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1. Introduction

The homogeneous Sobolev space L™P(R™), consists of all functions F : R” — R
whose distributional partial derivatives of order m belong to LP(R™). We define the

L™P(R™) seminorm by

P llmner) = max 0°F sy (F € L™ (R").

Given a Borel regular measure g on R™, let LP(du) be the space of Borel measur-

able functions g : R — R with finite norm ||g|lzr(a) = (Jgn 9(x)dp) Y7 o 0. Let
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L™P(R™) 4+ LP(du) be the space of Borel measurable functions f : R™ — R with finite
seminorm

. 1/p
”f”L"L*p(R")'FLP(dH) = f1+1I}2f:f {||f1||1£nl,p(Rn) + ||f2||1£p(du)} < 0.
We consider the topic of nearly optimal decomposition of functions in this sum space.
Precisely:

Question 1. Can we construct a linear operator T : L™P(R™) + LP(du) — L™P(R™)
satisfying || T f|l Lm.e @y +f =T fll v auy < Cllf Il Lmr®n)+Lr(dp), where C is independent

of f?
Question 2. Can we estimate || f| pm.»®n)4Le(dp) ¢

We answer these questions with our first theorem. Let C]”.(R™) denote the space
of all functions F' : R™ — R with continuous derivatives up to order m. The function
space C™(R™) consists of functions with continuous, bounded derivatives up to order
m, with norm: || F'[|gm®nr) = MaX|q|<m SUP,crn {|0“F ()|} Let P denote the space of
real-valued (m — 1) degree polynomials on R™. For K C R™, a Whitney field on K is

a tuple of polynomials (P,),cx with P, € P for all € K. The space of Whitney fields
on K is denoted by

Wh(K):={P: P = (Py)sex, P, €Pforallz € K}.

If F is a C™ !-function defined on a neighborhood of a point y € R™, then we write
Jy(F) (the “jet” of F at y) for the (m — 1)™* degree Taylor polynomial of F at y.

If n < p < oo, then the Sobolev embedding theorem implies that L™P(R™) C
O (R™). We define a semi-norm on Whitney fields, S e Wh(K),

||§HL’V‘rl,p(K) = lnf{”FHL”m,p(]Rn) . F c Lm7p(Rn), Jw(F) = SI fOI‘ 3411 T € K} (1.1)

By definition, if there does not exist F' € L™P(R"™) with J,(F) = S, for all z € K, then
1Sl Lo 20y = +o00.

Below, we write Cl(X) to denote the closure of a subset X C R", and we write
supp(p) C R™ to denote the support of a measure p.

Theorem 1. Let p be a compactly supported Borel reqular measure on R™, m € N, and
n < p < oo. Then there exists a linear operator T : L™P(R™) 4+ LP(du) — L™P(R™) and
a map M : L"™P(R™) 4+ LP(du) — R satisfying for all f € L™P(R™) + LP(du):

I fllzme®eysre(@uy < NTfllome@ny + 1TF = fllzepy < C - I fllome®n)+oodp);
e Mf <|Tfllpmewn) + I Tf = fllrn < C-Mf; and
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£ = (15 ey + 3 ([ 16107 )~ fled+ (7)) (1.2)

LeN Ap

where K C Cl(supp(p)), S : L™P(R™) + LP(dp) — Wh(K) is a linear map, and for
each ¢ € N, Ay C supp(p) is a Borel set, (o : L"™P(R™) + LP(du) — LP(du) and
Yo : L™P(R™) + LP(du) — R are linear maps. The constants ¢ and C' depend on m, n,
and p but are independent of f and p.

We introduce the notion of constructibility in Theorems 3 and 4 to further describe
the structure of the operator T" and map M.

As an application of Theorem 1, we construct a linear extension operator from the
trace space L™P(FE) (E C R™ arbitrary) to L"™?(R"™) for p € (n,00). Let
(X(R™), || - [lx(rn)) be a complete semi-normed linear space of continuous functions. For
E C R"™, let X(F) be the space of restrictions to F of functions in X(R"™), equipped with
the trace semi-norm:

X(E):={f: E—=R:3F e X(R"), Flg = f}, with
Hf”X(E) = 1nf{||F||X(Rn) : F (S X(Rn) and F|E = f}

A function F': R™ — R satisfying F|g = f is an extension of f. A linear map T' : X(E) —
X(R™) satisfying T'f|p = f and || T f[x®») < C||flx(E), where C is independent of f,
is a bounded linear extension operator. We pose the following questions about the trace
and extension problems in X(R"):

Question 3. Given E C R"™, does there exist a bounded linear extension operator T :
X(E) — X(R") satisfying Tf|x = flo and |Tflx@e) < Cllfllxce) for all f : E — R,
where C is independent of E and f?

Question 4. Can we estimate | f|x ) ?

For X(R™) = L™P(R"™), n < p < oo, and E arbitrary, C. Fefferman, A. Israel, and
G.K. Luli prove the existence of a bounded linear extension operator, as in Question 3,
n [13] and [12]. When F is finite, they introduce the concept of assisted bounded depth
to describe the structure of the operator T and they give an approximate formula for
the trace norm || f||x(g) in this case. When FE is arbitrary, they prove the existence of a
bounded linear extension operator 1" by taking the Banach limit of operators extending
f from a sequence of finite subsets of E. Consequently, their extension operator T' loses
all of its structural properties when FE is arbitrary. To prove Theorem 2 below, we
provide a direct construction of a bounded linear extension operator T, valid when E
is arbitrary. In Theorem 5, we describe the structure of the extension operator and an
approximate formula for the trace norm through the notion of constructibility, which is a
generalization of the notion of assisted bounded depth to the setting when F is arbitrary.
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The question of optimal decomposition in the sum space L™P(R™) + LP(dp) can be
phrased as the problem of approzimate extension and interpolation in Sobolev spaces, a
topic of independent interest. Suppose an experimenter collects data defining a function
f: E — R (E finite). Rather than assume f is the restriction to the set E of a func-
tion in the space L™P(R™), we assume f lies near a function in the space L™P(R™).
Let the function p : E — [0, 00] represent the confidence in data collected; where the
experimenter has high confidence in the data, we expect u to be very large, and where
the experimenter lacks confidence, we expect p to approach 0. Then we wish to estimate

inf - ANE ey T Y 1F (@) = f(@)Pule)} (1.3)

FeL™r(Rn)
€ ( zel

(subject to the convention that if |F(z) — f(z)| = 0 and p(z) = oo, then |F(x) —
f(@)Pu(z) =0- 00 =0), and to construct a function T'f € L™P(R™) satistying,

ITF 1o ey + Y TS (@) = f ()P ()
xeR
<C- inf F F(x p .
<c. inf o Al \|WR”)+$€ZE| (@)[Pp()}

In this setting, we can interpret Theorem 1 as giving a construction for a near-optimal
approximate extension T f of the function f subject to the confidence, represented by p,
and an approximate formula for the optimal value of (1.3). When p : E — R is defined as
u(x) = oo for all x € E, the expression (1.3) is finite only if F|g = f (i.e., F is an exact
interpolant of f on E). This problem then encompasses the problem of interpolation in
Sobolev spaces, which was studied by Israel, Luli, and Fefferman in [14], [15], and [16].

We use Theorem 1 to construct a bounded linear extension operator for L™P(R™)
(n < p < o0): Let E CR" be a bounded Borel set, and f : E — R be Borel measurable.
Define a Borel measure ug on R™ so that, for all Borel sets A C R"™,

(1.4)

if ANE # 0,
uE(A)z{oo ifANE #

0 ifANE=10.

We apply Theorem 1 to the measure pg to produce a linear operator 1" and map M. We
make a few observations. We shall identify f : £ — R with a function on R™, using its
extension by zero. First, note that f € L™P(E) if and only if f € L"™P(R") 4+ LP(dug);
furthermore, || f||Lm.»(gy = | fllLmp(®RP)+Lr(dpp)- We also have that || F||pm.»gny + || F —
fllLr(dpr) is finite if and only if F' € L"™P(R™) and F' = f on E, and in this case we have
| F" = fllzr(dpg) = 0. Therefore, the map T": L"™P(R™) + LP(dug) — L™P(R™), given in
Theorem 1, is a bounded linear extension operator on the trace space L™?(E). Further,
because pp({z}) = oo for x € E, M f is finite if and only if (,(f) — f =0 € LP(dug) for
all £ € N. Consequently, by applying Theorem 1, we obtain the following result:
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Theorem 2. Let E C R™ be a compact set, m € N, and n < p < co. There exists a
bounded linear extension operator T : L"™P(E) — L™P(R™) and a map M : L"™P(E) —
R satisfying for all f € L™P(E),

Tf=fonFE
[ fllzme ) S NTflleme@ny < C - || fllomee);
c-Mf<|Tfllgmpmny <C-MFf; and

Mf = (Y 1D IS mmirey) 7

LeN

where K ¢ E, § : L™P(E) — Wh(K) is a linear map, and for each { € N, 1, :
L™P(E) — R is a bounded linear functional. The constants ¢ and C depend on m, n,
and p but are independent of f and E.

Given a real normed linear space X, we denote the dual space of X by X* := {f : X —
R : f is a bounded linear functional }.

When F is finite, Fefferman, Israel, and Luli [13,12] introduce the notion of assisted
bounded depth to describe how the values of their extension and its derivatives up to
order m — 1 rely on a collection of linear functionals contained in L™P(E)*. Below, in
Theorems 3 and 4, we express the operator T and the map M through a collection of
functionals in (L™P(R™)+ LP(du))* whose supports have bounded overlap, generalizing
the notion of assisted bounded depth to the setting of the optimal decomposition problem
(Questions 1 and 2). In Theorem 5, we translate this to the setting of the extension
problem (Questions 3 and 4), where the operator T' and the map M can be expressed
through a collection of functionals in L™ (FE)* whose supports have bounded overlap.

Recall the support of a functional w € (L™P(R™) + LP(du))* is defined as

E is open, and for all f € L"™P(R"™) + L?(du) ¢
satisfying supp(f) C E, w(f) =0. .

supp(w) = (U {E CR™:

We write | S| for the cardinality of a set S. A collection IT of sets has A-bounded overlap

(A > 1) provided that [{m € II: x € 7}| < A for all . With this notation, we now state
the refined version of Theorem 1:

Theorem 3. The linear operator T and map M in Theorem 1 can be chosen to be
Q-constructible, in the following sense:

There exists a collection of linear functionals Q = {w, }rer C (L™P(R™) 4+ LP(dp))*,
such that the collection of sets {supp(w.)}rer has C'-bounded overlap, and for each x €
R™, there exists a finite subset T, C Y and a collection of polynomials {vy z}rey, C P
such that |T;| < C and
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J.Tf = Z wr(f) - Uy g (1.5)

reY,

Recall that the map M is defined in (1.2) in terms of linear maps (Co)een, (¥e)een,
and § = (Sz)zek - Then the following holds:

(1) For each £ € N and y € supp(u), there exists a finite subset T&y C Y and
constants {nﬁ,y}seﬂ,y C R such that |Yy,| < C, and the map f > Co(f)(y) has the form

CHw) =Y nby-ws(f).

sETz,y

(2) For each ¢ € N, there exists a finite subset Yo C Y and constants {nﬁ}se'fe CR
such that | Y| < C, and the map 1, has the form

Ge(f) = D mews(f):

(3) For y € K, there exist {w; }aem C Q satisfying for all a € M, supp(wy) C {y},
and the map f +— Sy(f) has the form

where {Va }aem 8 a basis for P.
The constants C and C' depend on m, n, and p but are independent of [ and p.

When p is a finite measure (i.e., u(R™) < oo) the formulas for M and T are simpler.
Precisely,

Theorem 4. Let p be a finite Borel reqular measure on R™ with compact support. Then
the map M : L™P(R™) 4+ LP(du) — R in Theorem 1 satisfies:

K
Mf=(3 (A/ () = FPdn+ el P + oe(HI ) )7
{=1

where for each £, Ay C supp(p) is a Borel set, ¢ : L™P(R™) + LP(du) — LP(du), and
e : L™P(R™) + LP(dp) — R are linear maps. Further the collection Q@ C (L™P(R™) +
LP(dp))* used to express M and T in Theorem 3 consists of a finite collection of linear

functionals.

As promised, we next adapt the notion of constructibility to describe the structure of
the linear extension operator in Theorem 2.
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Theorem 5. The linear operator T in Theorem 2 is Q-constructible. Precisely, there exists
a collection of linear functionals Q = {w,}rex C L™P(E)*, such that the collection of
sets {supp(w,.) }rer has C’-bounded overlap, and for each x € R™, there exists a finite
subset T, C Y and a collection of polynomials {vy z}rev, C P such that |Y,| < C and

TTf =" w(f) vra (1.6)

reY,

And the map M in Theorem 2 is Q-constructible:
(1) For each £ € N, there exists a finite subset Y, C Y and constants {nﬁ}seﬁ CR
such that |T¢| < C, and the map ¥, has the form

(2) Fory € K, there exist {wg }aem C Q satisfying for all o € M, supp(wy)) C {y},
and the map f — Sy(f) has the form

where {vq }aem is a basis for P.
The constants C and C' depend on m, n, and p but are independent of f and E.

Let E C R™ be finite. A linear map which is Q-constructible as defined in (1.6) has Q-
assisted bounded depth (see [13] for the definition of assisted bounded depth operators).
Consequently, the extension operator we construct in Theorem 5 has the same good
structural property as the extension operator in Theorem 3 of [13] when E is finite.

A pair of complete semi-normed spaces (A, B) is said to be compatible if there exists
a Hausdorff topological vector space ¢ into which both A and B can be continuously
embedded (see [3], p. 153). For a compatible couple (A, B), the sum A + B is the set of
elements f € # that can be represented as the sum, f = f; + fa, of elements f; € A
and fo € B. Under the norm || f||a+p = inf 4 f,—f{|| filla + | f2]| B}, A+ B is a complete
semi-normed linear space. We can generate interpolation spaces for the couple (A, B)
via the real method, by calculating the K-functional:

K(t:f: (A B) =if{[fila+t-|fol:f=fi+f}
The Banach couple, (A, B), is C, K -linearized if there exists a constant C' independent
of t such that for all ¢ > 0, for all f € A+ B, there exists an almost optimal decomposition
f = Ft + F, where F{, F} depend linearly on f:

|F{lla+t|F3lls < C- 1 flktf:(a,B)-
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The pair (L™P?(R™), L?(dp)) is a compatible couple, and

I £l L R )+ Lo (dp) < K(l; [ (L™P(R™), Lp(dﬂ))> S O fllmp®m)+Lr(dp)s

where C' = C(n, p).
Furthermore,

I fllme ®ey+Lptrdp) < K(t; I (Lmﬁp(R"),LP(du))) S O fllpmr ®r)+Lr tpdp) s

where C' = C(n, p).
Theorem 1 immediately implies:

Theorem 6. Let p be a compactly supported Borel reqular measure on R™. Then the
Banach couple (L"™P(R™), LP(du)) is C, K -linearized, with C independent of p.

1.1. Background

P. Shvartsman considered Questions 1 and 2, providing a solution when p is a o-finite
Borel measure, m = 1, and p € (n, 00) in [22].

H. Whitney gave an answer to Questions 3 and 4 for the function space X(R"™) =
C™(R™) in the case n = 1 ([25]). For w € (0, 1], the space C™*(R™) consists of C"(R"™)
functions with w-Hélder continuous m" order derivatives and finite norm:

LaEL L0

|z —yl|«

||F||Cm’W(]Rn) = ||FHcm(]Rn) + max sup
lal=m g yeRn z7y

Fefferman solved Questions 3 and 4 for X(R") = C™(R™) and X(R"™) = C™“(R") for
m,n € N, and w € (0,1] in [7], [8], [9], and [10]. His work built on theory developed by
G. Glaeser, Y. Brudnyi, Shvartsman, E. Bierstone, P. Milman, and W. Pawlucki in [19],
[4], [5], and [1]. Fefferman considered questions of approximate extension and utilized
this relaxation of the extension problem in the spaces C™(R™) and C™%“(R") in [6-8]
and [11], and in his work with B. Klartag in [17] and [18].

For X(R™) = L™P(R"™), Shvartsman used the classical Whitney extension operator to
answer Questions 3 and 4 for p € (n,00) and m =1 in [21]. Israel [20] and Shvartsman
[23] independently answered Questions 3 and 4 when m = 2, n < p < oo, and F is finite.
Fefferman, Israel, and Luli extended the method of [20] to m € N, n < p < oo in [13]
and [12]. However, they describe structural properties of the extension operator T only
for finite £ C R™.

1.2. Owerview of the proof of Theorem 1

Let u be a Borel regular measure satisfying that supp(u) C @ for a cube Q C R™.
In order to construct a linear operator approximately extending a function from the
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support of u, we study the freedom we have to define a Sobolev function at each point
of @. In light of the Sobolev embedding theorem on L™P?(R™) for p > n, we can study
the set of prospective (m — 1)-jets of approximate extensions and utilize the inductive
framework introduced by Fefferman in [7]. We define _#-functionals to encode how well
a Sobolev function approximates a function f : L™P(R™) + LP(du) — R in terms of
the measure . When the measure p is finite, each step of the induction utilizes a finite
Calder6n Zygmund (CZ) decomposition of @ that identifies cubes where we can use the
inductive hypothesis to solve the approximate extension problem locally. Then we can
use the techniques of Israel in [20] and Israel, Luli, and Fefferman in [13] to ensure global
compatibility of these local solutions and patch them together.

When the measure p is not finite, the CZ decomposition need not be finite, implying
there is a subset of @) we call keystone points where we cannot use an inductive hypothesis
to produce a local solution. How can we define an approximate extension on this set so
that we produce a Sobolev function on ()7 This is a new problem for extension in Sobolev
space, though Whitney navigates the boundary between an infinite decomposition and
its complement in his C™ extension theorem in [25]. In Section 4.2, we identify the
set of keystone points K, and consider its properties. In Section 6.3, we show how the
measure / restricts a prospective approximate extension on K, relying on a new estimate
(Lemma 5.2). Then we use a Sobolev function to define an approximate extension on K,
that is compatible with the extension defined on the CZ cubes. In Section 5.3.2, we show
that this function defined piecewise on K, and the CZ cubes is, in fact, a function in
L™P(Q) through a characterization of Sobolev space due to Brudnyi in [2]. This follows
the work of Shvartsman in [21], who used [2] to give an intrinsic characterization of the
trace space LV'P(E) for E C R™. In Sections 8-10, we establish that the constructed
approximate extension is optimal using properties of the map M : L™ (R™)+ LP(du) —
R in Theorem 1.

2. Notation and further theory
2.1. Notation

Fix integers m,n > 1 and a real number p > n. Unless we say otherwise, constants
written ¢, ¢/, C, C’, etc. depend only on m, n, and p. They are called “universal” constants.
The lower case letters denote small (universal) constants while the upper case letters
denote large (universal) constants. Given a parameter £, we write ¢(£), C(§), etc., to
denote constants depending only on m,n,p, and £.

For non-negative quantities A, B, we write A ~ B, A < B, or A 2 B to indicate that
¢cB < A< CB, A< CB,or A > ¢B, respectively, for universal constants 0 < ¢ < C.
Given a parameter &, we write A ~¢ B, A <¢ B, or A Z¢ B to indicate that ¢(§)B <
A<C()B, A< C(&B, or A > c(£)B, respectively, for constants 0 < ¢(£) < C(£).

When ¢, is an indexed family of functions, an expression of the form 0%, (y) will
always mean 9%y, (2)|,=y, and never 03¢, (2)|.=y
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A cube Q C R” is a set of the form:
Q=a+(-6,8" (a€eR™ds>0).

The sidelength of @ is denoted d¢ := 26, while the center of @ is denoted ctr(Q) := a.
For v > 0 let vQ be the cube having the same center as () but with sidelength vdg. A
dyadic cube @ C R™ has the form:

Q= (125 (1 +1) 2] x (j2- 2%, (o + 1) - 2] x - -
X (jn 2%, (G + 1) - 2], (j1,dos-- - Jn €Z, kK€ Z).

To bisect a cube @@ C R™ is to partition it into 2" disjoint subcubes of sidelength %5@.
These subcubes are called the children of Q. If @ C Q' are dyadic cubes we say that Q'
is an ancestor of Q. Every dyadic cube @ has a smallest ancestor called its parent, which
we denote by Q.

A rectangular box in R" is a set of the form R = H?:l I;, where each I; C R is an
interval of length d; > 0. We refer to d1,...,d, as the sidelengths of R. If the sidelengths
of R differ by at most a constant factor n > 1 (i.e., §; < nd; for all ¢,5), then we say R
is n-non-degenerate.

We use the following notation:

2] = [2]oo = max{jzal, .., |2} (&= (z1.....20) € RY):
dist(z, Q) ;= inf{|z —y| : y € Q} (QCR", zeR");
dist(Q, Q) :=inf{|lz —y|: 2 € ¥, y € O} (2,9 CcR"™);
B(Q,R) := {z € R" : dist(z,Q) < R} (QCR", R>0);
diam(S) := sup{|jz —y| : z,y € S} (S CR™); and

(

|S| := cardinality of S S CR").
In particular, since we use the £*° norm on R”, we have diam(Q) = d¢ for any cube Q.

The analogous metric quantities defined with respect to the Euclidean norm |z|y =
(|w1|? +- - + |2,]?)/? are denoted by dista(x, Q), dista(Q',Q), Ba2(Q, R), and diamy(S).

Given a subset K C R", we write int(K) to denote the interior of K, and we write
CI(K) to denote the closure of K.

We write M for the collection of all multi-indices & = (a1, ..., q,) € Z™, with a; > 0
for all 4, of order |a| :== a1 + -+ o, < m — L. If @ and § are multi-indices, then d,3
denotes the Kronecker delta: dop = 1lif a = f;0ap =0if a# B. If a = (1,..., ) is
a multi-index, then ol := [T7_, ay!.

Let P denote the space of real-valued (m — 1)** degree polynomials on R™. Then P
is a vector space of dimension D := dim(P).

If Fisa C™~! function on a neighborhood of a point y € R™, then we write .J, (F) € P
(the “jet” of F at y) for the (m — 1)™* degree Taylor polynomial of F' at y, given by
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9“F(y)
al

Ty (F)(z) =Y

aeM

(z—y)"
For each x € R™, the jet product ®, on P is defined by

For z € R™, § > 0, define a norm on P:

1/p
|Plss = ( Z 10°P(2)|P - 5n+(|a\*m)p> (P eP). (2.1)
aEM

For 2’ € R™, we have the Taylor expansion

O%P(x) = Z i30‘+7P (Y- (z—2)" (o <m—1).

~!
[v|<m—1—]|a|

Thus, the norms defined in (2.1) satisfy the inequality
|Plps <C'|Plys (z,2 € R", |z —2'| <C9). (2.2)
And by computation, for §’ > 4,
|Plast < |Plas < (8'/6)™ /P |Ply.50. (2.3)

The homogeneous Holder space C™~11=7/P(R™) is the space of (m — 1)-times differ-
entiable functions F': R™ — R, with finite semi-norm,

O0“F(x) — 0“F
”F”Cmflvlfn/p(]gn) (= Inax sup | ( ) — (y)l
lal=m—1 4 ycR" 2y |z — ¥ P

Given a set K C R™, we let Wh(K) be the space of Whitney fields on K, namely, the
set of all collections of polynomials P= (Py)zek, where P, € P for all x € K.

Let p be a Borel regular measure on R™. For a Borel set S C R™, we define the
restricted measure p|s by pls(A) == p(ANS) for all Borel sets A C R™.

Write meas, (R™) for the vector space of all equivalence classes of y-measurable func-
tions f : R™ — R, with functions identified in an equivalence class if they agree on the
complement of a set of y-measure 0.

For a u-measurable function f : R™ — R, we define:

1/p
HF”j(f,u) = (”F”i””vP(R") + / |F— f|pdlu,) F e Lm,P(Rn) (24)
Rn

We remark that [|-|| 7 (y,,) is not anorm on L™P(R™). Rather, ||| #(y,.) is a [0, oo]-valued
functional on L™P(R™), satisfying the convexity condition,
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[MFL+ AP 7 fitxafo) < MIEL g (frm) + A2l 2] 7 (fo)-

We write ¢ (p) := L"™P(R™) 4 LP(dp) for the sum space defined in the introduction.
Then # (u) is a complete seminormed vector space. We can characterize the seminorm’
on this space using the functionals in (2.4):

J(p) == {f: f is p-measurable, and || f|| 7, < oo}, with

11 gy 1= 10 { 1P s (g : F € L™ (R},

Next, we introduce localized variants of the above functionals.
Let R C R™ be a rectangular box, and let 6 > 0.
Given F' € L"™P(R), a p-measurable function f, and P € P, we define

. o\ /P
1E Pl iy = (IF Wy + / [F = fPdu+ |F = Pl / diam(R)™) " and
R

1F, Pll g ey = inf{HF,PH/*(f,mR) Fe Lm,p(R)}. (2.5)

Given F € L™P(R™), a pu-measurable function f, and P € P, we define:

1/p
1E Pl a6y i= (IF sy + [ F = P+ [ = Pl gy /57) s and
Rn

1F, Pl g sy = inf{||F,P||/¢(f’m5) Fe Lm,p(Rn)}, (2.6)

These are [0, occ]-valued functionals on the spaces L"™P(R) x P, meas,(R") x P,
L™P(R™) x P, and meas, (R™) x P, respectively. We make use of the fourth functional
to define the seminormed vector space:

S (:0)={(f.P): f€ F(w), PEP, |If,Pll sus) < oo} (2.7)

Generally, #(u;96) is a subspace of _#(u) x P. Later, we will show that #(u;0) =
F (1) x P if supp(p) is compact (see Lemma 2.10).

We can make comparisons between the different localized functionals. First, immedi-
ately from the definitions, if diam(R) ~ ¢ and F' € L™P(R™), then

I Pl g, (rur) S N Pl g (5 ,u6)- (2.8)

Furthermore, the #(u;d) and _Z(f,u;6) functionals are monotone in § in the sense
that:

1 A seminorm on a vector space X is a [0, 00)-valued functional || - ||x on X satisfying the conditions:
Ifi + follx < \fallx + |1 f2llx, and |[Afllx = |Alllfllx for X € R. There is no requirement that ||f||x =
0 = f =0 for a seminorm.
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IF, Pl g (pm8) < NPl g (g60)
||f7P||/(/J;5) < ||f7P||/(,u;6’) (6 > 5,) (29)

2.2. Further elementary inequalities

The next result is immediate from the definitions of the ¢-functionals, due to the
sublinearity of the L™ P-norm, LP-norm, and LP(du)-norm

Lemma 2.1 (Sublinearity of ¢ -functionals). Let j1 be a Borel reqular measure on R™,
and let § > 0. Then [|-,-|| 7. 6y and ||, || #(us) are sublinear: Let f1, f2 be p-measurable
functions. Given Fy, Fo € L™P(R™), A\ >0, P, P, € P,

[ F1 4+ AF2, Py + AP || g (pynfouuss) < I1FL Pl g 5wy + A E2s P2l g (fo 80 and
(2.10)

1+ Ao, PL+ APl g sy < 115 Pl g sy + Allf2, Pall g (uso)- (2.11)

Our assumption moving forward is that n < p < oo, so we can apply the Sobolev
inequality on L™P(R™). We let U C R™ be a domain in R™. We shall consider the
setting where U is either all of R™, or the union of two n-non-degenerate rectangular
boxes with a common interior point. This includes, for instance, the case when U is a
cube, when n = 1.

Sobolev Inequality. (see [13]) For F' € L™P(U), there exists a constant C' such that

0% (y(F) = F) ()] < C |z — ™2 | Fll pmoyy (.y € Uila] <m —1)

If U = R", the constant C is determined by m, n, and p alone. If U is the union of two
n-non-degenerate rectangular boxes with a common interior point, then C' is dependent
on 7 as well. As an immediate consequence, we have for F' € L™P(U) and y € U,

|F 1y ()| v/ diam(U)™ < O F oo, (2.12)

Next we establish a relationship between the LP norm and the |- |, s norm of polyno-
mials.

Lemma 2.2. Let Ry and Ry be two n-non-degenerate rectangular boxes with a common
interior point, such that diam(R;) ~ diam(Rz) ~ §. Let U = Ry U Ry. Then for all
yeU and P P,

IPllew) /8™ =~y |P

Y,

Proof. Observe diam(U) < diam(R;) + diam(Ry) < C4, so the Lebesgue measure of U
is at most C9"™. We begin by writing the polynomial P in a Taylor expansion at the
basepoint y; then because for all = € U, we have |z — y| < diam(U) < Cd, we deduce
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P10 /677 = [ 1PG@)Pds/sm
U

_ / S 0°P(y) (@ — y)° /al g5

U aeM

< c/ > [0 P(y) s da /5P
aeM
< Z 16° P( ‘p(gn— —lapp
aeM

C(H|P)|y 6

where C,C’,C" are universal constants.

To show the reverse inequality, we may assume by rescaling and translation (z —
C-nz/d+4y') that y € Qo = (0,1]", Qo C Ry or Qg C Ra, and § = 7 in the statement
of the lemma. Without loss of generality, suppose y € R;. In light of (2.3), we have
|Plyn >y |Ply1. Because P is a finite dimensional vector space, all norms on P are
equivalent; in particular, we have |Pl, 1 =~ || P||1»(q,). Consequently

|Ply,n 22y [Py~ ||P||LP(Q0) S ||P||LP(U)/77m
proving the lemma. O
Lemma 2.3. Let U be the union of two n-non-degenerate rectangular boxes with a common
interior point, U = R1URy, such that diam(R;) ~ diam(Ry) ~ §. There exists a constant
C depending on m,n,p,n such that the following holds.
Letx €U, F € L"™P(U), and P € P. For || <m — 1,
0°(F = P)(@)] < C (IF |l zmo) + I = Pllpoy /™) 6™ 71070 (2.13)

If p is a Borel reqular measure on R™, and f : R™ — R is a u-measurable function,
then for F € L™P(U),

0°(F = P)(@)| < CIF, Pll_s.(rsa) + 1F. Pl g ()87 7117772, (2.14)
while for F € L™P(R™),
0%(F = P)(@)| < CIF, Pl g g0™ 117/, (2.15)
Proof. Let F' € L™P(U). To prove (2.13) we will show that

sup max |0“F (z)[s1 /P~ < C (|| F || oy + | F |l Loy /6™) - (2.16)

zelU aEM
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By replacing F' by F' — P in (2.16), we deduce (2.13).
By the Sobolev Inequality, and since diam(U) < 6, for any z,y € U, we have
(F = Jy(F)(@)] < CYIF| L ryd™ ™7,
and hence by integrating,
|F = Jy(F) ey < Csl|F||Lme@wyd™,

where C, and Cs depend on m, n, p, and n. If F|y = 0, then both sides of (2.16) are
zero, and the inequality holds true. Thus we may assume F'|y # 0.

For sake of contradiction, suppose (2.16) does not hold with a constant C' = A, for
A > 0 to be determined momentarily. Let y € U, 5 € M be the argument of

sup max [9%F (z)|§oI+n/p=m,
el aEM

Then
O F()[87+7/2=m > A (Pl sy + I oo /6™) (217)
Applying Lemma 2.2 to J,(F') and from the definition (2.1), we have
1y (Bl /8™ = 1y (F)lys = 107 F () |81/,
Consequently, there exists a universal constant ¢’ such that
1Ty ()| o) /6™ = & 10° (F) (y) |61/
Choose A > 1% Then from (2.17) and the Sobolev Inequality, we have

188 (F)(y)|o1PI+n/p—m

> 2O 1 mny + [l /™)

> 2 iy + Sl /87

> ”C 1By + 5 (W oo /67 = IF = y(F)laogen /™)
> ”C 1l sy + 5 (W) o) /6™ = Cull oo

> g”FHme(U) + |0 F (y)|s1PIHn/e=m,

This implies || F||m.r(y < 0, a contradiction. So (2.16) must hold, which implies (2.13).
Note that (2.14) follows from (2.13) and the definition of the J.(---) functional.
Finally, (2.15) follows from (2.8) and (2.14). O
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Lemma 2.4. Let Q be a cube, let u be a Borel reqular measure on R™ with supp(p) C Q,
let f:R"™ — R be u-measurable, let P € P, and let n € [.001,100]. Let 6 be a C*
function satisfying supp(6) C (1 +n)Q, 8lg =1, and |0%0(x)| < C(Sggla‘ for all |a| < m.

Let F € L™?((141)Q). Define F := 0-F+(1—0)P. Then F € L™?(R"), F|g = F|q,
and

I

Lrr@®) S NFlmrim@) + I1F = Pllorime) /96 (2.18)

IE, Pll g (tm60) S IE Pl g, (fs14m)Q)- (2.19)

Proof. Proof of (2.18): Note that F agrees with the (m — 1)*' degree polynomial P on
R™\ (1 +n)Q. Thus,

||F||Z£m,p(Rn) = ||F||ZL)m,p((1+,7)Q)

— n P

= IF = PlILmr1ina)

= NF = PVl 11ma)

N > 0%(F = P)(@)|” - |0°0(x)[Pda
(14m)Q lel+lBl=m

(2.13)

S ML ms 1) T IF = PlLoainae) /99"

Proof of (2.19): Note that F'—P =0 on R"\ (14+1)Q, F —P = 6(P —F) on (1+1)Q,
and F = F on Q D supp(x). Thus, we can use (2.18) to bound

1S P (fpi60) = ||FHI£W~P<<1+n>Q>+/|F_f|pd“+”F_P”Zip«lm)cz)/‘sgp
R~

(2.18)
S I imar * I1F =PI a5+ [ IF = P
]Rn

+10(F = P)ILo5my0) /90"

S ”F‘Iimap((l-i-n)Q) + / |F = flPdp + [|F — P||Ij'ip((1+n)Q)/5ng
Rn

O

. p
= ||F7P||/*(f,u;(1+n)Q)'

Lemma 2.5. Suppose Ry and Rs are n-non-degenerate rectangular bozxes, satisfying Ry C
Ry and diam(Ry) < ndiam(R,), for n > 1. For any P € P,

”P”Ll’(Rg) =n HP”LP(Rl)- (2.20)

Here, the constants in ~, depend on m, n, p, and 7.
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Proof. Let x € R;. By applying Lemma 2.2 for both U = Ry and U = Ry, and inequality
(2.3), for P € P,

||PHLP(R2) 517 diam(RQ)m|P|z,diam(Rz) gn diam<R1>m|P|m,diam(R1) Sﬂi ||PHLP(R1)’
and since Rl C RQ, also HP”Lp(Rl) S ||PHLp(R2), proving HP||Lp(R2) Zn ||PHLp(R1). O

Lemma 2.6. Suppose R1 and Rs are n-non-degenerate rectangular bozes, satisfying Ry C
Ry, forn > 1. For any H € L"™P(Ry) and P € P,

| H — Pl|1r(ry)/ diam(Ro)™ Sy (| H||Lmoe(ry) + |H — Pllpe(r,)/ diam(Ry)™. (2.21)
Here, the constants in S, depend on m, n, p, and 7.

Proof. Let * € R;. Repeatedly applying the triangle inequality, (2.3), (2.12) and
Lemma 2.2, we have

|H — P| 1o (r,)/ diam(Rz)™
<||H - J:cH”LP(Rz)/diam(RQ)m + || J.H — P||L,,(R2)/diam(R2)m
Sn [H| zmw(ry) + | JoH = Pllpo(r,)/ diam(R2)™
>~y | H| pmw(ry) + |JoH — Ple diam(r,)
< [|H]

Lmr(Ry) T [JoH — Pl diam(Ry)

~y |H | Lmr(ry) + |JoH = PllLo(r,)/ diam(Ry)™

S Hllpmw(ry) + 1 JoH — Hl| Lo (r,)/ diam(R1)™ + [|H = Pl|po(r,)/ diam(Ry)™
S [ H | zmw(roy + [ H | zmw(ry) + [ H — Pllpo(r,)/ dlam(R1)™.

completing the proof of (2.21). O

The next result is an immediate consequence of Stein’s Sobolev Extension Theorem
for minimally smooth domains (see [24]).
Sobolev Extension Theorem for Cubes [24]. Let @ C R™ be a cube. Let F € L™P(Q).
There exists a linear operator E : L™P(Q)) — L™P(R") satistying EF|g = F|g, and
|EF||Lmr®ny < C|[F||Lmr(q), where C is independent of m, n, p, and Q.

Lemma 2.7. Let Q C R™ be a cube and K C Q. Let S € Wh(K) satisfy ||§||Lm,p(1<) < 00.

Then ||§||Lm,p(K) ~ inf{||F||pmr): F € L™P(Q), Jo(F) =S, for all x € K}. Hence,
for all F € L™P(Q) satisfying J,F = S, for all x € K, we have

||§||mep(K) 5 ”FHLm,p(Q).
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Proof. Let €; > 0; then there exists Fy € L™P(R™) satisfying J,F} = S, for all z € K
and ||Fil[pme@ny < ||§|\Lm,p(K) + €1. By restricting F; to @ and letting ; — 0, we
deduce inf{||F|pm»q) : F € L™P(Q), J(F) = Sy forallz € K} < ||§|\Lm,p(K).
Let €2 > 0; then there exists G € L™P(Q) satisfying J,G = S, for all z € K, and
|Gl Lm @y < If{||F||mr(q): F € L™P(Q), Jo(F) =S, forall z € K}+e. Applying
Stein’s extension operator to G, we deduce

1Sl (i) < NEG]| Lmop®r)

< ClGllLmr (@)
<inf{||F|lpmyq) : F € L™P(Q), Jo(F) =5, forall z € K} + €.

Letting eo — 0, we have ||§||Lm,p(K) S inf{||Fllgmr) : F € L™P(Q), Jo(F) =

~

S, for all z € K}, proving the lemma. O

Lemma 2.8. Let Q C R™ be a cube, let pu be a Borel regular measure on R™ with supp(p) C
Q, let f:R™ = R be p-measurable, and let P € P. Then

155 Pll sy = W5 Pl g (uiog); and (2.22)
11 oy = jof ILf Pll g us)- (2.23)

Proof. Proof of (2.22): Given F € L™P(Q), we will show there exists F € L™P?(R")
such that Flg = F|g, and

HRP”/(]&M;&Q) ,S HFaP|‘/*(f7H;Q)' (224)

Define F := E(F), where E : L™P(Q) — L™?(R") is the Sobolev extension operator
for cubes, so F|g = F|g, and

IFllzmr10) < NFlpme@®ny S INFlLme@)- (2.25)

Let F:=0-F+(1— 0)P, where 0 is a C'*° function satisfying supp(6) C 1.1Q, 8]g =1,
and |0%0(x)| < Cdéla‘ for all || < m. Then from Lemma 2.4, we have F' € L™P(R"™) and
F=F=Fon Q@ 2 supp(p). Applying this, (2.19), (2.21) (with R; = Q, Ry = 1.1Q),

and (2.25), we have

2.19
p <
F(fsdg)  ~

— I g1 + / [P~ fPdu+ |F = Pl 1) /507
Rn

n i P
| F, Pl 1, Pl%,

(fp31.1Q)

(22'1) - . -
S NP magy + [ 1F = IPdi |F = Pl /33
R"L
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1Pl mruagy + [ 1P = fPdu+ |F = Pl /53

Rn
(2.25) ) ) .
S UF iy + [ 1= 7Pdi+ F = Pl /33
Rn

_ P
=I5 Py sy

This proves (2.24).
By definition of the _# (u; dg) functional, as an infimum, we have that |F, Pl 7 (fu:50)
> |1f, Pll g (uss) for any F € L"™P?(R™). Thus, from (2.24), we have for any F' € L™"?(Q),

||f7P||/(,U«76Q) 5 HF?PH(]*(ﬂH;Q)'

Taking the infimum over functions F' € L™P(Q), we deduce that

||faP||/(u;5Q) S ||f,P||f*(u,Q)

On the other hand, using (2.8), we take the infimum over functions F € L™P(R"),
implying that

inf F P . f kP
FGLE}P(R")” ’ H/(f”‘*‘;Q) FeLﬂlp R) I ”J (f::Q)»

deducing [|f, Pll s (usq) 2 1 Pll s (-
Proof of (2.23): Let « € Q; by (2.12), we have

{inf 1. Pll s}

= inf { mf {||F7P||/*(f,u;Q)}p}

PeP ~ FeLm
B Fez}’gf”(Q) { 1nf {”F P||/*(f7u;Q)}}
< inf F.J, p
B ' - — p mp
7F€L1’r"l'vfp<cz){”FHLm” +/|F fPAp +1IF — Jo(F)5 00y /907 }
<t . e
NFGLI,I,},,)(Q){H [ )+/| P
Q
< —
NFELM(Rn {||FHLT"~P<Q>+/|F flPdu)
Q
<117 -
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Let FF € L™?(Q) and P € P. Define F = EF, where E : L™P?(Q) — L™P(R") is
the Sobolev extension for cubes, so F|g = F|q and ||[F||zm.s®n) S [|F|lpme(qg)- Because
supp(u) € Q, we have

1F1s ¢y = F Wy + [ 1 = fPd
SNy + [ IF s

p
SIEPWy (4 p0):

Taking the infimum over F'€ L"™?(Q) and P€P, we have || f|| () Sinfper [|f, Pl 7. (1;q)-
This completes the proof of (2.23). O

Corollary 2.9. Let R be a n-non-degenerate rectangular boz, let u be a Borel measure with
supp(p) C R, let f : R™ = R, and let P € P. Then

HfaP”/*(u;R) =n ||f7P||/(u;diam(R))' (2'26)

Lemma 2.10. If supp(u) is compact,

H(;6) = J (1) x P.

Proof. Suppose supp(u) is compact. Then there exists Q C R™ such that supp( ) C Q

By definition, if (f, P) € / p;0) then (f,P) € #(n) xP. Suppose (f, P) € Z(u
we will show there exists F € Lm’p(R") such that | F, Pl g (f,u:6) < 00, 1mplymg (f, )

A (;0). Because f € _#(u), there exists ' € L"™P(R") such that [|[F'|| #(y,,) < co. Let
6 be a C*° function satisfying supp(f) C (1.1)Q, 0|g = 1, and |0%0(z)| < C’(%lal for all
la| < m. Define F':=0 - F + (1 — 0)P. Then from (2.18), F € L™?(R"), F|g = F|g,

||F7P‘|j(f,ﬂ;5Q) S ||F7P||/*(f7u§1<1Q)'

Consequently, for z € @), we apply (2.12) to deduce

||F7P||Z¢(f,u;5)
<(1+ 5mp/5mp)||p Pszf(f Q)

S+ 857 5P, o

—(1+ 53?/5mp)(||F\|Lm r1g) + / |F — flPdpu+ || F - Pllip(l,lQ)/f%p)
1.1Q

S W+ 857 /5) (IF W muagy + | 1= IPdit IF = TP 100/ 53"
1.1Q
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+ [|J.(F) = P|I}, 11Q)/6gp>

< (405715 (1 11y + / [F = [Pdp+ | To(F) = Pl 1)/55")
1.1Q

S (45715 (IFIP gy +102(F) = Pl 1)/067) < o0, D

2.2.1. Characterization of Sobolev space by local polynomial approximation

Definition 2.1 (Packing). Let Qo C R™ be a cube. A collection of cubes 7 is a packing
of @y provided the following conditions hold:

1. Q C Qo forall Q €.
2. int(Q) Nint(Q’") = O for all distinct Q, Q" € .

We write II(Qp) to denote the collection of all packings of Q.
Definition 2.2 (Congruent §-packing). Given a cube Q@ C R™, we say 7 is a congruent

0-packing of @ if it is a finite set of disjoint cubes of equal sidelength, ¢, contained in Q.
Let

II.(Q) := {m : 7 is a congruent d-packing of @, d < dg},

Definition 2.3 (Polynomial Approzimation Error). Given F € L} (R™), and a measur-
able set, S C R", we define the local approximation error of F' for S as

FE(F, = inf ||F — P||r»
(F,S) IyelpH lzr(s)

In [2], A. Brudnyi characterizes Sobolev Space with the following result (Theorem 4
of Section 4):

Proposition 2.11 (Brudnyi, A. Yu.). Let F' € LP(Q). Suppose there exists A > 0 such
that

sup (557”{ Z (E(F,Q))p} <A

WGH:(Q) A

Then F € L™?(Q), and ||F||pmo@) S A

If 7 is a congruent d-packing of @ then d5 < d¢ for all Q € . Therefore, we obtain
the following corollary of Brudnyi’s result:
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Corollary 2.12. Let F € L?(Q). Suppose there exists X > 0 such that

s {3 (BR.Q) g} <

WGH:(Q) QETF
Then F € L™P?(Q), and HF”L""”’(Q) SA

2.2.2. Consequence of the classical Whitney extension theorem

Lemma 2.13. Let F' : Q — R, and suppose there exists a Whitney field Pe Wh(Q) and
a constant A > 0 satisfying Py(z) = F(z) for all x € Q and |Py — Pyly jz—y| < A for all
T,y € Q.

Then F € C™=b1=1/P(Q), J,F = P, for all x € Q, and

[Ellem-11-n/p(qy < CA,
for a constant C' determined by m,n,p.

Proof. Observe that the condition |P, — Pyly z—y < A (z,y € Q) implies that the
Whitney field P satisfies the hypothesis of the classical Whitney extension theorem (see
[19], [24]) for C™~1% o =1 —n/p. Thus, there exists a function G : R™ — R such that
|Gllcm-1.0@ny < CA, J.G = P, for all x € Q. In particular, G(x) = J,G(x) = Py(z) =
F(z)forall z € Q. Hence, F = Glg € C™ 1%(Q) and || F||cm-1.0(q) < [|G|lcm-1.0rn) <
CA. Meanwhile, because F' = G on @, we have J,F = J,G =P, forallz € Q. O

3. Structure of the proof

Here we will take first steps toward the proof of Theorems 1 and 3. We will state the
Extension Theorem for (u,d), whose proof will occupy much of the remainder of this
paper. In Section 11. we will show that Theorems 1 and 3 follow from this result.

3.1. Plan for the proof

Let p be a Borel measure on R™ with compact support and let § > 0. We will prove
the following theorem:

Proposition 3.1 (Extension Theorem for (u,9)). Suppose diam(supp(u)) < 0. There exist
a linear map T : _Z(pu;0) — L™P(R™), a map M : 7 (u;0) = Ry, K C Cl(supp(n)),
a linear map S F(n) = Wh(K), and countable collections of Borel sets {As}ien C
supp(), and of linear maps {¢e}oen, ¢e: F(1;0) = R, and {Ne}oen, Ao F(p;0) —
LP(dp), that satisfy for each (f, Po) € 7 (1;9),
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() If, Poll #usy < NT(f5 Po)s Poll g (fs) < C - Ifs Poll g (o) (3.1)
(i) c- M(f, Py) < ||T(f’ Po), Poll g (f,us) < C - M(f, Fo); and (32)
1/
(iii) M(f, Po) = /W f2Po) = flPdp+ Y |oe(f, Po)l” + IS(f Mmoo (5 ) "
e, ¢eN
(3.3)

The map T is Q' -constructible in the following sense:

There exists a collection of linear functionals ' = {ws}ser C _Z(n)* such that
collection of sets {supp(ws)}ser has C-bounded overlap, with supp(ws) C supp(p) for
each s € Y. Further, for eachy € R"™, there exists a finite subset T, C T and a collection
of polynomials {vs y}scr, C P such that |T,| < C and

T(fv PO) = Z Ws(f) “Vsy T ‘:)y(PO)a (34)

seTy,

where Wy, : P — P is a linear map.

Further, the map M is Q' -constructible:

(1) For each £ € N and y € supp(u), there exists a finite subset Tg’y C T and
constants {nﬁ,y}seﬁ,y C R such that | Yy ,| < C, and the map (f, Po) = Me(f, Po)(y) has
the form

fvPO Z nsy S +Xy,Z(PO)7

SETLy

where nyg :P = R is a linear functional.
(2) For each ¢ € N, there exists a finite subset Yo C Y and constants {nﬁ}seh CR
such that | Y| < C, and the map ¢y has the form

f7P0 Zns w9 +X€(P0)a
seT,

where Ay : P — R is a linear functional.
(3) Fory € K, there exist {wy }aem C ' satisfying for all a € M, supp(wy) C {y},
and the map f — Sy(f) has the form

Sy()= D wy(f) - va,

aeM

where {vg tacr is a basis for P.

3.1.1. Order relation on labels

To prove Proposition 3.1, we study the shape of symmetric, convex subsets of P that
vary as we restrict the domain of the measure p. The shape of ¢ C P will be defined by
a multi-index set A C M. We will sometimes refer to multi-index sets as labels.
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Given distinct elements « = (aq,...,ap),8 = (B1,...,08n) € M, let k € {0,...,n}
be maximal subject to the condition Zle a; # Zle B;. We write a < j if

k k
=1 =1

Given distinct multi-index sets A, A C M, we write A < A if the minimal element of
the symmetric difference AAA (under the order < on elements) lies in .A. The following
properties hold:

o If o, € M and |a| < |B| then o < S
e If AC AC M then A < A. In particular, the empty set is maximal and the whole
set M is minimal under the order on multi-index sets.

3.1.2. Polynomial bases
A subset o of a vector space V' is symmetric provided that v € 0 — —v € 0.

Definition 3.1. Given a symmetric, convex set 0 C P, A C M, e >0,z € R®, and § > 0,
we say (P*)aca C P forms an (A, z,€,0)-basis for o if the following are satisfied:

(i) P® € ed™/PHl="g for a € A;
(i) 0P P*(x) = dup for o, f € A; and
(iif) yaﬁpa(x)| < el for a € A,8€ M st. B> a.

Evidently, the basis property for symmetric convex sets is monotone in o, €,9 in the
following sense:

Suppose that (P%),e forms an (A, x, €, 0)-basis for o. Then (P%)aca

forms an (A, z, €, 0")-basis for o’ for € > ¢, 0’ Do, and 0 < §’ < 4. (3.5)

Lemma 3.2. Suppose (P%*)qca forms an (A, x,€,0)-basis for a conver set o C P. Then
for k> 1, (P*)aca forms an (A, z, k™ - €,k - §)-basis for o.

Proof. We verify Property (i) from Definition 3.1 first: For a € M,
esn/ptlal-m _ (k™ - 6)(;n/zﬂrla\(k SO) T < (K™ €) (K - 5)n/p+\a|fm’

implying if P* € e§™/P¥lel=mg then P € (K™ - €)(§ - k)*/P*lel=mg. Property (ii) is
independent of € and . Fix o, 8 € M such that 8 > «. Then we see Property (iii) holds:

109 P% ()| < ed1I=18l = (k™ . €)(k - §)1I=IBIEIBI=lal=m < (gom . ¢) (k. )lel=181]

$0 (P*)qea forms an (A, z, k™ - €,k - 6)-basis for 0. O
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Given x € R™, u, and § > 0, define symmetric convex subsets of P:

oj(z,p)={PeP:IF € L"™P(R") s.t. J,(F) =P, |F|| g0, <1}.
o(p,0) ={PeP:3F € L"P(R") s.t. |F, P|| s, < 1}-

Lemma 3.3. Suppose supp(p) C Q. Then there exists Cy > 0 such that for all x € Q,
oj(z,p) C Co-o(p,dg). In particular, if (P*)aeca forms an (A, z,¢/Cy,dq)-basis for
oy(x,p), then (P¥)qea forms an (A, x,¢€,dg)-basis for o(u,dq).

Proof. Let P € o;(x, u). Then there exists F' € L™P?(R™) such that J,(F) = P and
1F1s 0 = 1F sy + [ 1P < 1.
Q

By (2.19) there exists F’ € L"™P(R") satisfying F’|g = F|q and

IF", Pll g 0.u60) < CIIE, Pll g, (0,0:1.10)-

By (2.12), we have [|F' — Pl|lrr(1.1¢)/08 < C||F|[zm»(1.1q), and thus

|F, Pl g, 0,u1.1Q) < CIIF| g0, < C".

Combining the above inequalities, we have ||[F’, P|| #(0,u:55) < Co. Therefore, P € Cy -
o(u,0¢). This proves o;(z, 1) C Co - o(p,9q)-

The basis result follows, for if P* € &58_7l/paJ(x,p) (o € A) then P> €

eég_n/pa(,u,éQ). O
3.2. The induction

3.2.1. The Main Lemma
Fix a collection of multi-indices A C M. Let Cy > 0 be the universal constant defined
in Lemma 3.3. We prove the following by induction with respect to the multi-index set .A.

Lemma 3.4 (Main Lemma for A). Fiz A C M. There exists a constant € = €(A) > 0,
depending on A,m,n, and p, such that the following holds: Suppose p is a Borel reqular
measure on R™ with compact support, satisfying diam(supp(n)) < J, and suppose:

For all © € supp(p), oy(x, 1) has an (A, xz,e/Cy, 105)-basis. (3.6)

Then the Extension Theorem for (u,0) (Proposition 3.1) is true.
Furthermore, for A # 0, in the Extension Theorem for (u,d), one can take K = 0,
and so the functional M : ¢ (p;6) — R4 has the form
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/p
M1 2 = (X [ el Ro) = spdu+ 3 loutr. ) (3.7)

teNj, teN

Note that condition (3.6) in the Main Lemma for A = @) holds vacuously. Thus the
Main Lemma for A = () implies the Extension Theorem for (i, d). Thus we have reduced
the proof of the Extension Theorem for (u,d) to the task of proving the Main Lemma
for A, for each A C M. We proceed by induction and establish the following;:

Base Case: The Main Lemma for M holds.
Induction Step: Let A C M with A # M. Suppose that the Main Lemma for A’ holds
for each A’ < A. Then the Main Lemma for A holds.

3.2.2. Proof of the base case

Proof. Fix (p,0) as in the Main Lemma for M, satistying (3.6) for A = M. Given
that diam(supp(p)) < 0, we can fix a cube @ C R™ with g = ¢ and supp(p) C Q.
By (3.6), os(z, ) has an (M, z,¢/Cp,10dg)-basis for all € supp(p). We will fix the
choice of (M) momentarily. By Lemma 3.3, o(p,100g) has an (M, z,€,10dq)-basis
for all € supp(u). Specifically, 1 € e(lOSQ)"/”*m - 0(u,10d¢), implying there exists
G € L™P(R"™) satisfying

aran)’’ <ic1 < ¢(1065)™/P—m 38
| | M = H P Hj((),u;lO(;Q) —6( Q) . ( . )

By (2.15), for z € Q,

—n/
G(z) = 1| < ClG, 1| sous0)dg " °
m—n/p

<SG, 1“/(07#;105@2)5@
Se.

We now fix e small enough so that the previous inequality implies |G(z) — 1] < 1/2 for
1/
2z € Q. Then |G(z)| > 1/2 for x € @, and (IQ |G|pdu) ! > C'u(Q)'/?, and by (3.8)
(@) < Ces?™, (3.9)

Let (f,Po) € 7 (u;9¢q). Define T'(f, Py) := Py. Then for any F' € L™P(R™), we use
the assumption supp(p) C Q to deduce that

1/p

ITCF. Po). Poll g (1) = / Po — fPPdp
Q
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1/p 1/p
<\ [im-rpa) | [1F- e
Q Q
(2.15) e
S| IR P g i |+ | [ 17 s

Q
1/p

<|[|IF, PO”f(f,mﬁ@)‘sg_n/pﬂ(@)l/p + / |[F'— flPdp
Q

(3.9)
< (14 Ce)|F, POHf(f#ﬁQ)'

Because F' is arbitrary, we can conclude (| T'(f, Po), Poll 7 (f,u6q) < CIf, Poll_z(us0)-
When A = M, we take K = (), as promised in Lemma 3.4, so the functional M has the
form (3.7). Define the family {¢s}een by ¢o(f, Po) = 0 for £ > 1.

Define the family {\¢}sen, by Ae(f, Po) = 0 for £ > 2, and A\ (f, Py) = Po, and define
the sets Ay = @) for £ > 2, and A; = supp(u). For these families of linear maps, the
functional M in (3.7) is given by M(f, Po) = ||Po — fl|zr(au)- Note the above chain of
inequalities implies that Py — f € LP(du), and

1/p

f7PO /|PO_ |pd:u :”T(fvPO)?POH/(va;éQ)'

Let Q' = 0; immediately, the collection {supp(w)},eq’ has bounded (empty) overlap.
For y € supp(p), define wy(P) := P(y); then Ai(f, Py)(y) = wy(F), indicating M is
V'-constructible. And J,T'(f, Py) = wy(Py) = Py, so T is Q'-constructible. O

3.2.8. Technical lemmas
The following linear algebra lemmas are adapted from Sections 3 and 4 of [13], relying
on (2.10) and the inequality ||F'||zm.»®n) < [F, Pl #(0,u)-

Lemma 3.5. There exist universal constants ¢1 € (0,1) and Cy > 1 so that the following
holds.
Suppose we are given the following:

—

Real numbers ¢, € (0,c¢1] and €5 € (0,e2P72].

A lengthscale § > 0.

A collection of multi-indices A C M.

A Borel regular measure p and a bounded, non-empty set E C R", satisfying

supp(p) C E and diam(E) < 104.

G
EEEE
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(D5) A family of polynomials (P2)aca that forms an (A, x, €a, 6)-basis for oj(x, 1) for
each z € F. )
(D6) A point zg € E, a multi-index B € M\ A, and P2 € P satisfying

ﬁf{) S 626|E|+n/p_m0']({1}07/1,); (310)
PP (x0) = 1; (3.11)
0° BE (z0)] < 81117 (BeM, B> pB); and (3.12)
0° P2 (20)] < e PslPI=1A] (BeM). (3.13)
(D7) For all x € E, the basis (133)&6,4 in (D5) satisfies
8% P2 ()| < ey P1olel=17] (€A, a<fB, BeM). (3.14)

Then there exists A < A so that for every x € E, o;(x, ) contains an (A, x,Cie,0)-
basis.

Proof. Let ¢; be a sufficiently small constant, to be determined later. By rescaling it
suffices to assume that § = 1. Our hypothesis tells us that €; < ¢q, €5 < efDH, and that
(PY)ea forms an (A, z, eq, 1)-basis for o;(z, u), for each x € E. That is,

x

P2 ey oy, p); (3.15)
PP (x) = 645 (o, B € A); and (3.16)
0P P (2)| < e (€ A, BeEM, B> a). (3.17)

By (3.10) (for 6 = 1), there exists L= L™P(R™) satisfying
Jop® = P2; and (3.18)
o2l Lm @y < NP7 g (0,0 < €2 (3.19)
Fix y € E and define ISyB = JygoB. Then the definition of o;(-,-) and (3.19) imply
Pl eer (o). (3:20)

We have |z — y| < diam(E) < 10, so by the Sobolev Inequality, (3.18), (3.19), (3.11),
and (3.12),

07 PP (y) — 055 < 1070 (y) — 8% Ty 0 (y)| + 10° PE () — 6551
< Cey + Cey < Ceq (BeM, B>7). (3.21)

Similarly, from (3.13), we estimate:
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07 P (y)] < 107 P}/ (y) — 3451 +1
<CegP  (BeM). (3.22)

Define A = {a € A: a < 3} U{B}. Then because 3 ¢ A, the minimal element of AAA
is 8. Thus, we have A < A, by definition of the order relation on multiindex set. Define

pl=F]- 3 OB
veA\{B}
Notice that A\ {8} C A; thus (3.16) (for 2 = y) implies that
Py) =0  (aeA\{B}).
And (3.20), (3.22), and (3.15) imply that

Pf € (e + CE;DEQ) coy(y,pn) C CefDeg o 7(y, 1.

Since § is the maximal element of A, it follows that for any § > /3 and any v € A\ {3},
we have § > . Thus (3.21), (3.22), and (3.17) imply that

07 Pl (y) — 55l < Cler + 67 Pe2)  (BeM, B2 ). (3.23)
And (3.22) and (3.14) imply that
0°P(y)l < Ce?Pt (Be M),
Recall that €5 < ef) L and €; < ¢1. We now fix ¢; to be a small universal constant, so

that (3.23) yields BﬂPyB(y) € [1/2,2]. We then define Pf = Pyﬁ/aﬁpf(y). The above
properties of Pyﬁ give that

Pl e CerPes - oy(y, p); (3.24)
0P} (y) = 655 (8 € A); (3.25)
107 P (y)| < Cler + 6 Pea) (B€M, B> p); and (3.26)
07 P (y)] < Cey 2P (B € M). (3.27)

For each o € A\ {3}, we define ]f’y“ = .ﬁ;‘ - (8315;(3/)) nyé Note that o < j3, and
hence \8E}5§‘(y)\ < €y < 1, thanks to (3.17). From (3.15) and (3.24), we now obtain

]Sya € C'ePer- 04y, ). (3.28)

From (3.17) and (3.27),
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0° Py ()| < |07 Fy ()| +10° P (y)] - |0°P) ()] < e2 + e O 207!
<CO'e;P ey, (BEM, B> a).

(3.29)
Recall that A = {a € A:a < B} U{B}. From (3.16) and (3.25), we have
Pr(y) =0as (B € A). (3.30)

By now varying the point y € E, we deduce from (3.24)-(3.26) and (3.28)-(3.30) that
0.(y, 1) contains an (A,y,C - (e + € 2P} < 2042,

the conclusion of the Lemma is immediate. O

€2), 1)—basis for each y € E. Since €9

Lemma 3.6. Let ¢; and Cy be the constants from Lemma 3.5. Suppose we are given data

(6176275aA3/L7E7 (157?[> )’
acAxeER

satisfying (D1)-(D5) of Lemma 5.5, and the family of polynomials (]Ba)aeA’zeE also

xr
satisfies

max {|aﬁﬁ;(x)|5lﬁlfla\ zeE, acA fe M} > e D1, (3.31)

Then there exists B € M\ A so that (D7) is satisfied, and additionally there exist xo € E
and Pfo € P so that (D6) is satisfied. Hence, there exists A < A so that for every x € E,
oj(z, 1) contains an (A,x,Cyey,d)-basis.

Proof. By rescaling it suffices to assume that § = 1. Our hypotheses tell us that ¢; < ¢,
€2 < 2PF2 and that (PS)aea forms an (A, z, ez, 1)-basis for o;(z, ), for each 2 € E.
That is,

P2 € ey 0z, p); (3.32)
PP (x) = b4p (o, B € A); and (3.33)
|0° P2 ()] < e (e A, BeEM, B>a). (3.34)

For each a € A, we define Z, = max{|8ﬁﬁg(x)| rx e B, Qe ./\/l} Then hypothesis

(3.31) is equivalent to max {Z, : a € A} > e °7!. Let @ € A be the minimal index with
Zs > e P71 Thus,

Ty < el_D_l, for all & € A with « < @, (3.35)

and there exist g € F and By € M with
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er P71 < Za =107 P2 (w0)]. (3.36)

Thus, (3.33) and (3.34) imply that Sy # @ and Sy < @, respectively. Therefore, fy < a.
By definition of Z5z we also have

07 P2 (y)| < [0% P2 (o), for all y € By and 3 € M. (3.37)
Let the elements of M between 3y and @ be ordered as follows:
Po<Pr<-<Pr=a
Note that k£ +1 < | M| = D. Define
a; = |8ﬁiﬁ§)(9&0)|, fori=0,...,k.
Then (3.33) and (3.36) imply that aj, = 1 and ag > e, °~%. Choose r € {0,...,1} with
are;” = max{aje;' : 0 <1 < k}. Note that ag > ;27 > aper* which implies r # k.
Moreover, we have
ar, ZelDaO and a, Zeflai fori=r-+1,...,k. (3.38)
Define = 3, € M. Then (3.38) states that
107 PS, (w0)| > €P[0% PS (wo)| > €7 (3.39)
Also, (3.34) and (3.39) imply that
0° P2 (z0)] < €2 <1< e]0°P2 (x0)]  (BeM, B> B).
For # < B < &, (3.38) implies that \8[3]3% (z0)] < 61‘8313?0(1'0”. Thus we have,
0° P, (wo)| < |07Pg(w0)]  (BEM, B> ). (3.40)
By (3.39) we have |65ﬁ§0 (x0)| > 1. Hence, (3.33) and (3.34) imply that
f<aand B¢ A (3.41)

Define ﬁfa — P2/ 83153?0(1:0), which satisfies

0

]550 € €207(xo, 1) from (3.32) and |85ﬁfﬁ) (xo)| > 1; (3.42)
0°PY (20)] < & (B €M, B> pB), from (3.40); (3.43)
0° P2 (x0)] < 7P (8 € M), from (3.37) and (3.39); and (3.44)
|07 P2 (20)] = 1. (3.45)
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For x € F, from (3.35) and the definition of Z,,,
0°Pe(z)| < 7P (@€ A a<B, BeM) (3.46)
Now the hypotheses of Lemma 3.5 hold with

(61762,5,A7M>Ea (}3’?>

— ~B )
Zo P
acA,xzeE ’ ’5’ o

satisfying (D1)-(D7) due to (3.42)-(3.46). Hence, there exists A < A so that for every
x € E, 05(z, 1) contains an (A, x,Cye1,d)-basis. O

Definition 3.2. Let S > 1, ¢ € (0,1), and A C M be given. A matrix (Bag)a,se4 is called
(S, €) near-triangular if

|Bag — dap| < € o, €M, a<p;and
|Bag| < S acA BeM.

Lemma 3.7 (Lemma 3.4 of [13]). Given R > 1, there exist constants ca > 0, Cy > 1
depending only on R,m,n, so that the following holds. Suppose we are given ez € (0, ca],
x € R™, a symmetric convex subset o C P and a family of polynomials (P*)aea C P,
such that

P® € ego a € A (3.47)
0P P (2) — bug| <e2  a€ABEMB>a; and (3.48)
|0°P*(z)| < R a€ABeM. (3.49)

Then there exists a (Ca,Ca€s) near-triangular matric B = (Bag)a,eA, S0 that if we
define

PY:=Y"BasP? a €A,
BeEA

then (P®)aea forms an (A,z,Cyes,1)-basis for o. Furthermore |0° P*(x)| < Cy for
every o € A and every 5 € M.

3.3. The inductive hypothesis

Fix A ¢ M, A# M. We will impose the inductive hypothesis that the Main Lemma
holds for all A’ < A. Our task is to prove the Main Lemma for A. The inductive
hypothesis will be a standing assumption until we complete the proof of the Main Lemma
for A in Section 10.
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We will assume the value of € = €(A) in the Main Lemma for A is less than a small
enough constant determined by m and n and eventually determine such a constant. Let
(14, 9) be as in the statement of the Main Lemma for A (Lemma 3.4). By rescaling and
translating, we may assume without loss of generality that

diam(supp(u)) < § = 1/10,
supp() € 5@ Q°=(0,1]"" (3.50)
From hypothesis (3.6) in the Main Lemma for A, with 6 = 1/10, we have:
For every z € supp(u), os(x, 1) has an (A, z,e/Cy, 1)-basis. (3.51)

The inductive hypothesis states that the Main Lemma for A’ is true for every A’ < A.
Let €(A’) be the constants arising in the Main Lemma for A’ (A’ < A). Define

€0 := min{e(A’) : A" < A}. (3.52)

By the inductive hypothesis, for A’ < A and any Borel regular measure zi on R”,

~

if 07(z, 1) admits an (A, z,€0/Co, 100)-basis, for each = € supp(i),
for some & > diam(supp(7i)), then the Extension Theorem for (fi,8) holds. (3.53)

We will assume that € < €.

Suppose that there exists A < A such that o ;(x, u) contains an (A, x, €y/Co, 1)-basis
for every x € supp(u). Then by the validity of the Main Lemma for A, the Extension
Theorem for (u,d) holds (see Proposition 3.1). Note that A # ) because () is maximal
under the order on multiindex sets. Thus, by the Main Lemma for A, in the conclusion
of the Extension Theorem for (u,d) one can take K = (), and so the functional M :
Z(p;0) — Ry has the form (3.7). Therefore, we have proven the Main Lemma for A in
the case that there exists A as above. Therefore, we may now assume:

For every A < A, there exists x € supp(u) such that
oj(x, 1) does not contain an (A, z,€y/Cp, 1)-basis. (3.54)

3.8.1. Auxiliary polynomials

Lemma 3.8. Let u be a Borel regular measure on R™ satisfying (3.50), (3.51), (3.54).
Then for all x € 100Q°, there exists a family of polynomials (PY)aea such that

(P)aca forms an (A, x,Ce/Cy,1)-basis for o;(z,p), and (3.55)
0P P2(2)| < C (a€ A, BeM). (3.56)
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Proof. From (3.51), for y € supp(u), there exists (ﬁya)aeA that form an (A,y,e/Co,1)-
basis for o;(y, ). As a consequence of (3.54), we have

PP(y)| <C ac A BeM,yesupp(p). (3.57)

To see this, suppose (3.57) fails for the constant C'=e; P~ where €; <min{c1, €9/ (CoC1)}
(and ¢, Cy are the constants from Lemma 3.6). That is, suppose

max{|85ﬁ;‘(y)| sy €supp(p), a € A, B € M} > P

We may assume that e < e?D +2_ Then the hypotheses of Lemma 3.6 hold with parameters

<617 €2, 67 Aa Hy E7 (ﬁ;})QEA,wEE> = (617 €, 17 Aa M, SUPP(M)v (P;‘)QGA,yGSUpp(,u)> .

Thus we find A < A so that o;(y, ) contains an (A, y, Ciey, 1)-basis for each y €
supp(p). Since Cre1 < €y/Cy, this contradicts (3.54), which concludes our proof of (3.57).

Now fix 29 € supp(p). Then we have shown o (zg, 1) has an (A, zg, €/Cp, 1)-basis,
{ﬁfg}aeA satisfying the inequalities (3.57) for y = xo. That is, for a € A,

07 P2 (w0) = Bap (B € A); (3.58)
07 P2 (0)] < ¢/Co (BeM, 8> a); and (3.59)
0° Py (z0)| < C (B e M. (3.60)

Furthermore, since 15:,% € (e/Co)oj(xg, 1) for each a € A there exists
¢® € L™P(R") with J,¢® = P2 and [|¢®]| s (0, < €/Co. (3.61)
For z € 100Q°, define
Py = Jyp°. (3.62)

Because [|¢%|| #(0,u) < €/Co, we have

P& ee/Cy-oy(x,pm) C Ceoy(z, p). (3.63)
From the Sobolev Inequality, since ]51?‘ = J,¢“ and ]350 = Jzo0%, and since |z — x| <

10060 = 100,

0° P2 (2) — Sapl < [0°PS (2) — Sap| + |07 Joy0® (z) — 87 PS ()]

IA

> PP (w0)(x — 20)7 /! — g
0<y<m—1—|B|

+ Ol Lmn(eydgs PP (3.64)
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From (3.58), (3.59), (3.61), (3.64), and since |z — x| < 100, for 5 € M satisfying 8 > «,
we have

|0 P2 () — duap| < Ce. (3.65)
From (3.60), (3.61), (3.64), and since |z — zo| < 100, for § € M,
0% P2 (2) — dap| < C, hence |0° P2 (z)] < C + 1. (3.66)

Fix a constant R, determined by m, n, and p, so that R = C' 4 1, with C' from (3.66).
We fix ¢ and Cs for the universal constants in Lemma 3.7 determined by this choice
of R. By taking e small enough, we may assume e; := Ce in (3.63), (3.65) satisfies
€9 < co. Then (3.63), (3.65), and (3.66) allow us to apply Lemma 3.7 to the family of
polynomials (P%)yca, with o = o 5(z, 1), €2 = Ce and R = C + 1. Thus, there exists a
(C2,C3 - Ce)-near triangular matrix A® = (Ag5)a,pea such that if we define Py¥ € P as

=Y AL;-P) (acA), (3.67)
BeA

then (P2)yea forms an (A, x, C2Ce, 1)-basis for o;(z, 1) and |9° P (x)| < Cy for all
B € A. Thus, the family of polynomials (P%),c.4 satisfies (3.55)-(3.56). O

For a € A, B € M satisfying 8 > a, z,y € 100Q°, and Py € P satisfying (3.55) and
(3.56), we use the Taylor expansion to bound

|0° P2 ()] = ‘8ﬁ PR AICE y)”/v!’
yeM

S 0P () (o - y)"/n!’

n+peEM
< Ce/Cy. (3.68)

Proposition 3.9. For each x € 100Q°, there exists a (C, Ce)-near triangular matriz A® =
(Aap)a,pea, and there exists a corresponding family of functions (5 )aca C L™P(R™)
given by

= Ao (3.69)

BeA

where (¢*)aeca is a family of functions satisfying

le™ll 70,0 < €/Co, (3.70)

and the family (¢%)aca also satisfies
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Jrps = P and (3.71)

xT )

ezl 70,0 < Ce/Co. (3.72)

Proof. We follow the proof of Lemma 3.8, and let (¢%),e4 be the family of functions
satisfying (3.61). Accordingly, we have |[¢®|| #(0,.) < €/Co, giving (3.70).

For x € 100Q°, let A® = (A%5)a,e4 be the (C,Ce)-near triangular matrix defined
just before (3.67). Then define ¢% (o € A) as in (3.69). Then (3.71) follows by applying
Jz to both sides of (3.69) and applying (3.62) and (3.67).

Note [Ag;] < C for a, 8 € A, since A" is (C, Ce)-near triangular. Thus, (3.72) fol-
lows by sublinearity of the #(0,u) functional; indeed, ||F|| #0,.) = (||F||im,p(Rn) +
|\F||1£p(du))1/p is a norm on L™P?(R™) N LP(dy). O
3.8.2. Reduction to monotonic A

Definition 3.3 (Monotonic labels). A collection of multi-indices A C M is monotonic if
a€ Aand |[y| <m—1-—|o| implies « + v € A.
If the above property fails, we say that .4 is non-monotonic.

In this section we follow Section 4.2 of [13] to deduce the monotonicity of A using
assumption (3.54) and condition (3.51) for A.

For the sake of contradiction, we assume that 4 is non-monotonic. We will show there
exists A < A such that for all z € supp(u), o5(z, 1) contains an (A, x,€y/Co, 1)-basis,
contradicting (3.54). Thus our proof of the Induction Step is reduced to the case of
monotonic A.

Let ag € A, v € M satisty

O<|y|<m—-1—]a|and a:=ap+v€ M\ A (3.73)
Define A = AU {a}. Note that ap < @, and the only element of AAA is a, which is in
A, so A < A by definition of the order on multiindex sets.
For fixed y € supp(p) C 15Q°, we let (P)aca satisfy (3.55) and (3.56). We now
define

P} =P ©,q", where ¢¥(z) := —(z—y)". (3.74)

Expanding out this product, we have

PR = Y SR - )

wl<m—1-|~|
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Note that w = g arises in the sum above, thanks to (3.73). Also, the terms with
w+ v > a = qg + v correspond precisely to w > «aq, by definition of the order. The
following properties are now immediate from (3.55) and (3.56):

P (y) = 1; (3.75)
0° P (y)| < C'e (BeM, B> a); and (3.76)
P Piy) <C" (BeM). (3.77)

From (3.55), we have P € Ce-0;(y, p), so there exists p € L™P(R") satisfying

1/p

Lo @®n) +/|<P|pdu < C¢ and (3.78)
Rn

Jyp = PJe. (3.79)

el o = | ll#l

Let 6 € C§°(Q°) satisfy 6]p.99ge = 1 and |0%0(x)| < C for z € Q° and |a| < m. Define
@:R*" = Ras@g:=0-(pg¥) + (1 —0) P} Then J,p = Jy(0q¥) = P O, ¢¥ = Py,
since y € 15Q°. Note that [|¢¥| 1 (geoy < C. Thus, from (3.50) and (3.78) we deduce

/I@Ipdu < / log?|Pdp < C / lp|Pdp < C(Ce)P.
R~ %Qo %OQO
We will show [|@]|,m.prry < Ce, implying that [|@]| 40, < C'e and Py € C'e-05(y, ).

Since @ agrees with an (m — 1)™' degree polynomial on R™\ Q°, and since the partial
derivatives of 8 are uniformly bounded, we have

[l Lrmp ey = 1]l L. (@)

= ¢ = Pllme (g0

=110 (2q¥ — P)l|mn(qe)

<C Y 10°(g” = Pl Lecoe)- (3.80)
|8]<m

As a consequence of (3.74) and (3.79), P = J,(¢q"). Hence, by the Sobolev Inequality,
for z € Q°, |B| < m,

10°(pq” — Py) ()] < Cligg”llLmr(ge)- (3.81)

For x € Q°, |8] = m, because ¢V is a degree |y| polynomial, we have
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07 (pq") (@) < D" 10 p(@)] - 106" (@)

wtw'=8
= 0%¢(x)llg" (@) + Y (|3“l(<P— Po)(@)| + |5“/P;’°($)\) 0%qY (z)].
wtw’'=4,
0<|w|<|vl

(3.82)

Furthermore, for (w,w’) as in the sum above, 0 < |w| < |y| implies m — 1 > |w'| >
m — |y| > |ao| (see (3.73)). Recall estimate (3.68): \8“/Py°“°(x)\ < Ce¢, and note that
by construction, we have [|0“q"||L~(ge) < C. This, in combination with the Sobolev
Inequality, (3.78), and (3.79) allows us to further reduce the sum on the right hand side
of inequality (3.82). When z € Q° and || = m:

S (10 (0= Pe) @)l + 107 Pgo(@)]) - 0°6" ()] < O (Jolmnigey + Ce) < Cle

wtw' =8,
0<|w| <]

Substituting this into (3.82), we have for z € Q° and || = m,
107 (0q”) ()| < 10°p()[|q” ()| + C"e.

By integrating over x € Q° and again applying (3.78) and ||¢|| 1~ (ge) < C, we deduce
that [l0g¥||Lm.»(@oy < Ce. Thus, keeping in mind (3.80) and (3.81), we have

@l me@ny < Clleg?||Lm.p(qo)
< (e

Because Jyp = Pyof‘7 this completes our proof that
P} eCle-o(y, p). (3.83)

Due to (3.55), (3.56), (3.75)-(3.77), and (3.83), the family (P}'),z satisfies
(3.47)-(3.49) with R equal to a universal constant, e; = C’e, and o = o4 (y, ). We may
assume C’e < cg, where ¢y comes from Lemma 3.7. Then the hypotheses of Lemma 3.7
hold; hence, o (y, 1) contains an (A, y, C2C’¢, 1)-basis for Cy > 1, a universal constant.
Recall our assumption that e is less than a small enough constant determined by m and
n. We may assume € < €g/(C’'CoCs), so o ;(y, p) contains an (A, y, €9/Cp, 1)-basis. Since
y € supp(u) is arbitrary, this contradicts (3.54).

This completes the proof by contradiction, and establishes that A C M is monotonic.

4. The Calderén-Zygmund decomposition

Recall we have fixed a multi-index set A C M, A # M and a Borel regular measure
on R™ satisfying the conditions (3.50), (3.51), and (3.54). By the results of Section 3.3.2,
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we deduce that A is monotonic. Our goal is to prove the Extension Theorem for (p,0 =
1/10). Recall we have defined constants ¢y in (3.52) and Cp in Lemma 3.3.

4.1. Defining the decomposition

Definition 4.1 (OK Cubes). A dyadic cube Q C Q° = (0, 1]" is OK if there exists A < A
such that for every @ € supp(p) N3Q, o(w, i|3g) contains an (A, z, €9/Co, 305 )-basis.

Definition 4.2 (Calderén-Zygmund Cubes). A dyadic cube @ C Q° is CZ if @ is OK and
every dyadic cube Q' C Q° that properly contains @ is not OK.

IfQ,Q C Q°are CZ and Q # Q' then QN Q' = (). Indeed, since CZ cubes are dyadic
cubes, either Q C Q’, Q' C Q, or QNQ’ # . The first case is impossible, since, according
to the definition of CZ cubes if Q is CZ and @ C Q' then @’ is not OK, hence @’ is not
CZ. Similarly, the second case is impossible. Therefore, @ N Q" # @, as claimed.

We write CZ° = {Q;}ics to denote the collection of all CZ cubes. The index set I
may be countable or finite. In contrast to [13], the CZ cubes do not necessarily form a
partition of Q°; however, if p is a finite measure the CZ cubes do form a partition of @°
(see Lemma 4.3 below).

Lemma 4.1. Suppose Q,Q C Q° are dyadic cubes. Suppose Q' is OK and 3Q C 3Q’.
Then @ is OK.

Proof. We have o;(x, p|sg) C os(x,p|3g); indeed, this follows by the definition of
Mtl3gr) for 3Q C 3Q" and F € Lm,p(Rn).
Because ()’ is OK, there exists A < A such that for all € supp(u) N3Q’, os(z, 1lzg’)
contains an (A, z, €9/ Cp, 305 )-basis. Since dg < ¢/, and thanks to (3.5), we have that
oy(z, plag) contains an (A, x,€9/Co,308¢)-basis for any = € 3Q. This indicates Q is
OK. O

oy(++), and because ||F|\j(0)u‘w) < ||FHJ(O

Because of Lemma 3.3, for every Q € CZ°, there exists A < A such that for every
x € supp(p) N 3Q, o(u|3q,dg) contains an (A, z, €, 6 )-basis.

Lemma 4.2. Let Q C Q° be a dyadic cube. If u(3Q)'/? < %(306@)””‘” then Q is OK.

Proof. Suppose Q C Q° satisfies u(3Q)Y? < €/Co(305g)™/P~™. Let F° = P° = 1.
Then for y € supp(u) N3Q, J,F° = PY, and

10 s o) = (I By + I By ) = #3Q)M7 < (30807
I (0,u]3q Lm.p(R™) Lr(dplsq) -

So for all y € supp(u) N3Q, P° € %(305@)”/1’_’” <oy, pl3g), and (P°) forms a
({0}, y, €0/Co, 308 )-basis for o;(y, i|sg). Because 0 is the minimal element of M and
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0 ¢ A (A is monotonic and A # M because M is minimal in the order), {0} < A.
Hence, @ is OK. O

Lemma 4.3. The decomposition CZ° is not equal to {Q°}. In particular, each Q € CZ°
has a (unique) dyadic parent QT C Q°.

Furthermore, if u is finite, the CZ cubes form a non-trivial, finite partition of Q° into
dyadic cubes.

Proof. If Q° is OK, then there exists A < A such that for every = € supp(u), os(z, 1)
contains an (A, z, y/C, 1)-basis, contradicting (3.54). So Q° ¢ CZ°.
Suppose p is finite. Define H : Ry — R as

H(8) := max {un (B(r,39))"/7 - 6™ "/r}.

Because p is finite, lims_,q+ H(§) = H(0) = 0. Further, H is non-increasing, so there
exists d; > 0 such that if § < 7 then H(S) < H(d) < . Let Q C Q° satisfy
dg < 01, and fix z € Q. Then

€0
30m—n/p Co

n(3Q)Y? < u(B(x,35g))""
< H(dg) - og/" ™™

€0 _
< 5 n/p m
< _Co (300¢)

We apply Lemma 4.2 to deduce that @) is OK, so every dyadic subcube of Q° of sidelength
smaller than d; is OK. Therefore, C'Z° is a finite partition of Q°. O

As a corollary of Lemma 4.2, we can bound below the measure of the dyadic parent
of any cube in C'Z°:

Corollary 4.4. For Q € CZ°, we have
(BRI > (e0/Co) - (3065)" /P~

Two cubes, Q;,Q; € CZ° are called “neighbors” if their closures satisfy Cl(Q;) N
Cl(Q;) # 0. (In particular, any CZ cube is neighbors with itself.) We denote this relation
byQiHQj,OI‘Z.(—)j (Z,jEI)

Lemma 4.5 (Good Geometry). If Q,Q" € CZ° satisfy Q <> Q', then

%(5@ < 5Qr < 2(5@. (41)
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Proof. For the sake of contradiction, suppose that Q, Q" € CZ° satisfy
ClHQ)NCUQ") # 0 and 46g < ¢y

Since QT, Q" are dyadic cubes and dg+ = 249 < %5@, we have 3Q" C 3Q’. Because @’
is OK, by Lemma 4.1, we have that QT is OK, contradicting Q € CZ°. O

Lemma 4.6 (More Good Geometry). For each Q € CZ°, the following properties hold.

If Q' € CZ° is such that (1.3)Q' N (1.3)Q # 0, then Q < Q. Consequently:
Each point x €R™ belongs to at most C'(n) of the cubes 1.3Q with Qe CZ°. (4.2)

]f CI(Q) N 6Q° 75 [Z), then 5@ > 2i0(5Qo. (43)

Proof. Proof of (4.2): Fix @ € CZ°. Suppose that Q' € C'Z° does not neighbor Q. Let
d = max{dg/2,0¢/2}. Then (4.1) implies that dist(Q, Q') > 6. Thus,

(1.3)Q N (1.3)Q' € B(Q, (0.3)8) N B(Q', (0.3)5) = 0.

Proof of (4.3): For the sake of contradiction, suppose C1(Q)NIQ° # 0 and dg < %6@.
Therefore, 9Q C R™\ %QO. Note that 3Q" C 9Q. Because supp(u) C l—loQO, we have
u(3Q™) =0, so by Lemma 4.2, @1 is OK. This is a contradiction. O

Remark. For n € [1,100] and Q; € CZ°, nQ; N Q° is a C-non-degenerate rectangular
box, for C = C(n), satisfying

diam(nQ; N Q°) =~ g, .

Definition 4.3. A cube Q € C'Z° is called a keystone cube if for any Q' € CZ° with
Q' N100Q # 0, we have dg < d¢.

We will use the following notation:

CZ° ={Q;}ier := {the collection of CZ cubes} € II(Q°);
Koz = U @; and

QeCze

Cyey = {Qs}oci = {Qs € CZ° : Q, is a keystone cube}.

For i € I (I is the indexing set of C'Z° as above), let z; denote the center of @, i.e.,
x; = ctr(Q;). We denote the set of CZ basepoints by

Boz = {Titier-
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Lemma 4.7. Let Q4 be a keystone cube. Then
[{s' € T:10Q, N10Q. # 0}| < C.

Proof. Let s,s' € I with 10Q, N 10Q, # (). Suppose, without loss of generality, dg, <
0q.,- Then 10Q, N 10Q, # () implies 100Qy N Qs # (). But because Q. is keystone, this
implies dg_, < dq,. So g, = dq,,- There are at most C' dyadic cubes Qs that satisfy
this condition and 10Q, N 10Q, # O for fixed s. This completes the proof. O

4.2. Keystone points

Definition 4.4. We define the set of keystone points as K, := Q° \ Kcz.
Lemma 4.8. The set K, is closed.

Proof. Let € K. Then every dyadic cube containing z is not OK. As a consequence
of Lemma 4.2,

w(B(x,n)) = o0 (for all > 0, z € K,,). (4.4)

To see this, suppose for sake of contradiction that p(B(z,n)) < A < oo for some
n > 0. Then, consider a dyadic cube @ C @Q° with € @ and 3Q C B(z,n).
Then p(3Q) < A. If §g is sufficiently small, depending on A, m,n,p, it follows that
1(3Q) < (e0/Co)P(300g)™™P, since n — mp < 0, and hence @ is OK by Lemma 4.2.
Thus, x belongs to an OK cube, so = belongs to a CZ cube, hence x € K¢z, contradicting
that z € K.

In combination with (3.50), (4.4) implies K, C Cl(£Q°) C $Q°.

Let Q € CZ°. We claim that for any x € 2Q N Q°, there exists Q' € CZ° satisfying
z € @ — in particular, 2Q N Q° C Kcz. To see this, let Q” C Q° be a dyadic cube
satisfying z € Q" and dg~» < dg/100. Then 3Q" C 3Q. Since @ is OK, we have that Q"
is OK, thanks to Lemma 4.1. Hence, by definition of the CZ decomposition, Q" must
have a dyadic ancestor Q" with Q' € CZ°. Then z € Q" C @', completing the proof of
the claim.

Let x € K¢z be arbitrary. Then x € @ for some Q € CZ°. Note that

B(l‘,(SQ/S) NQR°Cc2QNQ° Cc Kgyg.

Hence, K¢z is relatively open in Q°. Thus, K, = Q° \ K¢z is relatively closed in Q°.
Since K, C $Q°, we have that K, is closed. O

Below, we write |S| for the Lebesgue measure of a measurable set S C R™.

Lemma 4.9. If A # () then |K,| = 0.
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Proof. Suppose for sake of contradiction that |Kp| > 0 and A # (. Recall from (3.55)
and (3.56) in Section 3.3.1 that for all x € Q°, there exists a family of polynomials,
(P$)aca such that (PS)aca forms an (A, z,Ce/Co, 1)-basis for o5 (z, 1) satisfying

0°P2(x)| < C  (a€ A BEM). (4.5)
Let zo € K, be a Lebesgue point of xx,; then lim, .o % = 1. We will fix

universal constants ¢y, co € (0, 1) (determined only by m, n, and p) momentarily. Choose
any 7 € (0,1) satisfying 7' ~™/P < ¢y/(2¢) and % > 1—c%. Since A # 0, we
may fix a € A. Let

M :=max max |0°P2 (2)|r?,
BEM zeB(xo,r) 0

= ar ma P (2)].
y gzeB(IOfg/z)l o (2)]

By Bernstein’s Inequality for polynomials, there exists a universal constant C' > 0, such
that [|0°P(2)|| L (B(zor)) < C’r"5|||PHLx(B(IO7T/2)) for all multi-indices 8 € M and
(m — 1)* degree polynomials P € P. Thus, by the definition of M,

[Py ()] = I1Ps | o< (B(ao.r/2)) = ¢'M (4.6)

for a universal constant ¢’ € (0,1). For any n € (0,1/2) we have B(y,nr) C B(zo,T).
Thus, since |V Py, (2)| < /nM/r for z € B(zo,r) (see the definition of M), by the mean
value theorem,

1Pg (y) — Pry (@) < (VnM/r)ly — x| < (v/nM/r)nr = v/nMny for x € B(y,nr).

We fix the universal constant ¢; € (0,1/2) given by ¢; = %. Taking 7 = ¢; in the
above, and using (4.6), we learn that B(y,c1r) C B(z,r), and

Py ()] = [Py ()] = [Py (z) = P (y)| > ¢/ M/2 for x € B(y, car).

Furthermore, by the basis property of (Pfg), we have 0% Py’ (z9) =1, and so M > rlol >
r™m~1 (see the definition of M). Hence,

|PS ()] > dr™ ™1 /2 for @ € By, cir). (4.7)
Because Py € Ce-0;(xo, 1), there exists ¢f € L™P(R") satisfying J,, 05 = Py and
||(pgﬂ||L7n,p(Rn) < H‘Pgo”f(ow) < Ce. If x € B(y,cir) then & € B(x,r), so | — x| < r.

By the Sobolev Inequality and (4.7),

0% ()] > | P2 (2)] = Cll g [l mow ey ™™/

> rmTl )2 — Clerm /P
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= O™ Yeg — ert™"/P) > Cleyr™T1 )2, for © € By, err), (4.8)

where we now fix the universal constant ¢z := ¢//(2C") so that the equality in the last
line is valid, and we recall our choice of 7 satisfying r'~"/P < ¢y/(2€) to justify the
inequality in the last line.
Because % > 1 — ¢ and B(y,cir) C B(zg,r), we have that K, N
int(B(y,c1r)) # 0. Thus, by (4.4) we learn that u(B(y,ci7)) = oo. In combination

with (4.8), this implies

|5, [Pdp = oo,

B(y.cir)

contradicting [l || #(0,.) < Ce. This completes the proof by contradiction, and the
lemma follows. O

Lemma 4.10. For Q; € CZ°, we have int(3Q;) N K, = 0, and consequently dg, <
dlSt(Q“Kp)

Proof. For sake of contradiction suppose there exists Q; € CZ° with int(3Q;) N K, # 0.
Then there exists a dyadic cube @ satisfying 3Q C 3Q; and Q N K, # (). The cube Q; is
OK, thus @ is OK, thanks to Lemma 4.1. Thus, Q C K¢z, so Q@ N K, must be empty, a
contradiction. 0O

Lemma 4.11. There exist universal constants C > 1 and ¢ € (0,1) such that the following
holds. Let QQ € CZ°. Then there exists a sequence of cubes, S (Q) C CZ°, that either
is (i) finite, satisfying, 7 (Q) = {Q*}L_,, where QL is a keystone cube, or (ii) infinite,
satisfying .7 (Q) = {Q*}ren and for ctr(Q¥) = a*, limy o0 2% = 2’ € K,. Regardless,
the sequence .7 (Q) = {QF} satisfies

Q' =Q, (4.9)
Q" Q! (for Q*, Q""" € #(Q)); and (4.10)
Sgr < C - cF5g (for Q*, Q% € #(Q), k> 1). (4.11)

Proof. Let Q € CZ°. If Q is a keystone cube, then .7(Q) = {Q! = Q} satisfies the
conclusion of the lemma.
Suppose @ is not a keystone cube; then there exists Q' € CZ° satisfying 100QNQ’ # ()
and dgr < %5Q Let Q10 := Q and
/ o 1,0 /
Q*Y € argmin {dist(Q1’07Q') : Q'€ 0z 10Q N0 #0, }
Q’ and 5@/ < (1/2)(5@1,0

We call Q%P constructed by this procedure a “junior partner” of Q°.
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Let s : [0,1] — R"™ be an affine map with s(0) € CL(Q'?), s(1) € CLQ*?),
and |s(1) — s(0)]2 = dist2(QY°,Q%°). Then s((0,1)) meets finitely many CZ cubes,
QY. QY where K1 < C, QY « QUFFL QMY Q%0 and 6g < Jgui <
Cég for i € 1,..., Ky, and dg20 < %(5@1,0. Hence, after removing repeated cubes,
{Q = QY0,QM,...,QNF Q%0) satisfies QVF < QUF+1) and ogrn < C - ck’léQl,z
for 0 <1 < k. If Q*Y is a keystone cube, we stop, producing a finite sequence .#(Q)
(which we relabel {Q*}£_,). Otherwise, we repeat this process.

We construct .(Q) by concatenating the sequences of cubes connecting successive
junior partners, .7(Q) := {Q*0,..., Q"1 Q%0 ... QK2 Q30 ...} Relabel .7(Q) =
{Qk}ﬁzl if a junior partner is keystone, stopping the process and producing a finite
sequence that terminates at a keystone cube. Otherwise, if no junior partner is keystone,
relabel .7(Q) = {Q*}ren. By construction, .7 (Q) satisfies (4.9) and (4.10), Also, .7 (Q)
satisfies (4.11) because the subsequence of junior partners in .(Q) satisfies dgro <
207%5g;.0 for k > j, and because there are at most C' many cubes in .¥(Q) connecting
consecutive junior partners.

It remains to verify conclusion (ii) of the lemma in the event that .(Q) is infinite.

Suppose .7 (Q) is infinite. Let .7 (Q) = {Q"*}ren. For each k € N, define 2% := ctr(QF).
Because of (4.11),

lim dox = 0. (4.12)

k—o0

Because of (4.10) and (4.11), we have for j > k,

J
xk—xj| SSZéQi
i=k

J
< 3 Z CCi7k5Qk
i=k

< G

In light of (4.12), this proves the sequence {z*},en is Cauchy, and there exists z’ €
Cl(Q°) such that z* 2% 4. Because of (4.3), 2’ ¢ 0Q°.

It remains to show that 2’ € K. Suppose for sake of contradiction that =’ ¢ Kp;
then 2’ € Q' for some Q' € CZ°. Since z* = ctr(QF) — 2’ € Q' as k — oo, there exists
Koy € N such that for & > Ky, Q belongs to the neighbor set of Q', Q¥ € N(Q') :=
{Q" € CZ° : Q" + @Q'}. But by Good Geometry of CZ°, any cube Q" € N(Q') has
sidelength d¢g~ > 30, contradicting (4.12). Hence, 2’ € K, as desired. O
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4.3. Partition of unity

We have defined the collection of CZ cubes, CZ° = {Q;}icr, such that Koy =
Uier Qi- Due to the Good Geometry of CZ°, (4.1), (4.2), and (4.3), there exists a
partition of unity, {0;}ier C C®°(Kcz), satisfying

(POUL)
(POU2) 0, vanishes on Koz \ (1.1)Qy;
(POU3) |0%6;] < Cééla‘ whenever |a| < m; and
(POU4) Zie] 97 =1on Kcz.

0<6;<1,;

For the construction of such a partition of unity, see [24], page 170.
4.4. Local extension operators

In this section, we apply the inductive hypothesis to construct local extension opera-
tors for functions defined on Borel subsets E; of 3Q);.

Let Q; € CZ° and E; C 3Q; be Borel. Because ; is OK, there exists A; < A such
that for all € supp(p)N3Q;, o (z, 1t]3g,) contains an (A;, z, e/Cop, 30d¢, )-basis. Because
E; C 3Q; we have o;(z, ptl3g,) C o(z, p|E,). Since € < €, for all x € supp(u|g;),

oj(z, p|g,) contains an (A;, z,e0/Co, 10 - (3dg,)) -basis.

The restricted measure p

g, is Borel regular, and diam(supp(u|g,)) < 3dg, (since
E; C 3Q;), so by the consequence of the inductive hypothesis, (3.53), the Extension
Theorem for (p|g,,3d¢g,) holds. Because the seminorms for the spaces #Z(u|g,;300,)
and _# (u|g,;dq,) are equivalent up to universal constant factors, we have that the Ex-
tension Theorem for (u|g,,dg,) holds.

Thus, there exist a linear map T; : _Z(u|g;0q,) — L™P(R™), a map M;
Z (ulE:;60;) — R4, and countable collections of Borel sets {A}}ien, A) C supp(u|g,),
and of linear maps {¢} : 7 (u|r;;00,) — R}sen, and {\, : 7 (ulg,;00,) = LP(dp) }been,
that satisfy for each (f, P) € 7 (pulg,;;0q,):

(ALl) ||f’P||/(F«|Ei§6Qi) < ||Tl(f7 P)7P||/(f7u\Ei§5Qi) <C- ||f7P||/(/>L|Ei;6Qi);
(AL2) ¢ Mi(f. P) < [Ti(F. P). Pl s (ryipysia) < C - Mi(f. P)s amd

) . 1/p
(L) 21, (1,P) = (3 [ irp) = sirdu+ Y- loicr o)

ZENA} LeN

We obtain the particular form (AL3) for M; because A; # ), a consequence of the fact
that A; < A and ) is maximal under the order on multi-index sets. Thus, the map M;
has the form (3.7).
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Further, from the Extension Theorem for (u

B;»0¢,) we know that the maps 7T; and M;
are -constructible. Thus there exists a collection of linear functionals €2} = {w’} cy: C
7 (ulE,)*, satisfying that the collection of sets {supp(w’)}scy: has C-bounded overlap,
and for each # € R", there exists a finite subset Y¢ C T? and a collection of polynomials
{v! ,}seri C P such that |T.| < C and

(AL4) J.T(f,P) = Y wi(f) vi, +@i(P),

seTL

where @' : P — P is a linear map.

Similarly, for each ¢ € N and y € supp(u), there exists a finite subset Tl C Y% and
constants {nfﬁ;}sefgy C R such that |9 | £ C, and the map (f, P) — )\g(f, P)(y) has
the form

(ALS) Mi(f, P)(y) = 3 % -wi(f) + N ,(P),

sETl,y

where le ;P — R is a linear functional.
And for each ¢ € N, there exists a finite subset T} C Y% and constants {nﬁ’i}sem CcR
such that |Y}| < C, and the map ¢} has the form

(AL6) ¢;(f, P 277 )+ Xi(P),

sETl
where X}V, : P — R is a linear functional.
Remark 4.1. Notice that 7 (1) C _# (u|g;) with an inequality of norms, i.e., || f|| #(uz) <

I f1l_#(u for any Borel measurable f : R" — R. Thus, 7 (u|g,)* naturally embeds in
F(w)*. In particular, the ) may be regarded as a family of functionals in _# (u)*.

*

Ifwe Z(pn)* then supp(w) C supp(u). Therefore, for any choice of E; C 3Q;, the
collection of functionals ) = {wi},cy: satisfies

supp(w?) C supp(u|g,) C supp(p) NCI(E;) foralli € I,s € Y°. (4.13)
5. Preliminary estimates and technical tools
5.1. Estimates for auziliary polynomials

Recall from (3.55) and (3.56), we have constructed (P%)qae.a, for all z € 100Q°, such
that
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(P%) e forms an (A, z, Ce, 1)-basis for o (z, 1), with

x

B (5.1)
|0° P (x)| < C for a € A, B € M.

Here, C is a universal constant, determined only by m, n, p. As in Section 12 of [13], we

have:

Lemma 5.1. There exists a universal constant Cs such that the following holds. Let Q €
CZ°, and let § € [0g/2,1]. Then

0° P2 (y)| < C381°11P1 (0 e A, Be M, y€3QT). (5:2)
In particular,
07 P2 (y)| < G301 171 (a € A, Be M, yesQh). (5.3)

Proof. Inequality (5.3) follows from (5.2) by setting 5= dg.

We now prove inequality (5.2).

If§ € [1/4,1] then (5.2) follows from (5.1) because 3Q* C 10Q C 100Q° for Q € CZ°.
So we may assume o € [6¢/2,1/4].

Let C’ := 30™C. By (5.1) and Lemma 3.2, (P%)aca forms an (A, z,C’e, 30)-basis
for o(x,p) for = € 100Q°. By (3.5), since 1206 < 30, o (x,pu) C os(z, ulso+), and
10Q C 100Q°, we have that

~

(P)aca forms an (A, z, C'¢,1206)-basis for o (z, p|sg+) for all 2 € 10Q. (5.4)
Define € = min{cy, ¢9/(CoC1)}, a universal constant, where ¢;, C; are the constants

from Lemma 3.6, and Cj is the constant from Lemma 3.3. For the sake of contradiction,

suppose (5.2) fails to hold for a sufficiently large constant C3. Thus, we may assume

max{|0° P (z)| - (1200)171-1°1 : 2 € 3Q*, a € A, Be M} > ¢ P71 (5.5)

By taking € small enough, we may assume that C’e¢ < E%D+2. We claim that the
hypotheses of Lemma 3.6 hold with the parameters

(er o0, A B () ) = (e1,€"6 1208, A plage CUBQT) (P2 e paesar )

acA,xzeE
Specifically, we have to check the conditions (D1)-(D5) in Lemma 3.5 and condition
(3.31) for the above choice of parameters. Note that (D1) is satisfied because €1 < ¢;
and C’e < 2P72 while (D2) and (D3) do not mention any conditions on the parameters,
hence are trivially satisfied. Further, (D4) is satisfied because supp(u|so+) C C1(3Q™)
and diam(3Q ") = 65, < 1200. Note (D5) is satisfied due to (5.4), since C1(3Q*) C 10Q.
Finally, (3.31) is satisfied thanks to (5.5).
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Thus, we may apply Lemma 3.6 to deduce that there exists A < A such that
oy(z, pt|3g+) contains an (A, z, Ciey, 1205\)—basis for all z € 3Q". We apply (3.5), us-
ing that do+ = 20 < 43 and Cie1 < €/Cy, to deduce that o;(z, pi|30+) contains an
(A, z,€0/Co,305g+)-basis for all z € 3QF. Therefore, the cube Q% is OK (see Defini-
tion 4.1), contradicting that @ € C'Z°. This completes the proof of (5.2). O

Lemma 5.2. There exists a universal constant Cy such that the following holds. Let x €
K,. For§ € (0,1),

107 P2(2)] < CuolI=18l (e e A, B e M). (5.6)
In particular 9° P (x) = 0 for |a| > |B].
Proof. Let 2 € K, and § € (0,1). Recall from (5.1), we have
0°P2(x)| < C  (a€ A BEM). (5.7)

For |8| > |af, (5.7) implies (5.6). So it suffices to prove (5.6) for |a| > |3|. We will prove
that 9% P%(x) = 0 for || > |B]. This will complete the proof of (5.6), and with it, the
proof of the lemma.

Suppose for sake of contradiction that there exist 5 € M, o € A, |a| > |8] such that
|08 PX(z)| > 1 > 0. Fix ¢; < min{cy, €/ (30mCyC1)}, for ¢; and C; as in Lemma 3.5,
and Cj is the constant from Lemma 3.3. Fix 61 < ne{jJrl with §; < 1. Fix a dyadic cube
Q C Q° with z € Q and d¢g < ;1. Observe that 6glf‘a| > 5|16|7|a\ > 6,1 So,

max {|0° P )15~y €3Q, a € A, B e M) > [0 P2 (@)]alg1 1
D (5.8)

We fix e; < €2PF2. From (5.1), and since 5Q C 100Q°, (Pya)aEA forms an (A, y, Ce, 1)-
basis for o;(y, p) for all y € 5Q. We can assume Ce < ez. Note that dg < 6; < 1. From
(3.5), (P;‘)QGA forms an (A, y, €2, 6g)-basis for o7 (y, it|sg) for all y € 5Q. In combination
with (5.8), we see the hypotheses of Lemma 3.6 hold with parameters

(517 €2,0, A, u, E, (-ﬁg?) ) = (617 €2, 5Q7A7 :U'|3Q7 Cl(3Q), (P;t])aEA,zei%Q)'

acA,x€EE

Hence there exists A < A so that for every y € 3Q, oy(y,ul3g) contains an
(A, y, Cie1,dg)-basis. Because Crer < €0/(30™Cp), we apply Lemma 3.2 to deduce that
for every y € 3Q, 0;(y, i1|3g) contains an (A, y, €9/Co, 30dg)-basis, indicating that Q is
OK, thus @ is contained in a CZ cube. But x € @, so x € K¢z. This contradicts that
x € K, completing the proof of (5.6) by contradiction. 0O
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In Proposition 3.9 of Section 3.3.1, we defined a family of functions (¢%)acA,zcqe C
L™P(R™), related to the (P$)acA,zeqo, satisfying (3.69)-(3.72). In particular, J,% =
P forx € Q°, ac A
Lemma 5.3. We have

Pl(x)=¢5(x) =0 forze K, ac A
Proof. Recall that A C M, A # M, and A is monotonic. Therefore, A does not contain

the zero multi-index. Hence, |a| > 0 for o € A. Due to (5.6), we have |P%(z)| < Cél°l
for all 6 € (0,1). Hence, P%¥(x) = 0. The result follows. O

5.2. Estimates for local solutions

Recall the norm defined on P:

Plos=( 3 0P grlo-mn) "

lal<m—1

Recall I is the indexing set for the CZ decomposition CZ° = {Q;}ics. For P € P and
i € I, define

|Pli :=|Plz, 6, - (5.9)

By applying (2.14) to the measure p
HARS Qia

@, and domain U = @Q;, for F € L™P(R"™) and

[Jo " = Plasq, < CIE Pl g (fula,:0- (5.10)
Lemma 5.4. Let Q; € CZ°. Then for P € P,
HO7PH/(H|1.1Q126Qi) S ‘P‘l = ‘le'i»éQj' (5'11)

Moreover, if P € P satisfies 0*P(x;) = 0 for all a« € A, then

10, Pll ¢ (nlog,:60,) = [Pli = [Pla; s, - (5.12)

Proof. For the proof of (5.11), let Fy = (1 — )P, where 8§ € C™(R"), 0log, = 1,
supp(f) C 10Q;, and [9°0(z)| < C3,!*!. Then

p
0. P| 0. PIP,,

p
j(“’ll-lQi;éQi) é
S ||F07

/»“‘9@1' ;6Qi)

P
P FZ(0,1l9@,390;)



52 M.K. Drake / Advances in Mathematics 420 (2023) 108999

) / (FolPdp + 1o — PII%, gy /557
9Q;

— 1o = Py + [ 1B+ 1B = Pl g /57
9Q;

Note Fy = 0 on 9Q;, and Fy = P on R™\ 10Q;. Thus, continuing from the above bounds,
and using the Taylor expansion P(z) = 3", <, P(@i) - (# — x5)%/al,
0PI, 1 1o iy < 0PI nnr00 + 16PI2 00 /07

< C|PJ.

This completes the proof of (5.11).

We now prove (5.12). Note, the proof of (5.11) above shows that [|0, P[| #(ujeq.:50,) S

|P|;. Thus, it suffices to establish the reverse inequality. We assume for contradiction
that there exists P’ € P, P’ # 0 satisfying 0*P’(z;) = 0 for all « € A and
10, P'l| ¢ uloq, 60, < € P (5.13)

for a universal constant ¢;. We will later choose €; > 0 small enough so that we reach a
contradiction. Define

o B s\ slBlHn/p—my ) T
P:=P. (gneaMx {|o° P (z:)]0g, })
Note that
PP (x;)|sl01Hm/Pmmy 5.14
max {107 P(2)[0g p=1 (5.14)

and thus |P[; = |Pls, 5o, < C. Further, since P = P’ for some v € R, from (5.13),
10, Pll_# (uloa, i60,) < P P|; < CeP+| and so

P e CP o (uloq,. 0a,). (5.15)

Also, P satisfies 0*P(z;) = 0 for all a« € A. For each integer ¢ > 0, we define Ay, C M
by

Ay = {a € M :|0%P(x;)] 6'51_‘+"/p7m € (e, 1]} :

Note that A, C Ay for each £ > 0 and that Ay # @) for £ > 1. Since M contains D
elements, there exists 0 < £, < D with Ay, = Ay 1 # 0. Let @ € M be the maximal
element of A, . Because P satisfies 0*P(z;) = 0, we have & ¢ A. Further, because
a € Ay, , we have
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0% P(x;)] 6'5‘1_|+n/p7m > €l*; and (5.16)
|07 P(z;)| 05 P T < HY (Be M, B > @), (5.17)
where (5.17) follows because for every f € M with § > &, we have § ¢ Ay, = Ay, 41.

Define P® := P . (0°P(x;))”". Then because ¢, < D, from (5.14), (5.15), (5.16), and
(5.17), we have

P € Cerdy P o (lag,. 0,); (5.18)
O*P%(x;) = 1, (5.19)
107 P (2;)] < erd 5 717! (B€ M,B>a); and (5.20)
187 P (2;)] < e Do)V (BeM). (5.21)

From (5.18), there exists ¢® € L™P(R™) satisfying

o _ _ _ _ mp\ 1P
16%, P g @.atocyiton) = (161 mny + / P+ 6% = PN gy /957 )
9Q;

< Cedy e, (5.22)

For z € supp(u) N 9Q;, set PY := J, .
Because [|9%|| 7 (0,ul0q,) < 1% Pl 7 (0,1l00,:5q,) We have

PE e Cadg ™ 0 (2, plog,)- (5.23)
Also, |z — z;| < Cdg,, so for B € M we have

|0° P () =07 P (a;)| = |07p% () — 07 P (wy))|
< 07 (x) — 0 P%()| + 0° P*(z) — 9° P%(x;)]
(2.15) o 1Bl

S 1% PN s o006, 0P

Z aﬁerPa(xi) (‘T B mi)

|
w'
0<|w|<m—1—|p|

(5.22) _ _
& sty rp ()5

x—x;)¥ ‘
0<|w|<m—1—|B]
(5.20),(5.21) 615gi|—|/3\ ifg>a

S i (5.24)
61_D5|5i|_|ﬂ| for any 3,
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where in the last line we have used that 8+ w > 8 provided that 0 < |w| <m —1—5|,
and hence, 8+ w > a provided > &. We insert (5.24) into (5.19)-(5.21) to deduce,

|07 P (x) — bap| < Cerdy ™7 (B€M,B>a); and (5.25)
0°P3(2)| < CePo5 17! (BeM) (5.26)

We will use @ € M and P?% to construct A < A and an (A, z, eo/Co,éQ;r )-basis for
O'J(SU,M‘SQ;F) for all x € supp(u) N 3Q;", indicating that Q; is OK, a contradiction. So
(5.13) cannot hold, and we have [|0, P|| 7 (ujo0,:50,) = |P|i for all P € P. This next
portion of the proof follows Section 13 of [13].

Fix = € supp(p) N 3Q;] C Q°. Recall from (5.1) and (5.3), that the auxiliary polyno-
mials (PY)qca form an (A, z, Ce, 1)-basis for oy(x, u), satisfying:

P € Ce-oy(z, p); (5.27)
PP (2) = dup (o, B € A); (5.28)
190° P (x)| < Ce (e A, fe M, B> a); (5.29)
0°PX(z)| < C (e € A, B € M); and (5.30)
07 P2 () S o5 (ae A BeM. (5.31)

Define

x

Pf=Py— Y 9°Pi(z)- P

acA,a<a

We have o;(z, 1) C o5(z, ptlog,), 60, < 1,and m —n/p >m —1 > |a|. So from (5.23),
(5.26), and (5.27), we have

Pee (Casgl ™y S (Ce oM (Co) - 0w ploa,)

aEA,a<a
— PeC (e1 + €1 7€) 6|Q&J+n/p_m cog(x, pleg;)- (5.32)
For 8 € A, 8 < a, from (5.28),
PP (x) = 8°P%(z) — 0° P (z) = 0. (5.33)

For f € M, 8 > @&, from (5.25), (5.26), and (5.29),

0" Pg (x) — dgal < [0”Pi(x) — dpal + |07 (P — P (x)]
<|0°Pf(x) = 6gal + D 10°PI(2)||0° Py (x)]

acA,a<a
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<Cady e ST (e Pog T (e

acA,a<a

< (e + e ooy (5.34)

where the last inequality uses that dg, < 1 and |5| > |a for > a > «a.
For 8 € M arbitrary, from (5.26), (5.31),

0°P (2)] < |0°PF ()| + D |0%P7(@)]|0° Py (w)]

aEA,a<a
— al—|B — al—|a a|—|B8
o Dd‘Qil 18] + Z (Ce; Dé‘Qil | ‘)(0512,;‘ \ \)
acA,a<a
<ePagol (5.35)

Define
A={a}u{ac A:a<al.

Then the minimal element of the symmetric difference AAA is @&, which is in A. So
A < A, by definition of the order relation on multiindex sets. We may assume e < e? 1
Then, for small enough ¢, (5.34) implies 9* P (x) > 1/2. So P¥ := P¥/(d*P%(x)) is

well-defined, and due to (5.32)-(5.35), this polynomial satisfies:

P e Cley+ e Pe)a5 ™M™ - oy (w, plaq,); (5.36)
0" Py (x) = dpa (B € A); (5.37)
18° P2 (2)| < Cler + 67 Pe)oy 7! (BEM,B>a); and (5.38)
187 P (x)| < CerPo 517 (BEM). (5.39)

For a € A\ {a}, define
P& = P — 9°P%(x) - P2

Notice, if a € ?l\ {a} then a < a. Also, dg, < 1. Thus, thanks to (5.29), [0*P2(x)| <
Ce < 0655‘_‘0". Therefore, from (5.27)-(5.30), and (5.36)-(5.39), for any o € A\ {a},

pma c |Cce+ 065‘5117'&‘(61 + EIDE)(S\CiHn/P*m 'JJ(x7H‘9Qi); (5.40)
0Py (xr) =dap (B € A); and (5.41)
99 P2 (2)] < Ce+ Cedly ™Mo Ps 1P (Be M, B > a). (5.42)

We suppose € < 61D+1. Since |a| +n/p—m <0, and dg, < 1, (5.40) implies,
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P e Cler + & Pe)ag ™ o (w, ulog, ) (5.43)
Similarly, because dg, < 1 and |a| —|5] < 0 for 5 > «, (5.42) implies
9°P2 ()] < Cerdls 1 (Be M, B> a). (5.44)

Recall = € supp(u) N 3Q;" is arbitrary. Together, (5.36)-(5.39), (5.41), (5.43), and
(5.44) imply that, for each x € supp(p) N 3Q;", {P2}, o4 forms an (A, z,C"(e; +
1 7€),3000,+)-basis for o;(, uog;), and hence for o ;(z, f1[3g,+). Fix a universal con-
stant €; > 0, small enough so that the preceding arguments hold, and so that €; < 2C€+CO
Recall that we have assumed e < e” 1. Thus, {Pg}aez forms an (A, z,e0/Co, 3000, + )-
basis for o 7(x, p|3¢,+) for each x € supp(u) N3Q;", indicating that Q; 1 is OK. But this
contradicts the assumption that Q; is a CZ cube. We have reached the desired contra-

diction. This completes the proof of (5.12), and with it, the proof of the lemma. O
5.8. Patching estimates

5.3.1. Patching estimate on Koz
Recall that we have defined a collection of disjoint dyadic cubes CZ° = {Q;}icsr €
II(Q°) contained in Q° = (0,1]". We set Koz = [J;c; Qi- Then K¢z is a relatively open
subset of Q°. Indeed, we showed that K, is a closed set in R", and K}, C supp(p) C 15Q°.
We associate to each cube Q; € CZ° a basepoint x; = ctr(Q;). We define the polyno-
mial norms |P|; := |P

2i,60,; -

Recall that a Whitney field P € Wh(B¢z) is an indexed collection of polynomials,
P= {P:}reme,, associated to the CZ basepoints Boz = {x;}ier.

For a relatively open set  C Q° with K¢z C ©, and for P € Wh(Bez), f € BAME
and F' € L™P(Q), we define:

VE. Pl . g 0020y = (1 F]

o\ /P
Q i€l
(5.45)

15, Pl s uoczey = inf {IIF, Pl g uocze) : F € L™P(Q)]. (5.46)

We define the seminormed vector space:

Fu2,02°) = {(£,P): f € 7 (), P e Wh(Boz), I, Pl s.qwocze) < oo}
(5.47)
In the previous definitions, we have in mind to take Q = K¢z or Q = Q°.

Lemma 5.5. Suppose we are given a collection of functions {G;}ier C L™P(R™) and a
Whitney field P = (P,,)ic; € Wh(Bcz).
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Define G : Kcz — R by G(x) = >, Gi(x) - 0;(x), where {0;}icr is a partition of
unity satisfying (POU1)-(POU4) (see Section 4.3). Then

B||P
”G’PH/*(JC wiKcz,CZ°) NZ HG“P””L S (fuli1g;nqe31-1QiNQ°) + Z | Pe; — Pr -

iel i/ €1, icri!

(5.48)

Here, we write i <+ ' to denote that C1(Q;) N Cl(Qy) # 0, and the fZ.-functionals on
the right-hand side of (5.48) are defined in (2.5).

Proof. For z € Qy, if * € supp(f;) then x € 1.1Q;, hence 1.1Q; N Q; # O and thus
i <+ 1 by the good geometry of the CZ cubes. Thus, by the condition ), ; = 1 on K¢z,
we deduce that G(x) = Gi(z) + X_ic; oy (Gi — Gir) (@) - 0;(x). By the Leibniz rule, for
any multiindex « such that |y| = m, we have

DGa)=Go(@)+ Y. > 0%(Gi - Gi)(2)00i(x).

(e, B):a4B=v i€l i+>i’

Then, taking p’th powers, summing on v with |y| = m, and integrating over = € Q;, we
have

HG”I[),MP(Q < ||Gz/Hme Q1) + Z Z / |85 G G )<$)|p‘aa91($)|pd$
(aB):lal+|Bl=miclici g,

Now note, by (POU1)-(POU4), |090;(x)| < 5éla|, and 6; is supported on 1.1Q);. So,

NG (@) S NG I Tmnia, )

T DD DI A B (R RO
(a,B):la|+|Bl=m i€l icd! Q,N1.1Q;

(5.49)

If o = 0 in the previous sum, then |5| = m, so

09(Gr — Go) )Pz < CIGH I iy + 1G5 s
Q,yNL.1Q;

Now suppose |«| > 0 in the previous sum. Then |5| < m — 1, and
0°(Gi = Gor)(@)] < 10°(Gi = Pp,) (@) +10°(Py, — Pu, ) ()| +10° (Gir = Pu, ) ().

Thus, by integrating over x € Qy N 1.1Q;, we can apply (2.14) twice, on the rectangle
1.1Q; N Q° and on the square @Q;/, to obtain
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0°(G; — Gy) () |Pda
QiNL1Q;

p 57np—\/3|p
o (Fortl11g;nqQei1.1QiNQ°) " Q4

+ G, Py, bt max |07(Py, = Pa,)(@)700,).

p
”/*(f’MQi,?Qi’) Qi 2€1.1Q:NQ,/

Now because |a| + || = m,

o [ G- Gowpds < (16w P,
QiN1.1Q;

p
H/*(fvl"l.lQiﬁQo ;1.1Q:NQ°)

G, P I max |0°(Py, = Py, ) (@)oY,

(@, 3Qur) + z€1.1Q:NQy

We use (2.2) to bound the third term in the parentheses by |P,, — P, g Sa,
P, . Returning to (5.49),

:|Pﬂ%7

p
i (fbl11g,n@e31.1Q:iNQ°)

1G1 i SNGHE wniay + > (IGs P,

i€l i1’

+ HGi/, Pxi/ ”Zg*(va\QiMQi/) + |le - pxi/ |f)

P P :
We can bound |G| Lmw(Q,) < |G, Pr, ”/*(f,ull_lQi,on;1-1Qi/ﬂQ°)' Thus, by summing

on ¢’ € I, and using that for each i € I there are at most C' many ¢’ € I with i <> ', we
have

1G]

2 rtiiom = D0 1IC]

el
i€l

+ Y|P, PP (5.50)

(4,)si4>d/

P
L (Qur)

p
i (fbl11g,n@e31.1QiNQ°)

Because 0; < 1, supp(;) C 1.1Q;, and > 60; = 1 on Koz, we have

[ 6= tran= [ |SG-n-0f
Kcz

Koy i€l

dp

sy [ (G- fran

€1y 1G,nQe

. p
5 Z ”Gz’ Pxi ||j*(fvﬂll.lQiﬂQo?1-1Qion). (551)
el
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First applying that >~ 6;; = 1 on K¢z, and then © € supp(f;) = =z € 1.1Qy, with
(4.1), (4.2), and Lemma 2.2, we obtain,

el

=21 > (G Pt

i€l el i

<Y > IGe - P,

i€l Vel <

S/ Z”Gl 7P£i||ip(1_1QimQ0)/5gf+ Z |P$1 7Pxi/ P

%

P mp
Lp(Qi)/(SQi

p mp
L"(Qi)/(sQi

Lr(L1g,nee)/ /%5

i€l (2,2):4" <>
p p
5 Z||Gi’Pxi||j*(-ﬁﬂll.lQiﬂQo?1-1Qion) + Z |le _Pxi/|i- (552)
i€l (i,27):3" <>

From (5.50), (5.51), and (5.52), we conclude,

1G, PIP. s pemczer = NG mm oy + / G~ fPdu+ YNNG — Poy B, /557

Koy i€l

) P _ P
S’ Z ”GZ’ Pac,- ”f*(fv/ﬂl.lQinQO%1-1QiﬂQ°) + Z |le Pxi’

i
icl i1

O

5.8.2. Patching estimate on Q°

Recall that Koz C Q° and K, = Q° \ K¢z. We showed that K, is a closed set in
R™, and K, C supp(u) C %QO.

We have defined B¢z = {x;}icr, the set of all CZ basepoints, with z; the center of
Q; for each Q; € CZ°.

Given S € Wh(K,), P € Wh(Bcz), we regard (P, S) € Wh(BozUK,) as a Whitney
field on K, UB¢cz.

Lemma 5.6. Fiz a collection of functions {G;}ic; C L™P(R"™), and two Whitney fields
R = (Ry,)ier € Wh(Bcz) and S = (S4)per € Wh(K,). Let G : Q° — R™ be defined as

G(z) = >ier Gi(z) - bi(x) x € Koz
Sz(x) z e K,

where {0;}icr s a partition of unity satisfying (POU1)-(POU4) (see Section 4.3).
If (G, R, 5") satisfy the conditions

G, Bl g (tyikccz.cze) + ISILmr(k,) < 0o and (S, R) € C" 1 ="/P(K, UBcy),

then G € L™P(Q°), J,G =S, for all x € K, and
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1G]

Lmr(@) S NG Rl g (s kczcze) T ISlLmrx,)- (5.53)

Remark 5.1. In later applications of Lemma 5.6, the hypothesis ||G, E||/*(f,u;Kcz,CZ°) <
oo will be verified using Lemma 5.5.

Proof. By assumption, ||§||me(Kp) < 00, hence for any n > 0, there exists H €
L™P(R") satisfying J, H = S, for all x € K, and ||H||m.»®n) < ||§||Lm,p(Kp) +.

By assumption, ||G7}§||/*(f,#;KCZ7CZo) < o0o. In particular, G € L™P(Kcz). Thus,
J.G € P is well-defined for x € K¢oz.

Define P € Wh(Q°) as

xr T

po— J.G € Koy
Se=J:H z¢€kK,.
By definition of G, observe that
P,(x) = G(x) for all z € Q°. (5.54)

Fix § > 0, and fix a cube @ C R™ with 5@ < 8. We will show that for all x,y € QOQO
we have

S HHHLm,p(mQ) + sup A{||G>quc S (FmQi) )
QiC35Q
+ sup {||G| Lo (nt(B(sr)n@e) | % € TQ,r < 76,int(B(2,1)) N Q° C Kcz} :
(5.55)
Here, as usual, B(z,r) = {w € R" : lw — z| < r}, and | - | is the £*° (sup) metric on R™.

Thus, B(z,r) is a closed cube centered at z of sidelength 2r.
Fix x,y,Q, ¢ as above. We shall split the proof of (5.55) into cases depending on the
relative positions of x, y, and K,. Observe that

|z —y| <dg <4 (5.56)
Case 1: Suppose z,y € K,. We apply (2.3) and the Sobolev Inequality on Q,
| Py — Py|y,6 = |J. H — JyH|y,5 <|J.H — JyH|y,\x—y| S ”H”Lmvp(@)' (5.57)
This completes the proof of (5.55) in Case 1.

Case 2: Suppose z,y € Koz satisty dist(y, Kp) > 3|y — x| or dist(z, Kp) > 3|y — x|
Because |P|, 5 =~ |P|y,s for 6 > |z —y| by (2.2), we may assume without loss of generality
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the first case occurs. By the triangle inequality, B(y, |y — z|) C R™ \ K,. Thus, we can
apply (2.3) and the Sobolev Inequality on B(y, |y — z|) N Q° C K¢z, and obtain

[Py = Pylys = |JoG = JyGly,s < [JoG — JyGly jo—y| S Gl Lmr By, ly—2))n@e)-

Therefore, we can upper bound |P, — Py|, s by the second supremum in (5.55). This
completes the proof of (5.55) in Case 2.

Case 3: Suppose y € Koz andz € K, ory € K, and x € Kcz. As in Case 2, without
loss of generality, y € K¢z and © € K,. Because K, is closed (see Lemma 4.8), there

exists z, € K, satisfying dist(y, K,) = |zy — y|. Because x € K, and from (5.56), we
have
|2y =yl < |z —y| < bg < 6; (5.58)
B(y, |z, —yl) C 3Q; (5.59)
|z — 2y < |z —yl+ |y — 2y| <265 < 26. (5.60)

Because z, is a closest point of K, to y, int B(y, |z, — y|) C R™\ K,,. We write [y, 2)
for the segment {y +¢(z —y) : 0 < ¢ < 1}. Then there exists a sequence {z}}ren C R"
satisfying

z’; € ly,zy) Cint B(y, |z, —y|) CR™\ K, for all k € N; (5.61)
Jim 2y =2, (5.62)

Observe that
dist(zﬁ,Kp) < \zfj —zy| = 0 as k — oo. (5.63)

By (5.61) and (5.58), we have
|z§—y| Sloy—yl<lv—y|l<dg<d (k € N). (5.64)

Observe that z’; € [y,2zy) C Q° by convexity of Q°, so 25 € R"\K,)NQ° = Kcyz.

Thus, we can define a map 7, : N — I, such that
Ty (k) =1 if z’; €Q;eCz°.
Consequently,

8., < dist(zh, K,) < |26 — 2, < dist(y, ) = [y — 2| <y — 2| <5 <6 (ke N);
(5.65)

Qv C By, 2ly —2)) ©5Q (ke N). (5.66)
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For the proof of (5.65), we use Lemma 4.10, which implies éq, ., < dist(Qr, k), Kp) <
dist(z?’;7 K,), where the second inequality uses that z{j € Qr,(r); further, dist(z’y“, K,) <
|2 — 2| < dist(y, K) = |y — z,| because z)
point z, of K, and the remaining 1nequaht1es in (5.65) are immediate from (5.58). Lastly,

the first inclusion of (5.66) uses that z) € Q- k), |25 —y| < |z —y| and 0Qr, i < 2=yl
(see (5.64) and (5.65)); the second inclusion of (5.66) uses that y € Q and ly —z| < 05
(see (5.58)).

Let k € N. (We will later send k& — c0.) Because € K, and y € K¢z, we have
P, =S, and P, = J,G. By (5.64), we have |y — 2| < |y —z,| < |y — x| < 4. By applying
the triangle inequality, and then (2.2),

is on the segment connecting y to a nearest

[Py — Py|y75
=S, — JyG|y75
< |8 =8z, lys + 152, = Ra, o lys + | Ba, oy = T Glys + [ 16 G = JyGlys
(2.2)
S |Sz - Szy|z,5 + |Szy - RITy<k)|Zy’5 + |R1Ty<k) - JZIjG|Z’J75 + |JZ’;G - JyG|y,6~

(5.67)

We analyze the four terms on the right-hand side of (5.67), one by one.
From (5.58), since y € Q, we deduce zy € 3Q. Also, note that |:c — 2y < 26, according
o (5.60). We apply (2.3), and then the Sobolev Inequality on SQ to estimate

|Sr - Szy|r,5 S/ ‘Sx - Szy|$:\$—zy\ =

S ||H||Lm.p(3@)~ (5-68)

2y

Because (S, R) € Cm_l’l_"/p(K UBcz), we have R, — S, whenever x; € Boyz,
r; — 2, z € Kp. Observe, |2, 1) — 2 \ (o ) (as both x, () and zk belong to Q- (1))
Further, dq, ., < dist(z}, K,) — 0 as k — oo (see (5.63) and (5. Go)) When combined

o (k
with (5.62), this implies @, () — 2, as k — oco. Hence, Rwry(k) — S, as k — oo. Thus,
kli)ngo Sz, = Ra, 2,6 = 0. (5.69)

From (5.65), 5Qw<k> < 4, So, applying (2.3) and then (5.10), using that z’; belongs to

Qr, (1), we have

|R

I"'y(k)

- Jz’;G|z’;,6 < ‘Rxfy(k) - JZ’;G|Z§76QT:’J(’€> S ”Ga Rmfy(k)Hf*(fyu;QTy(k))'(a?O)

We recall that |zf —y| < 4 (see (5.64)). Also note that by (5.61), int(B(y, |z, —y|)) N
Q° C (R™"\ K,)NQ° = Kcz. So we can apply (2.3) and then the Sobolev inequality on
int(B(y, |zy —y|)) N Q°, and deduce

/4G = JyGlys < [5G = JyGly op ) S NGllmr e 1z —yng)-  (5.71)
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Recalling (5.66), (5.58), (5.61), we let k — oo in (5.67), and use (5.68)-(5.71) to
conclude

Po = Plys S 1Flpniazy + 590 16, Rl s}
Q:C5Q
+ Sup{HG| L™ (int(B(z,r))NQ°) * # € @,7‘ < 67 1nt(B(z7r)) N QO C KCZ} .

(5.72)
This completes the proof of inequality (5.55) in Case 3.
Case 4: Suppose z,y € K¢z satisfy dist(y, K;) < 3|y — | and dist(z, K) < 3|y — z|.

Because K, is closed, there exist z;,2, € K, such that dist(z, K,) = |2, — x| and
dist(y, K},) = |2y — y|. Hence, we have

|22 — @], |2y — y| < 3y — x| < 365 < 36. (5.73)
Consequently,
|22 = 2y| < [2o — 2|+ |z =yl + |y — 2| <765 <76, (5.74)

and zz, 2, € 7@ because z,y € @ Considering (5.73) and (5.74), we apply (2.2) and
(2.3) to estimate

zm_Pz

|P1_Py|y76§|Pz_sz zm,75+|sz_Py|yy75'

Y

Because 2,2, € K, while z,y € K¢z, we apply inequalities (5.57) of Case 1 and (5.72)
of Case 3 with the cube 7Q playing the role of Q, and 74 playing the role of 4, to further
reduce this:

S ||H‘|Lm,p(21@) + SUPQ{”Gva /*(f,u;Qi)}

Q:C35

~+ sup {||G| Lmp (int(B(z,r)NQe) : 2 € 7@,7“ < 76,int(B(z,7)) N Q° C Kcz} .
This completes the proof of the inequality (5.55) in Case 4.

Since Cases 1-4 are exhaustive, we have proven (5.55).

We prepare to apply Corollary 2.12 to show that G € L™P(Q°). Fix 6 > 0 and fix a
congruent d-packing m € II~(Q°). Thus, 7 is a family of cubes in Q° of equal sidelength
0, with pairwise disjoint interiors.

For the next calculation we use the terminology of local approximation error, E(G, @),
in Section 2.2.1. For @ eEm z € @, 6= 5@, we have



64 M.K. Drake / Advances in Mathematics 420 (2023) 108999

E(G,Q)/0™ <G = Prll o) /8" < 1IG = Pell o gy0"/" ™"

< sup {|G(y) — Pu(y)|}s™/P~
z,YEQ

< sup |Py - P:r|y,57
z,YEQ

where the last line follows from (5.54). Combining this with (5.55),

S (B(G,Q)/0mP <Y sup |Py— Pl

@Gﬂ' éewm,yeQ
S (Ml pmsigy + 5w {IG el s}
A QiC35Q
Qer
P
+ sup {”G”LmﬂP(int(B(z,r))ﬂQO)})
z€7Q,r<7d

int(B(2,7))NQ°CKcz
SNG B, pixcos.cz0) T IHILmsmn)

S G R (fKoz,cz0) T SN zmr i,y + 1)

where the second to last inequality follows because y € 7@, r <7 = B(y,r) C 35@7
and because {35@}@E7r has bounded overlap (recall 7 consists of cubes with pair-
wise disjoint interiors and equal sidelength), and the last inequality follows because
| H | mw@®ny < H§||Lm,p(Kp) +n. We let n — 0, then take the supremum over 7 € I (Q°)
and apply Corollary 2.12 to conclude G € L™?(Q°) and

1Gl Lmn o) S IG Bl s(rscz.cze) + 15 Lmniie,)-

Next, we will show J,G = S, for all z € K,. We claim that P € Wh(Q°) satisfies
|Pe — Pylyjz—y] < A <ooforall z,y€Q° Let 2,y € Q°, and fix Q C Q° with 2,y € Q
and dg = |z — y|. By (5.55), we have

P, — P, _ol S H||mor + su G, R,, 2O,
| yde—yl S NH | Lmr210) Qig;gQ{ll A (it

+ sup {IGI L nt(BzrHnQe) }
z€TQ,r<76
int(B(z,7))NQ°CKcz

S Hl mr@ny + G Bl g (£.u5K 02,020 + |1GllLmr(c.0)
S HLmr@ey + G Bl g (fuikcz.020) < 00
Since G(z) = Py(z) for x € Q° (see (5.54), we can apply Lemma 2.13 to deduce

J,G = P, for all x € Q°. Since P, = S, for z € K,,, we have J,G = 5, for all x € K.

This completes the proof of Lemma 5.6. O
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5.8.8. Patching estimates for restriction of p

We state variants of the last two lemmas for the restriction of the measure p to a
Borel set E C R™. Their proofs follow from the proofs of Lemma 5.5 and Lemma 5.6
with the measure u replaced by p|g.

Lemma 5.7. Suppose we are given a collection of functions {G;}icr C L"™P(R™), a Whit-
ney field P = (P, )ic; € Wh(Bcz), and a Borel set E C Q°.

Define G : Koz — R by G(x) = >, ; Gi(x) - 0;(x), where {0;}icr is a partition of
unity satisfying (POU1)-(POU4) (see Section 4.3). Then

= ‘
”G’PHJ*(ﬁNlE;Kcz,CZO) N Z 1Gi, Pr,
i€l

+ Z |Pwi_Pmi/p

i-
i, €l, i3/

p
j*(f;uh.lQmE;l.lQiﬂQO)

Lemma 5.8. Fiz a collection of functions {G;}icr C L™P(R™), and Whitney fields R =
(Ry,)ier € Wh(Bez) and S = (Sp)ecr € Wh(K,). Let E C Q° be a Borel set. Let
G :Q° — R"” be defined as

G(z) = Zie] Gi(z)-0;(z) z€ Kcz
Sy (x) v K,,

where {0;}icr s a partition of unity satisfying (POU1)-(POU4).
If (G, R, S) satisfies the conditions ||G’R'||/*(f”uf|E§KCZ7CZO) + ||§||Lm.p(Kp) < oo and
(S,R) e Cm=11=n/2(K, UBey) then G € L™P(Q°), J,G = S, for all z € K, and

1Gllmr@e) SIG, BRIl g (s.ulsik0z,020) + 1S Lmr(x,)-
6. Further constraints on extension

Let Q°, CZ° = {Qi}ier, Koz, and K, be as defined in Section 4. Let Bez = {x;}ier
be the set of all CZ basepoints.

6.1. Definition and properties of the space 7, (j;Q°,CZ°; Kp)

—

For (f,P,S) € 7 (u) x Wh(Beoz) x Wh(K,), we define:

F e L"™P(Q°) and
Jp(F) =8, forall x € K, .

(6.1)
Here, we have used the Z,(f,u;Q,CZ°) functional defined in (5.45), with Q = Q°.

||f7 PaSHf*(,u;Q°,CZ°;Kp) = inf{”F,P/@*(ﬁonyczo) :
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We define the seminormed vector space:

1

fe 7, PeWh(Bay), Se Wh(Kp),}

S Q°,CZ°% Kp) = {(ﬂ P,S):" 2
||f7p7S||/*(H§Q°7CZO5Kp) <0

(6.2)

The next result gives a compatibility condition between the Whitney fields Pand §
whenever (f, P, S) € F(u;Q°,CZ°%; Kp).

— —,

Proposition 6.1. Let (f, P,S) € _Z.(1; Q°,CZ°; K,). Then (P,S) € Wh(Bcz UK,),
and

(P, S)lem-1a-nm(meyur,) < Cullls P, S| s, (wqe.cz0:x,)- (6.3)
Here, Cg > 0 is a universal constant, determined only by m, n, and p.
Proof. Let nn > 0 be arbitrary. Let H € L™P(Q°) satisty J,H = S, for all z € K,,, and
IH, Pll . (smq0,c20) < s P, S| g (e kozik,) +1- (6.4)
Case 1: As a consequence of the Sobolev Inequality, if z,y € K, then

|52 — Sy|y’|y*z\ = |J.H — JyH|y,|y*z| S ”H”Lm*”(Qf’) S HH’P”/*(LMQ",CT’)'
(6.5)

Case 2: If x € K, and y € Bz, then y = x; for some ¢ € I, and thanks to Lemma 4.10,
dg, < dist(z;, Kp) < |z — x;|. Hence from the Sobolev Inequality, (2.3), and (5.10),

‘Sxfpz

ilxg,|z—a;| < ‘JzH - J11H|x“|x—xl| + |J$1H - PL %i,0Q;
S IH | Lmr@ey + I1H, Pl g (£m00)
S IH, Pl g, (pm00,020)- (6.6)

Consequently, using (2.2), we get that [Sy — Py, [z jo—2,| S ||H,ﬁ||/*(f”u‘;Qo7CZO).
Case 3: Similar to Case 2, if z,y € Bz are distinct, then y = z;, * = z; for some
i,j € I, and 0q,,dq, < C|r; — x;|. From the Sobolev Inequality, (2.2), (2.3), and (5.10),

|ij_Pz

Ti,|T;—x;| < |Ja:JH - JCULH

Ti,|T;—x;| + ‘leH - le

mi,éQi + |JIJH - P:Ej|$j,5Qj

i

SNHI pmw(@oy + I1H, Poill g (r .m0y + 1Hs Pyl g (rm0))
SIH, Pl g, u0e,020)- (6.7)

From (6.5), (6.6), and (6.7), we have



M.K. Drake / Advances in Mathematics 420 (2023) 108999 67

1P, 9)

Cm—l,l—n/p(%czqu) S ”HvP”f*(f,,u;QO,CZO)'

In light of (6.4), and since n > 0 is arbitrary, we have proven inequality (6.3). O
6.2. Coherency

We start by introducing two pieces of terminology. Recall we have fixed a multiindex

set A C M.

Definition 6.1 (Coherency). Let K C R™ and Py € P. We say that a Whitney field
(Py)zerx € Wh(K) is coherent with Py if 0%P,(x) = 0“Py(x) for all z € K, and for all
a € A

Definition 6.2 (K-Coherency). Let K C Q° C R™ and Py € P. We say that a function
F € 0m~11=n/P(Q°) is K-coherent with Py if 0%J,F(x) = 0%F(x) = 0%Py(z) for all
z € K, and for all a € A.

The next result will be used in Section 6.3, to give the proofs of the lemmas therein.
Proposition 6.2. For (f,Py) € 7 (1;9¢g°),

) Lo PeWh(Beoyz) and S € Wh(K,) satisfy
inf 111, B SN re e 0205,y ¢ S .

(P,S) € Wh(Bcz UK,) is coherent with Py
< C”fa PO”/(u;éQo)'

The rest of this section is devoted to the proof of Proposition 6.2.

6.2.1. Proof of Proposition 6.2

Let (f, Py) € # (1;0¢-) be given.

Given G € L™P(R™), we will define a function F' € L™P(Q°), and the Whitney fields
P e Wh(Bcyz), and S € Wh(K,), which satisfy the following properties:

IF. Pl s.g.se.029) < CIG Poll s (1) (6.8)
(P, S) is coherent with Py, (6.9)
Jo B =8, for all x € K. (6.10)

Notice that (6.8) and (6.10) imply that || f, P, S|| s, (uqe.cz05k,) < CIG, Poll g (s ui600)-
By taking the infimum in this inequality over G € L™P(R"™), the proposition follows.
For G € L™P(R"),

|G — Po, 0l #(s—Popisne) = 1Gs Poll g (f.:500)-
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Therefore, in the proof of (6.8)—(6.10) it suffices to assume that
Py=0.

We now explain how to construct F, P, S that satisfy (6.8)—(6.10) for Py = 0. For refer-
ence, see (6.16) for the definition of F, see (6.14) for the definition of P = (P, )ics, and
see (6.17) for the definition of § = (Sz)eek,-

We shall make use of the auxiliary polynomials P¥ € P and functions ¢% € L™P(R™)
(r € Q°, a € A) defined in Section 3.3.1. Recall (P¢) satisfies (3.55)-(3.56) and (%)
satisfies (3.69)-(3.72), while J,p% = P%. Each ¢ is defined in terms of another family
of functions (¢”)ge .4, via (3.69) which states that

ZAocﬂ %07

BeA

where (A7 5)a,pem is a (C, Ce) near-triangular matrix. The inverse of a near-triangular
matrix is near-triangular with comparable parameters. So, for any z,y € Q° and o € A,
we can write ¢ as a bounded linear combination of (¢2)pea. Precisely, there exist
coefficients (wy%)a,peA,z,ye@e C R such that

Zwaﬁ oF (o € A), and
BeA

Wiyl < C (0,6 € A). (6.11)
From (3.71), we have J,,¢¢, = Pg . It follows from equation (5.3) in Lemma 5.1 that

the functions g, are locally bounded on 3Q; . Indeed, by taking @ = Q; and y = x; in
(5.3), we have

0508 (2:)| = |0° P (z)| < Ca51TP (aed BeM, iel).  (6.12)

We shall define functions F; on the CZ cubes, and patch them together on K¢z using
a partition of unity. Define F; : R®™ =+ R and P,, € P for each ¢ € I as

Fi(z) = G(x) — Z 0°G(x;) - g, (x); and (6.13)
acA
Py = Jo Fi = Jp,G = Y 0°G(x;) - Py (6.14)
acA

From (3.55), the polynomials (PS)ac.a satisfy 0° P2 (z;) = dap for a, 8 € A. Thus,

PPy, (x;) = 0P Fi(x;) =0foriecI,B € A (6.15)
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Now we define F': Q° — R.
o Fi(x) - 0; Koz,
F(J?) _ Zzel (.’E) (x) T € Koz (616)
G(z) x € Kp.

where {0;};cr is a partition of unity satisfying (POU1)-(POU4) (see Section 4.3). By
construction, F € C]"- ' (K¢z), and hence, J, F is well-defined for y € Kcz.

loc

For any y € Q°, we define the polynomial

Yy

{JyF y € Kez, (6.17)

JyG =3 0eca 0GPy y € Kp.

By restricting the family of polynomials (Sy)ycqe to K, we obtain the Whitney field
S € Wh(K,).

The basis (Py')aca satisfies Bﬁpyo‘(y) = 6np for a, € A. Hence, 0°S,(y) = 0 for
y € Kp, € A. Thus,

(Sy)yek, is coherent with Py = 0. (6.18)

The cutoff functions 6, satisfy z; € supp(6,) only if j = ¢, and J,,0; = 1, so from (6.17),
(6.16), (6.14), Sy, = Jo,F = J,, F; = P,,. Thus,

Se, =P, (ic). (6.19)

By Lemma 5.3, we have P;*(y) = 0 for y € K}, so by definition of ' (see (6.16)), we have
Sy(y) = J,G(y) = G(y) = F(y) for y € K,,. Evidently, also S,(y) = F(y) for y € Kcz.
Thus,

Sy(y)=Fly) (yeQ°). (6.20)

Lemma 6.3. Let x,y € K,UBcz. Let U C R"™ be a domain such that z,y € U, and such
that U is the union of two n-non-degenerate boxes with an interior point in common (in
particular, U can be a cube, with n =1). Then

1Sz = Syly.jy—z| Sn 1GlLme@) + G, Poll g (fuibge) - D N6 ILmewy,  (6.21)
BeA

where (¢P)ge A is as defined in Proposition 3.9 of Section 3.5.1, and the constants in <,
depend only on m,n,p and 7.

Proof. We define F,, € L™P(R") (y € Q°) by

Fy(z) = G(x) = Y 0"Gly) - ¢y (). (6.22)

acA
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Observe, by definition of the polynomial S, in (6.17) and by property (3.71) of vy, that
Sy = JyF, for y € K,. On the other hand, note F,, = F; defined in (6.13). Hence, by
(6.19), Sy, = Py, = Jy, F; = Jy, Fy, for i € I. Thus,
Sy = J Iy (CL‘ cK,U %Cz).
Because Py = 0, by (2.14), we have
0°G(2)] = 07(G = Po)(2)| S G, Poll s (fssge) (BEA 2€Q°).  (6.23)

For distinct z,y € K, UBcz, we want to bound

1Sy = Salygomyt = (32 107(S, — Sa)(w) Pl — y| MIPHn )P,
yeEM

For v € M, we have

07(Sy = S) ()| = |07 (Fy — JoF2)(y)]
<O (Fe = Fy)(y)| + 107 (Jo Fr — i) (y)] (6.24)

Now apply (6.22) and (6.11) to estimate

(= B )| = |07 ( Y 0°G)es = - 0°Gly)es ) ()]

acA acA
=[or (X et Yty - X 0'6w) ) )
acA peA peA
<33 0°G) Wl — °G )17 )]
BeEA acA
_ Z 0P F,(y ||5780y( )| (6.25)
BeA

Because A is monotonic, if 5 € Aand f+ « € M then f+a € A, so

P LF(y)= Y 0 F(x ( )a =0 (BeA). (6.26)
B+aeM

We claim that [07 b (y)] S |y — z|P1=1l for y € M, B € A. Indeed, this estimate follows
by (5.6) if y € Kp, and by (5.2) if y = x; for some i € I (note: if y = x; then = ¢ Q;,
as y, x are distinct, hence d¢,/2 < |y — x| < 1). Thus, using (6.26) in (6.25), and then
using the Sobolev Inequality, we bound
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07 (Fe = F) ()| < Y 107 Fe()]107 03 (y)]

BeA
= S0P (Fs — LE) )10 6 )
BeA
S N Fell pmwuyly — 2™ 1P Ply — g B
BeEA
S Fellpmr@)ly — x|m7|7‘*n/;ﬂ' (6.27)

On the other hand, by the Sobolev Inequality,

107 (T (F2) = Fo) ()] S | Fall (ol = y™ =177,

Combining the previous inequalities in (6.24), we have
107(Sy = S0) W) SN Eell L@yl —y™ P (y e M). (6.28)

From (3.69), we have ¢f = > 5. 4 Ats - ©?, where (AZs)a ﬁeA is a (C, Ce)-near

triangular matrix, and in particular [AZ ;| < C. Hence [0 || Lme @) S X gea Il Lmr @)
for all o € A; applying this and (6.23), in the definition of F,, we have
[ Eellmor )y < NIGllpme@) + H > 0°G(a)p L (1)
acA
SNGllzmewy + 1G: Poll g (rusbqe) Y 162 lLmrw)- (6.29)
BeA
Substituting (6.29) into (6.28),
107(Sy = Sa) (W)|-|& =y P Gl mwwy + Gy Poll g (rssge) D, 197 lLmr oy
BeA
(6.30)
Thus, by definition of the norm |- |, ||, we conclude that
1Sy = Sal? = S 187 (S0 — 5,)(y)Ply — af PP
yEM
NG iy +1GPolly sy - S 167 o

BeA

This completes the proof of (6.21). O

Lemma 6.4. The function F|k., : Kcz — R and Whitney field Pe Wh(Bcz) satisfy

|E Pl g, (fukez.czey SING Poll g (fusq0)- (6.31)
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Proof. By (5.48),

D||P } p _ p
VP g piceozey S 2 Prll’s, gty sqngeitaqungey + D 1Pes = Pa i

iel i</

Because J,,, F; = Py, by (2.12), || F; — Py,

2@ /00, S I FillLme(q,), hence we have

Lmr(11QunQe) T / |Fi = flPdp
1.1Q;

P (6.32)

3

IE Pl (sircoriczey S D |IF
el

41

We now bound the term Y,/ | Py, — Py, |V in (6.32). Recall from (6.19) that P,, =
Sy, If i < ¢/ then Q; and Qs are neighboring CZ cubes, hence, U;;r := (1.1Q; U1.1Q; )N
Q° is the union of two C-non-degenerate boxes with a common interior point, and
x;, 2y € Uiyr. Note also |z; — zy/| =~ d¢,, by the good geometry of the CZ decomposition.
Hence, from Lemma 6.3, applied with U = Uy, for any i <> ¢/,

|Py; — Py, [? = 1Sz, — S, 2 ~ Sy, — Sa, P

i lzi,6q, Ti,|@s—x;0

S’ ||G”i"L‘p((l‘lQiUl‘lQi/)ﬂQO)

G Poll"y. (1 ey 2 197 s 1@i01100)00e) (6:33)

BeA

By summing (6.33) over all 4,7’ € I with ¢ + ¢/, and by using the bounded overlap of
the regions (1.1Q; U1.1Q,) N Q° C Q°, we find that

S 1P = Py [P S NG i) + 16 Pl ey S 6% e
i3’ BeA

Further, from (3.70) we have [|¢”||pmpigey < €%l pogy S 1 for B € A Also,
||G||Lm,p(Qo) S HG, POHJ*(f,M;QO)‘ Hence,

Z | P, — P, ? S ||G,P0Hp « (fo1;Q°) " (6.34)
i
Recall Py = 0. For a € A, by (2.14),
|0°G(z:)| = [0%(G — Po)(@i)| < CIG, Poll_g. (f,:00)- (6.35)

From (3.69), we have o3 := > 5. 1 ALj 0P (a € A), where (AZ)a,pea is a (C,Ce)-near

triangular matrix. In particular, [A7 5] < C. We also have, from (3.70), 1P | Lo () <
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H@B”/(O,u) < 1 for 8 € A. Thus, by definition of F; (see (6.13)), and by the triangle
inequality, we deduce that

> [ R fra

i€l i,

<> / |G = flPdp+ > [0°Gla) P Y AL / Iwﬁpdu]

icl L 1q, acA BeA 1.1Q;
§ Z / ‘G - flpd:u‘ + ||Ga P0||p « (f1;Q0) Z ¢B|pdﬂ‘|
il L {o, BEA 1,
/|G FPd+ G Pally. gy X [ 16 P
BeAne
SIG Bl .0y (6.36)

Similarly, by instead using that ||| msqey < €% 70 S 1 for B € A, and by
definition of F;, we have

Z ”Fi”IL)’"’P(l-lQmQ")
i€l

<y [nam,p(l,lw) S PGP S A o >]

i€l acA BeA

B
Lnraginge) TG Pl ruqe) D 9 |ZL7""’P<1-1QmQ°>]

S [IIGI

i€l BeA
SNGI ms(@ey +1G Polls, ey D 197 W ey
BEA
~ HG PO||p W« (fo;Q0) (6'37)

We substitute inequalities (6.34), (6.36), and (6.37) into (6.32) to deduce:
p||P P
1B Py, (k02,020) S NG Poll’g, (7 :00)-
We apply (2.8) to conclude:

| Pl g, (pkez.czey S NG Poll g (f.u600)-

This completes the proof of (6.31). The proof of the lemma is complete. O
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Lemma 6.5. The polynomials S, (x € Q°) defined in (6.17) satisfy

sup Sz = Syla,jy—a| S NG Poll 7 (f.m0q0)-
z,y€Q°

Proof. Let z,y € QQ°. We will prove the desired inequality by considering the geometry
of z and y in relation to K, and K¢ z:

Case 1: Suppose z,y € Kcz. Let y € Q; € CZ°, x € Q; € CZ°. Suppose dg, >
21|y — x|; then = € 1.1Q;. By applying the Sobolev inequality, we have

1Se = Syla,jy—a| = [JoF = JyFla jy—z| S FllLmr(1.10)n00) < 1F|lpmr(kes)-
(6.38)

Similarly, if dq, > 21|y — z|; then y € 1.1Q;. By applying the Sobolev inequality, we
have

192 = Sylaly—z| = |JoF = JyFlajy—o| S FllLmra190@0) < I1FllLmrxoz)-
(6.39)

Now suppose 0q,,dq, < 21|y — z[; then |z; — z;| < dg, + |z — y| + dg, < 43|z —y|. We
apply (2.2), the Sobolev Inequality, and Lemma 6.3 with U = Q° to deduce

|Sr - Sy|x,|y—a:| S ‘Sy — S

Y,0Q; + |Sac1 - Smj|wi,\xi—wj| + |Smj - Sz|m,6Qj

i

= |JyF = Jo, Flys, + |52, = Sa;las jwi—a;) + [Ja, ' = JoFla s,

SNE | Lmw @) + 1l Lmeq,) + [1GllLme(qe)

G, Poll g (rnise) = D 197 I zmnioy
peA

SFLme(ker) + 1G Boll g (fu6q0): (6.40)

where in the last line we use (3.70). By (6.31), we have [|[F|| Lo (ko) S Gy Poll g (fu:600)-
Considering (6.38), (6.39), and (6.40), we conclude for z,y € Koz,

152 = Sylajy—a) S NENLmr e + G Poll g (fusge) S NG Poll g (fusn0)- (6:41)

Case 2: Suppose z € K, y € Kcz. Let y € Q; € CZ°. Because |x — x;| S |y — x| and
3, < |y — x| (see Lemma 4.10), we can apply (2.2) and then the Sobolev Inequality to
deduce

|S:c - Sy|w,\y—a:| S |Sﬂc - S$i|ac7|zi—:z| + ‘Sﬂcl - Sy|3?i76Qi
= |Sm - Szf, x,|zi—x| + ‘qu:F - JyF zi,0Q;
S 182 = Seile jzi—a) + 1FllLmr@))- (6.42)
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We apply Lemma 6.3 with U = Q°, recalling for a € A, we have ||p“]
(see (3.70)), to deduce

Lm,p(Qo) S 6/00

1S2 = Sa,lajoi—zl S NGllLmr@e) + G Poll g (fussge) = >, 16 ILmr(@e)
peA

SIG Boll g (f,u600)- (6.43)

Substituting this into (6.42), and using again that [|F||zma(xe,) < G, Poll s (f.u800)s
we have

|52 — Sy|m7\y*r\ SG, PO”/(f,u;éQo)'

Case 3: Suppose z,y € K,,; then as in (6.43) in Case 2, we can apply Lemma 6.3 to
deduce

|5z — Sy|x7\y*r\ S |‘G7P0||/(f,u;5go)'
This completes the proof of Lemma 6.5. O

Lemma 6.6. The function F defined in (6.16) belongs to L™P(Q°), and

[N me o) S NG Poll g (fubq0)- (6.44)

Proof. We will use Corollary 2.12. Fix 7 € II(Q°), a congruent J-packing of Q°, with
6 S 6@0 .
For Q € m, 5@ = 4, by Holder’s inequality,

E(F, @)577” < sup |1F = Sw||Lp(@)57m < sup |1F - Sw||Loo(@)5n/p7m
z€EQ z€Q
< sup. 1Sy = Szly.s, (6.45)

where the last line follows because F'(y) = Sy (y) for y € Q° — see (6.20).
Fix Q € m and z,y € Q. Then, |z —y| < 5@ = 0.
If @ C K¢z, then by the Sobolev Inequality,

|Sac - Sy|y,5 = |JwF - JyF|y,5 5 HF”Lm,p(@)- (646)
Now suppose Q N K, # 0. We will show

|SJ: - Sy|y,5 S HG, PO”,}(f,u;fSQo) ’ Z ||80ﬁ||Lm.p(100Qon)
BeA

NG msao0onon + S I1Flimsqagingey  (647)
1.1Q; C100Q
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Case 1: Let =,y € Kp. Then apply (6.21) with U = Q,

152 = Syly.s S NGl sy + 1Gs Poll g (fise) = D 1971l Lm0y
BeA

which implies (6.47).

Case 2: Let y € Q; € CZ° and dq, > 21|z —y| or x € Q; € CZ° and i, > 21|z —y|.
Because |P|g,5 =~ |P|ys for |z —y| < d, we may assume without loss of generality that
y € Qi, 6g, > 21|z — y|. Then z € 1.1Q); CKCZ As z,y € Kcz, we have S, = J F
and S, = J,F. Because QN K, # 0 and z € Q, it follows that dist(z, K, p) < dg. Also,
by Lemma 4.10), we have dist(Q;, Kp) > dg,. Thus,

dg = dist(z, Kp) > dist(Qi, Kp) > dq,-
Since Q; N @ # (), we have 1.1Q; C 10062, and by the Sobolev Inequality,
|S:E - Sy|y,5 = |J1F - JyF|y,6 5 ||F||Lmvp(1‘1QmQ°)7
completing the proof of (6.47).
Case 3: Let y € Q; € CZ° and dg, < 21|z —y| < 2165 = 216. Then 1.1Q; C 100Q.
Recall J,,F = S,,. Then from (2.2), By the Sobolev inequality,
|S$i - Sy|y,5 = |inF - JyF|y75 S ||FHLm‘p(Qi)'

Thus, by the triangle inequality and (2.2),

|S:r - Sy|y,5 S ‘S:v - Sa:i

x5+ |Sxi - Sy Y,6 5 |S$ - Swi

$76 + HF”an,p(Qi). (648)

We continue this bound by splitting into subcases.
Subcase 3a: Suppose x € K,,. Note that |z —xz;| < |[z—y|+|y—zi| < |[x—y|+dg, <
220. Further, z, z; € 100Q N Q°. Thus, from (2.3), and (6.21) with U = 100Q N Q°,

|Szi - Sa:|w,5 IS |Szi - Sa:lz,|mfx,1|

S HG||Lvmp(1()onQ0) + ”Ga PO”j(f,p;(SQo) . Z ||906||Lm,p(100@mQ0)'
peA

Substituting this into (6.48), we have

|Sx - Sy|y,6 S ||FHL7”~P(Q1-) + ||G||Lm,p(100Qon)

+ ||G7P0||/(f,u;6Qo) : Z H(pB'
BeEA

L™»(100QNQ°)?

completing the proof of (6.47).
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Subcase 3b: Suppose ¢ K. Then = € Q; for some Q; € CZ° and because of
Case 2, we can assume dg; < 21|z —y| < 216. Hence, 1.1Q; C 100Q. Also, |v — z;| <
6Qj < 216, and

|z — x| < |o; — 2| + ]z —yl+ |y — zi| <dq, + |z —y|+ g, < 430.
Thus, from (2.2), (2.3), and (6.21) with U = 100@ N Q°, and the Sobolev Inequality,

|Sz - Swi|w,6 ,S |Sa:1 - S:Ej|a:j,6 + |SwJ - Sw‘a:,ts
< |Sfr/7', - Smj|xj,|wi—$j| + ‘szF - JzF|r,5

S HG”L""vP(lOO@ﬁQO) + 16, PO”/(f,u;éQo) ) Z ||‘Pﬁ||Lm,p(1ooémQ°)
pBeA

Fllzmo@y)- (6.49)
By substituting (6.49) into (6.48), we have
‘S:v - Sy|y,5 5 ”FHL"“P(Qi) + ”FHLWP(Qj) + HGHLm,p(mo@nQo)

+ G, Poll g (pasge) - D 17
BeA

L™p(100QNQ°)"

This completes the proof of (6.47).
Consequently, using (6.45), (6.46), and (6.47), we have

> (B(F.Q)/5g)"
@Eﬂ'
S s S, =Syl s

Oen ©YEQ

DY ( sup | F N ms1ginge) T IGI s 000000
Oer,ONK,#0 1-1QiC100Q

p . B|P
UG, Polls (1o Do NI ooangey) & o I i)
peA Qen,QCKez
SIE W s ieey + G iy + 1G- Poll (1 sy~ S 167 ey (6:50)
peA

where the last inequality follows because for Q; € CZ°, |{C§ en:1.1Q; C 100@}| <C,
and since {100@ :Q € 7w} has C-bounded overlap (because 7 is a congruent pack-
ing). From (3.70), we have [¢?||pms(ge) < €/Cp for all 8 € A. From (6.31), we have
I El pmp(Ken) S ||G,P0||/¢(f’u;5Qo). Therefore, from (6.50),
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Y (BRQ)/SEP SNGPoll%s (1 s

@Gw

Now by taking the supremum over = € I~ (Q°), and applying Corollary 2.12; we conclude
F e L™P(Q°) and

[l Lmr o) S NG Poll_s(fubq0)-
This completes the proof of the lemma. O

We complete the section by giving the proof of conditions (6.8) — (6.10).
We apply inequalities (6.31) and (6.44) and the identity F|x, = G|k, (see (6.16)) to
bound

VEPI, g e ooy S IE P sy 020y + I F Iy + / IF — flPdu
KP
S HG, POHZj](f”u.;JQo)'
This establishes the inequality (6.8) for Py = 0, as desired.
As a consequence of Lemma 6.5, the Whitney field (Sy)yeqe € Wh(Q°) defined in
(6.17) is in C™~11="/P(Q°), and thanks to (6.20) it satisfies S, (x) = F(z) for all z € Q°.
Due to Lemma 2.13, the function F' satisfies

J.F =8, z€Q°. (6.51)

Then (6.10) holds, thanks to (6.51). From (6.18), we have § = (Sy)yek, is coherent
with Py = 0. From (6.15), we have P is coherent with Py = 0. Thus, (P, S) € Wh(BczU
K,) is coherent with Py = 0, proving (6.9). This completes the proof of (6.8) — (6.10),
thus completing the proof of Proposition 6.2.

6.3. Keystone point jets

Let (f, Py) € # (1;0¢-). The goal of this section is to associate to the data (f, Py) a
Whitney field B* € Wh(K,), determined linearly by (f, Py), and satisfying the properties
outlined below in Lemma 6.7, Lemma 6.8, and Corollary 6.9. These results will be used
later, in Section 9 and Section 10.

Recall that we have fixed a multi-index set A C M. In the previous subsection we
introduced the following notation: Given K C R"™, a Whitney field R = (Ry)zekx €
Wh(K) is coherent with Py provided that 0°R,(z) = 0*Py(z) forall z € K, a € A. A
function H € C™~11="/P(R™) is K-coherent with Py provided that 0% H(x) = 0% Py(x)
for all x € K and for all « € A.
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Lemma 6.7. For each (f, Py) € # (11;0¢°), there exists a Whitney field R*=R* (f,Py) €
Wh(Kp) with the following properties.

1. R* is coherent with Py.
2. If H € L™P(R") satisfies | H|| s,y < oo and H is K,-coherent with Py, then

J.H=R: Vrek,. (6.52)

3. | R*|

Lot + [ VB@) = 1Pl S 1R e
KP

4. R* depends linearly on (f, P).

Proof. Due to Proposition 6.2, for any n > 0 there exists H; € _Z(f,u) that is K-
coherent with Py and satisfies |[Hil| #(su) S IIfs Poll s (usge) + 1 < 0o. Define R* €
Wh(K)) as

B = (R)sex, = (JoH))ack, - (6.53)

Next, we verify properties 1-4 of the lemma. In particular, we show that R* is indepen-
dent of 1 and the choice of H; (property 2), and furthermore that R* is a linear function
of (f, Py) (property 4).

Proof of property 1: By definition, R} = J,H; for x € K, where H; is Kj,-coherent
with Py. Thus, R* is coherent with P.

Proof of property 2:

We shall make use of the auxiliary polynomials (Pya)ae A (y € Q°), defined in
Lemma 3.8. In particular, from (3.55) we know that (P;)aeA forms an (A, y, Ce/Co, 1)-
basis for o ;(y, ) for all y € 100Q°.

Fix ¢; > 0 satisfying e; < min{ci,€y/(30mCoC1)} and e; < min{(50™C3)~/(P+1),
Cgl/(DH)} where Cj3 is from (5.2), Cy is from (5.6), ¢; and C; are from Lemma 3.5,
and D = |[M|. Fix e; < 2P+2,

For the sake of contradiction, suppose that (6.52) does not hold. Thus, there exist
r € K, and Hy € L™P(R") satistying || Hz|| #(y,.) < oo such that

0%(Hy, — Hy)(x) = 0 for all € A, but J,(Hy — Hy) # 0. (6.54)
Let

B:={BeM\A: 9°(H, — Hy)(z) A0} ={Bi:ie{1,...,k}},
where f; are ordered:

B1 < Bo <o < B
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Note that (6.54) implies B is nonempty. Also, k = |B| < M| = D. Choose ¢ € (0,1)
such that for all g € B,

SR (HL | g () + 1 Hall g (g40)) < €2]0° (Hy — Hy)(x))]. (6.55)
Choose a dyadic cube @ C Q° with 2 € @ and dg < ¢ < 1. Let
j = argmax{|0% (Hy — Ha)(x)| - 6" e7? si € {1,... k}}.
Then for all ¢ € {1,--- ,k},

1B51—18:l . : .

o €10 if B; > B4, 1> 7

—j 5185118 Q g ’
S R P (6.:56)

€ 6Q’ : if 8; < By, 1 < J.

0% (Hy — Ha)(z)|
0% (Hy — Ha)(z)]

Define P)? := J,(Hy— H,) /(0% (H,— H»)(z)). By definition of B and (6.54), 9Py’ (z) =
0 for 8 € M\ B = A. Combining this with (6.56), we have

% Pli(x) = 1; (6.57)
107 P ()] < eroy” 17! (8 €M, B> B)); and (6.58)
9% P ()] < e Loy T (5 e m. (6.59)

Then from (6.55) and since 6 < 9, if p := (Hy — Hz)/|0% (Hy — H)(x)| then J o = Py’
and

”()OH/(O o) = | Hy — H2||j(07MISQ) < HH1||/(f7M|3Q) + ”HQ”f(f»H\B.Q) e
HIBQ) T B; — > —181—n
‘8 : (Hl HQ)(x)| 53 185 L/p(”Hl”j(ﬁu) + HH2||/(f7M))

S 626|QBJ' |+”/P*m.

Hence,
PP € e8P gy (2, plsg)- (6.60)

From (6.57)-(6.60), we see that (d, xo,B,ﬁfo,,u) = (5Q,x,ﬁj,Pfj,u|3Q) satisfies (D6) of
Lemma 3.5.

In (3.55), we saw that (P;)aeA forms an (A,y, Ce, 1)-basis for o;(y,u) for all y €
100Q°. We can assume Ce < €. If Q C Q° then 4Q C 100Q°. So, by (3.5),

(P;)aeA forms an (A, y, €2, 0g)-basis for o ;(y, u|sg) for all y € 10Q. (6.61)

Fix y € 10Q. Suppose first y € Koz, so that y € Q; for some Q; € CZ°. Because @
is not OK, we must have d¢,/100 < ég < 1, and so, by applying (5.2) for the cube Q;
and for some § € [0g, /2, 1] satisfying g < 6 < 509, we deduce that
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107 P (y)| < C581°1=181 < 50m s (a e A, peM. (6.62)

Now suppose y € K,,. Then from (5.6) with § = dg,
0°P2(y)| < Cadly ™ (@€ A e M. (6.63)
Because e; < min{(50™mC3)~/@+D ¢ PTUL i light of (6.62) and (6.63), we have
Py < P71 og (ye10Q,a € A B e M) (6.64)

It is now evident from (6.57)-(6.60), (6.61), and (6.64) that properties (D1)-(D7) of
Lemma 3.5 hold with parameters:

(61,62,5, A, B, (lgg?) ,530787]550)

acAxeRE

= (617 €2, 5Q7A7 /14|3Q7 ]-OQa (PCS)(XG_A7I€10Q 3 xvﬁja Pfj)

Thus there exists A < A so that for every y € 10Q, o;(y,u|3g) contains an
(A, y, Cier,dg)-basis. Because Crer < €0/(30™Cy), we apply Lemma 3.2 to deduce that
for every y € 3Q, 0;(y, 11|3g) contains an (A, y, €9/Co, 30dg)-basis, indicating that Q is
OK. This contradicts that x € K, and z € Q.

This completes the proof by contradiction of (6.52). So we have proven property 2.

Proof of property 3: By definition, R} (z) = Hi(z) for all x € K, where [|[H1|| #(,) S
Il PO”/(M;%o +mn, and n > 0 is arbitrary. By property 2, R* is independent of 7. Then:

/|R;;(x) — f(x)|Pdu(z) = / |Hy — f|Pdp < / [Hy = flPdp < | Hi [P 5,

K, K, R~

S (s Poll g (uisge) + )7

Furthermore, since R’ = J, H; for all x € K, by definition of the L"™P(K,,) trace norm
on Wh(K,), we have

IR o (r,) < [[Hillpme®ey < H| g5 S I Poll_guisge) + -

Now let 7 — 0 in the previous inequalities. This completes the proof of property 3.
Proof of property 4: To complete the proof of the lemma, we will show that R* =
R*(f, Py) depends linearly on (f, Pp).
Let (fi,P1), (f2, P2) € Z(p;0¢-). Fix H; € #(f;, 1) such that H; is Kp-coherent
with P; for j = 1,2. By property 3, we have that ﬁ*(fj,Pj) = (JoHj) ek, for j =1,2.
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Then, for A € R, Hy + AHz € Z(f1 + Afa, ), and for a € A, x € Kp,

8“(H1 + )\HQ)(.’L‘) = aaHl(x) + AaaHg(:v)

=90“P (m) + /\8°‘P2(x),

indicating that Hy + AHs is Kp-coherent with P, + AP». Because of (6.52),

R*(fi+ Moy Pr+ APy) = {Jo(Hi + AHa)}aek, = B (f1, Pr) + AR (fa, Po).
Therefore, the map (f, Py) — R (f, Py) is linear, completing the proof of property 4. O

Lemma 6.8. Let v € K, andr > 0. Set jiy r := 1| p(z,r)- Fix (f, Po) € ¥ (1;0qe). Suppose
H e L™PR"), |H| #(fun.,) < 00, and H is Kj-coherent with Py. Then R} (f, Po) =
J.H.

Proof. We employ a proof by contradiction, following the proof of property 2 of
Lemma 6.7, with the measure p replaced by fiz, in this proof. We make one change
in our previous proof: When we choose the dyadic cube Q C Q° with z € @, we im-
pose the additional condition dg < /3. This condition implies 3Q) C B(z,r), so that
ta.r|30 = p]3g. Following our previous proof, we reach the conclusion that o ;(y, pte r|30)
contains an (A, y, €y/Co, 30dq)-basis for all y € 3Q, for some A < A. So, 0,(y, ul30)
contains an (A, v, €0/Co, 300 )-basis for all y € 3@Q), indicating that @ is OK, a contra-
diction. O

As a consequence of Proposition 6.2, the Whitney field B* € Wh(K,) satisfies the
following condition:

Corollary 6.9. For (f, Py) € 7 (u;0q°), and for R = ﬁ*(f, Py) as in Lemma 6.7,

) - P e Wh(Bcyz) satisfies
lnf{fv PvR H/*(M;QO,CZO;KP) .

SN Poll g (uisgo)-
P is coherent with Py } F(1i8go)

7. Optimal local extension

In this section, we prove a general result, Lemma 7.2, on the optimization of certain
LP-type norms by linear maps. In Section 7.2, we apply this result to construct a Whitney
field B’ on the keystone basepoint set Brey := {@s},c7- We shall apply Lemma 7.2 once
more, later, in Section 11, when we give the proofs of the main theorems.
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7.1. Optimization by linear maps

Lemma 7.1 (Linear Map Lemma). Let (v, X,X) be a measure space, and let V' be a vector
space. Let k > 1, let p > 1, and let A : V x R¥ — LP(dv) be a linear map. Then there
exists a linear map & : V. — R¥*, satisfying:

/|A(v,£(v))\pdu <C inﬂ£ /|A(v,w)|pdu7 forallv eV, (7.1)
weRF
X b

where C' depends only on k and p.

Proof. We will show this is true when k = 1; then this can be iterated for the full result.
We factor the linear map A : V x R — LP(dv), as follows: A(v,w) = A(v) — a - w for
a linear map A : V — LP(dv) and a € LP(dv). Note, if lallLe(ayy = O then we can
take £(v) = 0, and the conclusion of the lemma will be satisfied. Thus, we may assume
lallLe(avy # 0. Define £ : V' — R:

AW g pdy

f{a;éO}
&) =
) f{a;ﬁO} la|Pdy

Note the convergence of the integral in the numerator, by Holder’s inequality. Then
v — &(v) is linear.

For any w € R, we claim that [ [A(v,&(v))[Pdv < C [y [A(v,w)|Pdv. To see this, first
note

/|A(v,w)|pduz /|A(v) —a-wlPdy

= / |A(v)|Pdv + / IA(v) — a - w|Pdw.
{a=0} {a70}

We bound

A(v) = a- &) |Pdv
{a#0}

-J

{a70}

§2”-(/

{a0}

Af)

) o)

la|Pdv

p

" P Av)
A wtor o lalPdv
ﬂ —wl| |aPdv + / f{ #0} —w |a|pdy)
a f{a#)} la|Pdv
{az#0}
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A
<(1+27)- / ﬂ—w la|Pdv
{ar0}
=(1+427)- / ‘f&(v) —a- w‘pdw
{a70}

where the last inequality follows by applying Jensen’s Inequality to the second term in
the previous line. Thus, adding f{a:O} |A(v)[Pdv to both sides of the above estimate, we
obtain (7.1) in the case k = 1, with constant C = 1+ 2P. By iterating k times, we reach
the conclusion of the lemma with a constant C' = (1+2P)*. 0

Lemma 7.2 (Linear Map Lemma II). Let po be a Borel reqular measure on R™, and let
V be a vector space. Let k > 1, and for each £ € N, let Ay : V x RF — LP(dug) be a
linear map, and let ¢¢ : V x RF = R be a linear functional. Let ¥ : V x RF — RN be a
linear map, such that w — (0, w) is surjective (N < k).

Suppose that the functional

M(v,w) = 3 A0, 0)] % gy + S 60, w)]P
(=1 (=1

is finite for every (v,w) € V x R¥.
Then there exists a linear map € : V. — RF, satisfying:

U(v,€(v)) =0 € RY,
M(v,£(v)) < Cinf{M(v,w) : w € R* U(v,w) =0}, forallveV,

where C' depends only on k and p.

Proof. We first suppose N = 0, i.e., the constraint map W is trivial. To prove Lemma 7.2
in this case, we apply Lemma 7.1 to the product measure v = (up+9,) X 1 on the space
X = (R"U{z}) x N, where pg is a given Borel regular measure on R", §, is a Dirac
delta measure supported at the point z (z ¢ R™), and p; is the counting measure on N.

Now suppose N > 0. Write ¥ (v, w) = ¥;(v) — ¥a(w), for linear maps ¥, : V — R¥Y
and Uy : R¥ — RY. The condition that w + W¥(0,w) is surjective ensures that W, is
surjective. By Gaussian elimination, after possibly permuting the coordinates of w =
(w1, ..., wk), the constraint set

{(v,w) : ¥(v,w) =0} = {(v,w) : To(w) = U;(v)} CV x R*
can be written in the form

{(v,w", w?) v eV, w' = (wy,...,w;) €RY,

w? = (Wegty .-y wi) = (v, wy,...,w) € Rk_e}
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for some ¢ < k, and for a linear map ¢ : V x R* — R**. (The condition that ¥, is
surjective ensures that the linear system Wso(w) = ¥y (v) admits a solution w for every
veV.)

We obtain the conclusion of the lemma then, by applying the version of Lemma 7.2
without constraints to the functional M : V x R¢ — R4 given by

M, wy,...,wp) := Mw,wi,...,we,Y(v,wy,...,we)). O
7.2. Local extension

Fix a keystone cube Q. (See Definition 4.3.) We will construct a polynomial
R, € P that is coherent with P, and approximately minimizes the expression

If, fozs H(loqs,9qs)

Lemma 7.3. Let Q; € CZkey, and let (f, Py) € #(u;0qe). There exists R, € P that
depends linearly on (floq,, Po) and satisfies O%R!, (xs) = 0%Py(xs) for all a € A, and

If, R,

I (logs-9qy) S érelgp {”f»R”j(u\gQS,JQS) : BO‘R(:US) = 8aP0(xS) Va € A} .
(7.2)

Proof. Due to the good geometry of the CZ decomposition, dg — 0as @ =z, Q € CZ°,
x € K,. If 100QsNK, # 0, then 100Qs intersects CZ cubes of arbitrarily small sidelength,
due to the previous remark, which contradicts that @, is a keystone cube. Therefore,
100Q, N K, = 0.

Let CZs := {@j}lgjgk be the collection of all Q € CZ° satisfying 1.1Q N 100Q # 0,
and with Q! = Q,. Let 27 := ctr(@j) and D; := 1.1Q7 N9Q, for j = 1,...,k. Then
{Dj}1<j<k is a cover of 9Q, by axis-parallel rectangles.

Let P! € P, and let P, := (P7)2<j<k € P*~1 be a (k — 1)-tuple of elements of P.

We apply (AL1)-(AL3) (see Section 4.4) to the CZ cube Q' and the Borel set E; =
D; C 36,7. So, for each i = 1,2,...,k, there exist a linear map T; : Z(u|p,) x P —
L™P(R"™), a functional M; : _#(u|p,) x P — Ry, and countable collections of Borel sets
{Az}EEN with

A} C supp(plp,) C supp(plog.), (7.3)

and of linear maps ¢} : _#(u|lp,) x P = R, and A} : #(u|p,) x P — LP(du) (¢ € N),

that satisfy: For all f € #(u|p,) and P € P,

i

(i) M;(f, P) = ”Ti(fvp)vP”/(f,,ulpi;ts@') = ”faPHf(MD,-;Es@'); and

@) (7, P) = (3 [t Py = s+ Yo, PP <o

KENA} LeN
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We now show that: For any f € ¢ (ulog.) and P! € P,

k
15 P g0, = 5 10E IIf,PZII” prison + O PP PP
F(1loqsi9,) Pc (u]

i,j=1

We prepare to apply Lemma 5.8 for the proof of the upper bound in (7.4).
We fix P! € P, and let P, = (P 7)9<j<k be arbitrary.
We define a Whitney field P = (P, )ie; € Wh(Boz) by letting

{Pj if Q; = @7, some j=1,...,k; else
TP Qe C2\ {QThgan

Define S € Wh(K,) by letting S, = P! for all # € K,. Define

Fi(z) = Ti(f,P/) ifQ;=Q7, somej=1,....k
T Pl(z) ifQiECZO\{@jhgjgk-

Let {0;}icr be a partition of unity satisfying (POU1)-(POU4) (see Section 4.3). Define
F:Q°—Ras

F(z) = Dierbi(x) - Fi(z) =€ Koz
Se(z) = Pl(z) =z €K,

Because S is constant on K, \|§||Lnl,p(Kp) = 0. Further, (P, S) € Cm11-n/P(B 5 U
K,), because (]3, g) is constant except at finitely many points. Hence by Lemma 5.8, if
||F7PH/*(f,/L‘QQs?KCZyCZO) < oo then F € L™P(Q°) and

[ EllLme(qoy S I Pl 2. (fuloo.: Kez,020)- (7.5)

We prepare to estimate ||F7ﬁ||/*(f7#|9QS§KCZ7CZO) and establish it to be finite. By
Lemma 5.7,

Sp < ‘ »
HF’ P||f*(f7#\9QS;Kcz,CZ°) ~ Z HF“ Pu, H(/*(f,#lggsm.lcgi;1-1Q7:I’1Q°)
el

+Z|Pac,7 T,

>3’

(7.6)

a:l,cin

From the definitions of F; and P,,, we see that all but finitely many of the terms
in either of the preceding sums are equal to zero. Indeed, for Q; ¢ CZ; = {Q7}1<j<k,
F; = P,, = P! and the support of the restricted measure pog,, is disjoint from 1.1Q);.
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Therefore, || Fy, Po, || z.(f.ul00.0110,:11Qinqe) = 0 for Qi ¢ CZ;. Furthermore, by defi-
nition of P,,, note that P, # P, , implies either Q; € CZ, or Qy € CZ,. Hence, the
sum on the right-hand side of (7.6) is finite. By reindexing the sums in (7.6) to be over
j€{1,2,...,k}, and using (7.5), we conclude that

”FHLMP (Qo) ~ ||F P”/ (finlogs;Kez,CZ°)

k k
iy PP j j’
ZHTJ f,P7), P H «(Fotlog n1aad31 109nQ°) + Z ‘P - P z/ S5
Jj=1 J3'=1
(7.7)
Note that 9Q Nsupp(p) C 9Qs N Q° C K¢z, since Qs is keystone. Hence,
R LY - s
9Qs
Also, by Lemma 2.6,
1 m 1 m
IF = P2 oo.r0e /007 S I emourgey + I = PM Lo, /007
p(|P
’S H‘F’'PHj*(f,/tlgc;gS;KCZ,C'ZO)7 (79)

where the last line follows because @1 = Qs, and so P, = P! by definition of P.
Combining (7.7), (7.8), and (7.9), we have

1P
”F’ P |‘/*(f»#‘9QS§9QsﬂQO)

o F I 00,0 / F = fPdu+ |F = PV 0. moe /007
9Q
k

k

J [|P J .7 p
Z”TJ P || . f/"f‘D 11Q7ﬂQ + Z |P P i, 6,\
=1

J,j'=1
By property (i) of 7}, and estimate (2.8), relating the ¢, and _#-functionals,

HTj<f’Pj> PJH ~ HTj(f’Pj)7Pj||/(f7H|Dj;5§j) = vaPij(MDj;(s@j)’

H«(fnlpy;L. 1QiNQ°)
and thus,
k
1yp J(|P J v
1 PP £ stoe, 00.00) S DM P Iy i 500 + Z L R
Jj=1 J,3'=1

Thanks to (2.26) and the definition of the #,-functional as an infimum,
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1 1 1
1> PP la,s60,) = I PP lae, 90000 < I P2y 1.4t 90.009)-

Combining the above inequalities, we take the infimum over P2, ..., P* € P, and obtain
the upper bound in (7.4):

1P
1 B (o, 50)

k
< inf Z||f,PJ||1;,(#|WS F Z |7 — PIE; o) P2 Prep
=1 7,7'=1

Now, to complete the proof of (7.4), we’ll show the reverse inequality:

1P
If, P Hf(ulgc?sﬁczs)

> inf Z||f,P ||;<H|D ) T Z |pi — pi'|P 2 sy P2, Prep

J,j'=1

By taking P7 = P! for j = 2,...,k, we learn that

k
. p2 k
lnf{ZHf,P H/(ij;é@v)—i_ Z |PJ — p' - 5o P P EP}
j=1

3,3'=1

Ea

k
1 ~ 1P
Z‘\fvp||/<M|Dj;6@>—zl”f’P”/ij;sQS)’
: p

7j=1

where the last line uses that dg, ~ 65, for j =1,2,..., k. Finally, note that D; C 9Qs,
SO

k

1)p 1 p
Zl\lf,P s 1o, 50,0 = RIS P g ulog, 0,
]:

Since k is bounded by a universal constant, this completes the proof of (7.4).

We prepare to apply (7.4) to construct the polynomial R/, . By definition of the |- ;s
norm (2.1), and conditions (i) and (ii) relating to properties of T; and M;, we approximate
the expression inside the infimum in (7.4) as follows:

k k
Z ||f’ Pz”pjz(MDi;(;@i) + Z |P’L Pl Z:Zl O
=1

i,7=1

k
zZ / NP — fPdn 6P+ 3 cans0°(P — PP,
i=1 bt

i,j=1 aeM
(7.10)
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for some constants cq,;; > 0. For i,j € {1,2,...,k}, we define ¢"9 : 7 (ulog,) x P %
PEL 5 R as ¢ih(f, PY, P,) = /P pa (P — P7)(z"). By substituting these functionals

a,i,j
into the right-hand side of (7.10) and reindexing the sum, we have

k k
Z; o Pz”;(u\m;éai) + .Zl 7= F zi,é@- ~ M(f,P',P,)P, where  (7.11)
1= 1,)=
MU P B = Y [l P B = Pt lous, P B)P,
ZENA[

for countable collections of Borel sets {A;}ren with Ae C supp(plog,) (see (7.3)), and of
linear maps ¢ : 7 (Hlag.) x P x P — R, and Ae : _# (laq,) x P x P*1 = LP(dp)
(£ € N). In combination with (7.4),

1 P o s = 0 {M(ﬁPl,ﬁ*) P, e Pk—l} . (7.12)

According to (7.11), the functional M(f, Pl,ﬁ*) is finite-valued for every (f, P!, ﬁ*) S
Z(ulog.) x P x PE=1.So we are justified to apply Lemma 7.2 (with a trivial constraint
map ¥) to determine P, = (P%,...,PF) = E(f, PY) € Pk! depending linearly on
(flog., P') and satisfying

M(f, PLE(f,PY) < Cinf {M(f, P, P.) : P, e P, (7.13)

where C is a constant determined by p, k, and D. Observe that both k£ and D = dim P
are bounded by constants depending on m and n. Hence, C' is bounded by a constant

determined by p, m, and n.
From (7.12) and (7.13),

PilnefP {”f, P1||/(M\9Q5§5QS) : 8“P1(xs) = 8“P0(xs) Ya € A}

~ Pilnefp {M(f, P &(f, PY)) : 0P (xs) = 0% Py(xs) Ya € A}. (7.14)

We apply Lemma 7.2 again, to the functional M (f, Py, Pt) := M(f, P',&(f, P')), which
is independent of Py, where the constraint map W : #(u) x P x P — RI4l is chosen
so that W(f, Py, P) = 0 encodes the constraints 9P (zs) = 0“Py(xs) (all a € A).
Thus we determine R,, = &;(f, Py) € P depending linearly on (f|eg,, Po) and satisfying
0°Ry_ (zs) = 0*Py(x,) for all o € A, and

M(f, Re &(f, Re,)) < C ] {M(f, PLE(S, PY) 1 0% Pl (xs) = 0°Po(xs) Va € A},

nf
tep
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where C' = C(p, D). Therefore, in light of (7.14), R, := R,, satisfies (7.2). This com-
pletes the construction and verification of the properties of the polynomial R, . O

8. Decomposition of the functional

Lemma 8.1. Let Q°, CZ°, K¢z, and K, be defined as in Section /4. Let Z.(1;Q°,CZ°;K,)
be the space defined in (6.2).

Existence of a Bounded Linear Map. There exists a linear map T : _#.(pn; Q°,CZ°; K,)
— L™P(Q°) satisfying the following conditions. For any (f, P, S) € F(1;Q°,CZ°% Kyp),

J.T(f,P,S) =S, forall z € K,, and (8.1)
)

”T(f’ﬁ S P‘HX*(f’MQo’CZO) <C- ||f7 ﬁa §||j*(u;Q°,CZ°;Kp)~ (82)

Characterization of the Function Space. For [ € _7(u), P € Wh(Bcyz) and
S € Wh(K,), consider the functionals So(f, P,S) < Si(f, P,S) < Sy(f, P,S) valued
in [0, 00|, given by

800 B8y = S Paul s 50y + 2 |Po = Py 24 /|s (2)]dp,

el i>i
S P.S) = Solf. P.S) + Lacy - 1518 s (8.3)
82(f7]3 ) _80(f7ﬁ7§)+||§“imp([(p)

Then (f,P,S) € F(1;Q°,CZ° Ky) if and only if

—.

(P,S) e "V P(Bo, UK,) and  Sa(f,P,S) < . (8.4)
Further, for all (f, P, g) € Z.(Q°,CZ°% Ky),
1P Sy e i,y = Si(f P S). (8.5)

In (8.3), the indicator term lA:@HRT*H’;m,p(Kp) is included in the expression S (f, R, R*)
if and only if A= 0.

Proof. We establish half of (8.4). Specifically, we show that ( f, P, 5) € 7.(Q°,CZ°% K,)
implies
(P,S) e Cm MM (Boy UK,) and Sa(f, P, S) S I Py SNy ege czeik,) < 00
(8.6)
Let (f, P, S) )€ Z(1;Q°,CZ°; Kp); then from (6.3), we have (P,S)ecm—11=n/p(Bs,U
K,). Let p > 0; then there exists H € L™P(Q°) satisfying
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JoH = S, for all z € K, and (8.7)

||H7ﬁ‘|/*(f7u;Q°,CZ°) <|If.P, §||/*(H;Q°7CZ°;KP) +n < oo. (8.8)

As a consequence of Lemma 2.7, we have

ISLmp(r,) S NH | Lme(qoy < |H, Pl g, (00,020

S P S| g uge.czoik,) + 1 < oo (8.9)
Also,
/ Su(a) = @Pdn < [ 1H = 1P < PV e e
S s 13, g”j*(p,;QO,CZO;Kp) +n)P < oo. (8.10)

By Lemma 2.6,

”H - PZiHI[],P(LlQinQO)/éTQn? 5 ||H - PwiHI[),P(Q /5mp + ||H||Lm,p(141Q,ion)- (8-11)

Because of (4.1), (2.2), and (2.3), it holds that |P|; ~ |P|; for all P € P if i +» ¢’. Thus,
by the Sobolev Inequality, (5.10), and the bounded overlap of the cubes {1.1Q;}icr, we
have

S|P, - Z {|Pe; — Ju, HI? + T, H — o, HI? + | T, H — Py, |5}
ZHZ ZHZ
SI1/(5.10) )
S M Pl ppigi00 + 20 H I msigu0 100 002)
el i3/
p p
S 2Pl o 00+ TH I (8.12)

el

We apply (2.26) (for the C-non-degenerate rectangular box 1.1Q; N Q°), (8.12), (8.11),
and (8.8) to estimate

an,PxA@(ml_lQi;%_) an, v

iel i€l

P
< Z 1, P, Hf*(ﬁull,lQi%l-lQon)
iel

«(1l1.1@,;31.1Q:NQ°)

Lr(1.1QinQ° >/5mp}

= (I sagungey + [ 1H = Pdu+ 11 = P,

i€l 110,
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(8.11)

s [

Loraing + | 1 = fPd+ | = Pelg, /6]

i€l 1.1Q;
SN o (ko) T / H = flPdp+ Y 1 H = Po |70, /%"
Koy el
= H. Py f pircer.cz)
< 5.P.8 e oy + )" (3.13)

Combining (8.9), (8.10), (8.12), and (8.13), and letting n — 0, we have established (8.6)
and consequently the sufficiency of (8.4).

Next we describe the construction of the map T'. By applying (AL1)-(AL3) (see Sec-
tion 4.4) to the cube Q; € CZ° and subset E; = 1.1Q; C 3Q;, we obtain the existence of
a linear map T : _# (1|1.19,:9¢q,) = L"™P(R™), a functional M; : _#Z (u]1.10,:0q,) = Ry,
and countable collections of Borel sets {A}}sen, A) C supp(ul1.1¢,), and of linear maps
{6f + 7 (uhiqii0q.) — Rien, and {A; :+ #(ul1.10,:0q,) — LP(du)}een, with the
following properties.

Given (f7 P:CZ) € /(/‘L‘l-lQi;in)’

||fﬂPI1 Z(pli1@;30Q;) = HTi(fﬂPm)7P (firl1.1@;30Q;) zMi(f7P$i); and (8'14)

P = (3 / N Pe) = fPd+ Y1637 P ) (815)

LeN LeN

Further, the maps T; and M; are §-constructible for a family of linear functionals
QO C _Z(unli1g,)", i-e., the maps satisfy (AL4)-(AL6) for E; = 1.1Q;

Given (f, P, S) € () xWh(Bcz)xWh(K,), define a function T'( f, P.S):Q° =R
as

Yoicr Lilf Pey)(x) - 0i(%) z € Koz

Sy () re K, (8.16)

780 -
where {6;}icr satisfy (POU1)-(POU4) (see Section 4.3). We apply (5.48), (2.8), and
(8.14) to deduce

1T, P, ), PPy, 1 oo p.oo)

.48)

< — b

~ Z PL ||/*(f7ll'|1.1QiﬂQ°§1~1Qion) + Z |le Pmi/ 7
el

>

u

Z fa i Px7||j(u\11Q175Q +Z|Px,_Pxi/|f
el

i/ <>
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(8.14)

<§]Mﬂﬂum@%ﬁ§]&fﬁﬁ- (8.17)

i€l AR

We have not proved the map T is bounded yet, but we return to the proof of the
necessity of (8.4): Suppose (P,S) € Cm=11=n/P(B, U K,) and Sy(f, P,S) < oo. In
light of (8.17) and the definition of the Ss functional,

— —,

||T(f7p7§)3ﬁ||ﬁg*(f,#;Kcz7czo) + ||§Him,p(}(p) S S2(f7 ]37 ) < o0

-,

Consequently, we may apply Lemma 5.6 to deduce that the function T'(f, P, S) defined
n (8.16) satisfies

T(f,P,S) e L™P(Q°), (8.18)
J.T(f,P,S) =8, for all z € K,, and (8.19)
HT(f7P'7 ‘S_")”LMYP(Q") 5 ”T(.f: ﬁ: S_")’ P'”/*(f,u;Kcz,CZo) + ||§HL"">P(K;,)

< 0. (8.20)

—

Because T(f, P, S)(z) = S (x) for z € K, we have

/ T(f, P, ) — flPdy = / 1Su(2) — F(@)Pdu(z) < So(f. B.5) < 0. (8:21)

In combination with (8.18)-(8.20) and (8.17), we bound

5 J||p
1. P51 e cz0ix¢,)

< T B.5), PIy. s ez

<TG P8 PI,y g pscey 2y + 1T P S e / T(f, P, 5) — f1Pdy

S Pl sansiony + S VP = P 2+ 1812 ) + / 1S, (2) — f(a)Pdp

i€l i P
P

< So(f, P, S) < o0, (8.22)

completing the proof of (8.4).

Suppose (f, 7. 5) € f.(1Q
defined in (8.16) satisfies J,T'(f,

-,

K,); we proved the extension operator T'(f, P, )

°.CZ
15 5*') S, for all z € K, and

—,

SQ(fa ]37 S) S ||f7 ﬁ7 §||ij*(u;Q°,CZ°;Kp) (823)

(see (8.6)). In combination with (8.22), this proves (8.1) and (8.2):
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HT(fa P, S)vﬁ”/*(f,u;Qo,CZO) 5 Hf7 ﬁvsH/*(#;QO,CZO;Kp)a

as well as (8.5) in the case A = 0: In this case, Sy(f, P, S) = Si(f, P, S). Together with
(8.22) and (8.23), we have

1 PSPy e i,y = S1(f P S).

Suppose A # (). Thanks to Lemma 4.9, the set K, has Lebesgue measure 0, and so

IT(f, P, )| Lmeiqe) = IT(f; B, Dllimwxesy  (A#D),

and therefore,

1707 P.8) Py g czey = 1PN g s ey + [ 1P 5) = P

KP
(8.24)
Combining (8.17), (8.21), (8.24),
||T(f’P S) ||1jj (f,p;Q°,CZ°)
(8.24) oo o B g
2T PSPy sz + | TUPL5) = P
Kp
(8.21) -
70 P30 Iy ik o + [ 152(0) = Fla)Pinta)
KP
817
< S Pl iy + S WP = P+ / 1Su(2) — F(@)Pdpu(a)
i€l i<>1’
=S8i(f, P, 5). (8.25)
Therefore,

Hfa ]33 §“;}*(#;QO7CZO Kp) — ||T( a§)7ﬁ||zjf*(f7#;Q07CZ0) S‘Sl(fa ]37 g)

Combining this estimate with (8.23) and Sy (f, P, §) < Sy(f, P, S), we have proven (8.5)
under the assumption that A # (), completing the proof of Lemma 8.1. O

9. Optimal Whitney field

We consider the set of all Calderén-Zygmund cubes CZ° = {Q;}icr in Q°. We denote
Koz = U;c; @i, and K, = Q°\ Koz. Then CZ° is a partition of the set Koz into
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disjoint dyadic cubes. We denote CZje, = {Qs},e;f C {Qi}icr for the set of keystone
cubes (see page 42 for the definition and basic properties of keystone cubes). Recall that
Boz = {i}ier and Byey = {xs},c7 are the sets of centers of CZ cubes, and keystone
cubes, respectively.

For each Q; € CZ°, we apply Lemma 4.11 to produce a sequence of CZ cubes .7(Q;).
Then either 7 (Q;) = {Q"F}£_, and Q%F € CZye, or Z(Qi) = {Q"F}ren and 2Pk —
r € K, as k — oo, where %% is the center of Q**. In either case, Q“' = Q;, Q"* «
Q***1 for each k, and for 1 < £ < k,

5Qi,k <(C- CkieéQm, (9.1)

for universal constants C' > 1 and ¢ € (0,1).
Now, define a mapping & : Boz — Brey U Kp by
s B% ;) = i,kL_’ d L _ gGCZC
oy [T 7@ =@M nd Q= Q€ Oy 0
T L(Q;) = {Q" }en, and limy_, oo 28F = 2 € K.

The next lemma contains further elementary properties of the sequences . (Q;), and
of the mapping «, that will be used throughout the section.

Lemma 9.1. For each i € I, let x; be the center of Q;, and let ™7 be the center of the
cube QI in the sequence ./ (Q;).

If k(z;) # x; then |x; — k(x;)| =~ dg, -

|z; — k(x;)| S |z — x| for any x € K.

If Q%7 € Z(Q;) then Q™ C CQ; and |z"7 — k(x;)| < 0gii-

For any keystone cube Q4 and x; € k™ (x,), Qs C CQ;, and in particular 0g, > cdg, -

Furthermore, for any fized 6 >0 and s € I,

=W

{iel:a;€rHay),dg =06} <C.

Proof. (1): Because x(x;) # x;, the sequence .(Q;) has length at least 2, and x(x;)
does not belong to int(Q;) (either x(x;) € Qs for s # 4, or x(x;) € Kp). Recall the
sequence .7 (Q;) = {Q"*}>1 (finite or infinite) of CZ cubes satisfies Q*F +» Q“**+1 and
Q"' = Q;. Hence, 2% — 2% 1| < 50k, 2! = ;, and either 2"F = k(z;) for some
L < oo or 4% — k(x;) as k — 0o. We use inequality (9.1) for £ = 1 to bound:

2 — k(@) <Y o — 2 SN g S dg,cF < g,

k>1 k>1 k>1

Because z; = ctr(Q;) and k(z;) does not belong to int(Q);), we also have dg, S |z;—r(z;)].
(2): Let x € K,. We may assume x(x;) # x;. Because Q; C K¢z and z; = ctr(Q;),
we have dist(z;, K,) 2 dg,. In combination with (1),
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|z — x;| > dist(zs, Kp) 2 g, 2 |zi — k(z3)].

(3) Let Qi’j € y(Qz) From (91), 5Qi,j S 5Qi and diSt(Qi’j, Qz) S/ Zi:l 6Qi,k § 5Qi7
implying there exists C' > 0 such that Q% C CQ;. We use (1) to bound

|27 — k(@)] < 2 — @i + | — K(@)] < bq, -
(4): If Qs is a keystone cube and @; € £~ (z;) then #(Q;) is finite and Qs = Q"*

for some L < oco. In light of (9.1), dg, = dgir < 0, From (3) applied with j = L, we
have Qs C CQ;. By a volume counting argument,

o € k7 Hws) 1 0g, = 6} < {Qi : 0g, = d and |x; — 24| ~ 6} < C. O

The next result concerns a certain operator mapping Whitney fields on K, UBcz to
Whitney fields on B¢ z.

Lemma 9.2. Given P* = (P})eek, € Wh(K,) and P = (P,)ier € Wh(Bcyz), define
P € Wh(®Bcy) by

. {Pmi) K1) € Brey

If (P*, P) € = 11=1/2(K, UBey), then for F e L™P(Q°),

S 1P~ PP SIEPI, oniescoy 9.3)
i€l

Proof. From Lemma 9.1, |z; — x(x;)| < dg,. Therefore, from (2.2), we have

S |Pu, = PP =" Py, — PiIP o, S|P, - P

K(241),0Q;
el el el
ok — +
=3 D 10%(Pey =PI (s(wa)) Py, .
i€l aeM

(9.4)

We will compare polynomials P** (k > 1) associated to the cubes Q"% € .#(Q;) to
bound (9.4). We define these polynomials in terms of the Whitney field P € Wh(B¢z),
Note that each Q%% € #(Q;) is in CZ°, hence, Q** = Q; for j € I — then we define
pik—p, .

Evidently, Q"' = Q;, so

Pt =P,.
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If Z(Qi) = {Q"*}1<k<z is finite, then its terminal cube is a keystone cube, Q** = Q,
for k(z;) = x5 € Byey. In this case, P" L— = Py(z,) = P;*. So,

pPil = pr it #(Q;) = {Q""}1<k<y is finite.

If Z(Q;) = {Q"*}1>1 is infinite, then 2"* = ctr(Q"*) converges to = = k(z;) € K,
as k — o0o. Because (P*,P) € O™~ L17"/P(K, UBcy), also PYF converges to Py as
k — oo. But P; = P;*, by definition of P**. Thus,

lim P“* = Pr* if #(Q;) is infinite.

k—o0

Evidently, by use of the telescoping series formula, and by the above properties, for
ae Mandiel,

0% (Pa; — P (s(@i)| < Y 10%(PYF = PP 1) ((xy),

k>1

where we write ), -, to indicate the summation Zﬁ;ll in the case .7 (Q;) = {Q"*}1<k<r.
is finite, and the summation Y5 | in the case .%(Q;) is infinite

Fix a universal constant €' € (0,1—n/p), and let p’ € (1, 00) be the conjugate exponent
of p € (1,00), so that 1/p+ 1/p’ = 1. We apply Holder’s inequality to deduce

|0 (Pr, = Pp) (K(2:))]

1
7

< (S - P e pag ) T (S g )

E>1 E>1
’ . . ’ 1
g 68:71/1’*|04|*6 (Z |6a(P1,k _ Pl,kJrl)(H(xi))|p(sémp+n+|a‘17+e p) v, (95)

E>1

where the last inequality uses that m —n/p—|a|—¢ > 0 for o] < m—1, so (9.1) implies

E (m— ”/P || —€")p’\ 1/P’ m—n/p—|a|—¢€
k>1

Because Q"* € #(Q;), we have |2"F — k(z;)| < dgir (see Lemma 9.1). By substituting

(9.5) into (9.4), using the definition of the |- |.(z,),s ,, norm, and then applying (2.2),

Qisk

Kok —€ o % i — +n+ +e’
DB = P S Y 0507 D 10N — P ((ay) o e

iel iel k>1aeM
’ . . ’
_ —'p ik _ pik+l ¢'p
- 26(91 Z |P P ‘K(%i),(sQi,k(sQi,k
iel k>1

€'p k Jk+1p €p
SDBUED DI Ll it P
el k>1



98 M.K. Drake / Advances in Mathematics 420 (2023) 108999

do.\ €
S Z Z (521 ) 1’|ij - Py, \5_,.,5%_ . (9.6)

4,3 €I icl K
jerj Qi€F(Qi)

For fixed ); € CZ° and any dyadic length scale § > 0,
Hiel:QjeS(Qi)dg =06} <|{iel:Q; CCQ; dg, =6} <C,

where the first inequality uses property 3 in Lemma 9.1, and the second inequality uses
that (); and @); are dyadic cubes. Furthermore, by the first inequality above,

Hiel:Qje Qi) g, =0} =0if § < cdg,.

Thus we may continue from (9.6):

SR B E Y 1P - P Y {(52) i @y e 7@}

el Jjrg’ 5Qz
00, \€P
< Z |Po; — Pu, |5 Z { (%) : 6 a dyadic length scale, § > céQj}
Jjeg’
Z Py, = Py, 7, (9.7)
jeg’

where the final inequality follows because we are computing the sum of a geometric
series, and € > 0 is a universal constant, dependent on m, n, and p. From the triangle
inequality, the Sobolev Inequality, (2.14), and (2.2), for F' € L™P(Q°),

S|P, PP

jg’
< \Py, — Jo, (F)E + | Jo, (F) = P, P+ || FI}
S T zj j x ;1 Tl L7n=P((1_1QjU1.1Qj/)mQO)
Jjerg’
,S Z |:||F7 ijHp W (Fo5Q5) + HFHIEMW((LleUl.le/)ﬂQO)}
Jj<rg’

SIE PPy, (1 ke czo)

Substituting this into (9.7), we complete the proof of the lemma:

SOIP, — BE S IF P,

i€l

(fsKoz,cz0)r H

9.1. Whitney fields on K, and Bcz

Fix the data (f, Py) € _Z (115 0¢e).
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From this data, we defined a Whitney field R* € Wh(Kp) in Section 6.3. The defining
properties of R* are stated in Lemma 6.7. We also defined a family of polynomials
R, €P(se I), satisfying the conditions in Lemma 7.3. This Whitney field and these
polynomials depend linearly on (f, Py), and they are coherent with Py in the sense that
Ry (x) = 0°Py(x) for all 2 € K, o € A, while 9°R), (z5) = 0“Py(z) for all s € I,
a € A. Because A is monotonic it holds that if 9*P(z) = 0 for all a € A, then 9P =0
on R™ for all a € A, for any P € P. Therefore,

O*(R, — Py) =0, 0°(R,—Py)=0forallz € K,,s€,ac A (9.8)

We define the Whitney field B = (Ry)seme, € Wh(Bez) (Boz = {x:}icr) by

R, {R; if k(x;) =25 € Biey (9.9)

R;  ifk(z;) =2 € K,

where k : Boz — Brey U K is the mapping defined in (9.2).

Evidently, the Whitney field (ﬁ*, I%) € Wh(K, UBcz) depends linearly on (f, P).
From (9.8), it holds that d*(R,, — Py) = 0 for a € A and 2; € By — thus, R is coherent
with Py. As mentioned above, R* is coherent with P,. So, (E*, ﬁ) is coherent with Pj.

Lemma 9.3. The Whitney field (é*,ﬁ) € Wh(K,UBcyz) satisfies

(B, R)l[cm—1a-n/ok,um0z) < CILBoll g (ui5g0)-

Proof. Let 17 > 0. From Corollary 6.9, there exists H € L™?(Q°) and P € Wh(B¢z)
satisfying J, H = R}, for all z € K, P is coherent with Py, and

IH, Pl ¢, (s.mq0.czo) S PR\ goguqe.czeirx,) T1/2 S Poll g (wisge) + -
(9.10)

Consequently, since R* e Wh(K,) is coherent with Py, also H is Kj,-coherent with Py.
From Proposition 6.1 and (9.10), we have

(B, P)llem-1a-n/v(k,um00) S 1f> Poll g (uisgo) + 1 (9.11)
To prove Lemma 9.3, we must prove the following inequalities:

Ry — Rylejo—y| < CIf Poll s (uisge) z,y € K, distinct;
‘R; — Ry, i e—zi| < C||f7 PO”/(;L;%o) re Ky, iel; (9.12)
‘sz - R:Cj |wj,|$j—$z" < C||f7 POH/(M;(SQO) i,jel distinct.

We proceed with the proof of (9.12) in cases, below.
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Case 1: For distinct z,y € K, we apply (9.11):

(R = Bylajy—a) S IS5 Poll g (uioge) +1-

By letting n — 0, we deduce the first line of (9.12).

Case 2: Suppose © € K, and i € I; we will prove the second line of (9.12): First,
suppose that x(x;) =y € K,. Then by definition of R (see (9.9)), Ry, = R;. By part 2
of Lemma 9.1, |z —y| < |x — x| + |z; — y| S |o — 24]. So, by (2.2), and the analysis of
Case 1,

T,z —x| = |R; - Rle,\Lf:d 5 IR; - RZ|I,|I7y‘ 5 ||f7 PO”/(,LL,SQo)‘
(9.13)
This estimate proves the second line of (9.12) for x(z;) =y € K.
Next suppose that k(z;) = x5 € Bey. By definition of fi, R., = R}, , with z, € By
the center of the keystone cube Q. We apply (9.11) to deduce

;.| —x| < |R; - PZz ;.| —x| + |RI1 - Pirl
5 ||f7 POH/(/A,éQo) + |le - Pxi i,z —x| +n. (914)

T,z —x|

By part 2 of Lemma 9.1, since « € K, |z; — 25| = |z; — k()| < | — 24|, and by part 4
of Lemma 9.1, 6g, < dg, < |z — z;|, so we can apply (2.2) and (9.11) to deduce

|Rwi — Py, x|z —x| = ‘R:/r& - Py, x|z —x|
S ‘R;:S - sz Ts,|Ti—x| + |qu - le Ts,|Ti—xs|
SR, = Pula. s, + s Poll_gubge) + - (9.15)

Because R, , P,, € P are each coherent with Py, and A is monotonic, we have 9%(R}, —
P,.) =0 for all & € A. We apply (2.2), (5.12), and the triangle inequality to bound

s

|R;cs - sz|ws,6Qs 5 HOaR;:S - sz
Sf R,
S, P,

F(kloqsi0q,)

I (loasida,) T I f, Ps,

H (1loqs)ida.,)

Z(1loqsi0Qs)? (9.16)

where the last inequality follows by the defining properties of R;S (see Lemma 7.3),
since Py, is coherent with Py. We apply (2.26) (for the C-non-degenerate rectangular
box 9Qs N Q°) and (2.21) (for Ry = Qs, R2 = 9Qs N Q°), and finally (9.10), to estimate

(2.26)
P <
I (plogs0qs) ™~ | f, P,

p
If; Pe. Fe(1log,39QsNQ°)

P
s H F(11l9Q39Q:NQ°)
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L N L s
9Qs
(2.21)
rs ||H||im,p(Qo) + / |H - f|pd,u + ||H - sz
9Qs

p mp
Q. %,

= ”H’ﬁHi“*(fyu;Q"yCZﬂ
(9.10)
S U Poll g (usge) + 1) (9.17)

Combining (9.14)—(9.17), we have for k(z;) = s € Biey,

eilai—z| S fs Poll_z(ubge) + 30

By letting n — 0, we complete the proof of the second line of (9.12).

Case 3: Let 4,j € I be distinct. Then z; € Q; € CZ° and z; € Q; € CZ°. We aim to
prove the third line of (9.12): Suppose k(z;) = « € K,, so that R, = R}. By Lemma 9.1,
|z — x| ~ 00, S| — )| and |z — zj| < |x — x| + |x; — x| S |a; — x4, so from (2.2),

|RI1 - R:L’j |xj,|rcj—zi\ 5 |R; - Ra:j |rcj,\m—mj\ 5 va PO”/(;L,éQo)a

where the last inequality follows by the analysis of Case 2. This proves the third line of
(9.12) if k(x;) € K.

If k(zj) € Kp, then by (2.2), [Re; — Rajle;ja;—ai S [Rey — Ra
repeat the preceding analysis to prove the third line of (9.12) in this case.

i |z —x;|, and we

Now suppose r(x;) = xs,k(2;) = Ty € Bpey. Then R, = R, and R,, = R, .
Because d¢g, < 0g, =~ |z; — zs] S |z — x| (see Lemma 9.1), we can apply (2.2) and
(9.11) to deduce

R, — Po.losjoi—os| = 1Ry — Pa,los.lws—s
i i 17| i g‘ Ts @ z»‘ 2 J|
SJ |R;S - sz Ts,|Ti—xj] + |Px5 - P-’»Ui Ts,|Ti—xs|
SR, = Prle. g, + I1f, Poll gusge) + - (9.18)

From (9.16) and (9.17), we have

|R;S _Pm

eob0, SIS Pon(H,&QO) +n. (9.19)

s

Combining (9.18), (9.19), we learn that

‘Rmi _Pr

T, |~y S, POH/(;L,:SQO) + 2.

i

Similarly,
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|Ra; = Pujlay jai—ay) S Poll s (ubge) + 20

We apply the triangle inequality and (2.2), and then the preceding estimates and (9.11)
to deduce

|R90i - R$j|$m|$z—$g‘\ S |sz‘ - Py, T, —xj) + |P@z‘ - Pz.i‘$ia|33i—$j| + ‘ij - Rfj‘xjv\ﬂ%—:c]'
S Boll g (usge) + 51

By letting 7 — 0, we complete the proof of the third line of (9.12) in Case 3, concluding
the proof of the lemma. O

Proposition 9.4. For (f,Py) € _#(1;9q°), we have (f, R,R*) e F(;Q°,CZ°% Kp),
and

Hf7 Ra R*||/*(MQ°,CZ°;K,,) < CHf7 PO”/(,LL;JQO)'
Furthermore, (ﬁ, é*) depends linearly on (f, Py).

Proof. From Lemma 6.7, Lemma 7.3, and the definition of R in (9.9), (ﬁ7 é*) depends
linearly on (f, Pp).

Because of Corollary 6.9, it suffices to show that for any Pe Wh(Bcz), satisfying P
is coherent with Py and (f, P, B*) € F(1;Q°,CZ°; Kp), we have

£, B, B\ g, uqe.cz0:k,) < CILE PR || g, (o0 20:k,)- (9.20)

Let P = {P,,}ic; € Wh(Bcyz) satisfy P is coherent with Py and (f, P,R*) e
F(1;Q°,CZ°%; Kp). Observe that the Whitney field (R*,P) e Wh(K, UBcz) is in
the class C™~11=/P(K,UB¢z), thanks to Proposition 6.1. Define P** € Wh(B¢z) by

P (. if k(z;) € Bre
prro= (#) € Biey (9.21)

We will demonstrate that (f, P, R* € _Z.(1;Q°,CZ° Kp). To see this, suppose
that F' € L™P(Q°) is arbitrary, satisfying J,(F') = R for all x € K,,. Recalling (5.45),

—

and applying (9.3) to the pair of Whitney fields (ﬁ*, P), we have

(12 2 [PTap

5or

B oy + / F— flrdu+ 3 IF - P
el

L / P fPdp+ S {I1F - P
Q° el

a0 /007 + [Py = P}
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= IF P, ( puge.czey + D 1Pec = PiIIE
icl
(9.3) .
p
1Pl (oo 20)-

Here, the first < uses the triangle inequality as well as the fact that || P|[1»(q,) 0. =~ |Pl:
for P € P. By taking the infimum in the above inequality over F' € L™P(Q°) satisfying
Jo(F) = R for all z € K,

I, P R

) SILBEP (9.22)

L (1Q°,CZ°; L (15Q°,CZ05K,) < O

Thus, (f, ﬁ**,ﬁ*) € Z.(Q°,CZ°% K,), as claimed.

From Lemma 9.3, we have (B*,R) € C™ b1=n/P(K, U Bey). Therefore, by
Lemma 8.1, to demonstrate that (f, R, ]%*) € Z.(u;Q°,CZ° K,) it suffices to prove
that

So(f By B) = ) I Rl gy sisoy + DO B = Ra

i€l 41
(9.23)

By the triangle inequality, (5.11), (2.2), (8.5), (8.3), and (9.22),

SIE Bl iy + S B — R I

el Q>

S {Irpe

i€l

sk p
10Q;) + HO le Rwl f(MLIQi;[sQi)}

1.1Q;

+ 3 {1Be = PR 1P = P+ |Re, — P
(5.11),(2.2)
s Y Auserw

P>’
P
%
i€l

+ 3 {|Be = P+ 1P = P+ | Rey = P |”}
i<>i/
** *ok *% | P ok
<Z||f’P f(ull 1Ql,5Q7)+Z|PM - P ‘ +Z|P
i€l >3 el

(8.5),(8.3
S Hf P Rl + 3 |Re, = P
~ ’ I (1;Q°,CZ°;Kp) < T z; |4
i€

MLlQi;&Qi)

(9.22) oL
S vaP’R Hp L« (1:Q°,8Z°;K,,) + Z |R$z - Pxi |f (924)
i€l
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We wish to bound the sum Y, |Ry, — P;* |0 If (z;) € K, then R,, = R =P
by (9.9) and (9.21), and so the summand vanishes. Else, suppose x(x;) € %key Then

R, = R;(zi) and P;* = Py(,), by (9.9) and (9.21). Hence,
iel 1€LR(T;)EDB ey

For k(z;) € Byey, we have |z, — k(z;)| < Cdg, (see Lemma 9.1), so, by recalling the
definition of the | - |; polynomial norm, and by (2.2),

Z 1Ry = Dol s,
1€LR(2)EDB ey

< Z Ry 0y — Pfe(rqz)|Z(zi),5Qi
1€LR(T;)EDB ey

=> Y |k -R,

sel z;€x~1(xy)

=> > > |aﬂ(PmS—R;S)(xsﬂp,agjmn_mp'

selziern™ (zs) [Bl|<m—1

$5 ,5Q

By Lemma 9.1, for any s € I and z; € k= *(z,), we have dg, > cdg,; furthermore, for
any dyadic lengthscale § > 0, and fixed s,

Hiel:x; €rxs),00, =0} <C.
Thus, in combination with the inequality, |B|p +n — mp < 0 for all § € M, we have
|Blp+n—mp |Blp+n—mp
Z 6Qi S 5@5 :
zi€R" 1 (xs)
So, using the previous three equation lines, we reduce (9.25),

SIRe, —PZESY. Y 10°(Pe, — R ) (@)l =N |Py — R I,

iel sel |B|<m~—1 sel
(9.26)

Because P and R in Wh(Bcz) are both coherent with Py, we can manipulate the right-
hand side of the inequality (9.26) using (5.12), (2.10), (7.2), and (2.26), to obtain

SR P S S0Py~ RLP

el sel

(Hlogs:9Qs)

(2.10)

< DI P,

sel

P
(#lo@s 9Q,)

/
H(kloqs 9qs) +If R
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7.2)
p
S Z 1f; Pe. ”/(/L\QQSﬁQS)

eef

(2.26)

S DM PPy oo, 100.000)- (9-27)
sel

Consider an arbitrary H € L™P(Q°) satisfying J,H = R for all x € K,. Recall from
{s' € I:10Q,N10Qy # 0}| < C. So from (9.27),

Lemma 4.7, for any keystone cube @,

we have
D Re = PR S Y IH, Pl 4 41100, 100.000)
i€l sel
SNHNY + [ [H = flPdu+ ) |IH—P. |} /057
~ Lmp(Q°) K s llLr(10Q.nQ°)/ 2Q.
sef
(9.28)

Now apply (2.21) (with R} = Qs and Ry = 10Qs N Q°), to obtain

HH Ts ”Lp(lonnQ )/5mp S ”H - P-'L's ||II:p(QS)/5mp + ”H”Lm P(lOQsﬁQ )

Then summing on s, and using the bounded overlap condition on {10Q; : s € I} again,
we obtain

Z I1H — P, LP 10Q50Q°)/6mp N Z | H —

sel sel

o0 /TB7 H NHIE e

Using this in (9.28),

S Re, = P S IH G ey + / H = fPdp+ ST IH = ol 0 /007
iel i€l

= HH’ P”;*(f,M;QO,CZO)'

Taking the infimum with respect to H € L™P(Q°) satistying J,H = R}, for all z € K,
we have

SO 1Be = PSP RN e czowmc, ) (9.29)
icl

Furthermore, for any H € L™P(Q°) satistying J, H = R} for all x € K, we have

1B Way [ 1R2@) = F@P S H ey + [ 1H = P

K, Kp

p(|P
<Py (100,020
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For the first inequality, we have used Lemma 2.7. The second inequality follows by
definition of the Z.(f, u; Q°,CZ°) functional. Now, taking the infimum over all H in
the previous inequality,

VR e,y + / By @) = f@)Pdi S 1 BB, e ooy (9:30)

From (9.24), (9.29), (9.30), we conclude that Sy(f, B, B*) defined in (9.23) satisfies
Sl B ) S 11 BN e oy < 50

Thus, we have proven (9.23), as desired.
We conclude by Lemma 8.1 that (f, R, B*) € F(1;Q°,CZ° K,) and

||f7 Ra R*”zjf*(,u;Q",CZO;Kp) =~ Sl(fa R7 R*) S S2(f7 Ra R*) SJ Hfa Pa R*”ij*(,u;Qo,CZO;Kp)'
This completes the proof of (9.20). This completes the proof of the proposition. O

10. Proof of the Main Lemma for A

The next lemmas tell us that the Main Lemma for A is true. That is, we shall establish
the Extension Theorem for (u,d). Recall, we have rescaled and translated p and §, so
that diam(supp(p)) < 6 = 1/10 (see (3.50)).

Lemma 10.1. There exist a linear map T : _#(u;1/10) — L™P(R"™), a map M :
F(1;:1/10) = R4, K C Cl(supp(p)), @ linear map S: F (1) = Wh(K), and a count-
able collection of linear maps {A¢}oew, Ao @ 7 (p;1/10) — LP(dp), that satisfy for each
(f,Py) € #(w;1/10), (3.1), (5.2), and (3.3) hold with § = 1/10. Furthermore, if A # 0
then K =0, and so the map M satisfies (3.7).

Proof. We recall from Proposition 9.4, there exists (ﬁ, ﬁ*) depending linearly on (f, Py),
so that (f, R, R*) € #Z.(1;Q°,CZ% K,,), and

va ﬁa R*”j*(u;QO,CZO;Kp) < Cva PO”/(;L;(SQo)' (101)

Because (f, R, FZ*) € Z.(u;Q°,CZ° K,), we can apply Lemma 8.1 to produce
T(f, R, 132*) € L™P(Q°) satisfying J,T(f, ﬁ, ﬁ*) = R, for z € K, and

IT(f, R, R*),RH/*(LMQOVCZ()) <C|f,R, R*||/*(#;Q070Z0;Kp). (10.2)

Define T : ¢ (11;0) — L™P(R™) as T(f, Py) := 0 - T(f, R, B*) + (1 — §) Py, where
6 is a smooth cutoff function satisfying supp(d) C Q°, 0lo.g9ge = 1, |6(z)] < 1, and
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|0%0(z)| < C for @ € M. Then we apply (2.19) and the definition of the Z.(f, u;Q°)
and _Z.(f, p;Q°,CZ°) functionals to estimate

IT(f, Po), Poll g (fussq0) S IT(F B B), Poll . (1s00)
ST(f. R, B*), R|| s (s u00.020) + |T(f, B, B*) = Poll1o(qe)-
(10.3)

Let Q1 € CZ° satisty dg, > ¢ (such a cube exists by (4.3) — recall dgo = 1). Then, using
(2.20) and (2.21) with Ry = Q1, Rz = Q°,

IT(f, B, B*) = Pol| v (qe)
<|IT(f, B, B*) = Ry |l 1o(@e) + |1 Rey — Poll Lo (oo
ST, BBl pmn(qey + IT(f, B, BY) = Ray lo@u) + 1Rey — Poll oy
SIT(f, B, Bl pmn(qey + IT(f, By BY) = R, |l Lr(0) /08, + IRz, = PollLe(oy)
ST R B, Rl g (pasqe.czo) + | Rey = Pollecau)- (10.4)

Combining (10.1), (10.2), (10.3), and (10.4), we have

IT(f, Po)s Poll s (fussge) SR R g, (usqe.czo:k,) + 1 Ray — Polle(qy)
SN Poll g (ussge) + 1Ry — PollLe(qu)- (10.5)

From Corollary 6.9, for n > 0 there exist H € L™P(Q°) and Pe Wh(B¢cz) satisfying
JoH = R} for all x € K, P is coherent with Py, and

”H’PH/*(J[’MQO’CZO) < ||f’ P7 R*H/*(/J«;QO,CZO;KP) + 77/2 5 Hf7 PO”/(,U,;EQ(:) + n.
(10.6)

Consequently, since R* is coherent with Py, also H is Kp-coherent with F.

We now work to estimate the term ||R;, — Pl rr(q,) in (10.5).

Cuse I: First suppose that x(z1) = 2 € K,,. Recalling the definition of R= (R, )ier
in (9.9), we have R;, = R = J,H. Due to the fact that dq, ~ 1, we have ||P||zr(,) =~
|P|$175Q1 for any polynomial P € P. Also, because R* is coherent with Py, and A is
monotonic, we have 0%(R% — Py) = 0 for all o € A. By these remarks, (5.12), and the
triangle inequality, we have

(5.12)

.1
1Rer = ol = IRS = Pl = |RE = Pol2, 5 = 0. R: — Py

p
1,00, ”f(u\eczl;f?m)

<If R;Hj(u;éQo) + 17, POH](M;(SQO)'

Continuing by using (2.22), (2.12), and (10.6), we obtain
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(2.

22
I1f, R II” S 1, BNy,

x”j(l";(;Qo « (1,Q°)

< I T Hy 1009)
= ||H‘|im,p(Q0) + HH - f”il’(d,u,) + ||H - J:cHHiP(Qo)

(2.12)

< NI ey + 1 = T2
<NH Py 1 e c22)
(10.6)

5 (”faPOH/(u;éQo)"'n)p'

Combining the previous two lines, and letting n — 0, we have
[Rey — Polle@u) S I Poll rusge)  (f k(21) € K). (10.7)
Case II: Next suppose that k(z1) = 2, € Bpey. Recalling the definition of R =
(R, )icr in (9.9), we have R,, = R),_, where Q, is a keystone cube, and d¢g, < dg, ~ 1.

We have

IRz, — Pollze(@.) = IR:, — Pollr(g.) < IR, — P

LrQu) T [1Pe. — Pollzr(qy)-
(10.8)

s

In what follows, we bound the two terms on the right-hand side of (10.8).

We first look to bound the term ||P,, — Fyl[z»(q,) on the right-hand side of (10.8).
Because P is coherent with Py, in particular, P, is coherent with Py. Hence, because A
is monotonic, 0%(P,, — Py) = 0 for all « € A. We apply (5.12), the triangle inequality,
and 0g, =~ dge = 1 to deduce

| Po, — Pollze(Qu) S [Po. — Polarsg, SN0, Pey, — Boll_#(uloo, 60,)
<||f, Px,
S, P,

Z(ploqyida,) T If, Pon(Mng;ng)
7 (ulsari0ay) T 15 Poll_z (usogo)- (10.9)

Applying (2.26) (note that 9Q1 N Q° is C-non-degenerate),

p p
I1f, P, H(Bloq:0q,) S P“H/*(u;%?m@")

< ||H, P,

P
s||f*(f7u;9Q1ﬂQ°)

U aguogey + [ 1 = S VB Pe 0,003
9Q1
(10.10)

By applying (2.21), with R; = Qs and Ry = 9Q1 N Q°, we have



M.K. Drake / Advances in Mathematics 420 (2023) 108999 109

||H_st

LP(QleQO)/(SSI S ||H‘ Lm,p(ngﬂQo) + ||H — P:ES LP(QS)/(SCTSLS. (1011)

Substituting (10.11) into (10.10), and using (10.6), we see

If, Pa.

S (1]

Loriey + VH = Pl /087 + [ 1H = fPd
9Q1

p
F(Bloq30q,)

. (10.6)
S HH’PHZJ*(JC,M;Q",CZ") < (I, POH/(#§5Q°) +n)".

Substituting the previous equation into (10.9), we have

1Px, — Polle@i) S IIfs Poll_s(uisne) + - (10.12)

We next look to bound the term ||R, — Py |/1»(q,) on the right-hand side of (10.8).
Because R/, and P, are each coherent with Py, and because A is monotonic, 9% (R, —
P,.) =0 for all « € A. Using dg, S do, ~ 1, |xs — z1] S dg,, (2.2) and (2.3), (5.12),

and the triangle inequality, we deduce

IR, = Pr

Lr(@) = Ry, = Prlay s, SR, — P,
S ”07 les - P
<|If, Ry,

1575(95

s

F (1loqs:0Q,)

F(uloos80,) T |\ f, Py,

s

H(Bloqsidas)
(10.13)

Recalling our choice of R in Lemma 7.3 (because P,, is assumed to be coherent with
Py), we must have

||f? R/rs ||/(H|9QS;5QS) g ||f7 PCES I (1loQsi9qs)" (1014)

Applying (2.26) (note: 10Qs N Q° is C-non-degenerate), (2.21) with Ry = Q5 and Ry =
10Qs N Q°, and (10.6), we have

(2.26)
P

<NH, Pe %y (11100, 5100.10)

If, Pa.

P < P
oasva S Pl uiog. 100,000

Sz ”H”Iim,p(lonon)"‘ / |H - f|pdﬂ+HH_Pms Z[)‘p(mQSon)/‘sgﬁ:p
10Qs
(2.21)
S UH msogingey + [ 1H = fPdu-+ 1H = Pa g /557
10Qs

<|H, P|| g, (f.u:@°.cz0)

(10.6)

5 ”f, P()”j(p,;éQo) + 7. (1015)
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Substituting (10.12), (10.13), (10.14), and (10.15) into (10.8), and letting n — 0 in (10.6),
we have

Ry — Pollr@y) S I Poll ripsge)  (f K(21) € Biey)- (10.16)

That completes the analysis of Cases I and II.
Combining (10.7) and (10.16), since either x(z1) € Brey or r(z1) € Kp, we have
shown

Rz, = Polle Qi) S s Poll_z(ubg0)- (10.17)

Using this in (10.5), we conclude that

HT(f7 PO),POH/(J”,;L;I/IO) = ”T(f’ PO)’ PO”/(f,u;éQo) 5 ||fa POH/(;A;(SQo)
~ £, Poll s (ps1/10) (10.18)

where we have used that dgo = 1 ~ 1/10. Thus, we have proven the upper bound
IT(f, Po)s Poll g (ps) < C - IIf, Poll_g(usy in (3.1), for 6 = 1/10. The matching lower
bound is an immediate consequence of the definition of the ¢ (---) functional.

We now prepare to approximate the quantity || f, P0||/(M5Qo). From (10.1) and (10.17)
we have

vaR R*”p «(1;Q°,0Z°; K, JF | Rz, *POHLP(Ql) S I PO”/ (mi6go)”

Furthermore, from (10.5) we have

Hfa POH}(H;(;QO) S ||T(f7 P0)7 POHZj](f,,u;&Qo)
SRR Ny, uoo.czou,y + 1Ber = PollLo(g,y-
Combining the above two inequalities, and using || R., — Pollzr(@,) = [Rey — Polzy.60,
we have
1 Polls sy = 15 B RNy e cozourc, )+ 1R = Poll g (10.19)

In Lemma 8.1 we constructed an equivalent expression S1(f, ﬁ, ﬁ*) for
|f, R, R*||p (u:00,cz0:k,) Namely, we showed that If, R, R*||p

S1(f, R, RB* ), with

L(Q0.0Z°K,) T

D %) — P P
SULBE) =Y I Rl s s vay T 2 1 Rai = B

iel i1’

/ IR (@) — £ @)+ Lacol B W -
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The indicator term 1 4_g||R* [ —— »(k,) 18 Included in the expression S (f, R, R*) if and
only if A = 0.

Next we apply (8.14) and (8.15) to replace the ¥;c; sum in S; by an equivalent expres-
sion, involving the countable collections of Borel sets { A} }sen, AY C supp(uf1.1¢,), and
of linear maps {¢} : 7 (ul1.1,39Q,) = R}cen, and {A : 7 (ul1.19,39Q,) — LP(du)}een
(see (8.14) and (8.15)). We also use the definition of the | - |; polynomial norm to show
that

~

1 B BNy (e 0 20:kc,) = S1(fS B B),

SUARE) = 305 ([ N Ra) = FPdi+ 63(F, )

)

iel teN A};

3N i@ (Ra, — Ray)(o)lP
<31’ aEM

+ [ IB@) = F@Pdi Lo 1By (10:20)
KP

for some constants cq, ;4 > 0.
Recall that the Whitney fields B = (R,,) and R* = (R*) depend linearly on (f, Py).
Thus, for i <+ 7/, we can define the linear functional @& : F(1;6g°) = R by

6 (f, Po) = e/l 0% (Ray — Ra,) (). (10.21)
Also, define the map N : _#(u;0¢e) — LP(du) by

Ri(z) ze K,

(10.22)
0 zeR™\ K,

)‘/(f’ PO)(x) = {
We have

[18:@) = s@rdn = [1X0 ) - P
KP KP

Making substitutions of these maps in equation (10.20), we have

S S|P
||f?R?R H *(M.Qo CZOA p)

= Laco 1 iy + 3 3 ([ NG Bi) = P+ 16401, R

i€l LeN A

)

30 ST e (s, Ry) |”+/|A' f.Py) — flPdn. (10.23)

i1’ aeEM
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Returning to (10.19), we write

|Rey = Poll, 50 = D 1alfs Po)IP, (10.24)
aeM

for linear functionals (, : _# (1;6ge) — R of the form
Calf, Po) i= ca(0%(Rey — Po)(21)) (€ M). (10.25)
Combining (10.19), (10.23), and (10.24), and reindexing the sums,
”fa POHZ:Q'(#;JQO) = va Ra R*”{)j*(#;QO,CZO;KP) + |Rx1 - p0|§176Q1

= Lo 1 ey + 30 3 [ NG Re) = P+ 16407 R

icl LeN

A}
+ 30X R [ NGB = P Y G PO
>t aeM K, aeM

= 1.»4:@ : ||R’*||iﬂb,p(Kp) + Z / |)\Z(f7 PO) - f|pd:u’ + Z |¢f(fv P0)|p7
ZENA2 LeN
(10.26)

for certain Borel sets A, C supp(u) and linear maps ¢, : #(u;0g0°) — R, A¢ :
7 (1:80) — LP(dp) (¢ € N).

We define the map M : _#(u;dg-) — Ry as the (1/p)!" power of the right hand
side of (10.26). By the above, and the fact that ||f, Poll 7 (u540) = If; Poll_#(ui1/10) and

||T(f7 PO)aP0||f(f,/,L;5Qo) = ||T(fa PO)7PO||/(f”u;1/1O)7 we have
M(fv PO) = Hf7 PO“j(u;l/lO) & ||T(f7 PO)v-PO”f(f,u;l/lO)v

establishing (3.2).

Next we show that M has the form (3.3).

First suppose A = 0. Then, by Lemma 6.7, if H € L"™P?(R") and |[H|| 7, < oo,
then R* = (R})sek, = (JoH)sek, — indeed, any H is K,-coherent with P, vacuously,
if A = (). This remark shows that R*(f, Py) = R*(f) depends only on f when A = 0. By
definition of M(f, Py) via (10.26),

1/p

MU P = IR D iy + X [ PeldoPo) = P+ 3 [on7, PP

teNj, teN

Therefore, M(f, Py) has the form (3.3), with K := K,, and with S(f) := R*(f)
depending linearly on f.
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/p
I A # 0 then M(F, Po) = (Sren S, Ne(Fs Po) = flPdii + Seenlon(f P)l?) ' via

(10.26), so M has the form (3.3) with K = ). In this case, the map M has the form in
(3.7).

Thus, the maps T and M satisfy (3.1)—(3.3), while M has the form (3.7) provided
A # D, as desired. O

In the previous lemma, we established the main properties of M and T in the Ex-
tension Theorem for (u,d = 1/10). Next, we establish properties of the Whitney field
ﬁ*(f, Py) € Wh(K}). In particular, the next lemma is a tool used in the proof that the
map T is '-constructible.

Lemma 10.2. For x € K, the linear map (f, Py) € Z(1;0g0) — Ri(f, Po) € P defined
in Lemma 0.7 has the form

Ry(f,Po) = ) wi(f) - va+@a(Po),

acM

where Wy : P — P is a linear map, {va}tacm s a basis for P, and wd : 7 (u) = R
(aw € M) are linear functionals satisfying supp(ws) C {z}.

Proof. Fix z € K,,. We write R%(f, Py) = Ao (f)+wz(Po) for linear maps A\, : _# (u) — P
and W, : P — P. Fix a basis {vq }acm for P, and write

aeM

for linear functionals wy € _# (1)*. To demonstrate that supp(wy) C {z}, we will show
for any open neighborhood U > x and any fi, fo € _# (u;0¢-) satisfying

filo = folu, (10.27)

we have Ay o(f) = Az.o(f) (0 € M). Equivalently, it suffices to show that for any f1, fo
as in (10.27), we have

Ry (f1, o) = Ry (f2, Po).

Because of (10.27), there exists 7 > 0 such that fi|p.n) = f2|B(2,m)- S€t tay = 1l B(2,n)-
Thus, for any H € L™P(R"), |H|| #(f, 4...) = IHIl #(f2.40.,)- Due to Proposition 6.2,
there exists H € L™P(R") such that |[H|| z(y, ) < oo and H is Kj-coherent with Fp.
According to the above, [|H|| 7y, 4, ) < oo for j = 1,2. We apply Lemma 6.8 to deduce
that R:(f1, Po) = J.H = R:(f2, Py), concluding the proof. O

At the end of the proof of Lemma 10.1, we showed that if A = @ then ﬁ*(f, Py) =
R*(f) is independent of P,. Therefore, we have:



114 M.K. Drake / Advances in Mathematics 420 (2023) 108999

Corollary 10.3. For A =), ﬁ*(f, Py) = R* (f), and consequently, for x € K,

Ri(f)= Y wif) va,

aeM

where {Vq }aem s any basis for P, and wg : 7 (n) = R (o € M) are linear functionals
satisfying supp(wg) C {x}.

In the next two lemmas, we verify that the maps 7" and M constructed in Lemma 10.1
are €'-constructible, as claimed in the Extension Theorem for (u,d), where Q' is a set
of linear functionals on _# (1) whose supports have bounded overlap.

Lemma 10.4. The map T in Lemma 10.1 is ' -constructible: There exists a collection of
linear functionals Q' = {wi}rer C Z(1)* satisfying the collection of sets {supp(w¢)}ter
has C-bounded overlap, and for each y € R™, there exists a finite subset T, C T and a
collection of polynomials {v¢y}iey, C P such that |T,| < C and

TyT(f,Po) = > wilf) - vey +&y(Po), (10.28)
teT,

where Wy : P — P is a linear map.

Proof. Any functional & € _#(p;6)* admits a unique decomposition & = w + w, where
w e Z(u)* and & € P*. We have defined T : #(p;6) — L™P(R") as T(f, Py) =
0-T(f, ﬁ, R*) + (1 — 0) Py, where 0 is a smooth function satisfying § = 1 on 0.9Q° and
supp(d) C Q°. Consequently,

P, y € (Q°)°

J,T(f, Py) = Lo
v Fo) {JyT(f,R,R*)Qny0+(1JyG)GyPO yeQe.

(10.29)

Here, ®, is the jet product on P defined by P ©, P’ = J,(PP’). Recall, from (8.16) in
the proof of Lemma 8.1, we defined T'(f, R, ﬁ*) € L™P(Q°) as

2ier Tilfs Be) (@) - 0i(x) = € Koz

(10.30)
R (x) x e K,

T(f, R, R*)(z) = {

where {0;};cr is a partition of unity satisfying (POU1)-(POU4) (see Section 4.3), the
maps Tj(f, R,) are defined just above (8.14), and the Whitney fields R = (Ra,)ier,
R = (R;)yek, are defined in (9.9) and Lemma 6.7, depending linearly on (f, Fy). By
Lemma 8.1,

J,T(f,R,R*) = R} for all y € K,,. (10.31)
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In Lemma 10.2 we describe the form of the linear maps (f, Py) — R (f, Po) (y € Kp).
There exists a basis {v7},eam for P, a linear map &, : P — P, and linear functionals
wy + Z (1) — R satisfying supp(w)) C {y} (v € M), such that

Ry(f Po) =Y wl(f) v +@y(R)  (y€Kp). (10.32)
yeEM

In (9.9), we defined B = (Ra,)ic; € Wh(Bcz) by

i

Ry, =

R, i) = SE%S
{xs (i) = 25 € By (10.33)

R  k(z;) =z € K),

We now discuss the form of the linear maps (f, Po) — Rl (f,Py) (s € I), defined in

s

Lemma 7.3. Recall that R € P depends linearly on (f|oq,, Fo). Thus, given a basis
{v"}yem for P, there exist linear functionals w) : #(ufoq,) — R satisfying

supp(w;,) C supp(ploq,) C 10Qs (v € M), (10.34)

and there exists a linear map w,_ : P — P, such that

R, (f,Po) =Y w] ()07 + @, (R). (10.35)
yEM

We now discuss the form of the linear maps T;, defined just above (8.14). For each
i € I, the map T; is Q-constructible, satisfying (AL4) for E; = 1.1Q); (see Section 4.4).
Thus, there exists a collection of linear functionals

O = {wibier © (ulig)" © ()" (see Remark 41),  (10.36)
such that the collection of sets {supp(w!)};cy: has C-bounded overlap, and by (4.13),
supp(w}) C supp(pl1.1q,) C 1.3Q; for alli € I,t € Y*. (10.37)

Further, for each y € R™, there exists a finite subset T; C Y7 and a collection of
polynomials {v} , };evi C P such that |T!| < C and

TyTi(f Re) = D wif) - vpy + @y (Ra,), (10.38)
teT;

where LTJ; :P — P is a linear map.
We define collections of functionals in _# (p)*:

Qo :={w):z€ Kp, v € M} indexed by Yo := {(z,7) : z € K, v € M};
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M = {w] x5 € Bpey, 7 € M} indexed by T := {(25,7) : s € Brey, ¥ € M}; and

Oy = J O ={wj:i €I, t €Y'} indexed by Yo := {(i,t) :i € I, t € T'}.
el

We define the complete collection of functionals as
QA =QuUQ U C _Z(p), (10.39)
indexed by
T="YoUT;UTs.

Because supp(w?) C {2z}, {supp(w) : w € o} has C-bounded overlap for C = M|, a
universal constant.

For z, € Bjey, supp(w) ) C 10Q; (see (10.34)). Because of Lemma 4.7, |{s’ € I :
10Qs N10Qs # 0} < C for fixed s. Thus, the supports of the functionals in ; have
C-bounded overlap.

From (4.2), € 1.3Q for at most C cubes @ € CZ°. The supports of the functionals
in each collection Q; are contained in 1.3Q; (see (10.37)), and have C-bounded overlap.
Thus, the supports of the functionals in 25 have C-bounded overlap.

We now show that the map T': ¢ (u;0go) — L™P(R™) is {'-constructible. We do so
by verifying the identity (10.28) for each y € R™, for the set of functionals Q' C _# (p)*
defined above.

For y € R™\ @Q°, we have by (10.29),

JyI(f, Po) = Po.

Thus, the identity (10.28) holds with Y, = () and @, (Py) = F.
For y € K, we have J,6 = 1 (recall K, C %QO and § =1 on 0.9Q°). So, by (10.29),
(10.31), (10.32),

JyT(f, Po) = Ry(f,Po) = Y wi(f) v + @y (P).
~YEM

Thus, the identity (10.28) holds with Y, = {(y,7) : v € M} C T.

Finally, suppose y € Q°\ K. Theny € Q; € CZ° for a unique j € I. Since supp(f;) C
1.1Q;, by the good geometry of the CZ cubes, we have that y € supp(6;) if and only if
i <> j. Thus,

IR ) = 03 Tl Re) - 0) = 32 IS Ray) @ i

irier] irier]

(10.40)
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If i € I is such that k(z;) = z € Kp, then R,, = R} by definition of R,, in (10.33). So,
by (10.32),

Ro(fiPo) = Y wliun ()07 + Ty (Po)  (if k(x) € ). (10.41)
yeM

On the other hand, if i € I is such that x(z;) = x5 € Byey, then R,, = R), by definition
of Ry, in (10.33). So, by (10.35),

Re,(fiPo) = Y wliun ()07 + Qe (Po)  (if £(2:) € Bey)- (10.42)
yeM

Using the above identities in (10.38), we have, for all 7 € I,

VL Re) = 30 @i (vt + 85 (30 @l (1) 07 4 Buan ()

teYy yeEM
teTi[ yeM

(10.43)

We return to the formula (10.40). We substitute (10.43) into (10.40) to write, for
AS Q]7

BT REY =30 N wilh) - {vi, @y J,0:)

L] tET’

+ D0 2 Wl (D) AGO) Oy Ty} + T (Guay (Po) @y Jybi

i1i4rj yEM
Using (10.29), we write, for y € Q;,

T(f, Py) = Z Z wi(f) - {vi, Oy Jyb; @y J,0}

iy teTy
+ Z Z wz(a:i)(f) @, (W) @y Jyb; Oy 0}
i:i4>j yEM
B (@) (P0)) @y Jybi Oy T8+ (1= J,0) ©, P (10.44)

For y € Q° \ K, there is a unique j = j(y) € I so that y € Q;; we define,

Tiy:={(i,t):i€l, i j(y), teT,};
Yo, ={(2,7) : k(z;) = z € K, for some ¢ € I, i <+ j(y), v € M}; and
T3,y = {(2s,7) : K(x;) = x5 € Bpey for some i € I, i < j(y), v € M}.
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Note that the last term on the right-hand side of (10.44) is just a linear map applied
to Py. By splitting the second sum on i € I on the right-hand side of (10.44) into cases
depending on whether x(z;) = z € K, or k(z;) = &5 € Bpey, and using the definitions
of the index sets T, (r = 1,2,3), we have

T(f,P)= Y wilf): (viy @y Jy(8:) Oy Jy(6))

(i,t)ET 1,y
+ Y W) > @y (v]) Oy Jy(0:) Oy Jy(6)
(z,7)€EY2,y i€l k(xy)=2,i¢>]
+ Y W > Gy (07) Oy Jy(85) Oy Jy(6) + &y (Po),
(xs,7)EYs,y 1€l k(w;)=ws,i4>]

(10.45)

for some linear map w, : P — P.
Using (10.45), we see that the identity (10.28) holds with Y, := Y1 , U Yo, U T3,.
Note that

because [M| = D, [{i € I :i < j}| < C for fixed j, from (4.2), and |T}| < C for fixed
(i,y). O

Lemma 10.5. The map M defined in Lemma 10.1 is ' -constructible, where Q' = {ws}sey
is the collection defined in Lemma 10.}. Precisely, the objects Ay, ¢p, and S arising in
the description of M in (3.3), satisfy the following:

(1) For each £ € N and y € supp(p), there exists a finite subset T&y C T and
constants {nsy},cv, , such that |T¢,| < C, and the map (f, Py) — \e(f, Po)(y) has the
form

f7 PO Z ns,ywé + Xy,Z(PO)v (1046)
S€EY,y

where }\iy’g :P = R is a linear functional.
(2) For each ¢ € N, there exists a finite subset Yo C Y and constants {ns}eer, such
that | Y| < C, and the map ¢¢ has the form

fv PO Z nsws (PO> (1047)

SGT@

where Ay : P — R is a linear functional.

(3) Fory € K, there exist {w§ }aesm C ' satisfying for all a € M, supp(wy) C {y},
and the map f — Sy(f) has the form
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Sy(£) =D wi(f) - va, (10.48)

aeM

where {vq }aem s a basis for P.

Proof. In the proof of Lemma 10.1, we defined M : _# (u;6) — R as the (1/p)"" power
of the right hand side of (10.26). Also, we defined K = 0 for A # (), and K = K,
S(f) = R*(f) for A = 0. Then formula (10.48) follows immediately from Corollary 10.3,
in the case A = (J; while formula (10.48) is vacuously true if A # () (for then K = 0).

We now investigate the form of the various terms arising on the right-hand side of
(10.26). We shall demonstrate that each of these terms either involves a map of the form
(10.46) or (10.47).

We first recall the form of the maps \j(f, P) and ¢}(f, P) arising in (AL5) and (ALS)
for E; = 1.1Q); (see Section 4.4). These maps arise in the reindexed sums on the right-
hand side of (10.26).

By hypothesis (AL5), for each ¢ € N, ¢ € I, and y € supp(u), there exists a finite
subset T};,,y C Y% and constants {nﬁ’,;}seﬁ,y C R such that |:f2y| < C, and the map

(f, P) = Ai(f, P)(y) has the form

N(F. P)y) = D nlh - wi(f) + N (P), (10.49)

SET”y

where X;,e : P — R is a linear functional. Also, from (AL6), for each £ € N, and ¢ € I,
there exists a finite subset T) C Y and constants {nﬁ’i}sem C R such that [T} < C,
and the map (f, P) — ¢i(f, P) has the form

¢i(f, P) = nt’ )+ Xi(P), (10.50)

seTf

where X}Z : P — R is a linear functional.
For each i € I, either k(x;) € K, or k(x;) € Brey. In (10.41) and (10.42), we have
shown

zl f7 PO Z w,{(w 7 4 (:)m(wi)(PO)a (1051)
yEM

where {v7},crq is a basis for P, w! | (y € M) are linear functionals in ' (for the

r(x4)

definition of €', see line (10.39) and the containing paragraph), and where Wy (s,) : P — P
is a linear map. Consequently,

0°[Ra (f, )] = D wlip) () - 0°[07] + 0% [@n(an) (o). (10.52)
yEM



120 M.K. Drake / Advances in Mathematics 420 (2023) 108999

For j € N, after the reindexing in (10.26), a map \; : _#(u;0) — LP(dp) arising in
(10.26) is either of the form A;(f, Po) = No(f, Ry,) for i € I and £ € N, or X\;(f, Py) =
N(f, Po), where X is defined in (10.22).

In the former case, we substitute (10.51) into (10.49) and write

SGT‘

- Z ney - wi(f) yé Zw o () 07+ By (o))
sET? yeEM

= > 0l w4 Y Wl (DX (07) + X (@ (R))-
SETLy yEM

Above, the number of terms in the two sums on the right hand side is at most
|T;y| + M| < O, and each of the functionals w?(f) and wﬁ(x )(f) belongs to the
family ' = {ws}ser defined in (10.39). Further, the third term on the right-hand
side is a linear function of Fy. This proves the identity (10.46) for A;, provided that
Aj(f’ PO) = /\z(.ﬂ RM)

Now suppose \;(f, Py) = N (f, Py) with A" defined in (10.22). If z € R™ \ K,, then
N(f,Py)(xz) =0. If z € K, then from Lemma 10.2,

N(f, Po)(z) = Ry (f, Po)(x)
= > Wl(f) val) + T (Po) (),

aeM

where w, : P — P is a linear map. Above, the number of terms in the sum on the
right-hand side is at most |[M]| < C, and each of the functionals wg(f) belongs to the
family ' = {ws}ser defined in (10.39). Further, the second term on the right-hand side
is a linear function of Py. Therefore, we have succeeded in verifying the identity (10.46)
for \;, provided that X;(f, Py) = N (f, Po).

From (10.26) for j € N, a map ¢; : #(u;6) — R is either of the form ¢;(f, Py) =
¢i(f, Ry,) for i € T and £ € N, ¢;(f, Py) = ¢ (f, Py) for i <+ i and o € M (see
(10.21)), or ¢;(f, Po) = Calf, Po) for a € M (see (10.25)).

In the first case, if ¢;(f, Po) = ¢i(f, Ry,) for i € I and ¢ € N, we substitute (10.51)
into (10.50):

sET’
= Y0l + XD Wl ()07 + B (P))
sET] YEM

= Z 77? ’ Z wn(z )+ )‘Z(wn(m (PO))

sET yEM
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In the expression above, the last term is a linear function of Py, and the number of terms
in both sums is at most || + |M| < C. Further, each of the functionals w?(f) and
wz(zi) belongs to the family Q' = {ws}ser defined in (10.39). This proves the identity
(10.47) for ¢;, provided that ¢;(f, Po) = ¢}(f, Rs,)-

Suppose ¢;(f, Po) = ¢ (f, Py) = L/fl 8"‘( v, — Re,,)(x;) for i < i’ and o € M
(see (10.21)). Using (10.52), we have

d)ZZ a(f PO ou,z/ Z w,»c(:c [UW azz/ Z wn(x/ [UV]( )

yeEM yeEM

P O Btan) (Po) = G (Po)] ()

In the expression above, the last term is a linear function of Py, and the number of terms
in both sums is at most 2| M| < C. Further, each of the functionals w” (1) and w)
belongs to the family ' = {ws}ser defined in (10.39). This proves the identity (10. 47)
for ¢;, provided that ¢;(f, Py) = ¢ *(f, Po).

Finally, suppose ¢;(f, Py) = Cal(f, Po) = ca0%(Re, — Po)(x1) for o € M. Using
(10.52) at = 1, we have

Calfs Po) = Ca D W]y (f) - 007 (1) + ca (0°Bp(an) (Po)(w1) — 0% Po(1)) -
yeEM

In the expression above, the last term is a linear function of Py, and the number of terms
in the sum is at most |[M| < C. Further, each of the functionals WZ(I.) belongs to the
family €' = {ws}ser defined in (10.39). Therefore, we have verified the identity (10.47)

for ¢;, provided that ¢;(f, Po) = Cu(f, Po)-
This completes the proof that the map M is Q'-constructible. O

The previous lemmas complete the inductive argument, begun in Section 3.3, by
showing that under the assumption that the Main Lemma holds for all A" < A, the
Main Lemma also holds for A.

11. Proofs of the main theorems
Proofs of Theorems 1 and 3. Let u be a compactly supported Borel regular measure on
R™.
Fix § > diam(supp(p)), so that supp(p) is contained in a cube of sidelength J. From
(2.22) and (2.23),

£l 7y = 0L 15 Pll g o) (11.1)

Per the Extension Theorem for (u,d) (Proposition 3.1), there exist a linear map T :
F(pu;0) = L™P(R™), amap M : _#(p;0) = Ry, aset K C Cl(supp(u)), a linear map
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S: J(n) = Wh(K), and countable families of Borel sets {A}sen, A¢ C supp(p), and

linear maps {¢¢ : _# (1;0) = R}gen, and {A¢: _#(156) = LP(dp)}ren, that satisfy the
conclusion of the extension theorem, as described below.

For each (f, Py) € 7 (w;9),

() 1, Poll #(us) < IT(f Po), Poll g (p.s0) < C - I Poll g (us0)3 (11.2)
(ii) ¢ M(f, Po) < ||T(f’ Bo), Poll g (puss) < C - M(f, Pp); and (11.3)
1/p
(iif) M(f, Po) = /W fiPo) = fIPdp+ Y |e(f, Po) P+ 1S(f M mn (5 ) :
teNy, teN
(11.4)
Hence,

;gg,”fvpnj(u,&) = lnf M(f’P)

1/
~ it ( Z/W £~ £+ 3 6l £ PP 4 ISP )

teNy, teN
(11.5)

We apply Lemma 7.2 (with trivial constraint map ¥, i.e., with N = 0) to compute
&(f) € P, depending linearly on f and satisfying:

(3 / N EC) = Flrdpt S 1oe(f €)Y

teNj, ¢eN

S ot ( / Ne(f P) = flPdp+ 3 oe(f, P)P) 7.

LeNj, ¢eN
(11.6)
Define M f := M(f,£(f)). Then
Mf= (> / IMe(£6(F)) = FIPdp+ | u(f, §<f))\p)1/”
teN,
1/p
= (X ([ 1t = srau-+1wanp) . (1.7
teN i,

for linear maps (¢ : _# (p) — LP(dp), and linear functionals ¢y : _# (1) — R (£ € N),

defined by Co(f) = Ae(f,€(f)) and ¥e(f) = oe(f,€(f))-
Because of (11.2)-(11.4), Tf :=T(f,£(f)) satisfies

1T, 6O s (ruso) = €N g oy = M(S,6(f)) = M f. (11.8)
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Together, (11.1) and (11.5)-(11.8) imply that

Ifl 2wy = NT LN () = M,

completing the proof of Theorem 1.

Per the Extension Theorem for (u,d), there exists a collection of linear functionals
' = {ws}tser C _Z(u)* such that the collection of sets {supp(ws)}ser has C-bounded
overlap, and for each y € R", there exists a finite subset T, C T and a collection of
polynomials {vs y}scy, C P such that [T,| < C and

TyT(f,Po) = > wslf) - vsy +By(Po) for (f, Po) € #(u;0),  (11.9)

seETy,

where w, : P — P is a linear map.
We have defined T'(f) := T'(f,£(f)). Because £ : _# (1) — P is a linear map, we can

write

)= wylf) v, (11.10)

yEM

for linear functionals wy : #(u) = R (y € M), and where {v7},crq is a basis for P.
Substituting this into (11.9), we have

TyT(f) = J,T(FE() = Y walf) vey + (D wa(f) - 7)

SETy, yeM
=D wolf) vsy+ D wa(f)-By(?).  (1L11)
sETy, YEM

Define the collection of functionals Q := Q" U {w,},erm. Because |[M| = D and the
collection of supports of the functionals in €’ has C-bounded overlap, the collection of
supports of the functionals in © has C’-bounded overlap. Because |Y,| < C, the number
of terms in both sums in (11.11) is at most C. Therefore, J,T'(f) is of the desired form
in Theorem 3 (see (1.5)). That is, we have shown that T is Q-constructible.

We have defined M f := M (f,&(f)). Next we verify that the map M is Q-constructible
for the set Q = _#(u)* defined above. We shall verify conditions (1)—(3) of Theorem 3.

From the Extension Theorem for (u,d), for y € K, there exists {w§}aem C &
satisfying for all @ € M, supp(wy') C {y}, and the map f +— S,(f) has the form

Sy(f)= D wi(f) - va,

aeM

where {v, faenm is a basis for P. This implies condition (3) of Theorem 3, because ' C 2.
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To prove that M is Q-constructible, we must show that the maps ¢, : _# (1) — LP(dp)
and ¥ : _#(p) — R in (11.7) satisfy conditions (1) and (2) of Theorem 3.

From the Extension Theorem for (u, ), we have for each £ € N and y € supp(u), there
exists a finite subset Ty, C T and constants {nﬁ,y}sefrz,y C R such that |Y,,| < C, and
the map A\; has the form

)\Z(f?P>(y) = Z nﬁ,y'ws(f> +)‘y,€(P>7

SETZ)y

where Xy,g : P — R is a linear functional. Using (11.10) in the previous equation, we
deduce that the map f +— (o(f)(y) has the form

S0, wlf) +XM< S () )

Ce()y) = Xe(f,€()) (W)

SET@Yy YEM
= Z ﬂﬁ,y 'ws(f) + Z w“/(f) ’ )‘y,Z(U’Y)'
SET@Yy YEM

Therefore, (o(f) has the form stated in condition (1) of Theorem 3, for the set Q =
Q' U{wy brem:

Similarly, from the Extension Theorem for (u,d), for £ € N, there exists a finite subset
T, C T and constants {n’},c¢, C R such that |Ty| < C, and the functional ¢, has the
form

¢Z(f7p): Z nﬁws(f)+XZ(P)a

SGT@

where X@ : P — R is a linear functional. Again, using (11.10), we deduce that the map
1y has the form

bl = 0160 = D+ 3 3 () 07)

seYy ~yEM
=Y b w)+ Y wi () Aew?).
s€T, YEM

Therefore, () has the form stated in condition (2) of Theorem 3, for the set Q =

VU {wybyenm.
This completes the proof of Theorem 3. O

Proof of Theorem 4. Let p be a finite Borel regular measure on R™ with compact sup-
port. By rescaling, we may assume supp(u) C 1—10Q° for Q° = (0,1]™. In the proof of
the Extension Theorem for (u,d = 1/10), the Calderén-Zygmund decomposition C'Z°



M.K. Drake / Advances in Mathematics 420 (2023) 108999 125

defined in Section 4 is finite and (Jyeoze @ = Q° (see Lemma 4.3). Therefore, K, = 0)
(see Definition 4.4). Consequently, M f : _# (1) — R in Theorem 1 has the form

Mf= (> / Ce(F) — fPdp+ [be (D)7,

=1},

where for each ¢, A, C supp(p) is a Borel set, (o : _# () — LP(dp), and ¢y : 7 (1) —
R are linear maps, and K is finite. Again because the CZ decomposition is finite, in
Theorem 3, we have that the collection of linear functionals Q = {w, },ex C _Z(p)* is
finite (|T] < c0). O

Proofs of Theorems 2 and 5. Theorems 2 and 5 are immediate consequences of Theo-
rems | and 3 applied to the Borel measure y = pp in (1.4). For details, see the discussion
after (1.4). O
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