
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 375–413
December 7-11, 2022 ©2022 Association for Computational Linguistics

Translation between Molecules and Natural Language

Carl Edwards1*, Tuan Lai1,2*, Kevin Ros1, Garrett Honke2, Kyunghyun Cho3,4, Heng Ji1
1University of Illinois Urbana-Champaign

2X, the Moonshot Factory
3New York University, 4 Genentech

{cne2, tuanml2, kjros2, hengji}@illinois.edu
ghonk@google.com, kyunghyun.cho@nyu.edu

Abstract

We present MolT5 – a self-supervised learn-
ing framework for pretraining models on a
vast amount of unlabeled natural language
text and molecule strings. MolT5 allows for
new, useful, and challenging analogs of tradi-
tional vision-language tasks, such as molecule
captioning and text-based de novo molecule
generation (altogether: translation between
molecules and language), which we explore for
the first time. SinceMolT5 pretrains models on
single-modal data, it helps overcome the chem-
istry domain shortcoming of data scarcity. Fur-
thermore, we consider several metrics, includ-
ing a new cross-modal embedding-based met-
ric, to evaluate the tasks of molecule caption-
ing and text-based molecule generation. Our
results show thatMolT5-based models are able
to generate outputs, both molecules and cap-
tions, which in many cases are high quality1.

1 Introduction

Imagine a future where a doctor can write a few
sentences describing a specialized drug for treating
a patient and then receive the exact structure of
the desired drug. Although this seems like science
fiction now, with progress in integrating natural
language and molecules, it might well be possi-
ble in the future. Historically, drug creation has
commonly been done by humans who design and
build individual molecules. In fact, bringing a new
drug to market can cost over a billion dollars and
take over ten years (Gaudelet et al., 2021). Re-
cently, there has been considerable interest in us-
ing new deep learning tools to facilitate in silico
drug design– a field often called cheminformatics
(Rifaioglu et al., 2018). Yet, many of these experi-
ments still focus on molecules and their low-level
properties such as logP (the octanol-water parti-
tion coefficient) (Bagal et al., 2021). In the future,

* indicates equal contributions.
1All resources are publicly available at github.com/blender-

nlp/MolT5

The molecule is an eighteen-membered homodetic cyclic peptide

which is isolated from Oscillatoria sp. and exhibits antimalarial

activity against the W2 chloroquine-resistant strain of the malarial

parasite, Plasmodium falciparum. It has a role as a metabolite and an

antimalarial. It is a homodetic cyclic peptide, a member of 1,3-

oxazoles, a member of 1,3-thiazoles and a macrocycle.

Target Prediction

Figure 1: An example output from our model for the
molecule generation task. The left is the ground truth,
and the right is a molecule generated from the given
natural language caption.

we foresee a need for a higher-level control over
molecule design, which can easily be facilitated by
natural language.
In this work, we pursue an ambitious goal of

translating between molecules and language by
proposing two new tasks: molecule captioning
and text-guided de novo molecule generation. In
molecule captioning, we take a molecule (e.g., as
a SMILES string) and generate a caption that de-
scribes it (Figure 2). In text-guided molecule gener-
ation, the task is to create a molecule that matches
a given natural language description (Figure 1).
These new tasks would help to accelerate research
in multiple scientific domains by enabling chem-
istry domain experts to generate new molecules
and better understand them using natural language.
While our proposed molecule-language tasks

share some similarities with vision-language tasks,
they have several inherent difficulties that separate
them from existing vision-language analogs: 1)
creating annotations for molecules requires signif-
icant domain expertise, 2) thus, it is significantly
more difficult to acquire large numbers of molecule-
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SMILES representation 3D View

Caption

The molecule is an organic disulfide isolated from the whole
broth of the marine-derived fungus Exserohilum rostratum and

has been shown to exhibit antineoplastic activity. It has a role as
a metabolite and an antineoplastic agent. It is a bridged

compound, a lactam, an organic disulfide, an organic
heterohexacyclic compound, a secondary alcohol, a cyclic

ketone and a diol.

Molecule CaptioningImage Captioning

1. a cat sitting on top of an open laptop computer.
2. a cat that is sitting on top of a lap top.

3. a cat is sitting on the keyboard of a laptop.
4. a cat is sitting on an open laptop.

5. a striped cat sitting on top of a laptop


Captions from COCO 

Figure 2: An example of both the image captioning task (Chen et al., 2015) and molecule captioning. Molecule
captioning is considerably more difficult because of the increased linguistic variety in possible captions.

description pairs, 3) the same molecule can have
many functions and thus be described in very dif-
ferent ways, which causes 4) existing evaluation
measures based on reference descriptions, such as
BLEU, to fail to adequately evaluate these tasks.
To address the issue of data scarcity (i.e., diffi-

culties 1 and 2), we propose a new self-supervised
learning framework named MolT5 (Molecular T5)
that is inspired by the recent progress in pretrain-
ing multilingual models (Devlin et al., 2019; Liu
et al., 2020). MolT5 first pretrains a model on a
vast amount of unlabeled natural language text and
molecule strings using a simple denoising objec-
tive. After that, the pretrained model is finetuned
on limited gold standard annotations. Furthermore,
to adequately evaluate models for molecule cap-
tioning or generation, we consider various kinds
of metrics and also adopt a new metric based on
Text2Mol (Edwards et al., 2021). We repurpose
this retrieval model for assessing the similarity be-
tween the ground truth molecule/description and
the generated description/molecule, respectively.
To the best of our knowledge, there is no work

yet on molecule captioning or text-guided molecule
generation. The closest existing work to molecule
captioning falls within the scope of image caption-
ing (Vinyals et al., 2015). However, molecule cap-
tioning is arguably much more challenging due to
the increased linguistic variety in possible captions
(Figure 2). A molecule could be described with an
IUPAC name, with one of many different synthetic
routes from known precursor molecules, in terms

of the properties (e.g. carcinogenic or lipophilic),
with the applications of the molecule (e.g. a dye,
an antipneumonic, or an antifungal), or in terms of
its functional groups (e.g. “substituted by hydroxy
groups at positions 5 and 7 and a methyl group at
position 8”), among other methods.
In summary, our main contributions are:
1. We propose two new tasks: 1) molecule cap-

tioning, where a description is generated for
a given molecule, and 2) text-based de novo
molecule generation, where a molecule is gen-
erated to match a given text description.

2. We consider multiple evaluation metrics for
these new tasks, and we adopt a new cross-
modal retrieval similarity metric based on
Text2Mol (Edwards et al., 2021).

3. We propose MolT5: a self-supervised learn-
ing framework for jointly training a model on
molecule string representations and natural
language text, which can then be finetuned on
a cross-modal task.

2 Tasks

With the ambitious goal of bi-directional translation
between molecules and language, we propose two
new novel tasks: molecule captioning (Section 2.1)
and text-based molecule generation (Section 2.2).

2.1 Molecule Captioning
For any given molecule, the goal of molecule cap-
tioning is to describe the molecule and what it does.
An example is shown in Figure 2. Molecules are
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often represented as SMILES strings (Weininger,
1988; Weininger et al., 1989), a linearization of
the molecular graph which can be interpreted as
a language for molecules. Thus, this task can be
considered an exotic translation task, and sequence
to sequence models serve as excellent baselines.

2.2 Text-Based de Novo Molecule Generation

The goal of the de novo molecule generation task
is to train a model which can generate a variety
of possible new molecules. Existing work tends
to focus on evaluating the model coverage of the
chemical space (Polykovskiy et al., 2020). Instead,
we propose generating molecules based on a nat-
ural language description of the desired molecule–
this is essentially swapping the input and output
for the captioning task. An example of this task is
shown in Figure 1. Recent work, such as DALL·E
(Ramesh et al., 2021, 2022), which generates im-
ages from text, has shown the ability to seamlessly
integrate multiple properties, such as chairs and
avocados, in an image. This points towards similar
applications in the molecule generation domain via
the usage of natural language.

3 Evaluation Metrics

3.1 Text2Mol Metric

Since we are considering new cross-modal tasks
between molecules and text, we also introduce a
new cross-modal evaluation metric. This is based
on Text2Mol (Edwards et al., 2021), which aims to
train a retrieval model to rank molecules given their
text descriptions. Since the ranking function uses
cosine similarity between embeddings, a trained
model can be repurposed for evaluating the similar-
ity between the ground truth molecule/description
and the generated description/molecule (respec-
tively). To this end, we first train a base multi-layer
perceptron (MLP) model from Text2Mol. This
model is then used to generate similarities of the
candidate molecule-description pairs, which can be
compared to the average similarity of the ground
truth molecule-description pairs. We also note that
negative molecule-description pairs have an aver-
age similarity of roughly zero.

3.2 Evaluating Molecule Captioning

Traditionally, captioning tasks have been evaluated
by natural language generation metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005). Un-

like captioning tasks such as COCO (Chen et al.,
2015), which has several captions per image, in
our task we only have one reference caption. This
makes these metrics less effective, especially be-
cause there are many non-overlapping ways to
describe a molecule. Nevertheless, for compari-
son, we still report these scores (e.g., aggregated
sentence-level METEOR scores).

3.3 Evaluating Text-Based de Novo Molecule
Generation

Considerable interest has grown in applying deep
generative models to de novo molecule generation.
Because of this, a number of metrics have been
proposed, such as novelty and scaffold similarity
(Polykovskiy et al., 2020). However, many of these
metrics do not apply to our problem– we want
our generated molecule to match the input text
instead of being generally diverse. Instead, we
consider metrics which measure the distance of
the generated molecule to either the ground truth
molecule or the ground truth description, such as
our proposed Text2Mol-based metric.
We employ three fingerprint metrics: MACCS

FTS, RDK FTS, and Morgan FTS, where FTS
stands for fingerprint Tanimoto similarity (Tani-
moto, 1958). MACCS (Durant et al., 2002), RDK
(Schneider et al., 2015), and Morgan (Rogers and
Hahn, 2010) are each fingerprinting methods for
molecules. The fingerprints of two molecules are
compared using Tanimoto similarity (also known
as Jaccard index), and the average similarity over
the evaluation dataset is reported. See (Campos
and Ji, 2021) for more details. We also report ex-
act SMILES string matches, Levenshtein distance
(Miller et al., 2009), and SMILES BLEU scores.

Preuer et al. (2018) propose Fréchet ChemNet
Distance (FCD), which is inspired by the Fréchet
Inception Distance (FID) (Heusel et al., 2017).
FCD is based on the penultimate layer of a network
called “ChemNet”, which was trained to predict
the activity of drug molecules. Thus, FCD takes
into account chemical and biological information
about molecules in order to compare them. This al-
lows molecules to be compared based on the latent
information required to predict useful properties
rather than a string-based metric.

In the case of models which use SMILES strings,
generated molecules can be syntactically invalid.
Therefore, we also report validity as the percent
of molecules which can be processed by RDKIT
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Pre-training

Fine-tuning

MolT5

The molecule is a siderophore
composed from L-2,3-

diaminopropionic acid, ...

C(CC(=O)NCCNC(=O)CC(CC

(=O)NCC(C(=O)O)N)

(C(=O)O)O)C(=O)C(=O)O

CC1=C(C(=C(C=C1)Cl)

NC2=CC=CC=C2C(=O)O)Cl

The molecule is an aminobenzoic
acid that is anthranilic acid in which
one of the hydrogens attached to ...

MolT5

Molecule

Generation


Molecule

Captioning


ON=CCC1=C[NH1]C2=CC=CC=C12

Lissamine fast yellow(2-) is an
organosulfonate oxoanion resulting from the

removal of a proton

[X]

[X] CC=CC=C12

 

[X] organosulfonate oxoanion [Y] from the

 


Initialized from a public
t5.1.1 checkpoint 

[Y]

[X]

Figure 3: A diagram of our framework. We first pre-train MolT5 on a large amount of data of both SMILES string
and natural language using the “replace corrupted spans” objective (Raffel et al., 2020). After the pre-training stage,
MolT5 can be easily fine-tuned for either the task of molecule captioning or generation (or both).

(Landrum, 2021) as in (Polykovskiy et al., 2020).

4 MolT5 – Multimodal Text-Molecule
Representation Model

We can crawl a massive amount of text from the
Internet. For example, Raffel et al. (2020) built a
Common Crawl-based dataset that contains over
700 GB of reasonably clean and natural English
text. On the other hand, over a billion molecules
are also available from public databases such as
ZINC-15 (Sterling and Irwin, 2015a). Inspired
by the progress in large-scale pretraining (Ramesh
et al., 2021), we propose a new self-supervised
learning framework namedMolT5 (Molecular T5)
to leverage the vast amount of unlabeled natural
language text and molecule strings.
Figure 3 shows an overview of MolT5. We first

initialize an encoder-decoder Transformer model
(Vaswani et al., 2017) using one of the public check-
points of T5.1.12, an improved version of T5 (Raf-

2https://tinyurl.com/t511-ckpts

fel et al., 2020). After that, we pretrain the model
using the “replace corrupted spans” objective (Raf-
fel et al., 2020). More specifically, during each
pretraining step, we sample a minibatch compris-
ing both natural language sequences and SMILES
sequences. For each sequence, some words in the
sequence are randomly chosen for corruption. Each
consecutive span of corrupted tokens is replaced by
a sentinel token (shown as [X] and [Y] in Figure 3).
Then the task is to predict the dropped-out spans.3

Molecules (e.g. represented as SMILES strings)
can be thought of as a language with a very unique
grammar. Then, intuitively, our pretraining stage
essentially trains a single language model on two
monolingual corpora from two different languages,
and there is no explicit alignment between the two
corpora. This approach is similar to how some mul-
tilingual language models such as mBERT (Devlin
et al., 2019) and mBART (Liu et al., 2020) were pre-
trained. As models such as mBERT demonstrate ex-

3For more explanation of the pretraining task, we refer the
readers to the original T5 paper (Raffel et al., 2020).
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cellent cross-lingual capabilities (Pires et al., 2019),
we also expect models pretrained using MolT5 to
be useful for text-molecule translation tasks.
After the pretraining process, we can finetune

the pretrained model for either molecule caption-
ing or generation (depicted by the bottom half of
Figure 3). In molecule generation, the input is a
description, and the output is the SMILES repre-
sentation of the target molecule. On the other hand,
in molecule captioning, the input is the SMILES
string of some molecule, and the output is a caption
describing the input molecule.

5 Experiments and Results

5.1 Data

Pretraining Data As described in Section 4, the
pretraining stage of MolT5 requires two monolin-
gual corpora: one consisting of natural language
text and the other consisting of molecule representa-
tions. We use the “Colossal Clean Crawled Corpus”
(C4) (Raffel et al., 2020) as the pretraining dataset
for the textual modality. For the molecular modal-
ity, we directly utilize the 100 million SMILES
strings used in Chemformer (Irwin et al., 2021).
As these strings were selected from the ZINC-15
dataset (Sterling and Irwin, 2015b), we refer to this
pretraining dataset as ZINC from this point.

Finetuning and Evaluation Data We use
ChEBI-20 (Edwards et al., 2021) as our gold stan-
dard dataset for finetuning and evaluation. It con-
sists of 33,010 molecule-description pairs, which
are separated into 80/10/10% train/validation/test
splits. We use ChEBI-20 to finetune MolT5-based
models and to train baseline models. Many cap-
tions in ChEBI-20 contain a name for the molecule
at the start of the string (e.g., “Rostratin D is an
organic disulfide isolated from ...”). To force the
models to focus on the semantics of the descrip-
tion, we replace the molecule’s name with "The
molecule is [...]" (e.g., “The molecule is an organic
disulfide isolated from ...”).

5.2 Baselines

Any sequence-to-sequence model is applicable to
our new tasks (i.e., molecule captioning and gener-
ation). We implement the following baselines:

1. RNN-GRU (Cho et al., 2014). We implement
a 4-layer GRU recurrent neural network. The
encoder is bidirectional.

2. Transformer (Vaswani et al., 2017). We train
a vanilla Transformer model consisting of six
encoder and decoder layers.

3. T5 (Raffel et al., 2020). We experiment with
three public T5.1.1 checkpoints4: small, base,
and large. We finetune each checkpoint for
molecule captioning or molecule generation
using the t5x framework (Roberts et al., 2022).

We train the baseline models on ChEBI-20 us-
ing SMILES representations for the molecules.
Molecule captioning and generation are trained
with molecules as input/output and text as out-
put/input. More information about the baselines
and the hyperparameters is in the appendix.

5.3 Pretraining Process

We first initialize an encoder-decoder Transformer
model using a public checkpoint of T5.1.1 (either
t5.1.1.small, t5.1.1.base, or t5.1.1.large). We then
pretrain the model on the combined dataset of C4
and ZINC (i.e., C4+ZINC) for 1 million steps.
Each step uses a batch size of 256 evenly split
between text and molecule sequences. After this,
we finetune the pretrained model on ChEBI-20 for
either molecule captioning or generation. The num-
ber of finetuning steps is 50,000.

5.4 Molecule Captioning

Table 1 shows the overall molecule captioning re-
sults. The pretrained models, either T5 or MolT5,
are considerably better at generating realistic lan-
guage to describe a molecule than the RNN and
Transformer baselines. The RNN is more capable
of extracting relevant properties from molecules
than the Transformer, but it generally produces un-
grammatical outputs. On the other hand, the Trans-
former produces grammatical outputs, but they tend
to repeat the same properties, such as carcinogenic,
regardless of whether they apply. For this reason,
the Text2Mol scores are much lower for the Trans-
former model, since its outputs match the given
molecule much less frequently. We speculate that
the ChEBI-20 dataset is too small to effectively
train a Transformer without large-scale pretraining.
We find that our additional pretraining of MolT5
results in a reasonable increase over T5 in cap-
tioning performance on both the traditional NLG
metrics and our Text2Mol metric for each model
size. Finally, we refer the reader to Section H in

4https://tinyurl.com/t511-ckpts
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 0.609

RNN 0.251 0.176 0.450 0.278 0.394 0.363 0.426
Transformer 0.061 0.027 0.204 0.087 0.186 0.114 0.057
T5-Small 0.501 0.415 0.602 0.446 0.545 0.532 0.526

MolT5-Small 0.519 0.436 0.620 0.469 0.563 0.551 0.540
T5-Base 0.511 0.423 0.607 0.451 0.550 0.539 0.523

MolT5-Base 0.540 0.457 0.634 0.485 0.578 0.569 0.547
T5-Large 0.558 0.467 0.630 0.478 0.569 0.586 0.563

MolT5-Large 0.594 0.508 0.654 0.510 0.594 0.614 0.582

Table 1: Molecule captioning results on the test split of CheBI-20. Rouge scores are F1 values.
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the least abundant ( 29. 

524 atom percent ) 

isotope of naturally 

occurring thallium.

The molecule is the 

radioactive isotope of 

chromium with relative 

atomic mass 39.98286 and 

half-life of 138.376 days; 

the only naturally occurring 

isotope of chromium.

The molecule is the 

stable isotope of 

rubidium with relative 

atomic mass 44.955910, 

100 atom percent natural 

abundance and nuclear 

spin 7/2.

The molecule is a trace 

radioisotope of argon 

with atomic mass of 

38.964313 and a half-

life of 269 years. It has 

a role as an isotopic 

tracer.

the molecule is a cationic 

fluorescent dye having 2, 

3 - dimethyl - 1, 2, 3, 4, 6 

- tetrahydro - 1h - 1, 2, 3, 

4, 6 - tetrahydropyridin -

1 - yl ] amino } amino 

group, respectively. it has 

a role as a fluorochrome.

the molecule is a deuterated 

compound that is is is is is

an isotopologue of 

chloroform in which the 

four hydrogen atoms have 

been replaced by 

deuterium. it is a deuterated 

compound and an alpha, 

omega - dicarboxylic acid.

The molecule is a 

quaternary 

ammonium ion and 

a member of 

phenanthridines. It 

has a role as an 

intercalator and a 

fluorochrome.

The molecule is an 

organic cation that is 

phenoxazin-5-ium 

substituted by amino and 

methylamino groups at 

positions 3 and 7

respectively. The chloride 

salt is the histological dye 

'azure C'.

The molecule is an organic 

cation that is phenoxazin-5-

ium substituted by methyl, 

amino and diethylamino 

groups at positions 2, 3 and 7

respectively. The 

tetrachlorozincate salt salt is 

the histological dye 'brilliant 

cresyl blue'.

2

3

TransformerRNN T5 MolT5Input Ground Truth

The molecule is a 

GDP-L-galactose 

having beta-

configuration at the 

anomeric centre of the 

L-galactose fragment. 

It is a conjugate acid of 
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of a GDP-alpha-D-glucose(2-).

1

Figure 4: Example captions generated by different models.

the appendix for information about the statistical
significance of our results.

Several examples of different models’ outputs
are shown in Figure 4 and Appendix Figure 9. In
(1), MolT5’s description matches best, identify-
ing the molecule as a “GDP-L-galactose”. MolT5
is usually able to recognize what general class
of molecule it is looking at (e.g. cyclohexanone,
maleate salt, etc.). In general, all models often look
for the closest compound they know and base their
caption on that. The argon atom, example (2) with
SMILES ‘[39Ar]’, is not present in the training
dataset bonded to any other atoms (likely because
it is an inert noble gas). All models recognize that
(2) is a single atom, but they are unable to describe
it. In (3), the models try to caption a histological
dye. MolT5 captions the molecule as an azure his-
tological dye, which is very close to the ground
truth “brilliant cresyl blue”, while T5 does not.

5.5 Text-Based de novo Molecule Generation

In the molecule generation task, the pretrained
models also perform much better than the RNN
and Transformer (Table 2). Although it is well
known that scaling model size and pretraining data
leads to significant performance increases (Kaplan
et al., 2020), it was still surprising to see the results.
For example, a default T5 model, which was only
pretrained on text data, is capable of generating
molecules which are much closer to the ground
truth than the RNN and which are often valid. This
trend also persists as language model size scales,
since T5-large with 770M parameters outperforms
the specifically pretrained MolT5-small with 60M
parameters. Still, the pretraining in MolT5 slightly
improves some molecule generation results, with
especially large gains in validity. Finally, Section H
in the appendix has information about the statistical
significance of our results.

We show results for the models in Figure 5 and
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Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0

RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
T5-Small 0.741 0.064 27.703 0.704 0.578 0.525 2.89 0.479 0.608

MolT5-Small 0.755 0.079 25.988 0.703 0.568 0.517 2.49 0.482 0.721
T5-Base 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660

MolT5-Base 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772
T5-Large 0.854 0.279 16.721 0.823 0.731 0.670 1.22 0.552 0.902

MolT5-Large 0.854 0.311 16.071 0.834 0.746 0.684 1.20 0.554 0.905

Table 2: Molecule generation results on the test split of CheBI-20. Except for BLEU, Exact, Levenshtein, and
Validity, other metrics are computed using only syntactically valid molecules, as in (Campos and Ji, 2021).

The molecule is a sulfonated xanthene 

dye of absorption wavelength 573 nm 

and emission wavelength 591 nm. It has 

a role as a fluorochrome.

The molecule is a linear 27-membered 
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The molecule is a hydrate that is the 

dihydrate form of manganese(II) chloride. 

It has a role as a MRI contrast agent and a 

nutraceutical. It is a hydrate, an inorganic 

chloride and a manganese coordination 

entity.

3

Invalid

TransformerRNN T5 MolT5Input Ground Truth

Figure 5: Examples of molecules generated by different models.

also in Figures 6, 7, and 8 in Appendix F, which
we number by input description. Compared to T5,
MolT5 is better able to understand instructions for
manipulating molecules, as shown in examples (3,
4, 6, 7, 16, 18, 21). In many cases, MolT5 obtains
exact matches with the ground truth (2, 3, 4, 6, 7, 8,
10, 12, 17, 20, 21). (3) is an interesting case, since it
shows that MolT5 can understand crystalline solids
like hydrates. (2) is another interesting example;
it is the longest SMILES string, at 474 characters,
which MolT5 is able to generate an exact match
for. MolT5 understands peptides and can produce
them from descriptions (2,15,17). It also shows this
ability for saccharides (6, 21) and enzymes (8,20).
MolT5 is able to understand rare atoms such as
Ruthenium (5). However, in this case it still misses
the atom’s charge. Some example descriptions,
such as (1), lack details so the molecules generated
by MolT5 may be interesting to investigate.

5.6 Probing the Model

We conduct probing tests on the model for certain
input properties, which are shown in Appendix J.
Often, the model will generate molecules that it
knows matches the input description from the fine-
tuning data. It also creates solutions from these
as well by adding various ions (e.g. ".[Na+]"). In
some cases, it generates molecules not appearing in
finetuning data (sometimes successfully sometimes
not). For example, given the input “The molecule
is a corticosteroid.”, the first molecule generated is
a well known corticosteroid called corticosterone.
The fifth molecule generated is not present in the
PubChem database. Based on a structure similarity
search, it is most closely related to the androgenic
steroid Fluoxymesterone and the corticosteroid Hy-
drocortisone.
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6 Related Work

6.1 Multimedia Representation
Much recent work on multimedia representations
falls into training large vision-language models (Su
et al., 2020; Lu et al., 2019; Chen et al., 2020).
CLIP (Radford et al., 2021) trains a zero-shot
image classifier by using natural language labels
which can be easily extended. A modification of
CLIP’s contrastive loss function, which follows
(Sohn, 2016), is applied by Text2Mol (Edwards
et al., 2021) for cross-modal retrieval between
molecule and text pairs. Edwards et al. (2021)
also released the ChEBI-20 dataset of molecule-
description pairs, which is used for training and
evaluation in this paper. Vall et al. (2021) lever-
age a contrastive loss between bioassay descrip-
tions and molecules to predict activity between
the two. Sun et al. (2021) uses cross-modal at-
tention with molecule structures to improve chem-
ical entity typing. Zeng et al. (2022) pretrain a
language model to learn a joint representation be-
tween molecules and biomedical text via entity
linking which they use for tasks such as relation
extraction, molecule property prediction, and cross-
modal retrieval like Text2Mol. Unlike our work,
they do not explore generating text nor molecules.
Vaucher et al. (2020) create a dataset of chemical
equations and associated action sequences in natu-
ral language. Vaucher et al. (2021) then leverage
this dataset to train a BART model which can plan
chemical reaction steps. Their natural language
generation is constrained to the specific reaction
steps in their dataset– the main purpose of their
model is to create the steps for a reaction rather
than describing molecules.

6.2 Image Captioning and Text-Guided Image
Generation

Image captioning has been studied extensively (Pan
et al., 2004; Lu et al., 2018; Hossain et al., 2019;
Stefanini et al., 2021). Many recent studies tend
to pretrain Transformer-based models on massive
text-image corpora (Li et al., 2020; Hu et al., 2022).
Work has also been done in the biomedical domain
(Pavlopoulos et al., 2019), a close cousin of the
chemistry domain, where tasks tend to be focused
on diagnosis of various image types such as x-rays
(Demner-Fushman et al., 2016).

The reverse problem, text-guided image gener-
ation, has proven considerably more challenging
(Khan et al., 2021). Several attempts have used

GAN-based methods (Reed et al., 2016; Zhang
et al., 2017; Xu et al., 2018). Recent work has
shown remarkable results. DALL· E (Ramesh et al.,
2021, 2022) can seamlessly fuse multiple concepts
together to generate a realistic image.

6.3 Molecule Representation

Molecule representation has been a long-standing
problem in the field of cheminformatics. Tradi-
tionally, fingerprinting methods have been a pre-
ferred technique to featurize molecule structural
representations (Rogers and Hahn, 2010; Cereto-
Massagué et al., 2015). These approaches do not
allow representations to be learned from data. In re-
cent years, advances in machine learning and NLP
have been applied to this problem. A popular in-
put for these algorithms has been SMILES strings
(Weininger, 1988; Weininger et al., 1989), which
are a computer-readable linearization of molecule
graphs. Jaeger et al. (2018) use the Morgan fin-
gerprinting algorithm to convert each molecule
into a ‘sentence’ of its substructures, to which it
applies the Word2vec algorithm (Mikolov et al.,
2013a,b). Duvenaud et al. (2015) use neural meth-
ods to learn fingerprints. Other advances such as
BERT (Devlin et al., 2019) have also been ap-
plied to the domain, such as MolBERT (Fabian
et al., 2020) and ChemBERTa (Chithrananda et al.,
2020), which use SMILES strings as inputs to pre-
train a BERT-esque model. Work has been done
to use the molecule graph structure and known re-
actions for learning representations (Wang et al.,
2022). Schwaller et al. (2021b) trains a BERT
model to learn representations of chemical reac-
tions. Schwaller et al. (2021a) leverages unsuper-
vised representation learning with Transformers
to extract an organic chemistry grammar. Unlike
existing work, MolT5’s molecule representations
allow for translation between molecules and natural
language.

There has been particular interest in training gen-
erative models for de novo molecule discovery. Ba-
gal et al. (2021) apply a GPT-style decoder for
this task. Lu and Zhang (2022) apply a T5 model
to SMILES strings for multitask reaction predic-
tion problems. MegaMolBART5 trains a BART
model on 500M SMILES strings from the ZINC-
15 dataset (Sterling and Irwin, 2015b)

5https://tinyurl.com/megamolbart
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7 Conclusions and Future Work

In this work, we propose MolT5, a self-supervised
learning framework for pretraining models on a
vast amount of unlabeled text and molecule strings.
Furthermore, we propose two new tasks: molecule
captioning and text-guided molecule generation,
for which we explore various evaluation methods.
Together, these tasks allow for translation between
natural language and molecules. Using MolT5, we
are able to obtain high scores for both tasks.

8 Broader Impacts

Our proposed model and tasks will have the fol-
lowing broader impacts. 1) It will help to democ-
ratize molecular AI, allowing chemistry experts
to take advantage of new AI technologies for dis-
covering new life-changing drugs by interacting in
the natural language, because it is most natural for
humans to provide explanations and requirements
in natural language. 2) Text-based molecule gen-
eration enables the ability to generate molecules
with specific functions (such as taste) rather than
properties, enabling the next generation of chem-
istry where custom molecules are used for each
application. Specifically-designed molecular solu-
tions have the potential to revolutionize fields such
as medicine and material science. 3) Our models,
whose weights we will release, will allow further
research in the NLP community on the applications
of multimodal text-molecule models.

8.1 Risks
MolT5, like other large language models, can
potentially be abused. First, there may be bi-
ases learned by the model due to its large-scale
training data. These biases may affect what
type of molecules are generated when the model
is prompted about certain diseases. Thus, any
molecules discovered by usage of MoLT5 should
strictly evaluated by standard clinical processes
before being considered for medicinal use. An-
other risk is that the model may be used to dis-
cover potentially dangerous molecules instead of
beneficial ones. It is difficult to predict what ex-
act molecules may be discovered via usage of our
work. However, while there is this unfortunate po-
tential for misuse of the technology, knowledge
of dangerous molecule’s existence and structure is
generally not harmful due to the requisite techni-
cal knowledge and laboratory resources required to
synthesize them in any meaningful quantity. Over-

all, we believe these downsides are outweighed
by the benefits to the research and pharmaceutical
communities.

9 Limitations

Since this work focuses on a new application for
large language models, many of the same limita-
tions apply here. Namely, the model is trained on
a large dataset collected from the Internet, so it
may contain unintended biases. One limitation of
our model is using SMILES strings – recent work
(Krenn et al., 2020) proposes a string representa-
tion with validity guarantees. In practice, we found
this to work poorly with pretrained T5 checkpoints
(which were important from a computational per-
spective). We also note that some compounds in
ChEBI-20 can cause validity problems in the de-
fault SELFIES implementation. We leave further
investigation of this to future work. Finally, we
stress that MolT5 was created for research pur-
poses and generated molecules should not be used
for medical purposes without careful evaluation by
standard clinical testing first.
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A Baselines and Hyperparameters

Any sequence-to-sequence model is applicable to
our new tasks (i.e., molecule captioning and gener-
ation). We implement the following baselines:

1. RNN-GRU (Cho et al., 2014). We implement
a 4-layer GRU recurrent neural network with
a hidden size of 512. We use a learning rate
of 1e-4 and a batch size of 128 for molecule
generation. For caption generation, a batch
size of 116 is used. The number of training
epochs is 50. Additionally, the encoder is
bidirectional. For training, teacher forcing is
used 50% of the time, and gradient clipping
to 50 is applied.

2. Transformer (Vaswani et al., 2017). We train
a vanilla Transformer model consisting of six
encoder and decoder layers. The number of
training epochs is 40, the batch size is 16, and
the learning rate is 1e-4. We use a linear decay
with a warmup of 400 steps.

3. T5 (Raffel et al., 2020). We experiment
with three public T5.1.1 checkpoints6: small,
base, and large. We finetune each checkpoint
for molecule captioning or molecule genera-
tion using the open-sourced t5x framework
(Roberts et al., 2022). The number of training
steps is set to be 50,000. The dropout rate
is set to be 0.0 for the small and base mod-
els, and it is set to be 0.1 for the large model.
For other hyperparameters, we use the default
values provided by the t5x framework.

We train the baseline models on the ChEBI-
20 dataset using SMILES representations for the
molecules. Molecule captioning and generation are
trained with molecules as input/output and text as
output/input. Sequences are limited to 512 tokens
for input and output. During inference, a beam
decoder with a beam size of 5 is used.
On the RNN and vanilla Transformer models,

we use a character-split vocabulary for SMILES.
For the text vocabulary, we use SciBERT’s 31,090-
token vocabulary (Beltagy et al., 2019).

B Reproducibility Checklist

The programs, trained models, and resources will
be made publicly available. For training the RNN
and Transformer baselines, we use NVIDIA Tesla

6https://tinyurl.com/t511-ckpts

V100 GPUs. For pretraining and finetuning T5-
related models, we use TPUs.
When testing on a MacBook Pro that has no

access to GPUs, the average inference time of our
MolT5-Base molecule generation model is 2.24
seconds/query. The average inference time of our
large MolT5-Base molecule captioning model is
9.86 seconds/query.

C Decoding with Huggingface Model

For ease of adoption, we converted our original
models trained using the t5x framework (Roberts
et al., 2022) to HuggingFace-based models (Wolf
et al., 2019). We will release the converted models
on HuggingFace (HF) Hub. Due to implementation
differences, the HF-based models produce slightly
different outputs from the original models. There-
fore, we also report the numbers of the HF-based
models in Table 3 and Table 4.

D High Validity Molecule Generation

To increase the validity score of the molecule gener-
ation models, we consider a high-validity decoding
strategy. We use diverse beam search (Vijayakumar
et al., 2016) with a beam width and beam group of
30 and a diversity penalty of 0.5. Then, we use RD-
Kit (Landrum, 2021) to select the first valid beam.
On rare occasions, the beam size exceeds memory
limitations, so we iteratively reduce the beam size
by 5 for that input and try again. In Table 4, MolT5-
Small-HV, MolT5-Base-HV, and MolT5-Large-HV
denote models that use this decoding process.

E Ablations

We perform ablations on MolT5-Small pretraining.
For molecule captioning (Table 5), pretraining on
both C4 and ZINC is clearly more beneficial than
pretraining only on C4 or only on ZINC.

For molecule generation, at first glance, pretrain-
ing on C4+ZINC seems not to outperform pretrain-
ing only on C4 (Table 6). However, note that except
for BLEU, Exact, Levenshtein, and Validity, other
metrics in Table 6 are computed using only syn-
tactically valid molecules. Table 7 shows the nor-
malized molecule generation results. After normal-
ization, we see that pretraining on C4+ZINC out-
performs pretraining only on C4 or only on ZINC
according to most metrics. Finally, pretraining only
on ZINC increases the validity score substantially.
However, this leads to decreased similarity of the
generated molecules to the ground truths.
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 0.609

RNN 0.251 0.176 0.450 0.278 0.394 0.363 0.426
Transformer 0.061 0.027 0.204 0.087 0.186 0.114 0.057
T5-Small 0.515 0.424 0.613 0.459 0.568 0.538 0.527

MolT5-Small 0.532 0.445 0.627 0.477 0.583 0.557 0.543
T5-Base 0.522 0.432 0.616 0.461 0.572 0.545 0.524

MolT5-Base 0.551 0.464 0.637 0.489 0.594 0.574 0.549
T5-Large 0.555 0.464 0.632 0.482 0.585 0.588 0.564

MolT5-Large 0.588 0.502 0.650 0.507 0.604 0.614 0.582

Table 3: HuggingFace model molecule captioning results for the different baseline models on the test split of
CheBI-20. Rouge scores are F1 values.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 1.000 1.000 0.0 1.000 1.000 1.000 0.0 0.609 1.0

RNN 0.652 0.005 38.09 0.591 0.400 0.362 4.55 0.409 0.542
Transformer 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906
T5-Small 0.740 0.061 30.05 0.798 0.681 0.623 1.77 0.541 0.597

MolT5-Small 0.749 0.082 28.816 0.780 0.654 0.601 1.35 0.535 0.725
MolT5-Small-HV 0.613 0.075 30.458 0.699 0.547 0.482 1.44 0.479 0.983

T5-Base 0.769 0.067 27.112 0.816 0.701 0.637 1.44 0.554 0.654
MolT5-Base 0.783 0.082 24.846 0.788 0.661 0.602 1.16 0.544 0.787

MolT5-Base-HV 0.661 0.073 28.276 0.721 0.579 0.509 1.38 0.501 0.979
T5-Large 0.856 0.285 16.845 0.877 0.794 0.732 0.40 0.587 0.959

MolT5-Large 0.858 0.318 15.957 0.890 0.813 0.750 0.38 0.590 0.958
MolT5-Large-HV 0.810 0.314 16.758 0.872 0.786 0.722 0.44 0.582 0.996

Table 4: HuggingFace model de novo molecule generation results for the different baseline models on the test
split of CheBI-20. MolT5-Small-HV, MolT5-Base-HV, and MolT5-Large-HV are models that use a high-validity
decoding process–see Appendix D.

Pretraining BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 0.609
C4-Only 0.523 0.433 0.616 0.463 0.571 0.545 0.530

ZINC-Only 0.519 0.434 0.619 0.466 0.573 0.548 0.538
C4+ZINC 0.532 0.445 0.627 0.477 0.583 0.557 0.543

Table 5: Pretraining ablation results of molecule captioning for MolT5-Small on the test split of CheBI-20. Rouge
scores are F1 values.

Pretraining BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 0.0 0.609 1.0
C4-Only 0.771 0.081 26.84 0.811 0.697 0.641 2.99 0.555 0.635

ZINC-Only 0.716 0.063 32.953 0.701 0.576 0.524 2.75 0.463 0.807
C4+ZINC 0.749 0.082 28.816 0.78 0.654 0.601 2.60 0.535 0.725

Table 6: Pretraining ablation results of molecule generation for MolT5-Small on the test split of CheBI-20.

Pretraining BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 0.0 0.609 1.0
C4-Only 0.771 0.081 26.84 0.51499 0.44259 0.40704 4.71 0.35243 0.635

ZINC-Only 0.716 0.063 32.953 0.56571 0.46483 0.42287 3.41 0.37364 0.807
C4+ZINC 0.749 0.082 28.816 0.5655 0.47415 0.43572 3.59 0.38788 0.725

Table 7: Normalized pretraining ablation results of molecule generation for MolT5-Small on the test split of
CheBI-20. Molecule-based results (FTS, FCD, Text2Mol) are normalized by multiplying by validity (for scores
where higher is better) or dividing by validity (for scores where lower is better).

F More Examples
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TransformerRNN T5 MolT5Input Ground Truth

The molecule is a member of the class of 

phhenylureas that is urea in which one of 

the nitrogens is substituted by a p-

chlorophenyl group while the other is 

substituted by two methyl groups. It has a 

role as a herbicide, a xenobiotic and an 

environmental contaminant. It is a 

member of monochlorobenzenes and a 

member of phenylureas.

The molecule is a perchlorometallate

anion having six chlorines and 

ruthenium(IV) as the metal component. It 

is a perchlorometallate anion and a 

ruthenium coordination entity.

The molecule is a trisaccharide derivative 

that consists of 6-sulfated D-glucose 

having an alpha-L-fucosyl residue 

attached at position 3 and a beta-D-

galactosyl residue attached at position 4. 

It has a role as an epitope. It is a 

trisaccharide derivative and an 

oligosaccharide sulfate.

Invalid

4

6

5

The molecule is a monocarboxylic acid 

that is thyroacetic acid carrying four iodo

substituents at positions 3, 3', 5 and 5'. It 

has a role as a thyroid hormone, a human 

metabolite and an apoptosis inducer. It is 

an iodophenol, a 2-halophenol, a 

monocarboxylic acid and an aromatic 

ether.

7

The molecule is a methylbutanoyl-

CoA is the S-isovaleryl derivative of 

coenzyme A. It has a role as a mouse 

metabolite. It derives from an 

isovaleric acid and a butyryl-CoA. It 

is a conjugate acid of an isovaleryl-

CoA(4-).

The molecule is an D-arabinose 5-

phosphate that is beta-D-

arabinofuranose attached to a 

phospahte group at position 5. It 

derives from a beta-D-

arabinofuranose.

The molecule is a guaiacyl lignin 

obtained by cyclodimerisation of 

coniferol. It has a role as a plant 

metabolite and an anti-inflammatory 

agent. It is a member of 1-benzofurans, a 

primary alcohol, a guaiacyl lignin and a 

member of guaiacols. It derives from a 

coniferol.

Invalid

8

9

10

InvalidInvalid

Figure 6: More examples of interesting molecules generated by different models.
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The molecule is a synthetic piperidine 

derivative, effective against diarrhoea

resulting from gastroenteritis or 

inflammatory bowel disease. It has a role 

as a mu-opioid receptor agonist, an 

antidiarrhoeal drug and an anticoronaviral

agent. It is a member of piperidines, a 

monocarboxylic acid amide, a member of 

monochlorobenzenes and a tertiary 

alcohol. It is a conjugate base of a 

loperamide(1+).

The molecule is a steroid sulfate that is 

the 3-sulfate of androsterone. It has a role 

as a human metabolite and a mouse 

metabolite. It is a 17-oxo steroid, a 

steroid sulfate and an androstanoid. It 

derives from an androsterone. It is a 

conjugate acid of an androsterone 

sulfate(1-). It derives from a hydride of a 

5alpha-androstane.

11

12

The molecule is a member of the class of 

chloroethanes that is ethane in which five 

of the six hydrogens are replaced by 

chlorines. A non-flammable, high-boiling 

liquid (b.p. 161-162℃) with relative 

density 1.67 and an odour resembling that 

of chloroform, it is used as a solvent for 

oil and grease, in metal cleaning, and in 

the separation of coal from impurities. It 

has a role as a non-polar solvent.

Invalid, 

fixed

The molecule is an ultra-long-chain 

primary fatty alcohol that is 

tetratriacontane in which one of the 

terminal methyl hydrogens is replaced by 

a hydroxy group It has a role as a plant 

metabolite.

14

13

TransformerRNN T5 MolT5Input Ground Truth

The molecule is an eighteen-membered 

homodetic cyclic peptide which is 

isolated from Oscillatoria sp. and exhibits 

antimalarial activity against the W2 

chloroquine-resistant strain of the 

malarial parasite, Plasmodium 

falciparum. It has a role as a metabolite 

and an antimalarial. It is a homodetic 

cyclic peptide, a member of 1,3-oxazoles, 

a member of 1,3-thiazoles and a 

macrocycle.

The molecule is an N-carbamoylamino

acid that is aspartic acid with one of its 

amino hydrogens replaced by a 

carbamoyl group. It has a role as a 

Saccharomyces cerevisiae metabolite, an 

Escherichia coli metabolite and a human 

metabolite. It is a N-carbamoyl-amino 

acid, an aspartic acid derivative and a C4-

dicarboxylic acid. It is a conjugate acid of 

a N-carbamoylaspartate(2-).

The molecule is a tripeptide composed of 

glycine, glycine and L-alanine residues 

joined in sequence. It has a role as a 

metabolite.

Invalid

17

15

16

Figure 7: More examples of interesting molecules generated by different models.
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The molecule is a methylindole carrying 

a methyl substituent at position 3. It is 

produced during the anoxic metabolism 

of L-tryptophan in the mammalian 

digestive tract. It has a role as a 

mammalian metabolite and a human 

metabolite.

The molecule is a member of the class of 

xanthenes that is used as a Zn(2+)-

selective fluorescent indicator. It has a 

role as a histological dye, a chelator and a 

visual indicator. It is a member of 

xanthenes, a cyclic ketone, an aromatic 

ether, a member of phenols, an 

organofluorine compound, a tricarboxylic 

acid and a substituted aniline.

Invalid Invalid

19

18

The molecule is an acyl-CoA that results 

from the formal condensation of the thiol 

group of coenzyme A with the carboxy 

group of (E)-2-benzylidenesuccinic acid. 

It is a conjugate acid of an (E)-2-

benzylidenesuccinyl-CoA(5-).

InvalidInvalid
20

The molecule is a branched amino 

octasaccharide derivative that is beta-D-

Man-(1->4)-beta-D-GlcNAc-(1->4)-beta-

D-GlcNAc in which the mannosyl group 

is substituted at positions 3 and 6 by beta-

D-GlcNAc-(1->2)-alpha-D-Man groups 

and the reducing-end N-acetyl-beta-D-

glucosamine residue is substituted at 

position 6 by an alpha-L-fucosyl group. It 

has a role as an epitope. It is an amino 

octasaccharide and a glucosamine 

oligosaccharide.

21

Invalid

TransformerRNN T5 MolT5Input Ground Truth

The molecule is a benzazepine and a 

tetracyclic antidepressant. It has a role as 

an alpha-adrenergic antagonist, a 

serotonergic antagonist, a histamine 

antagonist, an anxiolytic drug, a H1-

receptor antagonist and a oneirogen.

22
Invalid

The molecule is a tetrazine that is 1,2,4,5-

tetrazine in which both of the hydrogens

have been replaced by o-chlorophenyl 

groups. It has a role as a mite growth 

regulator and a tetrazine acaricide. It is an 

organochlorine acaricide, a member of 

monochlorobenzenes and a tetrazine. It 

derives from a hydride of a 1,2,4,5-

tetrazine.

23

The molecule is a derivative of 

phosphorous acid in which one of the 

acidic hydroxy groups has been replaced 

by amino.

24

Figure 8: More examples of interesting molecules generated by different models.
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TransformerRNN T5 MolT5Input Ground Truth

The molecule is a member of 

the class of pyrazoles that is 

1H-pyrazole that is 

substituted at positions 1, 3, 

4, and 5 by 2,6-dichloro-4-

(trifluoromethyl)phenyl, 

cyano, (trifluoromethyl) 

sulfanyl, and amino groups, 

respectively. It is a metabolite 

of the agrochemical fipronil. 

It has a role as a marine 

xenobiotic metabolite. It is a 

member of pyrazoles, a 

dichlorobenzene, a member 

of (trifluoromethyl)benzenes, 

an organic sulfide and a 

nitrile.

The molecule is a member 

of the class of pyrazoles 

that is 1H-pyrazole that is 

substituted at positions 1, 

3, 4, and 5 by 2,6-

dichloro-4-(trifluoro 

methyl)phenyl, cyano, 

(trifluoromethyl)sulfinyl, 

and amino groups, 

respectively. It is a nitrile, 

a dichlorobenzene, a 

primary amino compound, 

a member of pyrazoles, a 

sulfoxide and a member 

of (trifluoromethyl) 

benzenes

The molecule is a member 

of the class of pyrazoles 

that is 1H-pyrazole that is 

substituted at positions 1, 

3, 4, and 5 by 2,6-

dichloro-4-(trifluoro 

methyl)phenyl, cyano, 

(trifluoromethyl)sulfinyl, 

and amino groups, 

respectively. It is a nitrile, 

a dichlorobenzene, a 

primary amino compound, 

a member of pyrazoles, a 

sulfoxide and a member 

of (trifluoromethyl) 

benzenes

the molecule is a 

deuterated 

compound that is is

is is is an 

isotopologue of 

chloroform in 

which the four 

hydrogen atoms 

have been replaced 

by deuterium. it is 

a deuterated 

compound, a 

gamma - lactam 

and an aliphatic 

sulfide.

the molecule is an organofluorine

compound that is 1, 2, 3, 4 - triazol -

1h - 1, 2, 4 - triazole which is

substituted at positions 2, 3, and 5 by a 

2, 3, 5 - triazol - 1 - yl group and at

position 5 by a 2 - ( trifluoromethyl ) -

1, 3, 5 - triazol - 1 - yl group. it is an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound, an

organofluorine compound and a 

member of monochlorobenzenes.

The molecule is a linear 27-

membered polypeptide 

comprising the sequence 

Lys-Gly-Lys-Gly-Lys-Gly-

Lys-Gly-Lys-Gly-Glu-Asn-

Pro-Val-Val-His-Phe-Phe-

Tyr-Asn-Ile-Val-Thr-Pro-

Arg-Thr-Pro. Corresponds to 

the sequence of the myelin 

basic protein 83-99 (MBP83-

99) immunodominant 

epitope with the lysyl residue 

at position 91 replaced by 

tyrosyl [MBP83-99(Y(91))] 

and with an (L-lysylglycyl)5 

[(KG5)] linker attached to 

the glutamine(83) (E(83)) 

residue.

The molecule is a linear 27-

membered polypeptide 

comprising the sequence Lys-

Gly-Lys-Gly-Lys-Gly-Lys-

Gly-Lys-Gly-Glu-Asn-Pro-

Val-Val-His-Phe-Phe-Phe-

Asn-Ile-Val-Thr-Pro-Arg-Thr-

Pro. Corresponds to the 

sequence of the myelin basic 

protein 83-99 (MBP83-99) 

immunodominant epitope 

with the lysyl residue at 

position 91 replaced by 

phenylalanyl [MBP83-

99(F(91))] and with an (L-

lysylglycyl)5 [(KG5)] linker 

attached to the glutamine(83) 

(E(83)) residue.

The molecule is a linear 27-

membered polypeptide 

comprising the sequence 

Lys-Gly-Lys-Gly-Lys-Gly-

Lys-Gly-Lys-Gly-Glu-Asn-

Pro-Val-Val-His-Phe-Phe-

Phe-Asn-Ile-Val-Thr-Pro-

Arg-Thr-Pro. Corresponds to 

the sequence of the myelin 

basic protein 83-99 (MBP83-

99) immunodominant 

epitope with the lysyl residue 

at position 91 replaced by 

phenylalanyl [MBP83-

99(F(91))] and with an (L-

lysylglycyl)5 [(KG5)] linker 

attached to the glutamine(83) 

(E(83)) residue.

the molecule is a 

linear seventeen -

membered polypeptide 

comprising the 

sequence glu - asn -

pro - val - val - his -

phe - phe - asn - ile -

val - thr - pro. 

corresponds to the 

sequence of the 

myelin basic protein 

83 - 99 ( mbp83 - 99 ) 

immunodominant 

epitope with the valyl 

residue at position 91 

replaced by tyrosyl [ 

mbp83 - 99 ( 91 ) ].

the molecule is a 

fifteen - membered 

oligoopeptide

comprising glycyl, 

lysyl, lysyl, leucyl, 

lysyl, lysyl, leucyl, 

lysyl, leucyl, lysyl, 

leucyl, lysyl, leucyl, 

lysyl, lysyl, leucyl, 

lysyl, lysyl, leucyl, 

lysyl […] lysyl, 

glutaminyl, lysyl, 

prolyl, lysyl, lysyl, 

lysyl, lysyl, lysyl, 

lysyl, lysyl, leucyl, 

lysyl, lys

the molecule is an l - alpha -

amino acid anion resulting 

from the removal of a proton 

from the carboxylic acid 

group of ( s ) - 2 - hydroxy - l 

- cysteinyl - l - cysteine. it is a 

conjugate base of a ( s ) - 2 -

hydroxy - l - methionine.

the molecule is the 

stable isotope of 

oxygen with relative 

atomic mass 15. 99. 

the most abundant ( 

99. 76 atom percent 

) isotope of naturally 

occurring oxygen.

The molecule is the D-

enantiomer of methioninate. 

It has a role as an 

Escherichia coli metabolite, 

a Saccharomyces cerevisiae 

metabolite and a bacterial 

metabolite. It is a conjugate 

base of a D-methionine. It is 

an enantiomer of a L-

methioninate.

The molecule is the D-

enantiomer of methioninate. 

It has a role as an 

Escherichia coli metabolite, 

a Saccharomyces cerevisiae 

metabolite and a plant 

metabolite. It is a conjugate 

base of a D-methionine. It is 

an enantiomer of a L-

methioninate.

The molecule is the D-

enantiomer of methioninate. 

It has a role as an Escherichia 

coli metabolite and a 

Saccharomyces cerevisiae 

metabolite. It is a conjugate 

base of a D-methionine. It is 

an enantiomer of a L-

methioninate.

the molecule is a 

sesquiterpene lactone. it 

has a role as an 

antineoplastic agent and a 

plant metabolite. it is a 

sesquiterpene lactone, an 

organic heterotricyclic 

compound and a 

secondary alcohol.

the molecule is the 

stable isotope of 

oxygen with relative 

atomic mass 15. 

999131, 100 atom 

percent natural 

abundance and 

nuclear spin 3 / 2.

The molecule is a maleate 

salt obtained by combining 

acetophenazine with two 

molar equivalents of maleic 

acid. It has a role as a 

phenothiazine 

antipsychotic drug. It 

contains an 

acetophenazine.

The molecule is a maleate 

salt obtained by combining 

rosuvastatin with one molar 

equivalent of maleic acid. It 

has a role as an 

antineoplastic agent and a 

B-Raf inhibitor. It contains 

a rosuvastatin(1+).

The molecule is a maleate salt 

obtained by combining afatinib

with two molar equivalents of 

maleic acid. Used for the first-

line treatment of patients with 

metastatic non-small cell lung 

cancer. It has a role as a 

tyrosine kinase inhibitor and an 

antineoplastic agent. It 

contains an afatinib.

4

5

6

the molecule is a dtdp -

sugar having 4 - dehydro

- 6, 6 - dideoxy - alpha - d 

- manno - oct - 2 -

ulosonic acid. it has a role 

as an escherichia coli 

metabolite and a mouse 

metabolite. it is a 

conjugate acid of a dtdp -

alpha - d - glucose ( 2 - ).

the molecule is the 

stable isotope of 

helium with relative 

atomic mass 3. 

016029. the least 

abundant ( 0. 

000137 atom 

percent ) isotope of 

naturally occurring 

helium.

The molecule is a dTDP-

sugar having 4-dehydro-

2,6-dideoxy-beta-L-

glucose as the sugar 

component. It is a dTDP-

sugar and a secondary 

alpha-hydroxy ketone. It 

derives from a dTDP-L-

glucose.

The molecule is a dTDP-

sugar having 4-dehydro-

2,6-dideoxy-alpha-D-

glucose as the sugar 

component. It is a dTDP-

sugar and a secondary 

alpha-hydroxy ketone. It 

derives from a dTDP-D-

glucose.

The molecule is a dTDP-sugar 

having 4-dehydro-2,6-dideoxy-

alpha-D-glucose as the sugar 

component. It has a role as a 

bacterial metabolite. It is a dTDP-

sugar and a secondary alpha-

hydroxy ketone. It derives from a 

dTDP-D-glucose. It is a conjugate 

acid of a dTDP-4-dehydro-2,6-

dideoxy-alpha-D-glucose(2-).

the molecule is a 

tetrapeptide composed of 

l - asparagine, l - aspartyl, 

l - aspartic acid, and l -

aspartic acid units joined 

in sequence by peptide 

linkages. it has a role as a 

metabolite. it derives 

from a l - glutamic acid.

the molecule is the 

stable isotope of 

oxygen with relative 

atomic mass 15. 99. 

the most abundant ( 

99. 99 atom percent 

) isotope of 

naturally occurring 

oxygen.

The molecule is a 

tripeptide composed of 

two L-leucine units 

joined to L-aspartic acid 

by a peptide linkage. It 

has a role as a metabolite. 

It derives from a L-

leucine and a L-aspartic 

acid.

The molecule is a tripeptide 

composed of L-leucine, L-

valine and L-aspartic acid 

joined in sequence by 

peptide linkages. It has a 

role as a metabolite. It 

derives from a L-leucine, a 

L-valine and a L-aspartic 

acid.

The molecule is a tripeptide 

composed of L-leucine, L-

valine and L-aspartic acid 

joined in sequence by 

peptide linkages. It has a 

role as a metabolite. It 

derives from a L-leucine, a 

L-valine and a L-aspartic 

acid.

7

8

9

Figure 9: More examples of interesting captions generated by different models.

393



G Testing Model Diversity with Retrieval

To test the diversity of generations, we apply
a Text2Mol (Edwards et al., 2021) cross-modal
retrieval model to the entire generated set of
molecules or descriptions. In the case of molecules,
we first take the molecules generated for our test
set. We consider these molecules as our corpus and
then use the descriptions (which were used to gen-
erate the molecules in the first place) as our queries.
So, for each query we look at the rank of its gener-
ated molecule (the highest rank is 1). This process
tests whether the Text2Mol retrieval model can dif-
ferentiate between the generated (valid) molecules.
Doing so means it can retrieve a specific molecule
when given the description used to generate it. If
the generative model did not sufficiently take the
descriptions into consideration, then the retrieval
model won’t be able to distinguish between gen-
erated molecules and the scores will be very low
(such as the transformer model, which frequently
generates the same molecule/caption).

As an example, consider that we have 10 descrip-
tions of molecules.

Model Mean Rank MRR Hits@1 Hits@10 Hits@100 Validity
Ground Truth 4.9 0.735 60.4% 95.2% 99.5% 100%

RNN 106.7 0.192 10.45% 37.0% 74.4% 54.2%
Transformer 426.4 0.106 5.62% 19.8% 46.2% 90.6%
T5-Small 113.9 0.441 33.0% 64.1% 81.1% 60.7%

MolT5-Small 126.2 0.413 30.1% 62.2% 80.2% 72.1%
T5-Base 97.8 0.467 35.5% 67.1% 84.7% 66.0%

MolT5-Base 113.9 0.438 32.3% 65.2% 83.7% 77.2%
T5-Large 84.5 0.586 46.5% 81.2% 90.5% 90.2%

MolT5-Large 87.4 0.570 44.6% 80.1% 91.0% 90.5%

Table 8: Retrieval of generated molecules on the test split of CheBI-20.

Model Mean Rank MRR Hits@1 Hits@10 Hits@100
Ground Truth 5.6 0.703 56.4% 94.3% 99.3%

RNN 137.0 0.160 7.45% 34.0% 73.6%
Transformer 1750 0.007 00.4% 01.2% 03.2%
T5-Small 60.3 0.414 28.4% 65.5% 88.1%

MolT5-Small 47.7 0.460 32.6% 70.7% 91.4%
T5-Base 69.2 0.414 28.9% 65.0% 87.0%

MolT5-Base 40.2 0.465 32.5% 72.5% 92.0%
T5-Large 29.4 0.499 35.5% 77.6% 94.2%

MolT5-Large 16.1 0.558 40.4% 84.2% 96.8%

Table 9: Retrieval of generated captions on the test split of CheBI-20.

For each description, we use a generative model
to generate a molecule. Now, we treat these 10
generated molecules as our corpus. Using our re-
trieval model, we now consider each description as
a query and try to retrieve the molecule that was
generated from that description. If the retrieval
model performs poorly, that means the molecules
which were generated are difficult to distinguish
from one another. By using this method with dif-
ferent generative models, we measure the relative
diversity of generated molecules along with how
well the generated molecules match the description.

Results are reported in Tables 8 and 9 for retriev-
ing generated molecules from descriptions and for
retrieving generated descriptions from molecules,
respectively. We use the same Text2Mol model
for retrieval here as in the Text2Mol metric. For
description of metrics, see (Edwards et al., 2021).
Results indicate that MolT5 model generations are
sufficiently distinct to be retrievable. In contrast,
the outputs of the captioning transformer are essen-
tially indistinguishable for the retrieval model.
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H Statistical Significance

To strengthen the quantitative results, we conducted
statistical tests between T5-Large and MolT5-
Large. For molecule captioning, we carried out
paired t-tests. The computed p-values and test
statistics are:

• For ROUGE-1, the p-value is 1.53e-22. The
test statistic is -9.841.

• For ROUGE-2, the p-value is 3.27e-26. The
test statistic is -10.683.

• For ROUGE-L, the p-value is 3.58e-21. The
test statistic is -9.509.

• For METEOR, the p-value is 2.02e-21. The
test statistic is -9.57.

• For Text2Mol, the p-value is 1.053e-29. The
test statistic is -11.431.

Note that for every metric above, the higher
the score, the better the performance. Since all
the test statistics are negative and the p-values
are extremely small, MolT5-Large produces
significant improvements over T5-Large on the
task of molecule captioning.

For molecule generation, we conducted in-
dependent t-tests to compare between T5-Large
and MolT5-Large:

• For MACCS FTS, the p-value is 0.008. The
test statistic is -2.652.

• For RDK FTS, the p-value is 0.0092. The test
statistic is -2.604.

• For Morgan FTS, the p-value is 0.0153. The
test statistic is -2.426.

• For Levenshtein, the p-value is 0.064. The
test statistic is 1.8544704091978725.

• For Text2Mol, the p-value is 0.168. The test
statistic is -1.376724743237994.

Note that for Levenshtein, the lower the score, the
better the performance. We see that the test statis-
tics for all metrics except Levenshtein is negative.
In addition, while the p-values now are typically
larger than the ones computed for molecule caption-
ing, the p-values for molecule generation are still
reasonably small. Therefore, we can still conclude
that MolT5-Large also produces significant im-
provements over T5-Large on the task of molecule
generation.

I NLP Capabilities of MolT5

We finetune our MolT5-based models on some
GLUE tasks and see similar results for MolT5 and
T5. For example, our finetuned MolT5-base model

achieved an accuracy score of 95.6% on SST-2. For
comparison, T5-base achieved a score of 95.2%.
Since our self-supervised learning framework uses
a large amount of natural language text in addi-
tion to SMILES string, it is reasonable that our
MolT5-based models still possess “typical” NLP
capabilities.

J Model Probing Tests

To generate a variety of output molecules given
a single input, we employ diverse beam search
(Vijayakumar et al., 2016) with a beam width and
beam group of 30 and a diversity penalty of 0.5.
The goal of these tests (shown in the following
figures) is to explore molecule outputs given very
specific desired properties. Note that these brief
input descriptions are out-of-distribution from the
finetuning data. In the following figures, the top 10
valid molecules are shown for each prompt (order:
left to right, top to bottom).
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Figure 10: Input: The molecule displays antimalarial properties.

Figure 11: Input: The molecule is a apoptosis inducer.

Figure 12: Input: The molecule is a blue dye.
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Figure 13: Input: The molecule is a coagulent.

Figure 14: Input: The molecule is a corticosteroid.

Figure 15: Input: The molecule is a fluorochrome.
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Figure 16: Input: The molecule is a gas at room temperature.

Figure 17: Input: The molecule is a green dye.

Figure 18: Input: The molecule is a histological dye.
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Figure 19: Input: The molecule is a human metabolite.

Figure 20: Input: The molecule is a hydrocarbon which tastes really cool.

Figure 21: Input: The molecule is a liquid at room temperature.
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Figure 22: Input: The molecule is a macrocycle.

Figure 23: Input: The molecule is a maleate salt.

Figure 24: Input: The molecule is a neurotransmitter agent.
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Figure 25: Input: The molecule is a orange dye.

Figure 26: Input: The molecule is a photovoltaic.

Figure 27: Input: The molecule is a pigment which converts sunlight into energy.
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Figure 28: Input: The molecule is a polypeptide.

Figure 29: Input: The molecule is a purple dye.

Figure 30: Input: The molecule is a red dye.
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Figure 31: Input: The molecule is a solid at room temperature.

Figure 32: Input: The molecule is a sulfonated xanthene.

Figure 33: Input: The molecule is a sweet tasting sugar additive.
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Figure 34: Input: The molecule is a topical anaesthetic.

Figure 35: Input: The molecule is able to lower blood pressure.

Figure 36: Input: The molecule is an adrenergic uptake inhibitor.
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Figure 37: Input: The molecule is an agrochemical.

Figure 38: Input: The molecule is an anabolic agent.

Figure 39: Input: The molecule is an analgesic.
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Figure 40: Input: The molecule is an angry man.

Figure 41: Input: The molecule is an antibiotic.

Figure 42: Input: The molecule is an antidepressant.
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Figure 43: Input: The molecule is an anti-inflammatory agent.

Figure 44: Input: The molecule is an antineoplastic agent.

Figure 45: Input: The molecule is an antiplasmodial drug.
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Figure 46: Input: The molecule is an antipruritic drug.

Figure 47: Input: The molecule is an antitubercular agent.

Figure 48: Input: The molecule is an anti-ulcer drug.
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Figure 49: Input: The molecule is an aromatic ether.

Figure 50: Input: The molecule is a catabolic agent.

Figure 51: Input: The molecule is an explosive.
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Figure 52: Input: The molecule is an inhibitor of the Parkinson’s disease.

Figure 53: Input: The molecule is an insect attractant.

Figure 54: Input: The molecule is an insecticide.

410



Figure 55: Input: The molecule is an organofluorine compound.

Figure 56: Input: The molecule is blue.
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Figure 57: Input: The molecule is blue blue.

Figure 58: Input: The molecule is blue blue blue.

Figure 59: Input: The molecule is blue blue blue blue.
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Figure 60: Input: The molecule is blue blue blue blue blue.

Figure 61: Input: The molecule is electrically conductive.
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