
932 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Parallel Multi Objective Shortest Path Update
Algorithm in Large Dynamic Networks

S. M. Shovan , Student Member, IEEE, Arindam Khanda , Member, IEEE, and Sajal K. Das , Fellow, IEEE

Abstract—The multi objective shortest path (MOSP) problem,
crucial in various practical domains, seeks paths that optimize
multiple objectives. Due to its high computational complexity, nu-
merous parallel heuristics have been developed for static networks.
However, real-world networks are often dynamic where the net-
work topology changes with time. Efficiently updating the shortest
path in such networks is challenging, and existing algorithms for
static graphs are inadequate for these dynamic conditions, necessi-
tating novel approaches. Here, we first develop a parallel algorithm
to efficiently update a single objective shortest path (SOSP) in fully
dynamic networks, capable of accommodating both edge insertions
and deletions. Building on this, we propose DynaMOSP, a parallel
heuristic for Dynamic Multi Objective Shortest Path searches in
large, fully dynamic networks. We provide a theoretical analysis of
the conditions to achieve Pareto optimality. Furthermore, we devise
a dedicated shared memory CPU implementation along with a ver-
sion for heterogeneous computing environments. Empirical analy-
sis on eight real-world graphs demonstrates that our method scales
effectively. The shared memory CPU implementation achieves an
average speedup of 12.74× and a maximum of 57.22×, while on
an Nvidia GPU, it attains an average speedup of 69.19×, reaching
up to 105.39× when compared to state-of-the-art techniques.

Index Terms—Multi-objective shortest path, dynamic graph,
GPU, shared-memory, SYCL programming model.

I. INTRODUCTION

F INDING the shortest path is a classic problem in graph
theory with applications ranging from optimal route

suggestions in road networks [1], centrality analysis in social
networks [2], enhancing communication in diverse network
topologies [3], to aiding drone-based deliveries [4], [5], among
others. However, determining the shortest path becomes
challenging in dynamic scenarios where the network topology
changes frequently. The complexity escalates to NP-hard when
the search for the shortest path optimizes multiple objective
functions [6]. Such paths, known as multi-objective shortest
paths (MOSP), are widely applicable in various practical
scenarios, as outlined below.

i) In the context of a road transportation network, it is
commonly desired to identify the most favorable route

Received 2 May 2024; revised 7 January 2025; accepted 20 January 2025.
Date of publication 30 January 2025; date of current version 7 April 2025. This
work was supported by NSF under Grant ECCS-2319995, Grant OAC-2104078,
and Grant CNS-2030624. Recommended for acceptance by M. Li. (S. M. Shovan
and Arindam Khanda contributed equally to this work.) (Corresponding author:
S. M. Shovan.)

The authors are with the Department of Computer Science, Missouri Univer-
sity of Science and Technology, Rolla, MO 65409 USA (e-mail: sskg8@mst.edu;
akkcm@mst.edu; sdas@mst.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPDS.2025.3536357, provided by the authors.

Digital Object Identifier 10.1109/TPDS.2025.3536357

by considering factors such as distance, travel duration,
congestion, road conditions, fuel economy, and safety.

ii) Planning flight paths in aerospace considers factors like
carbon emission, weather conditions, and flight time [7].

iii) In wireless sensor networks (WSNs), it is a standard prac-
tice to send the data to a central data aggregation point,
known as the sink. This transmission is facilitated through
a tree structure rooted at the sink. Minimizing the distance
between sensor nodes and the sink in a route can reduce
the latency of data collection. However, this approach
may lead to rapid energy depletion in sensor nodes that
are located closer to the sink. Consequently, this has the
potential to negatively impact the total lifespan of the
network. Therefore, it is important to jointly optimize the
delay and energy usage in the data aggregation routes in
WSNs [8].

iv) The supply chain network helps to deliver the product in a
timely manner. As the consciousness of the environment
is rising, it is expected to balance CO2 emissions while
maximizing responsiveness to demands [8].

In the aforementioned cases, the task of finding the most
optimal route can be modeled as an MOSP problem where
the objectives are not correlated. The most established method
for addressing multi-objective optimization challenges involves
employing Pareto optimality. This technique provides a set of
solutions and ensures that no solution is inferior to any other
feasible solution across all objectives [9]. However, finding
all possible optimal solutions, especially in a large network is
a computationally hard problem as the number of candidate
solutions grows exponentially [10]. The challenge intensifies
when the network is dynamic.

Various optimization techniques and parallel approaches have
been explored in the literature to address the intense compu-
tational demands of MOSP problems in large static networks.
Strategies include mapping multi-objective to single-objective
problems [11], approximating the optimal solution [12], ranking
the Pareto optimal candidates to limit the exponential growth of
candidate paths using survival analysis [13], etc. Trivially, static
graph algorithms can be applied to recompute MOSPs after each
set of topological changes in dynamic networks. However, this
approach is inefficient as it requires repeated and redundant cal-
culations of NP-hard MOSP problem. As real-world problems
are complex and large in volume, they make this trivial approach
nonviable.

Recent research shows that the recalculation of graph proper-
ties is avoidable by exploiting the previous knowledge about the
graph property, proper identification of the affected subgraph,
and strategic recomputation in a bounded network region [14],

1045-9219 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2100-0643
https://orcid.org/0000-0003-3364-8914
https://orcid.org/0000-0002-9471-0868
mailto:sskg8@mst.edu
mailto:akkcm@mst.edu
mailto:sdas@mst.edu
https://doi.org/10.1109/TPDS.2025.3536357

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 933

[15], [16]. These methods maintain the result’s quality while
reducing the execution time, which is the main motivation for
our research efforts.

In this study, we extend our previous work on MOSP search
in incremental networks [16], which supported only edge in-
sertion, to fully dynamic networks that handle simultaneous
edge insertions and deletions, addressing new challenges in our
algorithm design. We start by developing a parallel algorithm
to update SOSP in large dynamic networks, then introduce a
novel heuristic, DynaMOSP, for MOSP search. DynaMOSP is
adaptable to any number of objectives and incorporates user
preferences to quickly identify a single shortest path among
all possible Pareto optimal shortest path candidates in large
dynamic networks. It utilizes a novel grouping technique to
avoid critical sections in parallel threads, enhancing scalability.
Our key contributions are as follows.
� We propose a parallel algorithm to update the Single

Objective Shortest Paths (SOSP) in large, fully dynamic
networks. Our algorithm utilizes a grouping technique to
minimize the total computational effort while guaranteeing
correctness.

� Leveraging the efficiency of our SOSP-update algorithm,
we develop a novel heuristic algorithm, DynaMOSP, capa-
ble of swiftly updating a single Multi-Objective Shortest
Path (MOSP) in large networks experiencing time-varying
dynamics.

� For all proposed algorithms, we offer implementations
based on SYCL for heterogeneous computing archi-
tectures, alongside specialized implementations using
OpenMP for shared memory CPUs.

� Through extensive experimental analysis, including scal-
ability tests and speedup comparisons on large real net-
works, we have demonstrated the effectiveness of our
proposed methods. Our shared memory implementation of
DynaMOSP outperforms state-of-the-art techniques by an
average of 12.74×. On average, our GPU implementation
(SYCL-based) achieves a speedup of over 69.19×.

The paper is structured as follows: Section II covers essential
preliminaries including SOSP, MOSP, Pareto optimal shortest
paths, and dynamic networks. Section III details DynaMOSP
for updating SOSP and MOSP in fully dynamic networks.
Section IV discusses the implementation specifics for shared-
memory and GPU environments. Performance evaluation and
comparisons with existing methods are provided in Section V.
Section VI reviews prior work on SOSP and MOSP. The paper
concludes in Section VII, outlining future research directions.

II. PRELIMINARIES

Consider a directed network denoted as G(V,E), where V
is the set of vertices and E is the set of edges. An edge
e(u, v) ∈ E originates from vertex u and terminates at vertex
v and is assigned a non-negative weight W (e). In a complex
system, the edge weight can represent a composite of values
tied to various objectives. A path is a sequence of vertices
(u1, u2, . . . , ux) where each consecutive vertex pair ui, uj is
linked by a directed edge e = (ui, uj) ∈ E. A directed path be-
tween two vertices is the shortest if the sum of its edge weights is
minimal.

Fig. 1. MOSP computation.

A. Single Versus Multi-Objective Shortest Paths

Based on the number of objectives k, the shortest path prob-
lem can be categorized into: a) Single Objective Shortest Path
(SOSP), which addresses just one objective (k = 1); and b)
Multi-objective Shortest Path (MOSP), applicable when k ≥ 2.
The solution to the SOSP problem yields a tree structure known
as SOSP tree, (Let T) containing the edges that constitute the
shortest paths from the source vertex.

In a multi-objective scenario, where k ≥ 2, the weight of an
edge e = (u, v) can be denoted as a weight vector W (e) =
(w1, . . . , wk). The ith(2 ≤ i ≤ k) term of W represents the
edge weight between u and v measured using ith objective
function only. Consequently, the problem of finding the shortest
path is tasked with optimizing multiple objective functions
evolving into a MOSP search. Pareto optimization is a rec-
ognized method in dealing with multi-objective optimization
problems, delivering solutions that are not inferior to any other
Pareto optimal solutions [17]. Let the minimal distance, denoted
by Pareto optimal labels, of a vertex u from the source vertex
be (u,

−→
l) = {{dp11 , . . . , dp1|p1|}, . . . , {dpz1 , . . . , dpz|pz|}}wheredpij

represents the jth distance label along the Pareto optimal path
through parent vertex pi. Every label dpij corresponds to individ-
ual distance component. Therefore, d = (δ1, . . . , δk)wherein δk
is the distance component solely calculated for the kth objective
along the Pareto optimal path.

Consider each edge in Fig. 1 has three objectives, O1, O2

and O3, with no direct correlation among them. In such a
scenario, the Pareto optimal label for vertex u6 is expressed as
(u6,
−→
l) = {u3 : {(8, 3, 9)}, u5 : {(6, 8, 10), (11, 20, 7)}. This

indicates that there is one shortest path passing through vertex
u3 and two shortest paths passing through vertex u5. Each tuple
in the label indicates the values corresponding to O1, O2 and O3

respectively along the path.
During the computation of Pareto optimal shortest paths

for a vertex u, a candidate path distance di = (δi1, . . . , δ
i
k) is

considered dominated if and only if at least another distance

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

934 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

TABLE I
LIST OF NOTATIONS

dj = (δj1, . . . , δ
j
k) exists fulfilling the following conditions:

δjx < δix, for at least one value of x where 1 ≤ x ≤ k (1)

δjy ≤ δiy, for all y �= x and 1 ≤ y ≤ k (2)

If dj dominates di, it is denoted as dj ≺ di. Any distance that
is dominated is subsequently excluded from the set of Pareto
optimal distances.

Fig. 1 illustrates the computation of Pareto optimal paths
and distance labels in an example network, where u1 is the
source vertex and each edge is associated with three weights
corresponding to different objectives, O1, O2 and O3, respec-
tively. The direct edges from the source vertex to u2 and u3

yield distance labels {u1 : (2, 1, 5)} and {u1 : (4, 1, 1)}, respec-
tively. u2 can also be reached via both u3 and u5. However,
u5 currently has {null : (∞,∞,∞)} due to initialization, not
shown in Fig. 1. Therefore, the resulting distance labels of u2

are {u1 : (2, 1, 5)}, {u3 : (14, 16, 3)} and {u5 : (∞,∞,∞)}.
Only distance label {u5 : (∞,∞,∞)} of u2 is dominated by
the other labels of u2 and therefore discarded. {u2 : (4, 5, 7)},
{u2 : (16, 20, 5)} and {u3 : (9, 17, 4)} distance labels are ob-
tained for u4 where {u2 : (16, 20, 5)} is dominated by {u3 :
(9, 17, 4)}, again discarded. Similarly, {u4 : (5, 6, 8)} and {u4 :
(10, 18, 5)} distance labels are obtained for u5, however, we
keep both of the labels this time due to the absence of any
dominating vertex. Although u5 attempts to update the distance
of u2 with new labels {u5 : (9, 9, 10)} and {u2 : (14, 21, 7)},
as we assume all the edge weights are non-negative, both of the
labels must be dominated by at least one of the existing labels of
u2, that is {u2 : (2, 1, 5)}. We treat rest of the vertices, v6 and
v7, similarly. There exist four optimal paths to reach destination
u7 from source u1 and edges participating in optimal paths are
colored as blue in Fig. 1. Table I lists the notations used in this
article.

B. Dynamic Networks

The topology of a dynamic network changes over time and
these changes can be in the form of addition or deletion of
nodes, edges, or changes in attributes associated with nodes
or edges. Interestingly, all variations of the change can be
mapped into either edge insertion or deletion. For example,
vertex deletion (or insertion) can be mapped into edge deletion
(or, respectively, edge insertion) by removing (or, respectively,

adding) all the incident and outgoing edges to/from that specific
vertex. Thus, edge insertion and deletion can be considered as
the generalization of all variations of changes. Depending on
the time-varying characteristics, a dynamic network can be of
different types. An incremental network pertains to a dynamic
network where the change is restricted to the addition of edges.
Conversely, a decremental network refers to a network where
changes are exclusively deletions of edges. In a fully-dynamic
network, both additions and deletions of edges are allowed. In
this paper, we consider shortest-path problems in fully dynamic
networks and present solutions capable of handling any mixture
of edge addition and deletion.

III. PROPOSED APPROACH

In this Section, we first devise a parallel algorithm for ef-
ficiently updating SOSP in a fully dynamic network. Subse-
quently, we utilize this SOSP-update algorithm as a foundation
to create a novel heuristic for updating MOSP.

Let Gt(Vt, Et) be the state of a fully-dynamic directed net-

work at a discrete time step t, where (u,
−→
l)t ∈ Lt signifies

the Pareto optimal distance labels (equivalently, the shortest
distances in the context of SOSP) for a vertex u. Let Inst
and Delt represent the sets of inserted and deleted edges,
respectively, so that Et+1 = (Et \Delt) ∪ Inst. We assume
Gt is connected and, after deleting Delt edges, the updated
graph Gt+1 stays connected. Our goal is to efficiently calculate
distance labels, (u,

−→
l)t+1 ∈ Lt+1, for all vertices u ∈ Vt+1,

avoiding a complete recomputation from scratch. For the sake
of simplicity, we opt to ignore the subscript t in our algorithm.

A. Single-Objective Shortest Path (SOSP) Update

Our SOSP-update algorithm uses the pre-calculated SOSP
tree T = {((u, δ), Parent[u]) : u ∈ V }, and the set of changed
edges Ins and Del to update the distance labels. Here, (u, δ)
and Parent[u] respectively store the distance and the parent of
vertex u in the SOSP tree.

If a set of changed edges {(u1, v), . . . , (ux, v)}with the same
destination endpoint v are processed asynchronously, all of them
may affect the distance of vertex v leading to a race condition.
To avoid such erroneous updates, we employ a grouping tech-
nique in Step 0 for independent operations among asynchronous
threads.

Preprocessing (Step 0): Here, all inserted edges (similarly
deleted edges) (u, v) are grouped by the destination endpoint v
and stored in IIns[v] (respectively IDel[v] for deletion). This step
mitigates race conditions by grouping the dependent operations
together and splitting the independent operations among the
asynchronous threads.

Process Changed Edges (Step 1): In this step, each group of
changed edges is evaluated by a single thread. For an insertion
of a new edge (u, v) that reduces the distance of vertex v,
the distance is updated to (v, δ)← (u, δ) +W ((u, v)), and v
is flagged as affected (refer to Algorithm 1, Lines 10–13).
The deletion of an edge (u, v) not in the current SOSP tree
has no impact on distance labels. However, removing an edge
(u, v) ∈ T , disconnects vertex v from the source vertex in T .
Therefore the algorithm identifies vertex v as affected and

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 935

Fig. 2. SOSP update.

seeks an alternate route to reconnect it with the SOSP tree.
Since the SOSP tree is represented through a parent-child re-
lationship between consecutive vertices on the shortest path,
searching an alternative path for v involves finding a new
parent vertex in T for v. A potential parent, pc, is any vertex
within v’s in-neighbor set, Inc(v), excluding vertex u. The
algorithm appoints a vertex P from {Inc(v) \ u} as v’s new
parent if the path via P yields the least distance (v, δ), up-
dating the distance to (P, δ) +W ((P, v)). If no new parent is
found, a Null value is assigned to the parent and the distance
becomes∞.

Propagate the Update (Step 2): In Step 1, vertices affected by
changes can alter the distances of their neighboring vertices.
Therefore, Step 2 identifies the candidate neighbor vertices
requiring distance recalculations and proceeds to update these
distances. Assigning a single thread to each affected vertex
v ∈ Aff for both identifying and updating distances of neigh-
bors can lead to inefficiencies when a neighboring vertex un,
shared by multiple affected vertices, is processed by several
threads. This approach not only increases redundant computa-
tions but also elevates the risk of race conditions as multiple
threads attempt to update the same vertex concurrently. To
avoid such situations, we divide the process into below two
sub-steps:

i) Identifying the candidates: The algorithm identifies the
neighboring vertices of each affected vertex v ∈ Aff and adds
them into a setN as candidates. Concurrently, it removes v from
Aff (Algorithm 1 Line 23 to 25).

ii) Updating distances: The distance for each candidate vertex
in N is evaluated and updated as necessary, with a dedicated
thread assigned to each vertex. For every vertex v in N , the
algorithm examines each possible parent P within Inc(v),
selecting the one that minimizes the new distance Distnew ←
(P + δ) +W ((P, v)). If Distnew differs from the current dis-
tance label (v, δ), both the distance and the parent of v are
updated accordingly. If the distance is updated, v is subsequently
added to the list of affected vertices (Algorithm 1 Line 26 to 32).

Given that vertices with newly updated distances in Step 2
might influence another group of neighboring vertices, Step 2
is designed as an iterative procedure that converges when no
further vertices require distance updates.

Fig. 2 illustrates the working principle of Algorithm 1.
Fig. 2(a) depicts a network similar to Fig. 1, considering only
the second objective, O2. The initial SOSP tree of the graph of

Fig. 2(a) has shown in Fig. 2(b). Fig. 2(c) shows the affected ver-
tices due to changed edges Del = {(u2, u4), (u5, u2)}, Ins =
{(u2, u6) : W = (10, 3, 12), (u1, u6) : W = (12, 2, 14)} for
second objective only. Here, the deletion shown in color red,
otherwise insertion, shown in color green in Fig. 2(c). The vertex
has been marked affected according to the Algorithm 1.step
1 as shown in Fig. 2(c). The Algorithm 1.step 2 has been
demonstrated in Fig. 2(d)–(e) for propagating the effects due to
the affected nodes marked in Algorithm 1.step 1. Fig. 2(f) is the
updated SOSP tree for the second objective, O2, after applying
the changes.

A Special Case: Fig. 3 illustrates a special case where a
descendant of an affected vertex from the previous shortest
path becomes its new parent, creating a loop. Suppose the edge
between u1 and u2 is deleted, as shown in Fig. 3(a). Due to this
deletion, Algorithm 1 marks u2 as affected and identifies u5, a
descendant of u2, as the new parent, changing the distance of
u2 to 9. During the first iteration of Step 2in Algorithm 1, u4 is
identified as a neighboring candidate requiring a distance update
and is added to N . Subsequently, the distance of u4 is updated
with u2 remaining its parent in the shortest path (Fig. 3(b)). In
the second iteration, u5, the only out-neighbor of u4, is added to
N and its distance is updated (Fig. 3(c)). In the next iteration, the
out-neighborsu2, u6, u7 of vertexu5 are identified as candidates
and the distance of u2 is updated. Notably, the distance of u5

was initially affected by the update propagation from u2. By the
third iteration, this propagation reachesu2 again, creating a loop.
The update propagation in the loop continues until a vertex in the
loop finds a new parent vertex outside the loop. In our example,
the loop breaks when a non-descendent vertex is selected as the
parent of u3 in iteration 4 as shown in Fig. 3(e). The absence of
any such non-descendent parent can create an infinite loop that
occurs only when there is a disconnected component of the graph
due to edge deletion. If the loop iterates more than D/ω times,
the infinite loop is detected. Here, ω =

∑
W (e) : e ∈ Eloop

where Eloop is the edge set participating in the loop andD is the
diameter of the graph after the topological change.

In practice, determining ω in advance is challenging. How-
ever, by tracking the distance increase for each vertex at each
iteration, we can detect an infinite loop if a consistent distance
increase (denoted ω′) persists for a set of vertices for at most
D/ω′ iterations. Upon detection, a conditional statement can
halt updates for vertices in the disconnected subgraph, while
allowing updates to continue for the subgraph connected to

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

936 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 3. Special case: Loop formation.

the source vertex. Finding a more efficient way to handle the
disconnected graphs requires further research. In this paper,
we assume the graph remains connected despite topological
changes.

B. Multi-Objective Shortest Path Update

The Pareto optimal solution for MOSP search typically yields
all optimal shortest paths where no path is inferior to the others.
However, in practical applications, finding a single and quick so-
lution for MOSP problem is more viable rather than exhaustively
determining all possible paths. Moreover, finding a single MOSP
enhances execution efficiency and reduces the demand for com-
putational resources. Under these considerations, we introduce
a novel heuristic algorithm to determine a single MOSP instead
of all possible optimal solutions in a fully dynamic network.
We divide the MOSP search problem (k-objectives) into k
SOSP-update problems in dynamic networks and strategically
combine them to compute a single MOSP efficiently.

Our MOSP-update algorithm takes the original network
G(V,E), initial SOSP treesTi for each objective 1 ≤ i ≤ k, sets
of inserted (Ins) and deleted (Del) edges, along with preference
vector Pref where each item correspond to each objective
function as input. 1 ≤ Prefi ≤ k, for ith item, is considered
to avoid negative edge weight according to Lemma 1. Lower
the value, higher the preference is considered and all the values
of Pref vector is set 1 as default value when no preference is
given. It outputs a single optimal or suboptimal MOSP solution
for the updated network.

Step 1. Update SOSP trees: Step 1 of Algorithm 2 updates
the SOSP trees Ti for each objective i, using Algorithm 1. For
updating Ti, the algorithm only assesses the ith term in the edge
weight vector W (e) for all edges in E and all the changed edges
in Ins and Del. At this stage, the SOSP trees are updated one
after another, with each update employing parallel processing
within the SOSP-update procedure.

Step 2. Create a combined graph: Upon completing Step 1,
each updated SOSP treeTi offers paths with the shortest distance
δi for all vertices, focusing on a single objective. However, real-
world applications frequently necessitate MOSP solutions that
integrate or balance multiple objectives, accommodating various
user-defined priorities for these objective functions. Therefore,

our algorithm aggregates the partial solutions, i.e., the updated
SOSP trees Ti, into an ensemble graph G(V,E). This graph
encompasses all edges from eachTi, such thatE =

⋃k
i=1 e ∈ Ti.

Our algorithm then searches for the shortest path within G to
determine the final MOSP solution. Sincek is low in our case, the
workload for each thread remains similar. The overhead related
to Step 2 can increase if the number of objectives is large.

The user-defined priorities for different objectives are incor-
porated into the ensemble graph G through newly assigned
non-negative edge weights. Let the preference level for the
ith objective be denoted by an integer 1 ≤ Prefi ≤ k with
a lower Prefi indicating higher priority. Given the goal of
identifying the shortest path, weights assigned to edges e ∈ E

should be proportional to Prefi (or inversely proportional to
−1/Prefi), reflecting their desirability for selection in the final
MOSP solution. Specifically, for edges e ∈ E present in multiple
SOSP trees, their weights W(e) must aggregate the preferences
from all relevant objectives. These can be calculated as W(e) =

k + 1 +
∑k

i=1− 1
Prefi

· χ(e ∈ Ti), where χ(e ∈ Ti) is an indi-
cator function that equals 1 if e belongs to the specific SOSP
tree, and 0 otherwise. This weight assignment ensures that each
edge e ∈ E receives a non-negative weight, accurately reflecting
the combined preferences. The procedure for determining these
weights is outlined from line 5 to line 9 in Algorithm 2.

Lemma 1: The weight of any edge e ∈ E should be positive.
Proof: Given thatW(e) = k + 1−∑k

i=1
1

Prefi
· χ(e ∈ Ti),

wherePrefi are non-negative, the weight of an edge e decreases
as the sum

∑k
i=1

1
Prefi

· χ(e ∈ Ti) increases, reaching a mini-
mum edge weight when this sum is maximized. For every i satis-
fying 1 ≤ i ≤ k, the sum attains its maximum whenPrefi = 1,
which is the lowest feasible value for Prefi, and concurrently,
when the edge e is present in all updated SOSP trees. Conse-
quently, the maximum sum value is

∑k
i=1 1 · 1 = k, resulting in

the minimum possible edge weight of W(e) = k + 1− k = 1,
which ensures that the edge weight remains positive. �

Theorem 2: Let a vertex v be reachable in h hops using two
disjoint paths P1 and P2 in the combined graph G, where the
edges of P1 appear in l1 < k SOSP trees and the edges of P2

appear in the remaining l2 = k − l1 SOSP trees. Let P2 contain
the edges from the SOSP tree related to a specific objective
i′, and we want to prioritize this objective to select P2 in the

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 937

Algorithm 1: SOSP_Update(G(V,E), T, Ins,Del,Dist).

final MOSP solution. An ideal choice to achieve this would be
Prefi′ = x < y

l1−l2+1 , where Prefj = y for all j, 1 ≤ j ≤ k,
i′ �= j, l1 ≥ l2, and y > l1 − l2 + 1.

Proof: According to our proposed formula, the weight
of each edge on the path P1 is given by W(e ∈ P1) =
k + 1−∑

i = 1l1 1
y = k + 1− l1

y . Similarly, the weight of
each edge on P2 can be computed as W(e ∈ P2) = k + 1−∑

i = 1l2−1 1
y − 1

x = k + 1− l2−1
y − 1

x .
Since both paths require h hops to reach vertex v, the to-

tal distance to v along P1 is h(k + 1− l1
y), and along P2 is

h(k + 1− l2−1
y − 1

x). For P2 to be selected in the final MOSP
solution, the distance along this path should be the shortest to
reach v. Therefore the following condition must be satisfied in
the combined graph:

h

(
k + 1− l2 − 1

y
− 1

x

)
< h

(
k + 1− l1

y

)

Algorithm 2: MOSP_Update(G(V,E), {T1, . . . , Tk}, Ins,Del, Pref.)

Or,− l2 − 1

y
− 1

x
< − l1

y

Or, x <
y

l1 − l2 + 1

�
In Theorem 2, the condition l1 ≥ l2 is necessary to ensure

that the preference value x remains positive. Additionally, the
condition y > l1 − l2 + 1 is required to prevent x from taking
fractional values.

Corollary 1: When both paths contain edges that appear in
the same number of SOSP trees, i.e., l1 = l2 = k

2 , the preference
selection should satisfy the condition x < y.

Developing a generic approach that includes cases with dif-
ferent hop counts per path for selecting a specific Pareto optimal
path requires further research.

Step 3. Find SOSP in the combined graph: The combined
graph G(V,E) includes edges e ∈ E present in at least one
SOSP tree, with new weights W(e) allocated according to the
priorities of the objectives. In Step 3, a parallel single-source
shortest path algorithm determines an SOSP in G. Reassigning
the original weights from G(V,E) to the edges of the identified
SOSP allows the algorithm to produce an optimal or sub-optimal
MOSP solution.

Lemma 3: In the graph G(V,E), where edge weights cor-
respond to multiple objectives, if Tj is the unique SOSP tree
associated with objective j(1 ≤ j ≤ k), then any path within this
tree constitutes a subpath of the Pareto optimal MOSP solutions.

Proof: Given a vertex v with distances d(v) =
(δ1, . . . , δj , . . . , δk) along the SOSP tree Tj and dx(v) =
(δx1 , . . . , δ

x
j , . . . , δ

x
k) along an alternate path. Assuming d(v)

is not Pareto-optimal and dx(v) dominates d(v), that is,
dx(v) ≺ d(v), it follows that δxj ≤ δj . However, it is impossible
as δj is the shortest distance component of v along the only
SOSP related to objective j. Therefore, the assumption that
d(v) is not Pareto-optimal is false, establishing d(v) as the
Pareto optimal distance. Consequently, any path within Tj is
part of the Pareto optimal MOSP solutions. �

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

938 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 4. Finding a single MOSP for Del = {(u2, u4), (u5, u2)}, Ins = {(u4, u6) : W = (10, 2, 12), (u2, u6) : W = (12, 1, 14)} .

Theorem 4: Let Ti be the only possible SOSP tree for ob-
jective i in the graph G(V,E). A combined graph G(V,E)
is constructed by merging all edges from the SOSP trees Ti

for all i = 1, . . . , k, with edge weights modified to reflect user
preferences (as outlined in Algorithm 2). If T ′ is identified as an
SOSP within G, then restoring the original edge weights from
E to the edges of T ′ results in a Pareto optimal shortest path
solution for G.

Proof: For a single objective, the SOSP inherently is the
Pareto optimal shortest path. With multiple objectives, assuming
a Pareto optimal path from the source to u via T ′ (where u may
be the source), and given an edge (u, v) ∈ T ′, we aim to show
the path from u to v is also part of Pareto optimal shortest path
solution.

Given that T ′ is an SOSP within G(V,E), any edge (u, v) ∈
T ′ implies (u, v) ∈ E. Since every edge e ∈ E is part of at least
one SOSP tree, it follows that the edge (u, v) is included in
an SOSP tree Ti associated with objective i, where 1 ≤ i ≤ k.
As there exists only one SOSP tree related to each objective,
invoking Lemma 3 allows us to deduce that the direct path to v
via u is Pareto optimal. �

Fig. 4 is the depiction of the working principle
of the MOSP algorithm for the changed edges of
Del = {(u2, u4), (u5, u2)}, Ins = {(u4, u6) : W =
(10, 2, 12), (u2, u6) : W = (12, 1, 14)}. Fig. 4(a), Fig. 4(b) and
(c) are the SOSP trees for objective 1, 2 and 3 respectively upon
applying the update of Algorithm 1 on each of the objective
individually. Fig. 4(d) is the combined graph generated using
the Algorithm 2 for the preference vector Pref of {4, 1, 4}.
Here we bias Pref vector towards objective 2 setting the lower
value of 1 compared to 4 for objectives 1 and 3. The SSSP
tree of the combined graph of Fig. 4(d) is shown in Fig. 4(e)
which illustrates the shortest path and distance from source
u1 to destination u7. Similarly, the Fig. 4(f) and (g) are the
combined graph and corresponding SSSP tree, respectively, for
the Pref of {4, 4, 1} to bias toward objective 3. There exist 4
Pareto optimal solutions after the changed edges to reach u7

from u1, u5 : (15, 24, 7), u6 : (12, 21, 8), u6 : (9, 4, 10) and
u6 : (15, 3, 20). With the Pref vector of {4, 1, 4}, we give
more priority to objective 2 to select the solution u6 : (15, 3, 20)
which minimizes the cost for objective 2. Similarly, the Pref
vector of {4, 4, 1} prioritize objective 3 to select solution of
u5 : (15, 24, 7) which also minimizes cost of the objective 3.
The other Pareto optimal solutions, i.e., u6 : (12, 21, 8) and
u6 : (9, 4, 10) can also be selected for different preference

vectors to get an alternative optimal shortest path from source
u1 to destination u7.

Complexity Analysis: In Step 1 of Algorithm 1, processing
each changed edge in parallel yields a time complexity of
O(|Ins|+|Del|

p), with p denoting the processor count. Step 2 in-
volves checking neighbors of affected vertices, linking workload
to affected vertices’ degrees. With x vertices affected in a Step 2
iteration anddegavg as the average vertex degree, each iteration’s
time complexity isO(

x·degavg

p). The maximum iterations needed
are O(D), withD representing the diameter of the graph. There-
fore, the total time complexity of Step 2 is O(

D·x·degavg

p +D),
where the last term,D, accounts for the minimum constant time
required for each iteration. Consequently, the overall time for up-
dating a SOSP becomes Λ = O(|Ins|+|Del|

p +
D·x·degavg

p +D).
Our algorithm, DynaMOSP, updates SOSP for k objectives

in k · Λ time. In Step 2 of Algorithm 2, it merges k SOSP
trees, each with |V | − 1 edges, within O(k·(|V |−1)p) time. The
final step, employing a parallel shortest path on the com-
bined graph G(V,E), with |E| = O(k · |V |), completes in k ·
|V |2
p time. Consequently, DynaMOSP’s overall time complex-

ity is O(k · (|Ins|+|Del|
p +

D·x·degavg

p +D + |V |−1
p + |V |2

p)) =

O(k · (|Ins|+|Del|
p +

D·x·degavg

p +D + |V |2
p)).

Discussion: In real-world applications, one objective may
depend on another, and our MOSP-update algorithm performs
effectively regardless of these dependencies. However, when
objectives are positively correlated and an equality can express
their dependencies, they can be combined into a single objective.
This approach can be incorporated into the preprocessing step
to reduce the execution time by lowering the effective number
of objectives.

In Algorithm 2 Step 3, finding MOSP from the combined
graph can be treated as a parallel single-objective shortest path
problem. Moreover, this step could be further optimized by
treating it as a SOSP update step, where the shortest path on
the combined graph from the previous time instance t can be
updated based on new edges in the combined tree at the current
time instance (t+ 1).

IV. IMPLEMENTATION DETAILS

We have developed an implementation using SYCL to enable
support across heterogeneous computing platforms, including
CPUs and GPUs from various manufacturers. Additionally,

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 939

we’ve created a separate implementation utilizing OpenMP,
specifically targeting shared-memory CPUs.

In both implementations, to store the input graphG, we utilize
two adjacency lists in the Compressed Sparse Row (CSR) format
for in-edges and out-edges. This approach quickly identifies
the parent candidates and affected neighbor vertices in the
later stages. The changed edges are grouped according to their
incident vertices and stored in the CSR format for easy retrieval.
SOSP trees are represented through parent-child relation, em-
ploying two vectors each of size |V |: one tracks each vertex’s
parent, and the other records the shortest distance for each vertex.

Dynamic graph data structures like LLAMA [18], Gra-
phOne [19], and TeGraph+[20] outperform CSR for maintaining
dynamic graph structures by reducing the overhead of read-
justing adjacency lists and indices. However, these CPU-based
structures rely on dynamic memory allocation, making them
inefficient for GPU-based implementations. While direct com-
putation on compressed graphs [21] improves space efficiency,
further research is needed for dynamic operations on such data.
As our primary focus is efficient MOSP updates, we use the
simpler CSR and leave advanced data structures for dynaMOSP
as future work.

For OpenMP based shared memory implementation, we
employ the ’#pragma omp parallel for’ directive across all
parallel constructs. In SYCL-based implementation, kernels are
submitted as tasks to the SYCL queue for parallel execution.
For dependencies, the SYCL constructs a directed acyclic graph
(DAG) to manage task execution. In each kernel, we rely on
SYCL ’parallel_for’ to distribute the total work among work
groups. For each parallel construct in our algorithm, we define
the global range for work items, divide them into workgroups
by SYCL, and assign them to compute units.

In Algorithm 1, Step 0, inserted and deleted edges are pro-
cessed as independent tasks without synchronization, as they
operate on separate arrays and group changed edges by incident
vertices. In Step 1, affected vertices are marked, and distances
are updated using parallel threads. A bit array of size |V |
marks affected vertices, with threads setting bits independently.
This approach can lead to load imbalance when edge changes
are unevenly distributed. Solving this issue requires a sizewise
sorting of the changed edge groups and workgroup distribution
according to the size. Later a parallel filter kernel compacts
vertex IDs into an array Aff .

In Algorithm 1 Step 2, the update propagates by selecting the
neighbors of the currently affected vertices inAff and updating
their distances as needed. We implement it using a three-stage
process like below.

1. Forward traversal: Parallel threads mark out-neighbors of
affected vertices in Aff using a bit array.

2. Filter: Identifies unique neighbor verticesN using the bit
array. It reduces redundant work in a later stage.

3. Backward traversal: Threads independently find potential
parents of each u ∈ N using the in-edge list and update
distances by selecting the best parent vertex.

This process involves using out-edges for forward traversal
and in-edges for distance updates, as shown in Fig. 5. For
example, if Step 1 marks u1 and u3 as affected, two parallel
threads mark neighbors in Nunfiltered. After filtering, N =
{u4, u5, u6} are updated concurrently by three threads assessing
their parent vertices.

Fig. 5. Update propagation: An iterative method consisting of both forward
and backward traversal.

The MOSP update algorithm updates SOSP trees related to
each objective, merges them into a combined graph G, and
assigns edge weights based on user preferences, using atomic
‘fetch_sub’ to prevent race conditions.

Ultimately, it computes SOSP on G using any parallel SOSP
implementation and updates MOSP by reassigning actual edge
weights from updated network G. For computing SOSP on G

we use a parallel Bellman-Ford algorithm proposed in [22] to
enable concurrent vertex visits.

V. PERFORMANCE EVALUATION

Experimental Setup: The shared memory experiments were
performed using dual 32-core AMD EPYC Rome 7452 CPUs
with 64 GB of DDR4 RAM, while GPU experiments utilized
an NVIDIA A100 GPU with 80 GB memory. The large graphs
used in the experiments are detailed in Table II. Originally, the
datasets did not contain multiobjective values. Therefore, for
the purpose of testing, multiple edge weights were randomly
generated for each edge.

A. Experiment on OpenMP Implementation

To evaluate scalability, in our first experiment, we adjusted
the OpenMP thread count from 1 to 64 while maintaining a
constant total of 50 K changed edges, including both insertions
and deletions. We altered the deletion percentage for each batch
of changed edges. For instance, a 25% deletion rate in 50 K total

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

940 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 6. Scalability analysis using OpenMP implementation (Total changed edges |Ins|+ |Del| = 50K).

TABLE II
NETWORKS IN OUR EXPERIMENT [23], [24]

changes means 12.5 K edge deletions and 37.5 K insertions. In-
stead of fully random edge changes, we generate inserted edges
by picking two random vertices and setting the edge weight
below the graph’s average. This approach raises the likelihood of
inserted edges impacting the existing SOSP tree. For deletions,
an edge is chosen only if it is part of the SOSP tree, ensuring its
removal affects the updated SOSP tree. Such targeted changes
result in a higher workload compared to completely random
alterations. DynaMOSP algorithm was tested with 3 objectives
across 8 different networks. The scalability results of this experi-
ment are shown in Fig. 6, where theX-axis represents the thread
count on a log2 scale, and theY -axis indicates the execution time
in milliseconds. Generally, across all graphs, the execution time
decreases as the number of threads increases, demonstrating the
good scalability of DynaMOSP. Since changed edges for each
experiment are generated independently, with endpoints chosen
randomly, the same quantity of changed edges can result in
different total workloads depending on their location within the
graph. Consequently, we observe that the curves are not smooth
and include some peaks, indicating instances of higher effective
workload.

In the next experiment, we employed a similar setup but fixed
the deletion percentage at 50% and varied the total number of
changed edges among 25K, 50K, and 100K. Fig. 7 illustrates
the findings of this experiment. It demonstrates that as the
number of changed edges increases, the execution time also
increases. However, the difference in execution times across
batches of different sizes of changed edges diminishes as the

number of threads increases. We observe that the execution times
for batches with 25K and 50K changed edges converge in some
cases when the thread count reaches 32.

B. Experiment on SYCL Implementation

Our SYCL implementation is compatible with various com-
puting architectures, including both CPUs and GPUs. We pri-
marily tested it on the Nvidia GPU platform using Intel LLVM
SYCL and the Clang++ compiler. For a comparative analy-
sis, we utilized the same implementation on CPUs with Intel
OneAPI SYCL and the icpx compiler, with detailed findings
presented in Section V-C.

Fig. 8 illustrates execution times for networks with 50 K
changed edges, varying deletions at 25%, 50%, and 75%. It
covers bi-objective and tri-objective scenarios. Tri-objective up-
dates, needing an extra SOSP operation compared to bi-objective
cases, result in longer execution times. Although the total execu-
tion time depends on multiple factors, including the location of
changes in the network, a higher percentage of edge deletion
generally results in a greater workload. Because, according
to DynaMOSP design, processing a deletion is more complex
than processing an insertion. As a result, we see an increase in
execution time in when the percentage of deletion is increased.

Fig. 9 displays the execution time distribution across different
steps of the experiment. Step 1, which updates the SOSP trees in
parallel and performs the most computationally intensive tasks,
accounts for the majority of the execution time. Step 2, involving
the creation of the ensemble graph and edge weight computation
using SYCL atomic operations, is the least time-consuming.
Step 3 calculates SOSP on the ensemble graph, which consists
of only up tok ∗ (|V | − 1) edges, withk = 2 for this experiment.
The parallel SOSP implementation requires approximately 20%
of the total execution time to complete.

In Figs. 6 and 7, we observe that execution time does not
always decrease as the thread increases. The execution time
in our approach depends on the location of the change in the
graph. A change near the root of an SOSP tree impacts a larger
subgraph compared to a change near a leaf node. To experiment
we have taken the unweighted version of the graph and found
the diameter of it.We then divide the vertices into two sets: low,

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 941

Fig. 7. Scalability analysis using OpenMP implementation (Varying changed edge batch size).

Fig. 8. Execution time for SYCL (GPU) implementation.

Fig. 9. Time distribution across Algorithm 2 steps.

containing vertices with distances greater than or equal to the
diameter, and high, containing the remaining vertices. Then we
generate two separate random changed edges of size 50K for
considering vertices in set low and high. Experiment on these
sets illustrates that the time requirement is higher when nodes
are affected closer to the source (Fig. 10).

C. Comparison Study

To the best of our knowledge, there is no existing work in
the literature that considers parallel MOSP search in a dynamic
network. In this section, we compare our implementations with

paPaSearch [6], the state-of-the-art algorithm for finding MOSP
in large static networks using shared memory parallelism. Given
that paPaSearch cannot process modifications to edges directly,
we update the network by incorporating the Ins edges and
removing theDel edges from the original edge list. This updated
network then serves as the input for paPaSearch, allowing us
to accurately measure its execution time. Unlike our approach,
which finds the shortest path from a single source to all other
vertices, paPaSearch identifies all MOSPs from a source to a
specific destination vertex.

To evaluate the performance of our OpenMP-based imple-
mentation relative to paPaSearch, we conducted experiments
on four large networks: rgg-n-2-20-s0, US patent, dbpedia, and
roadNet-CA. Our experimental design involved varying the
thread count from 1 to 64 while measuring execution times
for finding MOSP in a bi-objective scenario with total changes
set at 25K, 50K, and 75K. In each scenario, we maintained a
consistent deletion rate of 50%. The results, depicted in Fig. 11,
illustrate the performance advantage of our approach. The Y -
axis represents the speedup, defined as the execution time ratio of
paPaSearch to our DynaMOSP implementation using OpenMP,
while the X-axis illustrates the range of thread counts. Across
all networks and thread counts, our shared memory DynaMOSP
outperformed paPaSearch, achieving a maximum speedup of
90× and an average speedup of 18×.

In the subsequent set of experiments, we set the total number
of changed edges at 50K and the deletion percentage at 50%.
Observing that in most cases the optimal shared memory

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

942 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

Fig. 10. Time required targeting the node closer (low) and farther (high) from the source node.

Fig. 11. Speedup comparison between paPaSearch and the proposed method varying the threads for different datasets. The X-axis denotes the thread count and
the Y -axis is the speedup achieved for 50% insertion percentage.

Fig. 12. Execution time comparison among paPaSearch and different Dy-
naMOSP implementations.

performance for both paPaSearch and shared memory Dy-
naMOSP was achieved around 32 threads, we decided to main-
tain this configuration. We employed the same four networks as
in the previous experiment and recorded the execution times for
paPaSearch, the OpenMP-based DynaMOSP, and the SYCL-
based DynaMOSP implementations (both on CPU and GPU),
as depicted in Fig. 12. The results indicate that our SYCL im-
plementation on the GPU exhibited the shortest execution time.
The OpenMP-based implementation, utilizing shared memory,
demonstrated the second shortest execution time, outperforming
the OneAPI SYCL-based CPU implementation. In every
scenario, paPaSearch showed the longest execution time. Fig. 13

Fig. 13. Speedup comparison of various implementations relative to pa-
PaSearch.

illustrates the speedup of various DynaMOSP implementations
relative to paPaSearch. The results indicate that the OpenMP-
based DynaMOSP implementation can achieve a speedup of up
to 25×. In comparison, the OneAPI SYCL implementation on
the CPU attains up to 12× speedup, while the SYCL implemen-
tation on the GPU exceeds 50×, reaching up to 100× speedup.

For quality comparison, we observe the percentage of des-
tinations obtaining optimal distances. Due to memory limits,
paPaSearch cannot store all distance labels for large graphs.
On small random graphs, over 94% of vertices achieve Pareto
optimal distances, with no correlation to graph size. Additional
results are in the appendix, available online.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

SHOVAN et al.: PARALLEL MULTI OBJECTIVE SHORTEST PATH UPDATE ALGORITHM 943

VI. RELATED WORKS

This section reviews parallel solutions for the SOSP problem
and explores both sequential and parallel approaches to finding
MOSP in large networks.

A. Single Objective Shortest Path

Authors in [25] pioneered the parallelization of Dijkstra’s
shortest path algorithm. Thereafter, they introduced an array of
nodes, termed as ’bucket’, containing a tentative distance and
concurrently relaxed all the outgoing edges with a weight of
at most the tentative distance value [26]. Since then, a multi-
tude of parallel algorithms for SOSP has been proposed in the
literature [27], [28], [29].

Gunrock [30], a graph library for Nvidia GPUs, offers parallel
SOSP implementation through a high-performance, three-step
process: advance, filter, and compute, applied to the vertices’
frontier. Here frontier refers to the set of vertices actively being
processed at a particular step within an algorithm. A GPU-
based Bellman-Ford SOSP algorithm, proposed in [22], uses
a mechanism to remove duplicates from the frontier to reduce
memory access. A framework for updating SOSP in dynamic
networks is introduced in [14]. This framework includes an
algorithm to identify vertices affected by changes and places
them in a frontier for parallel processing to recompute distances.
However, this approach struggles with race conditions and de-
pends on multiple iterations of processing the same affected
vertices to ensure accuracy. Our SOSP update algorithm adopts
the framework suggested in [14] but uniquely mitigates race
conditions by assigning each vertex’s computations to a single
thread. This strategy not only prevents race conditions but also
minimizes redundant computations by reducing the likelihood
of processing vertices multiple times.

B. Multi Objective Shortest Path

In static networks, various sequential MOSP algorithms
have been proposed, including bi-objective [31], [32] and tri-
objective [33], [34] shortest paths, along with pruning tech-
niques [35]. A sequential MOSP algorithm for dynamic net-
works, combining optimistic linear support and label correcting
methods for exact solutions, has been recently presented in [36],
but it has scalability issues.

The authors in [6] proposed a parallel label-setting algorithm
where the frontier list of labels is represented as the leaf nodes
ordered lexicographically to find the Pareto optimal nodes in
parallel while pruning the search space. The authors used the
red-black tree as a data structure to ensure the balanced binary
to limit the logarithmic search space in the worst case. Later,
the authors in [37] replaced the red-black tree with the B-tree
to eliminate the overhead of the red-black tree reconstruction
after each change during the bulk update. On the other hand, the
authors in [38] used a dominance check where objective cost is
precalculated in a balanced tree to check if the new label is dom-
inated by the existing labels based on the cost. Although Pareto
optimal labels increase exponentially with graph size, limiting
their number to the nodes allows for an effective, sub-optimal
solution, as proposed in [39]. The authors in [40] primarily

focused on road networks, ranking Pareto optimal labels using
genetic algorithms and pruning the search space by utilizing
meta-heuristics. They concentrated only on the most promising
labels to obtain a near-optimal shortest path in GPU architecture.
Prior to [16], no work addressed finding MOSP in parallel
in large dynamic networks. We introduced a shared memory
parallel algorithm for MOSP in large incremental networks in
[16] and now extend this to fully dynamic networks, offering
a SYCL-based implementation for heterogeneous computing
architectures.

VII. CONCLUSION

In this study, we introduce DynaMOSP, a heuristic designed
to efficiently find multi-objective shortest paths in large-scale,
fully dynamic networks. Initially, we design a single-objective
shortest path update algorithm that incorporates a simple yet
effective grouping technique to enhance scalability. Then we
leverage this algorithm to develop DynaMOSP that finds a single
multi-objective shortest path solution efficiently. DynaMOSP
prioritizes specific objectives based on user-defined preferences
or, in the absence of preferences, balances all objectives to
find the optimal path. A theoretical analysis of the proposed
algorithm provides the criteria to achieve optimality. We im-
plemented DynaMOSP using OpenMP and SYCL for shared
memory CPUs and heterogeneous computing architectures, re-
spectively. Empirical results demonstrate that the algorithm is
scalable and applicable for any arbitrary number of objectives.
We achieve speedup up to 57.22× and 105.39× over the state-
of-the-art technique for CPU and Nvidia GPU, respectively.

To prevent infinite loops during the update propagation stage
of our algorithm, we assume the graph stays connected despite
topological changes. Our future work will focus on developing
a more generic algorithm to manage potentially disconnected
dynamic graphs. Additionally, we would like to explore the
combination of user preferences to choose each Pareto optimal
shortest path solution.

ACKNOWLEDGMENT

The authors are grateful to anonymous reviewers and asso-
ciate editor for constructive suggestions that helped significantly
improve the quality of the manuscript.

REFERENCES

[1] H. Gao, W. Huang, and X. Yang, “Applying probabilistic model checking
to path planning in an intelligent transportation system using mobility
trajectories and their statistical data,” Intell. Automat. Soft Comput., vol. 25,
no. 3, pp. 547–559, 2019.

[2] J. Li, T. Cai, K. Deng, X. Wang, T. Sellis, and F. Xia, “Community-
diversified influence maximization in social networks,” Inf. Syst., vol. 92,
2020, Art. no. 101522.

[3] X. Wu, G. Chen, and S. K. Das, “Avoiding energy holes in wireless
sensor networks with nonuniform node distribution,” IEEE Trans. Parallel
Distrib. Syst., vol. 19, no. 5, pp. 710–720, May 2008.

[4] A. Khanda, F. Corò, F. B. Sorbelli, C. M. Pinotti, and S. K. Das,
“Efficient route selection for drone-based delivery under time-varying
dynamics,” in Proc. IEEE 18th Int. Conf. Mobile Ad Hoc Smart Syst., 2021,
pp. 437–445.

[5] A. Khanda, F. Corò, and S. K. Das, “Drone-truck cooperated deliv-
ery under time varying dynamics,” in Proc. 2022 Workshop Adv. Tools
Program. Lang. PLatforms Implementing Evaluating Algorithms Distrib.
Syst., 2022, pp. 24–29.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

944 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 5, MAY 2025

[6] P. Sanders and L. Mandow, “Parallel label-setting multi-objective shortest
path search,” in Proc. IEEE 27th Int. Symp. Parallel Distrib. Process.,
2013, pp. 215–224.

[7] C. J. Weit, J. Wen, T. A. Zaidi, and D. N. Mavris, “Estimating supersonic
commercial aircraft market and resulting CO2 emissions using public
movement data,” CEAS Aeronautical J., vol. 12, no. 1, pp. 191–203,
2021.

[8] S. K. A. Imon, A. Khan, M. Di Francesco, and S. K. Das, “Rasmalai:
A randomized switching algorithm for maximizing lifetime in tree-based
wireless sensor networks,” in Proc. 2013 IEEE Conf. Comput. Commun.,
2013, pp. 2913–2921.

[9] K. Deb and H. Gupta, “Searching for robust pareto-optimal solutions in
multi-objective optimization,” in Proc. 3rd Int. Conf. Evol. Multi-Criterion
Optim., Springer, 2005, pp. 150–164.

[10] J. M. A. Pangilinan and G. K. Janssens, “Evolutionary algorithms for the
multiobjective shortest path problem,” World Acad. Sci., Eng. Technol.,
vol. 25, pp. 205–210, 2007.

[11] F. Helff, L. Gruenwald, and L. d’Orazio, “Weighted sum model for multi-
objective query optimization for mobile-cloud database environments,” in
Proc. EDBT/ICDT Workshops, 2016, pp. 1–6.

[12] A. Zhou, Q. Zhang, and Y. Jin, “Approximating the set of pareto-optimal
solutions in both the decision and objective spaces by an estimation
of distribution algorithm,” IEEE Trans. Evol. Comput., vol. 13, no. 5,
pp. 1167–1189, Oct. 2009.

[13] X. Zan, Z. Wu, C. Guo, and Z. Yu, “A pareto-based genetic algorithm
for multi-objective scheduling of automated manufacturing systems,” Adv.
Mech. Eng., vol. 12, no. 1, 2020, Art. no. 1687814019885294.

[14] A. Khanda, S. Srinivasan, S. Bhowmick, B. Norris, and S. K. Das, “A
parallel algorithm template for updating single-source shortest paths in
large-scale dynamic networks,” IEEE Trans. Parallel Distrib. Syst., vol. 33,
no. 4, pp. 929–940, Apr. 2022.

[15] A. Khanda, S. Bhowmick, X. Liang, and S. K. Das, “Parallel vertex color
update on large dynamic networks,” in Proc. IEEE 29th Int. Conf. High
Perform. Comput. Data Analytics, 2022, pp. 115–124.

[16] A. Khanda, S. Shovan, and S. K. Das, “A parallel algorithm for updating
a multi-objective shortest path in large dynamic networks,” in Proc.
Workshops Int. Conf. High Perform. Comput. Netw. Storage Anal., 2023,
pp. 739–746.

[17] Y. Censor, “Pareto optimality in multiobjective problems,” Appl. Math.
Optim., vol. 4, no. 1, pp. 41–59, 1977.

[18] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer, “Llama: Efficient
graph analytics using large multiversioned arrays,” in Proc. IEEE 31st Int.
Conf. Data Eng., 2015, pp. 363–374.

[19] P. Kumar and H. H. Huang, “Graphone: A data store for real-time analytics
on evolving graphs,” ACM Trans. Storage, vol. 15, no. 4, pp. 1–40, 2020.

[20] C. Huan et al., “TeGraph+: Scalable temporal graph processing enabling
flexible edge modifications,” IEEE Trans. Parallel Distrib. Syst., vol. 35,
no. 8, pp. 1469–1487, Aug. 2024.

[21] Z. Chen et al., “CompressGraph: Efficient parallel graph analytics with
rule-based compression,” in Proc. ACM Manage. Data, vol. 1, no. 1,
pp. 1–31, 2023.

[22] F. Busato and N. Bombieri, “An efficient implementation of the bellman-
ford algorithm for kepler GPU architectures,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 8, pp. 2222–2233, Aug. 2016.

[23] R. A. Rossi and N. K. Ahmed, “The network data repository with inter-
active graph analytics and visualization,” in Proc. Conf. Assoc. Advance.
Artif. Intell., 2015, pp. 4292–4293.

[24] J. Kunegis, “Konect: The koblenz network collection,” in Proc. 22nd Int.
Conf. World Wide Web, 2013, pp. 1343–1350.

[25] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, “A parallelization of
dijkstra’s shortest path algorithm,” in Proc. 23rd Int. Symp. Math. Found.
Comput. Sci., Springer, 1998, pp. 722–731.

[26] U. Meyer and P. Sanders, “δ-stepping: A parallelizable shortest path
algorithm,” J. Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[27] K. Madduri, D. A. Bader, J. W. Berry, and J. R. Crobak, “Parallel shortest
path algorithms for solving large-scale instances,” in Proc. Int. Conf.
Shortest Path Problem, 2006, pp. 249–290.

[28] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan, “Parallel shortest paths
using radius stepping,” in Proc. 28th ACM Symp. Parallelism Algorithms
Archit., 2016, pp. 443–454.

[29] J. Li, “Faster parallel algorithm for approximate shortest path,” in Proc.
52nd Annu. ACM SIGACT Symp. Theory Comput., 2020, pp. 308–321.

[30] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,” in
Proc. 21st ACM SIGPLAN Symp. Princ. Pract. Parallel Program., 2016,
pp. 1–12.

[31] A. Sedeno-Noda and A. Raith, “A dijkstra-like method computing all
extreme supported non-dominated solutions of the biobjective short-
est path problem,” Comput. Operations Res., vol. 57, pp. 83–94,
2015.

[32] F. He, H. Qi, and Q. Fan, “An evolutionary algorithm for the multi-
objective shortest path problem,” in Proc. Int. Conf. Intell. Syst. Knowl.
Eng., Atlantis Press, 2007, pp. 1276–1280.

[33] A. Hidalgo-Paniagua, M. A. Vega-Rodríguez, J. Ferruz, and N. Pavón,
“Solving the multi-objective path planning problem in mobile robotics
with a firefly-based approach,” Soft Comput., vol. 21, pp. 949–964, 2017.

[34] F. Ahmed and K. Deb, “Multi-objective optimal path planning using
elitist non-dominated sorting genetic algorithms,” Soft Comput., vol. 17,
pp. 1283–1299, 2013.

[35] D. Duque, L. Lozano, and A. L. Medaglia, “An exact method for the
biobjective shortest path problem for large-scale road networks,” Eur. J.
Oper. Res., vol. 242, no. 3, pp. 788–797, 2015.

[36] J. M. da Silva, G. D. O. Ramos, and J. L. Barbosa, “The multi-objective
dynamic shortest path problem,” in Proc. 2022 IEEE Congr. Evol. Comput.,
2022, pp. 1–8.

[37] S. Erb, M. Kobitzsch, and P. Sanders, “Parallel bi-objective shortest paths
using weight-balanced b-trees with bulk updates,” in Proc. Int. Symp. Exp.
Algorithms, Springer, 2014, pp. 111–122.

[38] F.-J. Pulido, L. Mandow, and J.-L. Pérez-de-la Cruz, “Dimensionality
reduction in multiobjective shortest path search,” Comput. Operations
Res., vol. 64, pp. 60–70, 2015.

[39] P. M. de las Casas, A. Sedeno-Noda, and R. Borndörfer, “An improved mul-
tiobjective shortest path algorithm,” Comput. Operations Res., vol. 135,
2021, Art. no. 105424.

[40] Y. Yao, Z. Peng, and B. Xiao, “Parallel hyper-heuristic algorithm for multi-
objective route planning in a smart city,” IEEE Trans. Veh. Technol, vol. 67,
no. 11, pp. 10307–10318, Nov. 2018.

S. M. Shovan (Student Member, IEEE) received the
bachelor’s of science and master’s of science degrees
from the Department of Computer Science and En-
gineering from Rajshahi University of Engineering
and Technology. He is enrolled in Computer Sci-
ence Department in the PhD program of Missouri
University of Science and Technology. His research
interests includes large-scale dynamic graph analysis,
high performance computing and algorithm analysis.

Arindam Khanda (Member, IEEE) received the
BTech degree in ECE from the Institute of Engineer-
ing and Management in 2015 and the MTech degree
in software systems from BITS Pilani in 2019. He
is currently working toward the PhD degree with
the Missouri University of Science and Technol-
ogy. His research interests include parallel program-
ming models, dynamic graphs, and high-performance
computing (HPC).

Sajal K. Das (Fellow, IEEE) is a Curators’ distin-
guished professor of computer science, and Daniel St.
Clair Endowed chair with Missouri University of Sci-
ence and Technology. His research interests include
parallel computing, cloud and edge computing, graph
algorithms, sensor and IoT networks, mobile and per-
vasive computing, cyber-physical systems, smart en-
vironments, cyber-security, and biological and social
networks. He is the editor-in-chief of Pervasive and
Mobile Computing journal, and associate editor of
IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, IEEE/ACM
TRANSACTION ON NETWORKING, and ACM Transactions on Sensor Networks.

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on April 16,2025 at 03:08:41 UTC from IEEE Xplore. Restrictions apply.

