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ABSTRACT

Topic taxonomies, which represent the latent topic (or category)
structure of document collections, provide valuable knowledge of
contents in many applications such as web search and information
filtering. Recently, several unsupervised methods have been devel-
oped to automatically construct the topic taxonomy from a text
corpus, but it is challenging to generate the desired taxonomy with-
out any prior knowledge. In this paper, we study how to leverage
the partial (or incomplete) information about the topic structure as
guidance to find out the complete topic taxonomy. We propose a
novel framework for topic taxonomy completion, named TaxoCom,
which recursively expands the topic taxonomy by discovering novel
sub-topic clusters of terms and documents. To effectively identify
novel topics within a hierarchical topic structure, TaxoCom devises
its embedding and clustering techniques to be closely-linked with
each other: (i) locally discriminative embedding optimizes the text
embedding space to be discriminative among known (i.e., given)
sub-topics, and (ii) novelty adaptive clustering assigns terms into
either one of the known sub-topics or novel sub-topics. Our com-
prehensive experiments on two real-world datasets demonstrate
that TaxoCom not only generates the high-quality topic taxonomy
in terms of term coherency and topic coverage but also outperforms
all other baselines for a downstream task.
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Figure 1: An example of topic taxonomy completion. The
known (i.e., given) sub-topics and novel sub-topics are col-
ored in grey and yellow, respectively.

1 INTRODUCTION

Finding the latent topic structure of an input text corpus, also
known as hierarchical topic discovery [7, 18, 33, 42, 47], has been
one of the most important problems for information extraction
and semantic analysis of text data. Recently, several studies have
focused on topic taxonomy construction [33, 47], which aims to
generate a tree-structured taxonomy whose node corresponds to a
conceptual topic; each node of the topic taxonomy is defined as a
cluster of semantically coherent terms representing a single topic.
Compared to a conventional entity (or term-level) taxonomy, this
cluster-level taxonomy is more appropriate for representing the
topic hierarchy of the target corpus with high coverage and low
redundancy. To identify hierarchical topic clusters of terms, they
mainly performed clustering on a low-dimensional text embedding
space where textual semantic information is effectively encoded.
However, their output topic taxonomy seems plausible by itself
but often fails to match with the complete taxonomy designed by
a human curator, because they rely on only the text corpus in an
unsupervised manner. To be specific, their quality (e.g., coverage
and accuracy) highly depends on the number of sub-topic clusters
(i-e., child nodes), which has to be manually controlled by a user.
In addition, it is sensitive to the topic imbalance in the document
collection, which makes it difficult to find out minor topics. In the
absence of any information about the topic hierarchy, the unsuper-
vised methods intrinsically become vulnerable to these problems.
On the other hand, for some other text mining tasks or NLP
applications, several recent studies have tried to take advantage of
auxiliary information about the latent topic structure [13, 21, 23—
26, 34]. Most of them focus on utilizing a hierarchy of topic surface
names as additional supervision, because it can be easily given as a
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user’s interests or prior knowledge. Specifically, they retrieve the
top-K relevant terms to each topic [21, 26] or train a hierarchical text
classifier using unlabeled documents and the topic names [24, 34].
Despite their effectiveness, their major limitation is that they are
only able to consider the known topics included in the given topic
hierarchy. That is, the coverage of the obtained results is strictly
limited to the given topics. Since it is very challenging for a user to
be aware of a full topic structure, a naive solution to incorporate a
user-provided hierarchy of topic names into the topic taxonomy is
likely to only partially cover the text corpus.

To tackle this limitation, we introduce a new problem setting,
named topic taxonomy completion, to construct a complete topic
taxonomy by making use of additional topic information assumed
to be partial or incomplete. Formally, given a text corpus and its
partial hierarchy of topic names, this task aims to identify the term
clusters for each topic, while discovering the novel topics that do
not exist in the given hierarchy but exist in the corpus. Figure 1
illustrates a toy example of our task, where the novel topics (e.g, arts
and hockey) are correctly detected and placed in the right position
within the taxonomy. This task can be practically applied not only
for the case that a user’s incomplete knowledge is available, but
also for incremental management of the topic taxonomy. In case
that the document collection is constantly growing, and so are their
topics, the out-dated topic taxonomy of the previous snapshot can
serve as the partial hierarchy to capture emerging topics.

The technical challenges of this task can be summarized as fol-
lows. First, novel topics should be identified by considering the
hierarchical semantic relationship among the topics. In Figure 1,
the topic hockey is not novel in terms of the root node, because it
obviously belongs to its known sub-topic sports. However, hockey
should be detected as a novel sub-topic of sports as it does not
belong to any of the known sport sub-categories (i.e., soccer and
baseball). Second, the granularity of novel sub-topics and that of
known sub-topics need to be kept similar with each other, to achieve
the consistency of semantic specificity among sibling nodes. In Fig-
ure 1, the root node should insert a single novel sub-topic arts,
rather than two novel sub-topics music and dance, based on the
semantic specificity of its known sub-topics (i.e., politics and sports).

In this work, we propose TaxoCom, a hierarchical topic dis-
covery framework to complete the topic taxonomy by recursively
identifying novel sub-topic clusters of terms. For each topic node,
TaxoCom performs (i) text embedding and (ii) text clustering, to
assign the terms into one of either the existing child nodes (i.e.,
known sub-topics) or newly-created child nodes (i.e., novel sub-
topics). It first optimizes locally discriminative embedding which
enforces the discrimination among the known sub-topics [21, 26]
by using the given topic surface names; this helps to make a clear
distinction between known and novel sub-topic clusters as well.
Then, it performs novelty adaptive clustering which separately finds
the clusters on novel-topic terms and known-topic terms, respec-
tively. In particular, TaxoCom selectively assigns the terms into the
child nodes, referred to as anchor terms, while filtering out general
terms based on their semantic relevance and representativeness.

Extensive experiments on real-world datasets demonstrate that
TaxoCom successfully completes a topic taxonomy with missing
(i.e., novel) topic nodes correctly inserted. Our human evaluation
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quantitatively validates the superiority of topic taxonomies gener-
ated by TaxoCom, in terms of the topic coverage as well as semantic
coherence among the topic terms. Furthermore, TaxoCom achieves
the best performance among all baseline methods for a downstream
task, which trains a weakly supervised text classifier by using the
topic taxonomy instead of document-level labels.

2 RELATED WORK

Topic Taxonomy Construction. Early work on hierarchical
topic discovery mainly focused on generative probabilistic topic
models, such as hierarchical Latent Dirichlet Allocation (hLDA) [1]
and hierarchical Pachinko Allocation Model (hPAM) [28]. They de-
scribe the topic hierarchy in a generative process and then estimate
parameters by using inference algorithms, including variational
Bayesian inference [2] and collapsed Gibbs sampling [10]. With
the advances in text embedding techniques, several recent studies
started to employ hierarchical clustering methods on a term em-
bedding space, where textual semantic information is effectively
captured. By doing so, they can construct a topic taxonomy whose
node corresponds to a term cluster representing a single topic.
Specifically, to find out hierarchical topic clusters, TaxoGen [47]
recursively performed text embedding and clustering for each sub-
topic cluster, and NetTaxo [33] additionally leveraged network-
motifs extracted from text-rich networks. However, since all of
them are unsupervised methods that primarily utilize the input text
corpus, the high-level architecture of their output taxonomies does
not usually match well with the one designed by a human.

Entity Taxonomy Expansion. Recently, there have been several
attempts to construct the entity (or term-level) taxonomy from a text
corpus by expanding a given seed taxonomy [14, 20, 35-37, 44, 45].
Note that the main difference of an entity taxonomy from a topic (or
cluster-level) taxonomy is that its node represents a single entity or
term, so it mainly focuses on the entity-level semantic relationships.
They basically discover new entities that need to be inserted into the
taxonomy, by learning the “is-a” (i.e., hypernym-hyponym) relation
of parent-child entity pairs in the seed taxonomy. To infer the “is-a”
relation of an input entity pair, they train a relation classifier based
on entity embeddings [37], a pretrained language model [14], and
graph neural networks (GNNs) [35]. Despite their effectiveness, the
entity taxonomy cannot either show the semantic relationships
among high-level concepts (i.e., topics or term clusters) or capture
term co-occurrences in the documents; this makes its nodes difficult
to correspond to the topic classes of documents. Therefore, they are
not suitable for expanding the latent topic hierarchy of documents,
rather be useful for enhancing a knowledge base.

Novelty Detection for Text Data. Novelty (or outlier) detection
for text data,! which aims to detect the documents that do not
belong to any of the given (or inlier) topics, has been researched
in a wide range of NLP applications. They define the novel-ness
(or outlier-ness) based on how far each document is located from
semantic regions representing the normality. To this end, most un-
supervised detectors measure the local/global density [4, 31] or esti-
mate the normal data distribution [19, 30, 48] in a low-dimensional

!Both novelties and outliers are assumed to be semantically deviating in an input corpus,
but the novelties can form a dense cluster whereas the outliers cannot.
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text embedding space. On the other hand, supervised/weakly super-
vised novelty detectors [8, 12, 15, 16, 46] also have been developed
to fully utilize the auxiliary information about the inlier topics.?
They further optimize the embedding space to be discriminative
among the topics, so as to clearly determine whether a document
belongs to each inlier topic. However, none of them considers the
hierarchical relationships among the inlier topics, which makes
them ineffective to identify novel topics from a large text corpus
having a topic hierarchy.

3 PROBLEM FORMULATION
3.1 Concept Definition

Definition 1 (Topic taxonomy). A topic taxonomy H refers to
a tree structure about the latent topic hierarchy of terms 7~ and
documents D. Each node ¢ € H is described by a cluster of terms
J¢(C T) representing a single conceptual topic. The most repre-
sentative term for the node becomes a center term t. € 7, usually
regarded as the topic surface name. The child nodes of each topic
node correspond to its sub-topics.? For each node c, the set of its

K¢ child nodes is denoted by Sc(C H) = {sc,1,. ., 5¢, K, }-

3.2 Topic Taxonomy Completion

Definition 2 (Topic taxonomy completion). The inputs are a text
corpus D, its term set 7-,% and a partial hierarchy H° of topic sur-
face names.> The goal of topic taxonomy completion is to complete
the topic taxonomy H(> H°) so that it can cover the entire topic
structure of the corpus, being guided by the given topic hierarchy.
For each node in the taxonomy ¢ € H, it finds out the set of topic
terms 7 that are semantically coherent. In other words, the given
topic hierarchy is extended into a larger one by identifying and in-
serting new topic nodes, while allocating each term into either one
of the existing nodes (€ H°) or newly-created nodes (€ H\H?).

Figure 1 shows an example of topic taxonomy completion for
a news corpus. Similar to unsupervised topic taxonomy construc-
tion [33, 47], our task works on the set of unlabeled documents
whose topic information (e.g., topic class label) is not available.
The main difference is that a partial topic hierarchy is additionally
provided, which can be a user’s incomplete prior knowledge or
an out-dated topic taxonomy of a growing text collection. From
the perspective that the given hierarchy serves as auxiliary super-
vision for discovering the entire topic structure, this task can be
categorized as a weakly supervised hierarchical topic discovery.

4 TAXOCOM: PROPOSED FRAMEWORK

4.1 Overview

The proposed TaxoCom framework recursively expands the given
hierarchy in a top-down approach. Starting from the root node,
TaxoCom performs (i) text embedding and (ii) text clustering for
each node, to find out sub-topic clusters corresponding to its child
nodes. The key challenge here is to identify the term clusters for

2The topic labels of training documents are available for a supervised setting [8, 12,
16, 46], and only topic names are provided for a weakly supervised setting [15].
3The terms “child nodes” and “sub-topics” are used interchangeably in this paper.
4This term set can be automatically extracted from the input text corpus.

5This problem setting presumes that a single representative term of a topic node (e.g.,
topic name) can be easily given as minimum guidance to complete the topic taxonomy.
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known (i.e., given) sub-topics as well as novel sub-topics, which
cannot be covered by any of the known sub-topics, by leveraging
the initial hierarchy as weak supervision.

e Locally discriminative embedding: TaxoCom optimizes
the embedding space for the terms assigned to the current
node 7¢(C 7). Utilizing the topic surface names in the given
hierarchy, the term embedding vectors are enforced to be dis-
criminative among the known sub-topics, so as to effectively
compute the sub-topic membership of each term.

¢ Novelty adaptive clustering: By using the term embed-
dings, TaxoCom determines whether each term belongs to
the known sub-topics or not based on its sub-topic member-
ship. Then, it performs clustering which assigns each term
into either one of the known sub-topics or novel sub-topics.

The taxonomy is expanded by inserting the obtained novel sub-
topic clusters as the child nodes of the current node. To fully utilize
the documents relevant to 7; for both embedding and clustering,
TaxoCom also produces the sub-corpus for each topic node D.(c
D) by assigning the documents into one of the sub-topics.® Figure 2
illustrates the overall process of TaxoCom.

4.2 Locally Discriminative Text Embedding

The goal of the embedding step is to obtain the low-dimensional
embedding space that effectively encodes the textual similarity (or
distance) among the terms assigned to a target topic node. However,
as pointed out in [11, 33, 47], the global embedding space trained on
the entire text corpus is not good at capturing the distinctiveness
among the topics, especially for lower-level topics. For this reason,
TaxoCom adopts the two strategies: (i) local embedding [11], which
uses the subset of the entire corpus containing only the documents
relevant to a target topic (e.g., the documents assigned to a specific
topic node), and (ii) keyword-guided discriminative embedding [21,
26], which additionally minimizes the semantic correlation among
the pre-defined topics by utilizing their keyword sets.

4.2.1 Local embedding. To enhance the discriminative power of
term embeddings at lower levels of the taxonomy by effectively cap-
turing their finer-grained semantic information, TaxoCom employs
the local embedding [11] that uses the sub-corpus only relevant to
the current topic c instead of the entire corpus. The most straightfor-
ward way to get the sub-corpus is simply using the set of documents
assigned to the topic ¢, denoted by D¢(C D). For the lower-level
topics, however, it is more likely to include a small number of doc-
uments, which are not enough to accurately tune the embeddings.
For this reason, TaxoCom retrieves more relevant documents and
uses them together with D.. Using the center term embedding
of the topic ¢ as a query, it retrieves the top-M closest terms and
collects all the documents containing the terms.

4.2.2 Keyword-guided discriminative embedding. TaxoCom basi-
cally employs a spherical text embedding framework [22] to di-
rectly capture the semantic coherence among the terms into the
directional (i.e., cosine) similarity in the spherical space. Com-
pared to other text embedding techniques learned in the Euclidean
space [3, 27, 29], the spherical embedding is particularly effective

® Although a document can cover multiple topics, we assign it into the most relevant
sub-topic to exploit textual information from the topic sub-corpus during the process.
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Figure 2: The overview of the TaxoCom framework which discovers the complete topic taxonomy by the recursive expansion
of the given topic hierarchy. Starting from the root node, it performs (i) locally discriminative embedding and (ii) novelty
adaptive clustering, to selectively assign the terms (of each node) into one of the child nodes. Best viewed in color.

for term clustering and similarity search, because it eliminates the
discrepancy between its training procedure and practical usage.

From the given topic hierarchy, TaxoCom first builds the sub-
topic keyword sets {K, , | sc k € Sc} for the current node ¢, in
order to use them as weak supervision for guiding the discrimina-
tion among the sub-topics. Each keyword set K, . collects all the
center terms in the sub-tree rooted at the sub-topic node s t. For
example, in Figure 2, the center terms of sub-tree nodes (colored in
orange, blue, and green, respectively) become the keywords of each
sub-topic. Since all topic names covered by each sub-tree surely be-
long to the corresponding sub-topic, they can serve as the sub-topic
keywords for optimizing the discriminative embedding space.

The main objective of our text embedding is to maximize the
probability p(t;|t;) for the pairs of a term ¢; and its context term
tj co-occurring in a local context window. To model the gener-
ative likelihood of terms conditioned on each sub-topic s ., it
also maximizes p(t|s ) for all terms in its keyword set t € K, .
In addition, it makes the topic-conditional likelihood distribution
p(tls¢, k) clearly separable from each other, by minimizing the se-
mantic correlation among the sub-topics p(sc, j|se, ;). To sum up, the
loss function for the node ¢ is described as follows.

Lemp=-log [ [] [] e (1)

deD, t;ed t;ecw(t;;d)

—log l_[ l—[ P(ti|5c,k)+10g I_[

Se.k€Sc i €K, Sc,i»Sc,j€Sc

P(sc,j Isc, i),

where cw(t;; d) is the set of surrounding terms included in a local
context window for a term t; in a document d.

Each probability (or likelihood) in Equation (1) is modeled by
using the embedding vector of each term t; and sub-topic s, i
(denoted by boldface letters ¢; and s, i, respectively). p(ti|s¢ )
is defined by the von Mises-Fisher (vMF) distribution, which is a
spherical distribution centered around the sub-topic embedding
vector s .

p(tilse k) = VMFE(tiss¢ g, ks, ) = Cs, . explks, ;. cos(ti, sc k)
@)
where ks, > 0 is the concentration parameter, Cs, , is the normal-
ization constant, and the mean direction of each vMF distribution is
modeled by the sub-topic embedding vector s, . The probability
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of term co-occurrence, p(t;|t;), as well as that of inter-topic corre-
lation, p(sc, j|sc, ;) is simply defined by using the cosine similarity,
i.e., p(tjlt;) o exp(cos(t;, tj)) and p(sc,jlsc,i) oc exp(cos(se, i, Sc, j))-

Combining a max-margin loss function [9, 22, 40, 41] with the
probability (or likelihood) defined above, the objective of our text
embedding in Equation (1) is summarized as follows.

Z Z Z [tiT{‘j/—t,'Tl:j+m]++ Z [sc’iTsc,j—m]Jr

deD, tied tjecw(t;;d) Sc,irSc,j€Se

Z Z (log(csc k) + Ks,, wli Sc k) 1 [tiTsc,k < m]

Se,k€Sc ti€ s k

st. VieTe,s€Se, |t =l = lIsll = 1,k 20, ©)
where [z]+ = max(z, 0) and m is the margin size. Similar to previous
work on text embedding [27, 29], a term ¢; has two independent
embedding vectors as the target term #; and the context term #;, and
the negative terms ¢ are randomly selected from the vocabulary.

4.3 Novelty Adaptive Text Clustering

4.3.1 Novel-topic term identification. The first step for novelty
adaptive clustering is to determine whether each term can be as-
signed to one of the given sub-topics or not. In other words, it
distinguishes the terms that are relevant to the given sub-topics,
referred to as known-topic terms ‘7;", from the terms that cannot be
covered by them, referred to as novel-topic terms 7.". Since the vMF
distributions for the given sub-topics are already modeled in the em-
bedding space (Section 4.2), they can be utilized for computing the
confidence score that indicates how confidently each term belongs
to one of the given sub-topics. Specifically, the sub-topic member-
ship of a term is defined by the softmax probability of its distance
from each vMF distribution (i.e., sub-topic embedding vector), and
the maximum softmax value is used as the confidence [12, 16]. In
the end, the novelty score of each term is defined as follows.

exp(cos(t,sc 1)/T)
scorenou(t) =1 - =) Xs, peS. explcos(t, se x)/T)’ @

where T is the temperature parameter that controls the sharpness
of the distribution. Using the novelty threshold 75, the terms
for the node c is divided into the set of known-topic terms and
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novel-topic terms according to their novelty score.

T = {t | scorenon(t) < Tov, t € To}

T = {t | scorenou(t) = Thov, t € Tc}

®)

The novelty threshold is determined based on the number of
the sub-topics K¢, i.e., Thoo = (1 - l/Kc)ﬁ where f > 1 is the
hyperparameter to control the boundary of known-topic terms.
Note that a larger f value incurs a smaller threshold value, which
allows to identify a larger number of novel-topic terms, and vice
versa. The novelty score ranges in (0,1 — 1/K,] because of the
softmax on similarities with K, known sub-topics in Equation (4).

4.3.2  Spherical term clustering. TaxoCom discovers the term clus-
ters which cover both the known and novel sub-topics. Namely,
it assigns each known-topic term ¢t € 7;]‘ into one of the existing
sub-topics S¢, and simultaneously, assigns each novel-topic term
t € 7." into one of the newly-identified novel sub-topics Nc. Finally,
it outputs the sub-topic cluster assignment variables {z; | t € 7¢}.

Known-topic term clustering. In terms of known-topic terms
7;k, TaxoCom allocates each term into its closest known sub-topic
in the embedding space; i.e., z; = argmax , es, cos(t,sc k).

Novel-topic term clustering. Unlike known sub-topics whose
embedding vector s. ;. and center term vector £5_ . are available
for clustering, there does not exist any information about novel
sub-topics. For this reason, TaxoCom performs K;-means spheri-
cal clustering [6] on the novel-topic terms 7.", thereby obtaining
the mean vector and center term of each cluster.” The number of
novel sub-topic clusters K}, is determined to balance the semantic
specificity among clusters, which will be discussed in Section 4.3.4.

4.3.3  Anchor term selection. The initial term clustering results
from Section 4.3.2 contain the cluster assignment variable of all the
terms, but not every term of a topic necessarily belongs to one of
its sub-topics. For example, the term game in the topic node sports
does not belong to any of its child nodes, representing specific
sport sub-categories, such as tennis, baseball, and soccer. Thus, it
is necessary to carefully mine the set of anchor terms, which are
apparently relevant to each sub-topic s .

To this end, TaxoCom defines the significance score of a term by
considering both its semantic relevance to each sub-topic cluster, de-
noted by rel(t, s i), and the representativeness in the corresponding
sub-corpus Ds_ ., denoted by rep(t, s¢ x)-

scoresig(t) =  max [rel(t, se,k) X rep(t, Sc,k)] . (6)

Se,k €ScUNe
To be specific, the semantic relevance is computed by the cosine
similarity between their embedding vectors, while the representa-
tiveness is obtained based on the term frequency in the sub-corpus.
By doing so, it can make use of both information from the embed-
ding space and the term occurrences.

rel(t,sc k) = cos(t, s¢ k)

) . 1/3 (7)
rep(t, Sc,k) = (mt(t, Se k) X dis(t, Sc,k) x pop(t, Sc,k)) .

"We also considered density-based clustering (e.g., DBSCAN [5]) for identifying novel
sub-topics, but we empirically found that it is quite sensitive to hyperparameters as
well as cannot consider the semantic relevance to the center terms of each sub-topic.
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For mining the representativeness from the sub-corpus Ds,_ ,
TaxoCom collects the documents by aggregating the cluster assign-
ment of their terms based on the tf-idf weights. That is, a document
chooses its sub-topic cluster based on how many terms are assigned
to each sub-topic cluster considering their importance as well. The
cluster assignment of a document z is defined as follows.

zg= argmax Z Iz == s ] - tht,d) - idf(r).  (8)
Se, k €ScUNC ted

Motivated by context-aware semantic online analytical process-
ing (CaseOLAP) [38], the representativeness is defined as a func-
tion of three criteria: (i) Integrity — A term with high integrity
refers to a meaningful and understandable concept. This score
can be simply calculated by the state-of-the-art phrase mining
technique, such as SegPhrase [17] and AutoPhrase [32]. (ii) Dis-
tinctiveness — A distinctive term has relatively strong relevance to
the sub-corpus of the target sub-topic, distinguished from its rele-
vance to other sub-corpora of sibling sub-topics. The distinctiveness
score is defined by using the BM25 relevance measure, dis(t, s¢ k)
= exp(BM25(1, D, )/ (1+ 3, e5,0N, EXPBM2S(t, Dy, ,,))).
(iii) Popularity — A term with a high popularity score appears more
frequently in the sub-corpus of the target sub-topic than the others,

pop(t,se i) = log(tf(t, Ds, ) + 1)/log(X e, tt', Ds, )
Finally, TaxoCom only keeps the anchor terms whose signifi-
cance score is larger than the threshold 7, after filtering out the
general terms that are less informative to represent each sub-topic.

Tsex = {t | zt == s k,Scoresig(t) = 7sig, Yt € 7;,} 9)

4.3.4 Novel sub-topic cluster refinement. Using the set of anchor
terms, TaxoCom estimates the vMF distribution (i.e., mean vec-
tor and concentration parameter) for each sub-topic cluster in the
embedding space. This final step is designed to choose the proper
number of novel clusters K} (in Section 4.3.2), with the help of the
estimated concentration values indicating the semantic specificity
of each sub-topic cluster. Formally, it selects the K7 value so that
it can minimize the standard deviation of all the concentrations,
ie., argming: stdev [{Kscvk | Vs € Sc U NC}], In this process, to
measure the standard deviation based on the identified novel sub-
topics N for each K} value, a part of the clustering step (from
Section 4.3.2 to 4.3.4) are repeated. Notably, TaxoCom is capable of
automatically finding the total number of sub-topics, by harmoniz-
ing the semantic specificity of novel sub-topics with that of known
sub-topics, whereas unsupervised methods for topic taxonomy con-
struction rely on a user’s manual selection.

5 EXPERIMENTS
5.1 Experimental Settings

5.1.1 Datasets. For our experiments, we use two real-world datasets
collected from different domains, NYT? and arXiv?, and they have
a two-level hierarchy of topic classes. Thus, we regard the hierar-
chies as the ground-truth provided by a human curator, and use
them to evaluate the completeness of topic taxonomies. For both
the datasets, the number of documents for each topic class is not
balanced, and AutoPhrase [32] is used to tokenize raw texts of

8The news articles are crawled by using https://developer.nytimes.com/
9The abstracts of arXiv papers are crawled from https://arxiv.org/
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Table 1: Human evaluation on the output topic taxonomy.

Given NYT arXiv
HO Methods
Coherence Complete. Coherence Complete.

hLDA 0.3033 0.3161 0.2211 0.3755

TaxoGen 0.7406 0.5640 0.7644 0.5242

JoSH 0.8781 0.8387 0.8753 0.7843

H, CoRel 0.8690 0.8452 0.8369 0.8458

TaxoCom 0.8811 0.9640 0.8913 0.9379

JoSH 0.8583 0.7742 0.8364 0.7647

H, CoRel 0.8431 0.9052 0.8429 0.8350

TaxoCom 0.8633 0.9303 0.8667 0.8556

JoSH 0.8467 0.7419 0.8585 0.5882

H. CoRel 0.8347 0.8426 0.8433 0.7046

TaxoCom 0.8556 0.9077 0.8613 0.8951

each document. The statistics of the datasets are reported in the
supplementary material.

To investigate the effect of an initial topic hierarchy, we con-
sider three scenarios using different partial topic hierarchies with
different completeness. Each partial hierarchy is generated by ran-
domly deleting a few topics from the ground-truth topic hierarchy:
(i) Hy deletes only a single first-level topic (and all of its second-
level sub-topics), (ii) Hj, drops some of the second-level topics, and
(iii) H, does for both levels. The deleted topics are listed in the
supplementary material.

5.1.2  Baseline Methods. We consider several methods that are ca-
pable of constructing a topic taxonomy (or discovering hierarchical
topics) as the baselines. They can be categorized as either unsuper-
vised methods using only an input corpus, or weakly supervised
methods initiated with a given topic hierarchy.

e hLDA [1]: Hierarchical latent Dirichlet allocation. The docu-
ment generation process is modeled by selecting a path from
the root to a leaf and sampling its words along the path.

e TaxoGen [47]: The unsupervised framework for topic tax-
onomy construction. To identify term clusters, it employs
the text embedding space, optimized by SkipGram [27].

o JoSH [26]: Hierarchical text embedding technique to mine
the set of relevant terms for each given topic. It finds the
topic terms based on the directional similarity.

o CoRel [14]: Seed-guided entity taxonomy expansion method.
It first expands only the topic names based on its relation
classifier, then retrieves the topic terms based on the rele-
vance in the embedding space induced by SkipGram [27].

e TaxoCom: The proposed framework for topic taxonomy
completion, which finds out novel sub-topic clusters to ex-
pand the topic taxonomy in a hierarchical manner.

Note that CoRel directly learns the “is-a” relation of the entity (i.e.,
topic name) pairs in the given topic hierarchy to discover novel
entity pairs. On the contrary, TaxoCom implicitly infers the relation
at the cluster-level based on its recursive clustering. Furthermore,
CoRel mines the topic terms solely based on the embedding similar-
ity, whereas TaxoCom additionally considers the representativeness
in the sub-corpus relevant to the topic, as described in Equation (6).

5.2 Quantitative Evaluation
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5.2.1 Human evaluation on the quality of topic taxonomy. First,
we assess the quality of topic taxonomies by using human domain
knowledge. To this end, we recruit 10 doctoral researchers as evalu-
ators, and ask them to perform two tasks that examine the following
aspects of a topic taxonomy.!? (i) Term coherence indicates how
strongly the terms in a topic node are semantically coherent. Simi-
lar to previous topic model evaluations [33, 43], the top-10 terms
of each topic node are presented to human evaluators, and they are
requested to identify how many terms are relevant to their com-
mon topic (or center term). The coherence is defined by the ratio of
the number of relevant terms over the total number of presented
terms. (ii) Topic completeness quantifies how completely the set
of topic nodes covers the ground-truth topics. For each level, every
topic name in the ground-truth topic hierarchy is given as a query,
and the set of output topic nodes becomes the support set. Human
evaluators are asked to rate the score € [0, 1] how confidently the
query belongs to one of the topics in the support set (i.e., similarity
with the semantically closest support topic). The completeness is
defined by the average score for all the queries.

In Table 1, TaxoCom significantly outperforms all the baselines
in terms of both the measures.!! For topic completeness, the weakly
supervised methods beat the unsupervised methods by a large mar-
gin, because their output topic taxonomy at least covers all the
topics in the given topic hierarchy. Notably, TaxoCom gets higher
scores than JoSH and CoRel, which implies that it more accurately
discovers ground-truth topics deleted from the full hierarchy. In ad-
dition, TaxoCom is ranked first for the term coherence, as it captures
each term’s representativeness in the topic-relevant documents as
well as its semantic relevance to the target cluster.

5.2.2  Weakly supervised document classification using topic tax-
onomy. Next, we indirectly evaluate each output topic taxonomy
by making use of a downstream task that takes a topic taxonomy
as its input. We compare the performance of WeSHClass [24], a
weakly supervised hierarchical text classifier trained by using only
unlabeled documents and the hierarchy of target classes (with the
class-specific keywords), rather than document-level class labels.
Specifically, we use the topic taxonomy obtained by TaxoCom and
the baseline methods as the hierarchy of target classes, and its top-
10 topic terms serve as the class-specific keywords. We measure the
normalized mutual information (NMI) between predicted document
topic labels and ground-truth ones in terms of clustering, as well
as MacroF1 and MicroF1 in terms of classification.

Table 2 reports that WeSHClass achieves the best NMI and F1
scores when being trained using the output topic taxonomy of Tax-
oCom. The final classification performance of WeSHClass is mainly
affected by (i) the keyword (i.e., top-10 terms) coverage for each
topic class and (ii) the topic coverage for the entire text corpus. As
analyzed in Section 5.2.1, TaxoCom generates more complete topic
taxonomies compared to JoSH and CoRel, which helps WeSHClass
to learn the discriminative features for a larger number of ground-
truth topic classes in each dataset. Besides, since the topic terms
retrieved by TaxoCom captures additionally the representativeness

OThey are allowed to use web search engines when encountering unfamiliar terms.
1\We first test the inter-rater reliability on ranks of the methods. We obtain the Kendall
coefficient of 0.96/0.91 (NYT) and 0.94/0.89 (arXiv) respectively for the coherence and
completeness, which indicates the consistent assessment of the 10 evaluators.
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Table 2: Performance of the weakly supervised document
classifier (i.e., WeSHClass [24]), trained by using the output
topic taxonomy of each method.

Given NYT arXiv
HO Methods
acro. 1Cro. acro. 1Cro.
NMI M F1 MicroF1 NMI M F1 MicroF1

hLDA 0.4886 - - 0.2348 - -

TaxoGen 0.7198 - - 0.4307 - -
JoSH 0.6815 0.4251 0.6334 03172 0.1115 0.1389
H, CoRel 0.7074  0.5036 0.6345 0.4141 0.2927 0.3301

TaxoCom 0.7630 0.6205 0.7980 0.4391 0.3494 0.3928

JoSH 0.6099 0.3086 0.4339 0.3753 0.1446 0.1767
Hy, CoRel 0.6524 0.3958 0.5260 0.4449 0.3196 0.3702
TaxoCom 0.7520 0.5443 0.7738 0.4848 0.3795 0.4428

JoSH 0.6972  0.3661 0.5707 0.3222 0.1250  0.1430
H. CoRel 0.7413  0.4309 0.7576  0.4242 0.2703 0.3336
TaxoCom 0.7795 0.5856 0.8333 0.4577 0.3293 0.3937

Table 3: Performance for document-level novelty detection.

Given NYT arXiv
HO LE DE
P R F1 P R F1
0.5833 0.6483 0.6141 0.2962 0.6440  0.4058
H v 0.6355 0.6298 0.6326 0.4235 0.5668 0.4848
a

v/ 07033 0.6924 0.6978 0.4715 0.6664 0.5523
v v 0.7878 0.7176 0.7511 0.5510 0.8424 0.6662

0.7308 0.5719 0.6417 0.2743 0.5514 0.3664
v 0.7508  0.5725 0.6496 0.2994 0.5824 0.3955

Hy v/ 0.8082 0.5806 0.6758 0.3679 0.5330 0.4353

v v/ 0.8470 0.7852 0.8149 0.5399 0.5042 0.5214

0.4090 0.6930 0.5144 0.4723 0.8315 0.6024

H v 0.5318 0.7358 0.6174 0.4321 0.7925 0.5593
c

v 04532 07210 0.5566 0.5721 0.8527 0.6848
v v 0.8761 0.7798 0.8251 0.6222 0.8808 0.7293

in the topic-relevant documents, they become more informative and
accurate class-specific keywords for training WeSHClass, which
eventually leads to better performances. In conclusion, the higher
quality topic taxonomy of TaxoCom can provide much more useful
supervision for the downstream task on unlabeled documents.

5.2.3 Binary discrimination between known-topic and novel-topic
documents. For each partial topic hierarchy, we provide an abla-
tion analysis on the novelty detection performance of TaxoCom,
to validate the effectiveness of the embedding techniques: local
embedding (LE) and keyword-guided discriminative embed-
ding (DE). Note that there do not exist term-level novelty labels,
we instead use document-level novelty labels indicating whether a
document belongs to one of the deleted ground-truth topic classes
or not. In other words, we indirectly evaluate the capability of novel
topic detection based on the topic assignment of documents, ob-
tained by Equation (8). We consider precision, recall, and F1 score
as the evaluation metrics. For a fair comparison, we select the opti-
mal hyperparameter value f € {1.5,2.0,2.5,3.0} to determine the
novelty threshold (in Equation (4)) of the ablated methods.

In Table 3, TaxoCom that adopts both LE and DE performs the
best for distinguishing novel-topic documents from known-topic
counterparts. Particularly, DE considerably improves the novelty
detection performance, by collecting the given topic names from
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science

Root

Root — sports

Figure 3: The embedding space of TaxoCom, which finds
multiple sub-topic term clusters (Left) and discriminates be-
tween known-topic and novel-topic terms, respectively col-
ored in blue and red (Right). Best viewed in color.

the sub-tree rooted at each node and utilizing them as the keywords
for the topic, as discussed in Section 4.2.2. In summary, LE and DE
optimize the embedding space further discriminative among known
sub-topics, and it is helpful to enhance the binary discrimination
between known and novel sub-topics as well.

5.3 Qualitative Analysis

5.3.1 Case study on topic taxonomy. We qualitatively examine
the output taxonomy of TaxoCom. Figure 4 shows that TaxoCom
expands the topic taxonomy while preserving the high-level design
of the given topic hierarchy H,. To be specific, in case of NYT, it
successfully identifies not only the first-level missing topic science
but also the second-level ones including music, football, and soccer.
We observe that several center terms of novel topic nodes do not
exactly match with the ground-truth topic names, such as spacecraft-
cosmos (NYT), data processing-computer science (arXiv), and fluid
mechanics-fluid dynamics (arXiv). Nevertheless, it is obvious that
they represent the same conceptual topic of some documents in the
text corpus, in light of the terms assigned to them.

Furthermore, we compare the topic nodes (and their anchor
terms) identified by TaxoCom and CoRel. In Figure 5, several topic
terms of CoRel are too general to belong to the topic (marked in
red), whereas TaxoCom selectively filters the topic-relevant terms
by taking advantage of topic sub-corpus. In Table 4, CoRel often
finds redundant topics semantically overlapped with a known sub-
topic (5<), or just novel entities in the “is-a” relation rather than
a topic class of documents in the corpus (&). Especially, CoRel
fails to find any of the first-level missing topics due to the lack of
given “is-a” relations. In contrast, TaxoCom effectively completes
the latent topic structure of the text corpus by discovering novel
topics that semantically deviate from the known topics.

5.3.2  Visualization of discriminative embedding space. We also vi-
sualize our spherical embedding space for the NYT dataset, when
H. is given as the partial topic hierarchy. Figure 3 shows the em-
bedding space plotted by t-SNE [39] for (i) the root node and (ii) the
sports node. In the left figures, the anchor terms assigned in multiple
sub-topics are marked in different colors, while each center term
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Figure 4: The output topic taxonomy of TaxoCom, where #_ is given as the initial topic hierarchy. Double-lined boxes represent
the newly inserted topic nodes. Dataset: NYT (Upper) and arXiv (Lower).

dance surveillance number theory accelerator physics
dance surveillance number theory accelerator physics
3 dancers national security agency birch particle accelerators
% | new york city ballet intelligence mathematicians linear accelerator
O | american ballet theater snowdennational pure mathematics conceptual design
choreography security number fields mechanical design
choreographer counterterrorism class numbers power converters
dance surveillance number theory accelerator physics
= choreography surveillance number theory accelerator physics
3 ballet eavesdropping modular form synchrotron
S dancers spying number fields particle accelerators
3 pas de deux national security agency iwasawa theory linear accelerator
= balanchine phone records elliptic curves storage ring
ballets patriot act prime number theorem tevatron

Figure 5: Topic terms retrieved by CoRel and TaxoCom.

and the non-anchor terms are plotted as black asterisks and white
circles, respectively. We annotate the center term of the novel clus-
ters that correspond to the novel topic nodes (i.e., science, football,
and soccer) presented in Section 5.3.1. On the other hand, the right
figures illustrate the binary discrimination between known-topic
and novel-topic terms, determined based on the novelty score (Equa-
tion (4)). Our confidence-based novelty score is effective to detect
novel-topic terms (and their dense clusters) clearly distinguishable
from known-topic terms in the embedding space.

6 CONCLUSION

This paper studies a new problem, named topic taxonomy comple-
tion, which aims to complete the topic taxonomy initiated with a
user-provided partial hierarchy. The proposed TaxoCom framework
performs the hierarchical discovery of novel sub-topic clusters; it
employs the text embedding and clustering tailored for effective dis-
crimination between known sub-topics and novel sub-topics. The
extensive experiments show that TaxoCom successfully outputs
the high-quality topic taxonomy which accurately matches with
the ground-truth topic hierarchy.
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Table 4: Novel sub-topics found by CoRel and TaxoCom.

Given Topic Identified Novel Sub-topics
H° CoRel TaxoCom
H, root - arts
=g baseball, softball(&), 1L hock
E H;  sports squash(®), wrestling(®), .. baseball, hockey
jazz, hip hop, acting(¢<), .
He arts animation(®), ballet(s<), ... musie
H, root - natural sciences
object detection, code construction, game,
P computer s . ies
= Hy science authentication(s<), object recognition,
é database systems(s<), ... parallel computing
astrophysics(<), atomic theory,
H. physics general relativity(s<), fluid mechanics,

particle physics(¢<), ... electromagnetism(s<)

In future work, we would like to enhance the center term of novel
topic nodes so that it can best summarize the high-level concepts
of its sub-topic clusters. To this end, it would be interesting to (i)
incorporate relation extraction techniques and (ii) employ a pre-
trained language model; this could be a bridge technique between
an entity taxonomy and a topic taxonomy, with a comprehensive
understanding of entities, relations, documents, and topics.
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A SUPPLEMENTARY MATERIAL
A.1 Pseudo-code of TaxoCom

Algorithm 1 describes the overall process of our framework for
topic taxonomy completion. Starting from the root node (Line 2),
TaxoCom recursively performs text embedding and clustering for
each topic node (Lines 5 and 6) to find out multiple sub-topic term
clusters. Based on the clustering result, it expands the current topic
taxonomy by inserting novel sub-topic nodes (Line 8). In the end,
TaxoCom outputs the complete topic taxonomy (Line 10).

Algorithm 1: The overall process of TaxoCom.

Input: An input text corpus O with its term set 7, and a
partial topic hierarchy H°

1 H — H°

2 q « queue([(H°.rootNode, T, D)))

3 while not q.isEmpty() do

4 | (6,7, D) « q.pop()

5 E¢ < EMBEDDING(T¢, D¢; H)

6 R¢ < CLUSTERING(E¢, T¢, De; H)
7 for (s, 75, Ds) € Rc do

8 L H .updateChildNodes(c, (s, Ts, Ds))

> Current node
> Section 4.2
> Section 4.3

q-push((s, 75, Ds))

o return H

=

A.2 Experimental Settings

Table 5 reports the statistics of the two datasets, and Table 6 lists
the deleted topics for each initial topic hierarchy.

A.3 Implementation Details

We implement the main recursive process (Section 4.1) and the
novelty adaptive clustering (Section 4.3) by using Python, and the
locally discriminative embedding (Section 4.2) is written in C for
efficient optimization based on multi-threaded parallel computation.

Table 5: The statistics of the datasets.

Corpus ‘ Avg-Length  #Topics  #Documents #Terms
NYT 739.8 5— 26 13,081 23,245
arXiv 123.5 3 —48 230,018 24,148

Table 6: The topic classes deleted from the original topic hi-
erarchy. (— *) denotes all the sub-topics.

NYT arXiv

Ha  arts(— *)

physics(— *)

Hp,  arts—movies ¢s—ALCV.DC,GTIT
business— stocks math— CA,DS,GR,RT
politics— abortion,budget,insurance  physics— chem-ph,gen-ph
sports— baseball,hockey plasm-ph

H. arts— music cs(— =)
politics— gun control,military math— CO,DG,PR

science(— *)
sports— football,soccer

physics— atom-ph,flu-dyn
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business politics science sports arts
stocks gov spacecraft sport opera
export president obama mars player music
imports lawmakers kepler tournament films
investors legislation orbits golf festival
prices congress habitable football album
manufacturing senate red planet hockey theater
I I
Il 1 1 1
stocks electricity music dance
stocks power plants holtywood singers dancers
traders emissions movie piano choreography
indexes carbon films musicians dancing
share prices natural gas cinematic repertory modern dance
stock market coal horror classical music ballet
stock index carbon emission comic pianist ballerina

(a) Dataset: NYT

math computer science natural sciences
ring theory programming languages molecule
geometric topology network architecture radiation
operator algebra software engineering laser
differential geometry data structures physics
symplectic geometry distributed computing optical
complex variable security atom
T
[ [ I ! 1
quantum mechanics optics accelerator atoms
quantum mechanics optical accelerator atoms
quantum theory waveguide cemn carbon
relativity photonic crystal accelerator physics | ... nitrogen
cosmology terahertz linear accelerator molecules
thermodynamics optical fiber synchrotron gas
paradoxes sub wavelength storage ring ions

(b) Dataset: arXiv

Figure 6: The output taxonomy of TaxoCom, where H, is
given as the initial topic hierarchy.

For the other baselines, we employ the official author codes of
hLDA!2, TaxoGen?3, JoSH“, and CoRel®>.

For novelty adaptive clustering of TaxoCom, we set f = 1.5,3.0
(for the first-level and second-level topic nodes, respectively) in the
novelty threshold 7,0, (Equation (4)), and the significance threshold
Tsig = 0.3 (Equation (9)), without further tuning for each dataset
or initial topic hierarchy. For locally discriminative embedding of
TaxoCom, we set the margin m = 0.3 (Equation (3)), and the number
of neighbor terms M = 100 (Section 4.2.1) to retrieve the sub-corpus
which are used for tuning the embedding space, i.e., top-100 closest
term of each center term.

For all the embedding-based methods (i.e., TaxoGen, JoSH, CoRel,
and TaxoCom) that optimize the Euclidean space or spherical space,
we fix the number of negative terms (for each positive term pair)
to 2 during the optimization. For hLDA, we set (i) the smoothing
parameter over document-topic distributions « = 0.1, (ii) the con-
centration parameter in the Chinese Restaurant Process y = 1.0,
and (iii) the smoothing parameter over topic-word distributions
n = 1.0. For TaxoGen, we follow the parameter setting provided
by [47]; i.e., the number of child nodes is set to 5.

A.4 Constructed Topic Taxonomy

Figures 6 and 7 show the topic taxonomies generated by Taxo-
Com, where H,; and Hj, are given as the initial topic hierarchy,
respetively. The center terms (i.e., topic names) and topic terms
2https://github.com/joewandy/hlda

Bhttps://github.com/franticnerd/taxogen

https://github.com/yumeng5/JoSH
Shttps://github.com/teapot123/CoRel
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commutative algebra continuum hypothesis simple group monotonicity
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power set polycyclic total order
1 countable set outer automorphism Cross ratio
physics
photonic l | | 1
atomic physics optics molecule [ plasma |
accelerator physics photonics molecule plasma
electron photonic solvation magnetic reconnection
turbulent photonic crystal molecular orbitals neoclassical
relativity terahertz orbitals current density
broadband potential energy plasma physics
metamaterial dft dusty
ctﬁ&puter science T T
% dzrt: f#ﬁfﬂi"“g [ code construction | game [ parallel computing |
data structures block codes game multicore
databases convolutional codes utility function parallel computing
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network architecture code construction budget constraint distributed memory
successive cancellation | | profit maximization parallel processing
awgn channel dynamic pricing gpgpu

(b) Dataset: arXiv

Figure 7: The output taxonomy of TaxoCom, where 7, is
given as the initial topic hierarchy.

are presented without any post-processing such as manual filter-
ing or selection that requires human labor. Due to the space limit,
the figures omit most of the second-level known topic nodes (i.e.,
the topics already included in H, or Hp), rather focus on newly
inserted novel topic nodes. Note that the initial topic hierarchies
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are generated by random node drop of the ground-truth topic hi-
erarchy: a single first-level topic (in case of H;) and a portion of
second-level topics (in case of Hj,) is deleted, as listed in Table 6.

We can observe that TaxoCom effectively detects the deleted
topic nodes and places them in the right position within the topic
taxonomy. In other words, the output taxonomies more completely
cover the topic structure of each dataset, compared to the initial
topic hierarchy, H, or Hj,. The recursive clustering process of
TaxoCom implicitly forces the hierarchical semantic relationship
of parent-child node pairs, while clearly distinguishing novel sub-
topic clusters from known sub-topic clusters based on the score of
how confidently each term belongs to one of the known sub-topics
(Equation 4). As discussed in Section 5.3.1, some center terms of
identified novel topic nodes do not match with the ground-truth
topic names. In spite of the minor mismatch, we can easily figure
out the one-to-one mapping from the novel topics to the deleted
ground-truth topics; for example, films-movies, stock market-stocks,
insurer-insurance (NYT), and natural sciences-physics, accelerator-
accelerator physics, atoms-atomic physics (arXiv).
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