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ABSTRACT

Pretrained text representations, evolving from context-free word
embeddings to contextualized language models, have brought text
mining into a new era: By pretraining neural models on large-scale
text corpora and then adapting them to task-specific data, generic
linguistic features and knowledge can be effectively transferred
to the target applications and remarkable performance has been
achieved on many text mining tasks. Unfortunately, a formidable
challenge exists in such a prominent pretrain-finetune paradigm:
Large pretrained language models (PLMs) usually require a massive
amount of training data for stable fine-tuning on downstream tasks,
while human annotations in abundance can be costly to acquire.
In this tutorial, we introduce recent advances in pretrained text
representations, as well as their applications to a wide range of
text mining tasks. We focus on minimally-supervised approaches
that do not require massive human annotations, including (1) self-
supervised text embeddings and pretrained language models that
serve as the fundamentals for downstream tasks, (2) unsupervised
and distantly-supervised methods for fundamental text mining
applications, (3) unsupervised and seed-guided methods for topic
discovery from massive text corpora and (4) weakly-supervised
methods for text classification and advanced text mining tasks.
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TARGET AUDIENCE AND PREREQUISITES

Researchers and practitioners in the fields of data mining, text min-
ing, natural language processing, information retrieval, database
systems, and machine learning. While the audience with a good
background in these areas would benefit most from this tutorial,
we believe the material to be presented would give both general
audience and newcomers an introductory pointer to the current
work and important research topics in this field, and inspire them
to learn more. Our tutorial is designed as self-contained, so only
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preliminary knowledge about basic concepts in data mining, text
mining, machine learning, and their applications are needed.

TUTORS AND PAST TUTORIAL EXPERIENCES

We have four tutors. All are contributors and in-person presenters.

e Yu Meng, Ph.D. candidate, Computer Science, UIUC. His re-
search focuses on mining structured knowledge from massive
text corpora with minimum human supervision. He received the
Google PhD Fellowship (2021) in Structured Data and Database
Management. He has delivered tutorials in VLDB’19, KDD’20,
KDD’21 and AAAT’22.

e Jiaxin Huang, Ph.D. candidate, Computer Science, UIUC. Her
research focuses on mining structured knowledge from massive
text corpora. She received the Microsoft Research PhD Fellowship
(2021) and the Chirag Foundation Graduate Fellowship (2018) in
Computer Science, UIUC. She has delivered tutorials in VLDB’19,
KDD’20, KDD’21 and AAAT’22.

e Yu Zhang, Ph.D. candidate, Computer Science, UIUC. His re-
search focuses on weakly supervised text mining with structural
information. He received the Yunni & Maxine Pao Memorial Fel-
lowship (2022) and WWW Best Poster Award Honorable Mention
(2018). He has delivered tutorials in IEEE BigData’19, KDD’21
and AAAT’22.

e Jiawei Han, Michael Aiken Chair Professor, Computer Science,
UIUC. His research areas encompass data mining, text mining,
data warehousing and information network analysis, with over
900 research publications. He is Fellow of ACM, Fellow of IEEE,
and received numerous prominent awards, including ACM SIGKDD
Innovation Award (2004) and IEEE Computer Society W. Wallace
McDowell Award (2009). He delivered 50+ conference tutorials or
keynote speeches (e.g., KDD’21 tutorial and CIKM’19 keynote).

TUTORIAL OUTLINE

e Pretrained Text Representations

— Context-Free Embeddings [14, 22, 23, 28]

— Contextualized Language Models [2-4, 11, 17, 25]

— Adaptations of PLMs to Downstream Tasks [5, 7, 24]
Text Mining Fundamentals

— Phrase Mining [6]

— Named Entity Recognition [8, 9, 18]

— Taxonomy Construction [10]

Text Representation Enhanced Topic Discovery

— Traditional Topic Models [1]

— Embedding-Based Discriminative Topic Mining [13, 21]
— Topic Discovery with PLMs [20, 27]
Weakly-Supervised Text Classification
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— Flat Text Classification [12, 15, 19, 29]
— Hierarchical Text Classification [16, 26]
— Metadata-Aware Text Classifcation [30-33]
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