
655

news & views
ENZYMES

ML helps predict enzyme turnover rates
Constraining metabolic models by enzyme capacities greatly improves genotype–phenotype predictions. Now, 
a method for estimating enzyme turnovers based on deep learning has been developed and used to reconstruct 
enzyme-constrained genome-scale metabolic models for more than 300 yeast species.
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Genome-scale metabolic (GSM) 
models encode the complete 
metabolism of an organism through 

a list of gene-protein-reaction relations. 
Ultimately, these relations help establish 
constraints on the magnitude, direction  
and catalytic resource needed for the 
network of metabolic reactions. Flux 
balance analysis of GSM models (Fig. 1a) 
aims to quantify the flow of metabolites 
through these networks under different 
environmental and genetic constraints1. 
However, such analysis does not account 
for the fact that the reaction flux of an 
enzyme inside a cell (in vivo) is ultimately 
constrained by its catalytic capacity, 
defined as the product of the intracellular 
concentration and the catalytic turnover 
rates (kcat) of the enzyme. Imposing enzyme 
constraints in GSM models (Fig. 1b) can 
be very informative for recapitulating 
important metabolic attributes such  
as maximum growth characteristics, 
metabolic shifts and proteome reallocations2 
using flux balance analysis calculations.  
In the absence of enzyme capacity 
constraints, all reactions are allowed  
to reach their stoichiometrically  
allowable limits, without accounting  
for the trade-offs organisms need to 
establish under different physical and  
energy constraints.

However, to date, genome-wide 
availability of in vivo kcat values is  
lacking, even for well-studied organisms. 
Now, writing in Nature Catalysis,  
Eduard J. Kerkhoven and colleagues 
established a deep learning framework 
(DLKcat, Fig. 1c) to estimate the kcat  
values of metabolic enzymes for any 
organism of choice2. The ability to  
predict kcat values (even with a certain  
level of approximation) can facilitate  
the automated construction of enzyme- 
constrained GSMs, especially  
for non-model organisms.

Earlier efforts for constructing 
enzyme-constrained GSM models3 relied 
on tabulated values from databases such as 
BRENDA and SABIO-RK. In most cases, 

organism-specific values were absent and 
thus were adopted from those of other 
organisms4. Alternatively, Heckmann 
et al5. trained regression models to predict 
enzyme turnover numbers from several 
hand-picked features spanning an enzyme’s 
network context and biochemical and 
structural properties. However, owing to the 
requirement of several detailed features, this 
method was only trained on a few hundred 
Escherichia coli enzymes and hence had 
limited adaptability to other under-studied 
organisms. In DLKcat, Kerkhoven and 
colleagues used a representation-based 
learning approach to automatically extract 
underlying features in the input data 
relevant for kcat prediction. In this approach, 
the enzymes’ amino acid sequences and the 
structures of their corresponding substrates 
are discretized into sets of sequence words 
and substrate substructures (Fig. 1c),  
respectively, similar to a previously 
described procedure2.

Each discrete word and substructure 
hence created is assigned a unique vector 
of real numbers, called an embedding6. 
The mathematical representations for 
enzyme and substrate features are then 
obtained by combining the embeddings of 
the comprising words and sub-structures 
using a convolutional neural network and 
a graph neural network for each enzyme 
and substrate, respectively. Obtained 
representations are then input into a fully 
connected neural network layer to predict 
kcat values. The resulting neural network 
architecture, DLKcat, was trained iteratively 
using the training data curated by collating 
all available kcat values in the BRENDA 
and SABIO-RK databases summing up to 
16,838 data points. During training, both 
the weights of the neural networks and the 
embeddings are updated to minimize the 
root mean squared error (r.m.s.e.) between 
the predicted and true kcat values for all 
enzyme–substrate pairs in the training data. 
The resulting model trained on this data 
accurately predicted kcat values with a r.m.s.e. 
of 1.06 in log10 scale when evaluated on an 
unseen test dataset (the evaluation gave a 

Pearson’s correlation coefficient of r = 0.71). 
This is quite an achievement given that kcat 
values span a range of up to 10 to 14 orders 
of magnitude.

However, it is important to stress that the 
predicted kcat values are only approximate 
in nature. Given that the correlation 
agreement was achieved for a log-based 
scale, the predicted values could be off 
by an order of magnitude or more when 
establishing upper limits of reaction fluxes. 
The advantage, however, is that using this 
tool, one can readily impose constraints on 
almost all enzymes of GSM models. Upon 
estimating a value for kcat, the stoichiometric 
matrix of the model is updated to yield 
constraints of the form ν ≤ kcat [E] for each 
enzyme-catalysed reaction (Fig. 1b).

As training data for the model are based 
on in vitro experiments, the researchers 
further developed a Bayesian framework7 
that can estimate in vivo-like kcat values 
starting from the DLKcat predicted kcat 
values by minimizing the distance between 
the predicted and experimentally observed 
growth data. The researchers put forth 
DLKcat and the Bayesian framework, 
together, as an automated and convenient 
enzyme-constraint-based GSM (ecGSM) 
reconstruction pipeline, DL-ecGEM. Using 
DL-ecGEM, the researchers demonstrated 
80% coverage of enzymes for kcat values to 
define constraints for 90% of the enzymatic 
reactions for a set of 343 yeast/fungi 
species. In comparison, previous ecGSM 
models4 only covered kcat values for 40% 
of enzymes and generated constraints for 
60% of annotated enzymatic reactions 
for the same set of species. In summary, 
DL-ecGEM is a convenient pipeline for 
reconstructing enzyme-constrained GSM 
models with near-complete coverage for any 
genome-sequenced organisms.

In addition to predicting kcat values, the 
current work showcases the advantage of 
attention weights derived from the neural 
network to identify regions of enzyme 
sequence that have the highest impact 
on catalytic activity. This capability can 
be further extended to identify specific 
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amino acid residues that could potentially 
cause drastic changes in the kcat value of 
any given enzyme. Amino acid residues 
identified as such can be modified to 
aid enzyme engineering efforts. Recent 
applications in deep learning for structure 
generation, such as the AlphaFold2 (ref. 8), 
promise genome-wide prediction of protein 
structures at angstrom-level accuracy. 

Although embeddings of the amino acid 
sequence words alone have proven to 
calculate accurate enzyme representations 
for kcat prediction, using structural features 
could potentially boost the model’s accuracy 
and interpretability, as demonstrated for 
similar applications9.

One limitation of DLKcat is that it  
only incorporates the features of one primary 

substrate in the model, leaving cofactor/
ion-dependent and/or non-unimolecular 
reactions approximately described. Also, 
enzyme turnover numbers are known  
to vary by orders of magnitude owing to 
variations in the experimental conditions 
such as pH and temperature, which is beyond 
the scope of DLKcat. As in all such studies, 
there is always the potential danger of 
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Fig. 1 | Machine learning aided enzyme constraint-based genome-scale modelling framework. a, Genome-scale metabolic (GSM) model formulated with 
mass and flux balance constraints. Sij is the stoichiometry of the ith metabolite in the jth reaction, and vj is the metabolic flux of the jth reaction. LB and UB 
are the lower and upper bounds, respectively, for the reaction fluxes. b, Enzyme-constrained GSM model formed by adding additional enzyme entries to 
the stoichiometric matrix using kcat values obtained from the DLKcat neural network model. For each enzyme, p, ep denotes its usage, and Ep denotes its 
maximum possible usage. c, DLKcat uses the enzyme sequence and substrate structure as inputs and encodes them into mathematical representations 
using convolutional and graph neural networks, respectively. The final representations are combined using a fully connected layer to output kcat values. GPR, 
gene–protein–reaction.
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introducing systematic biases due to  
the over-representation of well-studied 
organisms in the training datasets. Hence,  
any extrapolation of results for other 
organisms and enzymes needs to be 
cautiously executed. ❐
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