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Abstract: The Intermittent Small Baseline Subset approach to Interferometric Synthetic Aperture
Radar data was originally devised as a way to recover information from regions with intermittent co-
herence, making it particularly useful in agricultural regions or those featuring significant vegetation.
However, as modern data products grow in size, the increased computational complexity that this
methodology demands makes processing more daunting. Here, we present a solution: leveraging the
Bifrost data processing framework and GPUs, we analyze Sentinel-1 data covering a large region of
northern California and are able to achieve dramatic speed-ups on the order of 300–400 times faster
than CPU-bound implementations of ISBAS, processing the entire dataset in only 5 h.

Keywords: SAR; InSAR; Bifrost; GPU

1. Introduction

Interferometric Synthetic Aperture Radar (InSAR) techniques typically make use of
repeated observations of a particular location on the Earth’s surface by a ground-sensing
satellite. Measurements made on different dates can then be interfered, producing inter-
ferograms containing information about changes in phase (related to changes in ground
height), as well as coherence, which is a measure of the reliability of said phase information.

The Small Baseline Subset (SBAS; ref. [1]) approach was developed as an effective
way to process these data into meaningful measures of ground deformation. Instead of
generating all possible interferograms (n·(n − 1)/2), one can instead sequentially generate
interferograms for nearby pairs of dates (the “small baselines”). Provided that this set of
date pairs sufficiently connects all observation dates, the required number of interferograms
can be significantly lower without a significant loss of information. While this particular
approach gained significant popularity due to its computational advantages, it can suffer
when coherence is intermittent, as the typical approach only utilizes pixels that maintain
high coherence over all interferograms. This means that information from regions with
such intermittent coherence (such as regions of vegetation, which will vary on seasonal
timescales) can be completely lost unless other methods are invoked.

One such method is Intermittent SBAS (ISBAS). Created with the intention of recov-
ering this information, the algorithm described in Sowter et al. [2] attempts to solve each
pixel with a sufficient number of high-coherence interferograms. More details on the
exact process behind this solution can be found in the original paper as well as through
the original code (https://github.com/ericlindsey/isbas, accessed on 5 July 2024) of the
implementation of this algorithm, on which this work is based. Summarizing somewhat,
this technique has the advantage that it can recover information from these intermittent
areas, given more access to vegetated or agricultural regions, but it suffers from increased
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computational complexity, leading to processing times which make dealing with larger or
more modern data untenable.

This paper aims to illustrate the effectiveness of Bifrost, which itself arose from a
similar computational demand in a somewhat different field: radio astronomy. Modern
radio astronomy frequently deals with a large number of sensors, producing significant
data streams and thus requiring significant computation. The Bifrost framework [3] was
created to handle just such streams originally from the Long Wavelength Array [4], which is
a set of low-frequency radio telescopes operating in New Mexico. The advantage comes in
that Bifrost makes it easy to establish processing streams (or offline pipelines) that can pass
data along to Graphics Processing Units (GPUs) for much more rapid processing where it
is allowed. While other stages in the general InSAR workflow have been bolstered by GPU
processing (see Dong et al. [5], Chang et al. [6] for examples), to our knowledge, this work
represents the first such GPU implementation for this particular algorithm of time-series
inversion, and it is certainly the first implemented via the use of Bifrost.

GPU support is primarily provided through NVidia’s Compute Unified Device Ar-
chitecture (CUDA) (Support for AMD via ROCm is currently under development) and is
accessed through internal Bifrost routines or through CuPy [7] through a compatibility
layer. Many operations for data manipulation/transformation are provided with Bifrost,
and more complex or specific processing can be handled using custom ‘blocks’, which often
require little more work than changing NumPy function calls to CuPy.

In the sections to follow, we will outline the testing performed and the large calculation
speed-ups gained from the use of Bifrost to process InSAR ISBAS datasets. Section 2
discusses the choice of data and the basic process behind the pipeline as well as the various
benchmarks performed to measure these speed-ups. Finally, Sections 3 and 4 discuss our
results and their broader implications for this particular application of Bifrost.

2. Materials and Methods
2.1. Data

The dataset that we chose to use for this work covers a portion of northern California
in the United States observed by the Sentinel-1 satellite [8]. This includes 225 observations
at C-band (5.5 cm) on descending passes between June 2015 and September 2023. This
region was chosen specifically for the likely presence of areas with intermittent coherence,
which is the core use case for which the original code was developed, and also features of
geological interest. Our objective then was to benchmark these data and see what kinds
of improvement have been made on various scales. We began from a large number of
interferograms (2195 in total), each 7077 by 7603 pixels. This allows us to easily extract
smaller subsets for specific testing while also opening up the capability to process the full
dataset in a reasonable amount of time.

2.2. Pipeline

The Bifrost ISBAS pipeline (BISBAS; https://github.com/ProfundityOfScope/BISBAS,
accessed on 5 July 2024)) developed for this work takes as input the unwrapped interfero-
grams and runs through the steps defined in the ISBAS analysis.

1. Masking of the interferograms based on a minimum coherence or presence of water;
2. Referencing interferograms to a provided reference point;
3. Time-series inversion, where the time series is solved for from the interferograms;
4. Removal of residual “ramps” present in the individual date images;
5. Estimation of ground velocities from the time series.

The pipeline is assembled from a series of Bifrost ‘blocks’ which perform one or
some combination of the above steps. These blocks are a central component of creating
a Bifrost pipeline, with a given block typically receiving data from one or more ring
buffers, performing some sort of transformation, and outputting the result to another ring
buffer. Figure 1 shows an illustration of how the blocks are connected with basically all
mathematical operations happening on the GPU side. Data flow through the pipeline in

https://github.com/ProfundityOfScope/BISBAS


Remote Sens. 2024, 16, 2554 3 of 9

‘gulps’, which represent all interferogram information for a given set of pixels. The number
of pixels, and thus the size of the gulp, can be set manually or automatically determined
from the available memory on the GPU. Phase data are read alongside the corresponding
coherence and water mask, which are then used to apply a mask where coherence is less
than 0.3 or water is present in the NASA SWBD dataset [9].

Figure 1. A graph diagram showing how various elements in the BISBAS processing pipeline are
connected together. Each round node represents a Bifrost block, which lives on either the CPU or
GPU (or spans the gap, in the case of Copy), and solid arrows can be thought of as the ring buffers
which Bifrost leverages. Cylindrical icons denote data saved to disk. Here, you can see the division
into two individual pipeline components: the first to perform the time-series inversion, the second to
apply a detrending and calculate rates.

These masked data are then passed to the GPU, where more math-intensive steps
can be performed. The first of these involves referencing the interferograms, effectively
subtracting a value from each interferogram pixel such that the phase data near the reference
point will be zero in all interferograms. The bulk of computation time during this data
reduction is used during the step of time-series inversion, where we solve for the model
rates which are used to generate the time-series data from the base interferograms. This
typically takes the form of the equation

Gx = ϕ, (1)

where the matrix G represents the difference in dates between the measurements used to
generate the interferogram, x is the model rates and ϕ is the interferogram data. Typically,
solving for x would be straightforward, since the problem is over-determined, so a least-
squares approach would suffice. Complications arise when we introduce masking into
the data such that NaN values appear. A typical solution for this would be to remove
the offending NaN values from ϕ and their corresponding rows from G and then proceed
with your solution method of choice (assuming that the resulting matrix is still full rank;
otherwise, the pixel is skipped).
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As this solve must be performed for every single pixel in a given dataset, the added
time required for these on-the-fly modifications becomes significant. Beyond the time
requirement, the size of the problem changing during each step is problematic if the goal
is GPU processing, which would generally require problems to remain consistent in the
usage of memory. With this in mind, we modify the problem somewhat to avoid this issue
and also optimize toward the types of operations GPUs are well suited for.

To handle the NaN values, we introduce a masking matrix, M, which is a diagonal
matrix generated from ϕ. If a value ϕi is present in the data, then the corresponding element
Mii = 1, while if the value is missing (NaN), then Mii = 0. If we wish to insert this masking
matrix, then our modified problem takes the form

GTMGx = GTMϕ (2)

The resultant problem features a new left-hand matrix, which we may call G′ = GTMG,
and a new data vector ϕ′ = GTMϕ. The size of these new matrices and vectors will remain
constant in memory for every pixel, allowing the problem to be moved more easily to the
GPU. Once the relevant broadcasting and matrix multiplications are performed, we are left
with a few relatively small matrices (G′ is nd × nd, with nd being the number of observation
dates), and so it is possible to perform this solve for all pixels in a gulp simultaneously,
effectively as a tensor problem, via the linalg.solve function in cupy.

The matrix G′ is also functionally equivalent to the Gram matrix of G. We can leverage
this in checking if the resulting problem is still full rank. This check in the original code
is made via a singular value decomposition, which checks the rank of the truncated G
for each pixel. Instead, we can check whether the Gramian (the determinant of the Gram
matrix) is non-zero. The mostly diagonal composition of G′ in most time-series inversion
problems means that the determinant will be significantly faster than a typical rank check,
even if the said rank check could be performed on the GPU. As the condition of the Gram
matrix is the square of the original matrix, we opt to use a slogdet function for this, which
is better in cases of potential numerical instability, as it calculates the logarithm of the
determinant, which is less prone to under- or overflow. For singular pixels, the resultant
model is simply set to all-NaN.

As a final measure toward catching these numerical uncertainties, we check the new
time-series solutions against a threshold which can either be supplied from the user or
precomputed from a random set of pixels throughout the entire image. Pixels containing
time-series values larger than this threshold (typically 10 times the standard deviation) are
discarded, as they likely suffered from these numerical instability effects. We note that this
affects only a small percentage of pixels, fewer than 1 in 10,000 in this dataset using this
hardware (see Section 2.3).

Here, it is worth taking a brief aside to discuss the complexity and how it scales with
the number of interferograms ni and the number of dates nd that those interferograms
were calculated from. The steps described above, specifically the time-series inversion
and the relevant checks involved, dominant the time complexity of the entire process for
both methodologies. The original CPU-bound code’s time complexity is largely dictated
by singular value decomposition, an O

(
nin2

d
)

operation for each pixel, performed in both
the matrix rank check and (if the matrix is full rank) the calculation of the pseudo-inverse.
For each pixel in the new implementation, we expect the construction of the matrices to
scale as O

(
nin2

d
)

and the solves to scale as O
(
n3

d
)
, but as nd < ni for nearly all conceivable

cases, we can say that both implementations scale as O
(
nin2

d
)

for each pixel. The relative
difference in speed comes from being able to dramatically parallelize these operations on
the GPU. In both cases, having more masked data will mean faster processing times, as
the old implementation skips solves and the new one trivializes them, with the overall
speed-up factor decreasing slightly as more masked pixels are present.

After converting the time series into the appropriate units (typically millimeters), the
data split: one copy being taken off the GPU to be written to disk, and the other sent to
a block which accumulates the solution to the detrending step. This removal of residual
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linear or quadratic trends across the image is typically performed sequentially over each
image, raveling the data, and removing any NaN values on the fly. We instead opt to
accumulate the matrices which can be solved for these trend parameters on the fly during
our pipeline, as the math involved is similar to that described above and also benefits
in speed from GPU processing. After the entire dataset has been processed, we can then
quickly perform the detrending solve (this typically involves a few hundred matrices no
larger than 6 × 6), then read the data back in, copying it to the GPU, and subtracting the
model to remove these residual trends. The detrended data are split, one copy again being
sent to be written to disk, and the other copy used to calculate rates for each pixel, which is
another solve that benefits dramatically from the GPU acceleration. Finally, the rates are
copied out to be written to disk.

2.3. Benchmarking

To measure the increase in processing speed, we ran our pipeline, as well as the
original ISBAS code, on three subsets of the dataset. For benchmark purposes, we report
only the time to complete the time-series inversion, as the other steps typically do not
impact the overall processing time significantly, and we are generally more interested in the
time-series inversion. The minimum coherence used for masking in all benchmarks is set
to 0.3. All benchmarks and tests were performed on a local compute node running Ubuntu
20.04.6 LTS and CUDA version 12.4, equipped with a dual AMD EPYC 7313 16-core pro-
cessor, 512 GiB of memory, and an NVIDIA RTX A4000 series GPU. Summary information
on our benchmarks for these subsets can be found in Table 1.

Table 1. Runtimes for various datasets processed by the two different codes. The values listed for
the Small Images subset represent the median values for the various timing trials over randomized
locations. For the Full Data, the ISBAS code was stopped after about an hour of processing, and the
total processing time was estimated from the time to process the few rows it had so far completed.

Data Subset BISBAS ISBAS Speedup

Small Images 9.459 s 3806 s 402×
Fewer Dates 170 s 14 h 395×
Full Data 5 h ∼51 days 245×

The first of these subsets (denoted as “Small Images” in Table 1) used all 2195 inter-
ferograms of a small region (200 × 200 pixels) around a trial point in the full data. This
subset was most commonly used for testing, as the total processing time for both codes was
manageable and allowed for quick iteration or debugging. Choosing reference points ran-
domly such that at least 95% of the data was land in the water mask, we generated 50 such
datasets to evaluate the consistency of both implementations. The original CPU-bound
code had a range of times from 2770 to 4362 s with a median of 3806 s. For the Bifrost
implementation, this range of times was from 9.173 to 9.541 s with a median of 9.459 s.

One such Small Image dataset was used to generate Figure 2, which illustrates the
strong agreement between the two methods. We use the maximum mean change to quantify
this agreement, as it generally works well when comparing floating point numbers and can
be thought of as somewhat analogous to a percent error. The median value for the maximum
mean change in this region is 0.0042 with an inner quartile range of 0.0023 to 0.0097. These
quite small errors probably originate from small numerical differences between Numpy
and Cupy implementations of the same algorithm, combined with the 32-bit precision
used to match the original implementation, and typically only arise when there are a larger
number of missing interferograms; thus, the resulting problem is less well constrained.
Some degree of this effect could be mitigated by moving to 64-bit numbers at the cost of
some performance.
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Figure 2. A 2D histogram of pixels in a “Small Images” dataset (as described in Section 2.3 and
Table 1). For each pixel in the subset, we find the number of non-NaN interferograms that were used
and then calculate the maximum mean change between the ISBAS and BISBAS implementations for
a particular date (here, the 30th time-series data, having been chosen at random) in the final data.
The overwhelming majority of data in the subset agree at very high levels, and larger disagreements
appear to come from increased numerical uncertainty when fewer interferograms are used.

The second subset was chosen to be somewhat more representative of real-world use
cases for the original code, which was intended to operate on data taken by satellites such
as ERS or ENVISAT. While the data from these could feature a similar number of pixels in
each interferogram, a given dataset would more typically include only a few tens of dates,
producing a somewhat smaller number of interferograms. As such, our “Fewer Dates”
subset used only interferograms from the first 25 dates in the dataset, producing a new
dataset that had 195 full-sized interferograms. From this dataset, we can see a more typical
timescale on which the ISBAS code was expected to run, here 14 h, as well as our accelerated
processing time of less than 3 min. The original processing time becomes cumbersome if
any sort of iteration is required in the processing of the data, and it becomes even more
problematic as the field moves toward longer timescales with more observation dates.

Finally, we test our pipeline against the entirety of the dataset. This “Full Data” subset
represents a modern stress test that is meant to demonstrate the capabilities afforded by
GPU acceleration via Bifrost. The utility of the ISBAS schema is that it allows one to process
a given pixel even with some number of dates missing, but on modern datasets where
the number of dates is fairly large, the time cost of such an algorithm can be extremely
prohibitive. Based on the time it took to complete each pixel, we estimated that it would
take the original ISBAS approximately 51 days to fully process this full dataset; meanwhile,
it can be processed using our Bifrost accelerated version in around 5 h.

From these tests, we can see a marked performance gain. The computation time in
both cases scales strongly with the number of interferograms and to a lesser extent with the
number of pixels. Larger amounts of data require more transfers to and from the GPU, but
the overall speed-up is significant enough that these effects are fairly small and could be
remedied via hardware upgrades or more thorough optimization of the data transfer and,
particularly, the gulp size.

3. Results

In Section 2.3, we observed a dramatic increase in processing speed, which was
significant enough that we should expect it to allow new methodologies to be explored in
the usage of the ISBAS method. The utility of the intermittent approach that ISBAS takes is
that you can still extract information, even if the chain of interferograms is not completely
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perfect from start to finish, which is particularly advantageous in regions with variable
coherence. The information is not necessarily difficult to find for a single pixel, but solving
across the entire image quickly grew to be prohibitive as modern satellites produced more
and larger datasets.

Using a framework like Bifrost, however, we offer a speed-up that is more than
sufficient to keep pace. Given the typical observation cadence of these instruments, it is
likely that this allows ISBAS processing to occur effectively in real time as data come down
from orbit, as it would take significantly more data volume to slow the new pipeline down
enough to lag behind. Furthermore, such short processing times make it fairly trivial to
tweak the parameters and observe changes in the results. A simple example of this is the
minimum coherence, which we commonly changed to see the effects on the images during
testing. This is especially apparent in smaller selected regions, where one might wish to
quickly change the parameters to seek out some sort of signal in a region of interest. Several
such potential regions are shown in Figure 3.

Figure 3. The rate map produced from the full dataset, showing a region of northern California. Two
of the more apparent features here will be the San Andreas fault, a sharp line of discontinuity to the
west of the San Francisco Bay, and the Bair Island wetlands, a region of large positive velocities on
the southern side of the Bay. The latter is likely the result of the restoration of the wetlands that has
been occurring in that region.

We also discussed in Section 2.3 that we had directly compared data from ISBAS and
BISBAS to look at the relative errors that could be imparted from changes in numerical
methods. Typical errors seem to be less than 1% with higher errors occurring mainly in
regions with lower coherence and/or more points below the coherence cut-off. In both
cases, the actual math going into finding the time-series solutions will tend to feature more
numerical instability and can cause mild divergences between the two implementations.
This can be mitigated to some extent using a higher coherence threshold, which would
in any case be typical when searching out strong signals in the data. Overall, we find the
numerical agreement to be more than sufficient for use and analysis.
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4. Discussion and Conclusions

The implementation of GPU acceleration via the Bifrost framework has allowed
us to achieve massive increases in computation speed toward the application of this
Intermittent SBAS approach on modern data products. Being able to solve for time-series
solutions and the rates of ground regions with intermittent coherence is a massive boon in
recovering pieces of the time series, but modern datasets have begun to make processing
time prohibitive. With the advent of a framework such as described here, this approach
should be much more capable of keeping pace with increasing data volumes and opens
the door to further iteration and development. Extensions of the Bifrost implementation
to earlier stages in the data reduction process, such as phase unwrapping or applying
atmospheric corrections, could continue to accelerate processing, potentially showing even
larger speed-ups. Dramatically reduced processing times also allow for new steps in the
process to be developed, such as more rigorous estimation of errors, or others that we can
only speculate on. In this regard, Bifrost has proven to have significant utility outside its
original astronomical use-case.
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