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Let Lm,p(Rn) be the homogeneous Sobolev space for p ∈
(n, ∞), μ be a Borel regular measure on Rn, and Lm,p(Rn) +
Lp(dμ) be the space of Borel measurable functions with finite 
seminorm ‖f‖Lm,p(Rn)+Lp(dμ) := inff1+f2=f

{
‖f1‖p

Lm,p(Rn) +∫
Rn |f2|pdμ

}1/p. We construct a linear operator T :Lm,p(Rn) +
Lp(dμ) → Lm,p(Rn), that nearly optimally decomposes every 
function in the sum space: ‖T f‖p

Lm,p(Rn) +
∫
Rn |T f − f |pdμ ≤

C‖f‖p
Lm,p(Rn)+Lp(dμ) with C dependent on m, n, and p

only. For E ⊂ Rn, let Lm,p(E) denote the space of all 
restrictions to E of functions F ∈ Lm,p(Rn), equipped with 
the standard trace seminorm. For p ∈ (n, ∞), we construct a 
linear extension operator T : Lm,p(E) → Lm,p(Rn) satisfying 
T f |E = f |E and ‖T f‖Lm,p(Rn) ≤ C‖f‖Lm,p(E), where C
depends only on n, m, and p. We show these operators can 
be expressed through a collection of linear functionals whose 
supports have bounded overlap.
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1. Introduction

The homogeneous Sobolev space Lm,p(Rn), consists of all functions F : Rn → R

whose distributional partial derivatives of order m belong to Lp(Rn). We define the 
Lm,p(Rn) seminorm by

‖F‖Lm,p(Rn) = max
|α|=m

‖∂αF‖Lp(Rn) (F ∈ Lm,p(Rn)).

Given a Borel regular measure μ on Rn, let Lp(dμ) be the space of Borel measur-
able functions g : Rn → R with finite norm ‖g‖Lp(dμ) :=

(∫
n g(x)dμ

)1/p
< ∞. Let 
R
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Lm,p(Rn) + Lp(dμ) be the space of Borel measurable functions f : Rn → R with finite 
seminorm

‖f‖Lm,p(Rn)+Lp(dμ) := inf
f1+f2=f

{
‖f1‖p

Lm,p(Rn) + ‖f2‖p
Lp(dμ)

}1/p
< ∞.

We consider the topic of nearly optimal decomposition of functions in this sum space. 
Precisely:

Question 1. Can we construct a linear operator T : Lm,p(Rn) + Lp(dμ) → Lm,p(Rn)
satisfying ‖Tf‖Lm,p(Rn)+‖f−Tf‖Lp(dμ) ≤ C‖f‖Lm,p(Rn)+Lp(dμ), where C is independent 
of f?

Question 2. Can we estimate ‖f‖Lm,p(Rn)+Lp(dμ)?

We answer these questions with our first theorem. Let Cm
loc(Rn) denote the space 

of all functions F : Rn → R with continuous derivatives up to order m. The function 
space Cm(Rn) consists of functions with continuous, bounded derivatives up to order 
m, with norm: ‖F‖Cm(Rn) = max|α|≤m supx∈Rn {|∂αF (x)|}. Let P denote the space of 
real-valued (m − 1)rst degree polynomials on Rn. For K ⊂ Rn, a Whitney field on K is 
a tuple of polynomials (Px)x∈K with Px ∈ P for all x ∈ K. The space of Whitney fields 
on K is denoted by

Wh(K) :=
{

�P : �P = (Px)x∈K , Px ∈ P for all x ∈ K
}

.

If F is a Cm−1-function defined on a neighborhood of a point y ∈ Rn, then we write 
Jy(F ) (the “jet” of F at y) for the (m − 1)rst degree Taylor polynomial of F at y.

If n < p < ∞, then the Sobolev embedding theorem implies that Lm,p(Rn) ⊂
Cm−1

loc (Rn). We define a semi-norm on Whitney fields, �S ∈ Wh(K),

‖�S‖Lm,p(K) = inf{‖F‖Lm,p(Rn) : F ∈ Lm,p(Rn), Jx(F ) = Sx for all x ∈ K}. (1.1)

By definition, if there does not exist F ∈ Lm,p(Rn) with Jx(F ) = Sx for all x ∈ K, then 
‖�S‖Lm,p(K) = +∞.

Below, we write Cl(X) to denote the closure of a subset X ⊂ Rn, and we write 
supp(μ) ⊂ Rn to denote the support of a measure μ.

Theorem 1. Let μ be a compactly supported Borel regular measure on Rn, m ∈ N, and 
n < p < ∞. Then there exists a linear operator T : Lm,p(Rn) + Lp(dμ) → Lm,p(Rn) and 
a map M : Lm,p(Rn) + Lp(dμ) → R satisfying for all f ∈ Lm,p(Rn) + Lp(dμ):

‖f‖Lm,p(Rn)+Lp(dμ) ≤ ‖Tf‖Lm,p(Rn) + ‖Tf − f‖Lp(dμ) ≤ C · ‖f‖Lm,p(Rn)+Lp(dμ);

c · Mf ≤ ‖Tf‖Lm,p(Rn) + ‖Tf − f‖Lp(dμ) ≤ C · Mf ; and
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Mf =
(

‖�S(f)‖p
Lm,p(K) +

∑
�∈N

( ∫
A�

|ζ�(f) − f |pdμ + |ψ�(f)|p
))1/p

, (1.2)

where K ⊂ Cl(supp(μ)), �S : Lm,p(Rn) + Lp(dμ) → Wh(K) is a linear map, and for 
each � ∈ N, A� ⊂ supp(μ) is a Borel set, ζ� : Lm,p(Rn) + Lp(dμ) → Lp(dμ) and 
ψ� : Lm,p(Rn) + Lp(dμ) → R are linear maps. The constants c and C depend on m, n, 
and p but are independent of f and μ.

We introduce the notion of constructibility in Theorems 3 and 4 to further describe 
the structure of the operator T and map M .

As an application of Theorem 1, we construct a linear extension operator from the 
trace space Lm,p(E) (E ⊂ Rn arbitrary) to Lm,p(Rn) for p ∈ (n, ∞). Let
(X(Rn), ‖ · ‖X(Rn)) be a complete semi-normed linear space of continuous functions. For 
E ⊂ Rn, let X(E) be the space of restrictions to E of functions in X(Rn), equipped with 
the trace semi-norm:

X(E) := {f : E → R : ∃F ∈ X(Rn), F |E = f}, with

‖f‖X(E) := inf{‖F‖X(Rn) : F ∈ X(Rn) and F |E = f}.

A function F : Rn → R satisfying F |E = f is an extension of f . A linear map T : X(E) →
X(Rn) satisfying Tf |E = f and ‖Tf‖X(Rn) ≤ C‖f‖X(E), where C is independent of f , 
is a bounded linear extension operator. We pose the following questions about the trace 
and extension problems in X(Rn):

Question 3. Given E ⊂ Rn, does there exist a bounded linear extension operator T :
X(E) → X(Rn) satisfying Tf |E = f |E and ‖Tf‖X(Rn) ≤ C‖f‖X(E) for all f : E → R, 
where C is independent of E and f?

Question 4. Can we estimate ‖f‖X(E)?

For X(Rn) = Lm,p(Rn), n < p < ∞, and E arbitrary, C. Fefferman, A. Israel, and 
G.K. Luli prove the existence of a bounded linear extension operator, as in Question 3, 
in [13] and [12]. When E is finite, they introduce the concept of assisted bounded depth
to describe the structure of the operator T and they give an approximate formula for 
the trace norm ‖f‖X(E) in this case. When E is arbitrary, they prove the existence of a 
bounded linear extension operator T by taking the Banach limit of operators extending 
f from a sequence of finite subsets of E. Consequently, their extension operator T loses 
all of its structural properties when E is arbitrary. To prove Theorem 2 below, we 
provide a direct construction of a bounded linear extension operator T , valid when E
is arbitrary. In Theorem 5, we describe the structure of the extension operator and an 
approximate formula for the trace norm through the notion of constructibility, which is a 
generalization of the notion of assisted bounded depth to the setting when E is arbitrary.
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The question of optimal decomposition in the sum space Lm,p(Rn) + Lp(dμ) can be 
phrased as the problem of approximate extension and interpolation in Sobolev spaces, a 
topic of independent interest. Suppose an experimenter collects data defining a function 
f : E → R (E finite). Rather than assume f is the restriction to the set E of a func-
tion in the space Lm,p(Rn), we assume f lies near a function in the space Lm,p(Rn). 
Let the function μ : E → [0, ∞] represent the confidence in data collected; where the 
experimenter has high confidence in the data, we expect μ to be very large, and where 
the experimenter lacks confidence, we expect μ to approach 0. Then we wish to estimate

inf
F ∈Lm,p(Rn)

{
‖F‖p

Lm,p(Rn) +
∑
x∈E

|F (x) − f(x)|pμ(x)
}

(1.3)

(subject to the convention that if |F (x) − f(x)| = 0 and μ(x) = ∞, then |F (x) −
f(x)|pμ(x) = 0 · ∞ = 0), and to construct a function Tf ∈ Lm,p(Rn) satisfying,

‖Tf‖p
Lm,p(Rn) +

∑
x∈E

|Tf(x) − f(x)|pμ(x)

≤ C · inf
F ∈Lm,p(Rn)

{
‖F‖p

Lm,p(Rn) +
∑
x∈E

|F (x) − f(x)|pμ(x)
}

.

In this setting, we can interpret Theorem 1 as giving a construction for a near-optimal 
approximate extension Tf of the function f subject to the confidence, represented by μ, 
and an approximate formula for the optimal value of (1.3). When μ : E → R is defined as 
μ(x) ≡ ∞ for all x ∈ E, the expression (1.3) is finite only if F |E = f (i.e., F is an exact 
interpolant of f on E). This problem then encompasses the problem of interpolation in 
Sobolev spaces, which was studied by Israel, Luli, and Fefferman in [14], [15], and [16].

We use Theorem 1 to construct a bounded linear extension operator for Lm,p(Rn)
(n < p < ∞): Let E ⊂ Rn be a bounded Borel set, and f : E → R be Borel measurable. 
Define a Borel measure μE on Rn so that, for all Borel sets A ⊂ Rn,

μE(A) =
{

∞ if A ∩ E �= ∅,

0 if A ∩ E = ∅.
(1.4)

We apply Theorem 1 to the measure μE to produce a linear operator T and map M . We 
make a few observations. We shall identify f : E → R with a function on Rn, using its 
extension by zero. First, note that f ∈ Lm,p(E) if and only if f ∈ Lm,p(Rn) + Lp(dμE); 
furthermore, ‖f‖Lm,p(E) = ‖f‖Lm,p(Rn)+Lp(dμE). We also have that ‖F‖Lm,p(Rn) + ‖F −
f‖Lp(dμE) is finite if and only if F ∈ Lm,p(Rn) and F = f on E, and in this case we have 
‖F − f‖Lp(dμE) = 0. Therefore, the map T : Lm,p(Rn) + Lp(dμE) → Lm,p(Rn), given in 
Theorem 1, is a bounded linear extension operator on the trace space Lm,p(E). Further, 
because μE({x}) = ∞ for x ∈ E, Mf is finite if and only if ζ�(f) − f ≡ 0 ∈ Lp(dμE) for 
all � ∈ N. Consequently, by applying Theorem 1, we obtain the following result:
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Theorem 2. Let E ⊂ Rn be a compact set, m ∈ N, and n < p < ∞. There exists a 
bounded linear extension operator T : Lm,p(E) → Lm,p(Rn) and a map M : Lm,p(E) →
R satisfying for all f ∈ Lm,p(E),

Tf = f on E

‖f‖Lm,p(E) ≤ ‖Tf‖Lm,p(Rn) ≤ C · ‖f‖Lm,p(E);

c · Mf ≤ ‖Tf‖Lm,p(Rn) ≤ C · Mf ; and

Mf =
(∑

�∈N

|ψ�(f)|p + ‖�S(f)‖p
Lm,p(K)

)1/p
,

where K ⊂ E, �S : Lm,p(E) → Wh(K) is a linear map, and for each � ∈ N, ψ� :
Lm,p(E) → R is a bounded linear functional. The constants c and C depend on m, n, 
and p but are independent of f and E.

Given a real normed linear space X, we denote the dual space of X by X∗ := {f : X →
R : f is a bounded linear functional }.

When E is finite, Fefferman, Israel, and Luli [13,12] introduce the notion of assisted 
bounded depth to describe how the values of their extension and its derivatives up to 
order m − 1 rely on a collection of linear functionals contained in Lm,p(E)∗. Below, in 
Theorems 3 and 4, we express the operator T and the map M through a collection of 
functionals in (Lm,p(Rn) + Lp(dμ))∗ whose supports have bounded overlap, generalizing 
the notion of assisted bounded depth to the setting of the optimal decomposition problem 
(Questions 1 and 2). In Theorem 5, we translate this to the setting of the extension 
problem (Questions 3 and 4), where the operator T and the map M can be expressed 
through a collection of functionals in Lm,p(E)∗ whose supports have bounded overlap.

Recall the support of a functional ω ∈ (Lm,p(Rn) + Lp(dμ))∗ is defined as

supp(ω) :=
(⋃{

E ⊂ Rn :
E is open, and for all f ∈ Lm,p(Rn) + Lp(dμ)

satisfying supp(f) ⊂ E, ω(f) = 0.

})c

.

We write |S| for the cardinality of a set S. A collection Π of sets has A-bounded overlap
(A ≥ 1) provided that |{π ∈ Π : x ∈ π}| ≤ A for all x. With this notation, we now state 
the refined version of Theorem 1:

Theorem 3. The linear operator T and map M in Theorem 1 can be chosen to be 
Ω-constructible, in the following sense:

There exists a collection of linear functionals Ω = {ωr}r∈Υ ⊂ (Lm,p(Rn) + Lp(dμ))∗, 
such that the collection of sets {supp(ωr)}r∈Υ has C ′-bounded overlap, and for each x ∈
Rn, there exists a finite subset Υx ⊂ Υ and a collection of polynomials {vr,x}r∈Υx

⊂ P
such that |Υx| ≤ C and
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JxTf =
∑

r∈Υx

ωr(f) · vr,x. (1.5)

Recall that the map M is defined in (1.2) in terms of linear maps (ζ�)�∈N , (ψ�)�∈N , 
and �S = (Sx)x∈K . Then the following holds:

(1) For each � ∈ N and y ∈ supp(μ), there exists a finite subset Ῡ�,y ⊂ Υ and 
constants {η�

s,y}s∈Ῡ�,y
⊂ R such that |Ῡ�,y| ≤ C, and the map f �→ ζ�(f)(y) has the form

ζ�(f)(y) =
∑

s∈Ῡ�,y

η�
s,y · ωs(f).

(2) For each � ∈ N, there exists a finite subset Ῡ� ⊂ Υ and constants {η�
s}s∈Ῡ�

⊂ R

such that |Ῡ�| ≤ C, and the map ψ� has the form

ψ�(f) =
∑

s∈Ῡ�

η�
s · ωs(f).

(3) For y ∈ K, there exist {ωα
y }α∈M ⊂ Ω satisfying for all α ∈ M, supp(ωα

y ) ⊂ {y}, 
and the map f �→ Sy(f) has the form

Sy(f) =
∑

α∈M
ωα

y (f) · vα,

where {vα}α∈M is a basis for P.
The constants C and C ′ depend on m, n, and p but are independent of f and μ.

When μ is a finite measure (i.e., μ(Rn) < ∞) the formulas for M and T are simpler. 
Precisely,

Theorem 4. Let μ be a finite Borel regular measure on Rn with compact support. Then 
the map M : Lm,p(Rn) + Lp(dμ) → R in Theorem 1 satisfies:

Mf =
( K∑

�=1

⎛⎝∫
A�

|ζ�(f) − f |pdμ + |ψ�(f)|p + |ψ�(f)|p
⎞⎠)1/p

,

where for each �, A� ⊂ supp(μ) is a Borel set, ζ� : Lm,p(Rn) + Lp(dμ) → Lp(dμ), and 
ψ� : Lm,p(Rn) + Lp(dμ) → R are linear maps. Further the collection Ω ⊂ (Lm,p(Rn) +
Lp(dμ))∗ used to express M and T in Theorem 3 consists of a finite collection of linear 
functionals.

As promised, we next adapt the notion of constructibility to describe the structure of 
the linear extension operator in Theorem 2.
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Theorem 5. The linear operator T in Theorem 2 is Ω-constructible. Precisely, there exists 
a collection of linear functionals Ω = {ωr}r∈Υ ⊂ Lm,p(E)∗, such that the collection of 
sets {supp(ωr)}r∈Υ has C ′-bounded overlap, and for each x ∈ Rn, there exists a finite 
subset Υx ⊂ Υ and a collection of polynomials {vr,x}r∈Υx

⊂ P such that |Υx| ≤ C and

JxTf =
∑

r∈Υx

ωr(f) · vr,x. (1.6)

And the map M in Theorem 2 is Ω-constructible:
(1) For each � ∈ N, there exists a finite subset Ῡ� ⊂ Υ and constants {η�

s}s∈Ῡ�
⊂ R

such that |Ῡ�| ≤ C, and the map ψ� has the form

ψ�(f) =
∑

s∈Ῡ�

η�
s · ωs(f).

(2) For y ∈ K, there exist {ωα
y }α∈M ⊂ Ω satisfying for all α ∈ M, supp(ωα

y ) ⊂ {y}, 
and the map f �→ Sy(f) has the form

Sy(f) =
∑

α∈M
ωα

y (f) · vα,

where {vα}α∈M is a basis for P.
The constants C and C ′ depend on m, n, and p but are independent of f and E.

Let E ⊂ Rn be finite. A linear map which is Ω-constructible as defined in (1.6) has Ω-
assisted bounded depth (see [13] for the definition of assisted bounded depth operators). 
Consequently, the extension operator we construct in Theorem 5 has the same good 
structural property as the extension operator in Theorem 3 of [13] when E is finite.

A pair of complete semi-normed spaces (A, B) is said to be compatible if there exists 
a Hausdorff topological vector space H into which both A and B can be continuously 
embedded (see [3], p. 153). For a compatible couple (A, B), the sum A + B is the set of 
elements f ∈ H that can be represented as the sum, f = f1 + f2, of elements f1 ∈ A

and f2 ∈ B. Under the norm ‖f‖A+B = inff1+f2=f {‖f1‖A +‖f2‖B}, A +B is a complete 
semi-normed linear space. We can generate interpolation spaces for the couple (A, B)
via the real method, by calculating the K-functional:

K
(
t; f : (A, B)

)
:= inf {‖f1‖A + t · ‖f2‖B : f = f1 + f2} .

The Banach couple, (A, B), is C, K-linearized if there exists a constant C independent 
of t such that for all t > 0, for all f ∈ A +B, there exists an almost optimal decomposition 
f = F t

1 + F t
2 , where F t

1 , F t
2 depend linearly on f :

‖F t
1‖A + t‖F t

2‖B ≤ C · ‖f‖K(t;f :(A,B)).
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The pair (Lm,p(Rn), Lp(dμ)) is a compatible couple, and

‖f‖Lm,p(Rn)+Lp(dμ) ≤ K
(

1; f : (Lm,p(Rn), Lp(dμ))
)

≤ C‖f‖Lm,p(Rn)+Lp(dμ),

where C = C(n, p).
Furthermore,

‖f‖Lm,p(Rn)+Lp(tpdμ) ≤ K
(

t; f : (Lm,p(Rn), Lp(dμ))
)

≤ C‖f‖Lm,p(Rn)+Lp(tpdμ),

where C = C(n, p).
Theorem 1 immediately implies:

Theorem 6. Let μ be a compactly supported Borel regular measure on Rn. Then the 
Banach couple (Lm,p(Rn), Lp(dμ)) is C, K-linearized, with C independent of μ.

1.1. Background

P. Shvartsman considered Questions 1 and 2, providing a solution when μ is a σ-finite 
Borel measure, m = 1, and p ∈ (n, ∞) in [22].

H. Whitney gave an answer to Questions 3 and 4 for the function space X(Rn) =
Cm(Rn) in the case n = 1 ([25]). For ω ∈ (0, 1], the space Cm,ω(Rn) consists of Cm(Rn)
functions with ω-Hölder continuous mth order derivatives and finite norm:

‖F‖Cm,ω(Rn) = ‖F‖Cm(Rn) + max
|α|=m

sup
x,y∈Rn,x �=y

{
|∂αF (x) − ∂αF (y)|

|x − y|ω
}

.

Fefferman solved Questions 3 and 4 for X(Rn) = Cm(Rn) and X(Rn) = Cm,ω(Rn) for 
m, n ∈ N, and ω ∈ (0, 1] in [7], [8], [9], and [10]. His work built on theory developed by 
G. Glaeser, Y. Brudnyi, Shvartsman, E. Bierstone, P. Milman, and W. Pawłucki in [19], 
[4], [5], and [1]. Fefferman considered questions of approximate extension and utilized 
this relaxation of the extension problem in the spaces Cm(Rn) and Cm,ω(Rn) in [6–8]
and [11], and in his work with B. Klartag in [17] and [18].

For X(Rn) = Lm,p(Rn), Shvartsman used the classical Whitney extension operator to 
answer Questions 3 and 4 for p ∈ (n, ∞) and m = 1 in [21]. Israel [20] and Shvartsman 
[23] independently answered Questions 3 and 4 when m = 2, n < p < ∞, and E is finite. 
Fefferman, Israel, and Luli extended the method of [20] to m ∈ N, n < p < ∞ in [13]
and [12]. However, they describe structural properties of the extension operator T only 
for finite E ⊂ Rn.

1.2. Overview of the proof of Theorem 1

Let μ be a Borel regular measure satisfying that supp(μ) ⊂ Q for a cube Q ⊂ Rn. 
In order to construct a linear operator approximately extending a function from the 
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support of μ, we study the freedom we have to define a Sobolev function at each point 
of Q. In light of the Sobolev embedding theorem on Lm,p(Rn) for p > n, we can study 
the set of prospective (m − 1)-jets of approximate extensions and utilize the inductive 
framework introduced by Fefferman in [7]. We define J -functionals to encode how well 
a Sobolev function approximates a function f : Lm,p(Rn) + Lp(dμ) → R in terms of 
the measure μ. When the measure μ is finite, each step of the induction utilizes a finite
Calderón Zygmund (CZ) decomposition of Q that identifies cubes where we can use the 
inductive hypothesis to solve the approximate extension problem locally. Then we can 
use the techniques of Israel in [20] and Israel, Luli, and Fefferman in [13] to ensure global 
compatibility of these local solutions and patch them together.

When the measure μ is not finite, the CZ decomposition need not be finite, implying 
there is a subset of Q we call keystone points where we cannot use an inductive hypothesis 
to produce a local solution. How can we define an approximate extension on this set so 
that we produce a Sobolev function on Q? This is a new problem for extension in Sobolev 
space, though Whitney navigates the boundary between an infinite decomposition and 
its complement in his Cm extension theorem in [25]. In Section 4.2, we identify the 
set of keystone points Kp, and consider its properties. In Section 6.3, we show how the 
measure μ restricts a prospective approximate extension on Kp, relying on a new estimate 
(Lemma 5.2). Then we use a Sobolev function to define an approximate extension on Kp

that is compatible with the extension defined on the CZ cubes. In Section 5.3.2, we show 
that this function defined piecewise on Kp and the CZ cubes is, in fact, a function in 
Lm,p(Q) through a characterization of Sobolev space due to Brudnyi in [2]. This follows 
the work of Shvartsman in [21], who used [2] to give an intrinsic characterization of the 
trace space L1,p(E) for E ⊂ Rn. In Sections 8-10, we establish that the constructed 
approximate extension is optimal using properties of the map M : Lm,p(Rn) +Lp(dμ) →
R in Theorem 1.

2. Notation and further theory

2.1. Notation

Fix integers m, n ≥ 1 and a real number p > n. Unless we say otherwise, constants 
written c, c′, C, C ′, etc. depend only on m, n, and p. They are called “universal” constants. 
The lower case letters denote small (universal) constants while the upper case letters 
denote large (universal) constants. Given a parameter ξ, we write c(ξ), C(ξ), etc., to 
denote constants depending only on m, n, p, and ξ.

For non-negative quantities A, B, we write A � B, A � B, or A � B to indicate that 
cB ≤ A ≤ CB, A ≤ CB, or A ≥ cB, respectively, for universal constants 0 < c < C. 
Given a parameter ξ, we write A �ξ B, A �ξ B, or A �ξ B to indicate that c(ξ)B ≤
A ≤ C(ξ)B, A ≤ C(ξ)B, or A ≥ c(ξ)B, respectively, for constants 0 < c(ξ) < C(ξ).

When ϕy is an indexed family of functions, an expression of the form ∂αϕy(y) will 
always mean ∂α

z ϕy(z)|z=y, and never ∂α
z ϕz(z)|z=y
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A cube Q ⊂ Rn is a set of the form:

Q = a + (−δ, δ]n (a ∈ Rn, δ > 0) .

The sidelength of Q is denoted δQ := 2δ, while the center of Q is denoted ctr(Q) := a. 
For γ > 0 let γQ be the cube having the same center as Q but with sidelength γδQ. A 
dyadic cube Q ⊂ Rn has the form:

Q =
(
j1 · 2k, (j1 + 1) · 2k

]
×
(
j2 · 2k, (j2 + 1) · 2k

]
× · · ·

×
(
jn · 2k, (jn + 1) · 2k

]
, (j1, j2, . . . , jn ∈ Z, k ∈ Z) .

To bisect a cube Q ⊂ Rn is to partition it into 2n disjoint subcubes of sidelength 1
2δQ. 

These subcubes are called the children of Q. If Q � Q′ are dyadic cubes we say that Q′

is an ancestor of Q. Every dyadic cube Q has a smallest ancestor called its parent, which 
we denote by Q+.

A rectangular box in Rn is a set of the form R =
∏n

j=1 Ij , where each Ij ⊂ R is an 
interval of length δj > 0. We refer to δ1, . . . , δn as the sidelengths of R. If the sidelengths 
of R differ by at most a constant factor η ≥ 1 (i.e., δj ≤ ηδi for all i, j), then we say R
is η-non-degenerate.

We use the following notation:

|x| := |x|∞ = max{|x1|, . . . , |xn|} (x = (x1, . . . , xn) ∈ Rn);

dist(x, Ω) := inf{|x − y| : y ∈ Ω} (Ω ⊂ Rn, x ∈ Rn);

dist(Ω′, Ω) := inf{|x − y| : x ∈ Ω′, y ∈ Ω} (Ω, Ω′ ⊂ Rn);

B(Ω, R) := {x ∈ Rn : dist(x, Ω) ≤ R} (Ω ⊂ Rn, R > 0);

diam(S) := sup{|x − y| : x, y ∈ S} (S ⊂ Rn); and

|S| := cardinality of S (S ⊂ Rn).

In particular, since we use the �∞ norm on Rn, we have diam(Q) = δQ for any cube Q.
The analogous metric quantities defined with respect to the Euclidean norm |x|2 =

(|x1|2 + · · · + |xn|2)1/2 are denoted by dist2(x, Ω), dist2(Ω′, Ω), B2(Ω, R), and diam2(S).
Given a subset K ⊂ Rn, we write int(K) to denote the interior of K, and we write 

Cl(K) to denote the closure of K.
We write M for the collection of all multi-indices α = (α1, . . . , αn) ∈ Zn, with αi ≥ 0

for all i, of order |α| := α1 + · · · + αn ≤ m − 1. If α and β are multi-indices, then δαβ

denotes the Kronecker delta: δαβ = 1 if α = β; δαβ = 0 if α �= β. If α = (α1, . . . , αn) is 
a multi-index, then α! :=

∏n
j=1 αj !.

Let P denote the space of real-valued (m − 1)rst degree polynomials on Rn. Then P
is a vector space of dimension D := dim(P).

If F is a Cm−1 function on a neighborhood of a point y ∈ Rn, then we write Jy(F ) ∈ P
(the “jet” of F at y) for the (m − 1)rst degree Taylor polynomial of F at y, given by
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Jy(F )(z) =
∑

α∈M

∂αF (y)
α! (z − y)α.

For each x ∈ Rn, the jet product �x on P is defined by

P �x Q := Jx(P · Q) (P, Q ∈ P).

For x ∈ Rn, δ > 0, define a norm on P:

|P |x,δ =
( ∑

α∈M
|∂αP (x)|p · δn+(|α|−m)p

)1/p

(P ∈ P). (2.1)

For x′ ∈ Rn, we have the Taylor expansion

∂αP (x) =
∑

|γ|≤m−1−|α|

1
γ!∂

α+γP (x′) · (x − x′)γ (|α| ≤ m − 1).

Thus, the norms defined in (2.1) satisfy the inequality

|P |x,δ ≤ C ′|P |x′,δ (x, x′ ∈ Rn, |x − x′| ≤ Cδ) . (2.2)

And by computation, for δ′ > δ,

|P |x,δ′ ≤ |P |x,δ ≤ (δ′/δ)m−n/p|P |x,δ′ . (2.3)

The homogeneous Hölder space Cm−1,1−n/p(Rn) is the space of (m − 1)-times differ-
entiable functions F : Rn → R, with finite semi-norm,

‖F‖Cm−1,1−n/p(Rn) := max
|α|=m−1

sup
x,y∈Rn,x �=y

|∂αF (x) − ∂αF (y)|
|x − y|1−n/p

.

Given a set K ⊂ Rn, we let Wh(K) be the space of Whitney fields on K, namely, the 
set of all collections of polynomials �P = (Px)x∈K , where Px ∈ P for all x ∈ K.

Let μ be a Borel regular measure on Rn. For a Borel set S ⊂ Rn, we define the 
restricted measure μ|S by μ|S(A) := μ(A ∩ S) for all Borel sets A ⊂ Rn.

Write measμ(Rn) for the vector space of all equivalence classes of μ-measurable func-
tions f : Rn → R, with functions identified in an equivalence class if they agree on the 
complement of a set of μ-measure 0.

For a μ-measurable function f : Rn → R, we define:

‖F‖J (f,μ) :=
(

‖F‖p
Lm,p(Rn) +

∫
Rn

|F − f |pdμ
)1/p

F ∈ Lm,p(Rn). (2.4)

We remark that ‖ ·‖J (f,μ) is not a norm on Lm,p(Rn). Rather, ‖ ·‖J (f,μ) is a [0, ∞]-valued 
functional on Lm,p(Rn), satisfying the convexity condition,
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‖λ1F1 + λF2‖J (λ1f1+λ2f2,μ) ≤ λ1‖F1‖J (f1,μ) + λ2‖F2‖J (f2,μ).

We write J (μ) := Lm,p(Rn) + Lp(dμ) for the sum space defined in the introduction. 
Then J (μ) is a complete seminormed vector space. We can characterize the seminorm1

on this space using the functionals in (2.4):

J (μ) :=
{

f : f is μ-measurable, and ‖f‖J (μ) < ∞
}

, with

‖f‖J (μ) := inf
{

‖F‖J (f,μ) : F ∈ Lm,p(Rn)
}

.

Next, we introduce localized variants of the above functionals.
Let R ⊂ Rn be a rectangular box, and let δ > 0.
Given F ∈ Lm,p(R), a μ-measurable function f , and P ∈ P, we define

‖F, P‖J∗(f,μ;R) :=
(

‖F‖p
Lm,p(R) +

∫
R

|F − f |pdμ + ‖F − P‖p
Lp(R)/ diam(R)mp

)1/p

; and

‖f, P‖J∗(μ;R) := inf
{

‖F, P‖J∗(f,μ;R) : F ∈ Lm,p(R)
}

. (2.5)

Given F ∈ Lm,p(Rn), a μ-measurable function f , and P ∈ P, we define:

‖F, P‖J (f,μ;δ) :=
(

‖F‖p
Lm,p(Rn) +

∫
Rn

|F − f |pdμ + ‖F − P‖p
Lp(Rn)/δmp

)1/p

; and

‖f, P‖J (μ;δ) := inf
{

‖F, P‖J (f,μ;δ) : F ∈ Lm,p(Rn)
}

. (2.6)

These are [0, ∞]-valued functionals on the spaces Lm,p(R) × P, measμ(Rn) × P, 
Lm,p(Rn) × P, and measμ(Rn) × P, respectively. We make use of the fourth functional 
to define the seminormed vector space:

J (μ; δ) =
{

(f, P ) : f ∈ J (μ), P ∈ P, ‖f, P‖J (μ;δ) < ∞
}

. (2.7)

Generally, J (μ; δ) is a subspace of J (μ) × P. Later, we will show that J (μ; δ) =
J (μ) × P if supp(μ) is compact (see Lemma 2.10).

We can make comparisons between the different localized functionals. First, immedi-
ately from the definitions, if diam(R) � δ and F ∈ Lm,p(Rn), then

‖F, P‖J∗(f,μ;R) � ‖F, P‖J (f,μ;δ). (2.8)

Furthermore, the J (μ; δ) and J (f, μ; δ) functionals are monotone in δ in the sense 
that:

1 A seminorm on a vector space X is a [0, ∞)-valued functional ‖ · ‖X on X satisfying the conditions: 
‖f1 + f2‖X ≤ ‖f1‖X + ‖f2‖X , and ‖λf‖X = |λ|‖f‖X for λ ∈ R. There is no requirement that ‖f‖X =
0 =⇒ f = 0 for a seminorm.
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‖F, P‖J (f,μ;δ) ≤ ‖F, P‖J (f,μ;δ′),

‖f, P‖J (μ;δ) ≤ ‖f, P‖J (μ;δ′) (δ ≥ δ′). (2.9)

2.2. Further elementary inequalities

The next result is immediate from the definitions of the J -functionals, due to the 
sublinearity of the Lm,p-norm, Lp-norm, and Lp(dμ)-norm

Lemma 2.1 (Sublinearity of J -functionals). Let μ be a Borel regular measure on Rn, 
and let δ > 0. Then ‖·, ·‖J (·,μ;δ) and ‖·, ·‖J (μ;δ) are sublinear: Let f1, f2 be μ-measurable 
functions. Given F1, F2 ∈ Lm,p(Rn), λ > 0, P1, P2 ∈ P,

‖F1 + λF2, P1 + λP2‖J (f1+λf2,μ;δ) ≤ ‖F1, P1‖J (f1,μ;δ) + λ‖F2, P2‖J (f2,μ;δ); and
(2.10)

‖f1 + λf2, P1 + λP2‖J (μ;δ) ≤ ‖f1, P1‖J (μ;δ) + λ‖f2, P2‖J (μ;δ). (2.11)

Our assumption moving forward is that n < p < ∞, so we can apply the Sobolev 
inequality on Lm,p(Rn). We let U ⊂ Rn be a domain in Rn. We shall consider the 
setting where U is either all of Rn, or the union of two η-non-degenerate rectangular 
boxes with a common interior point. This includes, for instance, the case when U is a 
cube, when η = 1.
Sobolev Inequality. (see [13]) For F ∈ Lm,p(U), there exists a constant C such that

|∂α (Jy(F ) − F ) (x)| ≤ C · |x − y|m−|α|−n/p · ‖F‖Lm,p(U) (x, y ∈ U, |α| ≤ m − 1).

If U = Rn, the constant C is determined by m, n, and p alone. If U is the union of two 
η-non-degenerate rectangular boxes with a common interior point, then C is dependent 
on η as well. As an immediate consequence, we have for F ∈ Lm,p(U) and y ∈ U ,

‖F − Jy(F )‖Lp(U)/ diam(U)m ≤ C‖F‖Lm,p(U). (2.12)

Next we establish a relationship between the Lp norm and the | · |x,δ norm of polyno-
mials.

Lemma 2.2. Let R1 and R2 be two η-non-degenerate rectangular boxes with a common 
interior point, such that diam(R1) � diam(R2) � δ. Let U = R1 ∪ R2. Then for all 
y ∈ U and P ∈ P,

‖P ‖Lp(U)/δm �η |P |y,δ.

Proof. Observe diam(U) ≤ diam(R1) + diam(R2) ≤ Cδ, so the Lebesgue measure of U
is at most Cδn. We begin by writing the polynomial P in a Taylor expansion at the 
basepoint y; then because for all x ∈ U , we have |x − y| ≤ diam(U) ≤ Cδ, we deduce
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‖P‖p
Lp(U)/δmp =

∫
U

|P (x)|pdx/δmp

=
∫
U

∣∣∣∣ ∑
α∈M

∂αP (y)(x − y)α/α!
∣∣∣∣pdx/δmp

≤ C

∫
U

∑
α∈M

|∂αP (y)|pδ|α|pdx/δmp

≤ C ′
∑

α∈M
|∂αP (y)|pδn−(m−|α|)p

≤ C ′′|P |py,δ,

where C, C ′, C ′′ are universal constants.
To show the reverse inequality, we may assume by rescaling and translation (x �→

C · ηx/δ + y′) that y ∈ Q0 = (0, 1]n, Q0 ⊂ R1 or Q0 ⊂ R2, and δ = η in the statement 
of the lemma. Without loss of generality, suppose y ∈ R1. In light of (2.3), we have 
|P |y,η �η |P |y,1. Because P is a finite dimensional vector space, all norms on P are 
equivalent; in particular, we have |P |y,1 � ‖P‖Lp(Q0). Consequently

|P |y,η �η |P |y,1 � ‖P‖Lp(Q0) �η ‖P‖Lp(U)/ηm,

proving the lemma. �
Lemma 2.3. Let U be the union of two η-non-degenerate rectangular boxes with a common 
interior point, U = R1∪R2, such that diam(R1) � diam(R2) � δ. There exists a constant 
C depending on m, n, p, η such that the following holds.

Let x ∈ U , F ∈ Lm,p(U), and P ∈ P. For |α| ≤ m − 1,

|∂α(F − P )(x)| ≤ C
(
‖F‖Lm,p(U) + ‖F − P‖Lp(U)/δm

)
δm−|α|−n/p. (2.13)

If μ is a Borel regular measure on Rn, and f : Rn → R is a μ-measurable function, 
then for F ∈ Lm,p(U),

|∂α(F − P )(x)| ≤ C(‖F, P‖J∗(f,μ;R1) + ‖F, P‖J∗(f,μ;R2))δm−|α|−n/p, (2.14)

while for F ∈ Lm,p(Rn),

|∂α(F − P )(x)| ≤ C‖F, P‖J (f,μ;δ)δ
m−|α|−n/p. (2.15)

Proof. Let F ∈ Lm,p(U). To prove (2.13) we will show that

sup
x∈U

max
α∈M

|∂αF (x)|δ|α|+n/p−m ≤ C
(
‖F‖Lm,p(U) + ‖F‖Lp(U)/δm

)
. (2.16)
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By replacing F by F − P in (2.16), we deduce (2.13).
By the Sobolev Inequality, and since diam(U) � δ, for any x, y ∈ U , we have

|(F − Jy(F ))(x)| ≤ C ′
s‖F‖Lm,p(U)δ

m−n/p,

and hence by integrating,

‖F − Jy(F )‖Lp(U) ≤ Cs‖F‖Lm,p(U)δ
m,

where C ′
s and Cs depend on m, n, p, and η. If F |U = 0, then both sides of (2.16) are 

zero, and the inequality holds true. Thus we may assume F |U �= 0.
For sake of contradiction, suppose (2.16) does not hold with a constant C = Λ, for 

Λ > 0 to be determined momentarily. Let y ∈ U , β ∈ M be the argument of

sup
x∈U

max
α∈M

|∂αF (x)|δ|α|+n/p−m.

Then

|∂βF (y)|δ|β|+n/p−m ≥ Λ
(
‖F‖Lm,p(U) + ‖F‖Lp(U)/δm

)
. (2.17)

Applying Lemma 2.2 to Jy(F ) and from the definition (2.1), we have

‖Jy(F )‖Lp(U)/δm � |Jy(F )|y,δ � |∂βF (y)|δ|β|+n/p−m.

Consequently, there exists a universal constant c′ such that

‖Jy(F )‖Lp(U)/δm ≥ c′|∂β(F )(y)|δ|β|+n/p−m.

Choose Λ > 1+Cs

c′ . Then from (2.17) and the Sobolev Inequality, we have

|∂β(F )(y)|δ|β|+n/p−m

>
1 + Cs

c′
(
‖F‖Lm,p(U) + ‖F‖Lp(U)/δm

)
>

1 + Cs

c′ ‖F‖Lm,p(U) + 1
c′ ‖F‖Lp(U)/δm

≥ 1 + Cs

c′ ‖F‖Lm,p(U) + 1
c′

(
‖Jy(F )‖Lp(U)/δm − ‖F − Jy(F )‖Lp(U)/δm

)
≥ 1 + Cs

c′ ‖F‖Lm,p(U) + 1
c′

(
‖Jy(F )‖Lp(U)/δm − Cs‖F‖Lm,p(U)

)
≥ 1

c′ ‖F‖Lm,p(U) + |∂βF (y)|δ|β|+n/p−m.

This implies ‖F‖Lm,p(U) < 0, a contradiction. So (2.16) must hold, which implies (2.13).
Note that (2.14) follows from (2.13) and the definition of the J∗(· · · ) functional. 

Finally, (2.15) follows from (2.8) and (2.14). �
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Lemma 2.4. Let Q be a cube, let μ be a Borel regular measure on Rn with supp(μ) ⊂ Q, 
let f : Rn → R be μ-measurable, let P ∈ P, and let η ∈ [.001, 100]. Let θ be a C∞

function satisfying supp(θ) ⊂ (1 + η)Q, θ|Q = 1, and |∂αθ(x)| ≤ Cδ
−|α|
Q for all |α| ≤ m.

Let F ∈ Lm,p((1 +η)Q). Define F̄ := θ·F +(1 −θ)P . Then F̄ ∈ Lm,p(Rn), F̄ |Q = F |Q, 
and

‖F̄‖Lm,p(Rn) � ‖F‖Lm,p((1+η)Q) + ‖F − P‖Lp((1+η)Q)/δm
Q , (2.18)

‖F̄ , P‖J (f,μ;δQ) � ‖F, P‖J∗(f,μ;(1+η)Q). (2.19)

Proof. Proof of (2.18): Note that F̄ agrees with the (m − 1)rst degree polynomial P on 
Rn \ (1 + η)Q. Thus,

‖F̄‖p
Lm,p(Rn) = ‖F̄‖p

Lm,p((1+η)Q)

= ‖F̄ − P‖p
Lm,p((1+η)Q)

= ‖(F − P )θ‖p
Lm,p((1+η)Q)

�
∫

(1+η)Q

∑
|α|+|β|=m

|∂α(F − P )(x)|p · |∂βθ(x)|pdx

(2.13)
� ‖F‖p

Lm,p((1+η)Q) + ‖F − P‖p
Lp((1+η)Q)/δmp

Q .

Proof of (2.19): Note that F̄ −P = 0 on Rn \ (1 +η)Q, F̄ −P = θ(P −F ) on (1 +η)Q, 
and F̄ = F on Q ⊃ supp(μ). Thus, we can use (2.18) to bound

‖F̄ , P‖p
J (f,μ;δQ) = ‖F̄‖p

Lm,p((1+η)Q) +
∫
Rn

|F̄ − f |pdμ + ‖F̄ − P‖p
Lp((1+η)Q)/δmp

Q

(2.18)
� ‖F‖p

Lm,p((1+η)Q) + ‖F − P‖p
Lp((1+η)Q)/δmp

Q +
∫
Rn

|F − f |pdμ

+ ‖θ(F − P )‖p
Lp((1+η)Q)/δmp

Q

� ‖F‖p
Lm,p((1+η)Q) +

∫
Rn

|F − f |pdμ + ‖F − P‖p
Lp((1+η)Q)/δmp

Q

= ‖F, P‖p
J∗(f,μ;(1+η)Q). �

Lemma 2.5. Suppose R1 and R2 are η-non-degenerate rectangular boxes, satisfying R1 ⊂
R2 and diam(R2) ≤ η diam(R1), for η ≥ 1. For any P ∈ P,

‖P‖Lp(R2) �η ‖P‖Lp(R1). (2.20)

Here, the constants in �η depend on m, n, p, and η.
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Proof. Let x ∈ R1. By applying Lemma 2.2 for both U = R2 and U = R1, and inequality 
(2.3), for P ∈ P,

‖P‖Lp(R2) �η diam(R2)m|P |x,diam(R2) �η diam(R1)m|P |x,diam(R1) �η ‖P‖Lp(R1),

and since R1 ⊂ R2, also ‖P‖Lp(R1) ≤ ‖P‖Lp(R2), proving ‖P‖Lp(R2) �η ‖P‖Lp(R1). �
Lemma 2.6. Suppose R1 and R2 are η-non-degenerate rectangular boxes, satisfying R1 ⊂
R2, for η ≥ 1. For any H ∈ Lm,p(R2) and P ∈ P,

‖H − P‖Lp(R2)/ diam(R2)m �η ‖H‖Lm,p(R2) + ‖H − P‖Lp(R1)/ diam(R1)m. (2.21)

Here, the constants in �η depend on m, n, p, and η.

Proof. Let x ∈ R1. Repeatedly applying the triangle inequality, (2.3), (2.12) and 
Lemma 2.2, we have

‖H − P‖Lp(R2)/ diam(R2)m

≤ ‖H − JxH‖Lp(R2)/ diam(R2)m + ‖JxH − P‖Lp(R2)/ diam(R2)m

�η ‖H‖Lm,p(R2) + ‖JxH − P‖Lp(R2)/ diam(R2)m

�η ‖H‖Lm,p(R2) + |JxH − P |x,diam(R2)

≤ ‖H‖Lm,p(R2) + |JxH − P |x,diam(R1)

�η ‖H‖Lm,p(R2) + ‖JxH − P‖Lp(R1)/ diam(R1)m

≤ ‖H‖Lm,p(R2) + ‖JxH − H‖Lp(R1)/ diam(R1)m + ‖H − P‖Lp(R1)/ diam(R1)m

�η ‖H‖Lm,p(R2) + ‖H‖Lm,p(R1) + ‖H − P‖Lp(R1)/ diam(R1)m.

completing the proof of (2.21). �
The next result is an immediate consequence of Stein’s Sobolev Extension Theorem 

for minimally smooth domains (see [24]).
Sobolev Extension Theorem for Cubes [24]. Let Q ⊂ Rn be a cube. Let F ∈ Lm,p(Q). 
There exists a linear operator E : Lm,p(Q) → Lm,p(Rn) satisfying EF |Q = F |Q, and 
‖EF‖Lm,p(Rn) ≤ C‖F‖Lm,p(Q), where C is independent of m, n, p, and Q.

Lemma 2.7. Let Q ⊂ Rn be a cube and K ⊂ Q. Let �S ∈ Wh(K) satisfy ‖�S‖Lm,p(K) < ∞. 
Then ‖�S‖Lm,p(K) � inf{‖F‖Lm,p(Q) : F ∈ Lm,p(Q), Jx(F ) = Sx for all x ∈ K}. Hence, 
for all F ∈ Lm,p(Q) satisfying JxF = Sx for all x ∈ K, we have

‖�S‖Lm,p(K) � ‖F‖Lm,p(Q).
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Proof. Let ε1 > 0; then there exists F1 ∈ Lm,p(Rn) satisfying JxF1 = Sx for all x ∈ K

and ‖F1‖Lm,p(Rn) ≤ ‖�S‖Lm,p(K) + ε1. By restricting F1 to Q and letting ε1 → 0, we 
deduce inf{‖F‖Lm,p(Q) : F ∈ Lm,p(Q), Jx(F ) = Sx for all x ∈ K} ≤ ‖�S‖Lm,p(K). 
Let ε2 > 0; then there exists G ∈ Lm,p(Q) satisfying JxG = Sx for all x ∈ K, and 
‖G‖Lm,p(Q) ≤ inf{‖F‖Lm,p(Q) : F ∈ Lm,p(Q), Jx(F ) = Sx for all x ∈ K} +ε2. Applying 
Stein’s extension operator to G, we deduce

‖�S‖Lm,p(K) ≤ ‖EG‖Lm,p(Rn)

≤ C‖G‖Lm,p(Q)

≤ inf{‖F‖Lm,p(Q) : F ∈ Lm,p(Q), Jx(F ) = Sx for all x ∈ K} + ε2.

Letting ε2 → 0, we have ‖�S‖Lm,p(K) � inf{‖F‖Lm,p(Q) : F ∈ Lm,p(Q), Jx(F ) =
Sx for all x ∈ K}, proving the lemma. �
Lemma 2.8. Let Q ⊂ Rn be a cube, let μ be a Borel regular measure on Rn with supp(μ) ⊂
Q, let f : Rn → R be μ-measurable, and let P ∈ P. Then

‖f, P‖J∗(μ;Q) � ‖f, P‖J (μ;δQ); and (2.22)

‖f‖J (μ) � inf
P ∈P

‖f, P‖J∗(μ;Q). (2.23)

Proof. Proof of (2.22): Given F ∈ Lm,p(Q), we will show there exists F̄ ∈ Lm,p(Rn)
such that F̄ |Q = F |Q, and

‖F̄ , P‖J (f,μ;δQ) � ‖F, P‖J∗(f,μ;Q). (2.24)

Define F̃ := E(F ), where E : Lm,p(Q) → Lm,p(Rn) is the Sobolev extension operator 
for cubes, so F̃ |Q = F |Q, and

‖F̃ ‖Lm,p(1.1Q) ≤ ‖F̃‖Lm,p(Rn) � ‖F‖Lm,p(Q). (2.25)

Let F̄ := θ · F̃ + (1 − θ)P , where θ is a C∞ function satisfying supp(θ) ⊂ 1.1Q, θ|Q = 1, 
and |∂αθ(x)| ≤ Cδ

−|α|
Q for all |α| ≤ m. Then from Lemma 2.4, we have F̄ ∈ Lm,p(Rn) and 

F̄ = F̃ = F on Q � supp(μ). Applying this, (2.19), (2.21) (with R1 = Q, R2 = 1.1Q), 
and (2.25), we have

‖F̄ , P‖p
J (f,μ;δQ)

(2.19)
� ‖F̃ , P‖p

J∗(f,μ;1.1Q)

= ‖F̃‖p
Lm,p(1.1Q) +

∫
Rn

|F̃ − f |pdμ + ‖F̃ − P‖p
Lp(1.1Q)/δmp

Q

(2.21)
� ‖F̃‖p

Lm,p(1.1Q) +
∫

|F̃ − f |pdμ + ‖F̃ − P‖p
Lp(Q)/δm

Q

Rn
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= ‖F̃‖p
Lm,p(1.1Q) +

∫
Rn

|F − f |pdμ + ‖F − P‖p
Lp(Q)/δm

Q

(2.25)
� ‖F‖p

Lm,p(Q) +
∫
Rn

|F − f |pdμ + ‖F − P‖p
Lp(Q)/δm

Q

= ‖F, P‖p
J∗(f,μ;Q).

This proves (2.24).
By definition of the J (μ; δQ) functional, as an infimum, we have that ‖F̄ , P‖J (f,μ;δQ)

≥ ‖f, P‖J (μ;δQ) for any F̄ ∈ Lm,p(Rn). Thus, from (2.24), we have for any F ∈ Lm,p(Q),

‖f, P‖J (μ;δQ) � ‖F, P‖J∗(f,μ;Q).

Taking the infimum over functions F ∈ Lm,p(Q), we deduce that

‖f, P‖J (μ;δQ) � ‖f, P‖J∗(μ;Q).

On the other hand, using (2.8), we take the infimum over functions F ∈ Lm,p(Rn), 
implying that

inf
F ∈Lm,p(Rn)

‖F, P‖J (f,μ;δQ) � inf
F ∈Lm,p(Rn)

‖F, P‖J∗(f,μ;Q),

deducing ‖f, P‖J (μ;δQ) � ‖f, P‖J∗(μ;Q).
Proof of (2.23): Let x ∈ Q; by (2.12), we have{

inf
P ∈P

‖f, P‖J∗(μ;Q)
}p

= inf
P ∈P

{
inf

F ∈Lm,p(Q)
{‖F, P‖J∗(f,μ;Q)}p

}
= inf

F ∈Lm,p(Q)

{
inf

P ∈P
{‖F, P‖p

J∗(f,μ;Q)}
}

≤ inf
F ∈Lm,p(Q)

{‖F, Jx(F )‖p
J∗(f,μ;Q)}

= inf
F ∈Lm,p(Q)

{
‖F‖p

Lm,p(Q) +
∫
Q

|F − f |pdμ + ‖F − Jx(F )‖p
Lp(Q)/δmp

Q

}
� inf

F ∈Lm,p(Q)

{
‖F‖p

Lm,p(Q) +
∫
Q

|F − f |pdμ
}

� inf
F ∈Lm,p(Rn)

{
‖F‖p

Lm,p(Q) +
∫
Q

|F − f |pdμ
}

� ‖f‖p
J (μ).
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Let F ∈ Lm,p(Q) and P ∈ P. Define F̄ = EF , where E : Lm,p(Q) → Lm,p(Rn) is 
the Sobolev extension for cubes, so F̄ |Q = F |Q and ‖F̄‖Lm,p(Rn) � ‖F‖Lm,p(Q). Because 
supp(μ) � Q, we have

‖F̄‖p
J (f,μ) = ‖F̄‖p

Lm,p(Rn) +
∫
Rn

|F̄ − f |pdμ

� ‖F‖p
Lm,p(Q) +

∫
Q

|F − f |pdμ

� ‖F, P‖p
J (f,μ;Q).

Taking the infimum over F ∈Lm,p(Q) and P ∈P, we have ‖f‖J (μ)� infP ∈P ‖f, P‖J∗(μ;Q).
This completes the proof of (2.23). �

Corollary 2.9. Let R be a η-non-degenerate rectangular box, let μ be a Borel measure with 
supp(μ) ⊂ R, let f : Rn → R, and let P ∈ P. Then

‖f, P‖J∗(μ;R) �η ‖f, P‖J (μ;diam(R)). (2.26)

Lemma 2.10. If supp(μ) is compact,

J (μ; δ) = J (μ) × P.

Proof. Suppose supp(μ) is compact. Then there exists Q ⊂ Rn such that supp(μ) ⊂ Q. 
By definition, if (f, P ) ∈ J (μ; δ) then (f, P ) ∈ J (μ) × P. Suppose (f, P ) ∈ J (μ) × P; 
we will show there exists F̄ ∈ Lm,p(Rn) such that ‖F̄ , P‖J (f,μ;δ) < ∞, implying (f, P ) ∈
J (μ; δ). Because f ∈ J (μ), there exists F ∈ Lm,p(Rn) such that ‖F‖J (f,μ) < ∞. Let 
θ be a C∞ function satisfying supp(θ) ⊂ (1.1)Q, θ|Q = 1, and |∂αθ(x)| ≤ Cδ

−|α|
Q for all 

|α| ≤ m. Define F̄ := θ · F + (1 − θ)P . Then from (2.18), F̄ ∈ Lm,p(Rn), F̄ |Q = F |Q,

‖F̄ , P‖J (f,μ;δQ) � ‖F, P‖J∗(f,μ;1.1Q).

Consequently, for x ∈ Q, we apply (2.12) to deduce

‖F̄ , P‖p
J (f,μ;δ)

≤ (1 + δmp
Q /δmp)‖F̄ , P‖p

J (f,μ;δQ)

� (1 + δmp
Q /δmp)‖F, P‖p

J∗(f,μ;1.1Q).

= (1 + δmp
Q /δmp)

(
‖F‖p

Lm,p(1.1Q) +
∫

1.1Q

|F − f |pdμ + ‖F − P‖p
Lp(1.1Q)/δmp

Q

)

� (1 + δmp
Q /δmp)

(
‖F‖p

Lm,p(1.1Q) +
∫

|F − f |pdμ + ‖F − Jx(F )‖p
Lp(1.1Q)/δmp

Q

1.1Q
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+ ‖Jx(F ) − P‖p
Lp(1.1Q)/δmp

Q

)
� (1 + δmp

Q /δmp)
(

‖F‖p
Lm,p(1.1Q) +

∫
1.1Q

|F − f |pdμ + ‖Jx(F ) − P‖p
Lp(1.1Q)/δmp

Q

)

� (1 + δmp
Q /δmp)

(
‖F‖p

J (f,μ) + ‖Jx(F ) − P‖p
Lp(1.1Q)/δmp

Q

)
< ∞. �

2.2.1. Characterization of Sobolev space by local polynomial approximation

Definition 2.1 (Packing). Let Q0 ⊂ Rn be a cube. A collection of cubes π is a packing 
of Q0 provided the following conditions hold:

1. Q ⊂ Q0 for all Q ∈ π.
2. int(Q) ∩ int(Q′) = ∅ for all distinct Q, Q′ ∈ π.

We write Π(Q0) to denote the collection of all packings of Q0.

Definition 2.2 (Congruent δ-packing). Given a cube Q ⊂ Rn, we say π is a congruent 
δ-packing of Q if it is a finite set of disjoint cubes of equal sidelength, δ, contained in Q. 
Let

Π
(Q) := {π : π is a congruent δ-packing of Q, δ ≤ δQ},

Definition 2.3 (Polynomial Approximation Error). Given F ∈ Lp
loc(Rn), and a measur-

able set, S ⊂ Rn, we define the local approximation error of F for S as

E(F, S) := inf
P ∈P

‖F − P‖Lp(S).

In [2], A. Brudnyi characterizes Sobolev Space with the following result (Theorem 4
of Section 4):

Proposition 2.11 (Brudnyi, A. Yu.). Let F ∈ Lp(Q). Suppose there exists λ > 0 such 
that

sup
π∈Π�(Q)

δ−m
Q

{∑
Q̂∈π

(
E(F, Q̄)

)p}1/p

≤ λ.

Then F ∈ Lm,p(Q), and ‖F‖Lm,p(Q) � λ.

If π is a congruent δ-packing of Q then δQ̄ ≤ δQ for all Q̄ ∈ π. Therefore, we obtain 
the following corollary of Brudnyi’s result:
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Corollary 2.12. Let F ∈ Lp(Q). Suppose there exists λ > 0 such that

sup
π∈Π�(Q)

{∑
Q̄∈π

(
E(F, Q̄

)
/δm

Q̄
)p
}1/p

≤ λ.

Then F ∈ Lm,p(Q), and ‖F‖Lm,p(Q) � λ.

2.2.2. Consequence of the classical Whitney extension theorem

Lemma 2.13. Let F : Q → R, and suppose there exists a Whitney field �P ∈ Wh(Q) and 
a constant A ≥ 0 satisfying Px(x) = F (x) for all x ∈ Q and |Px − Py|x,|x−y| ≤ A for all 
x, y ∈ Q.

Then F ∈ Cm−1,1−n/p(Q), JxF = Px for all x ∈ Q, and

‖F‖Cm−1,1−n/p(Q) ≤ CA,

for a constant C determined by m, n, p.

Proof. Observe that the condition |Px − Py|x,|x−y| ≤ A (x, y ∈ Q) implies that the 
Whitney field �P satisfies the hypothesis of the classical Whitney extension theorem (see 
[19], [24]) for Cm−1,α, α = 1 − n/p. Thus, there exists a function G : Rn → R such that 
‖G‖Cm−1,α(Rn) ≤ CA, JxG = Px for all x ∈ Q. In particular, G(x) = JxG(x) = Px(x) =
F (x) for all x ∈ Q. Hence, F = G|Q ∈ Cm−1,α(Q) and ‖F‖Cm−1,α(Q) ≤ ‖G‖Cm−1,α(Rn) ≤
CA. Meanwhile, because F = G on Q, we have JxF = JxG = Px for all x ∈ Q. �
3. Structure of the proof

Here we will take first steps toward the proof of Theorems 1 and 3. We will state the 
Extension Theorem for (μ, δ), whose proof will occupy much of the remainder of this 
paper. In Section 11. we will show that Theorems 1 and 3 follow from this result.

3.1. Plan for the proof

Let μ be a Borel measure on Rn with compact support and let δ > 0. We will prove 
the following theorem:

Proposition 3.1 (Extension Theorem for (μ, δ)). Suppose diam(supp(μ)) < δ. There exist 
a linear map T : J (μ; δ) → Lm,p(Rn), a map M : J (μ; δ) → R+, K ⊂ Cl(supp(μ)), 
a linear map �S : J (μ) → Wh(K), and countable collections of Borel sets {A�}�∈N ⊂
supp(μ), and of linear maps {φ�}�∈N , φ� : J (μ; δ) → R, and {λ�}�∈N , λ� : J (μ; δ) →
Lp(dμ), that satisfy for each (f, P0) ∈ J (μ; δ),
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(i) ‖f, P0‖J (μ;δ) ≤ ‖T (f, P0), P0‖J (f,μ;δ) ≤ C · ‖f, P0‖J (μ;δ); (3.1)

(ii) c · M(f, P0) ≤ ‖T (f, P0), P0‖J (f,μ;δ) ≤ C · M(f, P0); and (3.2)

(iii) M(f, P0) =
(∑

�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑
�∈N

|φ�(f, P0)|p + ‖�S(f)‖p
Lm,p(K)

)1/p

.

(3.3)

The map T is Ω′-constructible in the following sense:
There exists a collection of linear functionals Ω′ = {ωs}s∈Υ ⊂ J (μ)∗ such that 

collection of sets {supp(ωs)}s∈Υ has C-bounded overlap, with supp(ωs) ⊂ supp(μ) for 
each s ∈ Υ. Further, for each y ∈ Rn, there exists a finite subset Υy ⊂ Υ and a collection 
of polynomials {vs,y}s∈Υy

⊂ P such that |Υy| ≤ C and

JyT (f, P0) =
∑

s∈Υy

ωs(f) · vs,y + ω̃y(P0), (3.4)

where ω̃y : P → P is a linear map.
Further, the map M is Ω′-constructible:
(1) For each � ∈ N and y ∈ supp(μ), there exists a finite subset Ῡ�,y ⊂ Υ and 

constants {η�
s,y}s∈Ῡ�,y

⊂ R such that |Ῡ�,y| ≤ C, and the map (f, P0) �→ λ�(f, P0)(y) has 
the form

λ�(f, P0)(y) =
∑

s∈Ῡ�,y

η�
s,y · ωs(f) + λ̃y,�(P0),

where λ̃y,� : P → R is a linear functional.
(2) For each � ∈ N, there exists a finite subset Ῡ� ⊂ Υ and constants {η�

s}s∈Ῡ�
⊂ R

such that |Ῡ�| ≤ C, and the map φ� has the form

φ�(f, P0) =
∑

s∈Ῡ�

η�
s · ωs(f) + λ̃�(P0),

where λ̃� : P → R is a linear functional.
(3) For y ∈ K, there exist {ωα

y }α∈M ⊂ Ω′ satisfying for all α ∈ M, supp(ωα
y ) ⊂ {y}, 

and the map f �→ Sy(f) has the form

Sy(f) =
∑

α∈M
ωα

y (f) · vα,

where {vα}α∈M is a basis for P.

3.1.1. Order relation on labels
To prove Proposition 3.1, we study the shape of symmetric, convex subsets of P that 

vary as we restrict the domain of the measure μ. The shape of σ ⊂ P will be defined by 
a multi-index set A ⊂ M. We will sometimes refer to multi-index sets as labels.
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Given distinct elements α = (α1, . . . , αn) , β = (β1, . . . , βn) ∈ M, let k ∈ {0, . . . , n}
be maximal subject to the condition 

∑k
i=1 αi �=

∑k
i=1 βi. We write α < β if

k∑
i=1

αi <

k∑
i=1

βi.

Given distinct multi-index sets A, A ⊂ M, we write A < A if the minimal element of 
the symmetric difference AΔA (under the order < on elements) lies in A. The following 
properties hold:

• If α, β ∈ M and |α| < |β| then α < β

• If A � A ⊂ M then A < A. In particular, the empty set is maximal and the whole 
set M is minimal under the order on multi-index sets.

3.1.2. Polynomial bases
A subset σ of a vector space V is symmetric provided that v ∈ σ =⇒ −v ∈ σ.

Definition 3.1. Given a symmetric, convex set σ ⊂ P, A ⊂ M, ε > 0, x ∈ Rn, and δ > 0, 
we say (P α)α∈A ⊂ P forms an (A, x, ε, δ)-basis for σ if the following are satisfied:

(i) P α ∈ εδn/p+|α|−mσ for α ∈ A;

(ii) ∂βP α(x) = δαβ for α, β ∈ A; and

(iii)
∣∣∂βP α(x)

∣∣ ≤ εδ|α|−|β| for α ∈ A, β ∈ M s.t. β > α.

Evidently, the basis property for symmetric convex sets is monotone in σ, ε, δ in the 
following sense:

Suppose that (P α)α∈A forms an (A, x, ε, δ)-basis for σ. Then (P α)α∈A

forms an (A, x, ε′, δ′)-basis for σ′ for ε′ ≥ ε, σ′ ⊃ σ, and 0 < δ′ ≤ δ. (3.5)

Lemma 3.2. Suppose (P α)α∈A forms an (A, x, ε, δ)-basis for a convex set σ ⊂ P. Then 
for k > 1, (P α)α∈A forms an (A, x, km · ε, k · δ)-basis for σ.

Proof. We verify Property (i) from Definition 3.1 first: For α ∈ M,

εδn/p+|α|−m = (km · ε)δn/p+|α|(k · δ)−m ≤ (km · ε)(k · δ)n/p+|α|−m,

implying if P α ∈ εδn/p+|α|−mσ then P α ∈ (km · ε)(δ · k)n/p+|α|−mσ. Property (ii) is 
independent of ε and δ. Fix α, β ∈ M such that β > α. Then we see Property (iii) holds:

|∂βP α(x)| ≤ εδ|α|−|β| = (km · ε)(k · δ)|α|−|β|k|β|−|α|−m ≤ (km · ε)(k · δ)|α|−|β|,

so (P α)α∈A forms an (A, x, km · ε, k · δ)-basis for σ. �
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Given x ∈ Rn, μ, and δ > 0, define symmetric convex subsets of P:

σJ(x, μ) =
{

P ∈ P : ∃F ∈ Lm,p(Rn) s.t. Jx(F ) = P , ‖F‖J (0,μ) ≤ 1
}

.

σ(μ, δ) =
{

P ∈ P : ∃F ∈ Lm,p(Rn) s.t. ‖F, P‖J (0,μ;δ) ≤ 1
}

.

Lemma 3.3. Suppose supp(μ) ⊂ Q. Then there exists C0 > 0 such that for all x ∈ Q, 
σJ (x, μ) ⊂ C0 · σ(μ, δQ). In particular, if (P α)α∈A forms an (A, x, ε/C0, δQ)-basis for 
σJ (x, μ), then (P α)α∈A forms an (A, x, ε, δQ)-basis for σ(μ, δQ).

Proof. Let P ∈ σJ(x, μ). Then there exists F ∈ Lm,p(Rn) such that Jx(F ) = P and

‖F‖p
J (0,μ) = ‖F‖p

Lm,p(Rn) +
∫
Q

|F |pdμ ≤ 1.

By (2.19) there exists F ′ ∈ Lm,p(Rn) satisfying F ′|Q = F |Q and

‖F ′, P‖J (0,μ;δQ) ≤ C‖F, P‖J∗(0,μ;1.1Q).

By (2.12), we have ‖F − P‖Lp(1.1Q)/δm
Q ≤ C‖F‖Lm,p(1.1Q), and thus

‖F, P‖J∗(0,μ;1.1Q) ≤ C ′‖F‖J (0,μ) ≤ C ′.

Combining the above inequalities, we have ‖F ′, P‖J (0,μ;δQ) ≤ C0. Therefore, P ∈ C0 ·
σ(μ, δQ). This proves σJ(x, μ) ⊂ C0 · σ(μ, δQ).

The basis result follows, for if P α ∈ ε
C0

δ
m−n/p
Q σJ (x, μ) (α ∈ A) then P α ∈

εδ
m−n/p
Q σ(μ, δQ). �

3.2. The induction

3.2.1. The Main Lemma
Fix a collection of multi-indices A ⊂ M. Let C0 > 0 be the universal constant defined 

in Lemma 3.3. We prove the following by induction with respect to the multi-index set A.

Lemma 3.4 (Main Lemma for A). Fix A ⊂ M. There exists a constant ε = ε(A) > 0, 
depending on A, m, n, and p, such that the following holds: Suppose μ is a Borel regular 
measure on Rn with compact support, satisfying diam(supp(μ)) < δ, and suppose:

For all x ∈ supp(μ), σJ (x, μ) has an (A, x, ε/C0, 10δ)-basis. (3.6)

Then the Extension Theorem for (μ, δ) (Proposition 3.1) is true.
Furthermore, for A �= ∅, in the Extension Theorem for (μ, δ), one can take K = ∅, 

and so the functional M : J (μ; δ) → R+ has the form
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M(f, P0) =
(∑

�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑
�∈N

|φ�(f, P0)|p
)1/p

. (3.7)

Note that condition (3.6) in the Main Lemma for A = ∅ holds vacuously. Thus the 
Main Lemma for A = ∅ implies the Extension Theorem for (μ, δ). Thus we have reduced 
the proof of the Extension Theorem for (μ, δ) to the task of proving the Main Lemma 
for A, for each A ⊂ M. We proceed by induction and establish the following:
Base Case: The Main Lemma for M holds.
Induction Step: Let A ⊂ M with A �= M. Suppose that the Main Lemma for A′ holds 
for each A′ < A. Then the Main Lemma for A holds.

3.2.2. Proof of the base case

Proof. Fix (μ, δ) as in the Main Lemma for M, satisfying (3.6) for A = M. Given 
that diam(supp(μ)) < δ, we can fix a cube Q ⊂ Rn with δQ = δ and supp(μ) ⊂ Q. 
By (3.6), σJ (x, μ) has an (M, x, ε/C0, 10δQ)-basis for all x ∈ supp(μ). We will fix the 
choice of ε(M) momentarily. By Lemma 3.3, σ(μ, 10δQ) has an (M, x, ε, 10δQ)-basis 
for all x ∈ supp(μ). Specifically, 1 ∈ ε(10δQ)n/p−m · σ(μ, 10δQ), implying there exists 
G ∈ Lm,p(Rn) satisfying

(∫
Q

|G|pdμ
)1/p

≤ ‖G, 1‖J (0,μ;10δQ) ≤ ε(10δQ)n/p−m. (3.8)

By (2.15), for x ∈ Q,

|G(x) − 1| ≤ C‖G, 1‖J (0,μ;δQ)δ
m−n/p
Q

� ‖G, 1‖J (0,μ;10δQ)δ
m−n/p
Q

� ε.

We now fix ε small enough so that the previous inequality implies |G(x) − 1| < 1/2 for 

x ∈ Q. Then |G(x)| > 1/2 for x ∈ Q, and 
(∫

Q
|G|pdμ

)1/p

≥ C ′μ(Q)1/p, and by (3.8)

μ(Q)1/p ≤ Cεδ
n/p−m
Q . (3.9)

Let (f, P0) ∈ J (μ; δQ). Define T (f, P0) := P0. Then for any F ∈ Lm,p(Rn), we use 
the assumption supp(μ) ⊂ Q to deduce that

‖T (f, P0), P0‖J (f,μ;δQ) =

⎛⎝∫ |P0 − f |pdμ

⎞⎠1/p
Q
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≤

⎛⎝∫
Q

|P0 − F |pdμ

⎞⎠1/p

+

⎛⎝∫
Q

|F − f |pdμ

⎞⎠1/p

(2.15)
�

⎛⎝∫
Q

‖F, P0‖p
J (f,μ;δQ)δ

mp−n
Q dμ

⎞⎠1/p

+

⎛⎝∫
Q

|F − f |pdμ

⎞⎠1/p

≤ ‖F, P0‖J (f,μ;δQ)δ
m−n/p
Q μ(Q)1/p +

⎛⎝∫
Q

|F − f |pdμ

⎞⎠1/p

(3.9)
≤ (1 + Cε)‖F, P0‖J (f,μ;δQ).

Because F is arbitrary, we can conclude ‖T (f, P0), P0‖J (f,μ;δQ) ≤ C‖f, P0‖J (μ;δQ). 
When A = M, we take K = ∅, as promised in Lemma 3.4, so the functional M has the 
form (3.7). Define the family {φ�}�∈N by φ�(f, P0) = 0 for � ≥ 1.

Define the family {λ�}�∈N , by λ�(f, P0) = 0 for � ≥ 2, and λ1(f, P0) = P0, and define 
the sets A� = ∅ for � ≥ 2, and A1 = supp(μ). For these families of linear maps, the 
functional M in (3.7) is given by M(f, P0) = ‖P0 − f‖Lp(dμ). Note the above chain of 
inequalities implies that P0 − f ∈ Lp(dμ), and

M(f, P0) =

⎛⎝∫
Rn

|P0 − f |pdμ

⎞⎠1/p

= ‖T (f, P0), P0‖J (f,μ;δQ).

Let Ω′ = ∅; immediately, the collection {supp(ω)}ω∈Ω′ has bounded (empty) overlap. 
For y ∈ supp(μ), define ω̃y(P ) := P (y); then λ1(f, P0)(y) = ω̃y(P0), indicating M is 
Ω′-constructible. And JyT (f, P0) = ω̃y(P0) = P0, so T is Ω′-constructible. �

3.2.3. Technical lemmas
The following linear algebra lemmas are adapted from Sections 3 and 4 of [13], relying 

on (2.10) and the inequality ‖F‖Lm,p(Rn) ≤ ‖F, P‖J (0,μ).

Lemma 3.5. There exist universal constants c1 ∈ (0, 1) and C1 ≥ 1 so that the following 
holds.
Suppose we are given the following:

(D1) Real numbers ε1 ∈ (0, c1] and ε2 ∈ (0, ε2D+2
1 ].

(D2) A lengthscale δ > 0.
(D3) A collection of multi-indices A ⊂ M.
(D4) A Borel regular measure μ and a bounded, non-empty set E ⊂ Rn, satisfying 

supp(μ) ⊂ E and diam(E) ≤ 10δ.
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(D5) A family of polynomials (P̃ α
x )α∈A that forms an (A, x, ε2, δ)-basis for σJ(x, μ) for 

each x ∈ E.
(D6) A point x0 ∈ E, a multi-index β̄ ∈ M \ A, and P̃ β̄

x0
∈ P satisfying

P̃ β̄
x0

∈ ε2δ|β̄|+n/p−mσJ (x0, μ); (3.10)

∂β̄P̃ β̄
x0

(x0) = 1; (3.11)

|∂βP̃ β̄
x0

(x0)| ≤ ε1δ|β̄|−|β| (β ∈ M, β > β̄); and (3.12)

|∂βP̃ β̄
x0

(x0)| ≤ ε−D
1 δ|β̄|−|β| (β ∈ M). (3.13)

(D7) For all x ∈ E, the basis (P̃ α
x )α∈A in (D5) satisfies

|∂βP̃ α
x (x)| ≤ ε−D−1

1 δ|α|−|β| (α ∈ A, α < β̄, β ∈ M). (3.14)

Then there exists A < A so that for every x ∈ E, σJ (x, μ) contains an (A, x, C1ε1, δ)-
basis.

Proof. Let c1 be a sufficiently small constant, to be determined later. By rescaling it 
suffices to assume that δ = 1. Our hypothesis tells us that ε1 ≤ c1, ε2 ≤ ε2D+2

1 , and that 
(P̃ α

x )α∈A forms an (A, x, ε2, 1)-basis for σJ(x, μ), for each x ∈ E. That is,

P̃ α
x ∈ ε2 · σJ(x, μ); (3.15)

∂βP̃ α
x (x) = δαβ (α, β ∈ A); and (3.16)

|∂βP̃ α
x (x)| ≤ ε2 (α ∈ A, β ∈ M, β > α). (3.17)

By (3.10) (for δ = 1), there exists ϕβ̄ ∈ Lm,p(Rn) satisfying

Jx0ϕβ̄ = P̃ β̄
x0

; and (3.18)

‖ϕβ̄‖Lm,p(Rn) ≤ ‖ϕβ̄‖J (0,μ) ≤ ε2. (3.19)

Fix y ∈ E and define P̃ β̄
y := Jyϕβ̄ . Then the definition of σJ(·, ·) and (3.19) imply

P̃ β̄
y ∈ ε2 · σJ (y, μ). (3.20)

We have |x0 − y| ≤ diam(E) ≤ 10, so by the Sobolev Inequality, (3.18), (3.19), (3.11), 
and (3.12),

|∂βP̃ β̄
y (y) − δββ̄ | ≤ |∂βϕβ̄(y) − ∂βJx0ϕβ̄(y)| + |∂βP̃ β̄

x0
(y) − δββ̄ |

≤ Cε2 + Cε1 < Cε1 (β ∈ M, β ≥ β̄). (3.21)

Similarly, from (3.13), we estimate:
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|∂βP̃ β̄
y (y)| ≤ |∂βP̃ β̄

y (y) − δββ̄ | + 1

≤ Cε−D
1 (β ∈ M). (3.22)

Define A = {α ∈ A : α < β̄} ∪ {β̄}. Then because β̄ /∈ A, the minimal element of AΔA
is β̄. Thus, we have A < A, by definition of the order relation on multiindex set. Define

P β̄
y := P̃ β̄

y −
∑

γ∈A\{β̄}

∂γP̃ β̄
y (y)P̃ γ

y .

Notice that A \ {β̄} ⊂ A; thus (3.16) (for x = y) implies that

∂αP β̄
y (y) = 0 (α ∈ A \ {β̄}).

And (3.20), (3.22), and (3.15) imply that

P β̄
y ∈ (ε2 + Cε−D

1 ε2) · σJ (y, μ) ⊂ Cε−D
1 ε2 · σJ(y, μ).

Since β̄ is the maximal element of A, it follows that for any β ≥ β̄ and any γ ∈ A \ {β̄}, 
we have β > γ. Thus (3.21), (3.22), and (3.17) imply that

|∂βP β̄
y (y) − δββ̄ | ≤ C(ε1 + ε−D

1 ε2) (β ∈ M, β ≥ β̄). (3.23)

And (3.22) and (3.14) imply that

|∂βP β̄
y (y)| ≤ Cε−2D−1

1 (β ∈ M).

Recall that ε2 ≤ εD+1
1 and ε1 ≤ c1. We now fix c1 to be a small universal constant, so 

that (3.23) yields ∂β̄P β̄
y (y) ∈ [1/2, 2]. We then define P̂ β̄

y = P β̄
y /∂β̄P β̄

y (y). The above 

properties of P β̄
y give that

P̂ β̄
y ∈ Cε−D

1 ε2 · σJ (y, μ); (3.24)

∂βP̂ β̄
y (y) = δββ̄ (β ∈ A); (3.25)

|∂βP̂ β̄
y (y)| ≤ C(ε1 + ε−D

1 ε2) (β ∈ M, β > β̄); and (3.26)

|∂βP̂ β̄
y (y)| ≤ Cε−2D−1

1 (β ∈ M). (3.27)

For each α ∈ A \ {β̄}, we define P̂ α
y = P̃ α

y −
(

∂β̄P̃ α
y (y)

)
P̂ β̄

y . Note that α < β̄, and 

hence |∂β̄P̃ α
y (y)| ≤ ε2 ≤ 1, thanks to (3.17). From (3.15) and (3.24), we now obtain

P̂ α
y ∈ C ′ε−D

1 ε2 · σJ(y, μ). (3.28)

From (3.17) and (3.27),
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|∂βP̂ α
y (y)| ≤ |∂βP̃ α

y (y)| + |∂β̄P̃ α
y (y)| · |∂βP̂ β̄

y (y)| ≤ ε2 + ε2 · Cε−2D−1
1

≤ C ′ε−2D−1
1 ε2, (β ∈ M, β > α).

(3.29)

Recall that A = {α ∈ A : α < β̄} ∪ {β̄}. From (3.16) and (3.25), we have

∂βP̂ α
y (y) = δαβ (β ∈ A). (3.30)

By now varying the point y ∈ E, we deduce from (3.24)-(3.26) and (3.28)-(3.30) that 
σJ (y, μ) contains an 

(
A, y, C · (ε1 + ε−2D−1

1 ε2), 1
)
-basis for each y ∈ E. Since ε2 ≤ ε2D+2

1 , 
the conclusion of the Lemma is immediate. �
Lemma 3.6. Let c1 and C1 be the constants from Lemma 3.5. Suppose we are given data(

ε1, ε2, δ, A, μ, E,
(

P̃ α
x

)
α∈A,x∈E

)
,

satisfying (D1)-(D5) of Lemma 3.5, and the family of polynomials (P̃ α
x )α∈A,x∈E also 

satisfies

max
{

|∂βP̃ α
x (x)|δ|β|−|α| : x ∈ E, α ∈ A, β ∈ M

}
≥ ε−D−1

1 . (3.31)

Then there exists β̄ ∈ M \A so that (D7) is satisfied, and additionally there exist x0 ∈ E

and P̃ β̄
x0

∈ P so that (D6) is satisfied. Hence, there exists A < A so that for every x ∈ E, 
σJ (x, μ) contains an (A, x, C1ε1, δ)-basis.

Proof. By rescaling it suffices to assume that δ = 1. Our hypotheses tell us that ε1 ≤ c1, 
ε2 ≤ ε2D+2

1 , and that (P̃ α
x )α∈A forms an (A, x, ε2, 1)-basis for σJ(x, μ), for each x ∈ E. 

That is,

P̃ α
x ∈ ε2 · σJ(x, μ); (3.32)

∂βP̃ α
x (x) = δαβ (α, β ∈ A); and (3.33)

|∂βP̃ α
x (x)| ≤ ε2 (α ∈ A, β ∈ M, β > α). (3.34)

For each α ∈ A, we define Zα = max
{

|∂βP̃ α
x (x)| : x ∈ E, β ∈ M

}
. Then hypothesis 

(3.31) is equivalent to max {Zα : α ∈ A} ≥ ε−D−1
1 . Let ᾱ ∈ A be the minimal index with 

Zᾱ ≥ ε−D−1
1 . Thus,

Zα < ε−D−1
1 , for all α ∈ A with α < ᾱ, (3.35)

and there exist x0 ∈ E and β0 ∈ M with
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ε−D−1
1 ≤ Zᾱ = |∂β0 P̃ ᾱ

x0
(x0)|. (3.36)

Thus, (3.33) and (3.34) imply that β0 �= ᾱ and β0 ≤ ᾱ, respectively. Therefore, β0 < ᾱ. 
By definition of Zᾱ we also have

|∂βP̃ ᾱ
y (y)| ≤ |∂β0 P̃ ᾱ

x0
(x0)|, for all y ∈ E2 and β ∈ M. (3.37)

Let the elements of M between β0 and ᾱ be ordered as follows:

β0 < β1 < · · · < βk = ᾱ.

Note that k + 1 ≤ |M| = D. Define

ai = |∂βi P̃ ᾱ
x0

(x0)|, for i = 0, . . . , k.

Then (3.33) and (3.36) imply that ak = 1 and a0 ≥ ε−D−1
1 . Choose r ∈ {0, . . . , l} with 

arε−r
1 = max{alε

−l
1 : 0 ≤ l ≤ k}. Note that a0 ≥ ε−D−1

1 > akε−k
1 which implies r �= k. 

Moreover, we have

ar ≥ εD
1 a0 and ar ≥ ε−1

1 ai for i = r + 1, . . . , k. (3.38)

Define β̄ = βr ∈ M. Then (3.38) states that

|∂β̄P̃ ᾱ
x0

(x0)| ≥ εD
1 |∂β0 P̃ ᾱ

x0
(x0)| ≥ ε−1

1 . (3.39)

Also, (3.34) and (3.39) imply that

|∂βP̃ ᾱ
x0

(x0)| ≤ ε2 ≤ 1 ≤ ε1|∂β̄P̃ ᾱ
x0

(x0)| (β ∈ M, β > β̄).

For β̄ < β ≤ ᾱ, (3.38) implies that |∂βP̃ ᾱ
x0

(x0)| ≤ ε1|∂β̄P̃ ᾱ
x0

(x0)|. Thus we have,

|∂βP̃ ᾱ
x0

(x0)| ≤ ε1|∂β̄P̃ ᾱ
x0

(x0)| (β ∈ M, β > β̄). (3.40)

By (3.39) we have |∂β̄P̃ ᾱ
x0

(x0)| > 1. Hence, (3.33) and (3.34) imply that

β̄ < ᾱ and β̄ /∈ A. (3.41)

Define P̃ β̄
x0

= P̃ ᾱ
x0

/∂β̄P̃ ᾱ
x0

(x0), which satisfies

P̃ β̄
x0

∈ ε2σJ(x0, μ) from (3.32) and |∂β̄P̃ ᾱ
x0

(x0)| ≥ 1; (3.42)

|∂βP̃ β̄
x0

(x0)| ≤ ε1 (β ∈ M, β > β̄), from (3.40); (3.43)

|∂βP̃ β̄
x0

(x0)| ≤ ε−D
1 (β ∈ M), from (3.37) and (3.39); and (3.44)

|∂β̄P̃ β̄
x0

(x0)| = 1. (3.45)
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For x ∈ E, from (3.35) and the definition of Zα,

|∂βP̃ α
x (x)| ≤ ε−D−1

1 (α ∈ A, α < β̄, β ∈ M) (3.46)

Now the hypotheses of Lemma 3.5 hold with(
ε1, ε2, δ, A, μ, E,

(
P̃ α

x

)
α∈A,x∈E

, x0, β̄, P̃ β̄
x0

)
satisfying (D1)-(D7) due to (3.42)-(3.46). Hence, there exists A < A so that for every 
x ∈ E, σJ (x, μ) contains an (A, x, C1ε1, δ)-basis. �
Definition 3.2. Let S ≥ 1, ε ∈ (0, 1), and A ⊂ M be given. A matrix (Bαβ)α,β∈A is called 
(S, ε) near-triangular if

|Bαβ − δαβ | ≤ ε α, β ∈ M, α ≤ β; and

|Bαβ | ≤ S α ∈ A, β ∈ M.

Lemma 3.7 (Lemma 3.4 of [13]). Given R ≥ 1, there exist constants c2 ≥ 0, C2 ≥ 1
depending only on R, m, n, so that the following holds. Suppose we are given ε2 ∈ (0, c2], 
x ∈ Rn, a symmetric convex subset σ ⊂ P and a family of polynomials (P α)α∈A ⊂ P, 
such that

P α ∈ ε2σ α ∈ A; (3.47)

|∂βP α(x) − δαβ | ≤ ε2 α ∈ A, β ∈ M, β ≥ α; and (3.48)

|∂βP α(x)| ≤ R α ∈ A, β ∈ M. (3.49)

Then there exists a (C2, C2ε2) near-triangular matrix B = (Bαβ)α,β∈A, so that if we 
define

P̃ α :=
∑
β∈A

BαβP β, α ∈ A,

then (P̃ α)α∈A forms an (A, x, C2ε2, 1)-basis for σ. Furthermore |∂βP̃ α(x)| ≤ C2 for 
every α ∈ A and every β ∈ M.

3.3. The inductive hypothesis

Fix A ⊂ M, A �= M. We will impose the inductive hypothesis that the Main Lemma 
holds for all A′ < A. Our task is to prove the Main Lemma for A. The inductive 
hypothesis will be a standing assumption until we complete the proof of the Main Lemma 
for A in Section 10.
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We will assume the value of ε = ε(A) in the Main Lemma for A is less than a small 
enough constant determined by m and n and eventually determine such a constant. Let 
(μ, δ) be as in the statement of the Main Lemma for A (Lemma 3.4). By rescaling and 
translating, we may assume without loss of generality that

diam(supp(μ)) < δ = 1/10,

supp(μ) ⊂ 1
10Q◦, Q◦ = (0, 1]n. (3.50)

From hypothesis (3.6) in the Main Lemma for A, with δ = 1/10, we have:

For every x ∈ supp(μ), σJ (x, μ) has an (A, x, ε/C0, 1)-basis. (3.51)

The inductive hypothesis states that the Main Lemma for A′ is true for every A′ < A. 
Let ε(A′) be the constants arising in the Main Lemma for A′ (A′ < A). Define

ε0 := min{ε(A′) : A′ < A}. (3.52)

By the inductive hypothesis, for A′ < A and any Borel regular measure μ̂ on Rn,

if σJ(x, μ̂) admits an (A′, x, ε0/C0, 10δ̂)-basis, for each x ∈ supp(μ̂),

for some δ̂ ≥ diam(supp(μ̂)), then the Extension Theorem for (μ̂, δ̂) holds. (3.53)

We will assume that ε < ε0.
Suppose that there exists A < A such that σJ(x, μ) contains an (A, x, ε0/C0, 1)-basis 

for every x ∈ supp(μ). Then by the validity of the Main Lemma for A, the Extension 
Theorem for (μ, δ) holds (see Proposition 3.1). Note that A �= ∅ because ∅ is maximal 
under the order on multiindex sets. Thus, by the Main Lemma for A, in the conclusion 
of the Extension Theorem for (μ, δ) one can take K = ∅, and so the functional M :
J (μ; δ) → R+ has the form (3.7). Therefore, we have proven the Main Lemma for A in 
the case that there exists A as above. Therefore, we may now assume:

For every A < A, there exists x ∈ supp(μ) such that

σJ (x, μ) does not contain an (A, x, ε0/C0, 1)-basis. (3.54)

3.3.1. Auxiliary polynomials

Lemma 3.8. Let μ be a Borel regular measure on Rn satisfying (3.50), (3.51), (3.54). 
Then for all x ∈ 100Q◦, there exists a family of polynomials (P α

x )α∈A such that

(P α
x )α∈A forms an (A, x, Cε/C0, 1)-basis for σJ (x, μ), and (3.55)

|∂βP α
x (x)| ≤ C (α ∈ A, β ∈ M). (3.56)
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Proof. From (3.51), for y ∈ supp(μ), there exists (P̃ α
y )α∈A that form an (A, y, ε/C0, 1)-

basis for σJ(y, μ). As a consequence of (3.54), we have

|∂βP̃ α
y (y)| ≤ C α ∈ A, β ∈ M, y ∈ supp(μ). (3.57)

To see this, suppose (3.57) fails for the constant C =ε−D−1
1 , where ε1 ≤min{c1, ε0/(C0C1)}

(and c1, C1 are the constants from Lemma 3.6). That is, suppose

max
{

|∂βP̃ α
y (y)| : y ∈ supp(μ), α ∈ A, β ∈ M

}
> ε−D−1

1 .

We may assume that ε ≤ ε2D+2
1 . Then the hypotheses of Lemma 3.6 hold with parameters(

ε1, ε2, δ, A, μ, E, (P̃ α
x )α∈A,x∈E

)
:=
(

ε1, ε, 1, A, μ, supp(μ), (P̃ α
y )α∈A,y∈supp(μ)

)
.

Thus we find A < A so that σJ (y, μ) contains an (A, y, C1ε1, 1)-basis for each y ∈
supp(μ). Since C1ε1 ≤ ε0/C0, this contradicts (3.54), which concludes our proof of (3.57).

Now fix x0 ∈ supp(μ). Then we have shown σJ(x0, μ) has an (A, x0, ε/C0, 1)-basis, 
{P̃ α

x0
}α∈A satisfying the inequalities (3.57) for y = x0. That is, for α ∈ A,

∂βP̃ α
x0

(x0) = δαβ (β ∈ A); (3.58)

|∂βP̃ α
x0

(x0)| ≤ ε/C0 (β ∈ M, β > α); and (3.59)

|∂βP̃ α
x0

(x0)| ≤ C (β ∈ M). (3.60)

Furthermore, since P̃ α
x0

∈ (ε/C0)σJ (x0, μ) for each α ∈ A there exists

ϕα ∈ Lm,p(Rn) with Jx0ϕα = P̃ α
x0

and ‖ϕα‖J (0,μ) ≤ ε/C0. (3.61)

For x ∈ 100Q◦, define

P̂ α
x := Jxϕα. (3.62)

Because ‖ϕα‖J (0,μ) ≤ ε/C0, we have

P̂ α
x ∈ ε/C0 · σJ (x, μ) ⊂ CεσJ(x, μ). (3.63)

From the Sobolev Inequality, since P̂ α
x = Jxϕα and P̃ α

x0
= Jx0ϕα, and since |x − x0| ≤

100δQ◦ = 100,

|∂βP̂ α
x (x) − δαβ | ≤ |∂βP̃ α

x0
(x) − δαβ | + |∂βJx0ϕα(x) − ∂βP̂ α

x (x)|

≤

∣∣∣∣∣∣
∑

0≤γ≤m−1−|β|
∂β+γP̃ α

x0
(x0)(x − x0)γ/γ! − δαβ

∣∣∣∣∣∣
+ C‖ϕα‖Lm,p(Q◦)δ

m−|β|−n/p
Q◦ . (3.64)
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From (3.58), (3.59), (3.61), (3.64), and since |x − x0| ≤ 100, for β ∈ M satisfying β ≥ α, 
we have

|∂βP̂ α
x (x) − δαβ | ≤ Cε. (3.65)

From (3.60), (3.61), (3.64), and since |x − x0| ≤ 100, for β ∈ M,

|∂βP̂ α
x (x) − δαβ | ≤ C, hence |∂βP̂ α

x (x)| ≤ C + 1. (3.66)

Fix a constant R, determined by m, n, and p, so that R = C + 1, with C from (3.66). 
We fix c2 and C2 for the universal constants in Lemma 3.7 determined by this choice 
of R. By taking ε small enough, we may assume ε2 := Cε in (3.63), (3.65) satisfies 
ε2 < c2. Then (3.63), (3.65), and (3.66) allow us to apply Lemma 3.7 to the family of 
polynomials (P̂ α

x )α∈A, with σ = σJ (x, μ), ε2 = Cε and R = C + 1. Thus, there exists a 
(C2, C2 · Cε)-near triangular matrix Ax = (Ax

αβ)α,β∈A such that if we define P α
x ∈ P as

P α
x :=

∑
β∈A

Ax
αβ · P̂ β

x (α ∈ A), (3.67)

then (P α
x )α∈A forms an (A, x, C2Cε, 1)-basis for σJ(x, μ) and |∂βP α

x (x)| ≤ C2 for all 
β ∈ A. Thus, the family of polynomials (P α

x )α∈A satisfies (3.55)-(3.56). �
For α ∈ A, β ∈ M satisfying β > α, x, y ∈ 100Q◦, and P α

y ∈ P satisfying (3.55) and 
(3.56), we use the Taylor expansion to bound

∣∣∂βP α
y (x)

∣∣ =
∣∣∣∣∂β

∑
γ∈M

∂γP α
y (y)(x − y)γ/γ!

∣∣∣∣
=
∣∣∣∣ ∑

η+β∈M
∂η+βP α

y (y)(x − y)η/η!
∣∣∣∣

≤ Cε/C0. (3.68)

Proposition 3.9. For each x ∈ 100Q◦, there exists a (C, Cε)-near triangular matrix Ax =
(Ax

αβ)α,β∈A, and there exists a corresponding family of functions (ϕα
x )α∈A ⊂ Lm,p(Rn)

given by

ϕα
x :=

∑
β∈A

Ax
αβ · ϕβ ; (3.69)

where (ϕα)α∈A is a family of functions satisfying

‖ϕα‖J (0,μ) ≤ ε/C0, (3.70)

and the family (ϕα
x )α∈A also satisfies
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Jxϕα
x = P α

x ; and (3.71)

‖ϕα
x‖J (0,μ) ≤ Cε/C0. (3.72)

Proof. We follow the proof of Lemma 3.8, and let (ϕα)α∈A be the family of functions 
satisfying (3.61). Accordingly, we have ‖ϕα‖J (0,μ) ≤ ε/C0, giving (3.70).

For x ∈ 100Q◦, let Ax = (Ax
αβ)α,β∈A be the (C, Cε)-near triangular matrix defined 

just before (3.67). Then define ϕα
x (α ∈ A) as in (3.69). Then (3.71) follows by applying 

Jx to both sides of (3.69) and applying (3.62) and (3.67).
Note |Ax

αβ | ≤ C for α, β ∈ A, since Ax is (C, Cε)-near triangular. Thus, (3.72) fol-
lows by sublinearity of the J (0, μ) functional; indeed, ‖F‖J (0,μ) = (‖F‖p

Lm,p(Rn) +
‖F‖p

Lp(dμ))
1/p is a norm on Lm,p(Rn) ∩ Lp(dμ). �

3.3.2. Reduction to monotonic A

Definition 3.3 (Monotonic labels). A collection of multi-indices A ⊂ M is monotonic if

α ∈ A and |γ| ≤ m − 1 − |α| implies α + γ ∈ A.

If the above property fails, we say that A is non-monotonic.

In this section we follow Section 4.2 of [13] to deduce the monotonicity of A using 
assumption (3.54) and condition (3.51) for A.

For the sake of contradiction, we assume that A is non-monotonic. We will show there 
exists A < A such that for all x ∈ supp(μ), σJ (x, μ) contains an (A, x, ε0/C0, 1)-basis, 
contradicting (3.54). Thus our proof of the Induction Step is reduced to the case of 
monotonic A.

Let α0 ∈ A, γ ∈ M satisfy

0 < |γ| ≤ m − 1 − |α0| and ᾱ := α0 + γ ∈ M \ A. (3.73)

Define A = A ∪ {ᾱ}. Note that α0 < ᾱ, and the only element of AΔA is ᾱ, which is in 
A, so A < A by definition of the order on multiindex sets.

For fixed y ∈ supp(μ) ⊂ 1
10 Q◦, we let (P α

y )α∈A satisfy (3.55) and (3.56). We now 
define

P ᾱ
y := P α0

y �y qy, where qy(x) := α0!
ᾱ! (x − y)γ . (3.74)

Expanding out this product, we have

P ᾱ
y (x) = α0!

ᾱ!
∑ 1

ω!∂
ωP α0

y (y)(x − y)ω+γ .

|ω|≤m−1−|γ|
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Note that ω = α0 arises in the sum above, thanks to (3.73). Also, the terms with 
ω + γ > ᾱ = α0 + γ correspond precisely to ω > α0, by definition of the order. The 
following properties are now immediate from (3.55) and (3.56):

∂ᾱP ᾱ
y (y) = 1; (3.75)

|∂βP ᾱ
y (y)| ≤ C ′ε (β ∈ M, β > ᾱ); and (3.76)

|∂βP ᾱ
y (y)| ≤ C ′ (β ∈ M). (3.77)

From (3.55), we have P α0
y ∈ Cε · σJ(y, μ), so there exists ϕ ∈ Lm,p(Rn) satisfying

‖ϕ‖J (0,μ) =

⎛⎝‖ϕ‖p
Lm,p(Rn) +

∫
Rn

|ϕ|pdμ

⎞⎠1/p

≤ Cε; and (3.78)

Jyϕ = P α0
y . (3.79)

Let θ ∈ C∞
0 (Q◦) satisfy θ|0.99Q◦ = 1 and |∂αθ(x)| ≤ C for x ∈ Q◦ and |α| ≤ m. Define 

ϕ̄ : Rn → R as ϕ̄ := θ · (ϕqy) + (1 − θ) · P ᾱ
y . Then Jyϕ̄ = Jy(ϕqy) = P α0

y �y qy = P ᾱ
y , 

since y ∈ 1
10 Q◦. Note that ‖qy‖L∞(Q◦) ≤ C. Thus, from (3.50) and (3.78) we deduce

∫
Rn

|ϕ̄|pdμ ≤
∫

1
10 Q◦

|ϕqy|pdμ ≤ C

∫
1

10 Q◦

|ϕ|pdμ ≤ C(Cε)p.

We will show ‖ϕ̄‖Lm,p(Rn) ≤ Cε, implying that ‖ϕ̄‖J (0,μ) ≤ C ′ε and P ᾱ
y ∈ C ′ε ·σJ (y, μ).

Since ϕ̄ agrees with an (m − 1)rst degree polynomial on Rn \ Q◦, and since the partial 
derivatives of θ are uniformly bounded, we have

‖ϕ̄‖Lm,p(Rn) = ‖ϕ̄‖Lm,p(Q◦)

= ‖ϕ̄ − P ᾱ
y ‖Lm,p(Q◦)

= ‖θ · (ϕqy − P ᾱ
y )‖Lm,p(Q◦)

≤ C
∑

|β|≤m

‖∂β(ϕqy − P ᾱ
y )‖Lp(Q◦). (3.80)

As a consequence of (3.74) and (3.79), P ᾱ
y = Jy(ϕqy). Hence, by the Sobolev Inequality, 

for x ∈ Q◦, |β| ≤ m,

|∂β(ϕqy − P ᾱ
y )(x)| ≤ C‖ϕqy‖Lm,p(Q◦). (3.81)

For x ∈ Q◦, |β| = m, because qy is a degree |γ| polynomial, we have
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|∂β(ϕqy)(x)| ≤
∑

ω+ω′=β

|∂ω′
ϕ(x)| · |∂ωqy(x)|

= |∂βϕ(x)||qy(x)| +
∑

ω+ω′=β,
0<|ω|≤|γ|

(
|∂ω′

(ϕ − P α0
y )(x)| + |∂ω′

P α0
y (x)|

)
· |∂ωqy(x)|.

(3.82)

Furthermore, for (ω, ω′) as in the sum above, 0 < |ω| ≤ |γ| implies m − 1 ≥ |ω′| ≥
m − |γ| > |α0| (see (3.73)). Recall estimate (3.68): |∂ω′

P α0
y (x)| ≤ Cε, and note that 

by construction, we have ‖∂ωqy‖L∞(Q◦) ≤ C. This, in combination with the Sobolev 
Inequality, (3.78), and (3.79) allows us to further reduce the sum on the right hand side 
of inequality (3.82). When x ∈ Q◦ and |β| = m:∑
ω+ω′=β,
0<|ω|≤|γ|

(
|∂ω′

(ϕ − P α0
y )(x)| + |∂ω′

P α0
y (x)|

)
· |∂ωqy(x)| ≤ C ·

(
‖ϕ‖Lm,p(Q◦) + Cε

)
≤ C ′ε.

Substituting this into (3.82), we have for x ∈ Q◦ and |β| = m,

|∂β(ϕqy)(x)| ≤ |∂βϕ(x)||qy(x)| + C ′ε.

By integrating over x ∈ Q◦ and again applying (3.78) and ‖qy‖L∞(Q◦) ≤ C, we deduce 
that ‖ϕqy‖Lm,p(Q◦) ≤ Cε. Thus, keeping in mind (3.80) and (3.81), we have

‖ϕ̄‖Lm,p(Rn) ≤ C‖ϕqy‖Lm,p(Q◦)

≤ C ′ε.

Because Jyϕ̄ = P ᾱ
y , this completes our proof that

P ᾱ
y ∈ C ′ε · σJ (y, μ). (3.83)

Due to (3.55), (3.56), (3.75)-(3.77), and (3.83), the family (P α
y )α∈A satisfies 

(3.47)-(3.49) with R equal to a universal constant, ε2 = C ′ε, and σ = σJ(y, μ). We may 
assume C ′ε < c2, where c2 comes from Lemma 3.7. Then the hypotheses of Lemma 3.7
hold; hence, σJ(y, μ) contains an (A, y, C2C ′ε, 1)-basis for C2 ≥ 1, a universal constant. 
Recall our assumption that ε is less than a small enough constant determined by m and 
n. We may assume ε < ε0/(C ′C0C2), so σJ (y, μ) contains an (A, y, ε0/C0, 1)-basis. Since 
y ∈ supp(μ) is arbitrary, this contradicts (3.54).

This completes the proof by contradiction, and establishes that A ⊂ M is monotonic.

4. The Calderón-Zygmund decomposition

Recall we have fixed a multi-index set A ⊂ M, A �= M and a Borel regular measure μ
on Rn satisfying the conditions (3.50), (3.51), and (3.54). By the results of Section 3.3.2, 
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we deduce that A is monotonic. Our goal is to prove the Extension Theorem for (μ, δ =
1/10). Recall we have defined constants ε0 in (3.52) and C0 in Lemma 3.3.

4.1. Defining the decomposition

Definition 4.1 (OK Cubes). A dyadic cube Q ⊂ Q◦ = (0, 1]n is OK if there exists A < A
such that for every x ∈ supp(μ) ∩ 3Q, σJ (x, μ|3Q) contains an (A, x, ε0/C0, 30δQ)-basis.

Definition 4.2 (Calderón-Zygmund Cubes). A dyadic cube Q ⊂ Q◦ is CZ if Q is OK and 
every dyadic cube Q′ ⊂ Q◦ that properly contains Q is not OK.

If Q, Q′ ⊂ Q◦ are CZ and Q �= Q′ then Q ∩ Q′ = ∅. Indeed, since CZ cubes are dyadic 
cubes, either Q � Q′, Q′ � Q, or Q ∩Q′ �= ∅. The first case is impossible, since, according 
to the definition of CZ cubes if Q is CZ and Q � Q′ then Q′ is not OK, hence Q′ is not 
CZ. Similarly, the second case is impossible. Therefore, Q ∩ Q′ �= ∅, as claimed.

We write CZ◦ = {Qi}i∈I to denote the collection of all CZ cubes. The index set I
may be countable or finite. In contrast to [13], the CZ cubes do not necessarily form a 
partition of Q◦; however, if μ is a finite measure the CZ cubes do form a partition of Q◦

(see Lemma 4.3 below).

Lemma 4.1. Suppose Q, Q′ ⊂ Q◦ are dyadic cubes. Suppose Q′ is OK and 3Q ⊂ 3Q′. 
Then Q is OK.

Proof. We have σJ (x, μ|3Q′) ⊂ σJ (x, μ|3Q); indeed, this follows by the definition of 
σJ (·, ·), and because ‖F‖J (0,μ|3Q) ≤ ‖F‖J (0,μ|3Q′ ) for 3Q ⊂ 3Q′ and F ∈ Lm,p(Rn). 
Because Q′ is OK, there exists A < A such that for all x ∈ supp(μ) ∩ 3Q′, σJ (x, μ|3Q′)
contains an (A, x, ε0/C0, 30δQ′)-basis. Since δQ ≤ δQ′ , and thanks to (3.5), we have that 
σJ (x, μ|3Q) contains an (A, x, ε0/C0, 30δQ)-basis for any x ∈ 3Q. This indicates Q is 
OK. �

Because of Lemma 3.3, for every Q ∈ CZ◦, there exists A < A such that for every 
x ∈ supp(μ) ∩ 3Q, σ(μ|3Q, δQ) contains an (A, x, ε0, δQ)-basis.

Lemma 4.2. Let Q ⊂ Q◦ be a dyadic cube. If μ(3Q)1/p ≤ ε0
C0

(30δQ)n/p−m then Q is OK.

Proof. Suppose Q ⊂ Q◦ satisfies μ(3Q)1/p ≤ ε0/C0(30δQ)n/p−m. Let F 0 = P 0 = 1. 
Then for y ∈ supp(μ) ∩ 3Q, JyF 0 = P 0, and

‖F 0‖J (0,μ|3Q) =
(

‖F 0‖p
Lm,p(Rn) + ‖F 0‖p

Lp(dμ|3Q)

)1/p

= μ(3Q)1/p ≤ ε0

C0
(30δQ)n/p−m.

So for all y ∈ supp(μ) ∩ 3Q, P 0 ∈ ε0
C0

(30δQ)n/p−m · σJ (y, μ|3Q), and (P 0) forms a 
({0}, y, ε0/C0, 30δQ)-basis for σJ (y, μ|3Q). Because 0 is the minimal element of M and 
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0 /∈ A (A is monotonic and A �= M because M is minimal in the order), {0} < A. 
Hence, Q is OK. �
Lemma 4.3. The decomposition CZ◦ is not equal to {Q◦}. In particular, each Q ∈ CZ◦

has a (unique) dyadic parent Q+ ⊂ Q◦.
Furthermore, if μ is finite, the CZ cubes form a non-trivial, finite partition of Q◦ into 

dyadic cubes.

Proof. If Q◦ is OK, then there exists A < A such that for every x ∈ supp(μ), σJ(x, μ)
contains an (A, x, ε0/C0, 1)-basis, contradicting (3.54). So Q◦ /∈ CZ◦.

Suppose μ is finite. Define H : R+ → R as

H(δ) := max
x∈Q◦

{μ (B(x, 3δ))1/p · δm−n/p}.

Because μ is finite, limδ→0+ H(δ) = H(0) = 0. Further, H is non-increasing, so there 
exists δ1 > 0 such that if δ < δ1 then H(δ) ≤ H(δ1) < ε0

30m−n/pC0
. Let Q ⊂ Q◦ satisfy 

δQ < δ1, and fix x ∈ Q. Then

μ(3Q)1/p ≤ μ(B(x, 3δQ))1/p

≤ H(δQ) · δ
n/p−m
Q

≤ ε0

C0
(30δQ)n/p−m.

We apply Lemma 4.2 to deduce that Q is OK, so every dyadic subcube of Q◦ of sidelength 
smaller than δ1 is OK. Therefore, CZ◦ is a finite partition of Q◦. �

As a corollary of Lemma 4.2, we can bound below the measure of the dyadic parent 
of any cube in CZ◦:

Corollary 4.4. For Q ∈ CZ◦, we have

μ(3Q+)1/p > (ε0/C0) · (30δ+
Q)n/p−m.

Two cubes, Qi, Qj ∈ CZ◦ are called “neighbors” if their closures satisfy Cl(Qi) ∩
Cl(Qj) �= ∅. (In particular, any CZ cube is neighbors with itself.) We denote this relation 
by Qi ↔ Qj , or i ↔ j (i, j ∈ I).

Lemma 4.5 (Good Geometry). If Q, Q′ ∈ CZ◦ satisfy Q ↔ Q′, then

1
δQ ≤ δQ′ ≤ 2δQ. (4.1)
2
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Proof. For the sake of contradiction, suppose that Q, Q′ ∈ CZ◦ satisfy

Cl(Q) ∩ Cl(Q′) �= ∅ and 4δQ ≤ δQ′ .

Since Q+, Q′ are dyadic cubes and δQ+ = 2δQ ≤ 1
2δQ′ , we have 3Q+ ⊂ 3Q′. Because Q′

is OK, by Lemma 4.1, we have that Q+ is OK, contradicting Q ∈ CZ◦. �
Lemma 4.6 (More Good Geometry). For each Q ∈ CZ◦, the following properties hold.

If Q′ ∈ CZ◦ is such that (1.3)Q′ ∩ (1.3)Q �= ∅, then Q ↔ Q′. Consequently:

Each point x∈Rn belongs to at most C(n) of the cubes 1.3Q with Q∈CZ◦. (4.2)

If Cl(Q) ∩ ∂Q◦ �= ∅, then δQ ≥ 1
20δQ◦ . (4.3)

Proof. Proof of (4.2): Fix Q ∈ CZ◦. Suppose that Q′ ∈ CZ◦ does not neighbor Q. Let 
δ = max{δQ/2, δQ′/2}. Then (4.1) implies that dist(Q, Q′) ≥ δ. Thus,

(1.3)Q ∩ (1.3)Q′ ⊂ B(Q, (0.3)δ) ∩ B(Q′, (0.3)δ) = ∅.

Proof of (4.3): For the sake of contradiction, suppose Cl(Q) ∩∂Q◦ �= ∅ and δQ < 1
20 δQ◦ . 

Therefore, 9Q ⊂ Rn \ 1
10 Q◦. Note that 3Q+ ⊂ 9Q. Because supp(μ) ⊂ 1

10 Q◦, we have 
μ(3Q+) = 0, so by Lemma 4.2, Q+ is OK. This is a contradiction. �
Remark. For η ∈ [1, 100] and Qi ∈ CZ◦, ηQi ∩ Q◦ is a C-non-degenerate rectangular 
box, for C = C(n), satisfying

diam(ηQi ∩ Q◦) � δQi
.

Definition 4.3. A cube Q ∈ CZ◦ is called a keystone cube if for any Q′ ∈ CZ◦ with 
Q′ ∩ 100Q �= ∅, we have δQ ≤ δQ′ .

We will use the following notation:

CZ◦ = {Qi}i∈I := {the collection of CZ cubes} ∈ Π(Q◦);

KCZ :=
⋃

Q∈CZ◦

Q; and

CZkey = {Qs}s∈Ī := {Qs ∈ CZ◦ : Qs is a keystone cube}.

For i ∈ I (I is the indexing set of CZ◦ as above), let xi denote the center of Qi, i.e., 
xi := ctr(Qi). We denote the set of CZ basepoints by

BCZ = {xi}i∈I .
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Lemma 4.7. Let Qs be a keystone cube. Then∣∣{s′ ∈ Ī : 10Qs ∩ 10Qs′ �= ∅}
∣∣ ≤ C.

Proof. Let s, s′ ∈ Ī with 10Qs ∩ 10Qs′ �= ∅. Suppose, without loss of generality, δQs
≤

δQs′ . Then 10Qs ∩ 10Qs′ �= ∅ implies 100Qs′ ∩ Qs �= ∅. But because Qs′ is keystone, this 
implies δQs′ ≤ δQs

. So δQs
= δQs′ . There are at most C dyadic cubes Qs′ that satisfy 

this condition and 10Qs ∩ 10Qs′ �= ∅ for fixed s. This completes the proof. �
4.2. Keystone points

Definition 4.4. We define the set of keystone points as Kp := Q◦ \ KCZ .

Lemma 4.8. The set Kp is closed.

Proof. Let x ∈ Kp. Then every dyadic cube containing x is not OK. As a consequence 
of Lemma 4.2,

μ(B(x, η)) = ∞ (for all η > 0, x ∈ Kp). (4.4)

To see this, suppose for sake of contradiction that μ(B(x, η)) ≤ A < ∞ for some 
η > 0. Then, consider a dyadic cube Q ⊂ Q◦ with x ∈ Q and 3Q ⊂ B(x, η). 
Then μ(3Q) ≤ A. If δQ is sufficiently small, depending on A, m, n, p, it follows that 
μ(3Q) ≤ (ε0/C0)p(30δQ)n−mp, since n − mp < 0, and hence Q is OK by Lemma 4.2. 
Thus, x belongs to an OK cube, so x belongs to a CZ cube, hence x ∈ KCZ , contradicting 
that x ∈ Kp.

In combination with (3.50), (4.4) implies Kp ⊂ Cl( 1
10 Q◦) ⊂ 1

9Q◦.
Let Q ∈ CZ◦. We claim that for any x ∈ 2Q ∩ Q◦, there exists Q′ ∈ CZ◦ satisfying 

x ∈ Q′ – in particular, 2Q ∩ Q◦ ⊂ KCZ . To see this, let Q′′ ⊂ Q◦ be a dyadic cube 
satisfying x ∈ Q′′ and δQ′′ < δQ/100. Then 3Q′′ ⊂ 3Q. Since Q is OK, we have that Q′′

is OK, thanks to Lemma 4.1. Hence, by definition of the CZ decomposition, Q′′ must 
have a dyadic ancestor Q′ with Q′ ∈ CZ◦. Then x ∈ Q′′ ⊂ Q′, completing the proof of 
the claim.

Let x ∈ KCZ be arbitrary. Then x ∈ Q for some Q ∈ CZ◦. Note that

B(x, δQ/3) ∩ Q◦ ⊂ 2Q ∩ Q◦ ⊂ KCZ .

Hence, KCZ is relatively open in Q◦. Thus, Kp = Q◦ \ KCZ is relatively closed in Q◦. 
Since Kp ⊂ 1

9Q◦, we have that Kp is closed. �
Below, we write |S| for the Lebesgue measure of a measurable set S ⊂ Rn.

Lemma 4.9. If A �= ∅ then |Kp| = 0.
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Proof. Suppose for sake of contradiction that |Kp| > 0 and A �= ∅. Recall from (3.55)
and (3.56) in Section 3.3.1 that for all x ∈ Q◦, there exists a family of polynomials, 
(P α

x )α∈A such that (P α
x )α∈A forms an (A, x, Cε/C0, 1)-basis for σJ(x, μ) satisfying

|∂βP α
x (x)| ≤ C (α ∈ A, β ∈ M). (4.5)

Let x0 ∈ Kp be a Lebesgue point of χKp
; then limr→0

|Kp∩B(x0,r)|
|B(x0,r)| = 1. We will fix 

universal constants c1, c2 ∈ (0, 1) (determined only by m, n, and p) momentarily. Choose 
any r ∈ (0, 1) satisfying r1−n/p < c2/(2ε) and |Kp∩B(x0,r)|

|B(x0,r)| > 1 − cn
1 . Since A �= ∅, we 

may fix α ∈ A. Let

M := max
β∈M

max
z∈B(x0,r)

|∂βP α
x0

(z)|r|β|,

y := arg max
z∈B(x0,r/2)

|P α
x0

(z)|.

By Bernstein’s Inequality for polynomials, there exists a universal constant C > 0, such 
that ‖∂βP (z)‖L∞(B(x0,r)) ≤ Cr−|β|‖P ‖L∞(B(x0,r/2)) for all multi-indices β ∈ M and 
(m − 1)rst degree polynomials P ∈ P. Thus, by the definition of M ,

|P α
x0

(y)| = ‖P α
x0

‖L∞(B(x0,r/2)) ≥ c′M (4.6)

for a universal constant c′ ∈ (0, 1). For any η ∈ (0, 1/2) we have B(y, ηr) ⊂ B(x0, r). 
Thus, since |∇Px0(z)| ≤ √

nM/r for z ∈ B(x0, r) (see the definition of M), by the mean 
value theorem,

|P α
x0

(y) − P α
x0

(x)| ≤ (
√

nM/r)|y − x| ≤ (
√

nM/r)ηr =
√

nMη for x ∈ B(y, ηr).

We fix the universal constant c1 ∈ (0, 1/2) given by c1 = c′

4
√

n
. Taking η = c1 in the 

above, and using (4.6), we learn that B(y, c1r) ⊂ B(x0, r), and

|P α
x0

(x)| ≥ |P α
x0

(y)| − |P α
x0

(x) − P α
x0

(y)| > c′M/2 for x ∈ B(y, c1r).

Furthermore, by the basis property of (P α
x0

), we have ∂αP α
x0

(x0) = 1, and so M ≥ r|α| ≥
rm−1 (see the definition of M). Hence,

|P α
x0

(x)| > c′rm−1/2 for x ∈ B(y, c1r). (4.7)

Because P α
x0

∈ Cε ·σJ(x0, μ), there exists ϕα
x0

∈ Lm,p(Rn) satisfying Jx0ϕα
x0

= P α
x0

and 
‖ϕα

x0
‖Lm,p(Rn) ≤ ‖ϕα

x0
‖J (0,μ) ≤ Cε. If x ∈ B(y, c1r) then x ∈ B(x0, r), so |x − x0| ≤ r. 

By the Sobolev Inequality and (4.7),

|ϕα
x0

(x)| ≥ |P α
x0

(x)| − C‖ϕα
x0

‖Lm,p(Rn)r
m−n/p

> c′rm−1/2 − C ′εrm−n/p
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= C ′rm−1(c2 − εr1−n/p) ≥ C ′c2rm−1/2, for x ∈ B(y, c1r), (4.8)

where we now fix the universal constant c2 := c′/(2C ′) so that the equality in the last 
line is valid, and we recall our choice of r satisfying r1−n/p < c2/(2ε) to justify the 
inequality in the last line.

Because |Kp∩B(x0,r)|
|B(x0,r)| > 1 − cn

1 and B(y, c1r) ⊂ B(x0, r), we have that Kp ∩
int(B(y, c1r)) �= ∅. Thus, by (4.4) we learn that μ(B(y, c1r)) = ∞. In combination 
with (4.8), this implies ∫

B(y,c1r)

|ϕα
x0

|pdμ = ∞,

contradicting ‖ϕα
x0

‖J (0,μ) ≤ Cε. This completes the proof by contradiction, and the 
lemma follows. �
Lemma 4.10. For Qi ∈ CZ◦, we have int(3Qi) ∩ Kp = ∅, and consequently δQi

≤
dist(Qi, Kp).

Proof. For sake of contradiction suppose there exists Qi ∈ CZ◦ with int(3Qi) ∩ Kp �= ∅. 
Then there exists a dyadic cube Q satisfying 3Q ⊂ 3Qi and Q ∩ Kp �= ∅. The cube Qi is 
OK, thus Q is OK, thanks to Lemma 4.1. Thus, Q ⊂ KCZ , so Q ∩ Kp must be empty, a 
contradiction. �
Lemma 4.11. There exist universal constants C ≥ 1 and c ∈ (0, 1) such that the following 
holds. Let Q ∈ CZ◦. Then there exists a sequence of cubes, S (Q) ⊂ CZ◦, that either 
is (i) finite, satisfying, S (Q) = {Qk}L

k=1, where QL is a keystone cube, or (ii) infinite, 
satisfying S (Q) = {Qk}k∈N and for ctr(Qk) = xk, limk→∞ xk = x′ ∈ Kp. Regardless, 
the sequence S (Q) = {Qk} satisfies

Q1 = Q, (4.9)

Qk ↔ Qk+1 (for Qk, Qk+1 ∈ S (Q)); and (4.10)

δQk ≤ C · ck−�δQ� (for Qk, Q� ∈ S (Q), k ≥ �). (4.11)

Proof. Let Q ∈ CZ◦. If Q is a keystone cube, then S (Q) = {Q1 = Q} satisfies the 
conclusion of the lemma.

Suppose Q is not a keystone cube; then there exists Q′ ∈ CZ◦ satisfying 100Q ∩Q′ �= ∅
and δQ′ ≤ 1

2δQ. Let Q1,0 := Q and

Q2,0 ∈ arg min
Q′

{
dist(Q1,0, Q′) :

Q′ ∈ CZ◦, 100Q1,0 ∩ Q′ �= ∅,

and δQ′ ≤ (1/2)δQ1,0

}
.

We call Q2,0 constructed by this procedure a “junior partner” of Q1,0.
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Let s : [0, 1] → Rn be an affine map with s(0) ∈ Cl(Q1,0), s(1) ∈ Cl(Q2,0), 
and |s(1) − s(0)|2 = dist2(Q1,0, Q2,0). Then s((0, 1)) meets finitely many CZ cubes, 
Q1,1, . . . , Q1,K1 , where K1 < C, Q1,k ↔ Q1,k+1, Q1,K1 ↔ Q2,0, and δQ ≤ δQ1,i ≤
CδQ for i ∈ 1, . . . , K1, and δQ2,0 ≤ 1

2δQ1,0 . Hence, after removing repeated cubes, 
{Q = Q1,0, Q1,1, . . . , Q1,K1 , Q2,0} satisfies Q1,k ↔ Q1,k+1, and δQ1,k ≤ C · ck−lδQ1,l

for 0 ≤ l ≤ k. If Q2,0 is a keystone cube, we stop, producing a finite sequence S (Q)
(which we relabel {Qk}L

k=1). Otherwise, we repeat this process.
We construct S (Q) by concatenating the sequences of cubes connecting successive 

junior partners, S (Q) := {Q1,0, . . . , Q1,K1 , Q2,0, . . . , Q2,K2 , Q3,0, . . . }. Relabel S (Q) =
{Qk}L

k=1 if a junior partner is keystone, stopping the process and producing a finite 
sequence that terminates at a keystone cube. Otherwise, if no junior partner is keystone, 
relabel S (Q) = {Qk}k∈N . By construction, S (Q) satisfies (4.9) and (4.10), Also, S (Q)
satisfies (4.11) because the subsequence of junior partners in S (Q) satisfies δQk,0 ≤
2j−kδQj,0 for k > j, and because there are at most C many cubes in S (Q) connecting 
consecutive junior partners.

It remains to verify conclusion (ii) of the lemma in the event that S (Q) is infinite. 
Suppose S (Q) is infinite. Let S (Q) = {Qk}k∈N . For each k ∈ N, define xk := ctr(Qk). 
Because of (4.11),

lim
k→∞

δQk = 0. (4.12)

Because of (4.10) and (4.11), we have for j > k,

|xk − xj | ≤ 3
j∑

i=k

δQi

≤ 3
j∑

i=k

Cci−kδQk

� δQk .

In light of (4.12), this proves the sequence {xk}k∈N is Cauchy, and there exists x′ ∈
Cl(Q◦) such that xk k→∞−→ x′. Because of (4.3), x′ /∈ ∂Q◦.

It remains to show that x′ ∈ Kp. Suppose for sake of contradiction that x′ /∈ Kp; 
then x′ ∈ Q′ for some Q′ ∈ CZ◦. Since xk = ctr(Qk) → x′ ∈ Q′ as k → ∞, there exists 
K0 ∈ N such that for k > K0, Qk belongs to the neighbor set of Q′, Qk ∈ N (Q′) :=
{Q′′ ∈ CZ◦ : Q′′ ↔ Q′}. But by Good Geometry of CZ◦, any cube Q′′ ∈ N (Q′) has 
sidelength δQ′′ ≥ 1 δQ′ , contradicting (4.12). Hence, x′ ∈ Kp, as desired. �
2
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4.3. Partition of unity

We have defined the collection of CZ cubes, CZ◦ = {Qi}i∈I , such that KCZ =⋃
i∈I Qi. Due to the Good Geometry of CZ◦, (4.1), (4.2), and (4.3), there exists a 

partition of unity, {θi}i∈I ⊂ C∞(KCZ), satisfying

(POU1) 0 ≤ θi ≤ 1;
(POU2) θi vanishes on KCZ \ (1.1)Qi;
(POU3) |∂αθi| ≤ Cδ

−|α|
Qi

whenever |α| ≤ m; and
(POU4)

∑
i∈I θi ≡ 1 on KCZ .

For the construction of such a partition of unity, see [24], page 170.

4.4. Local extension operators

In this section, we apply the inductive hypothesis to construct local extension opera-
tors for functions defined on Borel subsets Ei of 3Qi.

Let Qi ∈ CZ◦ and Ei ⊂ 3Qi be Borel. Because Qi is OK, there exists Ai < A such 
that for all x ∈ supp(μ) ∩3Qi, σJ (x, μ|3Qi

) contains an (Ai, x, ε/C0, 30δQi
)-basis. Because 

Ei ⊂ 3Qi we have σJ(x, μ|3Qi
) ⊂ σJ (x, μ|Ei

). Since ε < ε0, for all x ∈ supp(μ|Ei
),

σJ(x, μ|Ei
) contains an (Ai, x, ε0/C0, 10 · (3δQi

)) -basis.

The restricted measure μ|Ei
is Borel regular, and diam(supp(μ|Ei

)) ≤ 3δQi
(since 

Ei ⊂ 3Qi), so by the consequence of the inductive hypothesis, (3.53), the Extension 
Theorem for (μ|Ei

, 3δQi
) holds. Because the seminorms for the spaces J (μ|Ei

; 3δQi
)

and J (μ|Ei
; δQi

) are equivalent up to universal constant factors, we have that the Ex-
tension Theorem for (μ|Ei

, δQi
) holds.

Thus, there exist a linear map Ti : J (μ|Ei
; δQi

) → Lm,p(Rn), a map Mi :
J (μ|Ei

; δQi
) → R+, and countable collections of Borel sets {Ai

�}�∈N , Ai
� ⊂ supp(μ|Ei

), 
and of linear maps {φi

� : J (μ|Ei
; δQi

) → R}�∈N , and {λi
� : J (μ|Ei

; δQi
) → Lp(dμ)}�∈N , 

that satisfy for each (f, P ) ∈ J (μ|Ei
; δQi

):

(AL1) ‖f, P‖J (μ|Ei
;δQi

) ≤ ‖Ti(f, P ), P‖J (f,μ|Ei
;δQi

) ≤ C · ‖f, P‖J (μ|Ei
;δQi

);

(AL2) c · Mi(f, P ) ≤ ‖Ti(f, P ), P‖J (f,μ|Ei
;δQi

) ≤ C · Mi(f, P ); and

(AL3) Mi(f, P ) =
(∑

�∈N

∫
Ai

�

|λi
�(f, P ) − f |pdμ +

∑
�∈N

|φi
�(f, P )|p

)1/p

.

We obtain the particular form (AL3) for Mi because Ai �= ∅, a consequence of the fact 
that Ai < A and ∅ is maximal under the order on multi-index sets. Thus, the map Mi

has the form (3.7).
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Further, from the Extension Theorem for (μ|Ei
, δQi

) we know that the maps Ti and Mi

are Ω′
i-constructible. Thus there exists a collection of linear functionals Ω′

i = {ωi
s}s∈Υi ⊂

J (μ|Ei
)∗, satisfying that the collection of sets {supp(ωi

s)}s∈Υi has C-bounded overlap, 
and for each x ∈ Rn, there exists a finite subset Υi

x ⊂ Υi and a collection of polynomials 
{vi

s,x}s∈Υi
x

⊂ P such that |Υi
x| ≤ C and

(AL4) JxTi(f, P ) =
∑

s∈Υi
x

ωi
s(f) · vi

s,x + ω̃i
x(P ),

where ω̃i
x : P → P is a linear map.

Similarly, for each � ∈ N and y ∈ supp(μ), there exists a finite subset Ῡi
�,y ⊂ Υi and 

constants {η�,i
s,y}s∈Ῡi

�,y
⊂ R such that |Ῡi

�,y| ≤ C, and the map (f, P ) �→ λ�(f, P )(y) has 
the form

(AL5) λi
�(f, P )(y) =

∑
s∈Ῡi

�,y

η�,i
s,y · ωi

s(f) + λ̃i
y,�(P ),

where λ̃i
y,� : P → R is a linear functional.

And for each � ∈ N, there exists a finite subset Ῡi
� ⊂ Υi and constants {η�,i

s }s∈Ῡi
�

⊂ R

such that |Ῡi
�| ≤ C, and the map φi

� has the form

(AL6) φi
�(f, P ) =

∑
s∈Ῡi

�

η�,i
s · ωi

s(f) + λ̃i
�(P ),

where λ̃i
� : P → R is a linear functional.

Remark 4.1. Notice that J (μ) ⊂J (μ|Ei
) with an inequality of norms, i.e., ‖f‖J (μ|Ei

) ≤
‖f‖J (μ) for any Borel measurable f : Rn → R. Thus, J (μ|Ei

)∗ naturally embeds in 
J (μ)∗. In particular, the Ω′

i may be regarded as a family of functionals in J (μ)∗.

If ω ∈ J (μ)∗ then supp(ω) ⊂ supp(μ). Therefore, for any choice of Ei ⊂ 3Qi, the 
collection of functionals Ω′

i = {ωi
s}s∈Υi satisfies

supp(ωi
s) ⊂ supp(μ|Ei

) ⊂ supp(μ) ∩ Cl(Ei) for all i ∈ I, s ∈ Υi. (4.13)

5. Preliminary estimates and technical tools

5.1. Estimates for auxiliary polynomials

Recall from (3.55) and (3.56), we have constructed (P α
x )α∈A, for all x ∈ 100Q◦, such 

that
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(P α
x )α∈A forms an (A, x, C̄ε, 1)-basis for σJ(x, μ), with

|∂βP α
x (x)| ≤ C̄ for α ∈ A, β ∈ M.

(5.1)

Here, C̄ is a universal constant, determined only by m, n, p. As in Section 12 of [13], we 
have:

Lemma 5.1. There exists a universal constant C3 such that the following holds. Let Q ∈
CZ◦, and let δ̂ ∈ [δQ/2, 1]. Then

|∂βP α
y (y)| ≤ C3δ̂|α|−|β| (α ∈ A, β ∈ M, y ∈ 3Q+). (5.2)

In particular,

|∂βP α
y (y)| ≤ C3δ

|α|−|β|
Q (α ∈ A, β ∈ M, y ∈ 3Q+). (5.3)

Proof. Inequality (5.3) follows from (5.2) by setting δ̂ = δQ.
We now prove inequality (5.2).
If δ̂ ∈ [1/4, 1] then (5.2) follows from (5.1) because 3Q+ ⊂ 10Q ⊂ 100Q◦ for Q ∈ CZ◦. 

So we may assume δ̂ ∈ [δQ/2, 1/4].
Let C ′ := 30mC̄. By (5.1) and Lemma 3.2, (P α

x )α∈A forms an (A, x, C ′ε, 30)-basis 
for σJ(x, μ) for x ∈ 100Q◦. By (3.5), since 120δ̂ ≤ 30, σJ(x, μ) ⊂ σJ (x, μ|3Q+), and 
10Q ⊂ 100Q◦, we have that

(P α
x )α∈A forms an (A, x, C ′ε, 120δ̂)-basis for σJ(x, μ|3Q+) for all x ∈ 10Q. (5.4)

Define ε1 = min{c1, ε0/(C0C1)}, a universal constant, where c1, C1 are the constants 
from Lemma 3.6, and C0 is the constant from Lemma 3.3. For the sake of contradiction, 
suppose (5.2) fails to hold for a sufficiently large constant C3. Thus, we may assume

max{|∂βP α
z (z)| · (120δ̂)|β|−|α| : z ∈ 3Q+, α ∈ A, β ∈ M} > ε−D−1

1 . (5.5)

By taking ε small enough, we may assume that C ′ε ≤ ε2D+2
1 . We claim that the 

hypotheses of Lemma 3.6 hold with the parameters(
ε1, ε2, δ, A, μ, E,

(
P̃ α

x

)
α∈A,x∈E

)
:=
(

ε1, C ′ε, 120δ̂, A, μ|3Q+ , Cl(3Q+),
(
P α

x

)
α∈A,x∈3Q+

)
.

Specifically, we have to check the conditions (D1)-(D5) in Lemma 3.5 and condition 
(3.31) for the above choice of parameters. Note that (D1) is satisfied because ε1 ≤ c1
and C ′ε ≤ ε2D+2

1 , while (D2) and (D3) do not mention any conditions on the parameters, 
hence are trivially satisfied. Further, (D4) is satisfied because supp(μ|3Q+) ⊂ Cl(3Q+)
and diam(3Q+) = 6δQ ≤ 120δ̂. Note (D5) is satisfied due to (5.4), since Cl(3Q+) ⊂ 10Q. 
Finally, (3.31) is satisfied thanks to (5.5).
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Thus, we may apply Lemma 3.6 to deduce that there exists A < A such that 
σJ (x, μ|3Q+) contains an (A, x, C1ε1, 120δ̂)-basis for all x ∈ 3Q+. We apply (3.5), us-
ing that δQ+ = 2δQ ≤ 4δ̂ and C1ε1 ≤ ε0/C0, to deduce that σJ(x, μ|3Q+) contains an 
(A, x, ε0/C0, 30δQ+)-basis for all x ∈ 3Q+. Therefore, the cube Q+ is OK (see Defini-
tion 4.1), contradicting that Q ∈ CZ◦. This completes the proof of (5.2). �
Lemma 5.2. There exists a universal constant C4 such that the following holds. Let x ∈
Kp. For δ ∈ (0, 1),

|∂βP α
x (x)| ≤ C4δ|α|−|β| (α ∈ A, β ∈ M). (5.6)

In particular ∂βP α
x (x) = 0 for |α| > |β|.

Proof. Let x ∈ Kp and δ ∈ (0, 1). Recall from (5.1), we have

|∂βP α
x (x)| ≤ C (α ∈ A, β ∈ M). (5.7)

For |β| ≥ |α|, (5.7) implies (5.6). So it suffices to prove (5.6) for |α| > |β|. We will prove 
that ∂βP α

x (x) = 0 for |α| > |β|. This will complete the proof of (5.6), and with it, the 
proof of the lemma.

Suppose for sake of contradiction that there exist β ∈ M, α ∈ A, |α| > |β| such that 
|∂βP α

x (x)| > η > 0. Fix ε1 < min{c1, ε0/(30mC0C1)}, for c1 and C1 as in Lemma 3.5, 
and C0 is the constant from Lemma 3.3. Fix δ1 < ηεD+1

1 with δ1 < 1. Fix a dyadic cube 
Q ⊂ Q◦ with x ∈ Q and δQ < δ1. Observe that δ|β|−|α|

Q > δ
|β|−|α|
1 ≥ δ−1

1 . So,

max
{

|∂β̂P α̂
y (y)|δ|β̂|−|α̂|

Q : y ∈ 3Q, α̂ ∈ A, β̂ ∈ M
}

≥ |∂βP α
x (x)|δ|β|−|α|

Q

> ηδ−1
1 > ε−D−1

1 . (5.8)

We fix ε2 < ε2D+2
1 . From (5.1), and since 5Q ⊂ 100Q◦, 

(
P α

y

)
α∈A forms an (A, y, Cε, 1)-

basis for σJ(y, μ) for all y ∈ 5Q. We can assume Cε < ε2. Note that δQ < δ1 < 1. From 
(3.5), 

(
P α

y

)
α∈A forms an (A, y, ε2, δQ)-basis for σJ(y, μ|3Q) for all y ∈ 5Q. In combination 

with (5.8), we see the hypotheses of Lemma 3.6 hold with parameters

(
ε1, ε2, δ, A, μ, E,

(
P̃ α

x

)
α∈A,x∈E

)
=
(

ε1, ε2, δQ, A, μ|3Q, Cl(3Q), (P α
x )α∈A,x∈3Q

)
.

Hence there exists A < A so that for every y ∈ 3Q, σJ(y, μ|3Q) contains an 
(A, y, C1ε1, δQ)-basis. Because C1ε1 < ε0/(30mC0), we apply Lemma 3.2 to deduce that 
for every y ∈ 3Q, σJ(y, μ|3Q) contains an (A, y, ε0/C0, 30δQ)-basis, indicating that Q is 
OK, thus Q is contained in a CZ cube. But x ∈ Q, so x ∈ KCZ . This contradicts that 
x ∈ Kp, completing the proof of (5.6) by contradiction. �
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In Proposition 3.9 of Section 3.3.1, we defined a family of functions (ϕα
x)α∈A,x∈Q◦ ⊂

Lm,p(Rn), related to the (P α
x )α∈A,x∈Q◦ , satisfying (3.69)-(3.72). In particular, Jxϕα

x =
P α

x for x ∈ Q◦, α ∈ A.

Lemma 5.3. We have

P α
x (x) = ϕα

x (x) = 0 for x ∈ Kp, α ∈ A.

Proof. Recall that A ⊂ M, A �= M, and A is monotonic. Therefore, A does not contain 
the zero multi-index. Hence, |α| > 0 for α ∈ A. Due to (5.6), we have |P α

x (x)| ≤ Cδ|α|

for all δ ∈ (0, 1). Hence, P α
x (x) = 0. The result follows. �

5.2. Estimates for local solutions

Recall the norm defined on P:

|P |x,δ =
( ∑

|α|≤m−1

|∂αP (x)|p · δn+(|α|−m)p
)1/p

.

Recall I is the indexing set for the CZ decomposition CZ◦ = {Qi}i∈I . For P ∈ P and 
i ∈ I, define

|P |i := |P |xi,δQi
. (5.9)

By applying (2.14) to the measure μ|Qi
and domain U = Qi, for F ∈ Lm,p(Rn) and 

x ∈ Qi,

|JxF − P |x,δQi
≤ C‖F, P‖J∗(f,μ|Qi

;Qi). (5.10)

Lemma 5.4. Let Qi ∈ CZ◦. Then for P ∈ P,

‖0, P ‖J (μ|1.1Qi
;δQi

) � |P |i = |P |xi,δQi
. (5.11)

Moreover, if P ∈ P satisfies ∂αP (xi) = 0 for all α ∈ A, then

‖0, P ‖J (μ|9Qi
;δQi

) � |P |i = |P |xi,δQi
. (5.12)

Proof. For the proof of (5.11), let F0 = (1 − θ)P , where θ ∈ C∞(Rn), θ|9Qi
= 1, 

supp(θ) ⊂ 10Qi, and |∂αθ(x)| ≤ Cδ
−|α|
Qi

. Then

‖0, P ‖p
J (μ|1.1Qi

;δQi
) ≤ ‖0, P‖p

J (μ|9Qi
;δQi

)

≤ ‖F0, P‖p

J (0,μ|9Qi

;δQi
)
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= ‖F0‖p
Lm,p(Rn) +

∫
9Qi

|F0|pdμ + ‖F0 − P‖p
Lp(Rn)/δmp

Qi

= ‖F0 − P‖p
Lm,p(Rn) +

∫
9Qi

|F0|pdμ + ‖F0 − P‖p
Lp(Rn)/δmp

Qi
.

Note F0 = 0 on 9Qi, and F0 = P on Rn \10Qi. Thus, continuing from the above bounds, 
and using the Taylor expansion P (x) =

∑
|α|≤m−1 P (xi) · (x − xi)α/α!,

‖0, P ‖p
J (μ|1.1Qi

;δQi
) ≤ ‖θP‖p

Lm,p(10Qi) + ‖θP‖p
Lp(10Qi)/δmp

Qi

≤ C|P |pi .

This completes the proof of (5.11).
We now prove (5.12). Note, the proof of (5.11) above shows that ‖0, P‖J (μ|9Qi

;δQi
) �

|P |i. Thus, it suffices to establish the reverse inequality. We assume for contradiction 
that there exists P ′ ∈ P, P ′ �= 0 satisfying ∂αP ′(xi) = 0 for all α ∈ A and

‖0, P ′‖J (μ|9Qi
;δQi

) ≤ εD+1
1 |P ′|i, (5.13)

for a universal constant ε1. We will later choose ε1 > 0 small enough so that we reach a 
contradiction. Define

P := P ′ ·
(

max
β∈M

{
|∂βP ′(xi)|δ|β|+n/p−m

Qi

})−1
.

Note that

max
β∈M

{
|∂βP (xi)|δ|β|+n/p−m

Qi

}
= 1, (5.14)

and thus |P |i = |P |xi,δQi
≤ C. Further, since P = γP ′ for some γ ∈ R, from (5.13), 

‖0, P‖J (μ|9Qi
;δQi

) ≤ εD+1
1 |P |i ≤ CεD+1

1 , and so

P ∈ CεD+1
1 σ(μ|9Qi

, δQi
). (5.15)

Also, P satisfies ∂αP (xi) = 0 for all α ∈ A. For each integer � ≥ 0, we define Δ� ⊂ M
by

Δ� =
{

α ∈ M : |∂αP (xi)| δ
|α|+n/p−m
Qi

∈ (ε�
1, 1]
}

.

Note that Δ� ⊂ Δ�+1 for each � ≥ 0 and that Δ� �= ∅ for � ≥ 1. Since M contains D
elements, there exists 0 ≤ �∗ ≤ D with Δ�∗ = Δ�∗+1 �= ∅. Let ᾱ ∈ M be the maximal 
element of Δ�∗ . Because P satisfies ∂αP (xi) = 0, we have ᾱ /∈ A. Further, because 
ᾱ ∈ Δ�∗ , we have
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∣∣∂ᾱP (xi)
∣∣ δ|ᾱ|+n/p−m

Qi
> ε�∗

1 ; and (5.16)∣∣∂βP (xi)
∣∣ δ|β|+n/p−m

Qi
≤ ε�∗+1

1 (β ∈ M, β > ᾱ), (5.17)

where (5.17) follows because for every β ∈ M with β > ᾱ, we have β /∈ Δ�∗ = Δ�∗+1. 
Define P ᾱ := P · (∂ᾱP (xi))

−1. Then because �∗ ≤ D, from (5.14), (5.15), (5.16), and 
(5.17), we have

P ᾱ ∈ Cε1δ
|ᾱ|+n/p−m
Qi

· σ(μ|9Qi
, δQi

); (5.18)

∂ᾱP ᾱ(xi) = 1; (5.19)

|∂βP ᾱ(xi)| ≤ ε1δ
|ᾱ|−|β|
Qi

(β ∈ M, β > ᾱ); and (5.20)

|∂βP ᾱ(xi)| ≤ ε−D
1 δ

|ᾱ|−|β|
Qi

(β ∈ M). (5.21)

From (5.18), there exists ϕᾱ ∈ Lm,p(Rn) satisfying

‖ϕᾱ, P ᾱ‖J (0,μ|9Qi
;δQi

) =
(

‖ϕᾱ‖p
Lm,p(Rn) +

∫
9Qi

|ϕᾱ|pdμ + ‖ϕᾱ − P ᾱ‖p
Lp(Rn)/δmp

Qi

)1/p

≤ Cε1δ
|ᾱ|+n/p−m
Qi

. (5.22)

For x ∈ supp(μ) ∩ 9Qi, set P ᾱ
x := Jxϕᾱ.

Because ‖ϕᾱ‖J (0,μ|9Qi
) ≤ ‖ϕᾱ, P ᾱ‖J (0,μ|9Qi

;δQi
), we have

P ᾱ
x ∈ Cε1δ

|ᾱ|+n/p−m
Qi

· σJ(x, μ|9Qi
). (5.23)

Also, |x − xi| ≤ CδQi
, so for β ∈ M we have

|∂βP ᾱ
x (x)−∂βP ᾱ(xi)| = |∂βϕᾱ(x) − ∂βP ᾱ(xi)|

≤ |∂βϕᾱ(x) − ∂βP ᾱ(x)| + |∂βP ᾱ(x) − ∂βP ᾱ(xi)|
(2.15)
� ‖ϕᾱ, P ᾱ‖J (0,μ|9Qi

;δQi
)δ

m−|β|−n/p
Qi

+

∣∣∣∣∣ ∑
0<|ω|≤m−1−|β|

∂β+ωP ᾱ(xi)
(x − xi)ω

ω!

∣∣∣∣∣
(5.22)
� ε1δ

|ᾱ|−|β|
Qi

+

∣∣∣∣∣ ∑
0<|ω|≤m−1−|β|

∂β+ωP ᾱ(xi)
(x − xi)ω

ω!

∣∣∣∣∣
(5.20),(5.21)

�

⎧⎨⎩ ε1δ
|ᾱ|−|β|
Qi

if β ≥ ᾱ

ε−D
1 δ

|ᾱ|−|β|
Qi

for any β,
(5.24)
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where in the last line we have used that β + ω > β provided that 0 < |ω| ≤ m − 1 − |β|, 
and hence, β + ω > ᾱ provided β ≥ ᾱ. We insert (5.24) into (5.19)-(5.21) to deduce,

|∂βP ᾱ
x (x) − δᾱβ | ≤ Cε1δ

|ᾱ|−|β|
Qi

(β ∈ M, β ≥ ᾱ); and (5.25)

|∂βP ᾱ
x (x)| ≤ Cε−D

1 δ
|ᾱ|−|β|
Qi

(β ∈ M) (5.26)

We will use ᾱ ∈ M and P ᾱ to construct A < A and an (A, x, ε0/C0, δQ+
i

)-basis for 
σJ (x, μ|3Q+

i
) for all x ∈ supp(μ) ∩ 3Q+

i , indicating that Q+
i is OK, a contradiction. So 

(5.13) cannot hold, and we have ‖0, P‖J (μ|9Qi
;δQi

) � |P |i for all P ∈ P. This next 
portion of the proof follows Section 13 of [13].

Fix x ∈ supp(μ) ∩ 3Q+
i ⊂ Q◦. Recall from (5.1) and (5.3), that the auxiliary polyno-

mials (P α
x )α∈A form an (A, x, Cε, 1)-basis for σJ(x, μ), satisfying:

P α
x ∈ Cε · σJ (x, μ); (5.27)

∂βP α
x (x) = δαβ (α, β ∈ A); (5.28)

|∂βP α
x (x)| ≤ Cε (α ∈ A, β ∈ M, β > α); (5.29)

|∂βP α
x (x)| ≤ C (α ∈ A, β ∈ M); and (5.30)

|∂βP α
x (x)| � δ

|α|−|β|
Qi

(α ∈ A, β ∈ M). (5.31)

Define

P̃ ᾱ
x := P ᾱ

x −
∑

α∈A,α<ᾱ

∂αP ᾱ
x (x) · P α

x .

We have σJ(x, μ) ⊂ σJ(x, μ|9Qi
), δQi

< 1, and m − n/p > m − 1 ≥ |α|. So from (5.23), 
(5.26), and (5.27), we have

P̃ ᾱ
x ∈

(
Cε1δ

|ᾱ|+n/p−m
Qi

+
∑

α∈A,α<ᾱ

(Cε−D
1 δ

|ᾱ|−|α|
Qi

)(Cε)
)

· σJ (x, μ|9Qi
)

=⇒ P̃ ᾱ
x ∈ C

(
ε1 + ε−D

1 ε
)

δ
|ᾱ|+n/p−m
Qi

· σJ(x, μ|9Qi
). (5.32)

For β ∈ A, β < ᾱ, from (5.28),

∂βP̃ ᾱ
x (x) = ∂βP ᾱ

x (x) − ∂βP ᾱ
x (x) = 0. (5.33)

For β ∈ M, β ≥ ᾱ, from (5.25), (5.26), and (5.29),

|∂βP̃ ᾱ
x (x) − δβᾱ| ≤ |∂βP ᾱ

x (x) − δβᾱ| + |∂β(P ᾱ
x − P̃ ᾱ

x )(x)|

≤ |∂βP ᾱ
x (x) − δβᾱ| +

∑
|∂αP ᾱ

x (x)||∂βP α
x (x)|
α∈A,α<ᾱ
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≤ Cε1δ
|ᾱ|−|β|
Qi

+
∑

α∈A,α<ᾱ

(Cε−D
1 δ

|ᾱ|−|α|
Qi

)(Cε)

� (ε1 + ε−D
1 ε)δ|ᾱ|−|β|

Qi
, (5.34)

where the last inequality uses that δQi
< 1 and |β| ≥ |α| for β ≥ ᾱ > α.

For β ∈ M arbitrary, from (5.26), (5.31),

|∂βP̃ ᾱ
x (x)| ≤ |∂βP ᾱ

x (x)| +
∑

α∈A,α<ᾱ

|∂αP ᾱ
x (x)||∂βP α

x (x)|

≤ Cε−D
1 δ

|ᾱ|−|β|
Qi

+
∑

α∈A,α<ᾱ

(Cε−D
1 δ

|ᾱ|−|α|
Qi

)(Cδ
|α|−|β|
Qi

)

� ε−D
1 δ

|ᾱ|−|β|
Qi

. (5.35)

Define

A = {ᾱ} ∪ {α ∈ A : α < ᾱ}.

Then the minimal element of the symmetric difference AΔA is ᾱ, which is in A. So 
A < A, by definition of the order relation on multiindex sets. We may assume ε < εD+1

1 . 
Then, for small enough ε1, (5.34) implies ∂ᾱP̃ ᾱ

x (x) ≥ 1/2. So P̂ ᾱ
x := P̃ ᾱ

x /(∂ᾱP̃ ᾱ
x (x)) is 

well-defined, and due to (5.32)-(5.35), this polynomial satisfies:

P̂ ᾱ
x ∈ C(ε1 + ε−D

1 ε)δ|ᾱ|+n/p−m
Qi

· σJ (x, μ|9Qi
); (5.36)

∂βP̂ ᾱ
x (x) = δβᾱ (β ∈ A); (5.37)

|∂βP̂ ᾱ
x (x)| ≤ C(ε1 + ε−D

1 ε)δ|ᾱ|−|β|
Qi

(β ∈ M, β > ᾱ); and (5.38)

|∂βP̂ ᾱ
x (x)| ≤ Cε−D

1 δ
|ᾱ|−|β|
Qi

(β ∈ M). (5.39)

For α ∈ A \ {ᾱ}, define

P̂ α
x = P α

x − ∂ᾱP α
x (x) · P̂ ᾱ

x .

Notice, if α ∈ A \ {ᾱ} then α < ᾱ. Also, δQi
< 1. Thus, thanks to (5.29), |∂ᾱP α

x (x)| ≤
Cε ≤ Cεδ

|α|−|ᾱ|
Qi

. Therefore, from (5.27)-(5.30), and (5.36)-(5.39), for any α ∈ A \ {ᾱ},

P̂ α
x ∈

[
Cε + Cεδ

|α|−|ᾱ|
Qi

(ε1 + ε−D
1 ε)δ|ᾱ|+n/p−m

Qi

]
· σJ (x, μ|9Qi

); (5.40)

∂βP̂ α
x (x) = δαβ (β ∈ A); and (5.41)

|∂βP̂ α
x (x)| ≤ Cε + Cεδ

|α|−|ᾱ|
Qi

Cε−D
1 δ

|ᾱ|−|β|
Qi

(β ∈ M, β > α). (5.42)

We suppose ε < εD+1
1 . Since |α| + n/p − m < 0, and δQi

< 1, (5.40) implies,
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P̂ α
x ∈ C(ε1 + ε−D

1 ε)δ|α|+n/p−m
Qi

· σJ (x, μ|9Qi
). (5.43)

Similarly, because δQi
< 1 and |α| − |β| ≤ 0 for β > α, (5.42) implies

|∂βP̂ α
x (x)| ≤ Cε1δ

|α|−|β|
Qi

(β ∈ M, β > α). (5.44)

Recall x ∈ supp(μ) ∩ 3Qi
+ is arbitrary. Together, (5.36)-(5.39), (5.41), (5.43), and 

(5.44) imply that, for each x ∈ supp(μ) ∩ 3Qi
+, {P̂ α

x }α∈A forms an (A, x, C ′(ε1 +
ε−D

1 ε), 30δQi
+)-basis for σJ(x, μ|9Qi

), and hence for σJ(x, μ|3Qi
+). Fix a universal con-

stant ε1 > 0, small enough so that the preceding arguments hold, and so that ε1 < ε0
2C′C0

. 
Recall that we have assumed ε < εD+1

1 . Thus, {P̂ α
x }α∈A forms an (A, x, ε0/C0, 30δQi

+)-
basis for σJ(x, μ|3Qi

+) for each x ∈ supp(μ) ∩ 3Qi
+, indicating that Qi

+ is OK. But this 
contradicts the assumption that Qi is a CZ cube. We have reached the desired contra-
diction. This completes the proof of (5.12), and with it, the proof of the lemma. �
5.3. Patching estimates

5.3.1. Patching estimate on KCZ

Recall that we have defined a collection of disjoint dyadic cubes CZ◦ = {Qi}i∈I ∈
Π(Q◦) contained in Q◦ = (0, 1]n. We set KCZ =

⋃
i∈I Qi. Then KCZ is a relatively open 

subset of Q◦. Indeed, we showed that Kp is a closed set in Rn, and Kp ⊂ supp(μ) ⊂ 1
10 Q◦.

We associate to each cube Qi ∈ CZ◦ a basepoint xi = ctr(Qi). We define the polyno-
mial norms |P |i := |P |xi,δQi

.
Recall that a Whitney field �P ∈ Wh(BCZ) is an indexed collection of polynomials, 

�P = {Px}x∈BCZ
, associated to the CZ basepoints BCZ = {xi}i∈I .

For a relatively open set Ω ⊂ Q◦ with KCZ ⊂ Ω, and for �P ∈ Wh(BCZ), f ∈ J (μ), 
and F ∈ Lm,p(Ω), we define:

‖F, �P‖J∗(f,μ;Ω,CZ◦) =
(

‖F‖p
Lm,p(Ω)+

∫
Ω

|F − f |pdμ+
∑
i∈I

‖F − Pxi
‖p

Lp(Qi)/δmp
Qi

)1/p

; and

(5.45)

‖f, �P‖J∗(μ;Ω,CZ◦) = inf
{

‖F, �P‖J∗(f,μ;Ω,CZ◦) : F ∈ Lm,p(Ω)
}

. (5.46)

We define the seminormed vector space:

J∗(μ; Ω, CZ◦) =
{

(f, �P ) : f ∈ J (μ), �P ∈ Wh(BCZ), ‖f, �P‖J∗(μ;Ω,CZ◦) < ∞
}

.

(5.47)
In the previous definitions, we have in mind to take Ω = KCZ or Ω = Q◦.

Lemma 5.5. Suppose we are given a collection of functions {Gi}i∈I ⊂ Lm,p(Rn) and a 
Whitney field �P = (Pxi

)i∈I ∈ Wh(BCZ).
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Define G : KCZ → R by G(x) =
∑

i∈I Gi(x) · θi(x), where {θi}i∈I is a partition of 
unity satisfying (POU1)-(POU4) (see Section 4.3). Then

‖G, �P‖p
J∗(f,μ;KCZ ,CZ◦) �

∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦) +
∑

i,i′∈I, i↔i′

|Pxi
− Pxi′ |pi .

(5.48)

Here, we write i ↔ i′ to denote that Cl(Qi) ∩ Cl(Qi′) �= ∅, and the J∗-functionals on 
the right-hand side of (5.48) are defined in (2.5).

Proof. For x ∈ Qi′ , if x ∈ supp(θi) then x ∈ 1.1Qi, hence 1.1Qi ∩ Qi′ �= ∅ and thus 
i ↔ i′ by the good geometry of the CZ cubes. Thus, by the condition 

∑
i θi = 1 on KCZ , 

we deduce that G(x) = Gi′(x) +
∑

i∈I, i↔i′(Gi − Gi′)(x) · θi(x). By the Leibniz rule, for 
any multiindex γ such that |γ| = m, we have

∂γG(x) = ∂γGi′(x) +
∑

(α,β):α+β=γ

∑
i∈I: i↔i′

∂β(Gi − Gi′)(x)∂αθi(x).

Then, taking p’th powers, summing on γ with |γ| = m, and integrating over x ∈ Qi′ , we 
have

‖G‖p
Lm,p(Qi′ ) � ‖Gi′‖p

Lm,p(Qi′ ) +
∑

(α,β):|α|+|β|=m

∑
i∈I:i↔i′

∫
Qi′

|∂β(Gi − Gi′)(x)|p|∂αθi(x)|pdx.

Now note, by (POU1)-(POU4), |∂αθi(x)| � δ
−|α|
Qi

, and θi is supported on 1.1Qi. So,

‖G‖p
Lm,p(Qi′ ) � ‖Gi′‖p

Lm,p(Qi′ )

+
∑

(α,β):|α|+|β|=m

∑
i∈I:i↔i′

δ
−|α|p
Qi

∫
Qi′ ∩1.1Qi

|∂β(Gi − Gi′)(x)|pdx.

(5.49)

If α = 0 in the previous sum, then |β| = m, so∫
Qi′ ∩1.1Qi

|∂β(Gi − Gi′)(x)|pdx ≤ C
(
‖Gi′‖p

Lm,p(Qi′ ) + ‖Gi‖p
Lm,p(1.1Qi∩Q◦)

)
.

Now suppose |α| > 0 in the previous sum. Then |β| ≤ m − 1, and

|∂β(Gi − Gi′)(x)| ≤ |∂β(Gi − Pxi
)(x)| + |∂β(Pxi

− Pxi′ )(x)| + |∂β(Gi′ − Pxi′ )(x)|.

Thus, by integrating over x ∈ Qi′ ∩ 1.1Qi, we can apply (2.14) twice, on the rectangle 
1.1Qi ∩ Q◦ and on the square Qi′ , to obtain
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∫
Qi′ ∩1.1Qi

|∂β(Gi − Gi′)(x)|pdx

≤ C
(

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦)δ
mp−|β|p
Qi

+ ‖Gi′ , Pxi′ ‖p
J∗(f,μ|Q

i′ ;Qi′ )δ
mp−|β|p
Qi

+ max
x∈1.1Qi∩Qi′

|∂β(Pxi
− Pxi′ )(x)|pδn

Qi

)
.

Now because |α| + |β| = m,

δ
−|α|p
Qi

∫
Qi′ ∩1.1Qi

|∂β(Gi − Gi′)(x)|pdx ≤ C ·
(

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦)

+ ‖Gi′ , Pxi′ ‖p
J∗(f,μ|Q

i′ ;Qi′ ) + max
x∈1.1Qi∩Qi′

|∂β(Pxi
− Pxi′ )(x)|pδ

n+|β|p−mp
Qi

)
.

We use (2.2) to bound the third term in the parentheses by |Pxi
− Pxi′ |pxi,δQi

= |Pxi
−

Pxi′ |pi . Returning to (5.49),

‖G‖p
Lm,p(Qi′ ) � ‖Gi′‖p

Lm,p(Qi′ ) +
∑

i∈I,i↔i′

(
‖Gi, Pxi

‖p
J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦)

+ ‖Gi′ , Pxi′ ‖p
J∗(f,μ|Q

i′ ;Qi′ ) + |Pxi
− Pxi′ |pi

)
.

We can bound ‖Gi′‖p
Lm,p(Qi′ ) ≤ ‖Gi′ , Pxi′ ‖p

J∗(f,μ|1.1Q
i′ ∩Q◦ ;1.1Qi′ ∩Q◦). Thus, by summing 

on i′ ∈ I, and using that for each i ∈ I there are at most C many i′ ∈ I with i ↔ i′, we 
have

‖G‖p
Lm,p(KCZ) =

∑
i′∈I

‖G‖p
Lm,p(Qi′ )

�
∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦)

+
∑

(i,i′):i↔i′

|Pxi
− Pxi′ |pi . (5.50)

Because θi ≤ 1, supp(θi) ⊂ 1.1Qi, and 
∑

θi = 1 on KCZ , we have∫
KCZ

|G − f |pdμ =
∫

KCZ

∣∣∣∑
i∈I

(Gi − f) · θi

∣∣∣pdμ

�
∑
i∈I

∫
1.1Qi∩Q◦

|Gi − f |pdμ

�
∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦). (5.51)
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First applying that 
∑

θi′ = 1 on KCZ , and then x ∈ supp(θ′
i) =⇒ x ∈ 1.1Qi′ , with 

(4.1), (4.2), and Lemma 2.2, we obtain,∑
i∈I

‖G − Pxi
‖p

Lp(Qi)/δmp
Qi

=
∑
i∈I

∥∥ ∑
i′∈I:i′↔i

(Gi′ − Pxi
)θi′
∥∥p

Lp(Qi)/δmp
Qi

�
∑
i∈I

∑
i′∈I:i′↔i

[
‖Gi′ − Pxi′ ‖p

Lp(1.1Qi′ ∩Q◦)/δmp
Qi′ + ‖Pxi

− Pxi′ ‖p
Lp(Qi)/δmp

Qi

]
�
∑
i∈I

‖Gi − Pxi
‖p

Lp(1.1Qi∩Q◦)/δmp
Qi

+
∑

(i,i′):i′↔i

|Pxi
− Pxi′ |pi

�
∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦) +
∑

(i,i′):i′↔i

|Pxi
− Pxi′ |pi . (5.52)

From (5.50), (5.51), and (5.52), we conclude,

‖G, �P‖p
J∗(f,μ;KCZ ,CZ◦) = ‖G‖p

Lm,p(KCZ) +
∫

KCZ

|G − f |pdμ +
∑
i∈I

‖G − Pxi
‖p

Lp(Qi)/δmp
Qi

�
∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦) +
∑
i′↔i

|Pxi
− Pxi′ |pi . �

5.3.2. Patching estimate on Q◦

Recall that KCZ ⊂ Q◦ and Kp = Q◦ \ KCZ . We showed that Kp is a closed set in 
Rn, and Kp ⊂ supp(μ) ⊂ 1

10 Q◦.
We have defined BCZ = {xi}i∈I , the set of all CZ basepoints, with xi the center of 

Qi for each Qi ∈ CZ◦.
Given �S ∈ Wh(Kp), �P ∈ Wh(BCZ), we regard ( �P , �S) ∈ Wh(BCZ ∪Kp) as a Whitney 

field on Kp ∪ BCZ .

Lemma 5.6. Fix a collection of functions {Gi}i∈I ⊂ Lm,p(Rn), and two Whitney fields 
�R = (Rxi

)i∈I ∈ Wh(BCZ) and �S = (Sx)x∈E ∈ Wh(Kp). Let G : Q◦ → Rn be defined as

G(x) =
{∑

i∈I Gi(x) · θi(x) x ∈ KCZ

Sx(x) x ∈ Kp,

where {θi}i∈I is a partition of unity satisfying (POU1)-(POU4) (see Section 4.3).
If (G, �R, �S) satisfy the conditions

‖G, �R‖J∗(f,μ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp) < ∞ and (�S, �R) ∈ Cm−1,1−n/p(Kp ∪ BCZ),

then G ∈ Lm,p(Q◦), JxG = Sx for all x ∈ Kp, and
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‖G‖Lm,p(Q◦) � ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp). (5.53)

Remark 5.1. In later applications of Lemma 5.6, the hypothesis ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) <

∞ will be verified using Lemma 5.5.

Proof. By assumption, ‖�S‖Lm,p(Kp) < ∞, hence for any η > 0, there exists H ∈
Lm,p(Rn) satisfying JxH = Sx for all x ∈ Kp and ‖H‖Lm,p(Rn) ≤ ‖�S‖Lm,p(Kp) + η.

By assumption, ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) < ∞. In particular, G ∈ Lm,p(KCZ). Thus, 
JxG ∈ P is well-defined for x ∈ KCZ .

Define �P ∈ Wh(Q◦) as

Px :=
{

JxG x ∈ KCZ

Sx = JxH x ∈ Kp.

By definition of G, observe that

Px(x) = G(x) for all x ∈ Q◦. (5.54)

Fix δ > 0, and fix a cube Q̂ ⊂ Rn with δQ̂ ≤ δ. We will show that for all x, y ∈ Q̂∩Q◦

we have

|Px − Py|y,δ

� ‖H‖Lm,p(21Q̂) + sup
Qi⊆35Q̂

{‖G, Rxi
‖J∗(f,μ;Qi)}

+ sup
{

‖G‖Lm,p(int(B(z,r))∩Q◦) : z ∈ 7Q̂, r ≤ 7δ, int(B(z, r)) ∩ Q◦ ⊂ KCZ

}
.

(5.55)

Here, as usual, B(z, r) = {w ∈ Rn : |w − z| ≤ r}, and | · | is the �∞ (sup) metric on Rn. 
Thus, B(z, r) is a closed cube centered at z of sidelength 2r.

Fix x, y, Q̂, δ as above. We shall split the proof of (5.55) into cases depending on the 
relative positions of x, y, and Kp. Observe that

|x − y| ≤ δQ̂ ≤ δ. (5.56)

Case 1: Suppose x, y ∈ Kp. We apply (2.3) and the Sobolev Inequality on Q̂,

|Px − Py|y,δ = |JxH − JyH|y,δ ≤ |JxH − JyH|y,|x−y| � ‖H‖Lm,p(Q̂). (5.57)

This completes the proof of (5.55) in Case 1.
Case 2: Suppose x, y ∈ KCZ satisfy dist(y, Kp) > 3|y − x| or dist(x, Kp) > 3|y − x|. 

Because |P |y,δ � |P |x,δ for δ ≥ |x −y| by (2.2), we may assume without loss of generality 
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the first case occurs. By the triangle inequality, B(y, |y − x|) ⊂ Rn \ Kp. Thus, we can 
apply (2.3) and the Sobolev Inequality on B(y, |y − x|) ∩ Q◦ ⊂ KCZ , and obtain

|Px − Py|y,δ = |JxG − JyG|y,δ ≤ |JxG − JyG|y,|x−y| � ‖G‖Lm,p(B(y,|y−x|)∩Q◦).

Therefore, we can upper bound |Px − Py|y,δ by the second supremum in (5.55). This 
completes the proof of (5.55) in Case 2.

Case 3: Suppose y ∈ KCZ and x ∈ Kp, or y ∈ Kp and x ∈ KCZ . As in Case 2, without 
loss of generality, y ∈ KCZ and x ∈ Kp. Because Kp is closed (see Lemma 4.8), there 
exists zy ∈ Kp satisfying dist(y, Kp) = |zy − y|. Because x ∈ Kp, and from (5.56), we 
have

|zy − y| ≤ |x − y| ≤ δQ̂ ≤ δ; (5.58)

B(y, |zy − y|) ⊂ 3Q̂; (5.59)

|x − zy| ≤ |x − y| + |y − zy| ≤ 2δQ̂ ≤ 2δ. (5.60)

Because zy is a closest point of Kp to y, int B(y, |zy − y|) ⊂ Rn \ Kp. We write [y, z)
for the segment {y + t(z − y) : 0 ≤ t < 1}. Then there exists a sequence {zk

y }k∈N ⊂ Rn

satisfying

zk
y ∈ [y, zy) ⊂ int B(y, |zy − y|) ⊂ Rn \ Kp for all k ∈ N; (5.61)

lim
k→∞

zk
y = zy. (5.62)

Observe that

dist(zk
y , Kp) ≤ |zk

y − zy| → 0 as k → ∞. (5.63)

By (5.61) and (5.58), we have

|zk
y − y| ≤ |zy − y| ≤ |x − y| ≤ δQ̂ ≤ δ (k ∈ N). (5.64)

Observe that zk
y ∈ [y, zy) ⊂ Q◦ by convexity of Q◦, so zk

y ∈ (Rn \ Kp) ∩ Q◦ = KCZ . 
Thus, we can define a map τy : N → I, such that

τy(k) = i if zk
y ∈ Qi ∈ CZ◦.

Consequently,

δQτy(k) ≤ dist(zk
y , Kp) ≤ |zk

y − zy| ≤ dist(y, Kp) = |y − zy| ≤ |y − x| ≤ δQ̂ ≤ δ (k ∈ N);
(5.65)

Qτy(k) ⊂ B(y, 2|y − x|) ⊂ 5Q̂ (k ∈ N). (5.66)
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For the proof of (5.65), we use Lemma 4.10, which implies δQτy(k) ≤ dist(Qτy(k), Kp) ≤
dist(zk

y , Kp), where the second inequality uses that zk
y ∈ Qτy(k); further, dist(zk

y , Kp) ≤
|zk

y − zy| ≤ dist(y, Kp) = |y − zy| because zk
y is on the segment connecting y to a nearest 

point zy of Kp, and the remaining inequalities in (5.65) are immediate from (5.58). Lastly, 
the first inclusion of (5.66) uses that zk

y ∈ Qτy(k), |zk
y − y| ≤ |x − y| and δQτy(k) ≤ |x − y|

(see (5.64) and (5.65)); the second inclusion of (5.66) uses that y ∈ Q̂ and |y − x| ≤ δQ̂

(see (5.58)).
Let k ∈ N. (We will later send k → ∞.) Because x ∈ Kp and y ∈ KCZ , we have 

Px = Sx and Py = JyG. By (5.64), we have |y − zk
y | ≤ |y − zy| ≤ |y −x| ≤ δ. By applying 

the triangle inequality, and then (2.2),

|Px − Py|y,δ

= |Sx − JyG|y,δ

≤ |Sx − Szy
|y,δ + |Szy

− Rxτy(k) |y,δ + |Rxτy(k) − Jzk
y
G|y,δ + |Jzk

y
G − JyG|y,δ

(2.2)
� |Sx − Szy

|x,δ + |Szy
− Rxτy(k) |zy,δ + |Rxτy(k) − Jzk

y
G|zk

y ,δ + |Jzk
y
G − JyG|y,δ.

(5.67)

We analyze the four terms on the right-hand side of (5.67), one by one.
From (5.58), since y ∈ Q̂, we deduce zy ∈ 3Q̂. Also, note that |x − zy| ≤ 2δ, according 

to (5.60). We apply (2.3), and then the Sobolev Inequality on 3Q̂ to estimate

|Sx − Szy
|x,δ � |Sx − Szy

|x,|x−zy| = |JxH − Jzy
H|x,|x−zy| � ‖H‖Lm,p(3Q̂). (5.68)

Because (�S, �R) ∈ Cm−1,1−n/p(Kp ∪ BCZ), we have Rxi
→ Sz whenever xi ∈ BCZ , 

xi → z, z ∈ Kp. Observe, |xτy(k) −zk
y | ≤ δQτy(k) (as both xτy(k) and zk

y belong to Qτy(k)). 
Further, δQτy(k) ≤ dist(zk

y , Kp) → 0 as k → ∞ (see (5.63) and (5.65)). When combined 
with (5.62), this implies xτy(k) → zy as k → ∞. Hence, Rxτy(k) → Szy

as k → ∞. Thus,

lim
k→∞

|Szy
− Rxτy(k) |zy,δ = 0. (5.69)

From (5.65), δQτy(k) ≤ δ, So, applying (2.3) and then (5.10), using that zk
y belongs to 

Qτy(k), we have

|Rxτy(k) − Jzk
y
G|zk

y ,δ ≤ |Rxτy(k) − Jzk
y
G|zk

y ,δQτy(k)
� ‖G, Rxτy(k)‖J∗(f,μ;Qτy(k)).(5.70)

We recall that |zk
y − y| ≤ δ (see (5.64)). Also note that by (5.61), int(B(y, |zy − y|)) ∩

Q◦ ⊂ (Rn \ Kp) ∩ Q◦ = KCZ . So we can apply (2.3) and then the Sobolev inequality on 
int(B(y, |zy − y|)) ∩ Q◦, and deduce

|Jzk
y
G − JyG|y,δ ≤ |Jzk

y
G − JyG|y,|zk

y −y| � ‖G‖Lm,p(int(B(y,|zy−y|))∩Q◦). (5.71)
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Recalling (5.66), (5.58), (5.61), we let k → ∞ in (5.67), and use (5.68)-(5.71) to 
conclude

|Px − Py|y,δ � ‖H‖Lm,p(3Q̂) + sup
Qi⊆5Q̂

{‖G, Rxi
‖J∗(f,μ;Qi)}

+ sup
{

‖G‖Lm,p(int(B(z,r))∩Q◦) : z ∈ Q̂, r ≤ δ, int(B(z, r)) ∩ Q◦ ⊂ KCZ

}
.

(5.72)

This completes the proof of inequality (5.55) in Case 3.
Case 4: Suppose x, y ∈ KCZ satisfy dist(y, Kp) ≤ 3|y − x| and dist(x, Kp) ≤ 3|y − x|. 

Because Kp is closed, there exist zx, zy ∈ Kp such that dist(x, Kp) = |zx − x| and 
dist(y, Kp) = |zy − y|. Hence, we have

|zx − x|, |zy − y| ≤ 3|y − x| ≤ 3δQ̂ ≤ 3δ. (5.73)

Consequently,

|zx − zy| ≤ |zx − x| + |x − y| + |y − zy| ≤ 7δQ̂ ≤ 7δ, (5.74)

and zx, zy ∈ 7Q̂ because x, y ∈ Q̂. Considering (5.73) and (5.74), we apply (2.2) and 
(2.3) to estimate

|Px − Py|y,δ � |Px − Pzx
|x,7δ + |Pzx

− Pzy
|zx,7δ + |Pzy

− Py|y,7δ.

Because zx, zy ∈ Kp, while z, y ∈ KCZ , we apply inequalities (5.57) of Case 1 and (5.72)
of Case 3 with the cube 7Q̂ playing the role of Q̂, and 7δ playing the role of δ, to further 
reduce this:

|Px − Py|y,δ

� ‖H‖Lm,p(21Q̂) + sup
Qi⊆35Q̂

{‖G, Rxi
‖J∗(f,μ;Qi)}

+ sup
{

‖G‖Lm,p(int(B(z,r))∩Q◦) : z ∈ 7Q̂, r ≤ 7δ, int(B(z, r)) ∩ Q◦ ⊂ KCZ

}
.

This completes the proof of the inequality (5.55) in Case 4.
Since Cases 1–4 are exhaustive, we have proven (5.55).
We prepare to apply Corollary 2.12 to show that G ∈ Lm,p(Q◦). Fix δ > 0 and fix a 

congruent δ-packing π ∈ Π
(Q◦). Thus, π is a family of cubes in Q◦ of equal sidelength 
δ, with pairwise disjoint interiors.

For the next calculation we use the terminology of local approximation error, E(G, Q), 
in Section 2.2.1. For Q̂ ∈ π, z ∈ Q̂, δ = δ ̂ , we have
Q
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E(G, Q̂)/δm ≤ ‖G − Pz‖Lp(Q̂)/δm ≤ ‖G − Pz‖L∞(Q̂)δ
n/p−m

≤ sup
x,y∈Q̂

{|G(y) − Px(y)|}δn/p−m

≤ sup
x,y∈Q̂

|Py − Px|y,δ,

where the last line follows from (5.54). Combining this with (5.55),∑
Q̂∈π

(
E(G, Q̂

)
/δm)p �

∑
Q̂∈π

sup
x,y∈Q̂

|Py − Px|py,δ

�
∑
Q̂∈π

(
‖H‖Lm,p(21Q̂) + sup

Qi⊆35Q̂

{‖G, Rxi
‖J∗(f,μ;Qi)}

+ sup
z∈7Q̂,r≤7δ

int(B(z,r))∩Q◦⊂KCZ

{‖G‖Lm,p(int(B(z,r))∩Q◦)}
)p

� ‖G, �R‖p
J∗(f,μ;KCZ ,CZ◦) + ‖H‖p

Lm,p(Rn)

� ‖G, �R‖p
J∗(f,μ;KCZ ,CZ◦) + (‖�S‖Lm,p(Kp) + η)p,

where the second to last inequality follows because y ∈ 7Q̂, r ≤ 7δ =⇒ B(y, r) ⊂ 35Q̂, 
and because {35Q̂}Q̂∈π has bounded overlap (recall π consists of cubes with pair-
wise disjoint interiors and equal sidelength), and the last inequality follows because 
‖H‖Lm,p(Rn) ≤ ‖�S‖Lm,p(Kp)+η. We let η → 0, then take the supremum over π ∈ Π
(Q◦)
and apply Corollary 2.12 to conclude G ∈ Lm,p(Q◦) and

‖G‖Lm,p(Q◦) � ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp).

Next, we will show JxG = Sx for all x ∈ Kp. We claim that �P ∈ Wh(Q◦) satisfies 
|Px − Py|y,|x−y| ≤ A < ∞ for all x, y ∈ Q◦. Let x, y ∈ Q◦, and fix Q ⊂ Q◦ with x, y ∈ Q

and δQ = |x − y|. By (5.55), we have

|Px − Py|y,|x−y| � ‖H‖Lm,p(21Q) + sup
Qi⊆35Q

{‖G, Rxi
‖J∗(f,μ;Qi)}

+ sup
z∈7Q,r≤7δ

int(B(z,r))∩Q◦⊂KCZ

{‖G‖Lm,p(int(B(z,r))∩Q◦)}

� ‖H‖Lm,p(Rn) + ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) + ‖G‖Lm,p(KCZ)

� ‖H‖Lm,p(Rn) + ‖G, �R‖J∗(f,μ;KCZ ,CZ◦) < ∞.

Since G(x) = Px(x) for x ∈ Q◦ (see (5.54), we can apply Lemma 2.13 to deduce 
JxG = Px for all x ∈ Q◦. Since Px = Sx for x ∈ Kp, we have JxG = Sx for all x ∈ Kp. 
This completes the proof of Lemma 5.6. �
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5.3.3. Patching estimates for restriction of μ
We state variants of the last two lemmas for the restriction of the measure μ to a 

Borel set E ⊂ Rn. Their proofs follow from the proofs of Lemma 5.5 and Lemma 5.6
with the measure μ replaced by μ|E .

Lemma 5.7. Suppose we are given a collection of functions {Gi}i∈I ⊂ Lm,p(Rn), a Whit-
ney field �P = (Pxi

)i∈I ∈ Wh(BCZ), and a Borel set E ⊂ Q◦.
Define G : KCZ → R by G(x) =

∑
i∈I Gi(x) · θi(x), where {θi}i∈I is a partition of 

unity satisfying (POU1)-(POU4) (see Section 4.3). Then

‖G, �P‖p
J∗(f,μ|E ;KCZ ,CZ◦) �

∑
i∈I

‖Gi, Pxi
‖p

J∗(f,μ|1.1Qi∩E ;1.1Qi∩Q◦)

+
∑

i,i′∈I, i↔i′

|Pxi
− Pxi′ |pi .

Lemma 5.8. Fix a collection of functions {Gi}i∈I ⊂ Lm,p(Rn), and Whitney fields �R =
(Rxi

)i∈I ∈ Wh(BCZ) and �S = (Sx)x∈E ∈ Wh(Kp). Let E ⊂ Q◦ be a Borel set. Let 
G : Q◦ → Rn be defined as

G(x) =
{∑

i∈I Gi(x) · θi(x) x ∈ KCZ

Sx(x) x ∈ Kp,

where {θi}i∈I is a partition of unity satisfying (POU1)-(POU4).
If (G, �R, �S) satisfies the conditions ‖G, �R‖J∗(f,μ|E ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp) < ∞ and 

(�S, �R) ∈ Cm−1,1−n/p(Kp ∪ BCZ) then G ∈ Lm,p(Q◦), JxG = Sx for all x ∈ Kp, and

‖G‖Lm,p(Q◦) � ‖G, �R‖J∗(f,μ|E ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp).

6. Further constraints on extension

Let Q◦, CZ◦ = {Qi}i∈I , KCZ , and Kp be as defined in Section 4. Let BCZ = {xi}i∈I

be the set of all CZ basepoints.

6.1. Definition and properties of the space J∗(μ; Q◦, CZ◦; Kp)

For (f, �P , �S) ∈ J (μ) × Wh(BCZ) × Wh(Kp), we define:

‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) = inf
{

‖F, �P‖J∗(f,μ;Q◦,CZ◦) :
F ∈ Lm,p(Q◦) and

Jx(F ) = Sx for all x ∈ Kp

}
.

(6.1)
Here, we have used the J∗(f, μ; Ω, CZ◦) functional defined in (5.45), with Ω = Q◦.
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We define the seminormed vector space:

J∗(μ; Q◦, CZ◦; Kp) =
{

(f, �P , �S) :
f ∈ J (μ), �P ∈ Wh(BCZ), �S ∈ Wh(Kp),

‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) < ∞

}
.

(6.2)

The next result gives a compatibility condition between the Whitney fields �P and �S

whenever (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp).

Proposition 6.1. Let (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp). Then ( �P , �S) ∈ Wh(BCZ ∪ Kp), 
and

‖( �P , �S)‖Cm−1,1−n/p(BCZ∪Kp) ≤ CH‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp). (6.3)

Here, CH > 0 is a universal constant, determined only by m, n, and p.

Proof. Let η > 0 be arbitrary. Let H ∈ Lm,p(Q◦) satisfy JxH = Sx for all x ∈ Kp, and

‖H, �P‖J∗(f,μ;Q◦,CZ◦) ≤ ‖f, �P , �S‖J (μ;Q◦,KCZ ;Kp) + η. (6.4)

Case 1: As a consequence of the Sobolev Inequality, if x, y ∈ Kp, then

|Sx − Sy|y,|y−x| = |JxH − JyH|y,|y−x| � ‖H‖Lm,p(Q◦) � ‖H, �P‖J∗(f,μ;Q◦,CZ◦).

(6.5)

Case 2: If x ∈ Kp and y ∈ BCZ , then y = xi for some i ∈ I, and thanks to Lemma 4.10, 
δQi

≤ dist(xi, Kp) ≤ |x − xi|. Hence from the Sobolev Inequality, (2.3), and (5.10),

|Sx − Pxi
|xi,|x−xi| ≤ |JxH − Jxi

H|xi,|x−xi| + |Jxi
H − Pxi

|xi,δQi

� ‖H‖Lm,p(Q◦) + ‖H, Pxi
‖J∗(f,μ;Qi)

� ‖H, �P‖J∗(f,μ;Q◦,CZ◦). (6.6)

Consequently, using (2.2), we get that |Sx − Pxi
|x,|x−xi| � ‖H, �P‖J∗(f,μ;Q◦,CZ◦).

Case 3: Similar to Case 2, if x, y ∈ BCZ are distinct, then y = xi, x = xj for some 
i, j ∈ I, and δQi

, δQj
≤ C|xi − xj |. From the Sobolev Inequality, (2.2), (2.3), and (5.10),

|Pxj
− Pxi

|xi,|xj−xi| ≤ |Jxj
H − Jxi

H|xi,|xj−xi| + |Jxi
H − Pxi

|xi,δQi
+ |Jxj

H − Pxj
|xj ,δQj

� ‖H‖Lm,p(Q◦) + ‖H, Pxi
‖J∗(f,μ;Qi) + ‖H, Pxj

‖J∗(f,μ;Qj)

� ‖H, �P‖J∗(f,μ;Q◦,CZ◦). (6.7)

From (6.5), (6.6), and (6.7), we have
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‖( �P , �S)‖Cm−1,1−n/p(BCZ∪Kp) � ‖H, �P‖J∗(f,μ;Q◦,CZ◦).

In light of (6.4), and since η > 0 is arbitrary, we have proven inequality (6.3). �
6.2. Coherency

We start by introducing two pieces of terminology. Recall we have fixed a multiindex 
set A ⊂ M.

Definition 6.1 (Coherency). Let K ⊂ Rn and P0 ∈ P. We say that a Whitney field 
(Px)x∈K ∈ Wh(K) is coherent with P0 if ∂αPx(x) = ∂αP0(x) for all x ∈ K, and for all 
α ∈ A.

Definition 6.2 (K-Coherency). Let K ⊂ Q◦ ⊂ Rn and P0 ∈ P. We say that a function 
F ∈ Cm−1,1−n/p(Q◦) is K-coherent with P0 if ∂αJxF (x) = ∂αF (x) = ∂αP0(x) for all 
x ∈ K, and for all α ∈ A.

The next result will be used in Section 6.3, to give the proofs of the lemmas therein.

Proposition 6.2. For (f, P0) ∈ J (μ; δQ◦),

inf
{

‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) :
�P ∈ Wh(BCZ) and �S ∈ Wh(Kp) satisfy

( �P , �S) ∈ Wh(BCZ ∪ Kp) is coherent with P0

}
≤ C‖f, P0‖J (μ;δQ◦ ).

The rest of this section is devoted to the proof of Proposition 6.2.

6.2.1. Proof of Proposition 6.2
Let (f, P0) ∈ J (μ; δQ◦) be given.
Given G ∈ Lm,p(Rn), we will define a function F ∈ Lm,p(Q◦), and the Whitney fields 

�P ∈ Wh(BCZ), and �S ∈ Wh(Kp), which satisfy the following properties:

‖F, �P‖J∗(f,μ;Q◦,CZ◦) ≤ C‖G, P0‖J (f,μ;δQ◦ ), (6.8)

( �P , �S) is coherent with P0, (6.9)

JxF = Sx for all x ∈ Kp. (6.10)

Notice that (6.8) and (6.10) imply that ‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) ≤ C‖G, P0‖J (f,μ;δQ◦ ). 
By taking the infimum in this inequality over G ∈ Lm,p(Rn), the proposition follows. 
For G ∈ Lm,p(Rn),

‖G − P0, 0‖J (f−P0,μ;δQ◦ ) = ‖G, P0‖J (f,μ;δQ◦ ).
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Therefore, in the proof of (6.8)–(6.10) it suffices to assume that

P0 = 0.

We now explain how to construct F, �P , �S that satisfy (6.8)–(6.10) for P0 = 0. For refer-
ence, see (6.16) for the definition of F , see (6.14) for the definition of �P = (Pxi

)i∈I , and 
see (6.17) for the definition of �S = (Sx)x∈Kp

.
We shall make use of the auxiliary polynomials P α

x ∈ P and functions ϕα
x ∈ Lm,p(Rn)

(x ∈ Q◦, α ∈ A) defined in Section 3.3.1. Recall (P α
x ) satisfies (3.55)-(3.56) and (ϕα

x)
satisfies (3.69)-(3.72), while Jxϕα

x = P α
x . Each ϕα

x is defined in terms of another family 
of functions (ϕβ)β∈A, via (3.69) which states that

ϕα
x =

∑
β∈A

Ax
αβ · ϕβ ,

where (Ax
αβ)α,β∈M is a (C, Cε) near-triangular matrix. The inverse of a near-triangular 

matrix is near-triangular with comparable parameters. So, for any x, y ∈ Q◦ and α ∈ A, 
we can write ϕα

y as a bounded linear combination of (ϕβ
x)β∈A. Precisely, there exist 

coefficients (ωxy
αβ)α,β∈A,x,y∈Q◦ ⊂ R such that

ϕα
y =

∑
β∈A

ωxy
αβ · ϕβ

x (α ∈ A), and

|ωxy
αβ | ≤ C (α, β ∈ A). (6.11)

From (3.71), we have Jxi
ϕα

xi
= P α

xi
. It follows from equation (5.3) in Lemma 5.1 that 

the functions ϕα
xi

are locally bounded on 3Q+
i . Indeed, by taking Q = Qi and y = xi in 

(5.3), we have

|∂βϕα
xi

(xi)| = |∂βP α
xi

(xi)| ≤ Cδ
|α|−|β|
Qi

(α ∈ A, β ∈ M, i ∈ I). (6.12)

We shall define functions Fi on the CZ cubes, and patch them together on KCZ using 
a partition of unity. Define Fi : Rn → R and Pxi

∈ P for each i ∈ I as

Fi(x) = G(x) −
∑
α∈A

∂αG(xi) · ϕα
xi

(x); and (6.13)

Pxi
= Jxi

Fi = Jxi
G −

∑
α∈A

∂αG(xi) · P α
xi

. (6.14)

From (3.55), the polynomials (P α
xi

)α∈A satisfy ∂βP α
xi

(xi) = δαβ for α, β ∈ A. Thus,

∂βPxi
(xi) = ∂βFi(xi) = 0 for i ∈ I, β ∈ A. (6.15)
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Now we define F : Q◦ → R.

F (x) =
{∑

i∈I Fi(x) · θi(x) x ∈ KCZ ,

G(x) x ∈ Kp.
(6.16)

where {θi}i∈I is a partition of unity satisfying (POU1)-(POU4) (see Section 4.3). By 
construction, F ∈ Cm−1

loc (KCZ), and hence, JyF is well-defined for y ∈ KCZ .
For any y ∈ Q◦, we define the polynomial

Sy :=
{

JyF y ∈ KCZ ,

JyG −
∑

α∈A ∂αG(y)P α
y y ∈ Kp.

(6.17)

By restricting the family of polynomials (Sy)y∈Q◦ to Kp, we obtain the Whitney field 
�S ∈ Wh(Kp).

The basis (P α
y )α∈A satisfies ∂βP α

y (y) = δαβ for α, β ∈ A. Hence, ∂βSy(y) = 0 for 
y ∈ Kp, β ∈ A. Thus,

(Sy)y∈Kp
is coherent with P0 = 0. (6.18)

The cutoff functions θi satisfy xi ∈ supp(θj) only if j = i, and Jxi
θi = 1, so from (6.17), 

(6.16), (6.14), Sxi
= Jxi

F = Jxi
Fi = Pxi

. Thus,

Sxi
= Pxi

(i ∈ I). (6.19)

By Lemma 5.3, we have P α
y (y) = 0 for y ∈ Kp, so by definition of F (see (6.16)), we have 

Sy(y) = JyG(y) = G(y) = F (y) for y ∈ Kp. Evidently, also Sy(y) = F (y) for y ∈ KCZ . 
Thus,

Sy(y) = F (y) (y ∈ Q◦). (6.20)

Lemma 6.3. Let x, y ∈ Kp ∪BCZ . Let U ⊂ Rn be a domain such that x, y ∈ U , and such 
that U is the union of two η-non-degenerate boxes with an interior point in common (in 
particular, U can be a cube, with η = 1). Then

|Sx − Sy|y,|y−x| �η ‖G‖Lm,p(U) + ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(U), (6.21)

where (ϕβ)β∈A is as defined in Proposition 3.9 of Section 3.3.1, and the constants in �η

depend only on m, n, p and η.

Proof. We define Fy ∈ Lm,p(Rn) (y ∈ Q◦) by

Fy(x) = G(x) −
∑
α∈A

∂αG(y) · ϕα
y (x). (6.22)
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Observe, by definition of the polynomial Sy in (6.17) and by property (3.71) of ϕα
y , that 

Sy = JyFy for y ∈ Kp. On the other hand, note Fxi
= Fi defined in (6.13). Hence, by 

(6.19), Sxi
= Pxi

= Jxi
Fi = Jxi

Fxi
for i ∈ I. Thus,

Sx = JxFx (x ∈ Kp ∪ BCZ).

Because P0 = 0, by (2.14), we have

|∂βG(z)| = |∂β(G − P0)(z)| � ‖G, P0‖J (f,μ;δQ◦ ) (β ∈ A, z ∈ Q◦). (6.23)

For distinct x, y ∈ Kp ∪ BCZ , we want to bound

|Sy − Sx|y,|x−y| =
( ∑

γ∈M
|∂γ(Sy − Sx)(y)|p|x − y||γ|p+n−mp

)1/p
.

For γ ∈ M, we have

|∂γ(Sy − Sx)(y)| = |∂γ(Fy − JxFx)(y)|

≤ |∂γ(Fx − Fy)(y)| + |∂γ(JxFx − Fx)(y)| (6.24)

Now apply (6.22) and (6.11) to estimate

|∂γ(Fx − Fy)(y)| =
∣∣∣∂γ
(∑

α∈A
∂αG(x)ϕα

x −
∑
α∈A

∂αG(y)ϕα
y

)
(y)
∣∣∣

=
∣∣∣∂γ
(∑

α∈A
∂αG(x)

∑
β∈A

(ωyx
αβ · ϕβ

y ) −
∑
β∈A

∂βG(y) · ϕβ
y

)
(y)
∣∣∣

≤
∑
β∈A

∣∣∣ ∑
α∈A

∂αG(x) · ωyx
αβ − ∂βG(y)

∣∣∣|∂γϕβ
y (y)|

=
∑
β∈A

|∂βFx(y)||∂γϕβ
y (y)| (6.25)

Because A is monotonic, if β ∈ A and β + α ∈ M then β + α ∈ A, so

∂βJxFx(y) =
∑

β+α∈M
∂β+αFx(x) (y − x)α

α! = 0 (β ∈ A). (6.26)

We claim that |∂γϕβ
y (y)| � |y − x||β|−|γ| for γ ∈ M, β ∈ A. Indeed, this estimate follows 

by (5.6) if y ∈ Kp, and by (5.2) if y = xi for some i ∈ I (note: if y = xi then x /∈ Qi, 
as y, x are distinct, hence δQi

/2 ≤ |y − x| ≤ 1). Thus, using (6.26) in (6.25), and then 
using the Sobolev Inequality, we bound
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|∂γ(Fx − Fy)(y)| ≤
∑
β∈A

|∂βFx(y)||∂γϕβ
y (y)|

=
∑
β∈A

|∂β(Fx − JxFx)(y)||∂γϕβ
y (y)|

�
∑
β∈A

‖Fx‖Lm,p(U)|y − x|m−|β|−n/p|y − x||β|−|γ|

� ‖Fx‖Lm,p(U)|y − x|m−|γ|−n/p. (6.27)

On the other hand, by the Sobolev Inequality,

|∂γ(Jx(Fx) − Fx)(y)| � ‖Fx‖Lm,p(U)|x − y|m−|γ|−n/p.

Combining the previous inequalities in (6.24), we have

|∂γ(Sy − Sx)(y)| � ‖Fx‖Lm,p(U)|x − y|m−|γ|−n/p (γ ∈ M). (6.28)

From (3.69), we have ϕα
x :=

∑
β∈A Ax

αβ · ϕβ , where (Ax
αβ)α,β∈A is a (C, Cε)-near 

triangular matrix, and in particular |Ax
αβ| ≤ C. Hence ‖ϕα

x‖Lm,p(U) �
∑

β∈A ‖ϕβ‖Lm,p(U)
for all α ∈ A; applying this and (6.23), in the definition of Fx, we have

‖Fx‖Lm,p(U) ≤ ‖G‖Lm,p(U) +
∥∥∥∑

α∈A
∂αG(x)ϕα

x

∥∥∥
Lm,p(U)

� ‖G‖Lm,p(U) + ‖G, P0‖J (f,μ;δQ◦ )
∑
β∈A

‖ϕβ‖Lm,p(U). (6.29)

Substituting (6.29) into (6.28),

|∂γ(Sy − Sx)(y)|·|x − y||γ|+n/p−m � ‖G‖Lm,p(U) + ‖G, P0‖J (f,μ;δQ◦ )
∑
β∈A

‖ϕβ‖Lm,p(U).

(6.30)

Thus, by definition of the norm | · |y,|x−y|, we conclude that

|Sy − Sx|py,|x−y| =
∑

γ∈M
|∂γ(Sx − Sy)(y)|p|y − x||γ|p+n−mp

� ‖G‖p
Lm,p(U) + ‖G, P0‖p

J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖p
Lm,p(U).

This completes the proof of (6.21). �
Lemma 6.4. The function F |KCZ

: KCZ → R and Whitney field �P ∈ Wh(BCZ) satisfy

‖F, �P‖J∗(f,μ;KCZ ,CZ◦) � ‖G, P0‖J (f,μ;δ ◦ ). (6.31)

Q
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Proof. By (5.48),

‖F, �P‖p
J∗(f,μ;KCZ ,CZ◦) �

∑
i∈I

‖Fi, Pxi
‖p

J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦) +
∑
i↔i′

|Pxi
− Pxi′ |pi

Because Jxi
Fi = Pxi

, by (2.12), ‖Fi − Pxi
‖Lp(Qi)/δm

Qi
� ‖Fi‖Lm,p(Qi), hence we have

‖F, �P‖p
J∗(f,μ;KCZ ,CZ◦) �

∑
i∈I

⎡⎣‖Fi‖p
Lm,p(1.1Qi∩Q◦) +

∫
1.1Qi

|Fi − f |pdμ

⎤⎦
+
∑
i↔i′

|Pxi
− Pxi′ |pi . (6.32)

We now bound the term 
∑

i↔i′ |Pxi
− Pxi′ |pi in (6.32). Recall from (6.19) that Pxi

=
Sxi

. If i ↔ i′ then Qi and Qi′ are neighboring CZ cubes, hence, Uii′ := (1.1Qi ∪1.1Qi′) ∩
Q◦ is the union of two C-non-degenerate boxes with a common interior point, and 
xi, xi′ ∈ Uii′ . Note also |xi − xi′ | � δQi

, by the good geometry of the CZ decomposition. 
Hence, from Lemma 6.3, applied with U = Uii′ , for any i ↔ i′,

|Pxi
− Pxi′ |pi = |Sxi

− Sxi′ |pxi,δQi
� |Sxi

− Sxi′ |pxi,|xi−xi′ |

� ‖G‖p
Lm,p((1.1Qi∪1.1Qi′ )∩Q◦)

+ ‖G, P0‖p
J∗(f,μ;Q◦)

∑
β∈A

‖ϕβ‖p
Lm,p((1.1Qi∪1.1Qi′ )∩Q◦). (6.33)

By summing (6.33) over all i, i′ ∈ I with i ↔ i′, and by using the bounded overlap of 
the regions (1.1Qi ∪ 1.1Qi′) ∩ Q◦ ⊂ Q◦, we find that∑

i↔i′

|Pxi
− Pxi′ |pi � ‖G‖p

Lm,p(Q◦) + ‖G, P0‖p
J∗(f,μ;Q◦)

∑
β∈A

‖ϕβ‖p
Lm,p(Q◦).

Further, from (3.70) we have ‖ϕβ‖Lm,p(Q◦) ≤ ‖ϕβ‖J (0,μ) � 1 for β ∈ A. Also, 
‖G‖Lm,p(Q◦) ≤ ‖G, P0‖J∗(f,μ;Q◦). Hence,

∑
i↔i′

|Pxi
− Pxi′ |pi � ‖G, P0‖p

J∗(f,μ;Q◦). (6.34)

Recall P0 = 0. For α ∈ A, by (2.14),

|∂αG(xi)| = |∂α(G − P0)(xi)| ≤ C‖G, P0‖J∗(f,μ;Q◦). (6.35)

From (3.69), we have ϕα
xi

:=
∑

β∈A Axi

αβ ·ϕβ (α ∈ A), where (Axi

αβ)α,β∈A is a (C, Cε)-near 
triangular matrix. In particular, |Axi

αβ| ≤ C. We also have, from (3.70), ‖ϕβ‖Lp(dμ) ≤
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‖ϕβ‖J (0,μ) � 1 for β ∈ A. Thus, by definition of Fi (see (6.13)), and by the triangle 
inequality, we deduce that

∑
i∈I

∫
1.1Qi

|Fi − f |pdμ

�
∑
i∈I

[ ∫
1.1Qi

|G − f |pdμ +
∑
α∈A

|∂αG(xi)|p
∑
β∈A

|Axi

αβ |p ·
∫

1.1Qi

|ϕβ |pdμ

]

�
∑
i∈I

[ ∫
1.1Qi

|G − f |pdμ + ‖G, P0‖p
J∗(f,μ;Q◦)

∑
β∈A

∫
1.1Qi

|ϕβ |pdμ

]

�
∫

Q◦

|G − f |pdμ + ‖G, P0‖p
J∗(f,μ;Q◦)

∑
β∈A

∫
Q◦

|ϕβ |pdμ

� ‖G, P0‖p
J∗(f,μ;Q◦). (6.36)

Similarly, by instead using that ‖ϕβ‖Lm,p(Q◦) ≤ ‖ϕβ‖J (0,μ) � 1 for β ∈ A, and by 
definition of Fi, we have

∑
i∈I

‖Fi‖p
Lm,p(1.1Qi∩Q◦)

�
∑
i∈I

[
‖G‖p

Lm,p(1.1Qi∩Q◦) +
∑
α∈A

|∂αG(xi)|p
∑
β∈A

|Axi

αβ |p‖ϕβ‖p
Lm,p(1.1Qi∩Q◦)

]

�
∑
i∈I

[
‖G‖p

Lm,p(1.1Qi∩Q◦) + ‖G, P0‖p
J∗(f,μ;Q◦)

∑
β∈A

‖ϕβ‖p
Lm,p(1.1Qi∩Q◦)

]

� ‖G‖p
Lm,p(Q◦) + ‖G, P0‖p

J∗(f,μ;Q◦)

∑
β∈A

‖ϕβ‖p
Lm,p(Q◦)

� ‖G, P0‖p
J∗(f,μ;Q◦). (6.37)

We substitute inequalities (6.34), (6.36), and (6.37) into (6.32) to deduce:

‖F, �P‖p
J∗(f,μ;KCZ ,CZ◦) � ‖G, P0‖p

J∗(f,μ;Q◦).

We apply (2.8) to conclude:

‖F, �P‖J∗(f,μ;KCZ ,CZ◦) � ‖G, P0‖J (f,μ;δQ◦ ).

This completes the proof of (6.31). The proof of the lemma is complete. �
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Lemma 6.5. The polynomials Sx (x ∈ Q◦) defined in (6.17) satisfy

sup
x,y∈Q◦

|Sx − Sy|x,|y−x| � ‖G, P0‖J (f,μ;δQ◦ ).

Proof. Let x, y ∈ Q◦. We will prove the desired inequality by considering the geometry 
of x and y in relation to Kp and KCZ :

Case 1: Suppose x, y ∈ KCZ . Let y ∈ Qi ∈ CZ◦, x ∈ Qj ∈ CZ◦. Suppose δQi
>

21|y − x|; then x ∈ 1.1Qi. By applying the Sobolev inequality, we have

|Sx − Sy|x,|y−x| = |JxF − JyF |x,|y−x| � ‖F‖Lm,p((1.1Qi)∩Q◦) ≤ ‖F‖Lm,p(KCZ).

(6.38)

Similarly, if δQj
> 21|y − x|; then y ∈ 1.1Qj . By applying the Sobolev inequality, we 

have

|Sx − Sy|x,|y−x| = |JxF − JyF |x,|y−x| � ‖F‖Lm,p((1.1Qj)∩Q◦) ≤ ‖F‖Lm,p(KCZ).

(6.39)

Now suppose δQi
, δQj

≤ 21|y − x|; then |xi − xj | ≤ δQi
+ |x − y| + δQj

≤ 43|x − y|. We 
apply (2.2), the Sobolev Inequality, and Lemma 6.3 with U = Q◦ to deduce

|Sx − Sy|x,|y−x| � |Sy − Sxi
|y,δQi

+ |Sxi
− Sxj

|xi,|xi−xj | + |Sxj
− Sx|x,δQj

= |JyF − Jxi
F |y,δQi

+ |Sxi
− Sxj

|xi,|xi−xj | + |Jxj
F − JxF |x,δQj

� ‖F‖Lm,p(Qi) + ‖F‖Lm,p(Qj) + ‖G‖Lm,p(Q◦)

+ ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(Q◦)

� ‖F‖Lm,p(KCZ) + ‖G, P0‖J (f,μ;δQ◦ ), (6.40)

where in the last line we use (3.70). By (6.31), we have ‖F‖Lm,p(KCZ) � ‖G, P0‖J (f,μ;δQ◦ ). 
Considering (6.38), (6.39), and (6.40), we conclude for x, y ∈ KCZ ,

|Sx − Sy|x,|y−x| � ‖F‖Lm,p(KCZ) + ‖G, P0‖J (f,μ;δQ◦ ) � ‖G, P0‖J (f,μ;δQ◦ ). (6.41)

Case 2: Suppose x ∈ Kp, y ∈ KCZ . Let y ∈ Qi ∈ CZ◦. Because |x − xi| � |y − x| and 
δQi

≤ |y − x| (see Lemma 4.10), we can apply (2.2) and then the Sobolev Inequality to 
deduce

|Sx − Sy|x,|y−x| � |Sx − Sxi
|x,|xi−x| + |Sxi

− Sy|xi,δQi

= |Sx − Sxi
|x,|xi−x| + |Jxi

F − JyF |xi,δQi

� |Sx − Sxi
|x,|xi−x| + ‖F‖Lm,p(Qi). (6.42)
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We apply Lemma 6.3 with U = Q◦, recalling for α ∈ A, we have ‖ϕα‖Lm,p(Q◦) ≤ ε/C0
(see (3.70)), to deduce

|Sx − Sxi
|x,|xi−x| � ‖G‖Lm,p(Q◦) + ‖G, P0‖J (f,μ;δQ◦ ) ·

∑
β∈A

‖ϕβ‖Lm,p(Q◦)

� ‖G, P0‖J (f,μ;δQ◦ ). (6.43)

Substituting this into (6.42), and using again that ‖F‖Lm,p(KCZ) ≤ ‖G, P0‖J (f,μ;δQ◦ ), 
we have

|Sx − Sy|x,|y−x| � ‖G, P0‖J (f,μ;δQ◦ ).

Case 3: Suppose x, y ∈ Kp; then as in (6.43) in Case 2, we can apply Lemma 6.3 to 
deduce

|Sx − Sy|x,|y−x| � ‖G, P0‖J (f,μ;δQ◦ ).

This completes the proof of Lemma 6.5. �
Lemma 6.6. The function F defined in (6.16) belongs to Lm,p(Q◦), and

‖F‖Lm,p(Q◦) � ‖G, P0‖J (f,μ;δQ◦ ). (6.44)

Proof. We will use Corollary 2.12. Fix π ∈ Π
(Q◦), a congruent δ-packing of Q◦, with 
δ ≤ δQ◦ .

For Q̂ ∈ π, δQ̂ = δ, by Hölder’s inequality,

E(F, Q̂)δ−m ≤ sup
x∈Q̂

‖F − Sx‖Lp(Q̂)δ
−m ≤ sup

x∈Q̂

‖F − Sx‖L∞(Q̂)δ
n/p−m

≤ sup
x,y∈Q̂

|Sy − Sx|y,δ, (6.45)

where the last line follows because F (y) = Sy(y) for y ∈ Q◦ – see (6.20).
Fix Q̂ ∈ π and x, y ∈ Q̂. Then, |x − y| ≤ δQ̂ = δ.
If Q̂ ⊂ KCZ , then by the Sobolev Inequality,

|Sx − Sy|y,δ = |JxF − JyF |y,δ � ‖F‖Lm,p(Q̂). (6.46)

Now suppose Q̂ ∩ Kp �= ∅. We will show

|Sx − Sy|y,δ � ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(100Q̂∩Q◦)

+ ‖G‖Lm,p(100Q̂∩Q◦) + sup
1.1Qi⊂100Q̂

‖F‖Lm,p(1.1Qi∩Q◦). (6.47)
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Case 1: Let x, y ∈ Kp. Then apply (6.21) with U = Q̂,

|Sx − Sy|y,δ � ‖G‖Lm,p(Q̂) + ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(Q̂),

which implies (6.47).
Case 2: Let y ∈ Qi ∈ CZ◦ and δQi

> 21|x − y| or x ∈ Qj ∈ CZ◦ and δQj
> 21|x − y|. 

Because |P |x,δ � |P |y,δ for |x − y| ≤ δ, we may assume without loss of generality that 
y ∈ Qi, δQi

> 21|x − y|. Then x ∈ 1.1Qi ⊂ KCZ . As x, y ∈ KCZ , we have Sx = JxF

and Sy = JyF . Because Q̂ ∩ Kp �= ∅ and x ∈ Q̂, it follows that dist(x, Kp) ≤ δQ̂. Also, 
by Lemma 4.10), we have dist(Qi, Kp) ≥ δQi

. Thus,

δQ̂ ≥ dist(x, Kp) ≥ dist(Qi, Kp) ≥ δQi
.

Since Qi ∩ Q̂ �= ∅, we have 1.1Qi ⊂ 100Q̂, and by the Sobolev Inequality,

|Sx − Sy|y,δ = |JxF − JyF |y,δ � ‖F‖Lm,p(1.1Qi∩Q◦),

completing the proof of (6.47).
Case 3: Let y ∈ Qi ∈ CZ◦ and δQi

≤ 21|x − y| ≤ 21δQ̂ = 21δ. Then 1.1Qi ⊂ 100Q̂. 
Recall Jxi

F = Sxi
. Then from (2.2), By the Sobolev inequality,

|Sxi
− Sy|y,δ = |Jxi

F − JyF |y,δ � ‖F‖Lm,p(Qi).

Thus, by the triangle inequality and (2.2),

|Sx − Sy|y,δ � |Sx − Sxi
|x,δ + |Sxi

− Sy|y,δ � |Sx − Sxi
|x,δ + ‖F‖Lm,p(Qi). (6.48)

We continue this bound by splitting into subcases.
Subcase 3a: Suppose x ∈ Kp. Note that |x −xi| ≤ |x −y| +|y−xi| ≤ |x −y| +δQi

≤
22δ. Further, x, xi ∈ 100Q̂ ∩ Q◦. Thus, from (2.3), and (6.21) with U = 100Q̂ ∩ Q◦,

|Sxi
− Sx|x,δ � |Sxi

− Sx|x,|x−xi|

� ‖G‖Lm,p(100Q̂∩Q◦) + ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(100Q̂∩Q◦).

Substituting this into (6.48), we have

|Sx − Sy|y,δ � ‖F‖Lm,p(Qi) + ‖G‖Lm,p(100Q̂∩Q◦)

+ ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(100Q̂∩Q◦),

completing the proof of (6.47).
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Subcase 3b: Suppose x /∈ Kp. Then x ∈ Qj for some Qj ∈ CZ◦ and because of 
Case 2, we can assume δQj

≤ 21|x − y| ≤ 21δ. Hence, 1.1Qj ⊂ 100Q̂. Also, |x − xj | ≤
δQj

≤ 21δ, and

|xi − xj | ≤ |xj − x| + |x − y| + |y − xi| ≤ δQj
+ |x − y| + δQi

≤ 43δ.

Thus, from (2.2), (2.3), and (6.21) with U = 100Q̂ ∩ Q◦, and the Sobolev Inequality,

|Sx − Sxi
|x,δ � |Sxi

− Sxj
|xj ,δ + |Sxj

− Sx|x,δ

� |Sxi
− Sxj

|xj ,|xi−xj | + |Jxj
F − JxF |x,δ

� ‖G‖Lm,p(100Q̂∩Q◦) + ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(100Q̂∩Q◦)

+ ‖F‖Lm,p(Qj). (6.49)

By substituting (6.49) into (6.48), we have

|Sx − Sy|y,δ � ‖F‖Lm,p(Qi) + ‖F‖Lm,p(Qj) + ‖G‖Lm,p(100Q̂∩Q◦)

+ ‖G, P0‖J (f,μ;δQ◦ ) ·
∑
β∈A

‖ϕβ‖Lm,p(100Q̂∩Q◦).

This completes the proof of (6.47).
Consequently, using (6.45), (6.46), and (6.47), we have∑

Q̂∈π

(
E(F, Q̂

)
/δm

Q̂
)p

�
∑
Q̂∈π

sup
x,y∈Q̂

|Sx − Sy|py,δ

�
∑

Q̂∈π,Q̂∩Kp �=∅

(
sup

1.1Qi⊂100Q̂

‖F‖p
Lm,p(1.1Qi∩Q◦) + ‖G‖p

Lm,p(100Q̂∩Q◦)

+ ‖G, P0‖p
J (f,μ;δQ◦ ) ·

∑
β∈A

‖ϕβ‖p

Lm,p(100Q̂∩Q◦)

)
+

∑
Q̂∈π,Q̂⊂KCZ

‖F‖p

Lm,p(Q̂)

� ‖F‖p
Lm,p(KCZ) + ‖G‖p

Lm,p(Q◦) + ‖G, P0‖p
J (f,μ;δQ◦ ) ·

∑
β∈A

‖ϕβ‖p
Lm,p(Q◦), (6.50)

where the last inequality follows because for Qi ∈ CZ◦, |{Q̂ ∈ π : 1.1Qi ⊂ 100Q̂}| ≤ C, 
and since {100Q̂ : Q̂ ∈ π} has C-bounded overlap (because π is a congruent pack-
ing). From (3.70), we have ‖ϕβ‖Lm,p(Q◦) ≤ ε/C0 for all β ∈ A. From (6.31), we have 
‖F‖Lm,p(KCZ) � ‖G, P0‖J (f,μ;δ ◦ ). Therefore, from (6.50),
Q



78 M.K. Drake / Advances in Mathematics 420 (2023) 108999
∑
Q̂∈π

(
E(F, Q̂

)
/δm

Q̄
)p � ‖G, P0‖p

J (f,μ;δQ◦ ).

Now by taking the supremum over π ∈ Π
(Q◦), and applying Corollary 2.12, we conclude 
F ∈ Lm,p(Q◦) and

‖F‖Lm,p(Q◦) � ‖G, P0‖J (f,μ;δQ◦ ).

This completes the proof of the lemma. �
We complete the section by giving the proof of conditions (6.8) – (6.10).
We apply inequalities (6.31) and (6.44) and the identity F |Kp

= G|Kp
(see (6.16)) to 

bound

‖F, �P‖p
J∗(f,μ;Q◦,CZ◦) � ‖F, �P ‖p

J∗(f,μ;KCZ ,CZ◦) + ‖F‖p
Lm,p(Q◦) +

∫
Kp

|F − f |pdμ

� ‖G, P0‖p
J (f,μ;δQ◦ ).

This establishes the inequality (6.8) for P0 = 0, as desired.
As a consequence of Lemma 6.5, the Whitney field (Sy)y∈Q◦ ∈ Wh(Q◦) defined in 

(6.17) is in Cm−1,1−n/p(Q◦), and thanks to (6.20) it satisfies Sx(x) = F (x) for all x ∈ Q◦. 
Due to Lemma 2.13, the function F satisfies

JxF = Sx, x ∈ Q◦. (6.51)

Then (6.10) holds, thanks to (6.51). From (6.18), we have �S = (Sy)y∈Kp
is coherent 

with P0 = 0. From (6.15), we have �P is coherent with P0 = 0. Thus, ( �P , �S) ∈ Wh(BCZ ∪
Kp) is coherent with P0 = 0, proving (6.9). This completes the proof of (6.8) – (6.10), 
thus completing the proof of Proposition 6.2.

6.3. Keystone point jets

Let (f, P0) ∈ J (μ; δQ◦). The goal of this section is to associate to the data (f, P0) a 
Whitney field �R∗ ∈ Wh(Kp), determined linearly by (f, P0), and satisfying the properties 
outlined below in Lemma 6.7, Lemma 6.8, and Corollary 6.9. These results will be used 
later, in Section 9 and Section 10.

Recall that we have fixed a multi-index set A ⊂ M. In the previous subsection we 
introduced the following notation: Given K ⊂ Rn, a Whitney field �R = (Rx)x∈K ∈
Wh(K) is coherent with P0 provided that ∂αRx(x) = ∂αP0(x) for all x ∈ K, α ∈ A. A 
function H ∈ Cm−1,1−n/p(Rn) is K-coherent with P0 provided that ∂αH(x) = ∂αP0(x)
for all x ∈ K and for all α ∈ A.
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Lemma 6.7. For each (f, P0) ∈ J (μ; δQ◦), there exists a Whitney field �R∗ = �R∗(f, P0) ∈
Wh(Kp) with the following properties.

1. �R∗ is coherent with P0.
2. If H ∈ Lm,p(Rn) satisfies ‖H‖J (f,μ) < ∞ and H is Kp-coherent with P0, then

JxH = R∗
x ∀x ∈ Kp. (6.52)

3. ‖ �R∗‖p
Lm,p(Kp) +

∫
Kp

|R∗
x(x) − f(x)|pdμ � ‖f, P0‖p

J (μ;δQ◦ ).

4. �R∗ depends linearly on (f, P0).

Proof. Due to Proposition 6.2, for any η > 0 there exists H1 ∈ J (f, μ) that is Kp-
coherent with P0 and satisfies ‖H1‖J (f,μ) � ‖f, P0‖J (μ;δQ◦ ) + η < ∞. Define �R∗ ∈
Wh(Kp) as

�R∗ = (R∗
x)x∈Kp

:= (JxH1)x∈Kp
. (6.53)

Next, we verify properties 1–4 of the lemma. In particular, we show that �R∗ is indepen-
dent of η and the choice of H1 (property 2), and furthermore that �R∗ is a linear function 
of (f, P0) (property 4).

Proof of property 1: By definition, R∗
x = JxH1 for x ∈ Kp, where H1 is Kp-coherent 

with P0. Thus, �R∗ is coherent with P0.
Proof of property 2:
We shall make use of the auxiliary polynomials 

(
P α

y

)
α∈A (y ∈ Q◦), defined in 

Lemma 3.8. In particular, from (3.55) we know that 
(
P α

y

)
α∈A forms an (A, y, Cε/C0, 1)-

basis for σJ(y, μ) for all y ∈ 100Q◦.
Fix ε1 > 0 satisfying ε1 < min{c1, ε0/(30mC0C1)} and ε1 < min{(50mC3)−1/(D+1),

C
−1/(D+1)
4 } where C3 is from (5.2), C4 is from (5.6), c1 and C1 are from Lemma 3.5, 

and D = |M|. Fix ε2 < ε2D+2
1 .

For the sake of contradiction, suppose that (6.52) does not hold. Thus, there exist 
x ∈ Kp and H2 ∈ Lm,p(Rn) satisfying ‖H2‖J (f,μ) < ∞ such that

∂α(H1 − H2)(x) = 0 for all α ∈ A, but Jx(H1 − H2) �= 0. (6.54)

Let

B := {β ∈ M \ A : ∂β(H1 − H2)(x) �= 0} = {βi : i ∈ {1, . . . , k}},

where βi are ordered:

β1 < β2 < · · · < βk.
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Note that (6.54) implies B is nonempty. Also, k = |B| ≤ |M| = D. Choose δ ∈ (0, 1)
such that for all β ∈ B,

δm−|β|−n/p
(
‖H1‖J (f,μ) + ‖H2‖J (f,μ)

)
< ε2|∂β(H1 − H2)(x)|. (6.55)

Choose a dyadic cube Q ⊂ Q◦ with x ∈ Q and δQ < δ < 1. Let

j := arg max{|∂βi(H1 − H2)(x)| · δ
|βi|
Q ε−i

1 : i ∈ {1, . . . , k}}.

Then for all i ∈ {1, · · · , k},

|∂βi(H1 − H2)(x)|
|∂βj (H1 − H2)(x)| ≤ εi−j

1 δ
|βj |−|βi|
Q ≤

⎧⎨⎩ε1δ
|βj |−|βi|
Q if βi > βj , i > j,

ε−D
1 δ

|βj |−|βi|
Q if βi < βj , i < j.

(6.56)

Define P βj
x := Jx(H1−H2)/(∂βj (H1−H2)(x)). By definition of B and (6.54), ∂βP

βj
x (x) =

0 for β ∈ M \ B = A. Combining this with (6.56), we have

∂βj P βj
x (x) = 1; (6.57)

|∂βP βj
x (x)| ≤ ε1δ

|βj |−|β|
Q (β ∈ M, β > βj); and (6.58)

|∂βiP βj
x (x)| ≤ ε−D

1 δ
|βj |−|βi|
Q (β ∈ M). (6.59)

Then from (6.55) and since δQ < δ, if ϕ := (H1 −H2)/|∂βj (H1 −H2)(x)| then Jxϕ = P
βj
x

and

‖ϕ‖J (0,μ|3Q) =
‖H1 − H2‖J (0,μ|3Q)

|∂βj (H1 − H2)(x)| ≤
‖H1‖J (f,μ|3Q) + ‖H2‖J (f,μ|3Q)

δ
m−|βj |−n/p
Q (‖H1‖J (f,μ) + ‖H2‖J (f,μ))

· ε2

≤ ε2δ
|βj |+n/p−m
Q .

Hence,

P βj
x ∈ ε2δ

|βj |+n/p−m
Q · σJ (x, μ|3Q). (6.60)

From (6.57)-(6.60), we see that (δ, x0, β̄, P̃ β̄
x0

, μ) := (δQ, x, βj , P βj
x , μ|3Q) satisfies (D6) of 

Lemma 3.5.
In (3.55), we saw that 

(
P α

y

)
α∈A forms an (A, y, Cε, 1)-basis for σJ(y, μ) for all y ∈

100Q◦. We can assume Cε < ε2. If Q ⊂ Q◦ then 4Q ⊂ 100Q◦. So, by (3.5),(
P α

y

)
α∈A forms an (A, y, ε2, δQ)-basis for σJ(y, μ|3Q) for all y ∈ 10Q. (6.61)

Fix y ∈ 10Q. Suppose first y ∈ KCZ , so that y ∈ Qi for some Qi ∈ CZ◦. Because Q
is not OK, we must have δQi

/100 ≤ δQ < 1, and so, by applying (5.2) for the cube Qi

and for some δ̂ ∈ [δQi
/2, 1] satisfying δQ ≤ δ̂ ≤ 50δQ, we deduce that
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|∂βP α
y (y)| ≤ C3δ̂|α|−|β| ≤ 50mC3δ

|α|−|β|
Q (α ∈ A, β ∈ M). (6.62)

Now suppose y ∈ Kp. Then from (5.6) with δ = δQ,

|∂βP α
y (y)| ≤ C4δ

|α|−|β|
Q (α ∈ A, β ∈ M). (6.63)

Because ε1 < min{(50mC3)−1/(D+1), C−1/(D+1)
4 }, in light of (6.62) and (6.63), we have

|∂βP α
y (y)| ≤ ε−D−1

1 · δ
|α|−|β|
Q (y ∈ 10Q, α ∈ A, β ∈ M) (6.64)

It is now evident from (6.57)-(6.60), (6.61), and (6.64) that properties (D1)-(D7) of 
Lemma 3.5 hold with parameters:(

ε1, ε2, δ, A, μ, E,
(

P̃ α
x

)
α∈A,x∈E

, x0, β̄, P̃ β̄
x0

)
:=
(

ε1, ε2, δQ, A, μ|3Q, 10Q, (P α
x )α∈A,x∈10Q , x, βj , P βj

x

)
.

Thus there exists A < A so that for every y ∈ 10Q, σJ (y, μ|3Q) contains an 
(A, y, C1ε1, δQ)-basis. Because C1ε1 < ε0/(30mC0), we apply Lemma 3.2 to deduce that 
for every y ∈ 3Q, σJ (y, μ|3Q) contains an (A, y, ε0/C0, 30δQ)-basis, indicating that Q is 
OK. This contradicts that x ∈ Kp and x ∈ Q.

This completes the proof by contradiction of (6.52). So we have proven property 2.

Proof of property 3: By definition, R∗
x(x) = H1(x) for all x ∈ Kp, where ‖H1‖J (f,μ) �

‖f, P0‖J (μ;δQ◦ + η, and η > 0 is arbitrary. By property 2, �R∗ is independent of η. Then:

∫
Kp

|R∗
x(x) − f(x)|pdμ(x) =

∫
Kp

|H1 − f |pdμ ≤
∫
Rn

|H1 − f |pdμ ≤ ‖H1‖p
J (f,μ)

� (‖f, P0‖J (μ;δQ◦ ) + η)p.

Furthermore, since R∗
x = JxH1 for all x ∈ Kp, by definition of the Lm,p(Kp) trace norm 

on Wh(Kp), we have

‖ �R∗‖Lm,p(Kp) ≤ ‖H1‖Lm,p(Rn) ≤ ‖H1‖J (f,μ) � ‖f, P0‖J (μ;δQ◦ ) + η.

Now let η → 0 in the previous inequalities. This completes the proof of property 3.
Proof of property 4: To complete the proof of the lemma, we will show that �R∗ =

�R∗(f, P0) depends linearly on (f, P0).
Let (f1, P1), (f2, P2) ∈ J (μ; δQ◦). Fix Hj ∈ J (fj , μ) such that Hj is Kp-coherent 

with Pj for j = 1, 2. By property 3, we have that �R∗(fj , Pj) = (JxHj)x∈Kp
for j = 1, 2.
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Then, for λ ∈ R, H1 + λH2 ∈ J (f1 + λf2, μ), and for α ∈ A, x ∈ Kp,

∂α(H1 + λH2)(x) = ∂αH1(x) + λ∂αH2(x)

= ∂αP1(x) + λ∂αP2(x),

indicating that H1 + λH2 is Kp-coherent with P1 + λP2. Because of (6.52),

�R∗(f1 + λf2, P1 + λP2) = {Jx(H1 + λH2)}x∈Kp
= �R∗(f1, P1) + λ �R∗(f2, P2).

Therefore, the map (f, P0) �→ �R∗(f, P0) is linear, completing the proof of property 4. �
Lemma 6.8. Let x ∈ Kp and r > 0. Set μx,r := μ|B(x,r). Fix (f, P0) ∈ J (μ; δQ◦). Suppose 
H ∈ Lm,p(Rn), ‖H‖J (f,μx,r) < ∞, and H is Kp-coherent with P0. Then R∗

x(f, P0) =
JxH.

Proof. We employ a proof by contradiction, following the proof of property 2 of 
Lemma 6.7, with the measure μ replaced by μx,r in this proof. We make one change 
in our previous proof: When we choose the dyadic cube Q ⊂ Q◦ with x ∈ Q, we im-
pose the additional condition δQ < r/3. This condition implies 3Q ⊂ B(x, r), so that 
μx,r|3Q = μ|3Q. Following our previous proof, we reach the conclusion that σJ(y, μx,r|3Q)
contains an (A, y, ε0/C0, 30δQ)-basis for all y ∈ 3Q, for some A < A. So, σJ (y, μ|3Q)
contains an (A, y, ε0/C0, 30δQ)-basis for all y ∈ 3Q, indicating that Q is OK, a contra-
diction. �

As a consequence of Proposition 6.2, the Whitney field �R∗ ∈ Wh(Kp) satisfies the 
following condition:

Corollary 6.9. For (f, P0) ∈ J (μ; δQ◦), and for �R∗ = �R∗(f, P0) as in Lemma 6.7,

inf
{

‖f, �P , �R∗‖J∗(μ;Q◦,CZ◦;Kp) :
�P ∈ Wh(BCZ) satisfies
�P is coherent with P0

}
� ‖f, P0‖J (μ;δQ◦ ).

7. Optimal local extension

In this section, we prove a general result, Lemma 7.2, on the optimization of certain 
Lp-type norms by linear maps. In Section 7.2, we apply this result to construct a Whitney 
field �R′ on the keystone basepoint set Bkey := {xs}s∈Ī . We shall apply Lemma 7.2 once 
more, later, in Section 11, when we give the proofs of the main theorems.
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7.1. Optimization by linear maps

Lemma 7.1 (Linear Map Lemma). Let (ν, X, Σ) be a measure space, and let V be a vector 
space. Let k ≥ 1, let p ≥ 1, and let Λ : V × Rk → Lp(dν) be a linear map. Then there 
exists a linear map ξ : V → Rk, satisfying:∫

X

|Λ(v, ξ(v))|pdν ≤ C inf
w∈Rk

∫
X

|Λ(v, w)|pdν, for all v ∈ V, (7.1)

where C depends only on k and p.

Proof. We will show this is true when k = 1; then this can be iterated for the full result. 
We factor the linear map Λ : V × R → Lp(dν), as follows: Λ(v, w) = Λ̂(v) − a · w for 
a linear map Λ̂ : V → Lp(dν) and a ∈ Lp(dν). Note, if ‖a‖Lp(dν) = 0 then we can 
take ξ(v) = 0, and the conclusion of the lemma will be satisfied. Thus, we may assume 
‖a‖Lp(dν) �= 0. Define ξ : V → R:

ξ(v) :=

∫
{a�=0}

Λ̂(v)
a |a|pdν∫

{a�=0} |a|pdν
.

Note the convergence of the integral in the numerator, by Hölder’s inequality. Then 
v �→ ξ(v) is linear.

For any w ∈ R, we claim that 
∫

X
|Λ(v, ξ(v))|pdν ≤ C

∫
X

|Λ(v, w)|pdν. To see this, first 
note ∫

X

|Λ(v, w)|pdν =
∫
X

|Λ̂(v) − a · w|pdν

=
∫

{a=0}

|Λ̂(v)|pdν +
∫

{a�=0}

|Λ̂(v) − a · w|pdν.

We bound∫
{a�=0}

|Λ̂(v) − a · ξ(v)|pdν

=
∫

{a�=0}

∣∣∣∣∣ Λ̂(v)
a

− ξ(v)

∣∣∣∣∣
p

|a|pdν

≤ 2p ·
( ∫ ∣∣∣∣∣ Λ̂(v)

a
− w

∣∣∣∣∣
p

|a|pdν +
∫ ∣∣∣∣∣∣

∫
{a�=0}

Λ̂(v)
a |a|pdν∫

{a�=0} |a|pdν
− w

∣∣∣∣∣∣
p

|a|pdν
)

{a�=0} {a�=0}
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≤ (1 + 2p) ·
∫

{a�=0}

∣∣∣∣∣ Λ̂(v)
a

− w

∣∣∣∣∣
p

|a|pdν

= (1 + 2p) ·
∫

{a�=0}

∣∣∣Λ̂(v) − a · w
∣∣∣p dν,

where the last inequality follows by applying Jensen’s Inequality to the second term in 
the previous line. Thus, adding 

∫
{a=0} |Λ̂(v)|pdν to both sides of the above estimate, we 

obtain (7.1) in the case k = 1, with constant C = 1 + 2p. By iterating k times, we reach 
the conclusion of the lemma with a constant C = (1 + 2p)k. �
Lemma 7.2 (Linear Map Lemma II). Let μ0 be a Borel regular measure on Rn, and let 
V be a vector space. Let k ≥ 1, and for each � ∈ N, let λ� : V × Rk → Lp(dμ0) be a 
linear map, and let φ� : V × Rk → R be a linear functional. Let Ψ : V × Rk → RN be a 
linear map, such that w �→ Ψ(0, w) is surjective (N ≤ k).

Suppose that the functional

M(v, w) :=
∞∑

�=1

‖λ�(v, w)‖p
Lp(dμ0) +

∞∑
�=1

|φ�(v, w)|p

is finite for every (v, w) ∈ V × Rk.
Then there exists a linear map ξ : V → Rk, satisfying:

Ψ(v, ξ(v)) = 0 ∈ RN ,

M(v, ξ(v)) ≤ C inf{M(v, w) : w ∈ Rk, Ψ(v, w) = 0}, for all v ∈ V,

where C depends only on k and p.

Proof. We first suppose N = 0, i.e., the constraint map Ψ is trivial. To prove Lemma 7.2
in this case, we apply Lemma 7.1 to the product measure ν = (μ0 +δz) ×μ1 on the space 
X = (Rn � {z}) × N, where μ0 is a given Borel regular measure on Rn, δz is a Dirac 
delta measure supported at the point z (z /∈ Rn), and μ1 is the counting measure on N.

Now suppose N > 0. Write Ψ(v, w) = Ψ1(v) − Ψ2(w), for linear maps Ψ1 : V → RN

and Ψ2 : Rk → RN . The condition that w �→ Ψ(0, w) is surjective ensures that Ψ2 is 
surjective. By Gaussian elimination, after possibly permuting the coordinates of w =
(w1, . . . , wk), the constraint set

{(v, w) : Ψ(v, w) = 0} = {(v, w) : Ψ2(w) = Ψ1(v)} ⊂ V × Rk

can be written in the form

{(v, w1, w2) : v ∈ V, w1 = (w1, . . . , w�) ∈ R�,

w2 = (w�+1, . . . , wk) = ψ(v, w1, . . . , w�) ∈ Rk−�}
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for some � ≤ k, and for a linear map ψ : V × R� → R�−k. (The condition that Ψ2 is 
surjective ensures that the linear system Ψ2(w) = Ψ1(v) admits a solution w for every 
v ∈ V .)

We obtain the conclusion of the lemma then, by applying the version of Lemma 7.2
without constraints to the functional M̃ : V × R� → R+ given by

M̃(v, w1, . . . , w�) := M(v, w1, . . . , w�, ψ(v, w1, . . . , w�)). �
7.2. Local extension

Fix a keystone cube Qs. (See Definition 4.3.) We will construct a polynomial 
R′

xs
∈ P that is coherent with P0 and approximately minimizes the expression 

‖f, R′
xs

‖J (μ|9Qs ,δQs ).

Lemma 7.3. Let Qs ∈ CZkey, and let (f, P0) ∈ J (μ; δQ◦). There exists R′
xs

∈ P that 
depends linearly on (f |9Qs

, P0) and satisfies ∂αR′
xs

(xs) = ∂αP0(xs) for all α ∈ A, and

‖f, R′
xs

‖J (μ|9Qs ,δQs ) � inf
R∈P

{
‖f, R‖J (μ|9Qs ,δQs ) : ∂αR(xs) = ∂αP0(xs) ∀α ∈ A

}
.

(7.2)

Proof. Due to the good geometry of the CZ decomposition, δQ → 0 as Q → x, Q ∈ CZ◦, 
x ∈ Kp. If 100Qs∩Kp �= ∅, then 100Qs intersects CZ cubes of arbitrarily small sidelength, 
due to the previous remark, which contradicts that Qs is a keystone cube. Therefore, 
100Qs ∩ Kp = ∅.

Let CZs := {Q̂j}1≤j≤k be the collection of all Q ∈ CZ◦ satisfying 1.1Q ∩ 100Qs �= ∅, 
and with Q̂1 = Qs. Let xj := ctr(Q̂j) and Dj := 1.1Q̂j ∩ 9Qs for j = 1, . . . , k. Then 
{Dj}1≤j≤k is a cover of 9Qs by axis-parallel rectangles.

Let P 1 ∈ P, and let �P∗ := (P j)2≤j≤k ∈ Pk−1 be a (k − 1)-tuple of elements of P.
We apply (AL1)-(AL3) (see Section 4.4) to the CZ cube Q̂i and the Borel set Ei =

Di ⊂ 3Q̂i. So, for each i = 1, 2, . . . , k, there exist a linear map Ti : J (μ|Di
) × P →

Lm,p(Rn), a functional Mi : J (μ|Di
) × P → R+, and countable collections of Borel sets 

{Ai
�}�∈N with

Ai
� ⊂ supp(μ|Di

) ⊂ supp(μ|9Qs
), (7.3)

and of linear maps φi
� : J (μ|Di

) × P → R, and λi
� : J (μ|Di

) × P → Lp(dμ) (� ∈ N), 
that satisfy: For all f ∈ J (μ|Di

) and P ∈ P,

(i) Mi(f, P ) � ‖Ti(f, P ), P‖J (f,μ|Di
;δ

Q̂i ) � ‖f, P‖J (μ|Di
;δ

Q̂i ); and

(ii) Mi(f, P ) =
(∑

�∈N

∫
Ai

�

|λi
�(f, P ) − f |pdμ +

∑
�∈N

|φi
�(f, P )|p

)1/p

< ∞.
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We now show that: For any f ∈ J (μ|9Qs
) and P 1 ∈ P,

‖f, P 1‖p
J (μ|9Qs ;δQs ) � inf

�P∗∈Pk−1

⎧⎨⎩
k∑

i=1
‖f, P i‖p

J (μ|Di
;δ

Q̂i ) +
k∑

i,j=1
|P i − P j |pxi,δ

Q̂i

⎫⎬⎭ .

(7.4)

We prepare to apply Lemma 5.8 for the proof of the upper bound in (7.4).
We fix P 1 ∈ P, and let �P∗ = (P j)2≤j≤k be arbitrary.
We define a Whitney field �P = (Pxi

)i∈I ∈ Wh(BCZ) by letting

Pxi
=
{

P j if Qi = Q̂j , some j = 1, . . . , k; else

P 1 if Qi ∈ CZ◦ \ {Q̂j}1≤j≤k.

Define �S ∈ Wh(Kp) by letting Sx = P 1 for all x ∈ Kp. Define

Fi(x) =
{

Tj(f, P j) if Qi = Q̂j , some j = 1, . . . , k

P 1(x) if Qi ∈ CZ◦ \ {Q̂j}1≤j≤k.

Let {θi}i∈I be a partition of unity satisfying (POU1)-(POU4) (see Section 4.3). Define 
F : Q◦ → R as

F (x) =
{∑

i∈I θi(x) · Fi(x) x ∈ KCZ

Sx(x) = P 1(x) x ∈ Kp.

Because �S is constant on Kp, ‖�S‖Lm,p(Kp) = 0. Further, ( �P , �S) ∈ Cm−1,1−n/p(BCZ ∪
Kp), because ( �P , �S) is constant except at finitely many points. Hence by Lemma 5.8, if 
‖F, �P ‖J∗(f,μ|9Qs ;KCZ ,CZ◦) < ∞ then F ∈ Lm,p(Q◦) and

‖F‖Lm,p(Q◦) � ‖F, �P‖J∗(f,μ|9Qs ;KCZ ,CZ◦). (7.5)

We prepare to estimate ‖F, �P‖J∗(f,μ|9Qs ;KCZ ,CZ◦) and establish it to be finite. By 
Lemma 5.7,

‖F, �P‖p
J∗(f,μ|9Qs ;KCZ ,CZ◦) �

∑
i∈I

‖Fi, Pxi
‖p

J∗(f,μ|9Qs∩1.1Qi
;1.1Qi∩Q◦)

+
∑
i↔i′

|Pxi
− Pxi′ |pxi,δQi

. (7.6)

From the definitions of Fi and Pxi
, we see that all but finitely many of the terms 

in either of the preceding sums are equal to zero. Indeed, for Qi /∈ CZs = {Q̂j}1≤j≤k, 
Fi = Pxi

= P 1 and the support of the restricted measure μ|9Qs
, is disjoint from 1.1Qi. 
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Therefore, ‖Fi, Pxi
‖J∗(f,μ|9Qs∩1.1Qi

;1.1Qi∩Q◦) = 0 for Qi /∈ CZs. Furthermore, by defi-
nition of Pxi

, note that Pxi
�= Pxi′ implies either Qi ∈ CZs or Qi′ ∈ CZs. Hence, the 

sum on the right-hand side of (7.6) is finite. By reindexing the sums in (7.6) to be over 
j ∈ {1, 2, . . . , k}, and using (7.5), we conclude that

‖F‖p
Lm,p(Q◦) � ‖F, �P‖p

J∗(f,μ|9Qs ;KCZ ,CZ◦)

�
k∑

j=1
‖Tj(f, P j), P j‖p

J∗(f,μ|9Qs∩1.1Q̂j ;1.1Q̂j∩Q◦)
+

k∑
j,j′=1

|P j − P j′ |pxj ,δ
Q̂j

.

(7.7)

Note that 9Qs ∩ supp(μ) ⊂ 9Qs ∩ Q◦ ⊂ KCZ , since Qs is keystone. Hence,∫
9Qs

|F − f |pdμ ≤ ‖F, �P‖p
J∗(f,μ|9Qs ;KCZ ,CZ◦). (7.8)

Also, by Lemma 2.6,

‖F − P 1‖p
Lp(9Qs∩Q◦)/δmp

Qs
� ‖F‖p

Lm,p(9Qs∩Q◦) + ‖F − P 1‖p
Lp(Qs)/δmp

Qs

� ‖F, �P ‖p
J∗(f,μ|9Qs ;KCZ ,CZ◦), (7.9)

where the last line follows because Q̂1 = Qs, and so Pxs
= P 1 by definition of �P .

Combining (7.7), (7.8), and (7.9), we have

‖F, P 1‖p
J∗(f,μ|9Qs ;9Qs∩Q◦)

� ‖F‖p
Lm,p(9Qs∩Q◦) +

∫
9Qs

|F − f |pdμ + ‖F − P 1‖p
Lp(9Qs∩Q◦)/δmp

Qs

�
k∑

j=1
‖Tj(f, P j), P j‖p

J∗(f,μ|Dj
;1.1Q̂j∩Q◦)

+
k∑

j,j′=1
|P j − P j′ |pxj ,δ

Q̂j
.

By property (i) of Tj , and estimate (2.8), relating the J∗ and J -functionals,

‖Tj(f, P j), P j‖p

J∗(f,μ|Dj
;1.1Q̂j∩Q◦)

� ‖Tj(f, P j), P j‖J (f,μ|Dj
;δ

Q̂j ) � ‖f, P j‖J (μ|Dj
;δ

Q̂j ),

and thus,

‖F, P 1‖p
J∗(f,μ|9Qs ;9Qs∩Q◦) �

k∑
j=1

‖f, P j‖p
J (μ|Dj

;δ
Q̂j ) +

k∑
j,j′=1

|P j − P j′ |pxj ,δ
Q̂j

.

Thanks to (2.26) and the definition of the J∗-functional as an infimum,
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‖f, P 1‖J (μ|9Qs ;δQs ) � ‖f, P 1‖J∗(μ|9Qs ;9Qs∩Q◦) ≤ ‖F, P 1‖p
J∗(f,μ|9Qs ;9Qs∩Q◦).

Combining the above inequalities, we take the infimum over P 2, . . . , P k ∈ P, and obtain 
the upper bound in (7.4):

‖f, P 1‖p
J (μ|9Qs ,δQs )

� inf

⎧⎨⎩
k∑

j=1
‖f, P j‖p

J (μ|Dj
;δ

Q̂j ) +
k∑

j,j′=1
|P j − P j′ |pxj ,δ

Q̂j
: P 2, . . . , P k ∈ P

⎫⎬⎭ .

Now, to complete the proof of (7.4), we’ll show the reverse inequality:

‖f, P 1‖p
J (μ|9Qs ,δQs )

� inf

⎧⎨⎩
k∑

j=1
‖f, P j‖p

J (μ|Dj
;δ

Q̂j ) +
k∑

j,j′=1
|P j − P j′ |pxj ,δ

Q̂j
: P 2, . . . , P k ∈ P

⎫⎬⎭ .

By taking P j = P 1 for j = 2, . . . , k, we learn that

inf
{ k∑

j=1
‖f, P j‖p

J (μ|Dj
;δ

Q̂j ) +
k∑

j,j′=1
|P j − P j′ |pxj ,δ

Q̂j
: P 2, . . . , P k ∈ P

}

≤
k∑

j=1
‖f, P 1‖p

J (μ|Dj
;δ

Q̂j ) �
k∑

j=1
‖f, P 1‖p

J (μ|Dj
;δQs ),

where the last line uses that δQs
� δQ̂j for j = 1, 2, . . . , k. Finally, note that Dj ⊂ 9Qs, 

so

k∑
j=1

‖f, P 1‖p
J (μ|Dj

;δQs ) ≤ k‖f, P 1‖p
J (μ|9Qs ;δQs ).

Since k is bounded by a universal constant, this completes the proof of (7.4).
We prepare to apply (7.4) to construct the polynomial R′

xs
. By definition of the | · |x,δ

norm (2.1), and conditions (i) and (ii) relating to properties of Ti and Mi, we approximate 
the expression inside the infimum in (7.4) as follows:

k∑
i=1

‖f, P i‖p
J (μ|Di

;δ
Q̂i ) +

k∑
i,j=1

|P i − P j |pxi,δ
Q̂i

�
k∑

i=1

∑
�∈N

( ∫
Ai

�

|λi
�(f, P i) − f |pdμ + |φi

�(f, P i)|p
)

+
k∑

i,j=1

∑
α∈M

cα,i,j |∂α(P i − P j)(xi)|p,

(7.10)



M.K. Drake / Advances in Mathematics 420 (2023) 108999 89
for some constants cα,i,j ≥ 0. For i, j ∈ {1, 2, . . . , k}, we define φi,j,α : J (μ|9Qs
) × P ×

Pk−1 → R as φi,j,α(f, P 1, �P∗) := c
1/p
α,i,j∂α(P i −P j)(xi). By substituting these functionals 

into the right-hand side of (7.10) and reindexing the sum, we have

k∑
i=1

‖f, P i‖p
J (μ|Di

;δ
Q̂i ) +

k∑
i,j=1

|P i − P j |pxi,δ
Q̂i

� M(f, P 1, �P∗)p, where (7.11)

M(f, P 1, �P∗)p :=
∑
�∈N

∫
A�

|λ�(f, P 1, �P∗) − f |pdμ + |φ�(f, P 1, �P∗)|p,

for countable collections of Borel sets {A�}�∈N with A� ⊂ supp(μ|9Qs
) (see (7.3)), and of 

linear maps φ� : J (μ|9Qs
) × P × Pk−1 → R, and λ� : J (μ|9Qs

) × P × Pk−1 → Lp(dμ)
(� ∈ N). In combination with (7.4),

‖f, P 1‖p
J (μ|9Qs ;δQs ) � inf

{
M(f, P 1, �P∗) : �P∗ ∈ Pk−1

}
. (7.12)

According to (7.11), the functional M(f, P 1, �P∗) is finite-valued for every (f, P 1, �P∗) ∈
J (μ|9Qs

) × P × Pk−1. So we are justified to apply Lemma 7.2 (with a trivial constraint 
map Ψ) to determine �P∗ = (P 2, . . . , P k) := ξ(f, P 1) ∈ Pk−1 depending linearly on 
(f |9Qs

, P 1) and satisfying

M(f, P 1, ξ(f, P 1)) ≤ C · inf
{

M(f, P 1, �P∗) : �P∗ ∈ Pk−1
}

, (7.13)

where C is a constant determined by p, k, and D. Observe that both k and D = dim P
are bounded by constants depending on m and n. Hence, C is bounded by a constant 
determined by p, m, and n.

From (7.12) and (7.13),

inf
P 1∈P

{
‖f, P 1‖J (μ|9Qs ;δQs ) : ∂αP 1(xs) = ∂αP0(xs) ∀α ∈ A

}

� inf
P 1∈P

{
M(f, P 1, ξ(f, P 1)) : ∂αP 1(xs) = ∂αP0(xs) ∀α ∈ A

}
. (7.14)

We apply Lemma 7.2 again, to the functional M(f, P0, P 1) := M(f, P 1, ξ(f, P 1)), which 
is independent of P0, where the constraint map Ψ : J (μ) × P × P → R|A| is chosen 
so that Ψ(f, P0, P 1) = 0 encodes the constraints ∂αP 1(xs) = ∂αP0(xs) (all α ∈ A). 
Thus we determine Rxs

= ξs(f, P0) ∈ P depending linearly on (f |9Qs
, P0) and satisfying 

∂αRxs
(xs) = ∂αP0(xs) for all α ∈ A, and

M(f, Rxs
, ξ(f, Rxs

)) ≤ C · inf
P 1∈P

{
M(f, P 1, ξ(f, P 1)) : ∂αP 1(xs) = ∂αP0(xs) ∀α ∈ A

}
,
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where C = C(p, D). Therefore, in light of (7.14), R′
xs

:= Rxs
satisfies (7.2). This com-

pletes the construction and verification of the properties of the polynomial R′
xs

. �
8. Decomposition of the functional

Lemma 8.1. Let Q◦, CZ◦, KCZ , and Kp be defined as in Section 4. Let J∗(μ; Q◦, CZ◦; Kp)
be the space defined in (6.2).

Existence of a Bounded Linear Map. There exists a linear map T : J∗(μ; Q◦, CZ◦; Kp)
→ Lm,p(Q◦) satisfying the following conditions. For any (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp),

JxT (f, �P , �S) = Sx for all x ∈ Kp, and (8.1)

‖T (f, �P , �S), �P‖J∗(f,μ;Q◦,CZ◦) ≤ C · ‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp). (8.2)

Characterization of the Function Space. For f ∈ J (μ), �P ∈ Wh(BCZ) and 
�S ∈ Wh(Kp), consider the functionals S0(f, �P , �S) ≤ S1(f, �P , �S) ≤ S2(f, �P , �S) valued 
in [0, ∞], given by

S0(f, �P , �S) :=
∑
i∈I

‖f, Pxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i↔i′

|Pxi
− Pxi′ |pi +

∫
Kp

|Sx(x) − f(x)|pdμ,

S1(f, �P , �S) := S0(f, �P , �S) + 1A=∅ · ‖�S‖p
Lm,p(Kp), (8.3)

S2(f, �P , �S) := S0(f, �P , �S) + ‖�S‖p
Lm,p(Kp).

Then (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp) if and only if

( �P , �S) ∈ Cm−1,1−n/p(BCZ ∪ Kp) and S2(f, �P , �S) < ∞. (8.4)

Further, for all (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp),

‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp) � S1(f, �P , �S). (8.5)

In (8.3), the indicator term 1A=∅‖ �R∗‖p
Lm,p(Kp) is included in the expression S1(f, �R, �R∗)

if and only if A = ∅.

Proof. We establish half of (8.4). Specifically, we show that (f, �P, �S) ∈J∗(μ; Q◦, CZ◦; Kp)
implies

( �P , �S) ∈ Cm−1,1−n/p(BCZ ∪ Kp) and S2(f, �P , �S) � ‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp) < ∞.

(8.6)
Let (f, �P , �S) ∈J∗(μ; Q◦, CZ◦; Kp); then from (6.3), we have ( �P , �S) ∈Cm−1,1−n/p(BCZ ∪
Kp). Let η > 0; then there exists H ∈ Lm,p(Q◦) satisfying
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JxH = Sx for all x ∈ Kp, and (8.7)

‖H, �P‖J∗(f,μ;Q◦,CZ◦) ≤ ‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) + η < ∞. (8.8)

As a consequence of Lemma 2.7, we have

‖�S‖Lm,p(Kp) � ‖H‖Lm,p(Q◦) ≤ ‖H, �P‖J∗(f,μ;Q◦,CZ◦)

� ‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) + η < ∞. (8.9)

Also, ∫
Kp

|Sx(x) − f(x)|pdμ ≤
∫

|H − f |pdμ ≤ ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦)

� (‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) + η)p < ∞. (8.10)

By Lemma 2.6,

‖H − Pxi
‖p

Lp(1.1Qi∩Q◦)/δmp
Qi

� ‖H − Pxi
‖p

Lp(Qi)/δmp
Qi

+ ‖H‖p
Lm,p(1.1Qi∩Q◦). (8.11)

Because of (4.1), (2.2), and (2.3), it holds that |P |i � |P |i′ for all P ∈ P if i ↔ i′. Thus, 
by the Sobolev Inequality, (5.10), and the bounded overlap of the cubes {1.1Qi}i∈I , we 
have

∑
i↔i′

|Pxi
− Pxi′ |pi

(2.2)
�

∑
i↔i′

{
|Pxi

− Jxi
H|pi + |Jxi

H − Jxi′ H|pi + |Jxi′ H − Pxi′ |pi′
}

SI/(5.10)
�

∑
i∈I

‖H, Pxi
‖p

J∗(f,μ|Qi
;Qi) +

∑
i↔i′

‖H‖p
Lm,p((1.1Qi∪1.1Qi′ )∩Q◦)

�
∑
i∈I

‖H, Pxi
‖p

J∗(f,μ|Qi
;Qi) + ‖H‖p

Lm,p(KCZ). (8.12)

We apply (2.26) (for the C-non-degenerate rectangular box 1.1Qi ∩ Q◦), (8.12), (8.11), 
and (8.8) to estimate

∑
i∈I

‖f,Pxi
‖p

J (μ|1.1Qi
;δQi

)

(2.26)
�
∑
i∈I

‖f, Pxi
‖p

J∗(μ|1.1Qi
;1.1Qi∩Q◦)

≤
∑
i∈I

‖H, Pxi
‖p

J∗(f,μ|1.1Qi
;1.1Qi∩Q◦)

=
∑
i∈I

[
‖H‖p

Lm,p(1.1Qi∩Q◦) +
∫

|H − f |pdμ + ‖H − Pxi
‖p

Lp(1.1Qi∩Q◦)/δmp
Qi

]

1.1Qi
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(8.11)
�
∑
i∈I

[
‖H‖p

Lm,p(1.1Qi∩Q◦) +
∫

1.1Qi

|H − f |pdμ + ‖H − Pxi
‖p

Lp(Qi)/δmp
Qi

]

� ‖H‖p
Lm,p(KCZ) +

∫
KCZ

|H − f |pdμ +
∑
i∈I

‖H − Pxi
‖p

Lp(Qi)/δmp
Qi

= ‖H, �P‖p
J∗(f,μ;KCZ ,CZ◦)

(8.8)
≤ (‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp) + η)p. (8.13)

Combining (8.9), (8.10), (8.12), and (8.13), and letting η → 0, we have established (8.6)
and consequently the sufficiency of (8.4).

Next we describe the construction of the map T . By applying (AL1)-(AL3) (see Sec-
tion 4.4) to the cube Qi ∈ CZ◦ and subset Ei = 1.1Qi ⊂ 3Qi, we obtain the existence of 
a linear map Ti : J (μ|1.1Qi

; δQi
) → Lm,p(Rn), a functional Mi : J (μ|1.1Qi

; δQi
) → R+, 

and countable collections of Borel sets {Ai
�}�∈N , Ai

� ⊂ supp(μ|1.1Qi
), and of linear maps 

{φi
� : J (μ|1.1Qi

; δQi
) → R}�∈N , and {λi

� : J (μ|1.1Qi
; δQi

) → Lp(dμ)}�∈N , with the 
following properties.

Given (f, Pxi
) ∈ J (μ|1.1Qi

; δQi
),

‖f, Pxi
‖J (μ|1.1Qi

;δQi
) � ‖Ti(f, Pxi

), Pxi
‖J (f,μ|1.1Qi

;δQi
) � Mi(f, Pxi

); and (8.14)

Mi(f, Pxi
) =
(∑

�∈N

∫
Ai

�

|λi
�(f, Pxi

) − f |pdμ +
∑
�∈N

|φi
�(f, Pxi

)|p
)1/p

. (8.15)

Further, the maps Ti and Mi are Ω′
i-constructible for a family of linear functionals 

Ω′
i ⊂ J (μ|1.1Qi

)∗, i.e., the maps satisfy (AL4)-(AL6) for Ei = 1.1Qi

Given (f, �P , �S) ∈ J (μ) ×Wh(BCZ) ×Wh(Kp), define a function T (f, �P , �S) : Q◦ → R

as

T (f, �P , �S)(x) =
{∑

i∈I Ti(f, Pxi
)(x) · θi(x) x ∈ KCZ

Sx(x) x ∈ Kp

(8.16)

where {θi}i∈I satisfy (POU1)-(POU4) (see Section 4.3). We apply (5.48), (2.8), and 
(8.14) to deduce

‖T (f, �P , �S), �P‖p
J∗(f,μ;KCZ ,CZ◦)

(5.48)
�
∑
i∈I

‖Ti(f, Pxi
), Pxi

‖p
J∗(f,μ|1.1Qi∩Q◦ ;1.1Qi∩Q◦) +

∑
i′↔i

|Pxi
− Pxi′ |pi

(2.8)
�
∑

‖Ti(f, Pxi
), Pxi

‖p
J (μ|1.1Qi

;δQi
) +
∑

|Pxi
− Pxi′ |pi
i∈I i′↔i
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(8.14)
�
∑
i∈I

‖f, Pxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i′↔i

|Pxi
− Pxi′ |pi . (8.17)

We have not proved the map T is bounded yet, but we return to the proof of the 
necessity of (8.4): Suppose ( �P , �S) ∈ Cm−1,1−n/p(BCZ ∪ Kp) and S2(f, �P , �S) < ∞. In 
light of (8.17) and the definition of the S2 functional,

‖T (f, �P , �S), �P‖p
J∗(f,μ;KCZ ,CZ◦) + ‖�S‖p

Lm,p(Kp) � S2(f, �P , �S) < ∞.

Consequently, we may apply Lemma 5.6 to deduce that the function T (f, �P , �S) defined 
in (8.16) satisfies

T (f, �P , �S) ∈ Lm,p(Q◦), (8.18)

JxT (f, �P , �S) = Sx for all x ∈ Kp, and (8.19)

‖T (f, �P , �S)‖Lm,p(Q◦) � ‖T (f, �P , �S), �P‖J∗(f,μ;KCZ ,CZ◦) + ‖�S‖Lm,p(Kp)

< ∞. (8.20)

Because T (f, �P , �S)(x) = Sx(x) for x ∈ Kp, we have∫
Kp

|T (f, �P , �S) − f |pdμ =
∫

Kp

|Sx(x) − f(x)|pdμ(x) ≤ S2(f, �P , �S) < ∞. (8.21)

In combination with (8.18)-(8.20) and (8.17), we bound

‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp)

≤ ‖T (f, �P , �S), �P‖p
J∗(f,μ;Q◦,CZ◦)

≤ ‖T (f, �P , �S), �P‖p
J∗(f,μ;KCZ ,CZ◦) + ‖T (f, �P , �S)‖p

Lm,p(Q◦) +
∫

Kp

|T (f, �P , �S) − f |pdμ

�
∑
i∈I

‖f, Pxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i′↔i

|Pxi
− Pxi′ |pi + ‖�S‖p

Lm,p(Kp) +
∫

Kp

|Sx(x) − f(x)|pdμ

� S2(f, �P , �S) < ∞, (8.22)

completing the proof of (8.4).
Suppose (f, �P , �S) ∈ J∗(μ; Q◦, CZ◦; Kp); we proved the extension operator T (f, �P, �S)

defined in (8.16) satisfies JxT (f, �P , �S) = Sx for all x ∈ Kp, and

S2(f, �P , �S) � ‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp) (8.23)

(see (8.6)). In combination with (8.22), this proves (8.1) and (8.2):
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‖T (f, �P , �S), �P‖J∗(f,μ;Q◦,CZ◦) � ‖f, �P , �S‖J∗(μ;Q◦,CZ◦;Kp),

as well as (8.5) in the case A = ∅: In this case, S2(f, �P , �S) = S1(f, �P , �S). Together with 
(8.22) and (8.23), we have

‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp) � S1(f, �P , �S).

Suppose A �= ∅. Thanks to Lemma 4.9, the set Kp has Lebesgue measure 0, and so

‖T (f, �P , �S)‖Lm,p(Q◦) = ‖T (f, �P , �S)‖Lm,p(KCZ) (A �= ∅),

and therefore,

‖T (f, �P , �S), �P‖p
J∗(f,μ;Q◦,CZ◦) = ‖T (f, �P , �S)‖p

J∗(f,μ;KCZ ,CZ◦) +
∫

Kp

|T (f, �P , �S) − f |pdμ.

(8.24)

Combining (8.17), (8.21), (8.24),

‖T (f, �P , �S), �P‖p
J∗(f,μ;Q◦,CZ◦)

(8.24)= ‖T (f, �P , �S), �P‖p
J∗(f,μ;KCZ ,CZ◦) +

∫
Kp

|T (f, �P , �S) − f |pdμ

(8.21)= ‖T (f, �P , �S), �P‖p
J∗(f,μ;KCZ ,CZ◦) +

∫
Kp

|Sx(x) − f(x)|pdμ(x)

(8.17)
�
∑
i∈I

‖f, Pxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i↔i′

|Pxi
− Pxi′ |pi +

∫
Kp

|Sx(x) − f(x)|pdμ(x)

= S1(f, �P , �S). (8.25)

Therefore,

‖f, �P , �S‖p
J∗(μ;Q◦,CZ◦;Kp) ≤ ‖T (f, �P , �S), �P‖p

J∗(f,μ;Q◦,CZ◦) � S1(f, �P , �S).

Combining this estimate with (8.23) and S1(f, �P , �S) ≤ S2(f, �P , �S), we have proven (8.5)
under the assumption that A �= ∅, completing the proof of Lemma 8.1. �
9. Optimal Whitney field

We consider the set of all Calderón-Zygmund cubes CZ◦ = {Qi}i∈I in Q◦. We denote 
KCZ =

⋃
i∈I Qi, and Kp = Q◦ \ KCZ . Then CZ◦ is a partition of the set KCZ into 
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disjoint dyadic cubes. We denote CZkey = {Qs}s∈Ī ⊂ {Qi}i∈I for the set of keystone 
cubes (see page 42 for the definition and basic properties of keystone cubes). Recall that 
BCZ = {xi}i∈I and Bkey = {xs}s∈Ī are the sets of centers of CZ cubes, and keystone 
cubes, respectively.

For each Qi ∈ CZ◦, we apply Lemma 4.11 to produce a sequence of CZ cubes S (Qi). 
Then either S (Qi) = {Qi,k}L

k=1 and Qi,L ∈ CZkey or S (Qi) = {Qi,k}k∈N and xi,k →
x ∈ Kp as k → ∞, where xi,k is the center of Qi,k. In either case, Qi,1 = Qi, Qi,k ↔
Qi,k+1 for each k, and for 1 ≤ � ≤ k,

δQi,k ≤ C · ck−�δQi,� , (9.1)

for universal constants C ≥ 1 and c ∈ (0, 1).
Now, define a mapping κ : BCZ → Bkey ∪ Kp by

κ(xi) =
{

xs S (Qi) = {Qi,k}L
k=1, and Qi,L = Qs ∈ CZkey

x S (Qi) = {Qi,k}k∈N , and limk→∞ xi,k = x ∈ Kp.
(9.2)

The next lemma contains further elementary properties of the sequences S (Qi), and 
of the mapping κ, that will be used throughout the section.

Lemma 9.1. For each i ∈ I, let xi be the center of Qi, and let xi,j be the center of the 
cube Qi,j in the sequence S (Qi).

1. If κ(xi) �= xi then |xi − κ(xi)| � δQi
.

2. |xi − κ(xi)| � |xi − x| for any x ∈ Kp.
3. If Qi,j ∈ S (Qi) then Qi,j ⊂ CQi and |xi,j − κ(xi)| � δQi,j .
4. For any keystone cube Qs and xi ∈ κ−1(xs), Qs ⊂ CQi, and in particular δQi

≥ cδQs
. 

Furthermore, for any fixed δ > 0 and s ∈ Ī,

|{i ∈ I : xi ∈ κ−1(xs), δQi
= δ}| ≤ C.

Proof. (1): Because κ(xi) �= xi, the sequence S (Qi) has length at least 2, and κ(xi)
does not belong to int(Qi) (either κ(xi) ∈ Qs for s �= i, or κ(xi) ∈ Kp). Recall the 
sequence S (Qi) = {Qi,k}k≥1 (finite or infinite) of CZ cubes satisfies Qi,k ↔ Qi,k+1 and 
Qi,1 = Qi. Hence, |xi,k − xi,k+1| � δQi,k , xi,1 = xi, and either xi,L = κ(xi) for some 
L < ∞ or xi,k → κ(xi) as k → ∞. We use inequality (9.1) for � = 1 to bound:

|xi − κ(xi)| ≤
∑
k≥1

|xi,k − xi,k+1| �
∑
k≥1

δQi,k �
∑
k≥1

δQi
ck � δQi

.

Because xi = ctr(Qi) and κ(xi) does not belong to int(Qi), we also have δQi
� |xi−κ(xi)|.

(2): Let x ∈ Kp. We may assume κ(xi) �= xi. Because Qi ⊂ KCZ and xi = ctr(Qi), 
we have dist(xi, Kp) � δQi

. In combination with (1),
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|x − xi| ≥ dist(xi, Kp) � δQi
� |xi − κ(xi)|.

(3): Let Qi,j ∈ S (Qi). From (9.1), δQi,j � δQi
and dist(Qi,j , Qi) �

∑j
k=1 δQi,k � δQi

, 
implying there exists C > 0 such that Qi,j ⊂ CQi. We use (1) to bound

|xi,j − κ(xi)| ≤ |xi,j − xi| + |xi − κ(xi)| � δQi
.

(4): If Qs is a keystone cube and xi ∈ κ−1(xs) then S (Qi) is finite and Qs = Qi,L

for some L < ∞. In light of (9.1), δQs
= δQi,L � δQi

. From (3) applied with j = L, we 
have Qs ⊂ CQi. By a volume counting argument,

|{xi ∈ κ−1(xs) : δQi
= δ}| ≤ |{Qi : δQi

= δ and |xi − xs| � δ}| ≤ C. �
The next result concerns a certain operator mapping Whitney fields on Kp ∪BCZ to 

Whitney fields on BCZ .

Lemma 9.2. Given �P ∗ = (P ∗
x )x∈Kp

∈ Wh(Kp) and �P = (Pxi
)i∈I ∈ Wh(BCZ), define 

�P ∗∗ ∈ Wh(BCZ) by

P ∗∗
xi

:=
{

Pκ(xi) κ(xi) ∈ Bkey

P ∗
κ(xi) κ(xi) ∈ Kp.

If ( �P ∗, �P ) ∈ Cm−1,1−n/p(Kp ∪ BCZ), then for F ∈ Lm,p(Q◦),∑
i∈I

|Pxi
− P ∗∗

xi
|pi � ‖F, �P‖p

J∗(f,μ;KCZ ,CZ◦). (9.3)

Proof. From Lemma 9.1, |xi − κ(xi)| � δQi
. Therefore, from (2.2), we have∑

i∈I

|Pxi
− P ∗∗

xi
|pi =

∑
i∈I

|Pxi
− P ∗∗

xi
|pxi,δQi

�
∑
i∈I

|Pxi
− P ∗∗

xi
|pκ(xi),δQi

=
∑
i∈I

∑
α∈M

|∂α(Pxi
− P ∗∗

xi
)(κ(xi))|pδ

n−mp+|α|p
Qi

.

(9.4)

We will compare polynomials P i,k (k ≥ 1) associated to the cubes Qi,k ∈ S (Qi) to 
bound (9.4). We define these polynomials in terms of the Whitney field �P ∈ Wh(BCZ), 
Note that each Qi,k ∈ S (Qi) is in CZ◦, hence, Qi,k = Qj for j ∈ I – then we define 
P i,k = Pxj

.
Evidently, Qi,1 = Qi, so

P i,1 = Pxi
.
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If S (Qi) = {Qi,k}1≤k≤L is finite, then its terminal cube is a keystone cube, Qi,L = Qs, 
for κ(xi) = xs ∈ Bkey. In this case, P i,L = Pκ(xi) = P ∗∗

xi
. So,

P i,L = P ∗∗
xi

if S (Qi) = {Qi,k}1≤k≤L is finite.

If S (Qi) = {Qi,k}k≥1 is infinite, then xi,k = ctr(Qi,k) converges to x = κ(xi) ∈ Kp

as k → ∞. Because ( �P ∗, �P ) ∈ Cm−1,1−n/p(Kp ∪ BCZ), also P i,k converges to P ∗
x as 

k → ∞. But P ∗
x = P ∗∗

xi
, by definition of �P ∗∗. Thus,

lim
k→∞

P i,k = P ∗∗
xi

if S (Qi) is infinite.

Evidently, by use of the telescoping series formula, and by the above properties, for 
α ∈ M and i ∈ I,

|∂α(Pxi
− P ∗∗

xi
)(κ(xi))| ≤

∑
k≥1

|∂α(P i,k − P i,k+1)(κ(xi))|,

where we write 
∑

k≥1 to indicate the summation 
∑L−1

k=1 in the case S (Qi) = {Qi,k}1≤k≤L

is finite, and the summation 
∑∞

k=1 in the case S (Qi) is infinite
Fix a universal constant ε′ ∈ (0, 1 −n/p), and let p′ ∈ (1, ∞) be the conjugate exponent 

of p ∈ (1, ∞), so that 1/p + 1/p′ = 1. We apply Hölder’s inequality to deduce

|∂α(Pxi
− P ∗∗

xi
)(κ(xi))|

≤
(∑

k≥1

|∂α(P i,k − P i,k+1)(κ(xi))|pδ
−mp+n+|α|p+ε′p
Qi,k

) 1
p

·
(∑

k≥1

δ
(m−n/p−|α|−ε′)p′

Qi,k

) 1
p′

� δ
m−n/p−|α|−ε′

Qi

(∑
k≥1

|∂α(P i,k − P i,k+1)(κ(xi))|pδ
−mp+n+|α|p+ε′p
Qi,k

) 1
p , (9.5)

where the last inequality uses that m −n/p −|α| − ε′ > 0 for |α| ≤ m −1, so (9.1) implies

(∑
k≥1

δ
(m−n/p−|α|−ε′)p′

Qi,k

)1/p′
� δ

m−n/p−|α|−ε′

Qi
.

Because Qi,k ∈ S (Qi), we have |xi,k − κ(xi)| � δQi,k (see Lemma 9.1). By substituting 
(9.5) into (9.4), using the definition of the | · |κ(xi),δ

Qi,k
norm, and then applying (2.2),

∑
i∈I

|Pxi
− P ∗∗

xi
|pi �

∑
i∈I

δ−ε′p
Qi

∑
k≥1

∑
α∈M

|∂α(P i,k − P i,k+1)(κ(xi))|pδ
−mp+n+|α|p+ε′p
Qi,k

=
∑
i∈I

δ−ε′p
Qi

∑
k≥1

|P i,k − P i,k+1|κ(xi),δ
Qi,k

δε′p
Qi,k

�
∑

δ−ε′p
Qi

∑
|P i,k − P i,k+1|p

xi,k,δ
Qi,k

· δε′p
Qi,k
i∈I k≥1
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�
∑

j,j′∈I
j↔j′

∑
i∈I

Qj∈S (Qi)

(δQj

δQi

)ε′p
|Pxj

− Pxj′ |pxj ,δQj
. (9.6)

For fixed Qj ∈ CZ◦ and any dyadic length scale δ > 0,

|{i ∈ I : Qj ∈ S (Qi), δQi
= δ}| ≤ |{i ∈ I : Qj ⊂ CQi, δQi

= δ}| ≤ C,

where the first inequality uses property 3 in Lemma 9.1, and the second inequality uses 
that Qi and Qj are dyadic cubes. Furthermore, by the first inequality above,

|{i ∈ I : Qj ∈ S (Qi), δQi
= δ}| = 0 if δ < cδQj

.

Thus we may continue from (9.6):

∑
i∈I

|Pxi
− P ∗∗

xi
|pi �

∑
j↔j′

|Pxj
− Pxj′ |pj

∑{(δQj

δQi

)ε′p
: i ∈ I, Qj ∈ S (Qi)

}
�
∑
j↔j′

|Pxj
− Pxj′ |pj

∑{(δQj

δ

)ε′p
: δ a dyadic length scale, δ ≥ cδQj

}
�
∑
j↔j′

|Pxj
− Pxj′ |pj , (9.7)

where the final inequality follows because we are computing the sum of a geometric 
series, and ε′ > 0 is a universal constant, dependent on m, n, and p. From the triangle 
inequality, the Sobolev Inequality, (2.14), and (2.2), for F ∈ Lm,p(Q◦),∑

j↔j′

|Pxj
− Pxj′ |pj

�
∑
j↔j′

[
|Pxj

− Jxj
(F )|pj + |Jxj′ (F ) − Pxj′ |pj + ‖F‖p

Lm,p((1.1Qj∪1.1Qj′ )∩Q◦)

]
�
∑
j↔j′

[
‖F, Pxj

‖p
J∗(f,μ;Qj) + ‖F‖p

Lm,p((1.1Qj∪1.1Qj′ )∩Q◦)

]
� ‖F, �P‖p

J∗(f,μ;KCZ ,CZ◦).

Substituting this into (9.7), we complete the proof of the lemma:∑
i∈I

|Pxi
− P ∗∗

xi
|pi � ‖F, �P‖p

J∗(f,μ;KCZ ,CZ◦). �

9.1. Whitney fields on Kp and BCZ

Fix the data (f, P0) ∈ J (μ; δQ◦).
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From this data, we defined a Whitney field �R∗ ∈ Wh(Kp) in Section 6.3. The defining 
properties of �R∗ are stated in Lemma 6.7. We also defined a family of polynomials 
R′

xs
∈ P (s ∈ Ī), satisfying the conditions in Lemma 7.3. This Whitney field and these 

polynomials depend linearly on (f, P0), and they are coherent with P0 in the sense that 
∂αR∗

x(x) = ∂αP0(x) for all x ∈ Kp, α ∈ A, while ∂αR′
xs

(xs) = ∂αP0(xs) for all s ∈ Ī, 
α ∈ A. Because A is monotonic it holds that if ∂αP (x) = 0 for all α ∈ A, then ∂αP ≡ 0
on Rn for all α ∈ A, for any P ∈ P. Therefore,

∂α(R′
xs

− P0) ≡ 0, ∂α(R∗
x − P0) ≡ 0 for all x ∈ Kp, s ∈ Ī , α ∈ A. (9.8)

We define the Whitney field �R = (Rx)x∈BCZ
∈ Wh(BCZ) (BCZ = {xi}i∈I) by

Rxi
:=
{

R′
xs

if κ(xi) = xs ∈ Bkey

R∗
x if κ(xi) = x ∈ Kp,

(9.9)

where κ : BCZ → Bkey ∪ Kp is the mapping defined in (9.2).
Evidently, the Whitney field ( �R∗, �R) ∈ Wh(Kp ∪ BCZ) depends linearly on (f, P0). 

From (9.8), it holds that ∂α(Rxi
−P0) ≡ 0 for α ∈ A and xi ∈ BCZ – thus, �R is coherent 

with P0. As mentioned above, �R∗ is coherent with P0. So, ( �R∗, �R) is coherent with P0.

Lemma 9.3. The Whitney field ( �R∗, �R) ∈ Wh(Kp ∪ BCZ) satisfies

‖( �R∗, �R)‖Cm−1,1−n/p(Kp∪BCZ) ≤ C‖f, P0‖J (μ;δQ◦ ).

Proof. Let η > 0. From Corollary 6.9, there exists H ∈ Lm,p(Q◦) and �P ∈ Wh(BCZ)
satisfying JxH = R∗

x for all x ∈ Kp, �P is coherent with P0, and

‖H, �P‖J∗(f,μ;Q◦,CZ◦) ≤ ‖f, �P , �R∗‖J∗(μ;Q◦,CZ◦;Kp) + η/2 � ‖f, P0‖J (μ;δQ◦ ) + η.

(9.10)

Consequently, since �R∗ ∈ Wh(Kp) is coherent with P0, also H is Kp-coherent with P0. 
From Proposition 6.1 and (9.10), we have

‖( �R∗, �P )‖Cm−1,1−n/p(Kp∪BCZ) � ‖f, P0‖J (μ;δQ◦ ) + η. (9.11)

To prove Lemma 9.3, we must prove the following inequalities:⎧⎪⎪⎨⎪⎪⎩
|R∗

x − R∗
y|x,|x−y| ≤ C‖f, P0‖J (μ;δQ◦ ) x, y ∈ Kp distinct;

|R∗
x − Rxi

|xi,|x−xi| ≤ C‖f, P0‖J (μ;δQ◦ ) x ∈ Kp, i ∈ I;

|Rxi
− Rxj

|xj ,|xj−xi| ≤ C‖f, P0‖J (μ;δQ◦ ) i, j ∈ I distinct.

(9.12)

We proceed with the proof of (9.12) in cases, below.
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Case 1: For distinct x, y ∈ Kp, we apply (9.11):

|R∗
x − R∗

y|x,|y−x| � ‖f, P0‖J (μ;δQ◦ ) + η.

By letting η → 0, we deduce the first line of (9.12).
Case 2: Suppose x ∈ Kp and i ∈ I; we will prove the second line of (9.12): First, 

suppose that κ(xi) = y ∈ Kp. Then by definition of �R (see (9.9)), Rxi
= R∗

y. By part 2 
of Lemma 9.1, |x − y| ≤ |x − xi| + |xi − y| � |x − xi|. So, by (2.2), and the analysis of 
Case 1,

|R∗
x − Rxi

|x,|xi−x| = |R∗
x − R∗

y|x,|xi−x| � |R∗
x − R∗

y|x,|x−y| � ‖f, P0‖J (μ,δQ◦ ).

(9.13)

This estimate proves the second line of (9.12) for κ(xi) = y ∈ Kp.
Next suppose that κ(xi) = xs ∈ Bkey. By definition of �R, Rxi

= R′
xs

, with xs ∈ BCZ

the center of the keystone cube Qs. We apply (9.11) to deduce

|R∗
x − Rxi

|xi,|xi−x| ≤ |R∗
x − Pxi

|xi,|xi−x| + |Rxi
− Pxi

|xi,|xi−x|

� ‖f, P0‖J (μ,δQ◦ ) + |Rxi
− Pxi

|xi,|xi−x| + η. (9.14)

By part 2 of Lemma 9.1, since x ∈ Kp, |xi − xs| = |xi − κ(xi)| � |x − xi|, and by part 4 
of Lemma 9.1, δQs

� δQi
≤ |x − xi|, so we can apply (2.2) and (9.11) to deduce

|Rxi
− Pxi

|xi,|xi−x| = |R′
xs

− Pxi
|xi,|xi−x|

� |R′
xs

− Pxs
|xs,|xi−x| + |Pxs

− Pxi
|xs,|xi−xs|

� |R′
xs

− Pxs
|xs,δQs

+ ‖f, P0‖J (μ,δQ◦ ) + η. (9.15)

Because R′
xs

, Pxs
∈ P are each coherent with P0, and A is monotonic, we have ∂α(R′

xs
−

Pxs
) ≡ 0 for all α ∈ A. We apply (2.2), (5.12), and the triangle inequality to bound

|R′
xs

− Pxs
|xs,δQs

� ‖0, R′
xs

− Pxs
‖J (μ|9Qs ;δQs )

� ‖f, R′
xs

‖J (μ|9Qs ;δQs ) + ‖f, Pxs
‖J (μ|9Qs);δQs )

� ‖f, Pxs
‖J (μ|9Qs ;δQs ), (9.16)

where the last inequality follows by the defining properties of R′
xs

(see Lemma 7.3), 
since Pxs

is coherent with P0. We apply (2.26) (for the C-non-degenerate rectangular 
box 9Qs ∩ Q◦) and (2.21) (for R1 = Qs, R2 = 9Qs ∩ Q◦), and finally (9.10), to estimate

‖f, Pxs
‖p

J (μ|9Qs ,δQs )

(2.26)
� ‖f, Pxs

‖p
J∗(μ|9Qs ;9Qs∩Q◦)

≤ ‖H, Pxs
‖p

◦
J∗(f,μ|9Qs ;9Qs∩Q )
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= ‖H‖p
Lm,p(9Qs∩Q◦) +

∫
9Qs

|H − f |pdμ + ‖H − Pxs
‖p

Lp(9Qs∩Q◦)/δmp
Qs

(2.21)
� ‖H‖p

Lm,p(Q◦) +
∫

9Qs

|H − f |pdμ + ‖H − Pxs
‖p

Lp(Qs)/δmp
Qs

≤ ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦)

(9.10)
� (‖f, P0‖J (μ,δQ◦ ) + η)p. (9.17)

Combining (9.14)–(9.17), we have for κ(xi) = xs ∈ Bkey,

|R∗
x − Rxi

|xi,|xi−x| � ‖f, P0‖J (μ,δQ◦ ) + 3η.

By letting η → 0, we complete the proof of the second line of (9.12).
Case 3: Let i, j ∈ I be distinct. Then xi ∈ Qi ∈ CZ◦ and xj ∈ Qj ∈ CZ◦. We aim to 

prove the third line of (9.12): Suppose κ(xi) = x ∈ Kp, so that Rxi
= R∗

x. By Lemma 9.1, 
|x − xi| � δQi

� |xi − xj | and |x − xj | ≤ |x − xi| + |xi − xj | � |xi − xj |, so from (2.2),

|Rxi
− Rxj

|xj ,|xj−xi| � |R∗
x − Rxj

|xj ,|x−xj | � ‖f, P0‖J (μ,δQ◦ ),

where the last inequality follows by the analysis of Case 2. This proves the third line of 
(9.12) if κ(xi) ∈ Kp.

If κ(xj) ∈ Kp, then by (2.2), |Rxi
− Rxj

|xj ,|xj−xi| � |Rxi
− Rxj

|xi,|xj−xi|, and we 
repeat the preceding analysis to prove the third line of (9.12) in this case.

Now suppose κ(xi) = xs, κ(xj) = xt ∈ Bkey. Then Rxi
= R′

xs
and Rxj

= R′
xt

. 
Because δQs

� δQi
� |xi − xs| � |xi − xj | (see Lemma 9.1), we can apply (2.2) and 

(9.11) to deduce

|Rxi
− Pxi

|xi,|xi−xj | = |R′
xs

− Pxi
|xi,|xi−xj |

� |R′
xs

− Pxs
|xs,|xi−xj | + |Pxs

− Pxi
|xs,|xi−xs|

� |R′
xs

− Pxs
|xs,δQs

+ ‖f, P0‖J (μ,δQ◦ ) + η. (9.18)

From (9.16) and (9.17), we have

|R′
xs

− Pxs
|xs,δQs

� ‖f, P0‖J (μ,δQ◦ ) + η. (9.19)

Combining (9.18), (9.19), we learn that

|Rxi
− Pxi

|xi,|xi−xj | � ‖f, P0‖J (μ,δQ◦ ) + 2η.

Similarly,
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|Rxj
− Pxj

|xj ,|xi−xj | � ‖f, P0‖J (μ,δQ◦ ) + 2η.

We apply the triangle inequality and (2.2), and then the preceding estimates and (9.11)
to deduce

|Rxi
− Rxj

|xi,|xi−xj | � |Rxi
− Pxi

|xi,|xi−xj | + |Pxi
− Pxj

|xi,|xi−xj | + |Pxj
− Rxj

|xj ,|xi−xj |

� ‖f, P0‖J (μ,δQ◦ ) + 5η.

By letting η → 0, we complete the proof of the third line of (9.12) in Case 3, concluding 
the proof of the lemma. �
Proposition 9.4. For (f, P0) ∈ J (μ; δQ◦), we have (f, �R, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp), 
and

‖f, �R, �R∗‖J∗(μ;Q◦,CZ◦;Kp) ≤ C‖f, P0‖J (μ;δQ◦ ).

Furthermore, ( �R, �R∗) depends linearly on (f, P0).

Proof. From Lemma 6.7, Lemma 7.3, and the definition of �R in (9.9), ( �R, �R∗) depends 
linearly on (f, P0).

Because of Corollary 6.9, it suffices to show that for any �P ∈ Wh(BCZ), satisfying �P

is coherent with P0 and (f, �P , �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp), we have

‖f, �R, �R∗‖J∗(μ;Q◦,CZ◦;Kp) ≤ C‖f, �P , �R∗‖J∗(μ;Q◦,CZ◦;Kp). (9.20)

Let �P = {Pxi
}i∈I ∈ Wh(BCZ) satisfy �P is coherent with P0 and (f, �P , �R∗) ∈

J∗(μ; Q◦, CZ◦; Kp). Observe that the Whitney field ( �R∗, �P ) ∈ Wh(Kp ∪ BCZ) is in 
the class Cm−1,1−n/p(Kp ∪BCZ), thanks to Proposition 6.1. Define �P ∗∗ ∈ Wh(BCZ) by

P ∗∗
xi

:=
{

Pκ(xi) if κ(xi) ∈ Bkey

R∗
κ(xi) if κ(xi) ∈ Kp.

(9.21)

We will demonstrate that (f, �P ∗∗, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp). To see this, suppose 
that F ∈ Lm,p(Q◦) is arbitrary, satisfying Jx(F ) = R∗

x for all x ∈ Kp. Recalling (5.45), 
and applying (9.3) to the pair of Whitney fields ( �R∗, �P ), we have

‖F, �P ∗∗‖p
J∗(f,μ;Q◦,CZ◦)

= ‖F‖p
Lm,p(Q◦) +

∫
Q◦

|F − f |pdμ +
∑
i∈I

‖F − P ∗∗
xi

‖p
Lp(Qi)/δmp

Qi

� ‖F‖p
Lm,p(Q◦) +

∫
◦

|F − f |pdμ +
∑
i∈I

{
‖F − Pxi

‖p
Lp(Qi)/δmp

Qi
+ |Pxi

− P ∗∗
xi

|pi
}

Q
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= ‖F, �P‖p
J∗(f,μ;Q◦,CZ◦) +

∑
i∈I

|Pxi
− P ∗∗

xi
|pi

(9.3)
� ‖F, �P ‖p

J∗(f,μ;Q◦,CZ◦).

Here, the first � uses the triangle inequality as well as the fact that ‖P‖Lp(Qi)δ
−m
Qi

� |P |i
for P ∈ P. By taking the infimum in the above inequality over F ∈ Lm,p(Q◦) satisfying 
Jx(F ) = R∗

x for all x ∈ Kp,

‖f, �P ∗∗, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) � ‖f, �P , �R∗‖p

J∗(μ;Q◦,CZ◦;Kp) < ∞. (9.22)

Thus, (f, �P ∗∗, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp), as claimed.
From Lemma 9.3, we have ( �R∗, �R) ∈ Cm−1,1−n/p(Kp ∪ BCZ). Therefore, by 

Lemma 8.1, to demonstrate that (f, �R, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp) it suffices to prove 
that

S2(f, �R, �R∗) :=
∑
i∈I

‖f, Rxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i↔i′

|Rxi
− Rxi′ |pi

+ ‖ �R∗‖p
Lm,p(Kp) +

∫
Kp

|R∗
x(x) − f(x)|pdμ < ∞.

(9.23)

By the triangle inequality, (5.11), (2.2), (8.5), (8.3), and (9.22),∑
i∈I

‖f, Rxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i↔i′

|Rxi
− Rxi′ |pi

�
∑
i∈I

{
‖f, P ∗∗

xi
‖p

J (μ|1.1Qi
;δQi

) + ‖0, P ∗∗
xi

− Rxi
‖p

J (μ|1.1Qi
;δQi

)

}
+
∑
i↔i′

{
|Rxi

− P ∗∗
xi

|pi + |P ∗∗
xi

− P ∗∗
xi′ |

p
i + |Rxi′ − P ∗∗

xi′ |
p
i

}
(5.11),(2.2)

�
∑
i∈I

{
‖f, P ∗∗

xi
‖p

J (μ|1.1Qi
;δQi

) + |P ∗∗
xi

− Rxi
|pi
}

+
∑
i↔i′

{
|Rxi

− P ∗∗
xi

|pi + |P ∗∗
xi

− P ∗∗
xi′ |

p
i + |Rxi′ − P ∗∗

xi′ |
p
i′

}
�
∑
i∈I

‖f, P ∗∗
xi

‖p
J (μ|1.1Qi

;δQi
) +
∑
i↔i′

|P ∗∗
xi

− P ∗∗
xi′ |

p
i +
∑
i∈I

|P ∗∗
xi

− Rxi
|pi

(8.5),(8.3)
� ‖f, �P ∗∗, �R∗‖p

J∗(μ;Q◦,CZ◦;Kp) +
∑
i∈I

|Rxi
− P ∗∗

xi
|pi

(9.22)
� ‖f, �P , �R∗‖p

J∗(μ;Q◦,CZ◦;Kp) +
∑

|Rxi
− P ∗∗

xi
|pi . (9.24)
i∈I
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We wish to bound the sum 
∑

i∈I |Rxi
−P ∗∗

xi
|pi . If κ(xi) ∈ Kp, then Rxi

= R∗
κ(xi) = P ∗∗

xi
, 

by (9.9) and (9.21), and so the summand vanishes. Else, suppose κ(xi) ∈ Bkey. Then 
Rxi

= R′
κ(xi) and P ∗∗

xi
= Pκ(xi), by (9.9) and (9.21). Hence,

∑
i∈I

|Rxi
− P ∗∗

xi
|pi =

∑
i∈I:κ(xi)∈Bkey

|R′
κ(xi) − Pκ(xi)|pi . (9.25)

For κ(xi) ∈ Bkey, we have |xi − κ(xi)| ≤ CδQi
(see Lemma 9.1), so, by recalling the 

definition of the | · |i polynomial norm, and by (2.2),∑
i∈I:κ(xi)∈Bkey

|R′
κ(xi) − Pκ(xi)|pxi,δQi

≤
∑

i∈I:κ(xi)∈Bkey

|R′
κ(xi) − Pκ(xi)|pκ(xi),δQi

=
∑
s∈Ī

∑
xi∈κ−1(xs)

|Pxs
− R′

xs
|pxs,δQi

=
∑
s∈Ī

∑
xi∈κ−1(xs)

∑
|β|≤m−1

|∂β(Pxs
− R′

xs
)(xs)|p · δ

|β|p+n−mp
Qi

.

By Lemma 9.1, for any s ∈ Ī and xi ∈ κ−1(xs), we have δQi
≥ cδQs

; furthermore, for 
any dyadic lengthscale δ > 0, and fixed s,

|{i ∈ I : xi ∈ κ−1(xs), δQi
= δ}| ≤ C.

Thus, in combination with the inequality, |β|p + n − mp < 0 for all β ∈ M, we have∑
xi∈κ−1(xs)

δ
|β|p+n−mp
Qi

� δ
|β|p+n−mp
Qs

.

So, using the previous three equation lines, we reduce (9.25),∑
i∈I

|Rxi
− P ∗∗

xi
|pi �

∑
s∈Ī

∑
|β|≤m−1

|∂β(Pxs
− R′

xs
)(xs)|pδ

|β|p+n−mp
Qs

=
∑
s∈Ī

|Pxs
− R′

xs
|ps .

(9.26)

Because �P and �R in Wh(BCZ) are both coherent with P0, we can manipulate the right-
hand side of the inequality (9.26) using (5.12), (2.10), (7.2), and (2.26), to obtain

∑
i∈I

|Rxi
− P ∗∗

xi
|pi

(5.12)
�
∑
s∈Ī

‖0, Pxs
− R′

xs
‖p

J (μ|9Qs ,δQs )

(2.10)
�
∑

‖f, Pxs
‖p

J (μ|9Qs ,δQs ) + ‖f, R′
xs

‖p
J (μ|9Qs ,δQs )
s∈Ī
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(7.2)
�
∑
s∈Ī

‖f, Pxs
‖p

J (μ|9Qs ,δQs )

(2.26)
�
∑
s∈Ī

‖f, Pxs
‖p

J∗(μ|9Qs ;10Qs∩Q◦). (9.27)

Consider an arbitrary H ∈ Lm,p(Q◦) satisfying JxH = R∗
x for all x ∈ Kp. Recall from 

Lemma 4.7, for any keystone cube Qs, 
∣∣{s′ ∈ Ī : 10Qs ∩ 10Qs′ �= ∅}

∣∣ ≤ C. So from (9.27), 
we have∑

i∈I

|Rxi
− P ∗∗

xi
|pi �

∑
s∈Ī

‖H, Pxs
‖p

J∗(f,μ|10Qs ;10Qs∩Q◦)

� ‖H‖p
Lm,p(Q◦) +

∫
|H − f |pdμ +

∑
s∈Ī

‖H − Pxs
‖p

Lp(10Qs∩Q◦)/δmp
Qs

.

(9.28)

Now apply (2.21) (with R1 = Qs and R2 = 10Qs ∩ Q◦), to obtain

‖H − Pxs
‖p

Lp(10Qs∩Q◦)/δmp
Qs

� ‖H − Pxs
‖p

Lp(Qs)/δmp
Qs

+ ‖H‖p
Lm,p(10Qs∩Q◦).

Then summing on s, and using the bounded overlap condition on {10Qs : s ∈ Ī} again, 
we obtain∑

s∈Ī

‖H − Pxs
‖p

Lp(10Qs∩Q◦)/δmp
Qs

�
∑
s∈Ī

‖H − Pxs
‖p

Lp(Qs)/δmp
Qs

+ ‖H‖p
Lm,p(Q◦)

Using this in (9.28),

∑
i∈I

|Rxi
− P ∗∗

xi
|pi � ‖H‖p

Lm,p(Q◦) +
∫

|H − f |pdμ +
∑
i∈I

‖H − Pxi
‖p

Lp(Qi)/δmp
Qi

= ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦).

Taking the infimum with respect to H ∈ Lm,p(Q◦) satisfying JxH = R∗
x for all x ∈ Kp, 

we have ∑
i∈I

|Rxi
− P ∗∗

xi
|pi � ‖f, �P , �R∗‖p

J∗(μ;Q◦,CZ◦;Kp). (9.29)

Furthermore, for any H ∈ Lm,p(Q◦) satisfying JxH = R∗
x for all x ∈ Kp, we have

‖ �R∗‖p
Lm,p(Kp) +

∫
Kp

|R∗
x(x) − f(x)|pdμ � ‖H‖p

Lm,p(Q◦) +
∫

Kp

|H − f |pdμ

≤ ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦).
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For the first inequality, we have used Lemma 2.7. The second inequality follows by 
definition of the J∗(f, μ; Q◦, CZ◦) functional. Now, taking the infimum over all H in 
the previous inequality,

‖ �R∗‖p
Lm,p(Kp) +

∫
Kp

|R∗
x(x) − f(x)|pdμ � ‖f, �P , �R∗‖p

J∗(μ;Q◦,CZ◦;Kp). (9.30)

From (9.24), (9.29), (9.30), we conclude that S2(f, �R, �R∗) defined in (9.23) satisfies

S2(f, �R, �R∗) � ‖f, �P , �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) < ∞.

Thus, we have proven (9.23), as desired.
We conclude by Lemma 8.1 that (f, �R, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp) and

‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) � S1(f, �R, �R∗) ≤ S2(f, �R, �R∗) � ‖f, �P , �R∗‖p

J∗(μ;Q◦,CZ◦;Kp).

This completes the proof of (9.20). This completes the proof of the proposition. �
10. Proof of the Main Lemma for A

The next lemmas tell us that the Main Lemma for A is true. That is, we shall establish 
the Extension Theorem for (μ, δ). Recall, we have rescaled and translated μ and δ, so 
that diam(supp(μ)) < δ = 1/10 (see (3.50)).

Lemma 10.1. There exist a linear map T : J (μ; 1/10) → Lm,p(Rn), a map M :
J (μ; 1/10) → R+, K ⊂ Cl(supp(μ)), a linear map �S : J (μ) → Wh(K), and a count-
able collection of linear maps {λ�}�∈N , λ� : J (μ; 1/10) → Lp(dμ), that satisfy for each 
(f, P0) ∈ J (μ; 1/10), (3.1), (3.2), and (3.3) hold with δ = 1/10. Furthermore, if A �= ∅
then K = ∅, and so the map M satisfies (3.7).

Proof. We recall from Proposition 9.4, there exists ( �R, �R∗) depending linearly on (f, P0), 
so that (f, �R, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp), and

‖f, �R, �R∗‖J∗(μ;Q◦,CZ◦;Kp) ≤ C‖f, P0‖J (μ;δQ◦ ). (10.1)

Because (f, �R, �R∗) ∈ J∗(μ; Q◦, CZ◦; Kp), we can apply Lemma 8.1 to produce 
T (f, �R, �R∗) ∈ Lm,p(Q◦) satisfying JxT (f, �R, �R∗) = Rx for x ∈ Kp, and

‖T (f, �R, �R∗), �R‖J∗(f,μ;Q◦,CZ◦) ≤ C‖f, �R, �R∗‖J∗(μ;Q◦,CZ◦;Kp). (10.2)

Define T : J (μ; δ) → Lm,p(Rn) as T (f, P0) := θ · T (f, �R, �R∗) + (1 − θ)P0, where 
θ is a smooth cutoff function satisfying supp(θ) ⊂ Q◦, θ|0.99Q◦ = 1, |θ(x)| ≤ 1, and 
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|∂αθ(x)| ≤ C for α ∈ M. Then we apply (2.19) and the definition of the J∗(f, μ; Q◦)
and J∗(f, μ; Q◦, CZ◦) functionals to estimate

‖T (f, P0), P0‖J (f,μ;δQ◦ ) � ‖T (f, �R, �R∗), P0‖J∗(f,μ;Q◦)

� ‖T (f, �R, �R∗), �R‖J∗(f,μ;Q◦,CZ◦) + ‖T (f, �R, �R∗) − P0‖Lp(Q◦).

(10.3)

Let Q1 ∈ CZ◦ satisfy δQ1 ≥ c (such a cube exists by (4.3) – recall δQ◦ = 1). Then, using 
(2.20) and (2.21) with R1 = Q1, R2 = Q◦,

‖T (f, �R, �R∗) − P0‖Lp(Q◦)

≤ ‖T (f, �R, �R∗) − Rx1‖Lp(Q◦) + ‖Rx1 − P0‖Lp(Q◦)

� ‖T (f, �R, �R∗)‖Lm,p(Q◦) + ‖T (f, �R, �R∗) − Rx1‖Lp(Q1) + ‖Rx1 − P0‖Lp(Q1)

� ‖T (f, �R, �R∗)‖Lm,p(Q◦) + ‖T (f, �R, �R∗) − Rx1‖Lp(Q1)/δm
Q1

+ ‖Rx1 − P0‖Lp(Q1)

� ‖T (f, �R, �R∗), �R‖J∗(f,μ;Q◦,CZ◦) + ‖Rx1 − P0‖Lp(Q1). (10.4)

Combining (10.1), (10.2), (10.3), and (10.4), we have

‖T (f, P0), P0‖J (f,μ;δQ◦ ) � ‖f, �R, �R∗‖J∗(μ;Q◦,CZ◦;Kp) + ‖Rx1 − P0‖Lp(Q1)

� ‖f, P0‖J (μ;δQ◦ ) + ‖Rx1 − P0‖Lp(Q1). (10.5)

From Corollary 6.9, for η > 0 there exist H ∈ Lm,p(Q◦) and �P ∈ Wh(BCZ) satisfying 
JxH = R∗

x for all x ∈ Kp, �P is coherent with P0, and

‖H, �P‖J∗(f,μ;Q◦,CZ◦) ≤ ‖f, �P , �R∗‖J∗(μ;Q◦,CZ◦;Kp) + η/2 � ‖f, P0‖J (μ;δQ◦ ) + η.

(10.6)

Consequently, since �R∗ is coherent with P0, also H is Kp-coherent with P0.
We now work to estimate the term ‖Rx1 − P0‖Lp(Q1) in (10.5).
Case I: First suppose that κ(x1) = x ∈ Kp. Recalling the definition of �R = (Rxi

)i∈I

in (9.9), we have Rx1 = R∗
x = JxH. Due to the fact that δQ1 � 1, we have ‖P‖Lp(Q1) �

|P |x1,δQ1
for any polynomial P ∈ P. Also, because �R∗ is coherent with P0, and A is 

monotonic, we have ∂α(R∗
x − P0) ≡ 0 for all α ∈ A. By these remarks, (5.12), and the 

triangle inequality, we have

‖Rx1 − P0‖p
Lp(Q1) = ‖R∗

x − P0‖p
Lp(Q1) � |R∗

x − P0|px1,δQ1

(5.12)
� ‖0, R∗

x − P0‖p
J (μ|9Q1 ;δQ1 )

≤ ‖f, R∗
x‖p

J (μ;δQ◦ ) + ‖f, P0‖p
J (μ;δQ◦ ).

Continuing by using (2.22), (2.12), and (10.6), we obtain
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‖f, R∗
x‖p

J (μ;δQ◦ )

(2.22)
� ‖f, R∗

x‖p
J∗(μ;Q◦)

≤ ‖H, JxH‖p
J∗(f,μ;Q◦)

= ‖H‖p
Lm,p(Q◦) + ‖H − f‖p

Lp(dμ) + ‖H − JxH‖p
Lp(Q◦)

(2.12)
� ‖H‖p

Lm,p(Q◦) + ‖H − f‖p
Lp(dμ)

≤ ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦)

(10.6)
� (‖f, P0‖J (μ;δQ◦ ) + η)p.

Combining the previous two lines, and letting η → 0, we have

‖Rx1 − P0‖Lp(Q1) � ‖f, P0‖J (μ;δQ◦ ) (if κ(x1) ∈ Kp). (10.7)

Case II: Next suppose that κ(x1) = xs ∈ Bkey. Recalling the definition of �R =
(Rxi

)i∈I in (9.9), we have Rx1 = R′
xs

, where Qs is a keystone cube, and δQs
� δQ1 � 1. 

We have

‖Rx1 − P0‖Lp(Q1) = ‖R′
xs

− P0‖Lp(Q1) ≤ ‖R′
xs

− Pxs
‖Lp(Q1) + ‖Pxs

− P0‖Lp(Q1).

(10.8)

In what follows, we bound the two terms on the right-hand side of (10.8).
We first look to bound the term ‖Pxs

− P0‖Lp(Q1) on the right-hand side of (10.8). 
Because �P is coherent with P0, in particular, Pxs

is coherent with P0. Hence, because A
is monotonic, ∂α(Pxs

− P0) ≡ 0 for all α ∈ A. We apply (5.12), the triangle inequality, 
and δQ1 � δQ◦ = 1 to deduce

‖Pxs
− P0‖Lp(Q1) � |Pxs

− P0|x1,δQ1
� ‖0, Pxs

− P0‖J (μ|9Q1 ;δQ1 )

≤ ‖f, Pxs
‖J (μ|9Q1 ;δQ1 ) + ‖f, P0‖J (μ|9Q1 ;δQ1 )

� ‖f, Pxs
‖J (μ|9Q1 ;δQ1 ) + ‖f, P0‖J (μ;δQ◦ ). (10.9)

Applying (2.26) (note that 9Q1 ∩ Q◦ is C-non-degenerate),

‖f, Pxs
‖p

J (μ|9Q1 ;δQ1 ) � ‖f, Pxs
‖p

J∗(μ;9Q1∩Q◦)

≤ ‖H, Pxs
‖p

J∗(f,μ;9Q1∩Q◦)

= ‖H‖p
Lm,p(9Q1∩Q◦) +

∫
9Q1

|H − f |pdμ + ‖H − Pxs
‖p

Lp(9Q1∩Q◦)/δmp
Q1

.

(10.10)

By applying (2.21), with R1 = Qs and R2 = 9Q1 ∩ Q◦, we have
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‖H − Pxs
‖Lp(9Q1∩Q◦)/δm

Q1
� ‖H‖Lm,p(9Q1∩Q◦) + ‖H − Pxs

‖Lp(Qs)/δm
Qs

. (10.11)

Substituting (10.11) into (10.10), and using (10.6), we see

‖f, Pxs
‖p

J (μ|9Q1 ;δQ1 ) � ‖H‖p
Lm,p(Q◦) + ‖H − Pxs

‖p
Lp(Qs)/δmp

Qs
+
∫

9Q1

|H − f |pdμ

� ‖H, �P‖p
J∗(f,μ;Q◦,CZ◦)

(10.6)
� (‖f, P0‖J (μ;δQ◦ ) + η)p.

Substituting the previous equation into (10.9), we have

‖Pxs
− P0‖Lp(Q1) � ‖f, P0‖J (μ;δQ◦ ) + η. (10.12)

We next look to bound the term ‖R′
xs

− Pxs
‖Lp(Q1) on the right-hand side of (10.8). 

Because R′
xs

and Pxs
are each coherent with P0, and because A is monotonic, ∂α(R′

xs
−

Pxs
) ≡ 0 for all α ∈ A. Using δQs

� δQ1 � 1, |xs − x1| � δQ1 , (2.2) and (2.3), (5.12), 
and the triangle inequality, we deduce

‖R′
xs

− Pxs
‖Lp(Q1) � |R′

xs
− Pxs

|x1,δQ1
� |R′

xs
− Pxs

|xs,δQs

� ‖0, R′
xs

− Pxs
‖J (μ|9Qs ;δQs )

≤ ‖f, R′
xs

‖J (μ|9Qs ;δQs ) + ‖f, Pxs
‖J (μ|9Qs ;δQs )

(10.13)

Recalling our choice of R′
xs

in Lemma 7.3 (because Pxs
is assumed to be coherent with 

P0), we must have

‖f, R′
xs

‖J (μ|9Qs ;δQs ) � ‖f, Pxs
‖J (μ|9Qs ;δQs ). (10.14)

Applying (2.26) (note: 10Qs ∩ Q◦ is C-non-degenerate), (2.21) with R1 = Qs and R2 =
10Qs ∩ Q◦, and (10.6), we have

‖f, Pxs
‖p

J (μ|9Qs ;δQs )

(2.26)
� ‖f, Pxs

‖p
J∗(μ|9Qs ;10Qs∩Q◦) ≤ ‖H, Pxs

‖p
J∗(f,μ|9Qs ;10Qs∩Q◦)

� ‖H‖p
Lm,p(10Qs∩Q◦)+

∫
10Qs

|H − f |pdμ+‖H−Pxs
‖p

Lp(10Qs∩Q◦)/δm,p
Qs

(2.21)
� ‖H‖p

Lm,p(10Qs∩Q◦) +
∫

10Qs

|H − f |pdμ + ‖H − Pxs
‖p

Lp(Qs)/δm,p
Qs

≤ ‖H, �P‖J∗(f,μ;Q◦,CZ◦)

(10.6)
� ‖f, P0‖J (μ;δQ◦ ) + η. (10.15)
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Substituting (10.12), (10.13), (10.14), and (10.15) into (10.8), and letting η → 0 in (10.6), 
we have

‖Rx1 − P0‖Lp(Q1) � ‖f, P0‖J (μ;δQ◦ ) (if κ(x1) ∈ Bkey). (10.16)

That completes the analysis of Cases I and II.
Combining (10.7) and (10.16), since either κ(x1) ∈ Bkey or κ(x1) ∈ Kp, we have 

shown

‖Rx1 − P0‖Lp(Q1) � ‖f, P0‖J (μ;δQ◦ ). (10.17)

Using this in (10.5), we conclude that

‖T (f, P0), P0‖J (f,μ;1/10) � ‖T (f, P0), P0‖J (f,μ;δQ◦ ) � ‖f, P0‖J (μ;δQ◦ )

� ‖f, P0‖J (μ;1/10), (10.18)

where we have used that δQ◦ = 1 � 1/10. Thus, we have proven the upper bound 
‖T (f, P0), P0‖J (f,μ;δ) ≤ C · ‖f, P0‖J (μ;δ) in (3.1), for δ = 1/10. The matching lower 
bound is an immediate consequence of the definition of the J (· · · ) functional.

We now prepare to approximate the quantity ‖f, P0‖J (μ;δQ◦ ). From (10.1) and (10.17)
we have

‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) + ‖Rx1 − P0‖p

Lp(Q1) � ‖f, P0‖p
J (μ;δQ◦ ).

Furthermore, from (10.5) we have

‖f, P0‖p
J (μ;δQ◦ ) ≤ ‖T (f, P0), P0‖p

J (f,μ;δQ◦ )

� ‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) + ‖Rx1 − P0‖p

Lp(Q1).

Combining the above two inequalities, and using ‖Rx1 − P0‖Lp(Q1) � |Rx1 − P0|x1,δQ1
, 

we have

‖f, P0‖p
J (μ;δQ◦ ) � ‖f, �R, �R∗‖p

J∗(μ;Q◦,CZ◦;Kp) + |Rx1 − P0|px1,δQ1
. (10.19)

In Lemma 8.1 we constructed an equivalent expression S1(f, �R, �R∗) for
‖f, �R, �R∗‖p

J∗(μ;Q◦,CZ◦;Kp). Namely, we showed that ‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) �

S1(f, �R, �R∗), with

S1(f, �R, �R∗) =
∑
i∈I

‖f, Rxi
‖p

J (μ|1.1Qi
;δQi

) +
∑
i↔i′

|Rxi
− Rxi′ |pi

+
∫

Kp

|R∗
x(x) − f(x)|pdμ + 1A=∅‖ �R∗‖p

Lm,p(Kp).
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The indicator term 1A=∅‖ �R∗‖p
Lm,p(Kp) is included in the expression S1(f, �R, �R∗) if and 

only if A = ∅.
Next we apply (8.14) and (8.15) to replace the Σi∈I sum in S1 by an equivalent expres-

sion, involving the countable collections of Borel sets {Ai
�}�∈N , Ai

� ⊂ supp(μ|1.1Qi
), and 

of linear maps {φi
� : J (μ|1.1Qi

; δQi
) → R}�∈N , and {λi

� : J (μ|1.1Qi
; δQi

) → Lp(dμ)}�∈N

(see (8.14) and (8.15)). We also use the definition of the | · |i polynomial norm to show 
that

‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp) � Ŝ1(f, �R, �R∗),

Ŝ1(f, �R, �R∗) :=
∑
i∈I

∑
�∈N

( ∫
Ai

�

|λi
�(f, Rxi

) − f |pdμ + |φi
�(f, Rxi

)|p
)

+
∑
i↔i′

∑
α∈M

cα,i,i′ |∂α(Rxi
− Rxi′ )(xi)|p

+
∫

Kp

|R∗
x(x) − f(x)|pdμ + 1A=∅ · ‖ �R∗‖p

Lm,p(Kp), (10.20)

for some constants cα,i,i′ ≥ 0.
Recall that the Whitney fields �R = (Rxi

) and �R∗ = (R∗
x) depend linearly on (f, P0). 

Thus, for i ↔ i′, we can define the linear functional φi,i′,α : J (μ; δQ◦) → R by

φi,i′,α(f, P0) := c
1/p
α,i,i′ · ∂α(Rxi

− Rxi′ )(xi). (10.21)

Also, define the map λ′ : J (μ; δQ◦) → Lp(dμ) by

λ′(f, P0)(x) =
{

R∗
x(x) x ∈ Kp

0 x ∈ Rn \ Kp.
(10.22)

We have ∫
Kp

|R∗
x(x) − f(x)|pdμ =

∫
Kp

|λ′(f, P0) − f |pdμ.

Making substitutions of these maps in equation (10.20), we have

‖f, �R, �R∗‖p
J∗(μ;Q◦,CZ◦;Kp)

� 1A=∅ · ‖ �R∗‖p
Lm,p(Kp) +

∑
i∈I

∑
�∈N

( ∫
Ai

�

|λi
�(f, Rxi

) − f |pdμ + |φi
�(f, Rxi

)|p
)

+
∑
i↔i′

∑
α∈M

|φi,i′,α(f, P0)|p +
∫

Kp

|λ′(f, P0) − f |pdμ. (10.23)
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Returning to (10.19), we write

|Rx1 − P0|px1,δQ1
=
∑

α∈M
|ζα(f, P0)|p, (10.24)

for linear functionals ζα : J (μ; δQ◦) → R of the form

ζα(f, P0) := cα(∂α(Rx1 − P0)(x1)) (α ∈ M). (10.25)

Combining (10.19), (10.23), and (10.24), and reindexing the sums,

‖f, P0‖p
J (μ;δQ◦ ) � ‖f, �R, �R∗‖p

J∗(μ;Q◦,CZ◦;Kp) + |Rx1 − P0|px1,δQ1

� 1A=∅ · ‖ �R∗‖p
Lm,p(Kp) +

∑
i∈I

∑
�∈N

( ∫
Ai

�

|λi
�(f, Rxi

) − f |pdμ + |φi
�(f, Rxi

)|p
)

+
∑
i↔i′

∑
α∈M

|φi,i′,α(f, P0)|p+
∫

Kp

|λ′(f, P0) − f |pdμ +
∑

α∈M
|ζα(f, P0)|p

= 1A=∅ · ‖ �R∗‖p
Lm,p(Kp) +

∑
�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑
�∈N

|φ�(f, P0)|p,

(10.26)

for certain Borel sets A� ⊂ supp(μ) and linear maps φ� : J (μ; δQ◦) → R, λ� :
J (μ; δQ◦) → Lp(dμ) (� ∈ N).

We define the map M : J (μ; δQ◦) → R+ as the (1/p)th power of the right hand 
side of (10.26). By the above, and the fact that ‖f, P0‖J (μ;δQ◦ ) � ‖f, P0‖J (μ;1/10) and 
‖T (f, P0), P0‖J (f,μ;δQ◦ ) � ‖T (f, P0), P0‖J (f,μ;1/10), we have

M(f, P0) � ‖f, P0‖J (μ;1/10) � ‖T (f, P0), P0‖J (f,μ;1/10),

establishing (3.2).
Next we show that M has the form (3.3).
First suppose A = ∅. Then, by Lemma 6.7, if H ∈ Lm,p(Rn) and ‖H‖J (f,μ) < ∞, 

then �R∗ = (R∗
x)x∈Kp

= (JxH)x∈Kp
– indeed, any H is Kp-coherent with P0, vacuously, 

if A = ∅. This remark shows that �R∗(f, P0) = �R∗(f) depends only on f when A = ∅. By 
definition of M(f, P0) via (10.26),

M(f, P0) =

⎛⎝‖ �R∗(f)‖p
Lm,p(Kp) +

∑
�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑
�∈N

|φ�(f, P0)|p
⎞⎠1/p

.

Therefore, M(f, P0) has the form (3.3), with K := Kp, and with �S(f) := �R∗(f)
depending linearly on f .
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If A �= ∅ then M(f, P0) =
(∑

�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑

�∈N |φ�(f, P0)|p
)1/p

via 

(10.26), so M has the form (3.3) with K = ∅. In this case, the map M has the form in 
(3.7).

Thus, the maps T and M satisfy (3.1)–(3.3), while M has the form (3.7) provided 
A �= ∅, as desired. �

In the previous lemma, we established the main properties of M and T in the Ex-
tension Theorem for (μ, δ = 1/10). Next, we establish properties of the Whitney field 
�R∗(f, P0) ∈ Wh(Kp). In particular, the next lemma is a tool used in the proof that the 
map T is Ω′-constructible.

Lemma 10.2. For x ∈ Kp, the linear map (f, P0) ∈ J (μ; δQ◦) �→ R∗
x(f, P0) ∈ P defined 

in Lemma 6.7 has the form

R∗
x(f, P0) =

∑
α∈M

ωα
x (f) · vα + ω̃x(P0),

where ω̃x : P → P is a linear map, {vα}α∈M is a basis for P, and ωα
x : J (μ) → R

(α ∈ M) are linear functionals satisfying supp(ωα
x ) ⊂ {x}.

Proof. Fix x ∈ Kp. We write R∗
x(f, P0) = λx(f) +ω̃x(P0) for linear maps λx : J (μ) → P

and ω̃x : P → P. Fix a basis {vα}α∈M for P, and write

λx(f) =
∑

α∈M
ωα

x (f) · vα

for linear functionals ωα
x ∈ J (μ)∗. To demonstrate that supp(ωα

x ) ⊂ {x}, we will show 
for any open neighborhood U � x and any f1, f2 ∈ J (μ; δQ◦) satisfying

f1|U = f2|U , (10.27)

we have λx,α(f) = λx,α(f) (α ∈ M). Equivalently, it suffices to show that for any f1, f2
as in (10.27), we have

R∗
x(f1, P0) = R∗

x(f2, P0).

Because of (10.27), there exists η > 0 such that f1|B(x,η) = f2|B(x,η). Set μx,η = μ|B(x,η). 
Thus, for any H ∈ Lm,p(Rn), ‖H‖J (f1,μx,η) = ‖H‖J (f2,μx,η). Due to Proposition 6.2, 
there exists H ∈ Lm,p(Rn) such that ‖H‖J (f1,μ) < ∞ and H is Kp-coherent with P0. 
According to the above, ‖H‖J (fj ,μx,η) < ∞ for j = 1, 2. We apply Lemma 6.8 to deduce 
that R∗

x(f1, P0) = JxH = R∗
x(f2, P0), concluding the proof. �

At the end of the proof of Lemma 10.1, we showed that if A = ∅ then �R∗(f, P0) =
�R∗(f) is independent of P0. Therefore, we have:
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Corollary 10.3. For A = ∅, �R∗(f, P0) = �R∗(f), and consequently, for x ∈ Kp,

R∗
x(f) =

∑
α∈M

ωα
x (f) · vα,

where {vα}α∈M is any basis for P, and ωα
x : J (μ) → R (α ∈ M) are linear functionals 

satisfying supp(ωα
x ) ⊂ {x}.

In the next two lemmas, we verify that the maps T and M constructed in Lemma 10.1
are Ω′-constructible, as claimed in the Extension Theorem for (μ, δ), where Ω′ is a set 
of linear functionals on J (μ) whose supports have bounded overlap.

Lemma 10.4. The map T in Lemma 10.1 is Ω′-constructible: There exists a collection of 
linear functionals Ω′ = {ωt}t∈Υ ⊂ J (μ)∗ satisfying the collection of sets {supp(ωt)}t∈Υ
has C-bounded overlap, and for each y ∈ Rn, there exists a finite subset Υy ⊂ Υ and a 
collection of polynomials {vt,y}t∈Υy

⊂ P such that |Υy| ≤ C and

JyT (f, P0) =
∑

t∈Υy

ωt(f) · vt,y + ω̃y(P0), (10.28)

where ω̃y : P → P is a linear map.

Proof. Any functional ω̂ ∈ J (μ; δ)∗ admits a unique decomposition ω̂ = ω + ω̃, where 
ω ∈ J (μ)∗ and ω̃ ∈ P∗. We have defined T : J (μ; δ) → Lm,p(Rn) as T (f, P0) :=
θ · T (f, �R, �R∗) + (1 − θ)P0, where θ is a smooth function satisfying θ ≡ 1 on 0.9Q◦ and 
supp(θ) ⊂ Q◦. Consequently,

JyT (f, P0) =
{

P0 y ∈ (Q◦)c

JyT (f, �R, �R∗) �y Jyθ + (1 − Jyθ) �y P0 y ∈ Q◦.

(10.29)

Here, �y is the jet product on P defined by P �y P ′ = Jy(PP ′). Recall, from (8.16) in 
the proof of Lemma 8.1, we defined T (f, �R, �R∗) ∈ Lm,p(Q◦) as

T (f, �R, �R∗)(x) =
{∑

i∈I Ti(f, Rxi
)(x) · θi(x) x ∈ KCZ

R∗
x(x) x ∈ Kp

(10.30)

where {θi}i∈I is a partition of unity satisfying (POU1)-(POU4) (see Section 4.3), the 
maps Ti(f, Rxi

) are defined just above (8.14), and the Whitney fields �R = (Rxi
)i∈I , 

�R∗ = (R∗
y)y∈Kp

are defined in (9.9) and Lemma 6.7, depending linearly on (f, P0). By 
Lemma 8.1,

JyT (f, �R, �R∗) = R∗
y for all y ∈ Kp. (10.31)
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In Lemma 10.2 we describe the form of the linear maps (f, P0) → R∗
y(f, P0) (y ∈ Kp). 

There exists a basis {vγ}γ∈M for P, a linear map ω̃y : P → P, and linear functionals 
ωγ

y : J (μ) → R satisfying supp(ωγ
y ) ⊂ {y} (γ ∈ M), such that

R∗
y(f, P0) =

∑
γ∈M

ωγ
y (f) · vγ + ω̃y(P0) (y ∈ Kp). (10.32)

In (9.9), we defined �R = (Rxi
)i∈I ∈ Wh(BCZ) by

Rxi
:=
{

R′
xs

κ(xi) = xs ∈ Bkey

R∗
z κ(xi) = z ∈ Kp,

(10.33)

We now discuss the form of the linear maps (f, P0) �→ R′
xs

(f, P0) (s ∈ Ī), defined in 
Lemma 7.3. Recall that R′

xs
∈ P depends linearly on (f |9Qs

, P0). Thus, given a basis 
{vγ}γ∈M for P, there exist linear functionals ωγ

xs
: J (μ|9Qs

) → R satisfying

supp(ωγ
xs

) ⊂ supp(μ|9Qs
) ⊂ 10Qs (γ ∈ M), (10.34)

and there exists a linear map ω̃xs
: P → P, such that

R′
xs

(f, P0) =
∑

γ∈M
ωγ

xs
(f) · vγ + ω̃xs

(P0). (10.35)

We now discuss the form of the linear maps Ti, defined just above (8.14). For each 
i ∈ I, the map Ti is Ω′

i-constructible, satisfying (AL4) for Ei = 1.1Qi (see Section 4.4). 
Thus, there exists a collection of linear functionals

Ω′
i = {ωi

t}t∈Υi ⊂ J (μ|1.1Qi
)∗ ⊂ J (μ)∗ (see Remark 4.1), (10.36)

such that the collection of sets {supp(ωi
t)}t∈Υi has C-bounded overlap, and by (4.13),

supp(ωi
t) ⊂ supp(μ|1.1Qi

) ⊂ 1.3Qi for all i ∈ I, t ∈ Υi. (10.37)

Further, for each y ∈ Rn, there exists a finite subset Υi
y ⊂ Υi and a collection of 

polynomials {vi
t,y}t∈Υi ⊂ P such that |Υi

y| ≤ C and

JyTi(f, Rxi
) =

∑
t∈Υi

y

ωi
t(f) · vi

t,y + ω̃i
y(Rxi

), (10.38)

where ω̃i
y : P → P is a linear map.

We define collections of functionals in J (μ)∗:

Ω0 := {ωγ
z : z ∈ Kp, γ ∈ M} indexed by Υ0 := {(z, γ) : z ∈ Kp, γ ∈ M};
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Ω1 := {ωγ
xs

: xs ∈ Bkey, γ ∈ M} indexed by Υ1 := {(xs, γ) : xs ∈ Bkey, γ ∈ M}; and

Ω2 :=
⋃
i∈I

Ω′
i = {ωi

t : i ∈ I, t ∈ Υi} indexed by Υ2 := {(i, t) : i ∈ I, t ∈ Υi}.

We define the complete collection of functionals as

Ω′ := Ω0 ∪ Ω1 ∪ Ω2 ⊂ J (μ)∗, (10.39)

indexed by

Υ = Υ0 ∪ Υ1 ∪ Υ2.

Because supp(ωγ
z ) ⊂ {z}, {supp(ω) : ω ∈ Ω0} has C-bounded overlap for C = |M|, a 

universal constant.
For xs ∈ Bkey, supp(ωγ

xs
) ⊂ 10Qs (see (10.34)). Because of Lemma 4.7, |{s′ ∈ Ī :

10Qs ∩ 10Qs′ �= ∅}| ≤ C for fixed s. Thus, the supports of the functionals in Ω1 have 
C-bounded overlap.

From (4.2), x ∈ 1.3Q for at most C cubes Q ∈ CZ◦. The supports of the functionals 
in each collection Ω′

i are contained in 1.3Qi (see (10.37)), and have C-bounded overlap. 
Thus, the supports of the functionals in Ω2 have C-bounded overlap.

We now show that the map T : J (μ; δQ◦) → Lm,p(Rn) is Ω′-constructible. We do so 
by verifying the identity (10.28) for each y ∈ Rn, for the set of functionals Ω′ ⊂ J (μ)∗

defined above.
For y ∈ Rn \ Q◦, we have by (10.29),

JyT (f, P0) = P0.

Thus, the identity (10.28) holds with Υy = ∅ and ω̃y(P0) = P0.
For y ∈ Kp, we have Jyθ = 1 (recall Kp ⊂ 1

9Q◦ and θ ≡ 1 on 0.9Q◦). So, by (10.29), 
(10.31), (10.32),

JyT (f, P0) = R∗
y(f, P0) =

∑
γ∈M

ωγ
y (f) · vγ + ω̃y(P0).

Thus, the identity (10.28) holds with Υy = {(y, γ) : γ ∈ M} ⊂ Υ.
Finally, suppose y ∈ Q◦ \Kp. Then y ∈ Qj ∈ CZ◦ for a unique j ∈ I. Since supp(θi) ⊂

1.1Qi, by the good geometry of the CZ cubes, we have that y ∈ supp(θi) if and only if 
i ↔ j. Thus,

JyT (f, �R, �R∗) = Jy

( ∑
i:i↔j

Ti(f, Rxi
) · θi

)
=
∑

i:i↔j

JyTi(f, Rxi
) �y Jyθi.

(10.40)
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If i ∈ I is such that κ(xi) = z ∈ Kp, then Rxi
= R∗

z by definition of Rxi
in (10.33). So, 

by (10.32),

Rxi
(f, P0) =

∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0) (if κ(xi) ∈ Kp). (10.41)

On the other hand, if i ∈ I is such that κ(xi) = xs ∈ Bkey, then Rxi
= R′

xs
by definition 

of Rxi
in (10.33). So, by (10.35),

Rxi
(f, P0) =

∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0) (if κ(xi) ∈ Bkey). (10.42)

Using the above identities in (10.38), we have, for all i ∈ I,

JyTi(f, Rxi
) =

∑
t∈Υi

y

ωi
t(f)vi

t,y + ω̃i
y

( ∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0)

)
=
∑

t∈Υi
y

ωi
t(f)vi

t,y +
∑

γ∈M
ωγ

κ(xi)(f) · ω̃i
y(vγ) + ω̃i

y

(
ω̃κ(xi)(P0)

)
.

(10.43)

We return to the formula (10.40). We substitute (10.43) into (10.40) to write, for 
y ∈ Qj ,

JyT (f, �R, �R∗) =
∑

i:i↔j

∑
t∈Υi

y

ωi
t(f) ·

{
vi

t,y �y Jyθi

}
+
∑

i:i↔j

∑
γ∈M

ωγ
κ(xi)(f) ·

{
ω̃i

y(vγ) �y Jyθi

}
+ ω̃i

y

(
ω̃κ(xi)(P0)

)
�y Jyθi.

Using (10.29), we write, for y ∈ Qj ,

JyT (f, P0) =
∑

i:i↔j

∑
t∈Υi

y

ωi
t(f) ·

{
vi

t,y �y Jyθi �y Jyθ
}

+
∑

i:i↔j

∑
γ∈M

ωγ
κ(xi)(f) ·

{
ω̃i

y(vγ) �y Jyθi �y Jyθ
}

+ ω̃i
y

(
ω̃κ(xi)(P0)

)
�y Jyθi �y Jyθ + (1 − Jyθ) �y P0. (10.44)

For y ∈ Q◦ \ Kp, there is a unique j = j(y) ∈ I so that y ∈ Qj ; we define,

Υ1,y :=
{

(i, t) : i ∈ I, i ↔ j(y), t ∈ Υi
y

}
;

Υ2,y := {(z, γ) : κ(xi) = z ∈ Kp for some i ∈ I, i ↔ j(y), γ ∈ M} ; and

Υ3,y := {(xs, γ) : κ(xi) = xs ∈ Bkey for some i ∈ I, i ↔ j(y), γ ∈ M} .
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Note that the last term on the right-hand side of (10.44) is just a linear map applied 
to P0. By splitting the second sum on i ∈ I on the right-hand side of (10.44) into cases 
depending on whether κ(xi) = z ∈ Kp or κ(xi) = xs ∈ Bkey, and using the definitions 
of the index sets Υr,y (r = 1, 2, 3), we have

JyT (f, P0) =
∑

(i,t)∈Υ1,y

ωi
t(f) ·

(
vi

t,y �y Jy(θi) �y Jy(θ)
)

+
∑

(z,γ)∈Υ2,y

ωγ
z (f) ·

∑
i∈I: κ(xi)=z,i↔j

ω̃i
y(vγ

z ) �y Jy(θi) �y Jy(θ)

+
∑

(xs,γ)∈Υ3,y

ωγ
xs

(f) ·
∑

i∈I: κ(xi)=xs,i↔j

ω̃i
y(vγ) �y Jy(θi) �y Jy(θ) + ω̃y(P0),

(10.45)

for some linear map ω̃y : P → P.
Using (10.45), we see that the identity (10.28) holds with Υy := Υ1,y ∪ Υ2,y ∪ Υ3,y. 

Note that

|Υy| ≤ C,

because |M| = D, |{i ∈ I : i ↔ j}| ≤ C for fixed j, from (4.2), and |Υi
y| ≤ C for fixed 

(i, y). �
Lemma 10.5. The map M defined in Lemma 10.1 is Ω′-constructible, where Ω′ = {ωs}s∈Υ
is the collection defined in Lemma 10.4. Precisely, the objects λ�, φ�, and �S arising in 
the description of M in (3.3), satisfy the following:

(1) For each � ∈ N and y ∈ supp(μ), there exists a finite subset Ῡ�,y ⊂ Υ and 
constants {ηs,y}s∈Ῡ�,y

such that |Ῡ�,y| ≤ C, and the map (f, P0) �→ λ�(f, P0)(y) has the 
form

λ�(f, P0)(y) =
∑

s∈Ῡ�,y

ηs,yωs(f) + λ̃y,�(P0), (10.46)

where λ̃y,� : P → R is a linear functional.
(2) For each � ∈ N, there exists a finite subset Ῡ� ⊂ Υ and constants {ηs}s∈Ῡ�

such 
that |Ῡ�| ≤ C, and the map φ� has the form

φ�(f, P0) =
∑

s∈Ῡ�

ηsωs(f) + λ̃�(P0), (10.47)

where λ̃� : P → R is a linear functional.
(3) For y ∈ K, there exist {ωα

y }α∈M ⊂ Ω′ satisfying for all α ∈ M, supp(ωα
y ) ⊂ {y}, 

and the map f �→ Sy(f) has the form
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Sy(f) =
∑

α∈M
ωα

y (f) · vα, (10.48)

where {vα}α∈M is a basis for P.

Proof. In the proof of Lemma 10.1, we defined M : J (μ; δ) → R as the (1/p)th power 
of the right hand side of (10.26). Also, we defined K = ∅ for A �= ∅, and K = Kp, 
�S(f) = �R∗(f) for A = ∅. Then formula (10.48) follows immediately from Corollary 10.3, 
in the case A = ∅; while formula (10.48) is vacuously true if A �= ∅ (for then K = ∅).

We now investigate the form of the various terms arising on the right-hand side of 
(10.26). We shall demonstrate that each of these terms either involves a map of the form 
(10.46) or (10.47).

We first recall the form of the maps λi
�(f, P ) and φi

�(f, P ) arising in (AL5) and (AL6)
for Ei = 1.1Qi (see Section 4.4). These maps arise in the reindexed sums on the right-
hand side of (10.26).

By hypothesis (AL5), for each � ∈ N, i ∈ I, and y ∈ supp(μ), there exists a finite 
subset Ῡi

�,y ⊂ Υi and constants {η�,i
s,y}s∈Ῡi

�,y
⊂ R such that |Ῡi

�,y| ≤ C, and the map 

(f, P ) �→ λi
�(f, P )(y) has the form

λi
�(f, P )(y) =

∑
s∈Ῡi

�,y

η�,i
s,y · ωi

s(f) + λ̃i
y,�(P ), (10.49)

where λ̃i
y,� : P → R is a linear functional. Also, from (AL6), for each � ∈ N, and i ∈ I, 

there exists a finite subset Ῡi
� ⊂ Υi and constants {η�,i

s }s∈Ῡi
�

⊂ R such that |Ῡi
�| ≤ C, 

and the map (f, P ) → φi
�(f, P ) has the form

φi
�(f, P ) =

∑
s∈Ῡi

�

η�,i
s · ωi

s(f) + λ̃i
�(P ), (10.50)

where λ̃i
� : P → R is a linear functional.

For each i ∈ I, either κ(xi) ∈ Kp or κ(xi) ∈ Bkey. In (10.41) and (10.42), we have 
shown

Rxi
(f, P0) =

∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0), (10.51)

where {vγ}γ∈M is a basis for P, ωγ
κ(xi) (γ ∈ M) are linear functionals in Ω′ (for the 

definition of Ω′, see line (10.39) and the containing paragraph), and where ω̃κ(xi) : P → P
is a linear map. Consequently,

∂α[Rxi
(f, P0)] =

∑
γ∈M

ωγ
κ(xi)(f) · ∂α[vγ ] + ∂α[ω̃κ(xi)(P0)]. (10.52)



120 M.K. Drake / Advances in Mathematics 420 (2023) 108999
For j ∈ N, after the reindexing in (10.26), a map λj : J (μ; δ) → Lp(dμ) arising in 
(10.26) is either of the form λj(f, P0) = λi

�(f, Rxi
) for i ∈ I and � ∈ N, or λj(f, P0) =

λ′(f, P0), where λ′ is defined in (10.22).
In the former case, we substitute (10.51) into (10.49) and write

λi
�(f, Rxi

)(y) =
∑

s∈Ῡi
�,y

η�,i
s,y · ωi

s(f) + λ̃i
y,�(Rxi

)

=
∑

s∈Ῡi
�,y

η�,i
s,y · ωi

s(f) + λ̃i
y,�

( ∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0)

)
=
∑

s∈Ῡi
�,y

η�,i
s,y · ωi

s(f) +
∑

γ∈M
ωγ

κ(xi)(f)λ̃i
y,�(vγ) + λ̃i

y,�

(
ω̃κ(xi)(P0)

)
.

Above, the number of terms in the two sums on the right-hand side is at most 
|Ῡi

�,y| + |M| ≤ C, and each of the functionals ωi
s(f) and ωγ

κ(xi)(f) belongs to the 
family Ω′ = {ωs}s∈Υ defined in (10.39). Further, the third term on the right-hand 
side is a linear function of P0. This proves the identity (10.46) for λj , provided that 
λj(f, P0) = λi

�(f, Rxi
).

Now suppose λj(f, P0) = λ′(f, P0) with λ′ defined in (10.22). If x ∈ Rn \ Kp then 
λ′(f, P0)(x) = 0. If x ∈ Kp, then from Lemma 10.2,

λ′(f, P0)(x) = R∗
x(f, P0)(x)

=
∑

α∈M
ωα

x (f) · vα(x) + ω̃x(P0)(x),

where ω̃x : P → P is a linear map. Above, the number of terms in the sum on the 
right-hand side is at most |M| ≤ C, and each of the functionals ωα

x (f) belongs to the 
family Ω′ = {ωs}s∈Υ defined in (10.39). Further, the second term on the right-hand side 
is a linear function of P0. Therefore, we have succeeded in verifying the identity (10.46)
for λj , provided that λj(f, P0) = λ′(f, P0).

From (10.26) for j ∈ N, a map φj : J (μ; δ) → R is either of the form φj(f, P0) =
φi

�(f, Rxi
) for i ∈ I and � ∈ N, φj(f, P0) = φi,i′,α(f, P0) for i ↔ i′ and α ∈ M (see 

(10.21)), or φj(f, P0) = ζα(f, P0) for α ∈ M (see (10.25)).
In the first case, if φj(f, P0) = φi

�(f, Rxi
) for i ∈ I and � ∈ N, we substitute (10.51)

into (10.50):

φi
�(f, Rxi

) =
∑

s∈Ῡi
�

η�,i
s · ωi

s(f) + λ̃i
�(Rxi

)

=
∑

s∈Ῡi
�

η�,i
s · ωi

s(f) + λ̃i
�

( ∑
γ∈M

ωγ
κ(xi)(f) · vγ + ω̃κ(xi)(P0)

)
=
∑

s∈Ῡi
�

η�,i
s · ωi

s(f) +
∑

γ∈M
ωγ

κ(xi)(f)λ̃i
�(vγ) + λ̃i

�

(
ω̃κ(xi)(P0)

)
.
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In the expression above, the last term is a linear function of P0, and the number of terms 
in both sums is at most |Ῡi

�| + |M| ≤ C. Further, each of the functionals ωi
s(f) and 

ωγ
κ(xi) belongs to the family Ω′ = {ωs}s∈Υ defined in (10.39). This proves the identity 

(10.47) for φj , provided that φj(f, P0) = φi
�(f, Rxi

).
Suppose φj(f, P0) = φi,i′,α(f, P0) = c

1/p
α,i,i′∂α

x (Rxi
− Rxi′ )(xi) for i ↔ i′ and α ∈ M

(see (10.21)). Using (10.52), we have

φi,i′,α(f, P0) = c
1/p
α,i,i′

∑
γ∈M

ωγ
κ(xi)(f) · ∂α

x [vγ ](xi) − c
1/p
α,i,i′

∑
γ∈M

ωγ
κ(xi′ )(f) · ∂α

x [vγ ](xi)

+ c
1/p
α,i,i′ · ∂α

x [ω̃κ(xi)(P0) − ω̃κ(xi′ )(P0)](xi).

In the expression above, the last term is a linear function of P0, and the number of terms 
in both sums is at most 2|M| ≤ C. Further, each of the functionals ωγ

κ(xi) and ωγ
κ(xi′ )

belongs to the family Ω′ = {ωs}s∈Υ defined in (10.39). This proves the identity (10.47)
for φj , provided that φj(f, P0) = φi,i′,α(f, P0).

Finally, suppose φj(f, P0) = ζα(f, P0) := cα∂α(Rx1 − P0)(x1) for α ∈ M. Using 
(10.52) at x = x1, we have

ζα(f, P0) = cα

∑
γ∈M

ωγ
κ(xi)(f) · ∂αvγ(x1) + cα

(
∂αω̃κ(xi)(P0)(x1) − ∂αP0(x1)

)
.

In the expression above, the last term is a linear function of P0, and the number of terms 
in the sum is at most |M| ≤ C. Further, each of the functionals ωγ

κ(xi) belongs to the 
family Ω′ = {ωs}s∈Υ defined in (10.39). Therefore, we have verified the identity (10.47)
for φj , provided that φj(f, P0) = ζα(f, P0).

This completes the proof that the map M is Ω′-constructible. �
The previous lemmas complete the inductive argument, begun in Section 3.3, by 

showing that under the assumption that the Main Lemma holds for all A′ < A, the 
Main Lemma also holds for A.

11. Proofs of the main theorems

Proofs of Theorems 1 and 3. Let μ be a compactly supported Borel regular measure on 
Rn.
Fix δ > diam(supp(μ)), so that supp(μ) is contained in a cube of sidelength δ. From 
(2.22) and (2.23),

‖f‖J (μ) � inf
P ∈P

‖f, P‖J (μ;δ). (11.1)

Per the Extension Theorem for (μ, δ) (Proposition 3.1), there exist a linear map T :
J (μ; δ) → Lm,p(Rn), a map M : J (μ; δ) → R+, a set K ⊂ Cl(supp(μ)), a linear map 
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�S : J (μ) → Wh(K), and countable families of Borel sets {A�}�∈N , A� ⊂ supp(μ), and 
linear maps {φ� : J (μ; δ) → R}�∈N , and {λ� : J (μ; δ) → Lp(dμ)}�∈N , that satisfy the 
conclusion of the extension theorem, as described below.

For each (f, P0) ∈ J (μ; δ),

(i) ‖f, P0‖J (μ;δ) ≤ ‖T (f, P0), P0‖J (f,μ;δ) ≤ C · ‖f, P0‖J (μ;δ); (11.2)

(ii) c · M(f, P0) ≤ ‖T (f, P0), P0‖J (f,μ;δ) ≤ C · M(f, P0); and (11.3)

(iii) M(f, P0) =
(∑

�∈N

∫
A�

|λ�(f, P0) − f |pdμ +
∑
�∈N

|φ�(f, P0)|p + ‖�S(f)‖p
Lm,p(K)

)1/p

.

(11.4)

Hence,

inf
P ∈P

‖f, P‖J (μ;δ) � inf
P ∈P

M(f, P )

= inf
P ∈P

(∑
�∈N

∫
A�

|λ�(f, P ) − f |pdμ +
∑
�∈N

|φ�(f, P )|p + ‖�S(f)‖p
Lm,p(K)

)1/p

.

(11.5)

We apply Lemma 7.2 (with trivial constraint map Ψ, i.e., with N = 0) to compute 
ξ(f) ∈ P, depending linearly on f and satisfying:

(∑
�∈N

∫
A�

|λ�(f, ξ(f)) − f |pdμ+
∑
�∈N

|φ�(f, ξ(f))|p
)1/p

� inf
P ∈P

(∑
�∈N

∫
A�

|λ�(f, P ) − f |pdμ +
∑
�∈N

|φ�(f, P )|p
)1/p

.

(11.6)

Define Mf := M(f, ξ(f)). Then

Mf =
(∑

�∈N

∫
A�

|λ�(f, ξ(f)) − f |pdμ + |φ�(f, ξ(f))|p
)1/p

=
(∑

�∈N

( ∫
A�

|ζ�(f) − f |pdμ + |ψ�(f)|p
))1/p

. (11.7)

for linear maps ζ� : J (μ) → Lp(dμ), and linear functionals ψ� : J (μ) → R (� ∈ N), 
defined by ζ�(f) = λ�(f, ξ(f)) and ψ�(f) = φ�(f, ξ(f)).

Because of (11.2)-(11.4), Tf := T (f, ξ(f)) satisfies

‖Tf, ξ(f)‖J (f,μ;δ) � ‖f, ξ(f)‖J (μ;δ) � M(f, ξ(f)) = Mf. (11.8)
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Together, (11.1) and (11.5)-(11.8) imply that

‖f‖J (μ) � ‖Tf‖J (f,μ) � Mf,

completing the proof of Theorem 1.
Per the Extension Theorem for (μ, δ), there exists a collection of linear functionals 

Ω′ = {ωs}s∈Υ ⊂ J (μ)∗ such that the collection of sets {supp(ωs)}s∈Υ has C-bounded 
overlap, and for each y ∈ Rn, there exists a finite subset Υy ⊂ Υ and a collection of 
polynomials {vs,y}s∈Υy

⊂ P such that |Υy| ≤ C and

JyT (f, P0) =
∑

s∈Υy

ωs(f) · vs,y + ω̃y(P0) for (f, P0) ∈ J (μ; δ), (11.9)

where ω̃y : P → P is a linear map.
We have defined T (f) := T (f, ξ(f)). Because ξ : J (μ) → P is a linear map, we can 

write

ξ(f) =
∑

γ∈M
ωγ(f) · vγ , (11.10)

for linear functionals ωγ : J (μ) → R (γ ∈ M), and where {vγ}γ∈M is a basis for P. 
Substituting this into (11.9), we have

JyT (f) = JyT (f, ξ(f)) =
∑

s∈Υy

ωs(f) · vs,y + ω̃y(
∑

γ∈M
ωγ(f) · vγ)

=
∑

s∈Υy

ωs(f) · vs,y +
∑

γ∈M
ωγ(f) · ω̃y(vγ). (11.11)

Define the collection of functionals Ω := Ω′ ∪ {ωγ}γ∈M. Because |M| = D and the 
collection of supports of the functionals in Ω′ has C-bounded overlap, the collection of 
supports of the functionals in Ω has C ′-bounded overlap. Because |Υy| ≤ C, the number 
of terms in both sums in (11.11) is at most C. Therefore, JyT (f) is of the desired form 
in Theorem 3 (see (1.5)). That is, we have shown that T is Ω-constructible.

We have defined Mf := M(f, ξ(f)). Next we verify that the map M is Ω-constructible 
for the set Ω = J (μ)∗ defined above. We shall verify conditions (1)–(3) of Theorem 3.

From the Extension Theorem for (μ, δ), for y ∈ K, there exists {ωα
y }α∈M ⊂ Ω′

satisfying for all α ∈ M, supp(ωα
y ) ⊂ {y}, and the map f �→ Sy(f) has the form

Sy(f) =
∑

α∈M
ωα

y (f) · vα,

where {vα}α∈M is a basis for P. This implies condition (3) of Theorem 3, because Ω′ ⊂ Ω.
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To prove that M is Ω-constructible, we must show that the maps ζ� : J (μ) → Lp(dμ)
and ψ� : J (μ) → R in (11.7) satisfy conditions (1) and (2) of Theorem 3.

From the Extension Theorem for (μ, δ), we have for each � ∈ N and y ∈ supp(μ), there 
exists a finite subset Ῡ�,y ⊂ Υ and constants {η�

s,y}s∈Ῡ�,y
⊂ R such that |Ῡ�,y| ≤ C, and 

the map λ� has the form

λ�(f, P )(y) =
∑

s∈Ῡ�,y

η�
s,y · ωs(f) + λ̃y,�(P ),

where λ̃y,� : P → R is a linear functional. Using (11.10) in the previous equation, we 
deduce that the map f �→ ζ�(f)(y) has the form

ζ�(f)(y) = λ�(f, ξ(f))(y) =
∑

s∈Ῡ�,y

η�
s,y · ωs(f) + λ̃y,�

( ∑
γ∈M

ωγ(f) · vγ

)

=
∑

s∈Ῡ�,y

η�
s,y · ωs(f) +

∑
γ∈M

ωγ(f) · λ̃y,�(vγ).

Therefore, ζ�(f) has the form stated in condition (1) of Theorem 3, for the set Ω =
Ω′ ∪ {ωγ}γ∈M.

Similarly, from the Extension Theorem for (μ, δ), for � ∈ N, there exists a finite subset 
Ῡ� ⊂ Υ and constants {η�

s}s∈Ῡ�
⊂ R such that |Ῡ�| ≤ C, and the functional φ� has the 

form

φ�(f, P ) =
∑

s∈Ῡ�

η�
s · ωs(f) + λ̃�(P ),

where λ̃� : P → R is a linear functional. Again, using (11.10), we deduce that the map 
ψ� has the form

ψ�(f) = φ�(f, ξ(f)) =
∑

s∈Ῡ�

η�
s · ωs(f) + λ̃�

( ∑
γ∈M

ωγ(f) · vγ

)
=
∑

s∈Ῡ�

η�
s · ωs(f) +

∑
γ∈M

ωγ(f) · λ̃�(vγ).

Therefore, ψ�(f) has the form stated in condition (2) of Theorem 3, for the set Ω =
Ω′ ∪ {ωγ}γ∈M.

This completes the proof of Theorem 3. �
Proof of Theorem 4. Let μ be a finite Borel regular measure on Rn with compact sup-
port. By rescaling, we may assume supp(μ) ⊂ 1

10 Q◦ for Q◦ = (0, 1]n. In the proof of 
the Extension Theorem for (μ, δ = 1/10), the Calderón-Zygmund decomposition CZ◦
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defined in Section 4 is finite and 
⋃

Q∈CZ◦ Q = Q◦ (see Lemma 4.3). Therefore, Kp = ∅
(see Definition 4.4). Consequently, Mf : J (μ) → R in Theorem 1 has the form

Mf =
( K∑

�=1

∫
A�

|ζ�(f) − f |pdμ + |ψ�(f)|p
)1/p

,

where for each �, A� ⊂ supp(μ) is a Borel set, ζ� : J (μ) → Lp(dμ), and ψ� : J (μ) →
R are linear maps, and K is finite. Again because the CZ decomposition is finite, in 
Theorem 3, we have that the collection of linear functionals Ω = {ωr}r∈Υ ⊂ J (μ)∗ is 
finite (|Υ| < ∞). �
Proofs of Theorems 2 and 5. Theorems 2 and 5 are immediate consequences of Theo-
rems 1 and 3 applied to the Borel measure μ = μE in (1.4). For details, see the discussion 
after (1.4). �
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(1971) 69–132.

[3] Y.A. Brudnyi, A. Brudnyi, Methods of Geometric Analysis in Extension and Trace Problems, Mono-
graphs in Mathematics, vol. 1, Birkhäuser, Basel, 2012.

[4] Y.A. Brudnyi, P. Shvartsman, Generalizations of Whitney’s extension theorem, Int. Math. Res. Not. 
1994 (3) (1994) 129–139.

[5] Y.A. Brudnyi, P. Shvartsman, The Whitney problem of existence of a linear extension operator, J. 
Geom. Anal. 7 (4) (1997) 515–574.

[6] C. Fefferman, A generalized sharp Whitney theorem for jets, Rev. Mat. Iberoam. 21 (2) (2005) 
577–688.

[7] C. Fefferman, A sharp form of Whitney’s extension theorem, Ann. Math. 161 (1) (2005) 509–577.
[8] C. Fefferman, Whitney’s extension problem for Cm, Ann. Math. 164 (1) (2006) 313–359.
[9] C. Fefferman, Cm extension by linear operators, Ann. Math. 163 (3) (2007) 779–835.

[10] C. Fefferman, The structure of linear extension operators for Cm, Rev. Mat. Iberoam. 23 (1) (2007) 
269–280.

[11] C. Fefferman, Fitting a Cm-smooth function to data III, Ann. Math. 170 (1) (2009) 427–441.
[12] C. Fefferman, A. Israel, G.K. Luli, The structure of Sobolev extension operators, Rev. Mat. Iberoam. 

30 (2) (2012) 419–429.
[13] C. Fefferman, A. Israel, G.K. Luli, Sobolev extension by linear operators, J. Am. Math. Soc. 27 

(2014).
[14] C. Fefferman, A. Israel, G.K. Luli, Fitting a Sobolev function to data I, Rev. Mat. Iberoam. 32 (1) 

(2016) 273–374.
[15] C. Fefferman, A. Israel, G.K. Luli, Fitting a Sobolev function to data II, Rev. Mat. Iberoam. 32 (2) 

(2016) 649–750.
[16] C. Fefferman, A. Israel, G.K. Luli, Fitting a Sobolev function to data III, Rev. Mat. Iberoam. 32 (3) 

(2016) 1039–1126.
[17] C. Fefferman, B. Klartag, Fitting a Cm-smooth function to data I, Ann. Math. 169 (1) (2009) 

315–346.
[18] C. Fefferman, B. Klartag, Fitting a Cm-smooth function to data II, Rev. Mat. Iberoam. 25 (1) 

(2009) 49–273.
[19] G. Glaeser, Etude de quelques algebres Tayloriennes, J. Anal. Math. 6 (1958) 1–125.
[20] A. Israel, A bounded linear extension operator for L2,p(R2), Ann. Math. 178 (1) (2013) 183–230.
[21] P. Shvartsman, Sobolev W 1

p -spaces on closed subsets of Rn, Adv. Math. 220 (6) (2009) 1842–1922.

http://refhub.elsevier.com/S0001-8708(23)00142-1/bib453B265D43E7F4442063D268B6754BAEs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib453B265D43E7F4442063D268B6754BAEs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibF333E29C03043115C661A6D7C260000Ds1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibF333E29C03043115C661A6D7C260000Ds1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib88F0860257BA6BDC089557444F5CDD16s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib88F0860257BA6BDC089557444F5CDD16s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib2AD485FE27A19D765E3E2D287F66A07Fs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib2AD485FE27A19D765E3E2D287F66A07Fs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib8E1F025B33B284EB4E573A7CFB46735Es1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib8E1F025B33B284EB4E573A7CFB46735Es1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib734655D7006CB5084E7F8C597C7B0C17s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib2ACFFB70649C35DD80D70A129BB4827Cs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibE25D00A1FD0F18BE7FF0F07F53FABD8Es1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib2C43A150D3D95277A66AB4FB35D9F96As1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibADEAADA604A7FF65597350EA2C052F78s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibADEAADA604A7FF65597350EA2C052F78s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibC84A3F85C2ED0F5DF51F445E06120F1As1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib391206ADF56CCC10580A3E90D10D1CA5s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib391206ADF56CCC10580A3E90D10D1CA5s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib6AFF2CEB80C71119BB8B2E2B3DEBF560s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib6AFF2CEB80C71119BB8B2E2B3DEBF560s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibC7EEB3ABCE42C2AE3E3C1899EAAB7BC2s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibC7EEB3ABCE42C2AE3E3C1899EAAB7BC2s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib899610FFC605309877CD0A13F43F9FB7s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib899610FFC605309877CD0A13F43F9FB7s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib33F815EF49D5C4D36CAE0057D2583EBDs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib33F815EF49D5C4D36CAE0057D2583EBDs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib6C664EEED34D9C29A711BDB374831B49s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib6C664EEED34D9C29A711BDB374831B49s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib581C3010417303E1EE4C0657D76318D0s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib581C3010417303E1EE4C0657D76318D0s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibCE1D5A2480E0F4A2D1C1C7968CC66C13s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibAE23E12627DE2D9E280CC8BEC72EEBD9s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib540EFF9074F1888AD322F30060E27AB7s1


126 M.K. Drake / Advances in Mathematics 420 (2023) 108999
[22] P. Shvartsman, On the sum of a Sobolev space and a weighted Lp-space, Adv. Math. 248 (2013) 
155–228.

[23] P. Shvartsman, Sobolev L2
p functions on closed subsets of R2, Adv. Math. 252 (2014) 22–113.

[24] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 
1970.

[25] H. Whitney, Differentiable functions defined in closed sets I, Trans. Am. Math. Soc. (36) (1934) 
360–389.

http://refhub.elsevier.com/S0001-8708(23)00142-1/bibEE300C9F771D4B91B0D8BE0D33FF3807s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibEE300C9F771D4B91B0D8BE0D33FF3807s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibBF32428D1CE3705AF3EEC46E23043764s1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib627FCDB6CC9A5E16D657CA6CDEF0A6BBs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bib627FCDB6CC9A5E16D657CA6CDEF0A6BBs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibD93438A68E424BCFC3460D73A90BF95Cs1
http://refhub.elsevier.com/S0001-8708(23)00142-1/bibD93438A68E424BCFC3460D73A90BF95Cs1

	Approximate extension in Sobolev space
	1 Introduction
	1.1 Background
	1.2 Overview of the proof of Theorem 1

	2 Notation and further theory
	2.1 Notation
	2.2 Further elementary inequalities
	2.2.1 Characterization of Sobolev space by local polynomial approximation
	2.2.2 Consequence of the classical Whitney extension theorem


	3 Structure of the proof
	3.1 Plan for the proof
	3.1.1 Order relation on labels
	3.1.2 Polynomial bases

	3.2 The induction
	3.2.1 The Main Lemma
	3.2.2 Proof of the base case
	3.2.3 Technical lemmas

	3.3 The inductive hypothesis
	3.3.1 Auxiliary polynomials
	3.3.2 Reduction to monotonic A


	4 The Calderón-Zygmund decomposition
	4.1 Defining the decomposition
	4.2 Keystone points
	4.3 Partition of unity
	4.4 Local extension operators

	5 Preliminary estimates and technical tools
	5.1 Estimates for auxiliary polynomials
	5.2 Estimates for local solutions
	5.3 Patching estimates
	5.3.1 Patching estimate on KCZ
	5.3.2 Patching estimate on Q◦
	5.3.3 Patching estimates for restriction of μ


	6 Further constraints on extension
	6.1 Definition and properties of the space J∗(μ;Q◦,CZ◦;Kp)
	6.2 Coherency
	6.2.1 Proof of Proposition 6.2

	6.3 Keystone point jets

	7 Optimal local extension
	7.1 Optimization by linear maps
	7.2 Local extension

	8 Decomposition of the functional
	9 Optimal Whitney field
	9.1 Whitney fields on Kp and BCZ

	10 Proof of the Main Lemma for A
	11 Proofs of the main theorems
	References


