈ Rn.
Let E ⊂ Rn and Px ∈ Rx for all x ∈ E; then we say (Px)x∈E ⊂ P is a Whitney field 

on E. Let Wh(E) be the set of all Whitney fields on E.
For γx ∈ Rx, γy ∈ Ry, we will say γx ∼M γy if the following inequalities are satisfied:

γx(x) − γy(x) ≥ 1
2M

|∇γx − ∇γy|2 (1.5)

γy(y) − γx(y) ≥ 1
2M

|∇γx − ∇γy|2. (1.6)

We write c, C, C ′, etc. to denote constants dependent only on the dimension n.

2. Technical tools

Let E ⊂ Rn be compact, and let f : E → R. We now introduce certain convex subsets 
of Rx that reflect constraints on the jet of a convex extension of f . For S ⊂ E and x ∈ S, 
let Γ0(x; f), ΓS(x; f), and ΓS

η (x; f) ⊂ Rx be
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Γ0(x; f) := {P ∈ Rx : P (x) = f(x)}, and

ΓS(x; f) := {P ∈ Γ0(x; f) : P (y) ≤ f(y) for all y ∈ S}

ΓS
η (x; f) = {P ∈ Γ0(x; f) : P (y) + η

2
|y − x|2 ≤ f(y) for all y ∈ S \ {x}}

=
⋂

y∈S\{x}
{P ∈ Γ0(x; f) : P (y) + η

2 |y − x|2 ≤ f(y)}.

(2.1)

Where the function f is evident, we will not write f ; i.e., we write Γ0(x) in place of 
Γ0(x; f).

Any convex extension of the function f , F : Rn → R, satisfies ∂F (x) ⊂ ΓE(x; f) for 
all x ∈ E, where ∂F (x) := {ξ ∈ Rn : F (y) ≥ F (x) + 〈ξ, y − x〉 for all y ∈ Ω} is the 
subdifferential of F at x.

The sets Γ0(x), ΓS(x), and ΓS
η (x) are convex subsets of Rx; this property is immediate 

for Γ0(x). To see the set ΓS(x) is convex, notice if P ∈ {P ∈ Γ0(x) : P (y) ≤ f(y)} for 
y ∈ S \{x}, then P (x) = f(x) and ∇P satisfies the linear inequality f(x) +〈∇P, y−x〉 ≤
f(y). Hence, {P ∈ Γ0(x) : P (y) ≤ f(y)} is convex, implying ΓS(x) =

⋂
y∈S\{x}{P ∈

Γ0(x) : P (y) ≤ f(y)} is convex. Similarly, if P ∈ {P ∈ Γ0(x) : P (y) + η
2 |y − x|2 ≤ f(y)}

for y ∈ S \ {x}, then P (x) = f(x) and ∇P satisfies the linear inequality f(x) + 〈∇P, x −
y〉 + η

2 |y − x|2 ≤ f(y), implying ΓS
η (x) is convex as an intersection of convex sets.

Lemma 2.1. Let E ⊂ Rn be compact and f : E → R. Suppose ΓE(x; f) �= ∅ for all x ∈ E. 
Then there exists a convex (and thus, locally Lipschitz) function F : Rn → R extending 
f .

Proof. Let F : Rn → R be F (x) := supy∈E{Py(x) : Py ∈ ΓE(y)}; then F |E = f |E and 
as the supremum of convex functions, F is convex. �
Lemma 2.2. Let E ⊂ Rn be compact and f : E → R. Suppose ΓE

η (x; f) �= ∅ for all x ∈ E; 
then there exists an η-strongly convex function F : Rn → R extending f .

Proof. Suppose ΓE
η (x; f) �= ∅ for all x ∈ E, then ΓE(x; g) �= ∅ for all x ∈ E, where 

g(x) := f(x) − η
2 |x|2. By Lemma 2.1 there exists a convex function G : Rn → R satisfying 

G|E = g|E . Thus, F (x) := G(x) + η
2 |x|2 is η-strongly convex and satisfies F |E = f |E . �

Lemma 2.3. Let E ⊂ Rn be compact and f : E → R. Let S ⊂ E and F ∈ C1,1
c (Rn) be 

an η-strongly convex function satisfying F |S = f |S. Then JxF ∈ ΓS
η (x; f) for all x ∈ S.

Proof. Let G : Rn → R be G(x) := F (x) − η
2 |x|2. Because F is η-strongly convex, G is 

convex, implying for all x, y ∈ S, JxG(y) ≤ G(y); equivalently,

F (x) − η

2 |x|2 + 〈∇F (x) − ηx, y − x〉 ≤ F (y) − η

2 |y|2 (x, y ∈ S).
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This reduces to JxF (y) + η
2 |y − x|2 ≤ F (y) = f(y), implying JxF ∈ ΓS

η (x; f) for all 
x ∈ S. �
2.1. An estimate on 1-jets of convex functions in C1,1

c

Recall that B(a, r) is the Euclidean ball of radius r centered at a: B(a, r) := {x ∈ Rn :
|x − a| < r}. For a function F ∈ C1,1(B(a, 2R)), we use Taylor’s inequality to bound the 
difference between the function value and its jet evaluated at a point:

|F (z) − JxF (z)| ≤ 1
2Lip(∇F ; B(a, 2R))|x − z|2 (x, z ∈ B(a, 2R)), (2.2)

where Lip(∇F ; B(a, 2R)) := supx�=y,x,y∈B(a,2R)

{
|∇F (x)−∇F (y)|

|x−y|

}
. We use (2.2) in the 

following estimate on the jets of a convex function F ∈ C1,1
c (B(a, 2R)).

Lemma 2.4. Let F ∈ C1,1
c (B(a, 2R)) be convex; then JxF ∼M JyF for all x, y ∈ B(a, R), 

where M = Lip(∇F ; B(a, 2R)).

Proof. We adapt the proof of Proposition 3.2 in [2]. For F affine, the result is immediate. 
Suppose F is not affine. Let M := Lip(∇F ; B(a, 2R)), and suppose there exist x, y ∈
B(a, R) such that JxF �∼M JyF . Then without loss of generality, we can assume

F (x) − F (y) − 〈∇F (y), x − y〉 <
1

2M
|∇F (x) − ∇F (y)|2. (2.3)

By translation (by y) and subtraction of an affine function (z �→ F (y) + ∇F (y)(z − y)), 
we can assume y = 0 ∈ B(a, R), F (y) = 0, and ∇F (y) = 0. Because F is convex, this 
implies F (z) ≥ 0 for z ∈ B(a, 2R), and (2.3) becomes

0 ≤ F (x) <
1

2M
|∇F (x)|2.

In particular, ∇F (x) �= 0. Because Lip(∇F ; B(a, 2R)) = M , we have |∇F (x)| =
|∇F (x) − ∇F (0)| ≤ M |x|. Hence, for x ∈ B(a, R), 

(
x − ∇F (x)/M

)
∈ B(a, 2R). From 

(2.2) evaluated at z = x − ∇F (x)
M and the previous inequality,

F (x − ∇F (x)/M) ≤ F (x) + 〈∇F (x), x − ∇F (x)/M − x〉 + M

2 |x − ∇F (x)/M − x|2

= F (x) − |∇F (x)|2/M + |∇F (x)|2/(2M)

<

(
1

2M
− 1

M
+ 1

2M

)
|∇F (x)|2 < 0,

but this contradicts our deduction that F (z) ≥ 0 for z ∈ B(a, 2R) \{0}. Thus, the lemma 
holds. �
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For a convex function F ∈ C1,1
c (Rn), we have Lip(∇F ; Rn) < ∞, implying the follow-

ing:

Corollary 2.5. Let F ∈ C1,1
c (Rn) be convex; then JxF ∼M JyF for all x, y ∈ Rn, where 

M = Lip(∇F ; Rn).

2.2. Estimates for C1,1
c -convex extension of 1-jets

Let E ⊂ Rn be closed, and suppose the Whitney field (γx)x∈E satisfies γx ∼M γy

for all x, y ∈ E. Then (γx)x∈E satisfies the hypotheses of Theorem 3, and we deduce 
there exists a convex function F ∈ C1,1

c (Rn) satisfying JxF = γx for all x ∈ E and 
Lip(∇F ) ≤ M .

Under the same hypotheses (i.e., that the Whitney field (γx)x∈E satisfies γx ∼M γy

for all x, y ∈ E), we can add (1.5) to (1.6) and apply the Cauchy-Schwartz inequality to 
deduce

|∇γy − ∇γx||y − x| ≥ 〈∇γy − ∇γx, y − x〉 ≥ 1
M

|∇γy − ∇γx|2,

and thus, |∇γy − ∇γx| ≤ M |y − x|. The non-negativity of (1.6) implies

γx(x) − γy(x) ≤
(
γx(x) − γy(x)

)
+
(
γy(y) − γx(y)

)
=〈∇γy − ∇γx, y − x〉 ≤ M |y − x|2.

Similarly, from the non-negativity of (1.5), we see if γx ∼M γy,

γy(y) − γx(y) ≤ M |y − x|2. (2.4)

This implies the following:

Remark 2.1. If the Whitney field (γx)x∈E satisfies γx ∼M γy for all x, y ∈ E, and 
supx∈E{|γx(x)|} + supx∈E{|∇γx|} ≤ M , the polynomials (γx)x∈E ∈ Wh(E) satisfy the 
hypotheses of Whitney’s Extension Theorem for C1,1(Rn) with a constant M , imply-
ing there exists a function G ∈ C1,1(Rn) satisfying JxG = γx for all x ∈ E, and 
‖G‖C1,1(Rn) ≤ C(n)M . But the function G need not be convex (see e.g. [16] for this 
version of Whitney’s Extension Theorem).

Next we construct an example of constants M ≥ η > 0, a set E ⊂ R, a function 
f : E → R, and a choice of Whitney field (γx)x∈E ∈ Wh(E) satisfying γx ∈ ΓE

η (x) and 
γx ∼M γy for all x, y ∈ E, such that there does not exist an η-strongly convex function 
F ∈ C1,1

c (R) satisfying Lip(∇F ) ≤ M and JxF = γx for all x ∈ E.
Example: Let E = {0, 1} ⊂ R, η ∈ (0, 1/4), M = 1, f(0) = 0 and f(1) = η/2. Then 

the polynomials γ0 ∈ R0, γ1 ∈ R1 defined as γ0(x) = 0, and γ1(x) = η +2η(x −1) satisfy
2



10 M.K. Drake / Advances in Mathematics 445 (2024) 109652
γ0(0) − γ1(0) = 3η

2 ≥ η

2 |1 − 0|2, (2.5)

γ0(0) − γ1(0) = 3η

2 ≥ 1
2 |2η − 0|2, (2.6)

γ1(1) − γ0(1) = η

2 = η

2 |1 − 0|2, and (2.7)

γ1(1) − γ0(1) = η

2 ≥ 1
2 |2η − 0|2. (2.8)

Inequality (2.5) implies γ0 ∈ ΓE
η (0); (2.7) implies γ1 ∈ ΓE

η (1); and together (2.6) and 
(2.8) imply γ0 ∼1 γ1.

Notice any η-strongly convex extension of γ0 must lie above the function g : R → R

defined as g(x) := η
2 |x|2. But g(1) = γ1(1) = η

2 and g′(1) = η < 2η = ∇γ1. Thus, there 
is no η-strongly convex function F ∈ C1,1

c (Rn) satisfying J0F = γ0, J1F = γ1. However, 
the following proposition implies that there is an η/p-strongly convex function satisfying 
these conditions, for any p > 1.

Proposition 2.6. Let E∗ ⊂ Rn be closed, f∗ : E∗ → R, and M ≥ η > 0. Suppose 
(γx)x∈E∗ satisfies γx ∈ ΓE∗

η (x; f∗) and γx ∼M γy for all x, y ∈ E∗. Let p, q ∈ (1, ∞)
satisfy 1

p + 1
q = 1. Then there exists an η/p-strongly convex function F ∈ C1,1

c (Rn)
satisfying JxF = γx for all x ∈ E∗ and Lip(∇F ) ≤ qM + η/p ≤ (q + 1)M .

We will turn to the proof of Proposition 2.6 momentarily. The following lemma ex-
plains the reduction in the strong convexity constant η of an extension, under these 
hypotheses:

Lemma 2.7. Let E ⊂ Rn be closed, f : E → R, and M ≥ η > 0. Suppose (γx)x∈E satisfies 
γx ∈ ΓE

η (x; f) and γx ∼M γy for all x, y ∈ E. Let p, q ∈ (1, ∞) satisfy 1
p + 1

q = 1. For 
x ∈ E, let Px ∈ Rx satisfy Px(x) = f(x) − η

2p |x|2 and ∇Px = ∇γx− η
p x. Then Px ∼qM Py

for all x, y ∈ E.

Proof. Let x, y ∈ E. By translation (by y) and subtraction of the affine function γy, 
we can assume y = 0 and γy = 0. By hypothesis, γx(x) = f(x); thus, γx(z) = f(x) +
〈∇γx, z − x〉. Then γx ∼M γy implies

f(x) ≥ 1
2M

|∇γx|2, and (2.9)

− f(x) + 〈∇γx, x〉 ≥ 1
2M

|∇γx|2. (2.10)

The conditions γx ∈ ΓE
η (x), γy ∈ ΓE

η (y) imply

f(x) ≥ η

2 |x|2, (2.11)

− f(x) + 〈∇γx, x〉 ≥ η |x|2, and (2.12)
2
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|∇γx||x| ≥ 〈∇γx, x〉 ≥ η|x|2, (2.13)

where the final inequality comes from adding (2.11) to (2.12) and applying the Cauchy 
Schwartz inequality to the inner product. We want to prove that Px ∼qM Py. By our 
normalizations, Py(y) = f(y) − η

2p |y|2 = 0, and ∇Py = ∇γy − η
p y = 0, so Py = 0. Thus, 

we want to show

f(x) − η

2p
|x|2 ≥ 1

2qM
|∇γx − η

p
x|2, and (2.14)

− f(x) + η

2p
|x|2 − 〈∇γx − η

p
x, −x〉 ≥ 1

2qM
|∇γx − η

p
x|2. (2.15)

From (2.9) and (2.11), we have

f(x) − η

2p
|x|2 ≥ 1

2qM
|∇γx|2 +

(
1 − 1

q

)
η

2 |x|2 − η

2p
|x|2, (2.16)

and from (2.10) and (2.12),

− f(x) + η

2p
|x|2 − 〈∇γx − η

p
x, −x〉 = −f(x) + 〈∇γx, x〉 − η

2p
|x|2

≥ 1
2qM

|∇γx|2 +
(

1 − 1
q

)
η

2 |x|2 − η

2p
|x|2. (2.17)

We next bound the terms on the right-hand side of (2.16) and (2.17) (which are the 
same). Because 1

p + 1
q = 1, we have:

1
2qM

|∇γx|2+
(

1 − 1
q

)
η

2 |x|2 − η

2p
|x|2 = 1

2qM
|∇γx|2

= 1
2qM

|∇γx − η

p
x|2 − η2

2qp2M
|x|2 + η

qpM
〈∇γx, x〉

(2.13)
≥ 1

2qM
|∇γx − η

p
x|2 − η2

2qp2M
|x|2 + η2

qpM
|x|2

≥ 1
2qM

|∇γx − η

p
x|2,

where the last inequality uses the fact that 2p ≥ 1. Thus, we have proven (2.14) and 
(2.15). �
Proof of Proposition 2.6. We apply Lemma 2.7: For x ∈ E, let Px ∈ Rx satisfy Px(x) =
f(x) − η

2p |x|2 and ∇Px = ∇γx − η
p x. Then Px ∼qM Py for all x, y ∈ E. We apply 

Theorem 3 to the polynomials (Px)x∈E , to produce a convex function G ∈ C1,1
c (Rn)

satisfying JxG = Px for all x ∈ E and Lip(∇G) ≤ qM . We define F ∈ C1,1(Rn)
as F (x) = G(x) + η |x|2. Because G is convex, F is η -strongly convex; Lip(∇F ) ≤
2p p
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qM + η
p ≤ (q + 1)M , and JxF = γx for all x ∈ E. This completes the proof of the 

proposition. �
2.3. Relevant convex subsets of P

In this section we introduce convex sets of jets that are relevant to the C1,1
c (Rn)

extension problem. We establish the basic properties of these sets in the two lemmas 
below. We invoke Helly’s theorem to prove Lemma 2.10 which states that the convex sets 
are non-empty when f : E → R satisfies a finiteness hypothesis, as in the assumptions 
of Theorem 1.

For the rest of this section, we fix a finite set E ⊂ Rn and a function f : E → R. For 
M > η > 0, and T ⊂ E, we define the set Γ̃1

η(T, M ; f) ⊂ Wh(T ) as

Γ̃1
η(T, M ; f) :=

⋂
z∈E

{
(Px)x∈T ∈ W h(T ) :

∃ an η-strongly convex function F ∈ C
1,1
c (Rn) s.t.

Lip(∇F ) ≤ M, JxF = Px ∀x ∈ T, and F |{z}∪T = f |{z}∪T

}
.

Again, where the function f is evident, we will not write f ; i.e., we write Γ̃1
η(T, M) in 

place of Γ̃1
η(T, M ; f).

We establish the basic containments for these convex sets in the following.

Lemma 2.8. Let E ⊂ Rn be finite and f : E → R. For all T ⊂ E, we have

Γ̃1
η(T, M0) ⊂ Γ̃1

η(T, M) (M > M0 > η > 0), and (2.18)

Γ̃1
η(T, M) ⊂ Γ̃1

η0
(T, M) (M > η > η0 > 0). (2.19)

Let (Px)x∈T ∈ Γ̃1
η(T, M); then

Px ∈ ΓE
η (x) for all x ∈ T. (2.20)

Proof. Properties (2.18) and (2.19) are immediate from the definition of the set 
Γ̃1

η(T, M). Let (Px)x∈T ∈ Γ̃1
η(T, M) and x ∈ T . For y ∈ E \ {x}, there exists an η-

strongly convex function F y ∈ C1,1
c (Rn) such that JxF = Px and F y|{x,y} = f |{x,y}. 

Thus, Px(y) + η
2 |y − x|2 ≤ f(y). Because this is true for all y ∈ E \ {x}, we deduce 

Px ∈ ΓE
η (x). �

Lemma 2.9. Let E ⊂ Rn be finite, f : E → R, and M > η > 0; for T ⊂ E, the set 
Γ̃1

η(T, M) ⊂ Wh(T ) is convex.

Proof. For T ⊂ E, z ∈ E, define K(T, z) ⊂ Wh(T ) as

K(T, z) :=
{

(Px)x∈T ∈ W h(T ) :
∃ an η-strongly convex function F ∈ C

1,1
c (Rn) s.t.

Lip(∇F ) ≤ M, JxF = Px ∀x ∈ T, and F |{z}∪T = f |{z}∪T

}
.
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Let F1, F2 ∈ C1,1
c (Rn) be η-strongly convex functions satisfying Lip(∇Fi) ≤ M for i =

1, 2. Then Ft := tF1 +(1 −t)F2 is η-strongly convex and satisfies Lip(∇Ft) ≤ M . Because 
JxF t = tJxF1 +(1 −t)JxF2, we see (JxF1)x∈T , (JxF2)x∈T ∈ K(T, z) implies (JxFt)x∈T ∈
K(T, z). Thus, K(T, z) is convex, and Γ̃1

η(T, M) =
⋂

z∈E K(T, z) is convex. �
Lemma 2.10. Let E ⊂ Rn be finite and f : E → R. Suppose j, k ∈ N satisfy k ≥
(n + 2)j + 1, and for every S ⊂ E satisfying #S ≤ k, there exists an η-strongly convex 
function F S ∈ C1,1

c (Rn) satisfying F S |S = f |S and Lip(∇F S) ≤ M . Then for every 
T ⊂ E satisfying #T ≤ j, Γ̃1

η(T, M) �= ∅.

Proof. In the previous lemma, we proved that Γ̃1
η(T, M) =

⋂
z∈E K(T, z) is the inter-

section of a family of 
(
(n + 1)|T |

)
-dimensional convex sets. Here we show that given 

T ⊂ E, every subfamily of 
(
(n + 1)|T | + 1

)
of the convex sets K(T, z) has a non-empty 

intersection. Then we can apply Helly’s Theorem (Theorem 4) to prove the intersection 
of the entire family is non-empty.

Let T ⊂ E satisfy #T ≤ j. Let z1, . . . , z(n+1)j+1 be points of E; then S :=
{z1, · · · , z(n+1)j+1} is contained in E and #(S ∪ T ) ≤ (n + 2)j + 1 ≤ k. By apply-
ing the hypothesis of the lemma to the set S ∪ T , we deduce there exists an η-strongly 
convex function F S∪T ∈ C1,1

c (Rn) satisfying F S∪T |S∪T = f |S∪T and Lip(∇F S∪T ) ≤ M . 
Thus,

(JxF S∪T )x∈T

∈
(n+1)j+1⋂

i=1

{
(Px)x∈T ∈ W h(T ) :

∃ an η-strongly convex function F ∈ C1,1
c (Rn) s.t.

Lip(∇F ) ≤ M, JxF = Px ∀x ∈ T, and F |{zi}∪T = f |{zi}∪T

}

=
(n+1)j+1⋂

i=1
K(T, zi).

Thus, the intersection of any 
(
(n + 1)j + 1

)
-element subfamily of {K(T, z) : z ∈ E} is 

non-empty. We can then apply Helly’s Theorem to conclude Γ̃1
η(T, M) =

⋂
z∈E K(T, z)

is non-empty. �
2.4. Lipschitz selection of gradient vectors

We want to make a Lipschitz selection of gradient vectors from the sets ({∇γ : γ ∈
ΓE

η (x; f)})x∈E . To do so, we adapt Theorem 5 to our setting:

Proposition 2.11. There exist k#
s ∈ N and C# > 0 such that the following holds: Let 

E ⊂ Rn be finite. For each x ∈ E, let K(x) ⊂ Rn be a closed convex set. Suppose that for 
each S ⊂ E with #S ≤ k#

s , there exists a Lipschitz function F S : Rn → Rn satisfying 
Lip(F S) ≤ 1 and F S(x) ∈ K(x) for all x ∈ S. Then there exists a C0,1 (bounded and 
Lipschitz) function F : Rn → Rn with Lip(F ) ≤ C#, such that F (x) ∈ K(x) for all 
x ∈ E.
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Proof. Let k#
s := k#

s (n, D) = k#
s (n, n) from Theorem 5. Because E ⊂ Rn is finite, there 

exists R0 > 0 such that E ⊂ B(0, R0). For each S ⊂ E with #S ≤ k#
s , let F S : Rn → Rn

be a Lipschitz function satisfying Lip(F S) ≤ 1 and F S(x) ∈ K(x) for all x ∈ S. Each 
F S is locally bounded, and there are finitely many S, so we can let A0 ∈ (0, ∞) be a 
uniform upper bound on supx∈B(0,R0) |F S(x)| for every S ⊂ E with #(S) ≤ k#

s . Thus,

⋃
S⊂E,

#S≤k#
s

{
F S(x) : x ∈ B(0, R0)

}
⊂ B(0, A0),

and because Lip(F S) ≤ 1, ‖F S‖C0(B(A0+2R0)) ≤ 2A0 + R0 for any S ⊂ E satisfying 
#S ≤ k#

s .
Let the function θ ∈ C∞(Rn) be a smooth bump function satisfying 0 ≤ θ ≤ 1, 

θ|B(0,R0) = 1|B(0,R0), supp(θ) ⊂ B(0, A0 + 2R0), and |∇θ(x)| ≤ C0
(A0+R0) for x ∈ Rn. 

For S ⊂ E, #S ≤ k#
s , let the function F̄ S : Rn → Rn be F̄ S(x) := F S(x)θ(x). Then 

F̄ S ∈ C0,1(Rn; Rn) satisfies

‖F̄ S‖C0(Rn) ≤ ‖F S‖C0(B(A0+2R0)) ≤ 2A0 + R0,

F̄ S(x) ∈ K(x) for all x ∈ S, and

Lip(F̄ S) ≤ Lip(F S) + ‖F S‖C0(B(A0+2R0)) · Lip(θ) ≤ 1 + (2A0 + R0)C0

A0 + R0
≤ 1 + 2C0.

Fix N := 2(A0 + R0). Let E′ ⊂ Rn and K ′(x) ⊂ Rn for x ∈ E be

E′ = 1
N

E := {y/N : y ∈ E}, and

K ′(x) := 1
N(2 + 4C0)K(x) :=

{
y

N(2 + 4C0) : y ∈ K(x)
}

.

For S′ ⊂ E′ satisfying #S′ ≤ k#
s , the set NS′ is contained in E. Let the function 

GS′ : Rn → Rn be

GS′
(x) := 1

N(2 + 4C0) F̄ NS′
(Nx).

Then |GS′(x)| ≤ 1/2 for all x ∈ Rn, and Lip(GS′) ≤ 1
2+4C0

Lip(F̄ NS′) ≤ 1/2, implying 

the function GS′ satisfies:

‖GS′‖C0,1(Rn,Rn) ≤ 1 and

GS′
(x) ∈ K ′(Nx) for x ∈ S′.

This result holds for all S′ ⊂ E′ satisfying #S ≤ k#
s . Thus, the convex sets (K ′(Nx))x∈E′

satisfy the hypotheses of Theorem 5 with (n, D) = (n, n); applying Theorem 5, we 



M.K. Drake / Advances in Mathematics 445 (2024) 109652 15
deduce there exists G ∈ C0,1(Rn, Rn) satisfying G(x) ∈ K ′(Nx) for all x ∈ E′ and 
‖G‖C0,1(Rn,Rn) ≤ C#

0 , where C#
0 := C#(n, n) from Theorem 5. Let the function F :

Rn → Rn be F (x) := N(2 + 4C0)G( x
N ); F satisfies F (x) ∈ K(x) for all x ∈ E and 

Lip(F ) ≤ C#
0 (2 + 4C0) =: C#. This completes the proof of Proposition 2.11. �

3. Main results in dimension n ≥ 1 (Theorem 1)

We begin by proving a version of Theorem 1 for finite E. Using a compactness argu-
ment, we will then extend the result to arbitrary E.

Theorem 6. Let E ⊂ Rn be finite, M > η > 0, f : E → R, and k# = k#
s (n +2) +1, where 

k#
s is the constant from Proposition 2.11. Suppose for all S ⊂ E satisfying #S ≤ k#, 

there exists an η-strongly convex function F S ∈ C1,1
c (Rn) satisfying F S |S = f |S and 

Lip(∇F S) ≤ M . Then for all p, q ∈ (1, ∞) satisfying 1
p + 1

q = 1, there exists an η
p -

strongly convex function F ∈ C1,1
c (Rn) satisfying F |E = f |E, and Lip(∇F ) ≤ C3M2/η, 

where C3 = (C#)2(q + 1), and C# is the constant in Proposition 2.11.

Proof. By applying Lemma 2.10 with j := k#
s and k := k#

s (n + 2) + 1, we see for every 
T ⊂ E satisfying #T ≤ k#

s , Γ̃1
η(T, M) �= ∅. From the definition of the set Γ̃1

η(T, M), 
we deduce for T ⊂ E satisfying #T ≤ k#

s , there exists an η-strongly convex function 
F T ∈ C1,1

c (Rn) satisfying Lip(∇F T ) ≤ M , F |T = f |T , and (JxF T )x∈T ∈ Γ̃1
η(T, M). In 

light of (2.20), JxF T ∈ ΓE
η (x) for all x ∈ T . We summarize this result:

For all T ⊂ E satisfying #T ≤ k#
s

there exists an η-strongly convex function F T ∈ C1,1
c (Rn)

satisfying Lip(∇F T ) ≤ M and JxF T ∈ ΓE
η (x) ∀x ∈ T. (3.1)

For x ∈ E, η > 0, let Γ̄E
η (x) ⊂ Rn be

Γ̄E
η (x) := {∇P : P ∈ ΓE

η (x)}.

(See (2.1) for the definition of ΓE
η (x).) For x ∈ E, the set ΓE

η (x) is a convex subset of 
Rx, so the set Γ̄E

η (x) is a convex subset of Rn.
Let S ⊂ E satisfy #S ≤ k#

s . Define GS ∈ C0,1(Rn, Rn) as GS(x) := ∇F S(x), 
where F S ∈ C1,1

c (Rn) is the function produced by applying (3.1) to the set S. Then 
GS(x) ∈ Γ̄E

η (x) for all x ∈ S and Lip(GS) ≤ M . We apply Proposition 2.11 to produce 
G ∈ C0,1(Rn, Rn) satisfying G(x) ∈ Γ̄E

η (x) for all x ∈ E and

Lip(G) ≤ C#M. (3.2)

For x ∈ E, define γx ∈ Rx as the polynomial satisfying γx(x) = f(x) and ∇γx = G(x). 
Immediately, γx ∈ ΓE

η (x), so for all x, y ∈ E
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γx(x) − γy(x) ≥ η

2 |x − y|2, and (3.3)

γy(y) − γx(y) ≥ η

2 |x − y|2. (3.4)

In light of (3.2), |∇γx − ∇γy| ≤ C#M |x − y|. In combination with (3.3) and (3.4), we 
deduce for all x, y ∈ E,

γx(x) − γy(x) ≥ η

2(C#M)2 |∇γx − ∇γy|2, and

γy(y) − γx(y) ≥ η

2(C#M)2 |∇γx − ∇γy|2,

implying γx ∼ M2
η (C#)2 γy for all x, y ∈ E. Thus, we can apply Proposition 2.6 to produce 

an η
p -strongly convex function F ∈ C1,1

c (Rn) satisfying F |E = f |E and Lip(∇F ) ≤
(C#)2(q + 1)M2/η, where C# is the constant from Proposition 2.11. This completes the 
proof of Theorem 6. �
Proof of Theorem 1. Fix p, q ∈ (1, ∞) satisfying 1

p + 1
q = 1. Let E ⊂ Rn be compact. 

There exists R > 1 such that E ⊂ B(0, R). For A > 0, let B(A) ⊂ C1(B(0, 2R)) be

B(A) = {F ∈ C1,1
c (B(0, 2R)) : F is η

p
-strongly convex, and ‖F‖C1,1(B(0,2R)) ≤ A}.

The set B(A) is closed in the C1(B(0, 2R))-topology. For any A > 0, B(A) is also 
bounded and equicontinuous in the C1(B(0, 2R))-topology, implying by the Arzelà-Ascoli 
Theorem that B(A) is compact.

Let E′ be a countable dense subset of E, and let (Ei)i∈N be an increasing sequence 
of sets satisfying for i ∈ N, Ei ⊂ E′, #Ei < ∞, and 

⋃
i∈N Ei = E′. By assumption, 

for all S ⊂ Ei ⊂ E satisfying #S ≤ k#, there exists an η-strongly convex function 
F S ∈ C1,1

c (Rn) satisfying F S |S = f |S and Lip(∇F S) ≤ M .
Therefore, for each i ∈ N, we can apply Theorem 6 to produce Fi ∈ C1,1

c (Rn), 
satisfying

Fi is an η

p
-strongly convex function,

Fi|Ei
= f |Ei

, and

Lip
(
∇Fi

)
≤ C3

M2

η
,

where C3 = (C#)2(q + 1). Restricting the domain of Fi to B(0, 2R), we see for A large 
enough, (Fi)i∈N ⊂ B(A).

By the compactness of B(A), there exists a convergent subsequence (Fij
)j∈N → F̄ ∈

B(A) in the C1 topology. The function F̄ satisfies F̄ ∈ C1,1
c (B(0, 2R)),
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F̄ is an η

p
-strongly convex function,

F̄ |E′ = f |E′ , and

Lip
(
∇F̄ ; B(0, 2R)

)
≤ C3

M2

η
,

where the last inequality follows because Lip
(
∇Fij

)
≤ C3

M2

η for all j ∈ N. Further, 
because this convergence is uniform, F̄ |E = f |E .

We plan to apply Proposition 2.6 to (JxF̄ )x∈B(0,R), so we verify the hypotheses of the 
proposition with E∗ := B(0, R) and f∗ := F̄ : By Lemma 2.4, JxF̄ ∼Lip(∇F̄ ;B(0,2R)) JyF̄

for all x, y ∈ B(0, R). Recall that in (2.1) we defined ΓB(0,R)
η (x; F̄ ) ⊂ Wh(B(0, R)) for 

x ∈ B(0, R) as

ΓB(0,R)
η (x; F̄ ) :=

⋂
y∈B(0,R)\{x}

{P ∈ Rx : P (x) = F̄ (x) and P (y) + η

2 |y − x|2 ≤ F̄ (y)}.

Because F̄ is η
p -strongly convex on B(0, 2R), JxF̄ ∈ ΓB(0,R)

η
p

(x; F̄ ) for all x ∈ B(0, R).
We apply Proposition 2.6 to (JxF̄ )x∈B(0,R) to produce an η

p2 -strongly convex func-
tion F ∈ C1,1

c (Rn) satisfying JxF = JxF̄ for all x ∈ B(0, R) and Lip(∇F ) ≤
(q + 1) Lip(∇F̄ ; B(0, 2R)) ≤ C1q2 M2

η . Because E ⊂ B(0, R) and JxF̄ ∈ ΓB(0,R)
η
p

(x; F̄ )
for x ∈ B(0, R), this implies F (x) = f(x) for all x ∈ E. This completes the proof of 
Theorem 1. �
4. Main results in dimension n = 1 (Theorem 2)

We begin by proving a version of Theorem 2 for finite E and η = 0. In Section 4.3, 
we complete the proof of Theorem 2.

Theorem 7. Let E ⊂ R be finite, and let the function f : E → R. Suppose that for every 
S ⊂ E satisfying #S ≤ 5, there exists a function F S ∈ C1,1

c (R) satisfying F S |S = f |S
and Lip(∇F S) ≤ M . Then there exists a function F ∈ C1,1

c (R) satisfying F |E = f |E
and Lip(∇F ) ≤ 2M .

4.1. Technical tools in dimension n = 1

Let E ⊂ R be finite and f : E → R. Assuming the validity of a finiteness hypothesis 
on f , as per Theorem 7, our aim is to find (γx)x∈E ∈ Wh(E) that satisfies γx(x) = f(x)
and γx ∼M γy for all x, y ∈ E, with a uniform constant M ; then we can apply Theorem 3
to produce a convex extension of f in C1,1

c (R). In our first result, we deduce a transitivity 
property of the relation ∼M in one dimension. According to this, we only need to confirm 
the compatibility of γx at adjacent points of E.



18 M.K. Drake / Advances in Mathematics 445 (2024) 109652
Lemma 4.1. Let x, y, z ∈ R satisfy x < y < z, and suppose γx ∈ Rx, γy ∈ Ry, γz ∈ Rz

satisfy γx ∼M γy, and γy ∼M γz; then γx ∼M γz.

Proof. Suppose x < y < z, γx ∼M γy, and γy ∼M γz; we have

1
2M

|∇γz − ∇γx|2

= 1
2M

(
|∇γz − ∇γy|2 + |∇γy − ∇γx|2 + 2〈∇γz − ∇γy, ∇γy − ∇γx〉

)
≤
(
γy(y) − γz(y)

)
+
(
γx(x) − γy(x)

)
+ 1

M

〈
∇γz − ∇γy, ∇γy − ∇γx

〉
= γx(x) − γz(x) +

〈
∇γz − ∇γy, x − y + 1

M

(
∇γy − ∇γx

)〉
. (4.1)

Because x < y and γx ∼M γy, we have ∇γy−∇γx

M ≤ y −x, which implies x −y + 1
M (∇γy −

∇γx) ≤ 0. Because ∇γz − ∇γy > 0, the last term in (4.1) must be negative, implying 
1

2M |∇γz − ∇γx|2 ≤ γx(x) − γz(x). The proof of the inequality 1
2M |∇γz − ∇γx|2 ≤

γz(z) − γx(z) follows analogously. �
Remark 4.1. A transitivity result relying only on the configuration of points cannot be 
transferred to higher dimensions (n > 1) because we cannot ensure 〈∇γz − ∇γy, x − y +
1

M

(
∇γy − ∇γx

)
〉 is non-positive without further hypotheses on γx, γy, and γz. Even if 

x, y, z are ordered points on a line in Rn (i.e. there exists t ∈ (0, 1) such that y = tx +(1 −
t)z), the quantity 〈∇γz −∇γy, x −y+ 1

M

(
∇γy −∇γx

)
〉 need not be non-positive. However, 

if we assume x, y, z ∈ Rn satisfy 〈y − x, z − y〉 > 0 and (∇γz − ∇γy) = λ(∇γy − ∇γx)
for λ > 0, then we can show γx ∼M γy, γy ∼M γz implies γx ∼M γz.

Lemma 4.2. Let E ⊂ R be finite, f : E → R, and M > 0. For distinct x, y ∈ E, let 
γx ∈ Γ0(x) satisfy

0 ≤ 〈Df
xy − ∇γx, y − x〉 ≤ M

2 |y − x|2. (4.2)

If γx
y ∈ Γ0(y) is defined by

∇γx
y = ∇γx +

√
2M〈Df

xy − ∇γx, y − x〉 if x < y, and

∇γx
y = ∇γx −

√
2M〈∇γx − Df

xy, x − y〉 if x > y,

then γx ∼M γx
y .

Proof. Suppose x < y. By definition of γx
y and the fact that γx ∈ Γ0(x), γx

y ∈ Γ0(y), we 
have
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1
2M

∣∣∇γx
y − ∇γx

∣∣2 = 〈Df
xy − ∇γx, y − x〉 = γx

y (y) − γx(y),

implying (1.6) holds with equality for γy := γx
y and γx := γx.

We next show that (1.5) holds for γy := γx
y and γx := γx, proving γx

y ∼M γx. From 
(4.2) and the definition of γx

y , we have

∇γx
y ≤ ∇γx + M(y − x)

≤ ∇γx + M(y − x) +
√

−2M〈Df
xy − ∇γx, y − x〉 + M2(y − x)2, (4.3)

where the non-negativity of the term inside the square root also follows from (4.2). 
Further,

∇γx
y = ∇γx +

√
2M〈Df

xy − ∇γx, y − x〉

≥ ∇γx + M(y − x) −
√

−2M〈Df
xy − ∇γx, y − x〉 + M2(y − x)2. (4.4)

The latter inequality follows from the observation that for ω > 0, 
√

4ωt ≥ 2ω −√
4ω2 − 4ωt for all t ∈ [0, ω]. Let ω := M

2 (y − x) and t := Df
xy − ∇γx ((4.2) ensures 

t ∈ [0, ω]), and the result follows.
For γx ∈ Γ0(x), γy ∈ Γ0(y), and x < y, (1.5) holds if

f(x) − f(y) − 〈∇γy, x − y〉 ≥ 1
2M

|∇γx − ∇γy|2.

This is expression is equivalent to a quadratic equation in the variable ∇γy:

(∇γy)2 + (∇γy) (−2∇γx + 2M(x − y)) +
(
(∇γx)2 + 2M(f(y) − f(x))

)
≤ 0. (4.5)

The discriminant Δ ∈ R of this quadratic equation is non-negative thanks to (4.2); 
indeed,

Δ = (−2∇γx + 2M(x − y))2 − 4
(
(∇γx)2 + 2M(f(y) − f(x))

)
= 4M

(
−2
(
f(y) − f(x) − 〈∇γx, y − x〉

)
+ M(y − x)2)

= −8M〈Df
xy − ∇γx, y − x〉 + 4M2(y − x)2 ≥ 0.

Thus, (4.5) is equivalent to

∇γy ∈
[
∇γx + M(y − x) −

√
−2M〈Df

xy − ∇γx, y − x〉 + M2(y − x)2,

∇γx + M(y − x) +
√

−2M〈Df
xy − ∇γx, y − x〉 + M2(y − x)2

]
,
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which is valid for γy := γx
y thanks to (4.3) and (4.4). This completes the proof of (1.5), 

and with it the proof that γx ∼M γx
y .

The proof that if x > y and γx
y ∈ Γ0(y) satisfies

∇γx
y = ∇γx −

√
2M〈∇γx − Df

xy, x − y〉,

then γx ∼M γx
y follows analogously. �

4.2. Proof of Theorem 7

Proof of Theorem 7. Because E is finite, we enumerate E = {x1, x2, . . . , xN }, with x1 <

x2 < · · · < xN . We may assume N > 5, else the result is trivial. For distinct i, j ∈
{1, . . . , N}, let

Di,j := Df
xixj

= f(xj) − f(xi)
xj − xi

.

By the finiteness hypothesis, the restriction of f to any 3 consecutive points of E admits 
a convex extension, hence

D1,2 ≤ D2,3 ≤ · · · ≤ DN−1,N .

For i ∈ {1, . . . , N − 1}, let P �
i ∈ Γ0(xi), and for i ∈ {2, . . . , N}, let P r

i ∈ Γ0(xi) satisfy

∇P �
1 := D1,2 − M

2 (x2 − x1),

∇P �
i := max

{
Di−1,i, Di,i+1 − M

2 (xi+1 − xi)
}

(i ∈ {2, . . . , N − 1}), (4.6)

∇P r
N := DN−1,N + M

2 (xN − xN−1), and

∇P r
i := min

{
Di,i+1, Di−1,i + M

2 (xi − xi−1)
}

(i ∈ {2, . . . , N − 1}). (4.7)

For i ∈ {2, . . . , N − 1}, let P +
i , P −

i ∈ Γ0(xi) satisfy

∇P +
i = ∇P �

i−1 +
√

2M〈Di−1,i − ∇P �
i−1, xi − xi−1〉, and (4.8)

∇P −
i = ∇P r

i+1 −
√

2M〈∇P r
i+1 − Di,i+1, xi+1 − xi〉. (4.9)

We use the following monotonicity result in the estimates that follow.

Lemma 4.3. For ω > 0, the function h(t) = −t +
√

4ωt is an increasing function on [0, ω]. 
Thus, for 0 ≤ t1 ≤ t2 ≤ ω, we have h(t1) ≤ h(t2), and if t1 < t2 then h(t1) < h(t2).
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Proof. Trivial. �
For i ∈ {2, . . . , N −1}, by definition (4.6), we have 0 ≤ Di−1,i−∇P �

i−1 ≤ M
2 (xi−xi−1). 

So, we can apply Lemma 4.3 with t1 := Di−1,i − ∇P �
i−1 and t2 := ω := M

2 (xi − xi−1); 
then h(t1) ≤ h(t2), so

∇P +
i = ∇P �

i−1 +
√

2M〈Di−1,i − ∇P �
i−1, xi − xi−1〉

≤ Di−1,i − M

2 (xi − xi−1) +

√
2M

〈
M

2 (xi − xi−1), xi − xi−1

〉
= Di−1,i + M

2 (xi − xi−1) (i ∈ {2, . . . , N − 1}). (4.10)

Similarly, by the definition (4.7) of P r
i+1, we have 0 ≤ ∇P r

i+1 − Di,i+1 ≤ M
2 (xi+1 − xi), 

so we can apply Lemma 4.3 with t1 := ∇P r
i+1 − Di,i+1 and t2 := ω := M

2 (xi+1 − xi); 
then −h(t1) ≥ −h(t2), so

∇P −
i = ∇P r

i+1 −
√

2M〈∇P r
i+1 − Di,i+1, xi+1 − xi〉

≥ Di,i+1 + M

2 (xi+1 − xi) −
√

2M

〈
M

2 (xi+1 − xi), xi+1 − xi

〉
= Di,i+1 − M

2 (xi+1 − xi) (i ∈ {2, . . . , N − 1}). (4.11)

Lemma 4.4. For i ∈ {2, . . . , N − 1}, P �
i−1 ∈ Γ0(xi−1) satisfies ∇P �

i−1 ≥ ∇P for all 
P ∈ Γ0(xi−1) satisfying P ∼M P +

i . Similarly, P r
i+1 ∈ Γ0(xi+1) satisfies ∇P r

i+1 ≤ ∇P

for all P ∈ Γ0(xi+1) satisfying P ∼M P −
i .

Proof. Let P ∈ Γ0(xi−1) satisfy P ∼M P +
i , then from inequality (1.5) with γx := P +

i

and γy := P we have

∇P +
√

2M〈Di−1,i − ∇P, xi − xi−1〉 ≥ ∇P +
i . (4.12)

If, in addition, ∇P > ∇P �
i−1, then 0 ≤ Di−1,i − ∇P < Di−1,i − ∇P �

i−1 ≤ M
2 (xi − xi−1), 

thanks to (4.6). So, we can apply Lemma 4.3 with t1 := Di−1,i−∇P , t2 := Di−1,i−∇P �
i−1, 

and ω := M
2 (xi − xi−1) to see that h(t1) < h(t2), i.e.,

∇P +
√

2M〈Di−1,i − ∇P, xi − xi−1〉

< ∇P �
i−1 +

√
2M〈Di−1,i − ∇P �

i−1, xi − xi−1〉 = ∇P +
i .

But this contradicts (4.12). Thus, if P ∼M P +
i , we must have ∇P ≤ ∇P �

i−1. The proof 
that ∇P r

i+1 ≤ ∇P for all P ∈ Γ0(xi+1) satisfying P ∼M P −
i follows analogously. �
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Lemma 4.5. Suppose that for every S ⊂ E satisfying #S ≤ 5, there exists a function 
F S ∈ C1,1

c (R) satisfying F S |S = f |S and Lip(∇F S) ≤ M . Then max{∇P −
i , Di−1,i} ≤

min{∇P +
i , Di,i+1} for i ∈ {2, . . . , N − 1}.

Proof. Let the sets Si ⊂ E (i ∈ {1, . . . , N}) be defined by Si := {xi−2, xi−1, xi, xi+1,

xi+2} for i ∈ {3, . . . , N − 2}, and S1, S2 := S3, SN , SN−1 := SN−2. By the finiteness 
hypothesis, for i ∈ {1, . . . , N}, there exists a function F Si ∈ C1,1

c (R), satisfying F Si |Si
=

f |Si
and Lip(∇F Si) ≤ M . Because F Si |Si

= f |Si
,

Dj−1,j = F Si(xj) − F Si(xj−1)
xj − xj−1

(i ∈ {2, . . . , N − 1}, j ∈ {i, i + 1}).

Hence, the convexity of F Si implies

Di−1,i ≤ ∇Jxi
F Si ≤ Di,i+1 (i ∈ {2, . . . , N − 1}). (4.13)

We claim that ∇P −
i ≤ ∇Jxi

F Si ≤ ∇P +
i for i ∈ {2, . . . , N − 1}. In combination with 

(4.13), this implies max{∇P −
i , Di−1,i} ≤ ∇Jxi

F Si ≤ min{∇P +
i , Di,i+1}, proving the 

lemma.
For i ∈ {2, . . . , N}, Corollary 2.5 implies Jxi−1F Si ∼M Jxi

F Si . Letting γx := Jxi
F Si

and γy := Jxi−1F Si in (1.5), we see

∇Jxi
F Si ≤ ∇Jxi−1F Si +

√
2M〈Di−1,i − ∇Jxi−1F Si , xi − xi−1〉 (i ∈ {2, . . . , N}).

(4.14)

By Taylor’s inequality (2.2) and the convexity of F Si , 0 ≤ F Si(xi−2) −Jxi−1F Si(xi−2)
≤ M

2 (xi−1 − xi−2)2 for i ∈ {3, . . . , N}. Dividing by the positive quantity (xi−1 − xi−2), 
we see that

0 ≤ ∇Jxi−1F Si − Di−2,i−1 ≤ M

2 (xi−1 − xi−2) (i ∈ {3, . . . , N}). (4.15)

Similarly, 0 ≤ F Si(xi) − Jxi−1F Si(xi) ≤ M
2 (xi − xi−1)2 for i ∈ {2, . . . , N}, which implies

0 ≤ Di−1,i − ∇Jxi−1F Si ≤ M

2 (xi − xi−1) (i ∈ {2, . . . . , N}). (4.16)

By combining (4.15) and (4.16), and applying the definition (4.6) of ∇P �
i−1, we have

∇Jxi−1F Si ≥ max{Di−1,i − M

2 (xi − xi−1), Di−2,i−1} = ∇P �
i−1 (i ∈ {3, . . . , N}).

(4.17)

When i = 2, (4.16) reads as
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0 ≤ D1,2 − ∇Jx1F S2 ≤ M

2 (x2 − x1) = D1,2 − ∇P �
1 ,

where the last equality is by the definition of ∇P �
1 . Together with (4.17), we have

0 ≤ Di−1,i − ∇Jxi−1F Si ≤ Di−1,i − ∇P �
i−1 ≤ M

2 (xi − xi−1) (i ∈ {2, . . . , N}).

Thus, we can apply Lemma 4.3 with t1 := Di−1,i − ∇Jxi−1F Si , t2 := Di−1,i − ∇P �
i−1, 

and ω := M
2 (xi − xi−1) to see h(t1) ≤ h(t2), and in combination with (4.14),

∇Jxi
F Si ≤ ∇Jxi−1F Si +

√
2M〈Di−1,i − ∇Jxi−1F Si , xi − xi−1〉

≤ ∇P �
i−1 +

√
2M〈Di−1,i − ∇P �

i−1, xi − xi−1〉 = ∇P +
i (i ∈ {2, . . . , N}).

By an analogous argument, we deduce ∇Jxi
F Si ≥ ∇P −

i for i ∈ {1, . . . , N − 1}. This 
completes the proof of the claim, and as described, the lemma. �

We are prepared to choose γi ∈ Γ0(xi) for i ∈ {1, . . . , N}. We use the compatibility 
condition in Lemma 4.2 to inform our choice of derivative for γ1 ∈ Γ0(x1) (chosen so 
that γ1 ∼M γ2) and γN ∈ Γ0(xN ) (chosen so that γN−1 ∼M γN ). Let (γi)N

i=1 ∈ Wh(E)
be the unique Whitney field of polynomials satisfying

γi ∈ Γ0(xi), and

∇γi =

⎧⎪⎪⎨⎪⎪⎩
1
2
(

max{∇P −
i , Di−1,i} + min{∇P +

i , Di,i+1}
)

i ∈ {2, . . . , N − 1}
∇γ2 −

√
2M〈∇γ2 − D1,2, x2 − x1〉 i = 1

∇γN−1 +
√

2M〈DN−1,N − ∇γN−1, xN − xN−1〉 i = N.

(4.18)

As a result of Lemma 4.5, for i ∈ {2, . . . , N − 1}, we have

max{∇P −
i , Di−1,i} ≤ ∇γi ≤ min{∇P +

i , Di,i+1}. (4.19)

Consequently, ∇γ2 − D1,2 ≥ 0, and DN−1,N − ∇γN−1 ≥ 0, ensuring γ1 and γ2 are 
well-defined in (4.18).

In the next several results, we verify additional basic inequalities satisfied by (γi)N
i=1.

From the previous lemma, we have ∇γi ∈ [Di−1,1, Di,i+1] for all i ∈ {2, · · · , N−1}. Be-
cause the sequence of divided differences is non-decreasing, we have ∇γ2 ≤ · · · ≤ ∇γN−1. 
By inspection of the definitions of ∇γ1 and ∇γN in (4.18), we obtain the following result:

Corollary 4.6. The polynomials (γi)N
i=1 defined in (4.18) satisfy that their gradients are 

non-decreasing:

∇γ1 ≤ ∇γ2 ≤ · · · ≤ ∇γN .
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Lemma 4.7. For i ∈ {3, . . . , N − 1}, the polynomials (γi)N
i=1 satisfy

∇P �
i−1 ≤ ∇γi−1, and (4.20)

∇γi ≤ ∇P r
i . (4.21)

Proof. By inequality (4.19), ∇γi−1 ≥ max{∇P −
i−1, Di−2,i−1} ≥ Di−2,i−1. If ∇P �

i−1 =
Di−2,i−1, then this implies ∇γi−1 ≥ ∇P �

i−1. Else, by definition of P �
i−1, we have ∇P �

i−1 =
Di−1,i − M

2 (xi − xi−1). Then

∇γi−1 ≥ max{∇P −
i−1, Di−2,i−1} ≥ ∇P −

i−1 ≥ Di−1,i − M

2 (xi − xi−1) = ∇P �
i−1,

where the last inequality is from (4.11). We have proved (4.20). The proof of (4.21)
follows analogously. �

By applying Theorem 3, the next lemma will be used to complete the proof of Theo-
rem 7.

Lemma 4.8. The Whitney field (γi)N
i=1 ∈ Wh(E) defined in (4.18) satisfies γi ∼2M γj

for all i, j ∈ {1, . . . , N}.

Proof. In light of Lemma 4.1, we only need to prove γi ∼2M γi−1 for i ∈ {2, . . . , N}.
For i ∈ {2, . . . , N − 1}, inequalities (4.19), (4.10), and (4.11) imply

0 ≤ ∇γi − Di−1,i ≤ ∇P +
i − Di−1,i ≤ M

2 (xi − xi−1), and (4.22)

0 ≤ Di,i+1 − ∇γi ≤ Di,i+1 − ∇P −
i ≤ M

2 (xi+1 − xi). (4.23)

Thus, we can apply Lemma 4.2 with γx := γ2 and y := x1 to see we have γ1 ∼M γ2. 
Likewise, inequality (4.23) allows us to apply Lemma 4.2 with γx := γN−1 and y := xN

to see γN−1 ∼M γN . Therefore, it suffices to show γi ∼2M γi−1 for i ∈ {3, . . . , N − 1}. 
We prove this by demonstrating that

f(xi) − f(xi−1) − 〈∇γi−1, xi − xi−1〉 ≥ 1
4M

|∇γi − ∇γi−1|2

(i ∈ {3, . . . , N − 1}), and (4.24)

f(xi) − f(xi+1) − 〈∇γi+1, xi − xi+1〉 ≥ 1
4M

|∇γi − ∇γi+1|2

(i ∈ {2, . . . , N − 2}). (4.25)

Indeed, the fact that (4.24) holds, and (4.25) holds with i replaced by (i − 1), implies 
that γi ∼2M γi−1 for i ∈ {3, · · · , N − 1}.
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We will next establish inequality (4.24) by splitting into the two cases below. Let 
i ∈ {3, . . . , N − 1}.

Case 1: Suppose that ∇P −
i−1 ≤ ∇P �

i−1. From the definition of P �
i−1 in (4.6), we have 

Di−2,i−1 ≤ ∇P �
i−1. Together, these inequalities imply

∇γi−1 = 1
2
(

max{∇P −
i−1, Di−2,i−1} + min{∇P +

i−1, Di−1,i}
)

≤ 1
2
(
∇P �

i−1 + min{∇P +
i−1, Di−1,i}

)
≤ 1

2
(
∇P �

i−1 + Di−1,i

)
.

With inequality (4.20), we’ve shown ∇γi−1 ∈
[
∇P �

i−1, 
∇P �

i−1+Di−1,i

2

]
. In particular, 

∇P �
i−1 ≤ Di−1,i. In combination with (4.23),

0 ≤ Di−1,i −
∇P �

i−1 + Di−1,i

2 ≤ Di−1,i − ∇γi−1 ≤ M

2 (xi − xi−1),

we can apply Lemma 4.3 with t1 := Di−1,i − ∇P �
i−1+Di−1,i

2 , t2 := Di−1,i − ∇γi−1, and 
ω := M(xi − xi−1); the map h is increasing, and in particular h(t2) ≥ h(t1), so

∇γi−1+
√

4M(f(xi) − f(xi−1) − 〈∇γi−1, xi − xi−1〉)

= ∇γi−1 +
√

4M〈Di−1,i − ∇γi−1, xi − xi−1〉

≥
∇P �

i−1 + Di−1,i

2 +

√√√√4M

〈
Di−1,i −

∇P �
i−1 + Di−1,i

2 , xi − xi−1

〉

≥ ∇P �
i−1 +

√
2M〈Di−1,i − ∇P �

i−1, xi − xi−1〉 = ∇P +
i , (4.26)

where the last inequality follows because Di−1,i ≥ ∇P �
i−1. From inequality (4.19) and 

Corollary 4.6, we have ∇P +
i ≥ ∇γi ≥ ∇γi−1; we first use these inequalities and then 

(4.26) to bound 1
4M |∇γi−1−∇γi|2 ≤ 1

4M |∇γi−1−∇P +
i |2 ≤ f(xi) −f(xi−1) −〈∇γi−1, xi−

xi−1〉, which is (4.24).
Case 2: Suppose ∇P �

i−1 < ∇P −
i−1; thus, by the definition of P �

i−1 in (4.6), Di−2,i−1 ≤
∇P �

i−1 < ∇P −
i−1. Therefore,

∇γi−1 = 1
2
(

max{∇P −
i−1, Di−2,i−1} + min{∇P +

i−1, Di−1,i}
)

= 1
2
(
∇P −

i−1 + min{∇P +
i−1, Di−1,i}

)
≤ 1

2
(
∇P −

i−1 + Di−1,i

)
.
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From inequality (4.19), ∇γi−1 ≥ max{∇P −
i−1, Di−2,i−1} ≥ ∇P −

i−1. We have shown 

∇γi−1 ∈
[
∇P −

i−1, 
∇P −

i−1+Di−1,i

2

]
. In particular, ∇P −

i−1 ≤ Di−1,i. In combination with 

(4.23),

0 ≤ Di−1,i −
∇P −

i−1 + Di−1,i

2 ≤ Di−1,i − ∇γi−1 ≤ Di−1,i − ∇P −
i−1 ≤ M

2 (xi − xi−1).

Thus, we can apply Lemma 4.3 with t1 := Di−1,i − ∇P −
i−1+Di−1,i

2 , t2 := Di−1,i − ∇γi−1, 
and ω := M(xi − xi−1) to see h(t2) ≥ h(t1), so that

∇γi−1+
√

4M〈Di−1,i − ∇γi−1, xi − xi−1〉

≥
∇P −

i−1 + Di−1,i

2 +

√√√√4M

〈
Di−1,i −

∇P −
i−1 + Di−1,i

2 , xi − xi−1

〉

≥ ∇P −
i−1 +

√
2M
〈
Di−1,i − ∇P −

i−1, xi − xi−1
〉
. (4.27)

According to (4.23), 0 ≤ Di−1,i − ∇P −
i−1 ≤ M

2 (xi − xi−1). This verifies the hypothesis 
of Lemma 4.2 for γx := P −

i−1 and y := xi. Thus, there exists γ̃i−1
i ∈ Γ0(xi) satisfying

∇γ̃i−1
i = ∇P −

i−1 +
√

2M
〈
Di−1,i − ∇P −

i−1, xi − xi−1
〉

and γ̃i−1
i ∼M P −

i−1. In light of Lemma 4.4, we must have ∇γ̃i−1
i ≥ ∇P r

i . Hence, contin-
uing from (4.27),

∇γi−1 +
√

4M〈Di−1,i − ∇γi−1, xi − xi−1〉

≥ ∇P −
i−1 +

√
2M
〈
Di−1,i − ∇P −

i−1, xi − xi−1
〉

= ∇γ̃i−1
i ≥ ∇P r

i ≥ ∇γi, (4.28)

where the last inequality follows from (4.21). This is equivalent to (4.24). We have 
exhausted all cases proving (4.24).

The proof of inequality (4.25) follows analogously because of the symmetry of our 
choice of ∇γi := 1

2
(

max{∇P −
i , Di−1,i} + min{∇P +

i , Di,i+1}
)

for i ∈ {2, . . . , N − 1} in 
light of Lemma 4.5. We summarize the proof briefly. Recall inequality (4.25) is

f(xi) − f(xi+1) − 〈∇γi+1, xi − xi+1〉 = 〈∇γi+1 − Di,i+1, xi+1 − xi〉

≥ 1
4M

|∇γi − ∇γi+1|2 (i ∈ {2, . . . , N − 2}).
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First, we suppose ∇P +
i+1 ≥ ∇P r

i+1; then ∇γi+1 ∈
[

∇P r
i+1+Di,i+1

2 , ∇P r
i+1

]
. We 

use Lemma 4.3 and inequality (4.19) to see (4.25) holds under the assumption 
∇P +

i+1 ≥ ∇P r
i+1. Second, we suppose ∇P +

i+1 < ∇P r
i+1 and, therefore, ∇γi+1 ∈[

∇P +
i+1+Di,i+1

2 , ∇P +
i+1

]
. We use Lemmas 4.2-4.4 and inequality (4.19) to see (4.25) holds, 

exhausting all cases and completing the proof of (4.25).
This completes the proof of Lemma 4.8. �
By applying Theorem 3 to (γi)N

i=1 ∈ Wh(E) and using that γi(xi) = f(xi), we 
complete the proof of Theorem 7. �
4.3. Proof of Theorem 2

Theorem 2 is an immediate consequence of the following theorem:

Theorem 8. Let E ⊂ R be compact, the function f : E → R, and M > 0. Suppose for 
every S ⊂ E satisfying #S ≤ k#

1 = 5, there exists a convex function F S ∈ C1,1
c (R)

satisfying F S |S = f |S and Lip(∇F S) ≤ M . Then there exists a convex function F ∈
C1,1

c (R) satisfying F |E = f |E and Lip(∇F ) ≤ 2M .

To see Theorem 2 follows, we assume the hypotheses of Theorem 2: Let E ⊂ R be 
compact, and let the function f : E → R. Suppose for every S ⊂ E satisfying #S ≤ k#

1 =
5, there exists an η-strongly convex function F S ∈ C1,1

c (R) satisfying F S |S = f |S and 
Lip(∇F S) ≤ M . Let g : E → R be g(x) := 1

1+η/M (f(x) − η
2 |x|2), and for S ⊂ E satisfying 

#S ≤ k#
1 = 5, let GS : R → R be GS(x) := 1

1+η/M (F S(x) − η
2 |x|2). The function GS

satisfies GS is convex, GS|S = g|S , and Lip(∇GS) ≤ 1
1+η/M (Lip(∇F S) + η) ≤ M . Thus, 

g : E → R satisfies the hypotheses of Theorem 8. Applying this theorem, we deduce 
there exists a convex function G ∈ C1,1

c (R) satisfying G|E = g|E and Lip(∇G) ≤ 2M . 
Let the function F : R → R be F (x) := (1 + η/M)G(x) + η

2 |x|2. Then F ∈ C1,1
c (R) is 

η-strongly convex and satisfies Lip(∇F ) ≤ 2M + 3η and F |E = f |E . The conclusion of 
Theorem 2 follows.

Thus, our remaining task is to prove Theorem 8.

Proof of Theorem 8. Let E ⊂ R be compact. There exists R > 1 such that E ⊂ B(0, R). 
For A > 0, let B(A) ⊂ C1(B(0, 2R)) be

B(A) = {F ∈ C1,1
c (B(0, 2R)) : F is convex, and ‖F‖C1,1(B(0,2R)) ≤ A}.

The set B(A) is closed in the C1(B(0, 2R))-topology. For any A > 0, B(A) is also 
bounded and equicontinuous in the C1(B(0, 2R))-topology, implying by the Arzelà-Ascoli 
Theorem that B(A) is compact.

Let E′ be a countable dense subset of E, and let (Ei)i∈N be an increasing sequence of 
sets satisfying for i ∈ N, Ei ⊂ E′, #Ei < ∞, and 

⋃
i∈N Ei = E′. By assumption, for all 
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S ⊂ Ei ⊂ E satisfying #S ≤ 5, there exists an η-strongly convex function F S ∈ C1,1
c (R)

satisfying F S |S = f |S and Lip(∇F S) ≤ M . We apply Theorem 7 to produce a convex 
function Fi ∈ C1,1

c (Rn) satisfying Fi|Ei
= f |Ei

, and Lip(∇Fi) ≤ 2M . Restricting the 
domain of Fi to B(0, 2R), we see for A large enough, Fi ∈ B(A) for all i ∈ N. By the 
compactness of B(A), there exists a convergent subsequence (Fik

)k∈N → F̄ ∈ B(A). The 
limiting function F̄ satisfies Lip(∇F̄ ; B(0, 2R)) ≤ 2M and F̄ |E′ = f |E′ , and because this 
convergence is uniform F̄ |E = f |E . Because F̄ ∈ B(A), F̄ ∈ C1,1

c (B(0, 2R)) is convex on 
B(0, 2R).

By Corollary 2.5, JxF̄ ∼Lip(∇F̄ ;B(0,2R)) JyF̄ for all x, y ∈ B(0, R). We apply Theo-
rem 3 to (JxF̄ )x∈B(0,R) to produce a convex function F ∈ C1,1

c (Rn) satisfying JxF = JxF̄

for all x ∈ B(0, R) (implying F |E = f |E) and Lip(∇F ) ≤ 2M , completing the proof of 
Theorem 8. �
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