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Abstract—We propose REACTCLASS that automatically maps
the low-level concrete chemical entities into the high-level reac-
tant groups without human effort for training data annotation.
REACTCLASS is designed to take two special characteristics
of the chemical molecules into consideration. The first charac-
teristic is that each chemical molecule can be represented in
two modalities: a chemical name in the text and a molecular
structure in the graph. We propose to use cross-modal supervision
to automatically create the training data for chemical name
classification in the text via molecular structure matching in the
graph. The second characteristic is that there is a knowledge-
aware subword correlation between the surface names of the
chemical entities to be classified and that of the reactant groups
as class labels. We propose to train a classification model based
on the subword cross-attention map between each chemical name
and the corresponding reaction group. Experiments demonstrate
that REACTCLASS is highly effective, achieving state-of-the-art
performance in classifying the chemical names into human-
defined reactant groups without requiring human effort for
training data annotation.

Index Terms—Chemistry Text Mining; Cross-Modal Super-
vised Learning; Attention Map Representation

I. INTRODUCTION

Scientific knowledge can be described on various levels of
abstractions: from high-level categorical concepts to low-level
concrete entities. For example, in Figure 1, the Csp3-Csp®
Suzuki cross-coupling reaction is defined by chemists as a
process involving a pair of high-level reactant groups (i.e., the
M-side reactant group “primary alkyl boronate™ and the X-side
reactant group “primary alkyl halide). While in the chemistry
literature, this chemical reaction can also be described as a
process involving two low-level concrete chemical entities
(e.g., “1-bromododecane” and “B-n-octyl-9-BBN™). This gap
between high-level and low-level abstractions of scientific
knowledge is a common phenomenon in various domains such
as biology, chemistry, and physics.

We propose REACTCLASS that bridges this gap by auto-
matically mapping the knowledge descriptions from low-level
concrete entities to high-level categorical concepts without
requiring human effort for training data annotation. REACT-
CLASS benefits various downstream applications, such as
chemistry knowledge base completion [11], chemistry infor-
mation retrieval [4], [9], [14], and prediction of chemical
reactions, products, and properties [1], [2], [5], [12].
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Fig. 1: REACTCLASS automatically classifies the concrete
chemical entities in the text into the high-level reactant groups
defined by the chemical scientists.

REACTCLASS is designed to take two special characteristics
of the chemical molecules into consideration. First, we propose
to use cross-modal supervision to automatically create the
training data for chemical name classification in the text
via molecular structure matching in the graph. Second, we
propose to train a classifier based on the knowledge-aware
subword cross-attention map between each chemical name
and its corresponding reaction group. REACTCLASS is highly
effective, achieving state-of-the-art performance in classifying
the chemical names into human-defined reactant groups with-
out requiring human effort for training data annotation.

II. REACTCLASS: METHODOLOGY

REACTCLASS consists of two parts: (1) automatic training
data creation with molecular structure matching, (2) classifi-
cation model with knowledge-aware subword cross-attention.

A. Cross-Modal Supervision of Molecular Structure Matching

By definition in chemistry knowledge, the training data for
each reactant group can be automatically created by finding
the chemical names with graph representations that match the
graph representation of the reactant group.

To convert the chemical names into their graph repre-
sentations, we first collect a large number of candidate
chemical names [e.g., “tert-butyl (4-bromo-2-nitrophenyl)
carbamate” in Figure 2] from both the chemical re-
action knowledge base (Reaxys' [6]) and the chemi-

Uhttps://www.reaxys.com/#/search/quick
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Fig. 2: Illustration of cross-modal supervision of molecular
structure matching.

cal named entity recognition (ChemNER [13]) results in
the chemistry literature. Then we convert the chemi-
cal names into their corresponding SMILES strings [e.g.,
“CC(C)(C)OC(=0)NC1=C(C=C(Br)C=C1)N(=0)=0" in Fig-
ure 2], a character-based sequence representation of the chem-
ical molecules. This chemical name to SMILES string conver-
sion is automatically done by linking the chemical names to
a chemistry knowledge base (PubChem? [8]) where we can
directly find their corresponding SMILES strings. Finally, the
SMILE strings can be converted into molecular structures for
the next step of subgraph matching, using an open-source
cheminformatics software RDKit>.

To convert the human-defined reactant groups into their
graph representations, we first get the ten reactant groups (e.g.,
“Aryl Halide” in Figure 2) for Suzuki cross-coupling reactions
from chemists. Then we convert the reactant group into a
subgraph regular expression. For example, in Figure 2, the
reactant group “Aryl Halide” can be converted into a subgraph
regular expression of a benzene ring with a Br connected to
carbon #1, where this Br can be replaced with either I or CI.
By definition in chemistry knowledge, a candidate chemical
name belongs to a reactant group if any subgraphs in its
molecular structure match the subgraph regular expression
of that reactant group. So any chemical names (e.g., “tert-
butyl (4-bromo-2-nitrophenyl) carbamate™) with a molecular
structure that can match the graph representation of “Aryl
Halide” can be classified into the “Aryl Halide™ reactant group.
The subgraph regular expressions of the ten reactant groups
are also defined by chemists.

After we get the graph representations of both the chemical
names and the reactant groups, we use the RDKit software to
conduct the subgraph matching in the molecular structures.

B. Subword Cross-Attention-Guided Chemical Classification

Based on the training data obtained from the previous
step of subgraph matching, we observe a knowledge-aware
subword correlation between the chemical names to be clas-
sified and the reactant groups as class labels. For example,

Zhttps://pubchem.ncbi.nlm.nih.gov/
3https://www.rdkit.org/
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in the bottom part of Figure 3, we construct a subword
cross-attention map between the chemical name “tert-butyl
(4-bromo-2-nitrophenyl) carbamate™ and its corresponding re-
actant group “Aryl Halide”. Looking at this subword cross-
attention map, we observe that the subword string “phenyl”
in the chemical name is highly correlated with the subword
string “Aryl” in the reactant group. This is well-aligned with
the chemistry knowledge: “Aryl” means any species created
by removing a hydrogen atom from an aromatic hydrocarbon
and “phenyl” is a specific aryl radical, which is created by
removing a hydrogen atom from a benzene ring. Similarly, we
can observe that the subword string “bromo” in the chemical
name is highly correlated with the subword string “halide”
in the reactant group. This observation of knowledge-aware
subword correlation also motivates us to train a classifier based
on the subword cross-attention maps between the chemical
names and the reaction groups.

We first describe how we construct the cross-attention map.
Taken each chemical name e; = (w1, ws, ..., wy,|) and reac-
tant group g; = (wi,wa, ..., w|y,|) as a sequence of subword
tokens wy, we first extract the representation for each subword
token from last hidden states of the fine-tuned ChemBERT
model. Then we calculate the cosine similarities between the
representations of subword tokens in the chemical names and
the reactant groups. Specifically, we obtain the cross-attention
matrix as follows.

q:Kgmuqu:k:XWk:U:KWU (1
A = softmax (gkT /1/C/h) )

where W,, W, W, € REX(E/h) O h are the embedding
dimension and the number of heads, x is representation of the
input chemical name, and Xgroup i the representation of the
input reactant group. The attention matrix A will be used as
our input feature for the classification model training.

Taken the attention matrix A constructed above, we then
describe our design of the classification model. We consider
each cross-attention map as a single-channel image and encode
it with a three-layer CNN, transforming the text classification
task into an image classification task for the final prediction.
For each chemical name, we first create positive training data
by constructing a cross-attention matrix between the chemical
name and its corresponding reaction group from subgraph
matching. We then create negative training data by construct-
ing a cross-attention matrix between the chemical name and
other group names. Our learning task is a binary classification
task. For the learning objectives, we adopt binary-class cross-
entropy loss for simplicity with our created training data. Thus,
the training loss function for the classification model can be
formulated as

= ﬁ S yilog(f(2)) 3
T,y ED
+ (1 — i) log(1 — f(x:)) 4)

where ID = {(z;,y;)} is the training dataset, z; is the attention
matrix, and y; € {+1,—1}.

Authorized licensed use limited to: University of lllinois. Downloaded on September 04,2025 at 19:43:32 UTC from IEEE Xplore. Restrictions apply.



o

1

1

1

1

1

N I

_ » - "

n - L . 1

s e e I ] 1
1

Subword Cross-Attention Map CNN Prediction: X4 1
1

Fig. 3: lustration of subword cross-attention-guided name classification.

TABLE I: Dataset Statistics

H Dataset Suzuki Coupling H
# Training Samples 30,488
# Validation Samples 3,855
# Testing Samples 3,858
# Groups 11

During inference, we compute the scores of the attention
matrices between each chemical name and all the ten reactant
groups to find the reactant group with the highest probability.

III. EXPERIMENTS
A. Dataset

We create a dataset for our task of chemical name clas-
sification. We first get ten reactant groups from chemistry
experts to serve as our class labels. Each reactant group
has a corresponding reactant group name (e.g., “M1” is
“Primary Boronate”) that can be used in our experiments.
Then we collect the chemical names to be classified from
both the reaction database (Reaxys [6]) and the named entity
recognition (ChemNER [13]) results in chemistry literature.
Last, following the training data creation process described in
Section II-A, we automatically create around 38K training data
for the ten reactant groups plus an “Other” class with cross-
modal supervision of molecular structure matching. We split
the 38K training data into training/validation/test sets with a
ratio of 8:1:1. The dataset details can be found in Table 1.

B. Baselines

We compare the performance of REACTCLASS with several
baseline methods as follows.

« BERT/BioBERT/ChemBERT + Softmax: This is a simple
baseline method that directly uses the output states of a pre-
trained language model plus a linear layer for prediction. We
explored various pre-trained language models in different
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domains (e.g., BERT [3] in the general domain, BioBERT
[10] in the biomedical domain, and ChemBERT [7] in the
chemistry domain).

e ChemBERT + Triplet Loss: To tackle the class imbalance
problem in our training data, we tried the triplet loss that is
less sensitive to the imbalanced training data compared to
the softmax loss.

e ChemBERT + Softmax (Oversampling): To further tackle
the class imbalance problem in our training data, we lever-
age the weighted bootstrapping strategy to ensure that the
models receive about the same number of data in each class
during training.

« Subword + CNN + Softmax: This is our proposed method
that takes the subword cross-attention map between each
chemical name and the corresponding reaction group as the
input feature and then encodes it with a 3-layer CNN for
the final prediction.

« Subword + CNN + Softmax (Oversampling): This is our
final model that has the same architecture as Subword +
CNN + Softmax, only adding the weighted bootstrapping
strategy to further tackle the class imbalance problem in
our training data.

We use the micro-F1 and macro-F1 scores* as the evaluation
metrics for our performance comparison.

C. Main Results

Table II shows the main results on the test set of our
chemical name classification dataset. Comparing different
pre-trained language models (BERT/BioBERT/ChemBERT +
Softmax), the domain-specific pre-trained language model
achieves better performance than that is trained in the general
domain. Comparing ChemBERT + Softmax, ChemBERT +
Triplet Loss, and ChemBERT + Softmax (Oversampling), both
the triplet loss and the oversampling strategy are effective in

“https://scikit-learn.org/stable/modules/generated/sklearn. metrics.f1_score.
html
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TABLE II: Main Results (F1 Scores in %)

H Baseline ‘ Micro F1 ‘ Macro F1 H
BERT + Softmax 97.72 82.83
BioBERT + Softmax 97.85 85.00
ChemBERT + Softmax 97.95 84.20
ChemBERT + Triplet Loss 98.16 88.25
ChemBERT + Spftmax 98.16 89.46
(Oversampling)
Subword + CNN + Softmax 98.28 83.44
(REACTCLASS)
Subword + CNN + Softmax
(REACTCLASS + Oversampling) 98.56 90.76
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Fig. 4: Parameter Studies on Dimension K

dealing with the class imbalance problem in our automatically
created training data. The oversampling strategy is the most
effective one that brings the most performance improvement.
Our final model (REACTCLASS + Oversampling) achieves
98.56% micro-F1 and 90.76% macro-F1 scores with sig-
nificant performance improvements compared with all the
baseline methods. It demonstrates the effectiveness of our
proposed method that takes the subword cross-attention maps
between the chemical names and the reaction groups as the
input feature for classification.

D. Parameter Studies

We perform several experiments on the hyperparameters
in our framework to study the efficacy of our classification
model. One important hyperparameter is the dimension of our
cross-attention matrix K during training and inference. Due to
a large amount of computation in calculating cross-attention
maps, large dimensions result in much longer computation
time while small dimensions may cause information loss. We
conducted experiments on a dimension size K from 10 to 50.
In Figure 4, we observe that a larger dimension K will lead
to better performance. We use K = 50 in all our experiments.

IV. CONCLUSIONS

In this work, we propose a highly effective method, RE-
ACTCLASS, for reactant entity classification without requiring
human effort for training data annotation. REACTCLASS is
designed to take two special characteristics, multi-modal rep-
resentation and knowledge-aware subword correlation, of the
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chemical molecules into consideration. Our method achieves
state-of-the-art performance in classifying the chemical names
into ten Suzuki cross-coupling reactant groups.
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