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Abstract

Motivation: Despite the advances in sequencing technology, massive proteins with known sequences remain functionally unannotated.
Biological network alignment (NA), which aims to find the node correspondence between species’ protein—protein interaction (PPI) networks,
has been a popular strategy to uncover missing annotations by transferring functional knowledge across species. Traditional NA methods as-
sumed that topologically similar proteins in PPIs are functionally similar. However, it was recently reported that functionally unrelated proteins
can be as topologically similar as functionally related pairs, and a new data-driven or supervised NA paradigm has been proposed, which uses
protein function data to discern which topological features correspond to functional relatedness.

Results: Here, we propose GraNA, a deep learning framework for the supervised NA paradigm for the pairwise NA problem. Employing graph
neural networks, GraNA utilizes within-network interactions and across-network anchor links for learning protein representations and predicting
functional correspondence between across-species proteins. A major strength of GraNA is its flexibility to integrate multi-faceted non-functional
relationship data, such as sequence similarity and ortholog relationships, as anchor links to guide the mapping of functionally related proteins
across species. Evaluating GraNA on a benchmark dataset composed of several NA tasks between different pairs of species, we observed that
GraNA accurately predicted the functional relatedness of proteins and robustly transferred functional annotations across species, outperforming
a number of existing NA methods. When applied to a case study on a humanized yeast network, GraNA also successfully discovered functionally

replaceable human-yeast protein pairs that were documented in previous studies.

Availability and implementation: The code of GraNA is available at https://github.com/luo-group/GraNA.

1 Introduction

In biomedical research, it is often challenging or infeasible to
directly perform experiments on humans due to technical or
ethical reasons (O’Neil et al. 2017). Model organisms thus
have been indispensable tools for studying fundamental ques-
tions in human disease and clinical applications. Compared to
humans, model organisms are simpler biological systems for
comprehensive function characterization, have faster genera-
tion cycles that facilitate genetic screens, and can be readily
manipulated genetically (Irion and Nisslein-Volhard 2022).
The characterization and understanding of model organisms
can provide great opportunities for translational studies in
biomedicine. For example, baker’s yeast (Saccharomyces cere-
visiae) has been used as the model organism to map molecular
pathways of Parkinson’s disease in humans (Khurana et al.
2017).

A pivotal challenge to fully realizing the potential of model
organism studies for studying biomedicine is transferring the
functional knowledge we learned in one species to better un-
derstand the functions of the proteins from different species
(Park et al. 2013). A popular strategy to find functionally sim-
ilar proteins is through sequence similarity search (e.g. by
BLAST; Altschul et al. 1990), yet sequence-similar proteins
may perform different functions. In fact, it has been found
that 42% of human-yeast orthologs are not functionally re-
lated (Balakrishnan et al. 2012; Gu and Milenkovi¢ 2021),
i.e. not sharing common functional annotations. Moreover,

proteins perform functions by interacting with other proteins,
which form biological pathways and protein—protein interac-
tion (PPI) networks. Therefore, in many species, similar func-
tions can be carried out by proteins that do not have the most
similar sequences but instead have similar functional roles in
a biological pathway (Park et al. 2013). For this reason, net-
work alignment (NA) has emerged as a complementary solu-
tion to sequence alignment for identifying the functional
correspondence of proteins of different species.

Traditionally, NA aims to find the node mapping between
compared networks that can reveal topologically similar
regions, rather than just similar sequences. This problem is
closely related to the subgraph isomorphism problem of deter-
mining whether a network is a subgraph of the other
(Ullmann 1976), which is known as NP-hard (Cook 1971).
NA of biological networks has been widely studied in bioin-
formatics and a large number of NA methods have been de-
veloped. Those methods circumvented the intractable
complexity of the isomorphism problem by heuristically de-
fining topological similarity based on a node’s neighborhood
structure. Examples include search algorithms (Patro and
Kingsford 2012; Mamano and Hayes 2017), genetic
algorithms (Saraph and Milenkovi¢ 2014; Vijayan and
Milenkovi¢ 2017), random walk-based methods (Singh et al.
2008; Kalecky and Cho 2018), graphlet-based methods
(Milenkovi¢ et al. 2010; Malod-Dognin and Przulj 2015), la-
tent embedding methods (Fan et al. 2019; Li et al. 2022), and
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many others (Meng et al. 2016). Moreover, in the context of
the NA of social networks, graph representation learning-
based methods have been proposed (Chen et al. 2020).

Although based on various heuristics, most existing NA
methods for biological networks have a common key assump-
tion: proteins that are in similar topological positions with re-
spect to other proteins in the PPI network tend to have the
same functions. However, observations in recent studies ques-
tioned this assumption, in which nodes aligned by those meth-
ods, while having high topological similarity, did not
correspond to proteins that perform the same functions, and
the topological similarity of functionally related nodes was
barely higher than that of functionally unrelated pairs
(Elmsallati et al. 2015; Meng et al. 2016; Guzzi and
Milenkovi¢ 2018). The major reason for the failure of the as-
sumption stems from the intrinsic noisy and incomplete na-
ture of biological networks which contain a copious amount
of spurious and missing edges. Even if we could obtain error-
free PPI networks, the similar topology of cross-species sub-
networks that share similar functions can be altered during
evolution due to events such as gene duplication, deletion,
and mutation. Therefore, solely relying on topological simi-
larity to align biological networks may result in unsatisfactory
accuracy.

Recently, Gu and Milenkovi¢ (2020, 2021) proposed a new
paradigm called data-driven NA to address the limitation of
traditional NA methods. Essentially, this new paradigm trans-
forms NA from an unsupervised problem to a supervised
task, and supervised models are trained on both PPI network
and protein function data to learn to align functionally similar
nodes. The key insight is that, using function data as supervi-
sion, the model will be driven to tease topological features
that are more informative for NA (termed as topological relat-
edness in Gu and Milenkovi¢ 2020) apart from other signals,
such as network noise or incompleteness that are likely to
break the common assumption of traditional NA methods. In
contrast, most traditional NA methods are unsupervised and
may not easily capture such topological features. Gu et al.
have developed supervised NA methods TARA and
TARA++ (Gu and Milenkovi¢ 2020, 2021), which first built
graphlet features (Milenkovi¢ and Przulj 2008) of network
nodes and trained a logistic classifier with function data to
distinguish between functionally related and unrelated node
pairs. While outperforming traditional unsupervised NA
methods, TARA (or TARA++) still has several limitations.
First, its prediction performance is suboptimal as the linear lo-
gistic classifier may not be able to capture high-order, non-lin-
ear topological features. In addition, TARA(++) is a two-
stage method, where protein representations are learned in
the first stage using unsupervised algorithms such as graphlet
(Milenkovi¢ et al. 2010) or node2vec (Grover and Leskovec
2016), and in the second stage NA based on the learned repre-
sentations is performed using supervised logistic regression.
The two-stage approach may result in suboptimal alignment
quality as the representation learning in the first stage is not
optimized toward maximizing the alignment accuracy.
Moreover, TARA(++) is not readily extended from pairwise
NA to other NA problems, such as heterogeneous NA and
temporal NA, for large-scale networks due to the high compu-
tational cost of counting heterogeneous or temporal graphlets
(Gu et al. 2018; Vijayan and Milenkovi¢ 2018).

In this work, we develop GraNA, a more powerful and
flexible supervised NA model for the data-driven NA
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paradigm for the pairwise, many-to-many NA problem
(Guzzi and Milenkovi¢ 2018). GraNA is a graph neural net-
work (GNN) that learns informative representations for pro-
tein nodes and predicts the functionally related node pairs
across networks in an end-to-end fashion. Following TARA-
TS (Gu and Milenkovi¢ 2021), GraNA also represents the
two PPI networks to be aligned as a joint graph and integrates
heterogeneous information as anchor links to guide the NA.
As protein orthologs, defined as proteins/genes in different
species that originated from the same ancestor, tend to retain
function over evolution, GraNA further integrates across-
network orthologous relationships as anchor edges to guide
the alignment. One strength of GraNA is that heterogeneous
data can be readily incorporated as additional nodes, edges,
or features to facilitate NA. For example, GraNA integrates
sequence similarity edges as additional anchor links to guide
the alignment and pre-computed network embeddings as
node features to better encode the topological roles of net-
work nodes. GraNA is trained as a link prediction model,
where function data (i.e. whether a given pair of proteins
have functions in common) is used as training data. We also
proposed a negative sampling strategy to improve the model
training effectiveness. Since multi-modal data are integrated,
GraNA is able to learn informative protein representations
that reflect orthologous relationships, topology, and sequence
similarity to better characterize functional similarity between
proteins. Evaluated on NA tasks between five species, GraNA
accurately aligned across-species protein pairs that are func-
tionally similar. We further showed that the alignments
produced by GraNA can be used to achieve accurate across-
species protein function annotations. Moreover, we demon-
strated GraNA’s applicability by applying it to predict the
functional replacement of essential yeast genes by their human
orthologs, in which GraNA re-discovered previously vali-
dated replaceable pairs in important pathways.

2 Methods
2.1 Problem formulation

In this article, we focus on pairwise NA of two species’ PPI
networks. We are given as input an integrated graph
G = (G1, Gz, E12), where the undirected graph G, = (Vy, Ey)
is the PPI network of species k (k =1, 2), with V,, as the set of
the proteins and Ey, as the set of physical interactions between
proteins; E1; C Vi x V, is a set of across-network edges that
serve as anchor links for aligning the PPIs, such as ortholo-
gous proteins pairs. In the data-driven NA framework, the
NA problem is formulated as a supervised link prediction
task, where a set of functionally related protein pairs R =
{(u1,u2)|uy € Vy,uy € V3 } is given as training data to train a
model to predict whether a new pair of proteins are function-
ally related. Following previous work (Gu and Milenkovi¢
2021; Li et al. 2022), the functional relatedness of two pro-
teins is defined based on whether they share the same Gene
Ontology (GO) terms (Section 3.1).

2.2 Overview of GraNA

We propose, GraNA, a novel framework based on GNNs for
supervised NA (Fig. 1). Receiving PPIs G4, G,, and anchor
links Eq, as input, GraNA first builds positional and distance
embeddings as node features for every node. It then uses a
GNN, which performs both within- and across-network mes-
sage passing through PPI edges and anchor links (orthologs
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Figure 1. Schematic overview of GraNA. GraNA is a supervised GNN that aligns functionally similar proteins in the PPl networks of two species. It
integrates orthologs and sequence similarity relationships as anchor links to guide alignments. GraNA derives positional and distance embeddings as
node features for proteins and performs iterative within- and across-network message passing to learn protein representations that capture protein
functional similarity. The concatenated representations of a pair of proteins are used to make the final prediction using a fully connected (FC) neural

network.

and sequence similarity), to enhance and refine those features
into final representations that capture topological and evolu-
tionary similarity relationships. GraNA is trained with pro-
tein function data to predict whether a pair of across-network
proteins share the same function.

2.3 GNN architecture of GraNA

GNNs have been widely used to model graph-structured data
such as social networks, physical systems, or chemical mole-
cules (Dwivedi et al. 2020). Here, we develop a novel GNN
architecture, adapted from the Generalized Aggregation
Network (Li et al. 2020a), to model our input PPI networks
G = (G1 = (Vl,E1),G2 = (Vz,Ez),Elz). The key Of GNNs
is the graph convolution (also known as message passing)
where a node first aggregates the features from its neighbor
nodes, updates them with neural network layers, and then
sends out the updated features to its neighbors. Through itera-
tive graph convolutions on the PPI networks Gy, G,, and an-
chor links E{,, our model can learn an embedding for each
node that encodes information of both graph topology and
relationships of anchor links. GraNA has L layers of graph
convolution blocks, where the /-th block contains a
series of non-linear neural network layers that transform
node 7’s embedding h! € R? to h!™ € R?, where / € [L] and
i € [n], n=|Vi| + |V2|. In particular, h? is the initialized node
feature (described in Section 2.4).

Within each graph convolution blocks are within- and
across-network propagation layers that update the node
embeddings. In the /-th block, the node embeddings hf are
first updated by the propagation along PPI edges (within-net-
work message passing), in which a node aggregates its neigh-
bor’s features using the attention mechanism:

exp(y - hj)

m; = Z aj - hf where o; = 7
pen™ (i) €XP (v h;/)

JEN™ (i)

(1)

where N (i) is the set of neighboring nodes of node i in terms
of the within-network edge set E; UE,, and y is a learnable
parameter known as the inverse temperature. Next, node
embeddings are updated with across-network message pass-
ing through anchor links:

exp(w - hf) )

o= --h! where §; =
. ie;(i) it & Sjenr(y exp(er - hy)
where N (i) is the set of neighboring nodes of node 7 in terms
of the across-network edge set E{,, and w is a learnable
temperature parameter. The final updated embedding hf“
is obtained using multi-layer perceptron (MLP) f,f
followed by a residual connection (He et al. 2016):
W™ = f(h! +m;) + f/(h! + ;) + h!. In GraNA, we stacked
seven graph convolution blocks to build the GNN, where
each block performs one iteration of within-network propa-
gation (Equation (1)) and one iteration of across-network
propagation (Equation (2)). Pair normalization (Zhao and
Akoglu 2019) and ReLU non-linear transformation (Nair and
Hinton 2010) are applied between two adjacent convolution
blocks.

After the graph convolution, the representations of nodes
i€ Viandje V3, h,-L and hl-L , are concatenated and passed to
a two-layer MLP to out a probability score that predicts
whether the two nodes should be aligned. GraNA is trained
using the binary cross entropy loss. The hyperparameters for
training GraNA were selected based on GraNA’s performan-
ces on valid sets, and we further tested the effect of different
hyperparameters on GraNA’s performances. The details of
how we select our hyperparameters, the effects different
hyperparameters have upon GraNA, and other implementa-
tion details are provided in the Supplementary Information.

2.4 Network features of proteins

While GNNs are able to learn node embeddings that encode
topological information of the input PPI network structure,
previous studies have found that GNNs might perform poorly
when the graph exhibit symmetries in local structure, such as
node or edge isomorphism. This is related to the theoretic lim-
itation of GNNs due to their equivalence to the 1-Weisfeiler-
Lehman test of graph isomorphism (Xu et al. 2018). Some
existing NA methods also suffered from this limitation. For
example, the state-of-the-art NA method ETNA (Li et al.
2022) has to filter out nodes with the same neighborhood
structure, since these are indistinguishable to their model
when only topological information is used.

Inspired by several solutions in graph machine learning
(Dwivedi et al. 2020; Li et al. 2020b), we introduce two types
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of node features, as the initializations of node embeddings h?,
to improve the expressiveness of our GNN model and facili-
tate the topological feature learning. We use two complemen-
tary network features, namely the graph Laplacian positional
embeddings, which encode a node’s ‘position” with respect to
other nodes in the network, and the diffusion-based embed-
dings, which capture a node’s ‘distance’ to other nodes in ran-
dom walks. Intuitively, the two types of embeddings capture
the long-range relationships between network nodes. In
GraNA, these features are incorporated as the initialization of
node embeddings h? and then refined by message passing
around each node’s direct neighbor vicinity. Therefore,
GraNA can capture both local and global topological proxim-
ity in the network. Next, we describe how to construct the po-
sitional and distance features.

2.4.1 Distance embeddings

Random walk or PageRank-based algorithms have been
widely used to learn network embeddings (Perozzi et al. 2014;
Grover and Leskovec 2016) and improve expressiveness of
GNNGs (Li et al. 2020b). For example, the distance matrix at
the equilibrium states of a random walk with restart has been
used to encode the topological roles of genes or proteins in
molecular networks (Cho et al. 2016; Cowen et al. 2017).
Following those ideas, in this work, we compute distance
embeddings for network nodes using NetMF (Qiu et al.
2018), a unified framework that generalizes several previous
network embedding methods (Perozzi et al. 2014; Grover and
Leskovec 2016) and estimates the distance similarity matrix
M in a closed form:

T
M= Vobl(TG) <Z (DlA)’> D!, (3)

r=1

where A is the 7 x n adjacency matrix of the network, D is
the diagonal degree matrix, vol(G) = >, D;; is the volume
of the graph G, b is the parameter for negative sampling, T is
the context window size. Unlike the adjacency matrix A that
only contains direct neighbor relationships, the NetMF ma-
trix M encodes the similarity between long-distance neigh-
bors. The entry M;; approximates the number of paths with
length up to T between nodes i and j. In GraNA, setting b =1
and T'= 10 following the default choices (Qiu et al. 2018), we
computed matrices M for the two input PPIs separately and
used the i-th row of log M as the distance embedding for node
i. As the row vector has a high dimension as the number of
nodes, we applied a linear neural network layer to project the
row vector from dimension 7 to d (d < n), where d is the hid-
den dimension in GraNA’s graph convolution layers.

2.4.2 Positional embeddings

In addition to distance embeddings, we further build posi-
tional features such that nodes nearby in the network have
similar embeddings while distant nodes have different embed-
dings. For this purpose, GraNA applies the Laplacian posi-
tional encoding, which has been shown to be able to encode
graph positional features in GNNs (Dwivedi et al. 2020). The
idea is to use graph Laplacian eigenvectors that embed the
graph into Euclidean space while preserving the global graph
structure. Mathematically, the normalized graph Laplacian is
factorized as L =1 — D" Y2AD~1/2 = UT AU, where A and U
refers to the eigenvalues and Laplacian eigenvectors,
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respectively. In GraNA, the d-smallest non-trivial eigenvectors
are used as the positional embeddings and concatenated with
the distance embeddings together as the initialized node fea-
tures .

2.5 Integrating heterogeneous information for NA

In addition to PPIs, there are other types of relationships that
can help characterize the functional similarity of proteins,
such as gene—gene interactions, sequence similarity, pheno-
type similarity, and associations between proteins and other
entities such as diseases. A naive way to integrate multiple
data sources is to collapse them as additional but the same
type of nodes and edges in a flattened network, which, how-
ever, may lose context-specific information. Heterogeneous
data integration, which treats distinct types of nodes and
edges separately, has been shown effective to integrate diverse
data sources (Cho et al. 2016; Luo et al. 2017). A few previ-
ous NA studies consider the heterogeneous NA problem, but
their approaches required non-trivial modifications in the op-
timization objective and feature engineering as compared to
the homogeneous NA problem. On the contrary, one of the
major advantages of GraNA is that it can readily integrate
heterogeneous information to facilitate the alignment of net-
works by simply including the data as additional nodes,
edges, or feature embeddings and applying heterogeneous
graph convolutions to capture context-specific information.

As a proof-of-concept, here we apply GraNA to incorpo-
rate sequence similarity relationships as another type of
anchor links in addition to the orthologous relationships.
Now we have two sets of across-network edges as
input, which are denoted as Eg'z) for r=1, 2. To learn
embeddings from heterogeneous data, we perform separate
across-network message passing for each edge type:
yl@ = ZiGNiT“(i) B - hf Compared to Equation (2), note that
the aggregation and the weights f5; here are defined on #’s
neighbor nodes that are connected by the r-th type of edges
N3(3), instead of all neighbors N(i). After performing both
types of message passing, we obtain the updated node embed-
ding using a sum pooling operation over all edge types:
W = f(h) +my) + 3, FO (k! + ﬂl@) +h!, where f© is a
fully connected neural network specific to edge type r. We ex-
pect that, by multi-view information from orthologs and se-
quence similarity edges, GraNA can better distill the
topological features that are useful to predict functional relat-
edness. Of note, GralNA is a generic framework, and other
types of node or edge data can be integrated into GraNA in a
similar way.

2.6 Enhancing model learning with hard negative
sampling

Supervised NA essentially is a positive-unlabeled learning
problem, meaning that we only observed positive
protein pairs that are functionally related (e.g. have at
least one GO term in common), denoted as
Z, ={(p,q)|proteins p and q are functionally related}, with-
out observing validated negative samples. For a new pair
(v*,q") € I, it does not necessarily mean that the two pro-
teins do not have the same function, rather, it is more likely
their functions have not been thoroughly characterized by
experiments. To generate negative samples for training a su-
pervised classifier to distinguish functionally related and unre-
lated pairs, previous NA methods usually chose to randomly
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sample a set of pairs not in Z, as the negative set Z,, (Gu and
Milenkovi¢ 2020, 2021).

We reason that the random negative sampling might lead
the machine learning model to learn the node’s presence in
the training data rather than functional relatedness. Denote
V¥ as the set of proteins in PPI G, that are involved in positive
pairs, i.e. V] ={p|p € Vi and (p,q) € I, for some q € V,},
and V) has a similar meaning. As only a small fraction of pro-
teins in V; and V, are involved in the positive set, for most
randomly sampled negative pairs (p, g), it is likely that p and
q are new proteins that did not occur in V¥ or V3, respec-
tively. Due to the distribution discrepancy between positive
and negative samples in the training set, machine learning
models trained on this data may only learn to predict for a
given pair of proteins (p, q) whether p € VP or g€ V¥, rather
than predicting (p, q) €Z,.

To encourage the model to learn the functional relatedness
instead of node representativeness in the training data, we pro-
pose a hard negative sampling strategy to construct the nega-
tive set, where the sampled negative edges must contain nodes
that have both appeared in positive edges. We achieve this by
performing edge swap between positive edges: given two posi-
tive pairs (p1, q1) and (p2, ¢»), we swap their endpoints and
add new edges (p1, g2) and (p2, q1) to the negative set if there
did not show in Z,. Equivalently, the set of negative edges is de-
fined as Zh™ = {(p,q)lp € V{,q € V§,(p,q) ¢ Z,}. In our
experiments, we also compared to two other negative
sampling strategies, including the “easy” sampling used
in previous NA studies (Gu and Milenkovi¢ 2020, 2021):
Y ={{p.alp € Vi,a € V2, (p,q) ¢Z,}, and a “semi-
hard” sampling that requires a sampled negative edge to con-
tain at least one node that has appeared in positive edges:
™ = {(p,q)|(p € V] and g € V) or (p € Vi and g € VD),
(0.q) £ I,).

3 Results

We performed several experiments to assess GraNA’s ability
to capture the functional similarity of proteins and predict
protein functions across species. We also conducted ablation
studies to better understand the model’s prediction perfor-
mance. Furthermore, we used a proof-of-concept case study
to demonstrate GraNA’s applicability in functional genomics.

3.1 Datasets
3.1.1 Network data

The PPI network data of six species (S. cerevisiae,
Schizosaccharomyces pombe, Homo sapiens, Caenorhabditis
elegans, Mus musculus, and Drosophila melanogaster) were
downloaded from BioGRID (version 3.5.187) (Stark et al.
2006). We used both orthologs and sequence similarity rela-
tionships as anchor links to guide NA. For orthologs, we fol-
lowed the ETNA study (Li et al. 2022) and downloaded
orthology data from OrthoMCL (version 6.1) (Li et al. 2003).
For sequence-similar pairs, we retrieved the expert-reviewed
sequences, if any, of proteins in our PPI networks from the
UniProtKB/Swiss-Prot database (Consortium 2023). We then
used MMseqgs2 (Steinegger and Soding 2017) to perform se-
quence similarity searches between the proteins of pairwise
species and kept protein pairs with an E-value < 1077 as an-
chor links. We chose this cutoff following previous work
(Kalecky and Cho 2018; Gu and Milenkovi¢ 2021), and we
observed that varying this cutoff in a wide range had no
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significant impact on our GraNA’s prediction performance
(Supplementary Fig. S1). The statistics of the PPI networks
and the anchor links can be found in Supplementary Tables
S1 and S2.

3.1.2 Functional annotations

We collected the functional annotations (terms) from GO
(Ashburner et al. 2000) (2020-07-16) and considered two
proteins to be functionally similar if their corresponding genes
have the same GO terms. Following ETNA (Li et al. 2022),
we only kept annotations related to the Biological Process cat-
egory, which are propagated through is a and part of rela-
tions, and included evidence codes EXP, IDA, IMP, IGI, and
IEP. As GO terms appearing at the higher levels of the GO hi-
erarchy might be too general or redundant, following ETNA
(Li et al. 2022) and other studies (Gu and Milenkovi¢ 2020,
2021), we focused our analyses on specific functions by creat-
ing a slim set of GO terms associated with at least 10 genes
but no more than 100 genes. Other expert-curated GO slim
terms were also added to this slim set (Greene et al. 2015).
The statistics of functionally similar protein pairs between
species can be found in Supplementary Table S2.

3.2 GraNA better exploits topological similarity for
NA

We first assessed GraNA’s ability for NA by applying it to
align the networks between human and four major model
organisms, including S. cerevisiae, M. Musculus, C. elegans,
and D. melanogaster, and between two yeast species (S. cere-
visiae and S. pombe). The prediction task was formulated as a
link prediction problem, i.e. predicting whether two proteins
have the same function. We created an out-of-distribution
train/test split (with a ratio of 8:2) such that proteins present
in the training set never occur in the test set. In another more
challenging split, we further forced that the training proteins
and test proteins do not have > 30% sequence identity.

We compared GraNA to two unsupervised embedding-
based methods (ETNA (Li et al. 2022), MUNK (Lim et al.
2018)), a graph theoretic method (IsoRank (Singh et al.
2008)), a sequence similarity-based method (MMseqs2
(Steinegger and Soding 2017)), and two supervised methods
(TARA-TS and TARA++ (Gu and Milenkovi¢ 2021)). We
used the same PPI networks and orthologs anchor links for all
baseline methods. Anchor links for protein pairs that share
GO terms were removed to avoid data leakage. To make a
fair comparison, we included a variant of our method
(GraNA-o) that only used orthologs (without sequence-
similar pairs) as anchor links. Unsupervised methods were
evaluated on the same test set used for supervised methods.
The running time analyses of GraNA and representative base-
line methods can be found in Supplementary Table S6.

The evaluation results suggested that GraNA consistently
outperformed other methods for aligning functionally related
proteins in all five NA tasks in terms of the AUROC and
AUPRC metrics (Fig. 2). Precision, recall, and total number of
predicted alignments were reported in Supplementary Figs.
S11, S12, and S13. We first confirmed the advantage of the
supervised NA paradigm over the traditional unsupervised
paradigm: GraNA(-0) substantially improved other unsuper-
vised methods (MMseqs2, IsoRank, MUNK, and ETNA)
with clear margins. For example, the AUROC and AUPRC
improvements achieved by GraNA over the best unsupervised
method (ETNA) were 11% and 55%, respectively (averaged

GzZ0z Jequaydas {0 uo Jasn ubiedwey) eueqln - sioul|| 40 Ausieaiun Aq L9y0122/Sop!/L Juswa|ddng/gg/a]01e/SoleWIOoUI0lg/WOod dNoolwapede//:sdily woly papeojumoq


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad241#supplementary-data

i470

(a) S. cerevisiae - 5. pombe H. sapiens - S. cerevisiae  H. sapiens - M. musculus
0.75

Ding et al.

H. sapiens - C. elegans  H. sapiens - D. melanogaster

1 o 0.60
06 @ - {
8 & ﬁ 0.55
8
0.5 Lo 10 0 o 0 I Wl 5o = B I

MMseqs2 IsoRank MUNK-f @ MUNK-b

0.8 &% :® S 0.70
8% <> 3% Fi <~ 2% > é@
0.70 2
3 0.65
0.7 b 0.65 "
&
&
il N | |

o

o

N
9,

0.66 Tq—;- 3% . 10.66 F(—b% :
s 2 : i H
) 4802 R f i
) 0.58 i il [oss ; i
0.54 0.54 !
-] @
S o.so*-i;* N,
0.3/ g% S } (015 S 0.15 )‘5 . a2
g@ﬂgo g Tﬂ o) " Fq—bé‘\} ; 0.12 9&\ ﬁﬁ
@] : é 4 F t 0.09 .
o 0.2 g 0.10 T 0.10 . 0.08| . % % | g
% 3 ° i . ¥ 4 0.06(¢ . &
=3 N rl LN - o ? F &
0.1 ¥ 0.05 i 0.05 0.04 2
Y si I 0.03
ool ————M® g0 ————M_pot ————-M gy ————® o0

TARA-TS EEE TARA++ ETNA GraNA-o BN GraNA

om0

Figure 2. Performances of NA prediction. GraNA and other baselines were evaluated for aligning functionally similar proteins across five pairs of species,
using (a) AUROC and (b) AUPRC as metrics. GraNA-o is a variant of GraNA that only uses orthologs as anchor links whereas GraNA refers to the full
model that uses both orthologs and sequence similarity as anchor links. The default E-value cutoff 107 is used for MMsegs2. As MUNK is not a
bidirectional NA method, the performances of its forward and backward predictions were shown separately as MUNK-f and MUNK-b. Performances were
evaluated using five independent train/test data splits. Raw AUROC and AUPRC scores are provided in Supplementary Tables S4 and S5.

over five tasks). Compared to those unsupervised methods
that entirely rely on the topology to align nodes and are sus-
ceptible to the noise and incompleteness in biological net-
works, GraNA further leveraged function data as direct
supervision signals to tease topological features that are di-
rectly related functional relatedness from background noise
and greatly improved the alignment quality.

In addition, compared to TARA-TS and TARA++, the
only methods for the supervised NA paradigm in literature,
we found that our method is a more powerful deep learning
solution for supervised NA. For example, GraNA-o on aver-
age had 53% higher AUPRC scores than TARA-TS.
Interestingly, TARA-TS, despite as a supervised method,
sometimes even had a lower performance than the state-of-
the-art unsupervised method ETNA. The potential reason is
that TARA-TS only used a linear logistic model that only able
to model linear feature interactions in the data, while GraNA
is an end-to-end GNN, which captures more complex, non-
linear feature dependencies, and can better exploit topological
similarity and predict node alignment.

Moreover, although GraNA-o outperformed other meth-
ods in most scenarios, in a few cases, it was only on par with
the second-best baseline (TARA-TS; Fig. 2, 3rd and 5th col-
umns). However, we found that when integrating both ortho-
logs and sequence similarity as anchor links, the full model
(GraNA) further improved GraNA-o and outperformed all
other baselines in all tasks in both AUROC and AUPRC, sug-
gesting that GraNA was an effective tool to integrate hetero-
geneous data for boosting the NA performance. In contrast,
we observed that TARA-TS, even when given the two types of
anchor links, was not able to improve the alignment perfor-
mance (to be discussed in Section 3.4 and Fig. 4a).

On a more challenging data split where the sequences in the
train and test sets have no sequence identity > 30%, we also
observed that GraNA clearly outperformed the second best
baselines ETNA and TARA-TS (Supplementary Figs. S3 and
S4). We also had similar observations when using other se-
quence identity cutoffs to create the train/test splits
(Supplementary Fig. S2). This strict benchmark suggested that
GraNA can generalize its prediction for proteins that are
sequence-dissimilar from what it has seen in the training data.

Additionally, we created another challenging evaluation
dataset based on a temporary split strategy, where the snap-
shot of the GO database as of 2018-07-02 was used as train-
ing data, and the GO snapshot as of 2022-12-04, excluding
all training annotations, was used as test data. On this data-
set, we again observed similar results where GraNA outper-
formed baselines such as ETNA and TARA-TS
(Supplementary Fig. S5). This demonstrated GraNA’s gener-
alizability when making predictions for proteins whose func-
tions are not completely characterized.

Overall, these results demonstrated that GraNA can better
explore topological similarity to accurately align networks.
The flexible GNN framework further allowed GraNA to inte-
grate heterogeneous data types that capture multi-view simi-
larity relationships to improve the alignment quality.

3.3 GraNA translates accurate NAs to function
predictions

One important application of NA is to better understand hu-
man protein functions by transferring our learned function
knowledge about model organisms. Therefore, after evaluat-
ing the performance of aligning functionally related proteins,
we next studied whether the NAs produced by GraNA can fa-
cilitate protein function prediction. Here, we applied GraNA
to generate the alignments between humans and the four
model organisms. Then, we considered the top 5,000 ranked
protein pairs aligned by GraNA and calculate the Jaccard in-
dex between the functional annotations of the two proteins in
each pair. As a protein may have multiple functions, this eval-
uation aimed to quantify the overlap between the sets of func-
tions of the two aligned proteins, which was more complex
and challenging than the evaluation in the last section which
predicted whether two proteins share at least one function.
We also compared a random baseline that randomly samples
5000 pairs from proteins that have at least one GO term, in
addition to our previously introduced baselines. Furthermore,
we have also evaluated GraNA in an established protein func-
tion prediction framework (Meng et al. 2016).

We observed from Fig. 3 that, even with the partial model
GraNA-o, our method has already outperformed other meth-
ods on three out of the four tasks in terms of Jaccard
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Figure 3. Performance of protein function prediction. Based on the NAs produced by each method for four pairs of species (H. sapiens-S. cerevisiae, H.
sapiens—-M. Musculus, H. sapiens—C. elegans, H. sapiens-D. melanogasten, we chose the top 5000 ranked protein pairs and transferred all the functional
annotations of one protein in an aligned pair to predict the other protein’s function. The accuracy of the function prediction was evaluated by calculating
the Jaccard index between the sets of the two aligned proteins. Box plots showed the distribution of the Jaccard index of the top 5000 aligned pairs for

each method on five NA tasks.
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Figure 4. Ablation studies validated key designs of GraNA. (a) Comparison between GraNA and two of the best baselines, TARA-TS and ETNA on
heterogeneous data integration, where either orthologs, sequence similarity, or both were used as the anchor links for the NA between H. sapiens and S.
cerevisiae. (b—c) Ablation analyses that compared different negative sampling strategies (b) and node features (c) for the NA between S. cerevisiae and S.
pombe. AUPRC scores of the two best baselines (ETNA and TARA-TS) were shown in (b) and (c) for reference. Performances were based on five
independent trials of train/test split. Comparisons on all species can be found in Supplementary Information. (Lap: Laplacian embeddings; Net: NetMF

embeddings.).

similarity. The full model GraNA, which integrated heteroge-
neous orthologs and sequence similarity edges, further
boosted the function prediction performance. These results
suggested that GraNA was able to not only align functionally
similar protein pairs but also prioritize “most similar” pairs
to the top of its prediction list. GraNA’s ability to prioritize
functionally similar proteins has important implications when
studying human diseases, since it can suggest the most func-
tionally similar counterpart of a human gene in model organ-
isms for detailed characterization. Moreover, we noted that
the improvements achieved by GraNA over other methods
were more pronounceable for species with high-quality PPI
networks (e.g. S. cerevisiae). On the alignment task between
human (H. sapiens) and roundworm (C. elegans), GraNA
achieved performance on par with the second best baseline,
which was likely due to that the PPI of C. elegans is the spars-
est among all four model organisms (density < 0.2%). This
finding was consistent with the ETNA study (Li et al. 2022).
We also compared GraNA with other methods using the func-
tional coherence (FC) metric (Singh et al. 2008; Chindelevitch
et al. 2013), a variant of the Jaccard index that only focuses
on standardized GO terms to avoid bias caused by terms from
different levels of the GO hierarchy, and observed similar per-
formance (Supplementary Fig. S10). Additionally, by using
the protein function prediction framework (Meng et al.
2016), we observed that GraNA predicted a smaller set of

predictions with higher precision compared to TARA++,
which is useful when high-confidence and limited false posi-
tive predictions are desired (Supplementary Fig. S14). Overall,
this experiment here suggested that GraNA translated its ef-
fective NAs to the accurate predictions of protein functions,
demonstrating its potential for across-species functional
annotations.

3.4 Analyses of key model designs in GraNA

Having validated that GraNA outperformed state-of-the-art
methods for aligning networks and predicting functions, we
performed ablation studies to understand the GraNA model
in more detail and attribute performance improvements to
several key design choices in GraNA.

3.4.1 Heterogeneous anchors

As GraNA is a flexible framework to integrate heterogeneous
data, we first investigated the effects of using heterogeneous
data on the performance of NA. We compared GraNA var-
iants that used only orthologs, only sequence similarity, or
both as anchor links. We observed that with either of the an-
chor links, GraNA was able to achieve an AUPRC better than
the two best baselines (ETNA and TARA-TS) and combining
both of them led to the best AUPRC score (Fig. 4a and
Supplementary Fig. S6). Interestingly, we found the two base-
lines, when given two types of anchors, did not improve their
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NA accuracy compared to when a single type of anchor was
used (Fig. 4a and Supplementary Fig. S7). These comparisons
indicated that information contained in the two types of edges
are not redundant but complementary, and GraNA can inte-
grate them more effectively than other baselines. The major
reason was that GraNA implemented separate message pass-
ing mechanisms to handle different types of anchors, while
ETNA and TARA-TS (with node2vec features (Grover and
Leskovec 2016)) mixed them as a single type of edges. We ex-
pect that integrating more data that capture multiple aspects
of protein similarity can further help GraNA to better charac-
terize protein functional relatedness.

3.4.2 Hard negative sampling

Another novel design in GraNA is the hard negative sampling
which prevented the model from only learning from trivial
training samples. To better illustrate this, we compared
GraNA models trained with three negative sampling strate-
gies, including easy, semi-hard, and hard negative sampling
(Methods). We observed that GraNA trained with easy and
semi-hard samplings already outperformed the second-best
baseline, and using the hard sampling further improved the
AUPRC by 20% and showed a more significant margin over
baselines (Fig. 4b). Hard negative sampling is a critical ingre-
dient that makes GraNA accurate and generalizable. As dis-
cussed in the Methods section, random negative sampling
tends to create a training set that confuses the machine learn-
ing model, and the model may just learn whether protein
appeared in the training set rather than the functional related-
ness between protein pairs. In contrast, hard negative sam-
pling forces our model to discriminate between functionally
related and unrelated pairs.

3.4.3 Node features

We used both distance features (NetMF embeddings) and po-
sitional features (Laplacian embeddings) to initialize the node
features in GraNA. Here, we analyse the effect of the node
features by comparing GraNA variants that used only one or
both of the NetMF and Laplacian embeddings, or randomly
initialized node features. We observed that with random node
features, the prediction performance was only comparable
with the unsupervised ETNA method (Fig. 4c). When replac-
ing the random features with network-informed features
(NetMF and Laplacian), GraNA significantly improved its
AUPRC scores. Finally, incorporating both embeddings led to
the highest AUPRC score. This comparison underscored the
effectiveness of using informative features. Although the
GNN model alone was able to capture topological properties
of network nodes, it still only captured localized information
as a node’s features were only propagated to its nearby neigh-
bors with a few times (e.g. <10) of message passing.
However, the two embeddings we used were able to encode
global, long-range neighbor relationships between nodes,
which were complementary to the topological features
learned by the GNN and jointly enhanced GraNA’s
effectiveness.

3.5 Application: predicting replaceability for a
humanized yeast network

Finally, we demonstrate the applicability of GraNA using a
task of identifying replaceable human-yeast gene pairs.
Recent studies have identified many human genes that can
substitute for their yeast orthologs and sustain yeast growth

Ding et al.

(Kachroo et al. 2015; Laurent et al. 2020), which provides a
tractable system known as “humanized yeast” to allow for
high-throughput assays of human gene functions. Given that
not all yeast genes can be replaced by their human orthologs,
biological NA methods might become useful tools to predict
the replaceability among human-yeast orthologs.

We collected the experiment data from Kachroo et al.
(2015), which has assayed 414 essential yeast genes for com-
plementation by their human orthologs and found 47% of
them could be humanized. After filtering out genes that are
not included in the PPI network of S. cerevisiae that we used
in this work, we obtained 411 gene pairs, out of which 174
replaceable pairs are labeled as positive samples and the
remaining as negative. To avoid potential signal leakage, in
our data we further removed 169 orthologs that coincide with
the 411 pairs. Using this data as a binary classification test
set, we first applied a baseline method, ETNA, to predict the
replaceability of each human—yeast pair. We observed that
ETNA’s predicted performance was nearly random (AUC
~0.5; Fig. 5a). This was not surprising because, by design,
ETNA was trained to classify between orthologs and non-
orthologs, while all the positive and negative pairs in the test
sets here are all human-yeast orthologs, which appeared to be
indistinguishable to ETNA. Next, we applied the GraNA
model pre-trained on our H. sapiens—S. cerevisiae alignment
task (GraNA-pt) to predict for those 411 gene pairs. Even
though GraNA-pt was not directly trained to predict replace-
ability, we found that it still had a better-than-random predic-
tion accuracy (AUC=0.56; Fig. 5a) on the test set, which
suggested that the functional similarity relationships captured
by GraNA were relatively more generalizable. After fine-
tuning the trained GraNA model on the 411 gene pairs by re-
training the parameter of the top MLP layers and freezing
GNN layers, we observed that this model (GraNA-ft) reached
an AUC of 0.68 in 5-fold cross-validation (Fig. 5a), which
was higher than the AUC of the supervised TARA-TS model
(Supplementary Fig. S8). This suggested that the prediction
accuracy of GraNA on this task could be improved with di-
rect supervision.

As a case study, we applied GraNA to study the replace-
ability in protein complexes. We selected as two examples the
proteasome complex and the CCT complex that have experi-
mental validation data (Kachroo et al. 2015, 2017, 2022). In
both examples, we used the genes in the complex as the test
set and the remaining genes with experimental validation data
as the training set. For the Proteasome complex that contains
both replaceable and non-replaceable genes, except for PRES,
GraNA correctly predicted a positive z-score for replaceable
genes and a negative z-score for non-replaceable genes
(AUC=0.91; Fig. 5b). For the CCT complex that was mainly
enriched with non-replaceable genes, GraNA’s prediction also
recapitulated the replaceability in the network, where vali-
dated non-replaceable genes were predicted with a negative z-
score (Fig. 5c).

Overall, these results demonstrated the applicability of
GraNA for extending the NAs to empower other functional
analyses of genes and proteins.

4 Conclusion

NA is a fundamental problem in various domains, such as
linking users across social network platforms (Zafarani and
Liu 2013), unifying entities across different knowledge
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Figure 5. An application of GraNA on predicting replaceable human-yeast gene pairs in humanized yeast network. GraNA was used to predict whether
human genes can replace their yeast orthologs for the functions in humanized yeast network. (a) Using 414 validated positive and negative human-yeast
gene pairs by Kachroo et al. (2015) as the test set, we compared a pre-trained GraNA model (GraNA-pt), a fine-tuned GraNA model (GraNA-ft), and ETNA
to evaluate their ability to distinguish replaceable and non-replaceable human-gene pairs in the test set. The performance of GraNA-ft was evaluated using
5-fold cross-validation whereas GraNA-pt and ETNA were evaluated on the whole test set directly. (b—c) Case studies where GraNA was used to predict
the replaceability in two pathways: (b) Proteasome complex and (c) CCT complex. We visualized the complex validated by Kachroo et al. (2022) for
comparison, where validated replaceable genes were colored in red, non-replaceable genes in green, and unvalidated genes in gray. For GraNA's
predicted network, the predicted score for each gene was normalized into a z-score and colored with a gradient colormap from green (most non-

replaceable) to red (most replaceable).

databases (Zhu et al. 2017), and aligning keypoints in com-
puter vision (Sarlin et al. 2020). In this article, we studied the
NA problem for biological networks. We have presented
GraNA, a deep learning model for aligning functionally re-
lated proteins in cross-species PPI networks. Our work was
motivated by the recently proposed supervised NA methods
such as TARA/TARA-TS (Gu and Milenkovi¢ 2020, 2021),
which represent the two PPIs being aligned as a joint graph
connected by anchor links and integrate topology, sequence,
and function information to characterize the function similar-
ity between cross-species protein pairs. GraNA integrates PPI
networks, ortholog and sequence similarity relationships, net-
work distance and positional embeddings, and protein func-
tion data to learn to align across-species proteins that are
functionally similar. Experiments showed that GraNA outper-
formed state-of-the-art NA methods, including both super-
vised and unsupervised approaches, on aligning pairwise PPI
networks for five species, and the high-quality NAs of GraNA
also enable accurate functional prediction across species. We
further investigated several key model designs of GraNA that
led to performance improvements and demonstrated the ap-
plicability of GraNA using a case study of predicting replace-
ability in humanized yeast network. GraNA is a flexible
framework and can be readily extended in the future to inte-
grate diverse types of entity and association data to facilitate
NA. As previous methods such as TARA, GraNA can also be
generalized to study other NA problems, including multi-
species NA and temporary NA.
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