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Abstract—6G wireless technology is projected to adopt higher
and wider frequency bands, enabled by highly directional beam-
forming. However, the vast bandwidths available also make the
impact of beam squint in massive multiple input and multiple
output (MIMO) systems non-negligible. Traditional approaches
such as adding a true-time-delay line (TTD) on each antenna are
costly due to the massive antenna arrays required. This paper
puts forth a signal processing alternative, specifically adapted to
the multicarrier structure of OFDM systems, through an innova-
tive application of Graph Neural Networks (GNNs) to optimize
hybrid beamforming. By integrating two types of graph nodes
to represent the analog and the digital beamforming matrices
efficiently, our approach not only reduces the computational
and memory burdens but also achieves high spectral efficiency
performance, approaching that of all digital beamforming. The
GNN runtime and memory requirement are at a fraction of
the processing time and resource consumption of traditional
signal processing methods, hence enabling real-time adaptation of
hybrid beamforming. Furthermore, the proposed GNN exhibits
strong resiliency to beam squinting, achieving almost constant
spectral efficiency even as the system bandwidth increases at
higher carrier frequencies.

I. INTRODUCTION

Hybrid beamforming, which combines analog and digital

techniques, offers a cost-effective solution and robust perfor-

mance for employing massive antenna arrays in modern com-

munication systems. In wideband systems utilizing the OFDM

technique to enhance data rates and resistance to multipath

effects, the beam pattern increasingly varies with frequency

changes across different subcarriers [1]. This phenomenon,

known as beam squint, becomes particularly significant in

6G wireless networks operating in the sub-Terahertz spectrum

from 100 GHz to 1 THz, where the bandwidth is much wider

than 5G systems, of around 18 GHz [2].

To manage beam squint in wideband systems with hybrid

beamforming, recent research efforts have focused on two

main solutions: true-time-delay lines (TTD) and signal pro-

cessing methods. TTD is a time-delay filter integrated into

each antenna to provide precise control over signal timing and
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effectively resolve beam squint problems [3], [4]. However,

in the Terahertz frequency range, the ability to pack more

antennas into the same device size not only enhances perfor-

mance but also substantially increases the number of TTDs

required, leading to substantially higher costs. Given these

economic considerations, signal processing methods become

an attractive alternative for managing beam squinting in high-

frequency domains because of their cost-efficiency.

Despite progress in the field, current literature indicates

that beamforming designs for wideband channels lack efficient

solutions to effectively address the beam squint issue [5],

[6]. Algorithms such as Alternative Manifold Optimization

(AMO) [7] and Iterative Coordinate Descent (ICD) [8] have

been proposed, but they suffer from the need for continuous

optimization with every channel update and hence require

significant computational resources, limiting their practical

advantage.

In contrast, machine learning offers a promising alternative

that can significantly reduce the computational burden. Specif-

ically, the unique structure of OFDM systems has inspired us

to construct a graph with two different types of nodes that

can effectively train a model through Graph Neural Networks

(GNN). By doing so, we not only can optimize beamforming

design more efficiently but also achieve performance that

closely matches that of traditional numerical optimization

algorithms, providing a new practical pathway to address the

beam squint problem in wideband channels.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a single-user MIMO-OFDM system as shown

in Fig. 1, where Ns data streams are sent by the base station

(BS), which is equipped with N t
RF RF chains and Nt antennas.

At the receiver, we have Nr antennas and Nr
RF RF chains.

Further, it holds that Ns ≤ N t
RF ≤ Nt and Ns ≤ Nr

RF ≤ Nr

because of hardware constraint.

The transmitted signal at the k-th subcarrier can be written

as x[k] = FRFFBB[k]s[k], where s[k] is the Ns × 1 symbol

vector conveyed by each subcarrier k = 1, 2, ...,K, and as-

sumed that E[s[k]s∗[k]] = INs
. The hybrid beamformers con-
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Fig. 1. Block diagram of a single-user MIMO-OFDM system with hybrid beamforming architecture at the BS and the UE.

sist of a digital baseband beamformer FBB[k] ∈ C
Nt

RF×Ns and

the analog RF beamformer FRF ∈ C
Nt×Nt

RF . The normalized

transmit power constraint is given by ||FRFFBB[k]||2F = 1.

Thus, the received signal at the k-th subcarrier is

ŷ[k] =
√
PrW

∗
BB[k]W

∗
RFH[k]FRFFBB[k]s[k]

+W∗
BB[k]W

∗
RFn[k], (1)

where H[k] is the channel matrix at the k-th subcarrier, and

n[k] ∼ CN (0, σ2
nINr

) is the additive white Gaussian noise,

with the digital baseband combiner WBB[k] ∈ C
Nr

RF×Ns and

analog RF combiner WRF ∈ C
Nr×Nr

RF . Pr stands for the

average received power.
In this paper, we assume that the perfect channel state

information (CSI) is known, which can be obtained by channel

estimation [9]. Then the achievable spectral efficiency can be

expressed as

R =
1

K

K∑
k=1

log2

[
det

(
INs +

Pr

σ2
n

W∗
BB[k]W

∗
RFH[k]FRFFBB[k]

×F∗
BB[k]F

∗
RFH

∗[k]WRFWBB[k]

)]
(2)

B. Channel Model
We adopted a clustered double-directional small-scale chan-

nel model [10]:

H[k] =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
l=1

αilar(φ
r
il, θ

r
il)at(φ

t
il, θ

t
il)

∗, (3)

such that E[||H[k]||2F ] = NtNr. Here Ncl and Nray represent

the number of clusters and the number of rays in each cluster,

and αil denotes the complex gain of the l-th ray in the

i-th cluster, where αil follows the distribution CN (0, σ2
i ).

(φr
il, θ

r
il) and (φt

il, θ
t
il) are the azimuth and elevation angles

of arrival and departure, respectively. Considering the uniform

planar array (UPA) antenna elements, the array response vector

corresponding to the l-th ray in the i-th cluster can be written

as

a(φil, θil) =
1√
MN

[
1, ..., e

j 2π
λk

d(p sinφil sin θil+q cos θil), ...,

e
j 2π
λk

d((M−1) sinφil sin θil+(N−1) cos θil)
]T

, (4)

where d and λ are the antenna spacing and the signal wave-

length, p and q are the antenna indices in the 2D plane.

C. Problem Formulation

As shown in [5], the problem can be separated into two sub-

problems to deal with the transmit beamformers and receive

combiners separately. Since they have similar mathematical

formulations, we will focus on the beamformer design in this

paper. The proposed problem formulation is given by:

max
FRF,FBB[k]

1

K

K∑
k=1

log2[det(INr
+

Pt

σ2
n

(H[k]FRFFBB[k]

× F∗
BB[k]F

∗
RFH

∗[k]))]

s.t. |[FRF]i,j |2 = 1, ∀i, j
||FRFFBB[k]||2F = 1, (5)

where Pt stands for the average transmit power, with a

constant modulus constraint on the analog beamforming com-

ponent, which is introduced by the hardware constraint of the

phase shifters, and a normalized transmit power constraint.

III. PROPOSED GRAPH NEURAL NETWORK MODEL

In addressing the problem as shown in (5), the only known

parameter is the channel model H ∈ C
Nr×Nt×K . In con-

ventional deep neural networks (DNN), directly using the

channel model as an input can lead to substantial storage

complexity due to the massive antenna array and numerous

subcarriers. However, we observe that a common analog

beamformer is shared among all K sub-carriers corresponding

to K distinct digital beamformers. This insight has led us to

employ an efficient Graph Neural Network (GNN) architecture

having a bipartite structure with one node representing the

analog beamformer and K other nodes representing the digital

beamformers in K subcarriers. We adopt a message-passing

mechanism within the GNN, utilizing the channel information

in each subcarrier as the graph feature to determine the node

representations for both analog node and digital nodes. These

representations are then utilized to reconstruct the beamform-

ing matrices.
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Fig. 2. Graph representation of a hybrid beamforming structure with two
types of nodes representing the analog and the digital beamformers, where
each edge has an edge feature ek . Here we implement a message-passing
mechanism where messages are denoted as ma

1,k and md
k,1.

A. Graph Representation

We construct an undirected graph G = (V, E) where V and

E represent the sets of nodes and edges, respectively. In this

graph, the analog beamformer is represented as an analog

node, and the digital beamformers for different subcarriers

are represented as K digital nodes. These nodes form a fully

connected bipartite graph, with an edge feature as ek for each

subcarrier k = 1, ...,K. These features, represented by the

vectorized channel state information, serve as both the edge

features and known information. Since the wireless channel

coefficients are complex, we separate the real and imaginary

parts and concatenate them into a real-valued vector as the

input of the GNN. The edge feature can be expressed as

ek =
[
vec (Re {H[k]})T , vec (Im {H[k]})T

]T
. (6)

The graph is described in Fig. 2. As shown in the graph,

we adopt a message-passing mechanism that collects both

node and edge information from each node’s neighbors to

form messages ma
1,k for the analog node and md

k,1 for the

digital nodes along their respective edges. This information is

then aggregated to update the node representations, effectively

capturing the unique structure of this bipartite graph. Our goal

is to update every node representation vector in the graph and

train the GNN model to achieve a high average data rate.

Ultimately, the updated node representations are reconstructed

into the desired beamforming matrices.

B. GNN Structure

The proposed GNN consists of L updating layers, each con-

sisting of a message-passing layer and a node representation

update layer, followed by a final beamformer reconstruction

layer. The architecture is illustrated in Fig. 3.

1) Message Passing Layer: At the l-th layer of the GNN,

the messages sent from digital node k to analog node 1, and

from analog node 1 to digital node k can be generated and

described as

m
a (l)
1,k = fa

1 (ek,x
(l−1), φ(m

d (l−1)
k,1 )k∈N (1),m

a (l−1)
1,k ) (7)

m
d (l)
k,1 = fd

1 (ek, c
(l−1)
k ,m

a (l−1)
1,k ,m

d (l−1)
k,1 ) (8)

where f a1 (·) and f d1 (·) are fully connected neural networks

for the analog node and digital nodes, respectively. ek is

the edge feature described in (6). φ(·) is the element-wise

mean function to aggregate the messages, generated from the

last layer, from the neighboring nodes. N (1) represents all

the nodes that are connected to analog node 1. By doing

this aggregation operation, we can include the graph structure

information in the generated messages by emphasizing that

each digital beamformer and channel for every subcarrier is

dedicated to a single analog beamformer.

2) Node Representation Updating Layer: After generating

the messages, each node receives them via the connecting

edges, aggregates these messages from its neighbors, and then

updates its representation vector accordingly as follows.

x(l) = fa
2 (x

(l−1), φ(m
d (l)
k,1 )k∈N (1), φ(ek)k∈K) (9)

c
(l)
k = fd

2 (c
(l−1)
k ,m

a (l)
1,k , ek) (10)

f a2 (·) and f d2 (·) are two other fully connected neural networks

for the analog node and digital nodes, respectively. Again,

φ(·) is the element-wise mean function to aggregate the

messages. By utilizing this operation, we further emphasize

the graph’s structure and incorporate channel information to

enhance the network data, thereby more effectively capturing

the mathematical relationship between the channels and the

beamforming matrices.

3) Beamformer Reconstruction Layer: If we directly recon-

struct our beamforming matrices using the node representation

x and ck from the l-th layer output of the network through

reshaping, this approach would not satisfy the two constraints

as shown in our initial problem (5). Therefore, we need to

process them in the final layer of this network. The output

analog node representation x(L) is reshaped into the phase

matrix X of the FRF matrix to meet the constant modulus

constraint. Meanwhile, the complex matrix Ck is reconstructed

using c
(L)
k through normalization to fulfill the normalized

power constraint. The analog and digital beamformers can be

obtained as follows:

FRF = ejX, FBB[k] =
Ck

||CkejX||2F
(11)

where

X =reshape(x(L), (Nt, N
t
RF)), (12)

Ck =reshape(c
(L)
k [1 : N t

RF ×Ns], (N
t
RF, Ns))

+ j reshape(c
(L)
k [N t

RF ×Ns : 2N
t
RF ×Ns], (N

t
RF, Ns)).

(13)
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Fig. 3. The overall architecture of the proposed GNN consists of L updating layers, each integrating a message-passing layer and a node representation
updating layer, followed by a final beamformer reconstruction layer.

C. Training Process

During the offline training phase, we optimize all parameters

of the GNN, denoted as Ω for message generation and

representation vector update together, to minimize the loss

function below, which is directly formulated based on the

objective function in (5):

L(Ω) =− 1

K

K∑
k=1

log2[det(INr +
P

σ2
n

(H[k]FRFFBB[k]

× F∗
BB[k]F

∗
RFH

∗[k]))], (14)

which is computed using the network outputs along with the

available channel information.

To minimize the loss (14), we adopt a mini-batch stochastic

gradient descent (SGD) approach, which updates the parame-

ters according to the following formula:

Ω(i+1) ← Ω(i) − η∇ΩEB [L(Ω)] , (15)

where η represents the learning rate, and B denotes the mini-

batch set.

After the training phase, we will have four trained networks:

two for the analog node, f a1 (·)and f a2 (·), and two shared

among all digital nodes across different subcarriers, f d1 (·) and

f d2 (·). It is important to note that since each subcarrier uses

the same neural network, there is no need to train with a

large number of subcarriers. Instead, we only need to ensure

sufficient channel state information is covered across various

frequencies. Therefore, we can choose a number of subcarriers,

K, for training such as 4 or 8. Then during the online running

phase, the number of digital nodes can be increased as needed

to suit different OFDM systems.

IV. NUMERICAL SIMULATIONS

A. Simulation System Settings

In this section, simulation results are presented to show the

performance of the proposed GNN structure. We use a carrier

frequency of 300GHz and a bandwidth of 30GHz, with 8

subcarriers selected for the offline training process. The BS

employs an Nt = 64 UPA antenna system, equipped with

Ns = N t
RF = 4 RF chains, while the receiver uses a Nr = 8

UPA antenna system. The channel parameters are defined with

Ncl = 2 clusters and Nray = 2 rays per cluster. Each cluster’s

average power is set to σ2
i = 1. Both the azimuth and elevation

angles of departure and arrival (AoDs and AoAs) are modeled

to follow a Laplacian distribution, with uniformly distributed

mean angles and an angular spread of 10 degrees [2], [10].

The antenna elements are spaced at half the wavelength.

B. Offline GNN Training

For training, the initialization of the analog node repre-

sentation follows a uniform distribution over [0, 2π), while

the initial value of the digital node representations follows

a Gaussian distribution. The neural networks implemented at

each node consist of two hidden layers, each containing twice

as many neurons as the input size. We employ the Adam

optimizer with a learning rate of 2×10−4 for training. During

the training process, we observed performance improvements

by reducing the learning rate by half every 300 epochs, which

is adopted as a strategy that effectively enhances the model

performance. For training, each mini-batch consists of 100

samples, and we process 100 such batches per epoch to update

the parameters of the neural networks. The GNN model is

structured with L = 2 layers. Fig. 4 shows the convergence of

the proposed GNN structure, compared with the optimal fully

digital beamformer case, and the iterative optimization AMO

algorithm in [7]. We can see that the GNN model converges to

a network spectral efficiency approaching that of the traditional

optimization in [7] and not far from fully digital beamforming

performance.

C. Online GNN Inference

During the online running phase, we increased the number

of subcarriers to K = 64 for simulation purposes, and all

presented simulation results are averaged over 103 channel

realizations. As shown in Fig. 5, as the SNR decreases, our

proposed GNN closely approximates the performance of the

optimal fully digital case. This observation suggests that our

model is robust at a low SNR range. As the SNR increases,

the performance gap between our model and the numerical

optimization algorithm remains within an acceptable range.

This indicates that our GNN model maintains competitive

effectiveness at higher SNR levels, offering a practical alter-

native to traditional numerical methods.
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Fig. 4. Convergence of the proposed GNN training for SNR = 0dB, Nt = 64,
Nt

RF = 4, K = 8, fc = 300GHz, and B = 30GHz.

Fig. 5. Spectral efficiency achieved by different beamforming design algo-
rithms with K = 64 subcarriers, averaged over 103 channel realizations.

The practicality of the GNN can be seen more clearly in the

runtime comparison in Table I and Fig. 6. Here, we compare

the running times for the two algorithms across all 103 channel

realizations. It is clear that the AMO algorithm requires

significantly more time, around 18 times or more than an order

of magnitude slower, than the proposed GNN algorithm. This

difference is due to the AMO algorithm needing to repeat the

alternative optimization process for each subcarrier and each

channel realization, while the GNN simply utilizes the pre-

trained model to perform feed-forward computation, producing

results directly by scaling up the number of digital nodes.

Furthermore, the variance in computation time of the GNN

is significantly smaller, at two orders of magnitude smaller,

than of the AMO, giving the GNN a very stable computation

time per CSI update. Both the average run time and standard

deviation demonstrate the GNN’s suitability for real-time array

Fig. 6. Runtime comparison per CSI update on NVIDIA V100 GPU, for 103

CSI samples.

TABLE I
SIMULATION RUNTIME COMPARISON PER CSI UPDATE ON NVIDIA

V100 GPU, AVERAGED OVER 103 CSI SAMPLES

Method AMO [7] Proposed GNN

Mean Run Time (sec) 3.6659 0.2061

Standard Deviation (sec) 1.0905 0.0107

TABLE II
SIMULATED DYNAMIC MEMORY ALLOCATION COMPARISON PER CSI

UPDATE ON NVIDIA V100 GPU, AVERAGED OVER 103 CSI SAMPLES

Method AMO [7] Proposed GNN

Mean Dynamic Memory Allocation (Mb) 4635.6 1268.9

Standard Deviation (Mb) 1850.5 1.5 ×10−5

steering in practice.

The dynamic memory allocation comparison as shown in

Table II further emphasizes the GNN’s computational effi-

ciency. Since we use the pre-trained GNN model directly

during the online running phase, the amount of dynamic

memory required for each channel remains constant at around

1268.9Mb. In contrast, the AMO algorithm needs to perform

repeated optimization for each channel realization, leading

to significant variability in dynamic memory allocation, with

a high standard deviation depending on the channel realiza-

tion. Furthermore, the average memory usage of the AMO

algorithm is almost 4 times higher than that of the GNN

model. This analysis highlights the GNN’s efficiency and

stability in resource allocation, making it more suitable for

practical deployment in large-scale antenna array systems

while conserving computational resources.

Fig. 7 demonstrates the proposed GNN model’s effective

mitigation of the beamsquint issue. While comparing the

spectral efficiency of AMO and the proposed GNN, we incor-

porated a new baseline algorithm in [6], which calculates the

array response vector only for the central carrier frequency and
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Fig. 7. Spectral efficiency versus channel bandwidth for different beamform-
ing design algorithms, with K = 64 subcarriers, SNR= −5dB, averaged over
103 channel realizations. The central carrier frequency is fc = 300GHz, and
b = B

fc
, where B is the communication channel bandwidth.

uses that to directly construct FRF. This approach is directly

affected by beam squinting, as it relies only on the central

carrier frequency to construct the analog beamformer without

considering the bandwidth or the number of subcarriers. Let

b = B
fc

represent the fractional bandwidth. A small value of b,
close to 0, indicates negligible beam squinting. As b increases,

the beam squint effect becomes more pronounced as seen in

the baseline AV-single performance [6]. Our proposed GNN,

on the other hand, effectively mitigates the beam squinting

problem in wideband channels.

V. CONCLUSION

We proposed a novel GNN architecture for efficient hybrid

beamforming design in wideband Terahertz OFDM-MIMO

systems, while simultaneously mitigating the beam squint ef-

fect. By capturing the unique structure of hybrid beamforming

in an OFDM system, we constructed a bipartite graph and

utilized a message-passing mechanism to optimize the GNN

performance. The proposed GNN model not only allows the

optimization of both digital and analog beamforming matrices,

but also adjusts them dynamically to changes in the number

of subcarriers by scaling the digital nodes without the need

for retraining the model. This method enhances both the

system’s spectral efficiency and adaptability in practical appli-

cations. Compared to traditional signal processing algorithms,

our model offers significant competitive advantages in cost,

running time, and memory resource requirements, making it

viable for real-time beamforming adaptation.
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