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1. Introduction

Let CH1(R™) be the space of convex, differentiable functions with Lipschitz contin-
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this paper, we provide an answer to the following questions: Under what conditions
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on 7 and f does there exists an 7-strongly convex function F € C}'(R™) that is an
extension of f, i.e., satisfying F|g = f|g? Assuming such an extension exists, how
small can one take the Lipschitz constant Lip(VF) for an 7-strongly convex exten-
sion F of f? Recall the Lipschitz constant of a function G : R® — R? is defined as
Lip(G) := sup, yern 2y w We prove the following result:

Theorem 1. Let E C R™ be compact, the constants n, M satisfy M > n > 0, and the
function f : E — R. There exist k* € N and C > 0 depending only on the dimension n
such that the following holds: Suppose that for all S C E satisfying #S < k¥, there exists
an n-strongly convex function F'S € CLY(R™) satisfying F°|s = f|s and Lip(VEFS) < M.
Then for any p,q € (1,00) satisfying % + % = 1, there exists an n/p*-strongly convex
function F € CHY(R™) satisfying F|g = f|r, and Lip(VF) < C1¢*M? /n.

Fix a constant Cy > Ciq¢? and p,q € (1,00) satisfying % + % = 1; suppose the
hypotheses of Theorem 1 are satisfied by E, f, M, and n € (0132 M, M). Then Theorem 1

C
produces an 7/p?-strongly convex extension of f, F' € CLHY(R") satisfying Lip(VF) <

CyoM. But if instead the hypotheses are satisfied by F, f, M, and n much smaller than M

(n €0, Cégz M)), we expect this theorem is not optimal. We conjecture that satisfaction

of the hypotheses of Theorem 1 ensures the existence of a strongly convex extension of
f,ie F € CLYR") satisfying Lip(VF) < CM, where C' depends on n,p, and ¢, but
not on 7 or M. Indeed this is true in dimension n = 1, which is our second result:

Theorem 2. Let E C R be compact, the constants n, M satisfy M > n > 0, and the
function f: E — R. Suppose for every S C E satisfying #S < kfk = 5, there exists an
n-strongly convexr function FS € CLHY(R) satisfying F°|s = f|s and Lip(VF?) < M.
Then there exists an n-strongly convex function F € CH1(R) satisfying F|g = f|g and
Lip(VF) < 5M.

Remark 1.1. In Theorem 2, no constant smaller than k;f& = 5 will suffice (the sharp
finiteness constant for CH1(R) is kf& = 5). To see this, consider the following example: Let
ECRbeE :={-2,-1,0,1,2}; for z € E,let f(z) := |z|. For every set S C E satisfying
#S < 4, one can construct a convex function F¥ € C}1(R) satisfying F|s = f|s, but
any convex extension of f, F': R — R must satisfy F(z) = |z| for = € [-2, 2], which is
not differentiable at = 0. Thus, we must have k# > 4.

Our results are the first attempt to understand the constrained interpolation problem
for convez functions in C}(R™).? We build on techniques used to understand whether
a function has a smooth extension despite obstacles to their direct application.

Let X(R™) € C(R™) be a complete semi-normed space of continuous functions. Given
a compact set £ C R™ and a function f : F — R, how can we tell if there exists

2 The constrained interpolation problem where the interpolating function is required to be non-negative
has been studied by C. Fefferman, A. Israel, and K. Luli in [8], and K. Luli, and F. Jiang in [12] and [13].
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F € X(R"™) extending f, that is satisfying F|g = f|g? In [14,15], Pavel Shvartsman
answered this question for the linear space X(R") = C11(R") through a Finiteness
Principle.

We say that there is a Finiteness Principle for X(R"™) if there exist k € N, C > 0
depending on X(R™) such that given E C R” finite and f : F — R, if we assume for
every S C F satisfying #5 < k, there exists ¥ € X(R") satisfying F'¥|s = f|s and
|F5]| x(®n) < 1, then there exists F' € X(R") such that F|g = f|p and ||F||x®n) < C.

Further, P. Shvartsman proved that the sharp finiteness constant for C%(R™) is
k =3-2""1 and conjectured with Yuri Brudnyi that Finiteness Principles for the linear
spaces C™(R"™) and C™~L1(R™) would hold in [3,4]. In [5,6] Charles Fefferman proved
Finiteness Principles for these spaces (C™~11(R™) and C™(R")).

Theorems 1 and 2 are progress toward the proof of a Finiteness Principle for the
non-linear space of smooth convex function C}'(R™). Our hope is this work and the
continued study of finiteness principles for smooth convex functions allow the devel-
opment of algorithms for constructing smooth, convex extensions of a function (or its
approximation) analogous to the work by C. Fefferman and Boaz Klartag in [9,10] for
Cc™(R"™).

Our proofs of Theorems 1 and 2 rely on an inequality relating the jets of a convex
function in C11(R™). Let P be the space of real-valued affine (degree one) polynomials.
For F' € C'(R™), we define the jet of F at x, J,F € P as J,F(y) :== F(z)+(VF(z),y—x).
Let the function F' € C}H1(R™) be convex; as a consequence of Taylor’s inequality,

F(z) = JyF(x) [VE(z) = VE@)P?  (z,y €R").

>
= 2Lip(VF)

In Section 2.1, we prove this inequality. In [2,1], Daniel Azagra, Erwan Le Gruyer, and
Carlos Mudarra proved a partial converse to this inequality, criteria for convex C!'-
extension of degree one polynomials defined on a closed set E C R™, which is a key
component of our proofs:

Theorem 3 (D. Azagra, E. Le Gruyer, and C. Mudarra [1], Theorem 2.4). Let E C R™
be closed and the polynomials (Py).cr C P satisfy for all x,y € E,

1
P.(z) — Py(z) > WW}%—V}@F. (1.1)
Then there exists a conver function F € CHY(R"™) satisfying J,F = P, for allx € E
and Lip(VF) < M.

We now give a sketch of the proof of Theorem 1. We write ¢, C, C’, etc. to denote con-
stants dependent only on the dimension n. By appealing to the Arzela-Ascoli Theorem,
we reduce to the case F C R™ finite. In Proposition 2.6, we prove that if (P,).cg satisfy
(1.1) and
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P.(y) + g|y — x> < Py(y) forala,yekE, (1.2)

then the conclusions of Theorem 3 hold for a strongly convex function F € CH(R™)
satisfying Lip(VF) < CM. Thus, given f : E — R, we aim to find (Py),eg C P
satisfying P,(z) = f(z) and the inequalities (1.1) and (1.2) with uniform constants M
and 7 for all x,y € E. To do this, we introduce an approximation of the set of prospective
jets of strongly-convex C1'(R™) extensions of f. For x € E, n > 0, let 1"5 (x) C P be

n
Iy (2) = {P € P: P(z) = f(z) and P(y) + 3|y — * < f(y) for all y € B\ {z}}.
Immediately, we see for an n-strongly convex extension F' € CH(R") satisfying F|p =

flg and Lip(VF) < M, we have J,F € I'}/(x) for all € E. We prove we can choose
(Py)zer C P so that

E
Py el () (r € E), and (1.3)
sup {w} < C'M. (1.4)
z,yEE,x#y |z =yl

Together (1.3) and (1.4) imply

Jw) = Peo) 2 glu = 2 5 mmms VP = VAP (e € B)
Hence, this choice of (P,).c satisfies (1.1) with a constant (C’M)?/n, and we can apply
Proposition 2.6.

To prove we can choose (P;).cp satisfying (1.3) and (1.4), we use Helly’s Theorem,
(following P. Shvartsman in [14], [15], and C. Fefferman in [5], [6]) and a Finiteness
Principle for Smooth Selection proved by C. Fefferman, Arie Israel, and Kevin Luli in
[7]; see also C. Fefferman and P. Shvartsman’s results in [11].

Theorem 4 (Helly, see e.g. [17]). Let J be a finite family of convex subsets of R?, and
suppose every (d+1) elements of the family has non-empty intersection. Then the entire
family has non-empty intersection. If J is infinite, the sets must also be compact for the
result to follow.

For D > 1, let C%!(R",RP) denote the Banach space of all RP-valued Lipschitz
functions I on R", for which the norm || F'[|co.1(rn gp) = sup,cgrn{|F ()|} + Lip(F), is
finite.

Theorem 5 (C. Fefferman, A. Israel, and K. Luli (Theorem 3(B) of [7])). There exist
k¥ = k¥ (n,D) € N and C* = C#(n, D) > 0 such that the following holds: Let E C R"
be arbitrary. For each x € E, let K(x) C RP be a closed convex set. Suppose that for each
S C E with #S < k¥, there exists F¥ € C%'(R™,RP) with norm || F%||co.1gn goy < 1,
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such that FS(x) € K(x) for all x € S. Then there exists F € C%1(R",RP) with norm
|1F5|conrn roy < C#, such that F(z) € K(x) for all x € E.

We assume the following Finiteness Hypothesis: for every S C E, #S < k¥,
there exists an n-strongly convex function F° € CH1(R™) satisfying F°|s = f|s and
Lip(VF?) < M, with k# = k#(n +2) + 1 and k¥ = k¥ (n,n) from Theorem 5. Using
this hypothesis, we can apply Helly’s Theorem to show the hypotheses of Theorem 5 are
satisfied for the family of convex sets (K (z) = {VP: P € T} (2)})scp in R". Thus, we
can apply Theorem 5 to produce a Lipschitz selection G € C%Y(R™,R") from (K (2))scr
satisfying Lip(G) < C'"M. For = € E, we let P,(z) := f(z) and VP, := G(z), and as
promised, (P,).cp satisfies (1.3) and (1.4).

This concludes our sketch of the proof of Theorem 1. The rest of the paper is organized
as follows: In Section 2, we adapt Theorems 3 and 5 to our setting and analyze sets
approximating the set of jets of smooth convex extensions of the function f, including
I‘g (z). In Section 3, we prove Theorem 1 for dimension n > 1. In Section 4, we detail
technical estimates that hold only in dimension n = 1, and prove Theorem 2.

1.1. Acknowledgments

The author is grateful to Arie Israel for providing valuable comments on an early draft
of this paper and the National Science Foundation for its generous support.

1.2. Notation

Let E C R™, f: E — R. We use the following notation:

2] = [aly = (Jaa [ + - + |2a?)/? (x=(z1,...,2,) €R");
B(y,R) :={x e R" : |z —y| < R} (y e R™, R >0);
Df, ) G2} (z,y€ B,z #y, ECR).

y—x

Let Q@ C R™ be a domain (i.e., a non-empty, connected open set), and let the vector-
valued function F : Q — RP. The Lipschitz constant of the function F is

F(z) - F
Lip(F;Q):= sup 7‘ (z) (y)|
z,YyEQ,xHY ‘37 - yl

Where the domain €2 is evident, we write Lip(F') in place of Lip(F; Q).

For m =0 or m =1, let C™(2) denote the Banach space of real-valued C™ functions
F on € for which the norm

max |0“F(z)|

F|lgmq) = sup
1Ellem @ zeQ loa|<m
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is finite, and C™1(Q2) denote the Banach space of real-valued C™ functions F on {2 with

Lipshitz continuous gradient for which the norm

£

cmi@) = [|Fllema) + Lip(V"F; Q)
is finite.

For D > 1, let C™1(R",R?) denote the Banach space of vector-valued C™ functions
F on R"”, for which the norm

|Fllcms@nmo) = sup max [9F(z)| + Lip(V" F;R")

zeR? |a|<m

is finite.

Let C;™' () denote the space of functions F on R” satisfying | F||cmo1qry < oo for
all bounded open sets ' CC Q.

Let © C R™ be a convex domain. Let C}1(Q) C Cllf;i(Q) denote the space of convex,
differentiable functions with Lipschitz continuous gradient.

Let P be the space of real-valued affine (degree one) polynomials. For F € C*(R"),
we define the jet of F at x, J,F € P as

JoF(y) i= F(z) + (VF(2),y — 2).
For each x € R™, the jet product ®, on P is defined by
PO, Q:=Jo(P-Q) (PQEP).
Let R, = (P, ®) be the ring of 1-jets of functions at x € R™.
Let E C R™ and P, € R, for all € F; then we say (P,).cp C P is a Whitney field

on E. Let Wh(E) be the set of all Whitney fields on E.
For v, € Ra, vy € Ry, we will say v, ~um 7y if the following inequalities are satisfied:

1) = (®) > 5[V = Yyl (15)
V() = 12(y) = ﬁ|v’ﬁ — V2. (1.6)
We write ¢, C,C’, etc. to denote constants dependent only on the dimension n.
2. Technical tools
Let E C R™ be compact, and let f : £ — R. We now introduce certain convex subsets

of R, that reflect constraints on the jet of a convex extension of f. For S C Fand z € S,
let TO(x; f), T'%(x; f), and F;?(x;f) C R: be
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I°(x; f) == {P € R, : P(z) = f(x)}, and
D% (a; f) == {P € T%(x; f) : P(y) < f(y) for all y € S}

D@ f) = (P €T f): Ply) + Jly—al? < f(y) forall y € S\ {a}}  (2)

= ) {Per@f): Ply)+ Sy - < f@)}.
yeS\{z}

Where the function f is evident, we will not write f; i.e., we write I'°(z) in place of
r(z; f).

Any convex extension of the function f, F': R™ — R, satisfies 0F(x) C I'P(x; f) for
all z € E, where 0F(z) := {{ € R" : F(y) > F(z) + (§,y — z) for all y € Q} is the
subdifferential of F at x.

The sets T%(z), I'*(x), and I'; () are convex subsets of R,; this property is immediate
for T9(z). To see the set I'¥(z) is convex, notice if P € {P € T%(x) : P(y) < f(y)} for
y € S\{z}, then P(z) = f(z) and VP satisfies the linear inequality f(z)+(VP,y—z) <
f(y). Hence, {P € T%x) : P(y) < f(y)} is convex, implying I'¥(z) = Nyes\ (1P €
IYz) : P(y) < f(y)} is convex. Similarly, if P € {P € I%(z) : P(y) + %|y — z|> < f(y)}
for y € S\ {z}, then P(x) = f(x) and VP satisfies the linear inequality f(z)+ (VP z —
y) + 2y — z|* < f(y), implying I'J () is convex as an intersection of convex sets.

Lemma 2.1. Let E C R" be compact and f : E — R. Suppose T (z; f) # 0 for allz € E.
Then there exists a convex (and thus, locally Lipschitz) function F : R™ — R extending

1.

Proof. Let F: R" — R be F(z) := sup,cp{P,(z) : P, € '¥(y)}; then F|g = f|p and
as the supremum of convex functions, F' is convex. O

Lemma 2.2. Let E C R™ be compact and f : E — R. Suppose Ff(m; f)#0 forallz € E;
then there exists an n-strongly convex function F' : R™ — R extending f.

Proof. Suppose I‘E(x;f) # () for all z € E, then T'F(2;9) # 0 for all z € E, where
g(z) := f(z)— 2|z|?. By Lemma 2.1 there exists a convex function G : R™ — R satisfying
Gl = g|lp. Thus, F(z) := G(z)+ 2|z|* is n-strongly convex and satisfies F|p = f|p. O

Lemma 2.3. Let E C R™ be compact and f : E — R. Let S C E and F € CH1(R™) be
an n-strongly convex function satisfying F|s = f|s. Then J,F € Fg(x; f) forallz e S.

Proof. Let G : R™ — R be G(z) := F(z) — %|z|>. Because F is n-strongly convex, G is
convex, implying for all z,y € S, J,G(y) < G(y); equivalently,

F(x) = Slef? + (VF() = ne,y — ) < Fly) = 2l @,y € 9).
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This reduces to J,F(y) + £ly — z[*> < F(y) = f(y), implying J,F € ') (x; f) for all
reS. O

2.1. An estimate on 1-jets of convex functions in C}1
Recall that B(a,r) is the Euclidean ball of radius r centered at a: B(a,r) := {x € R™:

|z —a| < r}. For a function F € CY1(B(a,2R)), we use Taylor’s inequality to bound the
difference between the function value and its jet evaluated at a point:

|F(2) — J.F(2)] < %Lip(VF; B(a,2R))|x — z|? (z,z € B(a,2R)), (2.2)

where Lip(VF; B(a,2R)) = SUP, 4y 2 yen(azh) {W} We use (2.2) in the

lz—y]
following estimate on the jets of a convex function F' € C}1(B(a,2R)).

Lemma 2.4. Let F € C1'(B(a,2R)) be convex; then J,F ~p J,F for all z,y € B(a, R),
where M = Lip(VF; B(a,2R)).

Proof. We adapt the proof of Proposition 3.2 in [2]. For F' affine, the result is immediate.
Suppose F' is not affine. Let M := Lip(VF; B(a,2R)), and suppose there exist z,y €
B(a, R) such that J,F 4y J,F. Then without loss of generality, we can assume

P(a) ~ Ply) ~ (VF(y), 2 ~ ) < 5[ VF(z) ~ V()P (23)

By translation (by y) and subtraction of an affine function (z — F(y) + VF(y)(z — y)),
we can assume y = 0 € B(a, R), F(y) = 0, and VF(y) = 0. Because F is convex, this
implies F(z) > 0 for z € B(a,2R), and (2.3) becomes

1
< — 2,
0< F@) < 537 |VF(@)

In particular, VF(x) # 0. Because Lip(VF;B(a,2R)) = M, we have |VF(x)| =
|VF(z) — VF(0)| < M|z|. Hence, for # € B(a,R), (x — VF(z)/M) € B(a,2R). From

VF(zx)
M

(2.2) evaluated at z =z — and the previous inequality,

F (2~ VF(2)/M) < F(2) + (VF(2), 2 — VF()/M ~2) + o |~ VF(2)/M ~ af
= F(x) = |[VF(2)?/M + |VF()]*/(2M)

111 ,
< (W_M+W) |VF($>| <0,

but this contradicts our deduction that F'(z) > 0 for z € B(a,2R)\{0}. Thus, the lemma
holds. O
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For a convex function F' € CL1(R™), we have Lip(VF; R™) < oo, implying the follow-
ing:

Corollary 2.5. Let F' € CHY(R™) be convex; then J . F ~p J,F for all z,y € R™, where
M = Lip(VF;R™).

2.2. Estimates for C}1-convex extension of 1-jets

Let E C R™ be closed, and suppose the Whitney field (v,)zcr satisfies v, ~ar vy
for all z,y € E. Then (v;).cr satisfies the hypotheses of Theorem 3, and we deduce
there exists a convex function F € CL1(R™) satisfying J,F = v, for all x € E and
Lip(VF) < M.

Under the same hypotheses (i.e., that the Whitney field (v;)zecr satisfies v, ~ar vy
for all z,y € F), we can add (1.5) to (1.6) and apply the Cauchy-Schwartz inequality to
deduce

1
VY = Vaully = 2| = (Vyy = Ve, y — ) = 721V = Vol
and thus, |V, — Vv;| < M|y — z|. The non-negativity of (1.6) implies

Yo () = vy(2) <(Va(z) =7 (2) + (W (©¥) — 7= ()
=(Vyy = Vya,y —z) < My — zf*.

Similarly, from the non-negativity of (1.5), we see if v, ~ar 7y,

YY) = 7(y) < My —zf”. (24)
This implies the following:

Remark 2.1. If the Whitney field (7;).cr satisfies v, ~a 7, for all z,y € E, and
suDye i {[72(@)[} + 5upyep{[V7e]} < M, the polynomials (vz)ecr € Wh(E) satisfy the
hypotheses of Whitney’s Extension Theorem for C1'!(R"™) with a constant M, imply-
ing there exists a function G € CUV1(R"™) satisfying J,G = v, for all x € E, and
|Gllcra@ny < C(n)M. But the function G need not be convex (see e.g. [16] for this
version of Whitney’s Extension Theorem).

Next we construct an example of constants M > n > 0, a set £ C R, a function
f:E — R, and a choice of Whitney field (y2)rep € Wh(E) satisfying , € I'Y(z) and
Yz ~u Yy for all z,y € E, such that there does not exist an 7-strongly convex function
F € CHY(R) satisfying Lip(VF) < M and J,F =, for all z € E.

Example: Let £ = {0,1} C R, n € (0,1/4), M =1, f(0) = 0 and f(1) = n/2. Then
the polynomials 7o € Ro,71 € R1 defined as vo(z) = 0, and 71 (z) = 3 +2n(x —1) satisfy
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3
70(0) = 71(0) = 5 > Z[1 -0, (2.5)
3 1
10(0) = 71(0) = 5 > ZJ2n— 0P, (2.6)
n(1) = 70(1) = 7 = 1 -0f, and (2.7)
o1 2
(1) =(l) =35 = 520 -0 (2.8)

Inequality (2.5) implies vy € I‘,’;J(O); (2.7) implies 11 € F,’;J(l); and together (2.6) and
(2.8) imply vo ~1 71

Notice any n-strongly convex extension of 7y must lie above the function g : R — R
defined as g(z) := Z|z[>. But g(1) = y1(1) = 4 and ¢'(1) = < 2n = V1. Thus, there
is no n-strongly convex function F € CL1(R"™) satisfying JoF = o, J1F = 1. However,
the following proposition implies that there is an n/p-strongly convex function satisfying
these conditions, for any p > 1.

Proposition 2.6. Let E* C R" be closed, f* : E* — R, and M > n > 0. Suppose
(Ya)zep+ satisfies v, € FE*(m;f*) and vz ~um Yy for all x,y € E*. Let p,q € (1,00)
satisfy % + % = 1. Then there exists an n/p-strongly convex function F € CH1(R™)
satisfying JoF =7, for allx € E* and Lip(VF) < ¢M +n/p < (¢+1)M.

We will turn to the proof of Proposition 2.6 momentarily. The following lemma ex-
plains the reduction in the strong convexity constant 7 of an extension, under these
hypotheses:

Lemma 2.7. Let E C R™ be closed, f: E — R, and M > n > 0. Suppose (Vz)zcE Satisfies
Vo € F,];J(x;f) and vz ~um Yy for all x,y € E. Let p,q € (1,00) satisfy % + % = 1. For
x € E, let P, € R, satisfy Pp(x) = f(w)—%|:v|2 and VP, = V%—%x. Then Py ~qur Py
forallz,y € E.

Proof. Let x,y € E. By translation (by y) and subtraction of the affine function -,
we can assume y = 0 and 7, = 0. By hypothesis, v,(z) = f(z); thus, v,(z) = f(z) +
(V¥z,2 — ). Then v, ~p 7y, implies

flz) > ﬁ|V%\2, and (2.9)
— @)+ {Vrer2) 2 5l Vel (210)

The conditions ~, € ]."7];3(9:), Yy € 1"7]]5 (y) imply

fx) > glxlz, (2.11)

— f(2) + (Ve z) > ~|z[, and (2.12)

N3
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Vellz] > (Vg x) > nlz)?, (2.13)

where the final inequality comes from adding (2.11) to (2.12) and applying the Cauchy
Schwartz inequality to the inner product. We want to prove that P, ~gy Py. By our
normalizations, Py(y) = f(y) — 2”—]0|y|2 =0, and VP = Vv, — 1y =0, so P, = 0. Thus,
we want to show

25 m_2
- — , — = 2.14
@) = hlol? 2 57 V7 = af?, and (214)
2 n 1 no2
- e = (Ve — Lo —a) > —— |V, — Laf2 2.15
f($)+2p|x| < Yz pxy $> = 2gM Y p$| ( )
From (2.9) and (2.11), we have
L1\n n

25 2 (1= 2 ) D = g2 921

@) = a2 o 99+ (1= ) el = Lo (216)

and from (2.10) and (2.12),
Ny 2 n .2
— f(x)+ —=|z|" = (Ve — =2, —2) = = f(2) + (VVz,2) — |2
()2p|\ (Vv » ) ()<7>2p||
1\ n U
o S B O R I e ' o 2.1
> gVl + (1= 7 ) Hol? = 2ol (2.17)

We next bound the terms on the right-hand side of (2.16) and (2.17) (which are the
same). Because % + % =1, we have:

1\n n 1
—— |V 2+ (1= = ) D)z = L2 = — |V
27 Vel +( q)2x| 2plﬂcl 2qu Val

1 m 2 772 2 n
= — |V — —z|* = ——(Vz,
sonf| Ve = 7 = 5ol + (V)
(2.13) 1 n ,72 772
> —— |V — —a]? - —5— |z |z|?
2qM D 2qp* M
Ve — ~z|?
> 2qu 5. x\

where the last inequality uses the fact that 2p > 1. Thus, we have proven (2.14) and
(2.15). O

Proof of Proposition 2.6. We apply Lemma 2.7: For x € E, let P, € R, satisfy P,(x) =
flx) — 1|x|2 and VP, = Vv, — la. Then Py ~gy Py for all z,y € E. We apply
Theorem 3 to the polynomials ( ¢)16 g, to produce a convex function G € CL(R™)
satisfying J,G = P, for all z € E and Lip(VG) < ¢M. We define F € CH(R")
as F(zx) = G(x) + %|x|2. Because G is convex, I is l-strongly convex; Lip(VF) <
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qM + % < (¢+1)M, and J,F = ~, for all z € E. This completes the proof of the
proposition. 0O

2.3. Relevant convex subsets of P

In this section we introduce convex sets of jets that are relevant to the C1!(R™)
extension problem. We establish the basic properties of these sets in the two lemmas
below. We invoke Helly’s theorem to prove Lemma 2.10 which states that the convex sets
are non-empty when f : E — R satisfies a finiteness hypothesis, as in the assumptions
of Theorem 1.

For the rest of this section, we fix a finite set £ C R™ and a function f: F — R. For
M >n>0,and T C E, we define the set f}](T,M; f) CWh(T) as

T(T, M; f) = )

z€E

(Pw)ZET S Wh(T) :

{ 3 an n-strongly convex function F € C;’l(R") s.t. }
Lip(VF) < M, J,F = P, ¥z € T, and F|(.yor = fl(s3or

Again, where the function f is evident, we will not write f; i.e., we write 1:117 (T, M) in
place of '} (T, M; f).
We establish the basic containments for these convex sets in the following.

Lemma 2.8. Let E C R"™ be finite and f : E — R. For all T C E, we have

T}(T, My) C T)(T, M) (M > My >n>0), and (2.18)
L (T, M) cTL, (T,M) (M >n>mno>0). (2.19)

Let (Py)zer € f%(T, M); then
Pyell(x)  forallzeT. (2.20)

Proof. Properties (2.18) and (2.19) are immediate from the definition of the set
f},(ﬂ M). Let (Py)ger € f%(T, M) and xz € T. For y € E \ {z}, there exists an 7-
strongly convex function F¥ € C3'(R™) such that J,F = P, and F¥|(, oy = fla-
Thus, Py(y) + 2y — z[* < f(y). Because this is true for all y € E \ {z}, we deduce
P, eTl(z). O

Lemma 2.9. Let E C R" be finite, f : E — R, and M > n > 0; for T C E, the set
L(T, M) C Wh(T) is convez.

Proof. For T C E, z € E, define K(T,z) C Wh(T) as

3 an n-strongly convex function F' € Ci’l(]R") s.t.
K(T,z) = (Py)zer € Wh(T) : .

Lip(VF) < M, J,F = P, Vo € T, and F|3ur = fl{zyur
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Let Fy, Fy € CHY(R™) be n-strongly convex functions satisfying Lip(VF;) < M for i =
1,2. Then F; := tF1 4 (1—1t)F; is n-strongly convex and satisfies Lip(VF;) < M. Because
JoFt=tJ, i1+ (1—t)J, Fy, we see (Jo Fy)zer, (JoF2)zer € K(T, 2) implies (J, F})zer €
K(T,z). Thus, K(T, z) is convex, and f%(T, M) =,ep K(T,2) is convex. O

Lemma 2.10. Let E C R"™ be finite and f : E — R. Suppose j, k € N satisfy k >
(n+2)j+ 1, and for every S C E satisfying #5S < k, there exists an n-strongly convex
function F¥ € CHYR™) satisfying F°|s = f|s and Lip(VF®) < M. Then for every
T C E satisfying #T < j, f}](T, M) £ 0.

Proof. In the previous lemma, we proved that f},(T, M) = ,ep K(T,2) is the inter-
section of a family of ((n + 1)|T)-dimensional convex sets. Here we show that given
T C E, every subfamily of ((n+1)|T|+ 1) of the convex sets K (T, z) has a non-empty
intersection. Then we can apply Helly’s Theorem (Theorem 4) to prove the intersection
of the entire family is non-empty.

Let T C FE satisfy #T < j. Let z1,...,2(n41)j41 be points of E; then § :=
{21, Z(n+1)j4+1} Is contained in E and #(SUT) < (n+2)j +1 < k. By apply-
ing the hypothesis of the lemma to the set S U T, we deduce there exists an n-strongly
convex function F¥YT € CL1(R™) satisfying F9VT | s r = f|sur and Lip(VFSYT) < M.
Thus,

(JEFSUT)ZET
(nt+1)j+1 3 an n-strongly convex function F € CH1(R"™) s.t.
€ N (Po)ger € Wh(T):
i—1 Lip(VF) < M, JF = P, Vx € T, and F‘{zi}UT = f|{zi}UT
(n+1)j+1
= () KT z).
i=1

Thus, the intersection of any ((n -+ 1)j + 1)-element subfamily of {K (T, z) : z € E} is
non-empty. We can then apply Helly’s Theorem to conclude F}](T M) = (N,ep K(T, 2)
is non-empty. O

2.4. Lipschitz selection of gradient vectors

We want to make a Lipschitz selection of gradient vectors from the sets ({Vy : vy €
FnE(a:; ) Pzer- To do so, we adapt Theorem 5 to our setting:

Proposition 2.11. There exist k¥ € N and C# > 0 such that the following holds: Let
E C R"™ be finite. For each x € E, let K(x) C R™ be a closed convex set. Suppose that for
each S C E with #S < k¥, there exists a Lipschitz function F® : R™ — R"™ satisfying
Lip(F®) < 1 and F(z) € K(z) for all z € S. Then there exists a C%* (bounded and
Lipschitz) function F : R® — R"™ with Lip(F) < C#, such that F(x) € K(x) for all
ze k.
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Proof. Let k7 := k¥ (n, D) = k¥ (n,n) from Theorem 5. Because E C R" is finite, there
exists Ry > 0 such that E C B(0, Ry). For each S C E with #S < k¥, let F¥ : R® — R"
be a Lipschitz function satisfying Lip(F®) < 1 and F°(z) € K(z) for all x € S. Each
F?% is locally bounded, and there are finitely many S, so we can let Ag € (0,00) be a
uniform upper bound on sup,cp(o, gy) |F(z)| for every S C E with #(S) < k¥. Thus,

U {FS@):2eB(0,Ry)} C B0, Ay),
SCE,
#S<k¥

and because Lip(F®) < 1, ||[F¥|co(p(ag+2r0)) < 240 + Ro for any S C E satisfying
#S < k¥.

Let the function # € C*°(R™) be a smooth bump function satisfying 0 < § < 1,
01B(0,ro) = 1B(0,Ro)» SUPP(d) C B(0,Ag + 2Ry), and |VO(z)| < (AOC#O) for x € R™.
For S C E, #S < k7, let the function F¥ : R® — R" be F¥(z) := F(2)0(x). Then
FS € COY(R™;R™) satisfies

1F®]|comny < 1F¥lco(B(agt2re)) < 240 + Ro,

FS(x) € K(z) for all z € S, and

Lip(FS) < Lip(FS) + | FS Lip(0) < 1
ip(F%) < Lip(E%) + [F oo sagsane - Lip(0) < 1+ = mmp

<1+ 2C.
Fix N :=2(Ao + Ro). Let E/ C R™ and K’(x) C R” for z € F be

1
E = NE :={y/N :y € E}, and

1 Y
K’ =— K = ———:yeK .
@)= N racy) X @ {N(Q Tacy) Y (m)}
For S’ C E’ satisfying #5' < k¥, the set NS’ is contained in E. Let the function
G% :R" = R" be

’ 1 — !
G® = ———— _FN5(Nz).
@)= NFegracy? W)
Then |G ()] < 1/2 for all z € R™, and Lip(G5) < ﬁLip(FNSI) < 1/2, implying

the function G5 satisfies:
||GS,||CO,1(R7L’]R7L) < 1 and
G% (z) € K'(Nz) for z € §'.

This result holds for all S” C E’ satisfying #S < k#. Thus, the convex sets (K'(Nx))ze 5

=

satisfy the hypotheses of Theorem 5 with (n,D) = (n,n); applying Theorem 5, we
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deduce there exists G € C%'(R",R") satisfying G(z) € K'(Nz) for all x € E' and
|Glco1(rn rny < ¥, where C¥ := C#(n,n) from Theorem 5. Let the function F :
R™ — R™ be F(x) := N(2 +4Cy)G(5); F satisfies F(x) € K(x) for all z € E and
Lip(F) < Cf(? +4Cp) =: C#. This completes the proof of Proposition 2.11. 0O

3. Main results in dimension n > 1 (Theorem 1)

We begin by proving a version of Theorem 1 for finite E. Using a compactness argu-
ment, we will then extend the result to arbitrary F.

Theorem 6. Let E C R™ be finite, M > 1 >0, f : E — R, and k% = k¥ (n+2)+1, where
k¥ s the constant from Proposition 2.11. Suppose for all S C E satisfying #S < k¥,
there exists an n-strongly convex function F¥ € CHY(R"™) satisfying F°|s = f|s and
Lip(VF?%) < M. Then for all p,q € (1,00) satisfying %—i—% = 1, there exists an %-
strongly convex function F € CHY(R™) satisfying F|g = flg, and Lip(VF) < C3M?/n,
where C3 = (C#)2(q+ 1), and C* is the constant in Proposition 2.11.

Proof. By applying Lemma 2.10 with j := k% and k := k¥ (n + 2) + 1, we see for every
T C FE satisfying #T < k7, f}Y(T,M) # (). From the definition of the set f}](T, M),
we deduce for T C E satisfying #T < k¥, there exists an n-strongly convex function
FT e CLY(R™) satisfying Lip(VFT) < M, Flr = flr, and (J,F7)ger € Th(T, M). In
light of (2.20), J,F" € I'F(z) for all z € T. We summarize this result:

For all T' C E satisfying #T < ks#
there exists an 7-strongly convex function F7 € CH!(R™)

satisfying Lip(VFT) < M and J,FT € Ff(m) Ve eT. (3.1)
For z € E, 1> 0, let I'”(2) C R™ be

Ll(z):={VP:Pell(z)}
(See (2.1) for the definition of F,’;J(:r)) For x € E, the set F,];J(x) is a convex subset of
R., so the set I_“f (z) is a convex subset of R".

Let S C E satisfy #5 < k¥. Define G° € CY(R",R") as G¥(x) := VF(x),
where F° € CLY(R™) is the function produced by applying (3.1) to the set S. Then
G¥(x) € TE(x) for all z € S and Lip(G®) < M. We apply Proposition 2.11 to produce
G € CYL(R™, R") satisfying G(x) € an(J)) for all x € E and

Lip(G) < C* M. (3.2)

For x € E, define v, € R, as the polynomial satisfying v, (z) = f(x) and V~, = G(z).
Immediately, v, € FnE(x), so for all z,y € E
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72 (w) = 7(2) > o —yP?, and (3.3)
W) =) > Jlr -yl (3.4)

In light of (3.2), |V, — V| < C# M|z — y|. In combination with (3.3) and (3.4), we
deduce for all z,y € F,

Yo () — Yy (2) > WW% Vyl?, and

Yy (y) = Y2(y) > WW% Vl?,

implying v, ~ M2 (o2 Ty for all z,y € E. Thus, we can apply Proposition 2.6 to produce
an l-strongly convex function F € Cp'(R") satisfying F|p = f|p and Lip(VF) <
(C#)2(q+1)M?/n, where C# is the constant from Proposition 2.11. This completes the
proof of Theorem 6. O

Proof of Theorem 1. Fix p,q € (1,00) satisfying % + % = 1. Let £ C R™ be compact.
There exists R > 1 such that E C B(0, R). For A > 0, let B(A) C C*(B(0,2R)) be

B(A) = {F € C*'(B(0,2R)) : F is ﬁ—strongly convex, and || F'||c1.1(p0,2r)) < A}
p

The set B(A) is closed in the C*(B(0,2R))-topology. For any A > 0, B(A) is also
bounded and equicontinuous in the C*(B(0, 2R))-topology, implying by the Arzela-Ascoli
Theorem that B(A) is compact.

Let E' be a countable dense subset of E, and let (F;);en be an increasing sequence
of sets satisfying for i € N, E; C E', #FE; < oo, and |J;cy £ = E’. By assumption,
for all S C E; C E satisfying #S < k#, there exists an 7-strongly convex function
F% € CLY(R™) satisfying F¥|s = f|s and Lip(VFS) < M.

Therefore, for each i € N, we can apply Theorem 6 to produce F; € CH1(R"),
satisfying

F; is an Q—strongly convex function,
p

F;

E;, and

2
Lip (VF) < G -

where C3 = (C#)2(q + 1). Restricting the domain of F; to B(0,2R), we see for A large
enough, (F;);eny C B(A).

By the compactness of B(A), there exists a convergent subsequence (Fj;)jen — Fe
B(A) in the C* topology. The function F satisfies F' € C11(B(0,2R)),
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F is an Q-strongly convex function,
p

F|g = f|g/, and
_ M?

where the last inequality follows because Lip (VFZ-J.) < CgMTZ for all j € N. Further,
because this convergence is uniform, F|g = f|p.

We plan to apply Proposition 2.6 to (J, F)xeB(O R), 5o we verify the hypotheses of the
proposition with E* := B(0, R) and f* := F: By Lemma 2.4, J, F’ ~Lip(VFB(0,2R)) Jy F

for all z,y € B(0, R). Recall that in (2.1) we defined I‘B(O R)( F) ¢ Wh(B(0, R)) for
x € B(0,R) as

r20M (g F):= (| {P€R,:Px)=F(z)and P(y) + g|y — 2?2 < F(y)).
y€B(0,R)\{z}

Because F' is Z-strongly convex on B(0,2R), J,F € FB(O (2, F) for all z € B(0, R).

We apply Proposition 2.6 to <JIF)xeB(0,R)
tion F € CMY(R™) satisfying J,F = J,F for all 2 € B(0,R) and Lip(VF) <
(¢ + 1) Lip(VF; B(0,2R)) < C1¢*2L. Because E C B(0,R) and J,F € r?‘O*R)(x;F)
for x € B(0, R), this implies F(z) = f(z) for all x € E. This completes the proof of
Theorem 1. O

to produce an -5-strongly convex func-
P

4. Main results in dimension n = 1 (Theorem 2)

We begin by proving a version of Theorem 2 for finite £ and n = 0. In Section 4.3,
we complete the proof of Theorem 2.

Theorem 7. Let E C R be finite, and let the function f: E — R. Suppose that for every
S C E satisfying #S < 5, there exists a function F¥ € CH1(R) satisfying F°|s = f|s
and Lip(VF?¥) < M. Then there exists a function F € CLY(R) satisfying F|g = f|g
and Lip(VF) < 2M.

4.1. Technical tools in dimension n =1

Let £ C R be finite and f : F — R. Assuming the validity of a finiteness hypothesis
on f, as per Theorem 7, our aim is to find (y;)zer € Wh(E) that satisfies v, () = f(x)
and v, ~u vy for all z,y € E, with a uniform constant M; then we can apply Theorem 3
to produce a convex extension of f in C}1(R). In our first result, we deduce a transitivity
property of the relation ~j; in one dimension. According to this, we only need to confirm
the compatibility of ~, at adjacent points of E.
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Lemma 4.1. Let z,y,z € R satisfy x <y < z, and suppose v, € Ry, vy € Ry, 7= € R
satisfy Yo ~n Yy, and Yy ~nar V25 then yo ~ar .-

Proof. Suppose © <y < z, V2 ~m Yy, and vy ~u V23 we have

1
— |V, — V7,2
2Ml Y Vel

1
= m(\vvz = V2 + [V — Va* + 2(V7. — Vv, Vyy — Vo))

< (W) =7:)) + (2(2) = () + % Ve =V, Vy = V)

—20(0) = 1le) + (V2 = Ve =+ 7 (9 = F) ) (41)

Because x < y and 7, ~a vy, we have W < y—x, which implies x —y + ﬁ(V'yy —

V4z) < 0. Because Vv, — V7, > 0, the last term in (4.1) must be negative, implying
7171V7: = Vel* € 7e(z) — 7:(x). The proof of the inequality 71:|V7y. — Vs[> <
v2(2) — 7z(2) follows analogously. O

Remark 4.1. A transitivity result relying only on the configuration of points cannot be
transferred to higher dimensions (n > 1) because we cannot ensure (Vy, — Vy,, 2z —y +
ﬁ(V'yy — V’yx)> is non-positive without further hypotheses on ,,,, and ~,. Even if
x,y, z are ordered points on a line in R™ (i.e. there exists ¢ € (0,1) such that y = tz+(1—
t)z), the quantity (V. —V~y, 2—y+ 17 (Vyy — V72)) need not be non-positive. However,
if we assume z,y,z € R™ satisfy (y —z,z —y) > 0 and (V. — V) = A(Vyy, — V7z)
for A > 0, then we can show v, ~nr vy, Yy ~m V- implies vz ~up Vs

Lemma 4.2. Let E C R be finite, f : E — R, and M > 0. For distinct x,y € E, let
7. € TO(x) satisfy

M
0< (Diy—V’yI,y—:w < 7|y—x|2. (4.2)

If vy € I'%(y) is defined by

Vo = Ve + \/2M<D£y V%2, y — ) ifr <y, and

vﬁzvyw—\ﬂM(V%—D@,x—y) if x>y,
then o ~n 7, -

Proof. Suppose 2 < y. By definition of 7 and the fact that v, € I(z), & € I(y), we
have
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implying (1.6) holds with equality for v, := 75 and v, := 7.
We next show that (1.5) holds for v, := vy and v, := 7, proving vy ~u 7z. From
(4.2) and the definition of ~;/, we have

VA < Vo + M(y — z)

<Vt Mly—2) +/—2M(Dfy — Vray—2) + M2y —2)2,  (4.3)

where the non-negativity of the term inside the square root also follows from (4.2).
Further,

SR YT

>V, + My —a) — \/—2M<D£y = Ve y —x)+ M (y—x)*. (44)

The latter inequality follows from the observation that for w > 0, Vdwt > 2w —
VAw? — 4wt for all t € [0,w]. Let w := & (y — z) and ¢ := D{, — V. ((4.2) ensures
t € [0,w]), and the result follows.

For v, € I%(z), v, € T%(y), and = < y, (1.5) holds if

1

F@) = fy) = (Vo = y) = 532V = V[

This is expression is equivalent to a quadratic equation in the variable V+,:
(V7)? + (V) (=2Vs 4+ 2M (2 — y)) + ((V2)® + 2M(f(y) — f(x))) <0. (4.5)

The discriminant A € R of this quadratic equation is non-negative thanks to (4.2);
indeed,

A = (=2Vy +2M(z — y))* = 4 ((V72)? + 2M (f(y) — f(2)))
=AM (=2(f(y) — f(z) = (Vm,y — 2)) + M(y — 2)°)
= —8M<D£y — Ve, y — ) +4M*(y — )2 > 0.

Thus, (4.5) is equivalent to

Vyy € |V + My —z) — \/—2M(D£y =V, y — x) + M?(y — x)?,

V%+M(y—w)+\/—2M<D$y—V%,y—w>+M2(y—w)2 ,
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which is valid for 7, := v, thanks to (4.3) and (4.4). This completes the proof of (1.5),
and with it the proof that v, ~ar vy .
The proof that if z >y and vy € I'%(y) satisfies

Vg = VY — \/2M<va — D, x—vy),
then v, ~ns vy follows analogously. O

4.2. Proof of Theorem 7

Proof of Theorem 7. Because F is finite, we enumerate F = {x1,z3,..., 2y}, with 21 <
To < --- < xzy. We may assume N > 5, else the result is trivial. For distinct ¢,5 €
{1,...,N}, let

f;) = (i

ijmi

By the finiteness hypothesis, the restriction of f to any 3 consecutive points of F admits
a convex extension, hence

D12 <D33<---<Dn_1N.

Fori € {1,...,N —1},let Pf € I%(x;), and for i € {2,..., N}, let P/ € I'%(x;) satisfy
M
VPf:=Ds— - (22 = 21),
¢ M ~
VPZ = max Difl,i,Di’iJrl — 7(.’Ei+1 — .’Ez) (Z S {2, ..., N — 1}), (46)

M
VPy:=Dy_1n+ ?(I'N —zn-1), and

M
VPZT := min {Di,i+1a Diflﬂ' + 7(.%1 — l’ll)} (Z S {2, PN ,N - 1}) (47)

Forie€ {2,...,N — 1}, let P", P € I'%(x;) satisfy

VE} = VPL | +/2M(D;_1; — VPL i — o), and (4.8)

VP =VPI, - \/2M<VPTH — Diis1, Tip1 — 3. (4.9)

K3

We use the following monotonicity result in the estimates that follow.

Lemma 4.3. Forw > 0, the function h(t) = —t++/4wt is an increasing function on [0, w].
Thus, for 0 < t; <t <w, we have h(ty) < h(te), and if t1 < ta then h(t1) < h(ta).
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Proof. Trivial. O

Fori € {2,..., N—1}, by definition (4.6), we have 0 < Di_lﬂ-fVPﬁ1 < %(xif:ri_l).
So, we can apply Lemma 4.3 with ¢; := D;_;,; — VPf_l and ty (= w = %(ml —xio1);
then h(t;) < h(tz), so

VE} = VP! +/2M(Di_y; — VPLy i — i)

M M
<Dy, — 7(3% —xi1) + \/2M <7(l‘z — 1), T — $i—1>

%(.Tz — xi_l) (Z € {2, ., N — 1}) (410)

=D 1, + 2

Similarly, by the definition (4.7) of Py, we have 0 < VP! ; — D; ;41 < (41 — 2y),
so we can apply Lemma 4.3 with t; := VP/; — D; ;41 and to := w := & (241 — 2;);

then —h(tl) Z h(tg),

VP~ =VPF/ - \/2M Pl = Djiy1,Tip1 — ;)

M M
> Djiv1+ ?(%‘H —T;) — \/2M< (Tit1 — 24), Tig1 — $z>

M ,
= Djiy1 — 7(37i+1 — ;) (1€{2,....,N—1}). (4.11)

Lemma 4.4. For i € {2,. — 1}, Pf, € T%ux;_1) satisfies VP{_, > VP for all
P € T%x;_1) satisfying P ~u Pf Similarly, P{, | € I9(wi41) satzsﬁes VP, < VP
for all P € T°(z;41) satisfying P~ P

Proof. Let P € T(x;_1) satisfy P~y P;", then from inequality (1.5) with v, := P;"
and v, := P we have

VP + \/2M<Di_17i — VP, x; — J)i_1> > VP;'_ (412)

If, in addition, VP > VPffl, then 0 < D;_1;, — VP < D;_1; — VPZ < M(m —xi_ 1)
thanks to (4.6). So, we can apply Lemma 4.3 with ¢; :== D;_1 ;—V P, t3 := D;_1 VP
and w = Y (z; — z;_1) to see that h(t1) < h(ts), i.e

VP+ \/2M<Di_171' — VP, Tr; — IZ?Z'_1>

< VPiZﬂ + \/2M<Di71,i — VP |,z —xi1) = VP,

But this contradicts (4.12). Thus, if P~y P;", we must have VP < VP{ ;. The proof
that VP/,, < VP for all P € I'°(z;41) satisfying P ~y; P;~ follows analogously. O
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Lemma 4.5. Suppose that for every S C E satisfying #S < b, there exists a function
FS € CHY(R) satisfying F®|s = f|s and Lip(VF®) < M. Then max{V P, ,D;_1;} <
min{VP, D, 1} forie{2,...,N —1}.

Proof. Let the sets S; C E (i € {1,...,N}) be defined by S; := {x;—2,zi—1, Ti, Tit1,
Xiqo} for i € {3,...,N — 2}, and 51,52 := S3, Sy, Sn—1 := Sy—_2. By the finiteness
hypothesis, for i € {1,..., N}, there exists a function F¥ € CL!(R), satisfying F%i|g, =
fls, and Lip(VF®) < M. Because Fi|s, = f

Sis

FSi(a;) — FSi(z;_
Dy, = @) @1 e N—1}jefiit1})

Tj — Tj—-1

Hence, the convexity of F'% implies
Di1; <V, F% <Dj;n (i€{2,...,N—1}). (4.13)

We claim that VP, < V.J,, F% < VP;" fori € {2,...,N — 1}. In combination with
(4.13), this implies max{V P, ,D;_1,;} < VJ,, F% < min{VP/,D; .1}, proving the
lemma.

For i € {2,..., N}, Corollary 2.5 implies J,, , F% ~u; J,, F%. Letting 7, = J,, F%
and 7, = Jy, FS in (1.5), we see

VJ,, F% <V.J, F% + \/2M<Di_1,i ~ Ve, FSi,zi—xi1)  (i€{2,...,N}).
(4.14)

By Taylor’s inequality (2.2) and the convexity of F%, 0 < F%i(z;_5)—J,, , F% (z;_2)

< %(mi,1 —x;_9)% fori € {3,..., N}. Dividing by the positive quantity (z;_; — z;_2),
we see that

. M .
0< VinleSI — Di_gﬂ'_l < 7(5[31'_1 — .Ii_g) (Z S {3, ceey N}) (415)

Similarly, 0 < F%i(z;) — Jy,_, F5(2;) < 2 (2; — 2;-1) for i € {2,..., N}, which implies

0<Di1;— Vs, F5 <

vo|

(Iifl‘i_l) (ZE {2,,N}) (416)

By combining (4.15) and (4.16), and applying the definition (4.6) of VP{_;, we have

M
VJIi_lFSi Z maX{Di_Li - 7(1'1 — $i_1), Di_gﬂ'_l} = fo_l (Z € {3, ceey N})
(4.17)

When i = 2, (4.16) reads as
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S M 4
0 S DLQ - VJLIF 2 S 7(%‘2 — .131) = D1,2 - VPl,
where the last equality is by the definition of VP{. Together with (4.17), we have
S YA M .
0< Difl,i — Vin_lF i< Di*l,i — V‘Pi—l < 7(.%1 — 1’1'71) (Z c {2, .. ,N})

Thus, we can apply Lemma 4.3 with ¢ := D;_1; — Ve, FS, ty = D1, — VPf_l,
and w := & (z; — z;_1) to see h(t;) < h(ts), and in combination with (4.14),

VJIIFSQ S VJIi_lFSi + \/2M<Di,17i — VJzi_lFSi7£EZ‘ — !’Ei,1>

SVPL, +\/2M(Dioy; — VP 2 —2) = VBF (i€ {2,...,N}).

By an analogous argument, we deduce V.J,,FSi > VP for i € {1,...,N — 1}. This
completes the proof of the claim, and as described, the lemma. O

We are prepared to choose v; € T'%(x;) for i € {1,...,N}. We use the compatibility
condition in Lemma 4.2 to inform our choice of derivative for ; € I'°(z;) (chosen so
that 71 ~a 72) and vy € T(xx) (chosen so that yy_1 ~ar Yn). Let (i)Y, € Wh(E)
be the unique Whitney field of polynomials satisfying

i € T%(;), and
%(max{VPf, Di*l,i} + min{VPiJr, Di’i+1}) xS {2, ceey N — ].}

Vvi = Vya — /2M (V2 — D1 2,25 — 1) 1=1 (4.18)
VAn-1+V2M(Dn_1,n — Vyn-1,2Nn —Tn-1) i=N.

As a result of Lemma 4.5, for i € {2,..., N — 1}, we have
maX{VPf, Di—l,i} S V"}/l S min{VP;', Di,i+1}- (419)

Consequently, Vyo — D12 > 0, and Dy_1 v — Vyn—1 > 0, ensuring v; and ~, are
well-defined in (4.18).
In the next several results, we verify additional basic inequalities satisfied by (v;)Y;.
From the previous lemma, we have Vv; € [D;_11, D; i+1] foralli € {2,--- ,N—1}. Be-
cause the sequence of divided differences is non-decreasing, we have Vs < -+ < Vyny_1.

By inspection of the definitions of V~; and V~y in (4.18), we obtain the following result:

Corollary 4.6. The polynomials (v;)Y., defined in (}.18) satisfy that their gradients are
non-decreasing:

V1 < Vy <o < Vp.
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Lemma 4.7. Fori € {3,..., N — 1}, the polynomials (v;)X., satisfy

VP! | < V71, and (4.20)
Vv, < VP (4.21)
Proof. By inequality (4.19), Vy;—1 > max{VP,_;,D;_2; 1} > D;_9,_1. If VP, =

D;_5 1, then this implies Vy;_1 > VP{_,. Else, by definition of P/ ;, we have VP! | =

Diflyi — %(1’1 — xi*l)- Then

_ _ M
Vvi—1 > maX{VPiil,D,’_g,i_ﬁ >VP_,>D;_1,;— 7(732 - xi—l) = vPiZ—la

where the last inequality is from (4.11). We have proved (4.20). The proof of (4.21)
follows analogously. O

By applying Theorem 3, the next lemma will be used to complete the proof of Theo-
rem 7.

Lemma 4.8. The Whitney field (v;)Y., € Wh(E) defined in (4.18) satisfies v; ~am j
foralli,je{l,...,N}.

Proof. In light of Lemma 4.1, we only need to prove ~y; ~apr ;-1 for i € {2,...,N}.
For i € {2,..., N — 1}, inequalities (4.19), (4.10), and (4.11) imply

M

0 S V"}/l — Di—l,i S VP;F — Di—l,i S ?(‘Ii — xi_l), and (422)
_ M

0<D;it1—Vvi<D;it1— VP < 7(33i+1 — ;). (4.23)

Thus, we can apply Lemma 4.2 with v, := 72 and y := x1 to see we have v1 ~js 7.
Likewise, inequality (4.23) allows us to apply Lemma 4.2 with v, := yy_1 and y := zx
to see yv_1 ~nr Yn. Therefore, it suffices to show v; ~opr vi—1 for i € {3,..., N — 1}.
We prove this by demonstrating that

1
(i) = flrica) = (Vvie, @ — 2i1) > mW%’ - V%‘AP

(i€{3,...,N—1}), and (4.24)
f(@i) = f(@iv1) = (Vyip1, 6 — Tip1) > ﬁW%‘ - Vyis1)?
(ie{2...,N—2}) (4.25)

Indeed, the fact that (4.24) holds, and (4.25) holds with 4 replaced by (i — 1), implies
that v; ~ap vi—1 fori e {3,--- N —1}.
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We will next establish inequality (4.24) by splitting into the two cases below. Let
ie{3,...,N -1}

Case 1: Suppose that VP,_, < VP! ;. From the definition of P/ ; in (4.6), we have
D51 < VPf_l. Together, these inequalities imply

V'Yi—l = (max{VPijl, Di—Q,i—l} + min{VPZtl, Di—l,i})

< =(VPL, +min{VP",,D;_y,})

N = N~ N

< (fo_l +Dj_1).

L . .
With inequality (4.20), we've shown Vv,_1 € VP, M . In particular,

VP{ | < D;_1;. In combination with (4.23),

VP! + Dy,

0< Di_1,;— 5

M
<D;_1;— V71 < 7(961 — Zio1),

VP{ 4+Di_1;
2
w:= M(x; — x;_1); the map h is increasing, and in particular h(ts) > h(t1), so

we can apply Lemma 4.3 with ¢; := D;_1,; — ,to == D;_1,; — Vv;_1, and

Vyic1+VAM (f (i) — f(wi—1) = (VYio1, @ — 2i-1))

=V7vi—1 + \/4M<Di71,i — Vo1, — Ti—1)

v P! +D; 1, A\ = +D;_1;
2%1’4_ 4]\4<Di1’i_%1“7 P — T
Z fo_l + \/2M<Di_17i — VPf_l,xi — Ii_1> = VID;'_, (426)

where the last inequality follows because D;_;,; > VPf_l. From inequality (4.19) and
Corollary 4.6, we have VPi+ > V~; > Vr;_1; we first use these inequalities and then
(4.26) to bound 157 |Vyi—1—Vyi? € 1571V 1 = VP2 < f)— f(@io1) = (Vyie1, @i —
x;—1), which is (4.24).
Case 2: Suppose VP! | < VP_; thus, by the definition of P!, in (4.6), D9, 1 <
VP!, < VP,_,. Therefore,
Vvi-1 = = (max{VP_,,D;_s,; 1} + min{VP;",, D;_y,})

(VPZ, + min{VP"  ,D;i_1,})

IN
N = N~ N~

(VPZ;+Di—1;).
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From inequality (4.19), Vy;-1 > max{VP,_,,D; 2,-1} > VP,_,. We have shown

Vvi-1 € |VP_,, w . In particular, VP,_; < D;_;,. In combination with
(4.23),
VP_,+ D1, _ M
0<Dj_1,;— % <Di1;—Vy1<Dj_1;,—-VP_; < 7(% —Zi—1).

Thus, we can apply Lemma 4.3 with ¢; := D;_1,; — w, ty:=Di_1,; — Vvi_1,

and w := M (x; — 2,-1) to see h(tz) > h(t1), so that

V%‘71+\/4M<Di71,i — Vi1, — i)

VP_,+D; 1, VP_,+D; 1,
S St bt S 4M<Di—1,i1—L,$ixi—1>

- 2 2

> VP, + \/QM (Di 1 — VP 25— 35 1) (4.27)

According to (4.23),0< D;_1;,—VP_; < %(ml — x;—1). This verifies the hypothesis
of Lemma 4.2 for v, := P,_; and y := z;. Thus, there exists %;1 € I'%(x;) satisfying

v:ﬁ_l — VPZ:1 + \/2M <Di—1,i - vpi:pxi - xi—1>

and ’yf*l ~u P_;. In light of Lemma 4.4, we must have V’yf*l > VP/. Hence, contin-
uing from (4.27),

Vyi—1 + \/4M<Di—1,i — Vo1, — Ti—1)

> VP, + \/2M (Diys — VP i — wi)
=V > VP >V, (4.28)
where the last inequality follows from (4.21). This is equivalent to (4.24). We have
exhausted all cases proving (4.24).
The proof of inequality (4.25) follows analogously because of the symmetry of our

choice of V; := &(max{VP; ,D;_1;} + min{VP;",D;;11}) fori € {2,...,N —1} in
light of Lemma 4.5. We summarize the proof briefly. Recall inequality (4.25) is

f(i) = f(zig1) = (VYitn, 2 — iv1) = (Vyigr — Dijiv1, Tiy1 — 24)

1 .
> mW%‘ —Vyiil? (i€{2,...,N=2}).
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First, we suppose VPij_1 > VP/,;; then Vv € m ,V Z+1] We
use Lemma 4.3 and inequality (4.19) to see (4.25) holds under the assumption

VP:_l > VP ;. Second, we suppose VP;:_l < VP[, and, therefore, Vv;;1 €

ﬂ , VP |. We use Lemmas 4.2-4.4 and inequality (4.19) to see (4.25) holds,
exhausting all cases and completing the proof of (4.25).

This completes the proof of Lemma 4.8. O

By applying Theorem 3 to (v;)Y, € Wh(E) and using that ~v;(z;) = f(z:), we
complete the proof of Theorem 7. O

4.8. Proof of Theorem 2

Theorem 2 is an immediate consequence of the following theorem:

Theorem 8. Let E C R be compact, the function f : E — R, and M > 0. Suppose for
every S C E satisfying #S < kfﬁ = 5, there exists a convex function FS € CH(R)
satisfying F¥|s = f|s and Lip(VF?®) < M. Then there exists a convex function F €
CHY(R) satisfying F|g = f|g and Lip(VF) < 2M.

To see Theorem 2 follows, we assume the hypotheses of Theorem 2: Let £ C R be
compact, and let the function f : E — R. Suppose for every S C E satisfying #5 < Iczl# =
5, there exists an 7-strongly convex function F¥ € CL1(R) satisfying F¥|s = f|s and
Lip(VF®) < M.Let g: E — R be g(x) := W(f(m)—ﬂmz), and for S C E satisfying
#S < ki =5,1et GF: R = R be G%(2) := 17 (FS( ) — 2|z|?). The function G5
satisfies G° is convex, G°|s = g|s, and Lip(VG?) < 1+n/M (Lip(VF?) +n) < M. Thus,
g : E — R satisfies the hypotheses of Theorem 8. Applying this theorem, we deduce
there exists a convex function G € CH1(R) satisfying G|g = g|r and Lip(VG) < 2M.
Let the function F : R — R be F(z) := (14 1n/M)G(z) + #|z[>. Then F € C>'(R) is
n-strongly convex and satisfies Lip(VF') < 2M + 3n and F|g = f|g. The conclusion of

Theorem 2 follows.
Thus, our remaining task is to prove Theorem 8.

Proof of Theorem 8. Let E C R be compact. There exists R > 1 such that E C B(0, R).
For A > 0, let B(A) c C*(B(0,2R)) be

B(A) = {F € C»'(B(0,2R)) : F is convex, and I F|lcr1(Bo2r)) < A}

The set B(A) is closed in the C*(B(0,2R))-topology. For any A > 0, B(A) is also
bounded and equicontinuous in the C*(B(0, 2R))-topology, implying by the Arzela-Ascoli
Theorem that B(A) is compact.

Let E’ be a countable dense subset of E, and let (E;);en be an increasing sequence of
sets satisfying for i € N, E; C E', #E; < oo, and |J;cy Ei = E'. By assumption, for all



28 M.K. Drake / Advances in Mathematics 445 (2024) 109652

S C E; C E satisfying #S < 5, there exists an n-strongly convex function ¥ € C}!(R)
satisfying F¥|s = f|s and Lip(VF®) < M. We apply Theorem 7 to produce a convex
function F; € CH1(R™) satisfying Fi|g, = fl|g,, and Lip(VF;) < 2M. Restricting the
domain of F; to B(0,2R), we see for A large enough, F; € B(A) for all i € N. By the
compactness of B(A), there exists a convergent subsequence (Fj, Jren — F € B(A). The
limiting function F satisfies Lip(VF; B(0,2R)) < 2M and F|g = f|gr, and because this

convergence is uniform F|g = f|g. Because F € B(A), F € C1'(B(0,2R)) is convex on
B(0,2R).

By Corollary 2.5, J,F ~Lip(VF;B(0,2R)) J,F for all z,y € B(0, R). We apply Theo-
rem 3 to (JoF) 577 to produce a convex function F' € Cp' (R") satisfying J, F = J,F

for all z € B(0, R) (implying F|g = f|g) and Lip(VF) < 2M, completing the proof of
Theorem 8. O
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