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ML helps predict enzyme turnover rates

Constraining metabolic models by enzyme capacities greatly improves genotype-phenotype predictions. Now,
a method for estimating enzyme turnovers based on deep learning has been developed and used to reconstruct
enzyme-constrained genome-scale metabolic models for more than 300 yeast species.
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enome-scale metabolic (GSM)

models encode the complete

metabolism of an organism through
a list of gene-protein-reaction relations.
Ultimately, these relations help establish
constraints on the magnitude, direction
and catalytic resource needed for the
network of metabolic reactions. Flux
balance analysis of GSM models (Fig. 1a)
aims to quantify the flow of metabolites
through these networks under different
environmental and genetic constraints'.
However, such analysis does not account
for the fact that the reaction flux of an
enzyme inside a cell (in vivo) is ultimately
constrained by its catalytic capacity,
defined as the product of the intracellular
concentration and the catalytic turnover
rates (k) of the enzyme. Imposing enzyme
constraints in GSM models (Fig. 1b) can
be very informative for recapitulating
important metabolic attributes such
as maximum growth characteristics,
metabolic shifts and proteome reallocations®
using flux balance analysis calculations.
In the absence of enzyme capacity
constraints, all reactions are allowed
to reach their stoichiometrically
allowable limits, without accounting
for the trade-offs organisms need to
establish under different physical and
energy constraints.

However, to date, genome-wide
availability of in vivo k, values is
lacking, even for well-studied organisms.
Now, writing in Nature Catalysis,

Eduard J. Kerkhoven and colleagues
established a deep learning framework
(DLKcat, Fig. 1c) to estimate the k,
values of metabolic enzymes for any
organism of choice’. The ability to
predict k_,, values (even with a certain
level of approximation) can facilitate
the automated construction of enzyme-
constrained GSMs, especially

for non-model organisms.

Earlier efforts for constructing
enzyme-constrained GSM models’ relied
on tabulated values from databases such as
BRENDA and SABIO-RK. In most cases,

organism-specific values were absent and
thus were adopted from those of other
organisms*. Alternatively, Heckmann

et al’. trained regression models to predict
enzyme turnover numbers from several
hand-picked features spanning an enzyme’s
network context and biochemical and
structural properties. However, owing to the
requirement of several detailed features, this
method was only trained on a few hundred
Escherichia coli enzymes and hence had
limited adaptability to other under-studied
organisms. In DLKcat, Kerkhoven and
colleagues used a representation-based
learning approach to automatically extract
underlying features in the input data
relevant for k_, prediction. In this approach,
the enzymes’ amino acid sequences and the
structures of their corresponding substrates
are discretized into sets of sequence words
and substrate substructures (Fig. 1¢),
respectively, similar to a previously
described procedure’.

Each discrete word and substructure
hence created is assigned a unique vector
of real numbers, called an embedding®.

The mathematical representations for
enzyme and substrate features are then
obtained by combining the embeddings of
the comprising words and sub-structures
using a convolutional neural network and
a graph neural network for each enzyme
and substrate, respectively. Obtained
representations are then input into a fully
connected neural network layer to predict
k., values. The resulting neural network
architecture, DLKcat, was trained iteratively
using the training data curated by collating
all available k_, values in the BRENDA

and SABIO-RK databases summing up to
16,838 data points. During training, both
the weights of the neural networks and the
embeddings are updated to minimize the
root mean squared error (r.m.s.e.) between
the predicted and true k., values for all
enzyme-substrate pairs in the training data.
The resulting model trained on this data

accurately predicted k_,, values with a rm.s.e.

of 1.06 in log,, scale when evaluated on an
unseen test dataset (the evaluation gave a
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Pearson’s correlation coefficient of r = 0.71).
This is quite an achievement given that k,
values span a range of up to 10 to 14 orders
of magnitude.

However, it is important to stress that the
predicted k_, values are only approximate
in nature. Given that the correlation
agreement was achieved for a log-based
scale, the predicted values could be off
by an order of magnitude or more when
establishing upper limits of reaction fluxes.
The advantage, however, is that using this
tool, one can readily impose constraints on
almost all enzymes of GSM models. Upon
estimating a value for k,, the stoichiometric
matrix of the model is updated to yield
constraints of the form v <k, [E] for each
enzyme-catalysed reaction (Fig. 1b).

As training data for the model are based
on in vitro experiments, the researchers
further developed a Bayesian framework’
that can estimate in vivo-like k_,, values
starting from the DLKcat predicted k.,
values by minimizing the distance between
the predicted and experimentally observed
growth data. The researchers put forth
DLKcat and the Bayesian framework,
together, as an automated and convenient
enzyme-constraint-based GSM (ecGSM)
reconstruction pipeline, DL-ecGEM. Using
DL-ecGEM, the researchers demonstrated
80% coverage of enzymes for k_, values to
define constraints for 90% of the enzymatic
reactions for a set of 343 yeast/fungi
species. In comparison, previous ecGSM
models* only covered k,, values for 40%
of enzymes and generated constraints for
60% of annotated enzymatic reactions
for the same set of species. In summary,
DL-ecGEM is a convenient pipeline for
reconstructing enzyme-constrained GSM
models with near-complete coverage for any
genome-sequenced organisms.

In addition to predicting k., values, the
current work showcases the advantage of
attention weights derived from the neural
network to identify regions of enzyme
sequence that have the highest impact
on catalytic activity. This capability can
be further extended to identify specific
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Fig. 1| Machine learning aided enzyme constraint-based genome-scale modelling framework. a, Genome-scale metabolic (GSM) model formulated with
mass and flux balance constraints. S is the stoichiometry of the ith metabolite in the jth reaction, and v; is the metabolic flux of the jth reaction. LB and UB
are the lower and upper bounds, respectively, for the reaction fluxes. b, Enzyme-constrained GSM model formed by adding additional enzyme entries to
the stoichiometric matrix using k., values obtained from the DLKcat neural network model. For each enzyme, p, e, denotes its usage, and £, denotes its
maximum possible usage. ¢, DLKcat uses the enzyme sequence and substrate structure as inputs and encodes them into mathematical representations
using convolutional and graph neural networks, respectively. The final representations are combined using a fully connected layer to output k, values. GPR,

gene-protein-reaction.

amino acid residues that could potentially
cause drastic changes in the k_, value of
any given enzyme. Amino acid residues
identified as such can be modified to

aid enzyme engineering efforts. Recent
applications in deep learning for structure
generation, such as the AlphaFold2 (ref. ©),
promise genome-wide prediction of protein
structures at angstrom-level accuracy.
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Although embeddings of the amino acid
sequence words alone have proven to
calculate accurate enzyme representations
for k., prediction, using structural features
could potentially boost the model’s accuracy
and interpretability, as demonstrated for
similar applications’.

One limitation of DLKcat is that it
only incorporates the features of one primary

substrate in the model, leaving cofactor/
ion-dependent and/or non-unimolecular
reactions approximately described. Also,
enzyme turnover numbers are known

to vary by orders of magnitude owing to
variations in the experimental conditions
such as pH and temperature, which is beyond
the scope of DLKcat. As in all such studies,
there is always the potential danger of
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