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Abstract—Network-based time series forecasting is a challeng-
ing task as it involves complex geometric properties, higher-
order relations, and scale-free characteristics. Previous work has
modeled network-based series as oversimplified graphs or has
ignored the power law dynamics of real-world temporal and
dynamic networks, which could yield suboptimal results. With
the aim to address these issues, here we propose THINK, a
novel framework based on hypergraph learning that captures
the hyperbolic properties of time-evolving dynamic hypergraphs.
We design an elegant hyperbolic distance-aware hypergraph
attention mechanism to better capture informative internal
structural features on the Poincaré ball. Through quantitative
and conceptual analysis on seven tasks across temporal, and
time-evolving dynamic hypergraphs, we demonstrate THINK’s
practicality in comparison to a variety of benchmarks spanning
finance, health, and energy networks.

Index Terms—hyperbolic, hypergraphs, spatio-temporal fore-
casting.

I. INTRODUCTION

Network time-series forecasting is a critical problem with
several applications, e.g., for financial predictions, for traffic
prediction, and for forecasting the trends of rare diseases [1]—
[3]. Making accurate predictions about the future is a chal-
lenging task, as both inter-series and intra-series dependencies
need to be modeled simultaneously [4]. Recent work [5],
[6] leveraged graph neural networks (GNNs) to model the
inter-series relationships as a graph since GNNs can capture
the symmetries in graph data [7]. However, most real-world
networks innately comprise higher-order relations that go
beyond pairwise connections [2], [8]. One way to model such
higher-order relations is to use hypergraph generalizations of
graphs [9], where a hyperedge can connect multiple nodes and
thus can naturally express higher-order relations such as group
behavior between multiple nodes [10].

In addition to higher-order correlations, several real-world
temporal networks such as blockchain transaction networks,
and stock networks exhibit a scale-free or a hierarchical
structure [11], where a small change in a single network entity
may cause a series of chain reactions leading to a “domino
effect.” For example, changes in crude oil prices can lead to
contagious effects on several groups of stocks across industries
such as transportation, energy, utilities, etc. [12]. However,
conventional (hyper)graph models are defined in the Euclidean
space, and thus suffer from large distortions when representing
such networks [13].
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At the same time, typical characteristics of scale-free net-
works such as long-tail node degree distributions and the
presence of influential hubs are handled well in the hyper-
bolic space [14]. However, existing hyperbolic graph neural
networks [15] do not generalize to higher-order connections
in hypergraphs.

With this in mind, here we leverage the hyperbolic space
to encode scale-free temporal and time-evolving dynamic
hypergraphs. In particular, we formulate the dn, hyperbolic-
ity for hypergraphs (§II) based on the shortest path algo-
rithms in hypergraphs and we build elegant distance-aware
hyperbolic hypergraph aggregation operations (§III-B) that
use hyperbolic distance to preserve the information during
message propagation. We present a novel hyperbolic learning
framework which we call Temporal Hypergraph Hyperbolic
Network (THINK), which uses hyperbolic hypergraph and
temporal operations (§III-C) to encode temporal, and time-
evolving dynamic networks.

Our contributions can be summarized as:

o We formulate &y, hyperbolicity for hypergraphs, and we
propose DHHAN, a Distance-aware Hyperbolic Hypergraph
Attention Network, to capture higher-order scale-free cor-
relations in the hyperbolic space.

e We devise THINK, which combines hyperbolic temporal
convolutions with DHHAN in order to capture hyperbolic
properties in the network and in the temporal domains.

o We show that THINK outperforms several state-of-the-art
methods across seven tasks defined on spatio-temporal
and dynamic networks. We further demonstrate THINK’S
practicality on financial, health, and energy applications.

II. HYPERGRAPH HYPERBOLICITY & HYPERBOLIC SPACES

The épg Hyperbolicity is a score that provides a degree
of similarity of the hypergraph to the hyperbolic space. For
a hypergraph G, the d, hyperbolicity can be computed using
the Gromov product [16], which is defined as follows for a
triple of nodes z, y, and z:

(45:9)s = (d(z,9) +d(z,2) = d,2) (D)

where the distance d(x,y) is the shortest s-walk, called the
s-distance between nodes x and y [17]. The s-walk is a higher-
order walk in the hypergraph, where s controls the “width” in
terms of edge overlap size. The s-walk between nodes x and y
is a sequence of nodes that pairwise share at least s hyperedges
(we provide the algorithm for s-distance in the Appendix).
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TABLE I: Basic dataset statistics including dn, and dr hy-
perbolicities of (i) spatio-temporal networks such as Chicken
Pox spread (CPox), windmill energy (WMill), and stock
networks of NYSE, NASDAQ, CSE, and TSE exchanges, and
(if) dynamic networks such as Twitter tennis mentions (DTT).

Dataset # Timesteps ~ # Nodes  0pg  Orer

DTT [18] 120 1,000 1.0 -
CPox [19] 522 20 1.5 0.190
WMill [20] 17,472 319 1.0 0.025
NYSE [1] 1,245 1,737 0.5 0.087
TSE [21] 1,159 95 1.5 0.074
NASDQ [2] 1,245 1,026 1.0 0.107
CSE [22] 1,293 85 1.5 0.176

We now define dpg as the minimal value greater than zero
for which the following holds for any nodes z,y, z, and w:

($’Z)U7 Z min((w7y)w7(y7z)w) 76hg (2)

In addition to dpg, we also compute the relative dataset-level
dre1 hyperbolicity using the Euclidean distance between tempo-
ral node features [23] (formally defined in the Appendix). Low
values of dpg and dy hyperbolicity indicate that the space has
an underlying hyperbolic geometry, i.e., an approximate tree-
like structure, and that the hyperbolic space would be well-
suited to embed it [24]. Table I shows the hyperbolicity of
various temporal and dynamic hypergraphs: we can see that
the degree of hyperbolicity in these networks is generally high,
i.e., low Oy, Orel, suggesting that scale-free hypergraphs can
benefit from representations in the hyperbolic space.

The hyperbolic space is a non-Euclidean geometry with
constant negative curvature. We implement the Poincaré ball
model of the hyperbolic space. This model is defined as
(B, gB), where the manifold B = {x € R" : ||z|| < 1}
is endowed with the Riemannian metric g5 = A\2g¥, where
the conformal factor Ay = ;— ;= and gF = diag[1,...,1]
is the Euclidean metric tensor. We denote the tangent space
(Euclidean) centered at point  as 7T,B. Since hyperbolic
spaces are non-Euclidean, we leverage the formulations of
Mobius gyrovector spaces, which allow us to generalize stan-
dard operations to hyperbolic geometry [15].

Mobius Addition & Hyperbolic Distance. Following [15],
the Mgbius addition @ and the hyperbolic distance d(x,y)
for points x,y € B is given as follows:

1+ 20 y) +[lylM)z + 1 - llz|*)y

THY = 3)
1+ 2(z, y) + ||| |y]]?
di(x,y) = 2tanh ™ (|| — z @ y|) @)
where, (.,.) and || - || denote the inner product and the norm,

respectively. We now define the mapping functions to project
Euclidean vectors to the hyperbolic space, and vice versa.
Exponential & Logarithmic Map. For point « € B, the
exponential map exp,, : T8 — B and the logarithmic map
log,, : B— T, B for tangent vector v and point y are

_ Aal DII v
exp,(v) =z @ <tanh ( 5 ) HUH) (5)
2 _ —Td
log, () = tanh™ (| —z @ yl)— =F ©
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T Oy =tan (IIwnyI arctan_l(HyH))

W ® x = exp,(Wlog,(x))

®)

Poincaré Fully Connected Layer (F¢(-)). Given the inputs
x € B" with parameters Z = {z, € T,5"},.; and bias terms
r={r, € R};",, we follow [25] to define (F*(-)) as follows:

Fé(x) = w(l + 1+ |[w]]?) ™, w = (sinh(ve®))7: (9

where v () is the generalized linear transform defined as
vi (@) =2| 21 |sinh ™ (A, (@, zx)cosh(2ry ) —(A—1)sinh(2ry)) (10)

Poincaré (3-concatenation (3-cat(-)) is used to join M inputs
{x; € BY}M, into a vector y = B-cat({z;}1,) € B",
where n = Zf\/[ n;. Following [25], the inputs are first
scaled using coefficients 3, = B(%, 1), where B denotes the
beta distribution. These features are then concatenated in the
tangent space as follows:

y=exp,(BuBpilog,(z1)", ..., BuBiaslog,(zar) )T (1)

III. METHODOLOGY: THINK

Fig. 1 shows an overview of THINK. In the following sub-
sections, we explain how we extract temporal features using
hyperbolic temporal convolutions ($III-A). We then describe
how we aggregate node features via distance-aware hyperbolic
hypergraph aggregation ($III-B) followed by detailing how
hyperbolic temporal and spatial components are combined to
capture the temporal evolution of hypergraphs (§III-C).

A. Hyperbolic Temporal Convolution

The temporal dependencies of several common hypergraphs
such as stock networks often show power-law distribution
[26], which indicates the possible presence of hierarchical
relations in time-series data. Thus, we implement a temporal
convolution in the hyperbolic space 7-conv(-) [25]. In contrast
to the Euclidean space, the Poincaré ball model reflects the
power law distribution with its radius [15], thus enabling it to
better represent the hierarchical relations in a time-series data.

Given Euclidean temporal input node features X g, we first
project them to hyperbolic features X' via the exponential
mapping as X' = exp,(Xg). Let K denote the kernel size
of the hyperbolic temporal convolution with input features
X! € BVNXnEXC corresponding to N nodes for a historical
lookback period 7 = nK to the [ layer. Here, C is the
number of features per node. We concatenate the node features
{z;s€BY Xc}ﬁil in the receptive field of the kernel into
features x; € BN*XCK using a Poincaré (3-concatenation,
which is then operated on by a Poincaré fully connected layer
as shown in Fig. 1. These transformations produce X'*1:

X = rconv(X') = {Fe(Bcat({mis} 1))}

i=1

12)

Authorized licensed use limited to: University of lllinois. Downloaded on September 04,2025 at 18:30:58 UTC from IEEE Xplore. Restrictions apply.



Node to Hyperedge

Hyperedge to Node

O Nodes

Aggregation

,,,,,,, Aggregation AW
L}
gl' q‘ 2 [j Hyperedges
1 - .
| ¢ "
O 1
gi 1 Hyperbohc
T Temporal lOgo(')
' 1 Convolutlon
I 1
. |
® gf
Q.
v g Hyperbolic Temporal Distance-Aware Hyperbolic
T Convolution

Fig. 1: Overview of our proposed THINK framework for distance-guided hyperbolic aggregation and interaction learning.

B. Distance-Aware Hyperbolic Aggregation

We use hypergraph convolutions in the hyperbolic rather
than the Euclidean space [9]. As the hypergraph grows expo-
nentially, we use the hyperbolic space, where we can obtain
more robust embeddings [15]; in contrast, the polynomial
growth of the graph volume in the Euclidean space leads to
distortion in the embeddings for scale-free networks [14].

Next, we describe an attentive hyperbolic hypergraph con-

volution HA(-), which benefits from the expressiveness of
both hypergraphs and hyperbolic embeddings [15]. We apply
the attentive hyperbolic hypergraph convolution HA(+) on the
hypergraph G(V, E), where V' = {vy,...,vv|} is a set of
nodes and E={ey,..., e|E|} is a set of hyperedges, and each
hyperedge e; connects a subset of nodes {v; € e;}. As shown
in Fig. 1, DHHAN is composed of two steps:
Node to Hyperedge Aggregation computes the hyperedge
feature vector z; by aggregating the hyperbolic features
{ug|vr € e;} of the nodes that belong to hyperedge e;. In
particular, we use the Einstein midpoint [27], which general-
izes mean-based aggregation to the hyperbolic space:

1 Ny
s=ge| X uk (13)
2 ug|vi€e; Z“ﬂ“g‘eei ()‘“j - 1)
where, )\, is the conformal factor, defined as \,, = ﬁ

Hyperedge to Node Aggregation updates the hyperbolic node
features w; using the information from the hyperedges that
contains the node v;. We use self-attention aggregation to
learn the varying importance of each relation {e;|v; € e;}
with respect to node v;. We further develop a hyperbolic
distance-aware self-attention mechanism that better preserves
the hyperbolic properties while propagating information [28].
We use the hyperbolic distance dp(u;, z;) between features
u; and the features of hyperedges containing the node vj,

e., {zilv; € e;}. The distance-guided attention learns the
attention coefficient «;; using the node’s hyperbolic feature
u; and the aggregated hyperedge features {z;|v; €e;}:

Q= a’ ® (u; @ z;) ©dp(uj, ;) (14)

where .7 denotes transposition and a is a trainable vector.
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With the help of the attention coefficients c;;, the hyper-
graph convolution HA(+) updates the hyperbolic node features

U = {uy,...,uy|} to a new set of hyperbolic features
U ' ={u],... 7us\}v given by U’ = HA(G, U), where
uj = exp, | ReLU Z a;jlog, (F°(2;)) (15)

i|sj€e;

We now generalize the above hyperbolic hypergraph convolu-
tion HA(-) to time-varying input features Q' € B™*N*C and
time-evolving dynamic hypergraphs G = {gl} _; and denote
it by HA"(-). The generalized attentive hyperbolic hypergraph
convolution layer HA” (-) applies the same HA(+) layer to each
snapshot G; of the input and outputs features Q'*! given by

Q' =HA(Q',G)={HA(G.. @} € BN*)}/_,  (16)

C. THINK: End-to-End Framework

We position the DHHAN between two hyperbolic temporal
convolutions. This design choice allows the propagation of
spatially updated features along the time axis through temporal
convolutions. As shown in Fig. 1, we operate a hyperbolic
temporal convolution on features X i followed by DHHAN and
another hyperbolic temporal convolution that produces final
outputs §° = THINK(X g, G), given by

y* = log, (T-conv ((HA™ (r-conv(exp,(Xr))),G))) (17)

IV. EXPERIMENTS
A. Spatio-temporal & Dynamic Hypergraph Tasks

In node regression, we aim to forecast each node’s fu-
ture value for a single time-step. We evaluate THINK on
various node regression problems: wind energy forecasting
[20], county-level chickenpox cases prediction [19], [20], and
risk forecasting [35] on the Chinese stock exchange (CSE).
We further apply THINK on spatio-temporal classification
problems, which predict each node’s single time-step future
trend. We evaluate THINK on stock movement classification
[2] (on NASDAQ) with targets being stock prices going up,
going down, or staying neutral.
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TABLE II: Performance comparison to baselines on spatio-temporal and time-evolving dynamic hypergraphs (mean of 25
runs). Purple & pink show the best and the second best results, respectively, and CIf denotes stock movement classification on
NASDAQ. * indicates significant (p <0.01) improvements over state-of-the-art methods under Wilcoxon’s Signed Rank Test.

Dataset DTT CPox WMill Risk NYSE TSE CIf
Ohg 1.0 1.5 1.0 1.5 0.5 1.5 1.0
Orel - 0.190 0.025 0.176 0.087 0.074 0.107
Model MSE({) MSE({) MSE(}) MSE(}) SR(1) NDCG(1) SR(1) NDCG(1) F1(1)
GConvGRU [29] 2.054+5e7% L1449~  1.3843e 2  0.61+£6e 3  0.89+2e72  0.57+4e 2  0.81+£9¢™*  0.55+1e™® 025424
EGCN-O [30] 206£5¢72  1.12+4e™3  13649¢~1 057487 0.92+4e®  0.59+6e2  0.83+le”3 0574573 0.28+3e°
DCRNN [31] 2.05+4e73  1.1246e7%  1.2844e™®  04542e7 3 0984572 0.6949¢7*  0.9243e73  0.64+8e~*  0.3242¢73
TGCN [32] 2.04+1e73  L11£2e73  1.2745e3 043433 1.02+1e™®  0.71+£6e™2 0934272  0.67+le™® 034443
ST-TGCN [33] 20443¢72  1.12+1e”® 1244273 0374le™®  1.04£2e2  0.70+3¢~>  0.96+8¢~1  0.7146e"3  0.37+de?
DyGrAE [34] 2.03+1e™3  1.1246e7*  1.2443e7%  040+2e7 3 1.034£8¢7?  0.724+4e™®  0.9543e73  0.69+5¢73  0.364+2¢73
RSR-I [1] - L13+2e7% 1.23+5e7% 0.39+4e7® 1.05f1e™®  0.75+£6e73  0.99+1e™®  0.7249¢7*  0.38+6e 3
EGCN-H [30] 2.0444e7%  L1149e~* 1214272 0394872  1.03+3e72  0.724£6e7 2  0.96+1e 2  0.71+2e72  037+4e 3
STHGCN [2] 1.03+6e=2  L1142e~2  1.1941e™®  0.3744e™3  1.10£3e~3  0.78+6e~3  1.0742e=%  0.74+5¢~%  0.40+1e~?
TCONV + DHHAN  0.61+3e2*  1.10+46e~% 1.08+2e~>* 0.3443¢™3* [1.1447e=3* 0.81+1e™3* [.1142e=%*  0.7645¢~3 0.44+8e>"
THINK 0.58+5¢73*  1.094+4e73*  1.054+2¢73* 0.32+2¢73*  118+4e 3% 0.86+9¢ %" 1.194+6e 2" 0.81+7¢ 4" 0.49+4e7 3
0.7 4 - - V. RESULTS AND ANALYSIS
1.14 + ! CPox
E 9 prr A. Performance Comparison
0.65
| ‘ 2T We evaluate THINK on various spatio-temporal and dynamic
i A . i - hypergraph problems in Table II, and we observe that THINK
2 § & £ 11+ o is the new state of the art across most datasets, and that it can
E 9 generalize to various downstream applications spanning across
0.55 + = . . . . .
1.08 time-evolving dynamic and spatio-temporal hypergraphs. This
5 R improvement is due to two aspects: (i) hypergraph learning
HHN THINK HHN THINK and (ii) hyperbolic geometry. First, THINK captures higher-

Fig. 2: Performance distribution with confidence intervals
(over 25 runs) of hyperbolic hypergraph network (HHN, first,
pink), and THINK (second, blue). We use the same hyperbolic
temporal convolution for DTT and CPox datasets.

Finally, we apply THINK on stock ranking [2] over the
Tokyo Stock Exchange (TSE) [21] and the New York Stock
Exchange (NYSE) [1] markets. Following [1], we formulate
stock prediction as a ranking problem, where our target is to
learn a ranking function that maps a set of stocks to a ranking
list. In the learned ranking list, stocks with higher ranking
scores are expected to yield higher profits.

B. Evaluation Measures

We evaluate risk prediction, chickenpox cases forecasting,
and windmill power via Mean Squared Error (MSE). We eval-
uate THINK on node classification using F1-score. We evaluate
THINK’s profitability and ranking ability using Sharpe Ratio
(SR) and Normalized Discounted Cumulative gain (NDCG).
The Sharpe Ratio is a measure of the return R, in excess of
a risk-free return Ry, given by SR = %. Following
[1], we adopt a daily-buy-hold trading strategy in which, on
trading day ¢, we acquire a ranked list of stocks based on the
predicted return ratio for every stock. From this list, we buy
the top-k stocks, which are sold at the closing market price of
the following day ¢ + 1.!

'We release our code at: https://github.com/shivamag125/ICDM22-THINK
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order relations via hypergraphs instead of constraining them
as pairwise edges in ordinary graphs (RSR-I, EGCN-H).
Second, spatio-temporal learning can significantly benefit from
hyperbolic geometry, especially in datasets that exhibit scale-
free nature [15]. A common limitation of spatio-temporal
(hyper)graph approaches (STHGCN, EGCN-H) is that they
use the Euclidean space to encode scale-free properties of
spatio-temporal and time-evolving dynamic networks, which
leads to high distortion in their learned representations [14].
Impact of Hyperbolic Temporal Convolution. In order to
further quantify the improvements due to hyperbolic learning
in the temporal domain, we compare it to Euclidean learning
in Table II. Specifically, we replace the hyperbolic temporal
convolution with a Euclidean temporal convolution [3]. We
observe significant (p < 0.01) improvements when using
hyperbolic learning for representing the time-series data. This
improvement empirically validates that hyperbolic learning in
the temporal front equips THINK with geometrically appro-
priate inductive biases for better representing the power law
dynamics of temporal data.

B. Impact of Distance-Aware Self-Attention

In order to contextualize the improvements from our
distance-guided self-attention hyperbolic message propaga-
tion, we contrast THINK to a version without the enhancement
of distance attention (HHN). The results are shown in Fig. 2,
where can see that the model without the enhancement of
distance attention reduces the overall performance on all
datasets and also increases the variance.
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(a) Hyperedge Decomposition
Fig. 3: Performance variation with (a) successive hyperedge
decomposition and (b) hyperedge removal with error bounds
(over 25 independent runs). The blue (top curve) and red (bot-
tom curve) indicate THINK and Euclidean THINK (Euclidean
temporal convolution + hypergraph attention), respectively.

(b) Hyperedge Dropping

These observations suggest that thanks to its hyperbolic
distance-guided message propagation THINK can better cap-
ture the impact of a node on the overall representation of
the group. Moreover, these observations tie up with those of
[28], who showed that distance-aware aggregations preserve
hyperbolic message aggregations in the tangent space using
hyperbolic distances.

C. Impact of Hypergraph & Hyperbolic Learning

Impact of Hypergraph Learning. We compare the perfor-
mance of representing relations as hyperedges vs. as ordinary
pairwise edges. We decompose each hyperedge of degree n
into (g) pairwise edges in increasing order of hyperedge
degree, and we analyze the performance variation as we
decompose hyperedges in Fig. 3a.2 We observe poorer per-
formance as we decompose hyperedges into pairwise edges
since decomposing hyperedges induces noise in the network.
The worst performance is achieved when all hyperedges are
decomposed, which is when THINK degenerates to hyperbolic
graph attention model. Through this experiment, we note that
hypergraphs effectively capture higher-order relations between
nodes as opposed to simple graphs.

Impact of Hyperbolic Learning We probe the impact of
highly influential nodes (hubs) and the effectiveness of domain
knowledge on THINK’s performance. We identify hubs of the
scale-free network by sorting the nodes in decreasing order
of their degree and we successively remove the corresponding
hubs’ hyperedges. Then, we compare THINK to its Euclidean
variant in Fig. 3b.2 We observe poorer performance for both
models as we remove edges, and they perform the worst after
all hyperedges are removed, which essentially degenerates
THINK to a temporal model. Interestingly, we note that as we
isolate the most influential hubs, THINK’s performance drops
(larger drops in hypergraphs with low dp), likely because it is
unable to incorporate their strong impact on other nodes and
the network becomes less hyperbolic.

2Note that we observe similar trends in other datasets.
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VI. CONCLUSION

Building on our d, hyperbolicity formulation for hyper-
graphs, we introduced an elegant distance-guided attentive
hyperbolic hypergraph neighborhood aggregation mechanism
(DHHAN), which better captures higher-order relations in the
hyperbolic space. Then, using DHHAN as a building block,
we developed an end-to-end framework, THINK, which blends
hyperbolic temporal convolutions with spatial DHHAN. Our
experiments on seven downstream tasks demonstrated THINK’s
effectiveness over dynamic time-evolving and spatio-temporal
hypergraph networks in comparison to various benchmarks.
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APPENDIX

A. Dataset-Level 6,,; Hyperbolicity Estimation

Following [24], we use the Gromov product [16] to estimate
the dataset-level hyperbolicity. Let us define x,y,z € W as
the temporal features, where W is the metric space.

854

Algorithm 1: s-walk-distance

Input : Incidence matrix H/VI*IEl int s, source S,
target T’

Result: s-distance between S and T

initialize s_adj!V!*!Vl = 0;

for each vertex v € V do

e = H[v;
for each vertex v € V do
ne = H[v'];

if length (e Nne) >= s then
| s_adj[v][v] = 1;
end
end

end
G = create_graph_from_adjacency(s_ady);
return Dijkstra(G, S)[T]

The Gromov product for features x and y is given by

(0.2)e = 5 (U(2.9) +1(2,2) ~.2)  (8)

where [(x,y) is the Euclidean distance between x and y.
We define the § hyperbolicity as the smallest non-negative
value such that the following holds:

(x,2)y > min((2, Y)w, (Y, 2)w) — 0. (19)

Following [36], we use the scale-invariant d, hyperbolicity,
given by 0, = ﬁ, where diam(TV) is the largest pairwise
distance (diameter) for the metric space W. By definition,
dre1 € [0, 1] and specifies how close a dataset is to a hyperbolic
space. A low . hyperbolicity (i.e., close to 0) for a network
indicates that it has an underlying hyperbolic geometry.

B. Hypergraph Construction

We construct a hypergraph G = (V, E), where each vertex
veV, and each hyperedge e € E is a subset of related nodes.
DTT, CPox, WMill Following [37], we created hyperedges
based on the neighborhood of each node. For each node
v, we first found the neighbors N(v) and we created a
set NV {(v,N(v))lv € V}. Then, we merged pairs of
elements (v;, N(v;)), (vj, N(v;)) based on their similarity
which is calculated using Sgrensen-Dice coefficient (SCD). We
calculated SCD for every pair of elements and we merged them
until no two pairs had an SCD score lower than a threshold.
Stock Datasets: NYSE, NASDAQ, TSE and CSE Following
[38] we constructed hyperedges between stocks based on:
(7)) industry hyperedges and (i) Wiki corporate hyperedges.
The former connect stocks belonging to the same industry,
while the latter consist of first- and second-order corporate
relationships between stocks. The first-order relation is defined
as X 2 Y, where R1 represents the entity-relation between
stocks X, Y. We constructed a hyperedge of a source stock and a
set of target stocks related to it via the same Wikidata relation.
The second-order relation is pairwise in nature and defined as
x &8 z8 Y, where Z denotes an entity connecting X and
Y via entity-relations R2, and R3.
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